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ABSTRACT

Motivation: Structural characterization of protein interactions is ne-

cessary for understanding and modulating biological processes. On

one hand, X-ray crystallography or NMR spectroscopy provide atomic

resolution structures but the data collection process is typically long

and the success rate is low. On the other hand, computational meth-

ods for modeling assembly structures from individual components fre-

quently suffer from high false-positive rate, rarely resulting in a unique

solution.

Results: Here, we present a combined approach that computationally

integrates data from a variety of fast and accessible experimental

techniques for rapid and accurate structure determination of pro-

tein–protein complexes. The integrative method uses atomistic

models of two interacting proteins and one or more datasets from

five accessible experimental techniques: a small-angle X-ray scatter-

ing (SAXS) profile, 2D class average images from negative-stain elec-

tron microscopy micrographs (EM), a 3D density map from

single-particle negative-stain EM, residue type content of the pro-

tein–protein interface from NMR spectroscopy and chemical

cross-linking detected by mass spectrometry. The method is tested

on a docking benchmark consisting of 176 known complex structures

and simulated experimental data. The near-native model is the top

scoring one for up to 61% of benchmark cases depending on the

included experimental datasets; in comparison to 10% for standard

computational docking. We also collected SAXS, 2D class average

images and 3D density map from negative-stain EM to model

the PCSK9 antigen–J16 Fab antibody complex, followed by valid-

ation of the model by a subsequently available X-ray crystallographic

structure.
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1 INTRODUCTION

Biologists are identifying components of macromolecular assem-

blies and networks (Krogan et al., 2006). To understand how

these assemblies and networks underpin essential biological pro-

cesses and to modulate them for therapeutic purposes, we need

to describe the structures of both natural and engineered protein

interactions (Robinson et al., 2007). Owing to the difficulty of

determining the atomic structures of protein complexes by X-ray

crystallography and NMR spectroscopy as well as inaccuracy of

alternative methods, such as protein–protein docking, new tech-

niques are necessary (Alber et al., 2008).

One major computational approach to predicting structures of

protein complexes relies on molecular docking of unbound

single-component structures. Even for complexes with two pro-

teins, docking problem remains challenging despite recent ad-

vances (Lensink and Wodak, 2010b). The major bottlenecks

include dealing with protein flexibility and the absence of an

accurate scoring function (Ritchie, 2008). Pairwise protein dock-

ing methods can be divided into three classes based on their

configurational sampling algorithm (Vajda and Kozakov,

2009): (i) global methods using a fast Fourier transform (FFT)

(Eisenstein and Katchalski-Katzir, 2004) or geometric matching

(Schneidman-Duhovny et al., 2005); (ii) medium-range methods

such as Monte Carlo sampling (Fernandez-Recio et al., 2003;

Gray et al., 2003); and (iii) methods guided by data, such as

complex refinement based on NMR restraints, cross-linking,

interface prediction or site-directed mutagenesis (Dominguez

et al., 2003; Sivasubramanian et al., 2006). It is common

to begin docking two proteins with an unbiased global search

followed by refinement of the best scoring models (Mashiach

et al., 2010b).*To whom correspondence should be addressed.
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Characterizing the structures of multi-subunit complexes bene-

fits from using varied experimental datasets (Alber et al.,

2007a,b; Russel et al., 2012). In this hybrid or integrative ap-

proach, the datasets are encoded into a scoring function used

to evaluate candidate models generated by a sampling method.

Integrative structure determination typically iterates through the

following stages: (i) gathering information, (ii) designing model

representation and evaluation, (iii) sampling good models, and

(iv) analyzing models and information.
Here, we present an integrative approach to pairwise protein

docking. First, data from one or more of five different experi-

ment types are translated into the corresponding scoring function

terms. These data include (i) the pair-distance distribution func-

tion of the complex from a small-angle X-ray scattering (SAXS)

