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Early diagnosis of psoriatic arthritis (PSA) is important for successful therapeutic
intervention but currently remains challenging due, in part, to the scarcity of non-
invasive biomarkers. In this study, we performed single cell profiling of transcriptome
and cell surface protein expression to compare the peripheral blood immunocyte
populations of individuals with PSA, individuals with cutaneous psoriasis (PSO) alone,
and healthy individuals. We identified genes and proteins differentially expressed between
PSA, PSO, and healthy subjects across 30 immune cell types and observed that some cell
types, as well as specific phenotypic subsets of cells, differed in abundance between
these cohorts. Cell type-specific gene and protein expression differences between PSA,
PSO, and healthy groups, along with 200 previously published genetic risk factors for
PSA, were further used to perform machine learning classification, with the best models
achieving AUROC ≥ 0.87 when either classifying subjects among the three groups or
specifically distinguishing PSA from PSO. Our findings thus expand the repertoire of gene,
protein, and cellular biomarkers relevant to PSA and demonstrate the utility of machine
learning-based diagnostics for this disease.
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INTRODUCTION

Psoriatic arthritis (PSA) is an inflammatory rheumatic disease
that can affect the peripheral joints, axial joints, and entheses.
PSA largely occurs in association with the skin disease psoriasis
(PSO), with roughly a third of individuals with PSO developing
PSA (1). Early detection of PSA in PSO patients is an important
determinant of clinical outcome and patient long-term quality of
life (2) but can be challenging due to the heterogeneous
presentation of PSA, with only subclinical manifestations at
early stages of disease (3).

The ongoing effort to develop better molecular diagnostics for
PSA has identified genetic polymorphisms, primarily in major
histocompatibility complex and IL-17/IL-23 signaling loci that
contribute to PSA risk in PSO patients (4, 5), as well as disease-
relevant immune cells within the inflamed synovium of affected
joints. These include both adaptive and innate cell types that
have a common inflammatory and IL-17-secreting role in
pathogenesis and are significantly expanded in the synovium
(6). Within peripheral blood, some cell types have also been
reported to be perturbed in PSA patients, and while some studies
have reported serum biomarkers for distinguishing PSA from
PSO (7, 8), a more recent study found similar serum proteomes
among PSO patients with and without PSA (9).

In this study, we searched for biomarkers of PSA within the
circulating immune cell population by jointly measuring
transcriptomic and cell surface protein expression of peripheral
blood immune cells at the single cell level. Our data reveal PSA-
associated differences in the abundance of phenotypic cell
clusters within specific adaptive and innate immune subsets.
We further examine disease-associated RNA and protein
markers found in this analysis, along with genotype data from
PSA-associated polymorphisms, developing a machine-learning-
based diagnostic for distinguishing between PSA and PSO.
MATERIALS AND METHODS

Patient Recruitment and Sampling
Patients with PSO were enrolled from the dermatology clinics at
the University of California San Francisco (UCSF), with a board-
certified dermatologist confirming the clinical diagnosis of
plaque psoriasis. Patients with PSA were assessed by a board-
certified rheumatologist and diagnosed with PSA according to
CASPAR criteria. Patients with psoriasis who reported
symptoms of joint pain, but who did not meet CASPAR
criteria, were assigned the label of PSX. Healthy controls, who
did not have any inflammatory skin disease or autoimmune
disease, were enrolled from the San Francisco Bay Area. All
subjects gave written, informed consent under IRB approval 10-
02830 from the University of California San Francisco. Detailed
patient information is provided in Supplementary Table 1.
Peripheral blood was collected from each subject in Vacutainer
ACD tubes. PBMCs were isolated using a standard Ficoll method
and stored in liquid nitrogen.
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Sample and Library Preparation
Single Cell Libraries
500 µL thawed PBMCs from each subject were added to 10 mL
EasySep (StemCell Technologies, Cat. 20144) and centrifuged
(300G, 5 min, room temperature). Extracellular nucleic acids
were digested by resuspending cell pellets in 1 mL of buffer made
from 18 mL EasySep and 21 µL Benzonase Nuclease
(MilliporeSigma, Cat. 70664) and incubating (15 min, room
temperature). Nuclease-treated cell-suspensions were then
filtered through a 40 µm Flowmi Cell Strainer (Bel-Art, Cat.
H13680-0040), centrifuged (300G, 5 min, room temperature),
and finally resuspended in 100 µL EasySep buffer. Cell counting
was performed using a Countess I FL Automated Cell Counter
(Thermo Fisher Scientific) on 1:100 dilutions of final cell
suspensions stained with 0.4% trypan blue.

Cell Surface Staining
Antibody staining of cell surface proteins was performed
according to the Totalseq-A protocol (https://www.biolegend.
com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-
with-10x-single-cell-3-reagent-kit-v3-3-1-protocol) with
modifications as follows.