profile, (ii) 2D class average images of the complex from nega-

tive-stain electron microscopy micrographs (EM2D), (iii) a 3D

density map of the complex from single-particle negative-stain

electron microscopy micrographs (EM3D), (iv) residue type con-

tent at the protein interface from NMR spectroscopy

(NMR-RTC) (Reese and Dötsch, 2003), and (v) chemical

cross-linking detected by mass spectrometry (CXMS). These

five experimental methods were selected because of their feasibil-

ity and efficiency of data collection: a SAXS profile of the com-

plex in solution can be collected in several minutes (Hura et al.,

2009); a 3D EM density map can be reconstructed from a smaller

sample amount than that for SAXS, but data collection process

is significantly longer (Stahlberg and Walz, 2008); 2D class aver-

ages can be computed from micrographs more easily and rapidly

than performing a full 3D reconstruction; the composition of

interface residues from NMR (Reese and Dötsch, 2003) provides

information about the interaction interface, unlike the SAXS and

EM data; and cross-linking data (Rappsilber, 2011) provide in-

formation at intermediate resolution imposing an upper distance

bound on inter-molecular pairs of residues. Second, complex

models are sampled, relying on efficient global search methods

developed for pairwise protein docking, followed by filtering

based on fit to the experimental data, conformational refinement

and composite scoring. Third, good-scoring representatives of

clusters of models are picked as final models.

To validate this approach, we apply the integrative method in

two contexts. First, we test the method on a large benchmark for

protein docking (Hwang et al., 2010) with simulated experimental

data and known complex structures. This test allows a robust as-

sessment of the value of the individual types of experimental data

for specific types of proteins. Second, we also collected SAXS,

EM2D and EM3D data to model the PCSK9 antigen–J16 Fab

antibody complex, followed by validation of the model by a sub-

sequently available X-ray crystallographic structure. This second

test highlights the advantages of the integrative method that

allows computing an accurate model in a timely manner.

2 METHODS

2.1 Integrative docking method summary

Given the atomic structures of two proteins and one or more datasets

from SAXS, EM2D, EM3D, NMR-RTC and CXMS, we compute the

3D structure of their complex. The approach involves four major stages

(Fig. 1, Supplementary Material):

2.1.1 Stage 1: Global search A global search in the space of all

possible docking models is performed using geometry-based molecular

docking (Duhovny et al., 2002). The configurational sampling precision is

increased significantly compared with the default settings (Supplementary

Table S1: from 4.5�103 to 212�103 models) to ensure the interface and

global shape of the complex are sampled with precision commensurate

with that of the data.

2.1.2 Stage 2: Data-guided filtering Each available experimental

dataset is used independently for scoring and filtering of models incon-

sistent with the data. To account for noise in the data, we convert the

data into soft restraints. For SAXS profile, a model is filtered out if its

radius of gyration is in significant disagreement with the experimentally

derived one (Schneidman-Duhovny et al., 2011). For EM2D class aver-

ages, there is no filter. For EM3D density map, a model is filtered only if

it significantly protrudes out of the density map. For NMR-RTC data, a

model is filtered out if it does not satisfy at least half of the specified

residue type frequencies. For the cross-linking data, a model is filtered if it

does not satisfy any of the cross-links. For each data type, the scores of

the remaining models are normalized, using the average and standard

deviation of their scores (SData). This normalization facilitates combining

and comparing of scores for different data types with different noise

levels. The models are clustered, and the cluster representative with the

best fit to the data is selected. Top-scoring 5000 cluster representatives

are processed further. This number of models usually guarantees that

near-native models are not excluded even in the case of noisy data

(Supplementary Table S1).

2.1.3 Stage 3: Conformational refinement The goal of this stage

is to compute an interface energy score. Because rigid docking models

may contain steric clashes, the side-chain conformations as well as

relative positions and orientations of the model components are refined,

and an interface energy score (SEnergy) is computed (Andrusier et al.,

2007; Mashiach et al., 2010a).