A pooled suspension containing 2×106 cells from 20 subjects
at a time (~100,000 per subject) was centrifuged (300G, 5 min, 4°
C) and resuspended in 100 µL Cell Staining Buffer (BioLegend,
Cat. 420201) and incubated (10 min, 4°C) with 10 µL Human
TruStain FcX™ Fc Blocking Solution (BioLegend, Cat. 422301).
Cells suspensions were then stained (30 min, 4°C) with 100 µL
TotalSeq antibody cocktail for feature barcoding of cell surface
proteins (Supplementary Table 2) and divided into two 105 µL
aliquots. Each aliquot was washed 3 times by resuspending in 15
mL Cell Staining Buffer and centrifuging (300G, 5 min, 4°C).
Aliquots of washed cells were then resuspended in 150 µL 10%
FBS in PBS to obtain a concentration of 1×106 cells/mL,
recombined, and filtered again with a 40 µm Flowmi Cell
Strainer. Cell viability was measured with 10 µL of filtered cells
by adding 10 µL 0.4% Trypan Blue and manually counting with
a hemocytometer.

Cell density was adjusted to 2,500 cells/µL and run on the
Chromium Controller (10X Genomics) using the Single Cell 3’
v3.1 Assay (10X Genomics) with a target of 50,000 cells
per reaction.

Library Preparation
Gene expression cDNA libraries were prepared according to the
manufacturer’s instructions (https://assets.ctfassets.net/an68im
79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f
9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.
1_Rev_D.pdf), with 12 cycles of PCR amplification.

Libraries for antibody-derived tags (ADT) from feature
barcoding antibodies were prepared by repeating size
purification on the supernatant obtained from the prior size
purification of gene expression cDNA libraries (Step 2.3.d in the
manufacturer’s instructions above), using a 7:8 volumetric ratio
of 2.0X SPRIselect reagent (Beckman Coulter, Cat# B23317) to
sample. Indexing amplification was performed using Kapa Hifi
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HotStart ReadyMix (Kapa Biosystems, Cat# KK2601) and
TruSeq Small RNA RPI primers (Illumina) with the following
thermocycling conditions (1): 98°C, 2 min (2); 15 × (98°C, 20 sec;
60°C, 30 sec; 72°C, 20 sec) (3); 72°C, 5 min. Size purification was
then repeated on amplified libraries using a 5:6 volumetric ratio
of 1.2X SPRIselect reagent to sample.

Libraries were quantified using a Bioanalyzer 2100 (Agilent)
and sequenced on a Novaseq 6000 (Illumina).

Genotyping
DNA for genotyping was extracted from whole blood using the
DNeasy blood and tissue kit (Qiagen, Cat. 69504). Extracted
DNA was genotyped on the Affymetrix UK Biobank Axiom
Array (ThermoFisher) using a GeneTitan Multi-Channel
Instrument (Applied Biosystems).

Genotype Data Processing
SNPs were called using Analysis Power Tools 2.10.2.2
(Affymetrix, https://www.affymetrix.com/support/developer/
powertools/changelog/index.html). The resulting genotype.vcfs
were scanned with ‘snpflip’ (https://github.com/biocore-ntnu/
snpflip) using the GRCh37 build of the human genome reference
sequence maintained by the University of California, Santa Cruz
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/
hg19.fa.gz) to identify reversed and ambiguous-stranded SNPs,
which were flipped and removed (respectively) using Plink 1.90
(http://pngu.mgh.harvard.edu/purcell/plink/) (10), and the
remaining sites were sorted using Plink 2.00a3LM (www.cog-
genomics.org/plink/2.0/) (11). This SNP data was then
augmented with additional sites imputed by the Michigan
Imputation Server (https://imputationserver.sph.umich.edu)
(1000G Phase 3 v5 GRCh37 reference panel, rsqFilter off, Eagle
v2.4 phasing, EUR population). SNP positions were translated to
GRCh38 coordinates using the ‘LiftoverVcf’ command of Picard
2.23.3 (http://broadinstitute.github.io/picard/). Finally, Vcftools
0.1.13 (12) was used to exclude non-exonic SNPs and SNPs with
minor allele frequency < 0.05.

Single Cell Data Processing
Raw RNA and ADT fastqs for each Chromium library were
respectively aligned to the GRCh38 human genome reference
and the antibody-tag reference (Supplementary Table 2) using
Cell Ranger 3.1.0 (10X Genomics) with default settings to obtain
RNA and matched ADT (if available) count matrices for all
barcodes representing non-empty droplets.

Cell Demultiplexing, Doublet Removal,
and Annotation
Within each RNA count matrix, the subject of origin for all
droplet barcodes was determined by using ‘demuxlet’ (13), as
implemented in the ‘popscle’ suite (https://github.com/statgen/
popscle), with imputation-augmented exonic SNP genotypes
described above, and doublets detected between different
individuals were excluded. The count matrices for each
Chromium library were then loaded into R for analysis using
the ‘Seurat’ 4.0.3 (14) R package, and the ‘DoubletDecon’ 1.1.6 R
Frontiers in Immunology | www.frontiersin.org 3
package (15) was used to further remove doublets formed by
different cells within the same individual.

QC and Cell Annotation
Cell type annotation was performed by integrative mapping of
annotations from a previously published dataset of 161,764
healthy PBMCs (14) onto our dataset. Specifically, we used the
‘TransferData’ Seurat function according to the Seurat
protocol (https://satijalab.org/seurat/reference/transferdata) to
transfer annotations for 30 distinct cell types from the
‘predicted.celltype.l2’ metadata variable.

We performed filtering of cells based on both RNA and ADT
data by retaining cells with total RNA unique molecular identifiers
(UMIs) between 500 and 10,000, total RNA features ≥ 200, percent
mitochondrial and ribosomal protein reads in RNA ≤ 15% and
60% (respectively), total ADT features ≤ 260, and percent ADT
reads mapping to 9 isotype control antibodies < 2%. In the RNA
matrices of the resulting data, we further removed features (genes)
with no detectable UMIs across the cells of all matrices. These
matrices were finally merged into a combined matrix of RNA data
for all cells. In the ADT matrices, we further removed features
corresponding to the 9 isotype controls and 15 features observed
to have expression inconsistent with annotated cell types
(Supplementary Table 2). Lastly, we observed that a single
healthy subject was represented by only 4 cells after filtering.
These cells were excluded from later analysis.

ADT Imputation and UMAP Generation
ADT expression was estimated for cells with measured RNA but
not ADT according to the Seurat reference mapping protocol
(https://satijalab.org/seurat/articles/multimodal_reference_
mapping.html), and unless otherwise noted, all function names
described here belong to the Seurat package. Briefly, the
integrated dataset above was split into the subset of cells with
ADT measurements (reference subset) and the subset of cells
without ADT measurements (query subset). RNA expression
normalization and scaling were performed using ‘SCTransform’
on both subsets, adjusting for the number of features and total
counts in each cell via the ‘vars.to.regress’ parameter. ADT
expression normalization for the reference subset was
performed using the centered log ratio (CLR), followed by
mean centering and scaling. For the reference subset, PCA was
then run for both the SCTransformed RNA (SCT) expression
and the ADT expression, and a weighted nearest-neighbor
network for the reference subset was calculated from the first
30 and 18 PCs for SCT and ADT, respectively, using the
‘FindMultiModalNeighbors’ function. Next, SCT from the
reference subset was transformed again using supervised PCA
(via the ‘RunSPCA’ function) to identify the principal
components that best capture the combined RNA and ADT
expression variation represented by the weighted nearest-
neighbor network.

The first 50 components of this transformation were then
used to identify anchors between the reference subset and the
SCT of the query subset using the ‘FindTransferAnchors’
function. Finally, imputed ADT (ADTimp) data for the query
March 2022 | Volume 13 | Article 835760
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subset was calculated using the ‘TransferData’ function. A
weighted nearest-neighbor network was calculated using both
SCT and ADTimp according to the Seurat protocol (https://
satijalab.org/seurat/articles/weighted_nearest_neighbor_
analysis.html).

Intra-Cell Type Differential Feature Analysis
To identify differentially expressed genes (DEGs) and proteins
(DEPs), the Seurat object containing ADT and RNA expression
from the QC’d dataset (see section QC and Annotation above)
was subsetted by annotated cell type using ‘SplitObject’. For each
resulting Seurat object containing cells of a particular type, we
performed normalization on RNA expression using
SCTransform, again adjusting for processing batch (‘Run’
metadata variable) within each cell type (using the
‘vars.to.regress’ parameter of SCTransform). Differential gene
expression between disease statuses as well as between clusters
(see section ‘Intra-cell type clustering’) was then calculated on
SCTransform-normalized counts using the negative binomial
test (test.use = “negbinom” in Seurat). Genes with both
Bonferroni-corrected p-value < 0.05 and absolute log fold
change > 0.25 were considered significant. Differential protein
analysis was performed similarly, except with the Wilcoxon test
(test.use = “wilcox” in Seurat) on CLR-normalized, mean-
centered and scaled ADT data (within the ‘scale.data’ slot of
the Seurat object) only for cells with measured (i.e. non-imputed)
ADT data.

Cell Type Proportion Comparison
To detect statistical differences in the frequencies of each
annotated cell type between cohorts, we calculated, for each
cell type, the proportion of cells of that cell type in each subject
out of the total number of cells in the subject, and the Kruskall-
Wallis test (‘kruskal.test’ in R) was used to determine whether
significant cell proportion differences existed between any cohort
of subjects. For cell types with FDR-adjusted Kruskall-Wallis p-
values < 0.05, we then performed Wilcoxon tests (‘wilcox.test’ in
R) to identify significant (unadjusted p-value < 0.05) differences
in cell proportions between cohorts. The same method was used
to test for differences in the proportions of subclusters within
cell types.