2.1.4 Stage 4: Composite scoring The final models are scored and

ranked by a composite score consisting of a normalized interface energy

term and the fit to the data:

SComposite ¼ SEnergy þ
X

i

SDatai

Fig. 1. Schematic representation of the integrative docking method. The

number of possible configurations for two docked proteins is on the order

of �1011 (three rotational degrees of freedom sampled in five degrees

interval and three translational degrees of freedom sampled at 1 Å

interval). As the method proceeds, the number of considered configur-

ations decreases
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2.2 Benchmark using simulated experimental data

Pairwise protein docking benchmark 4.0 (Hwang et al., 2010) is used to

validate integrative docking method. This benchmark contains 176 com-

plexes and their corresponding unbound structures, classified into 121

low-difficulty or rigid-body cases, 30 medium-difficulty cases and 25

high-difficulty cases, based on the degree of conformational change at

the interface upon complex formation. For testing EM2D and EM3D,

only a subset of 27 complexes with4675 residues is used (EM bench-

mark). These complexes are divided into 16 rigid-body, 4

medium-difficulty and 7 difficult cases. Each of the benchmark complexes

also had SAXS, EM2D, EM3D, NMR-RTC and CXMS data simulated

based on its native complex structure (Supplementary Material). We have

also tested the method on three experimental SAXS datasets from

pyDockSAXS benchmark (Niemann et al., 2008; Pinotsis et al., 2008;

Pons et al., 2010; Schubert et al., 2002). Integrative docking is performed

on each of these cases starting from the unbound structures and the

predicted complex models are compared with the native complex and

assessed for accuracy. Each model is assessed for accuracy by two meas-

urements: orientation and interface accuracy, similar to CAPRI (Lensink

et al., 2007; Lensink and Wodak, 2010a). Orientation accuracy (high,

medium, acceptable or incorrect) is based on RMSD criteria

(Supplementary Material), whereas interface accuracy is based on the

fraction of correctly predicted interface residues (Supplementary

Material). In line with previous docking papers, we define a near-native

model as a model of high, medium or acceptable accuracy. The success

rate is the percentage of benchmark cases with at least one near-native

model in the top N predictions (N is typically 10, referred to as top 10).

3 RESULTS

3.1 Docking benchmark results

3.1.1 Docking accuracy increases significantly for individual
datasets Integrative docking method shows 2-fold increase in
the top 10 success rate compared with standard docking

(PatchDock-FireDock protocol) for SAXS and NMR-RTC,

almost 3-fold increase for CXMS and 4-fold increase for
EM2D and EM3D (Table 1, Fig. 2A). The standard docking

protocol succeeds to rank a near-native model in the top 10
scoring models in 24% of benchmark cases. When SAXS data

is used, this number goes up to 51%. If we consider only �65

rigid body cases with53% missing residues (unbound structures
compared with complex), the success rate increases to 77%

(Schneidman-Duhovny et al., 2011). For EM2D and EM3D,
the success rate is 82% and 79%, respectively. This success

rate quadruples when compared with standard docking, with

the 19% success rate for the 27 complexes in the EM benchmark.
For NMR-RTC, the success rate is 47%. With up to three
cross-links, the success rate is 65%. If we consider the top-scor-

ing model, there is a 2-fold increase in the success rate for SAXS
and NMR-RTC (22% and 18% versus 10%), almost 4-fold

increase for CXMS (36% versus 10%) and almost 5-fold increase
for EM2D and EM3D (33% versus 7%).
Although using any type of data significantly improves the

results relative to standard docking, we are still far from the
upper limit on the success rate, given the initial sampling by

finer docking (97% of the benchmark cases have a near-native
model sampled by a global search). When we allow for a near-
native model in the top 100 instead of top 10 models, the success

rate increases to 71–89%, depending on the data types. For the
failing benchmark cases, the near-native model is usually among

the top 1000 models.

Fig. 2. Success rate of integrative docking for Benchmark 4.0. (A) Success

rate in prediction of orientation (top, top10) and interface (top-I,

top10-I) for standard docking and docking restrained by NMR-RTC,

CXMS, SAXS, EM2D and EM3D. (B) Success rate for predicting a

near-native model within the top 10 models as a function of complex

size for standard docking as well as docking restrained by NMR-RTC,

CXMS, SAXS, EM2D and EM3D. (C) Success rate for predicting a

near-native model within the top 10 models as a function of complex

shape for standard docking as well as docking restrained by

NMR-RTC, CXMS and SAXS

Table 1. Success rate of integrative docking using individual experimental

filters

Top N Standard

docking

Standard

docking

EM

cases

SAXS EM2D EM3D NMR-

RTC

CXMS

1 10% 7% 22% 33% 33% 18% 36%

10 24% 19% 51% 82% 79% 47% 65%

100 49% 26% 77% 89% 89% 76% 87%

Case no. 176 27 176 27 27 176 138
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The success rate depends on the difficulty of the benchmark
cases, but there is a significant increase when compared with

standard docking, independent of the difficulty (Supplementary

Tables S2 and S3). The success rate also increases when only high
or medium accuracy models are considered as near-natives

(Supplementary Table S4).