Intra-Cell Type Clustering
To identify phenotypic clusters within cell types, the RNA
expression data for a cell type was first corrected for batch
effects by first subsetting the raw count matrix by the cells
within each sequencing batch. SCTransform was run
individually for each count matrix, and the resulting SCT
expression matrices were reintegrated into a single matrix
(see section ‘Data integration’). PCA was performed on the
integrated SCT matrix, and the first 30 PCs were used to
construct a shared nearest-neighbor network using the
‘FindNeighbors’ function. The network was then used to
identify clusters with the ‘FindClusters’ function, using a
resolution of 0.6. UMAPs were also generated from the first
30 PCs using the ‘RunUMAP’ function.
Frontiers in Immunology | www.frontiersin.org 4
Data Integration
Integration of SCT expression data from two or more single-cell
datasets was performed according to the Seurat data
integration protocol (https://satijalab.org/seurat/articles/
integration_introduction.html#performing-integration-on-
datasets-normalized-with-sctransform-1). Briefly, ‘SelectIntegration
Features’ was used to select a common set of 3,000 genes most
consistently variable among the individual SCT matrices, and ‘Prep
SCTIntegration’ was then used to prepare reduced SCT expression
matrices for just these genes. PCA was calculated for each reduced
SCTmatrixusing ‘RunPCA’, and thefirst 50principal componentsof
this transformation were used to identify transcriptionally similar
cells between each pair of reduced SCT matrices using
‘FindIntegrationAnchors’, with ‘reduction’ set to ‘rpca’. Finally, an
integrated SCTmatrix was calculated using ‘IntegrateData’.

Machine Learning Model Development
Input data for classifying each subject in PSA, PSO, healthy, and
PSX cohorts was prepared by calculating the mean of the
normalized, centered, and scaled expression of each feature in
the set of cell type-specific differentially-expressed genes and
proteins (found between PSA and healthy, PSO and healthy, and
PSA and PSO groups; see section ‘Intra-cell type differential
feature analysis’) for all cells of the corresponding cell type in a
given subject. The feature expression data for healthy, PSA, and
PSO subjects (N=81) were then divided into a training set, n=58
(healthy=21, PSA=20, PSO=17) and a test set, n=23 (healthy=8,
PSA=8, and PSO=7) to achieve a training:test ratio of 70:30.

We first performed ensemble-based feature selection using
the EFS-MI method (16) where subsets of the starting feature set
predicted to be informative by four different ML algorithms
(Feed Forward and Backward selection, Recursive RF,
SVMRadial, and NNET) were combined and sorted by
prediction potential classification rank. We selected the top
twenty features to train eleven ML algorithms such as linear,
non-linear, and ensemble provided by the ‘caret’ R package,
assessing classification performance using accuracy and kappa.
To avoid overfitting and reduce the noise of random fitting
models, we employed 10-fold cross-validation with 1,000
iterations. We selected Random Forest (RF), Support Vector
Machine Radial Kernel (SVMRadial), and Neural Network
(NNET) algorithms for test set validation, based on the
suitability of our data set, popularity, and reliability. For the
RF model, tuning parameters were optimized with bootstrap =
TRUE, which resembles random sampling during model
building. The maximum number of tree splits in each step was
a max_depth = (50, 80, 100, 150, 300), maximum features were
selected as auto (max_features = ‘auto’), and for error
minimization through impurity value (min_impurity_decrease = c
(0.0, 0.02, 0.1, 0.5). Next, a minimum tree split as a leaf in each step
(min_samples_leaf = (1 to 10), maximum generation of trees
(n_estimator = 20), and other parameters as a default. The best
fit optimized parameters were considered the final model for
further evaluation. For Support Vector Machine (SVM), we
tuned two major parameters: 1) cost function, which ensures
the decision boundary for data classes, and 2) the sigma value,
March 2022 | Volume 13 | Article 835760
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which defines howmuch influence a single training set has on the
model, with lower sigma and cost resulting in better prediction
accuracy. For neural network algorithms, we used hidden
layers (size = 1,2,4,6,10,15) and learning rate (decay = 0, 0.05,
0.1, 1, 2) as tuning parameters (17). The prediction statistics and
accuracy of RF, SVMRadial and NNET were examined through
several statistics such as Area Under the Receiver Operating
Characteristic (AUROC), balanced accuracy (kappa), sensitivity,
and specificity, which are compiled in Supplementary Table 3.

The genotypes of each subject at each of the 200 PSA-
associated SNPs identified by Patrick et al. (18) were compiled
from imputed subject genotyping data (see section ‘Genotype
data processing’). We coded genotypes homozygous for the non-
risk allele as zero, heterozygous as one, and homozygous for the
risk allele as two. As above, eleven ML algorithms were trained
on this data and evaluated based on classification accuracy and
kappa, and the performance of three models (RF, SVMRadial,
and NNET) were examined through test set data and optimized
using the same tuning parameters. The ML algorithms were run
with set.seed=862 for reproducibility of models.
RESULTS

Cell Types Enriched and Depleted Among
PSA, PSO, and Healthy PBMCs
We characterized the differences in cellular composition as well as
transcriptional and cell surface protein expression between 28 PSA,
24 PSO, and 29 healthy subjects, along with 14 psoriasis patients
with unclear PSA diagnosis (PSX) by performing single cell RNA-
seq on PBMCs, obtaining transcriptomes of 392 – 7003 (median of
2,392) cells per subject (total 246,762 cells). For a subset of these
cells (133,665, 54%), we additionally performed antibody-derived
tag labeling of 258 cell surface proteins (Supplementary Table 2).

We performed integrative mapping of transcriptomic data
from our cell population to categorize all cells into 30 phenotypic
subsets defined in a previously described multimodal reference
dataset of healthy PBMCs (Figure 1A) (14). All 30 cell types were
Frontiers in Immunology | www.frontiersin.org 5
comparably represented among PSA, PSO, PSX and healthy
subjects (Figure 1B), with the exception of Tregs and dnT
cells, which were relatively increased in PSA patients compared
to both PSO and healthy subjects (p < 0.03, Figure 1B), and
hematopoietic stem precursor cells (HSPCs), which were
relatively increased in healthy subjects (p < 0.007).

Gene and Protein Biomarkers of PSA
Include Activational and Metabolic
Transcriptomic Differences That
Distinguish PSA From PSO
We next surveyed the phenotypic differences between PSA, PSO,
and healthy cells of each cell type by calculating differentially
expressed genes (DEGs) and proteins (DEPs). Within each cell
subset, we found 1 – 135 DEGs (median 23) and 1 – 18 DEPs
(median 4) with significant differences between PSA and PSO,
PSA and healthy, or PSO and healthy cells (Figures 2A, B), with
the most differentially expressed features detected in CD14
monocytes, the most abundant cell type in our dataset.

The DEGs and DEPs represented both broad as well as cell
type-specific disease-associated expression differences. Among 30
DEGs with the highest absolute fold change (Figure 2C), we
observed a general upregulation of mitochondrial genes (MT-CO3,
MT-ND1, MT-ND3) paired with a downregulation of ribosomal
protein gene RPS26 across most cell types in PSA patients relative
to PSO patients or healthy subjects. Among PSA T and NK cells,
we also observed a downregulation of AP-1 transcription factors
(JUN, JUNB, JUND, FOS) and regulators of activation (TNFAIP3,
DUSP1) along with the upregulation of S100A11, a calcium-
binding protein associated with rheumatoid arthritis (19). Lastly,
we observed PSA-associated differences in chemokine receptor
expression, specifically a downregulation of CXCR4 in T and NK
cells and an upregulation of CX3CR1 in monocytes, NK cells, and
specific T cell subsets. Disease-associated differences in cell surface
protein expression, in contrast, were more sparsely observed
within specific cell types (Figure 2D). Among the top 30 DEPs,
HLA-A2 was broadly upregulated among B and T cell subsets as
well as CD14 monocytes in PSA patients, while CD205 was
A B

FIGURE 1 | Cell types and subsets among PSA, PSO, and healthy individuals. (A) UMAP of SCTransform-normalized RNA expression integrated with ADT
expression, colored by cell subset. (B) Mean percentages of each cell type within the total PBMCs of each subject. Error bars indicate standard error of the mean;
* indicates both Wilcoxon and FDR-adjusted Kruskall-Wallis p-values < 0.05.
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broadly downregulated in many of the same cell types along with
cDC2 and pDC subsets.

Phenotypic Subsets of Specific Cell Types
Enriched and Depleted in PSA
Besides differences in cellular composition and gene or protein
expression, we also searched for additional disease signatures of
PSA among the phenotypic subsets of each cell type. By
performing integrative, transcriptome-based de novo clustering
of each cell type with at least 1,000 cells, we identified phenotypic
clusters within six cell types that were enriched in different
disease conditions (Figure 3A).

Some of these phenotypic subsets were uniquely associated with
PSA. Within CD16 monocytes, a small cluster (cluster 7) was more
abundant among PSA subjects (Figure 3B). Compared to other
CD16monocytes, the 108 cells of this cluster showed generally lower
expression of several mitochondrial genes (Figure 3C and
Supplementary Table 5) and higher expression of S100 genes
(S100A4, S100A6, S100A10, S100A11), as well as genes involved in
antigen presentation (HLA-DRB5, HLA-DQB1, FCER1G) and
Frontiers in Immunology | www.frontiersin.org 6
regulation of innate activation [DUSP1 (20)]. We also observed a
cluster of PSA-abundant MAIT cells (cluster 2), however, these cells
may potentially represent a clustering artifact, as no significantly
over- or under-expressed genes were found to distinguish this cluster
from other cells. Analysis of differentially expressed proteins in these
two clusters yielded a single protein, Tetraspanin 33, which was
under-expressed in CD16 monocyte cluster 7.

On the other hand, we also found clusters uniquely reduced in
PSA within B memory (cluster 1) and a CD4 TEM (cluster 2) cells
(Figure 3B). The B memory cluster was characterized by a small
number of gene expression differences including reduced
expression of IGLC2 and IGLC3 that was consistent with
downregulated cell surface expression of immunoglobin light
chain protein (Figure 3C and Supplementary Table 5).
Additionally, we observed increased expression of JUNB, a
negative regulator of growth and proliferation (21) and
downregulated expression of transferrin receptor [CD71, a
marker of activated or proliferating B cells (22)] and several
other receptors found to promote apoptosis and proliferation
[CD95 (23), CD164 (24)] or response to chemokines (CD99 (25)].
A B