3.1.2 Interface prediction accuracy We find that the top-

scoring model has a correctly predicted interface (Fig. 2A,
Supplementary Material) in 50–68% of cases compared with

32% for standard docking. Although NMR-RTC performs

worse than other data types in orientation prediction, the success
rate in interface prediction is comparable with that for other data

types. Based on these benchmark results, the probability of a cor-

rectly predicted interface in the top-scoring model is 50–70%
(depending on data type used) versus 32% for standard docking,

and it increases to 84–91% if top 10 models are considered.

3.1.3 Dependence of success rate on complex size For each of

the five data types, we test the dependence of the success rate on
the complex size. The 176 benchmark complexes were divided

into four groups according to complex size, with the fourth

group corresponding to the 27 complexes in the EM benchmark
(Fig. 2B). Varying data types are most informative and applic-

able for different complex sizes. In particular, the success rate of

standard docking decreases with the increase in complex size
from 34% for small complexes to 19% for the EM benchmark.

The reason is that the number of configurations and flexibility

increase with protein size. The success rate for NMR-RTC drops

sharply for complexes with4300 residues (for complexes with
4675 residues, there is no significant difference between standard

docking and docking with NMR-RTC). The reason is that the

number of potential interfaces (i.e. the size of the search space)
increases with protein size. In contrast, the success rate of SAXS

is not sensitive to complex size. Unsurprisingly, the success rate

for CXMS decreases slightly for the larger and more challenging
complexes.

3.1.4 Dependence of success rate on protein shapes Protein
complexes were classified into oblate, spherical and prolate

based on the eigenvalues of the gyration tensor (Pons et al.,
2010) (Fig. 2C). The success rate of standard docking is highest

for oblate proteins and lowest for prolate proteins. The reason is

that oblate proteins have larger interfaces and better shape com-
plementarity. The success rate of NMR-RTC, CXMS and SAXS

is not sensitive to protein shapes owing to a combination of data

and energy scores. The most significant increase in the success
rate compared with standard docking is for prolate proteins:

3-fold increase for NMR-RTC, 5-fold increase for CXMS and

4-fold increase for SAXS. No analysis was performed for EM,
owing to a small size of the EM benchmark.

3.1.5 Combining different experimental datasets increases
the success rate We tested pairwise combinations of the five
experimental data types. The top 10 success rate increases from

42–82% for individual data types to 63–82% for pairwise com-

binations (Table 2). More important is the increase in the top 1
success rate from 17–36% to 26–52%. CXMS data complements

all other data types, with most significant improvement for the

top-scoring model, where the success rate increases from 36% for

CXMS alone to 47–52% for all four pairwise data type combin-

ations. The top 10 success rate for CXMS combined with SAXS

or NMR-RTC is 80% and 81%, respectively, and is comparable

with the success rate of EM data types. Another successful pair-

wise combination is SAXS–NMR-RTC, improving the success

rate for the whole benchmark from 47–51% for SAXS and

NMR-RTC separately to 68% when both data types are used.

No significant improvement in the top 10 success rate is obtained

by combining EM (2D or 3D) with other data types, as their

independent success rate is already high (79–82%). For the EM–

NMR-RTC combinations, there is even a slight decrease in the

success rate because the NMR-RTC data is not informative for

large protein complexes in the EM benchmark. When all five

data types are combined, the top 10 success rate is similar to

that for EM (83%), but more important is the increase in the

top 1 success rate to 61% from 33% for EM alone.