C D

FIGURE 2 | Differentially expressed features between PSA, PSO, and healthy subjects within cell types. Counts of differentially expressed (A) genes and (B) cell
surface proteins are shown for each comparison within each cell type. Top 30 differentially expressed (C) genes and (D) cell surface proteins in each cell type are
ranked by highest absolute log2 fold change (for genes) or absolute mean difference (for proteins) between PSA cells vs. PSO (circles) or healthy (triangles) cells.
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The CD4 TEM cluster showed a downregulation of DUSP2, a
negative regulator of Th17 differentiation (26), as well as Jun/Fos
genes (JUN, JUNB, FOS, FOSB) and, unexpectedly, several genes
associated with cytotoxic function (GZMA, GZMK, NKG7,
SRGN) (Supplementary Table 5). Differential protein analysis
revealed an upregulation of gut-homing integrin b7 and receptors
that promote cell proliferation [CD55 (27)] and maintain T cell
survival [CD127 (28)].

Other clusters were associated specifically with PSO or
healthy subjects. Cells within a single CD8 TEM cluster
enriched among PSO subjects (cluster 11, Figure 3B) showed a
strong upregulation of CCL4, a CD8+ T cell recruiting (29)
chemokine associated with psoriasis (30), along with other
inflammatory cytokines and chemokines (TNF, IFNG, CCL3,
CCL4L2) (Figure 3C and Supplementary Table 5). Differential
expression analysis of cell surface proteins on this cluster
revealed an upregulation of GPR56, a marker of cytotoxic cells
(31) as well as reduced expression of chemokine receptor
CXCR3. We also found a MAIT cluster (cluster 3) enriched
among healthy subjects, though, similar to MAIT cluster 2 above,
these cells are distinguished by relatively few markers that
included ribosomal proteins and long non-coding RNAs
NEAT1 and MALAT1 (Figure 3C and Supplementary Table 5).

Lastly, clustering analysis among Tregs revealed an imbalance
of resting and activated Tregs between healthy and psoriatic (PSO
and PSA) subjects. Differentially expressed genes in a Treg cluster
enriched in PSA (cluster 6, Figure 3B) consisted of an upregulation
of 52 genes that mostly encoded ribosomal proteins and a
Frontiers in Immunology | www.frontiersin.org 7
downregulation of 115 genes, including some involved in class I
and class II antigen presentation (HLA-A, HLA-B, HLA-C, HLA-E,
HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1) and CD52
(Supplementary Table 5), which encodes a costimulatory
receptor found to promote Treg suppression of CD4 and CD8 T
cells (32). Differential expression of cell surface proteins also
revealed a lower expression of memory marker CD45RO, which,
combined with higher expression of CD45RA and CCR7 in this
cluster (Figure 3C and Supplementary Table 5), suggests a naïve,
or antigen-inexperienced state. We additionally observed an
upregulation of GP130 (Figure 3B), a subunit of multiple
cytokine receptors such as IL-6R that has been found to define a
Treg subset with reduced suppression function (33). These protein
expression differences were reversed in the relatively healthy-
enriched cluster 1, in which GP130 and CD45RA were reduced
in expression while CD45RO, along with costimulatory markers
such as TIGIT and PD-1, were increased in expression. DEGs from
this cluster, including an upregulation of DUSP1, CXCR4 and Jun
and Fos family genes (Figure 3C and Supplementary Table 5)
further suggested an activated, functionally suppressive phenotype,
and FOXP3 expression was higher (though not significantly) in this
cluster than cluster 6 (Supplementary Table 5).

Machine Learning Classifiers Distinguish
Between PSA, PSO, and Healthy Subjects
Using Cell Type-Specific DEGs and DEPs
We evaluated the diagnostic potential of the PSA-associated
DEGs and DEPs by using them to perform ML classification of
A

B

C

FIGURE 3 | Immune cell subsets differentially abundant in psoriatic and healthy individuals. (A) UMAP of de novo clusters identified within select cell types
containing clusters with significant abundance differences. (B) Average percentage of cells from each PSA, PSO, or healthy subject in a given cluster out of total cells
from that subject in the given cell type. (C) Volcano plots of genes and cell surface proteins upregulated and downregulated in each cluster relative to other cells of
the same cell type. * indicates Wilcoxon p-value < 0.05.
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subjects in our study cohort. Based on the cell-type specific mean
expression of 257 DEGs and 258 DEPs (Supplementary Table 4)
averaged within each subject’s cells in the corresponding cell
types, we performed ensemble feature selection (16) using four
ML algorithms to identify the top twenty DEGs and DEPs based
on their classification rate (Importance).

The top twenty DEGs span a variety of immune cell types,
and many encode proteins involved in metabolism, translation,
and transcriptional regulation (Figure 4A). 10-fold cross
validation of eleven ML algorithms trained on these features
classified PSA, PSO, and healthy subjects with average accuracies
of 0.65 – 0.89 (Figure 4B) across 1,000 iterations. Kappa, a
measure of the agreement between observed and expected
accuracy ranged from 0.41- 0.72 across the eleven algorithms.
Further evaluation of the sensitivity and specificity of the RF
model demonstrated an AUROC of 0.89, 0.99, and 0.87 for
Frontiers in Immunology | www.frontiersin.org 8
healthy, PSA, and PSO subjects (Figure 4C) with similar results
for SVMRadial and NNET models (Supplementary Figure 4).

Similar to the top twenty DEGs, the top twenty DEPs spanned
several cell types but showed generally lower classification
Importance (Figure 4D). Accordingly, the average accuracy of
the eleven ML algorithms on the top twenty DEPs (0.58 - 0.86,
Figure 4E) and kappa (0.21 - 0.65) were relatively lower than for
DEGs, with similarly reduced AUROC for RF (Healthy = 0.80,
PSA = 0.93, PSO = 0.88, Figure 4F), SVMRadial, and NNET
(Supplementary Figure 4).

To test whether classifier performance could be improved by
considering both gene and cell surface protein expression
together, we also performed ensemble feature selection on the
combined expression data of DEPs and DEGs from the above
analyses. The resulting set of twenty features consisted of 10
DEGs and 10 DEPs spanning several cell types, with similar
A B C

D E F 

G H I

FIGURE 4 | Machine learning classification of healthy, PSA and PSO subjects. (A) Classification rate (Importance) of top 20 DEGs, along with corresponding (B)
accuracy and kappa of eleven different ML classifiers trained on these features. (C) ROC curve of RF model for healthy, PSA, and PSO classification. Analogous
plots shown for (D–F) DEPs and (G–I) DEGs combined with DEPs. Error bars indicate 95% confidence interval.
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classification Importance measures as the set of DEPs only
(Figure 4G). Classification accuracies of the eleven ML
algorithms based on this feature set were more comparable to
those of DEGs alone (accuracy 0.68 - 0.89, kappa 0.54 – 0.76,
Figure 4H), except for rpart which performed worse on this
feature set than on DEGs and DEPs separately (average accuracy
0.52, kappa 0.26). AUROC for RF was relatively lower than DEP-
and DEG-only models for healthy (0.80) and PSA (0.93) groups
but similar to those models for PSO (0.88) subjects (Figure 4I),
with comparable results for SVMRadial and NNET models
(Supplementary Figure 4).

We performed further validation of the RF model by using it
to classify a cohort of 14 subjects (PSX) presenting with
cutaneous psoriasis and joint pain that did not confidently
meet current PSA diagnosis criteria. RF classification based on
DEGs, DEPs, or both consistently categorized 10 of these
patients as PSA and one patient as healthy (Supplementary
Figure 5 and Supplementary Table 6), with the remaining three
subjects discordantly classified as healthy or PSO.

ML Classifiers Detect PSA in
Psoriatic Individuals Using DEGs,
DEPs, or Genetic Risk Factors
We also evaluated the diagnostic potential of DEGs and DEPs,
separately or in combination, for detecting PSA among
individuals presenting with cutaneous psoriasis by performing
a two-way classification of PSA and PSO groups. As before, the
top twenty DEGs and DEPs were associated with several immune
cell types, with the DEG set including many genes with roles in
metabolism and in the regulation of activation and inflammation
(Figure 5A). Among PSA and PSO subjects, we noted higher
Importance measures among the top twenty DEPs compared
with the top twenty DEGs (Figures 5A, D), however
performance metrics of the eleven ML models were generally
higher in DEGs (accuracy 0.81 – 0.94, kappa 0.41 – 0.83) than
DEPs (accuracy 0.73 – 0.92, kappa 0.42 – 0.72, Figures 5B, E). In
addition, RF, SVMRadial, and NNET all achieved perfect
classification of PSA and PSO subjects using DEGs (AUROC
of 1, Figure 5C and Supplementary Figures 6A, B) compared to
the slightly lower classification performance for DEPs (Figure 5F
and Supplementary Figures 6C, D). Feature selection on
combined DEPs and DEGs yielded a top twenty feature set
with Importance measures that were intermediate between the
sets of DEPs and DEGs alone (Figure 5G), and while ML
classifier performance was lower for the combined feature set
(accuracy 0.52 – 0.81, kappa 0.26 – 0.67, Figure 5H), AUROC
for the RF and SVMRadial models (1.00 and 0.96, respectively,
Figure 5I and Supplementary Figure 6E) was comparable to those
of DEG- and DEP-only feature sets, with NNET underperforming
substantially (AUROC 0.7, Supplementary Figure 6F).

Lastly, we evaluated whether our ML framework for detecting
PSA in a background of cutaneous psoriasis could also be applied
to genetic biomarkers of PSA risk. ML classifiers trained on
patient genotypes at 200 SNP sites previously found to be
associated with PSA (18) achieved average classification
accuracies between 0.6 and 0.87 and kappa between 0.51 and
Frontiers in Immunology | www.frontiersin.org 9
0.73 (Figure 6A). AUROC of RF, SVM-Radial, and NNET was
0.92 (Figure 6B), 0.88, and 0.81, similar to metrics reported in
the previous study (18).
DISCUSSION

Our study sheds light on the phenotypic differences between the
circulating immune cells of PSA and PSO patients at multiple
levels of resolution. At the cellular level, we observed a higher
abundance of Tregs and dnT cells in PSA patients and a higher
abundance of HSPCs in healthy subjects. While, to our
knowledge, the role of dnTs and HSPCs in PSA has not been
extensively investigated, dnT cells have been reported to infiltrate
psoriatic skin as well as participate in IL-23/IL-17 signaling in
mouse models of psoriasis (34) and spondyloarthritis (35), and
the proliferation and differentiation of HSPCs is currently known
to respond to systemic interferon and TNF signaling (36). While
we observed increased peripheral Tregs in PSA patients, whether
this subset is generally increased or decreased in PSA is still
unclear in light of conflicting results found in other studies
(37, 38).

Within each cell type, our de novo clustering analyses
identified disease-associated subsets and potential biological
processes affecting them. First, the skewing of peripheral Tregs
toward more naïve, resting cells and fewer activated effector cells
in PSA and PSO parallels what has been observed in systemic
lupus erythematosus (39) and could reflect either a migration of
effector Tregs from circulation into sites of inflammation or a
general expansion of the naïve Treg pool. Second, our study also
identified a cluster of CD8 TEM cells specific to PSO but not
PSA. The strong upregulation of CCL4 coupled with the
downregulation of CXCR3 in this cluster raise the possibility
that differences in chemokine-mediated immune cell homing
(e.g. to skin compared with synovium) could emerge as a key
characteristic for predicting PSA progression or risk in PSO
patients, especially in light of evidence suggesting that CXCR3
may be involved in T cell recruitment in PSA, based on higher
protein expression of its ligands, CXCL9 and CXCL10, in
synovial compared with peripheral compartments (40, 41),
whereas no such difference was found for MIP1b, the
chemokine encoded by CCL4 (41). Besides the overall PSA-
associated downregulation of CXCR4 and upregulation of
CX3CR1 observed in our data, other studies have identified
PSO- and PSA-associated T cell subsets expressing CCR5 (42),
CCR4 (43), and CCR10 (37), and the questions of whether and
how signaling through these chemokine receptors mediates
trafficking of pathological T cells between the skin, blood, and
joint remain active areas of investigation. Lastly, the enrichment
of a CD16 monocyte subset that we observed in PSA subjects is
consistent with previous findings of increased circulating CD16+
monocyte population in PSA subjects that can give rise to
osteoclasts (44). Other studies in mice have found that subsets
of other myeloid cell types, such as neutrophils, may also
contribute to psoriatic disease through T-cell independent
responses to IL-17A signaling (45, 46).
March 2022 | Volume 13 | Article 835760

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. CITE-Seq of Psoriatic Arthritis
At the molecular level, we found disease-associated protein
and gene expression signatures within diverse innate and
adaptive immune cell types, consistent with the current
understanding that multiple cell types contribute to
inflammation in PSA (6). While these contributions have
mainly been investigated in the context of IL-17 and IL-23
signaling, our data sheds light on other characteristics that
distinguish circulating immunocytes in PSA patients, such as
generally increased mitochondrial gene expression and decreased
expression of cell activational regulators. Although disease
conditions may generally alter protein and gene expression
divergently among different cell types, we note that, in our
data, gene and protein expression in different cell types are
largely perturbed in the same direction by PSA (i.e. a feature
upregulated in PSA cells of one type is generally upregulated in
PSA cells of other types).
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Importantly, our study demonstrates the utility of cell-specific
gene and cell surface protein expression differences when
incorporated into a ML framework for detecting PSA, with
most of the ML algorithms considered in this study classifying
PSA, PSO, and healthy subjects or distinguishing just between
PSA and PSO subjects with >70% average accuracy on either
gene or protein features. Combining both types of features
reduced overall model performance, possibly due to differences
in the magnitude of interindividual or technical variation in the
detected expression of these feature types, which may not be
accurately accounted for by the subject-averaged expression data
we used for model training and testing. Nevertheless, our study
expands the number of potential biomarkers and cell types
relevant to diagnosing PSA and understanding its biology.

We note that our data, being derived solely from peripheral
blood immune populations, cannot address whether these cell
A B C
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FIGURE 5 | Machine learning classification of PSA vs. PSO subjects. (A) Classification rate (Importance) of top 20 DEGs, along with corresponding (B) accuracy and
kappa of eleven different ML classifiers trained on these features. (C) ROC curve of RF model. Analogous plots shown for (D–F) DEPs and (G–I) DEGs combined with
DEPs. Error bars indicate 95% confidence interval.
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types are also present in the synovium, whether they may instead
represent systemic responses to cutaneous inflammation in PSA
subjects, or the extent that they arise from either a migration of
cells between blood and tissue compartments or an overall
expansion or reduction in specific cell subsets. Also, since PSA
patients in our study already have established arthritic disease,
our data may not capture early or ephemeral biomarkers of
disease that may appear in PSO patients who eventually develop
PSA. Future investigations combining single cell multiomics on
blood, skin, and joint immune populations with a longitudinal
follow-up of PSO patients [as employed by Abji et al. (47)] may
help overcome these limitations.
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