3.2 Application to an antibody–antigen complex

To test the applicability of the integrative method for determin-

ing pairwise protein complexes in a biopharmaceutical setting,

we applied it to an antibody–antigen complex with experimen-

tally generated datasets. In a typical biopharmaceutical discovery

project, antibodies for a specific target can be generated by mice

immunization or by phage-display libraries. The next step is

selecting an optimal antibody out of several candidates for fur-

ther development into a drug. Knowledge of the epitope is an

important factor in antibody selection process. Therefore, a

method that can model antibody–antigen complexes rapidly

and accurately would be extremely useful.
In our case, the antigen PCSK9 plays a major regulatory role

in cholesterol homeostasis and it is an important drug target

(Horton et al., 2007). PCSK9 binds to the EGF-A domain

of the low-density lipoprotein receptor (LDLR) and induces

LDLR degradation. Reduced LDLR levels result in decreased

metabolism of low-density lipoproteins, which may lead to

Table 2. Success rate of integrative docking using combined experimental

filters

Top N SAXS,

EM2D

SAXS,

EM3D

SAXS,

NMR-RTC

SAXS,

CXMS

EM2D,

EM3D

1 26% 41% 27% 51% 44%

10 74% 74% 68% 80% 82%

100 82% 82% 85% 91% 89%

Case no. 27 27 176 138 27

Top N EM2D,

NMR-

RTC

EM2D,

CXMS

EM3D,

NMR-

RTC

EM3D,

CXMS

NMR-

RTC,

CXMS

All

1 26% 52% 30% 48% 47% 61%

10 63% 83% 67% 74% 81% 83%

100 85% 87% 85% 91% 94% 83%

Case no. 27 23 27 23 138 23

Increase in the success rate by 410% as compared with individual datasets is

marked in bold.
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hypercholesterolemia. The antibody J16 inhibits the action of
PCSK9 by preventing LDLR binding (Liang et al., 2012).
Recently, a crystal structure of PCSK9 in complex with J16

Fab showed that J16 is a competitive inhibitor of LDLR binding
(Liang et al., 2012).

3.2.1 Complex structure modeling The atomic structure of the

unbound PCSK9 has been available since the beginning of this
study (Protein Data Bank code 2P4E) (Cunningham et al., 2007).
For the J16 Fab, 20 comparative models corresponding to two

different elbow angles (136� and 168�) and 10 different CDR
loop conformations were selected based on the fit to the J16

Fab SAXS profile (Supplementary Material). In addition, the
missing loops, N-termini, C-termini and His tags were added
for PCSK9 and the J16 Fab with MODELLER-9v8, to better

model the SAXS data. The integrative docking protocol was
applied to PCSK9 and 20 J16 Fab models; the final clustering

considered all complex models simultaneously.
The structure of the complex was determined by X-ray crys-

tallography during the course of this project, but was made avail-

able to this study only after the model of the complex was
computed. Therefore, this application corresponds to a real-life

antibody discovery scenario, where the unbound structures of the
drug target and the antibody are known, but the structure of
the complex is not available.

3.2.2 Assessment against X-ray structure Because the accur-

acy of a docking prediction highly depends on the accuracy of
the input structures, we first assess the accuracy of our input

structures. The C�-RMSD between the bound and unbound
PCSK9 structures is 1.4 Å and between the bound and modeled
J16 Fabs is 1.0 and 3.0 Å for elbow angles of 136� and 168�,

respectively. Thus, there are no major PCSK9 conformational
changes on binding. The elbow angle of the J16 Fab in the com-

plex X-ray structure is 137.6�. Therefore, the prediction of the
elbow angle based on the Fab SAXS profile was correct
(Supplementary Fig. S1). We have also tested the fit of the X-

ray structure of the complex against each data type
(Supplementary Fig. S2) and observed high-quality fits for

SAXS (� of 2.24), EM2D (cross-correlation coefficient of 0.87)
and EM3D (cross-correlation coefficient of 0.78).
Next, we analyze the accuracy of the best-scored models in

terms of orientation and interface accuracy for different datasets.
The best-scored models with acceptable accuracy were ranked

14, 2, 2 and 2 for SAXS, EM2D, EM3D and all three datasets
combined, respectively (Supplementary Table S5). The best-
scored models with a correct epitope were ranked 3, 2, 1

and 1, respectively (Supplementary Table S5). Docking results
are slightly better for models with the elbow angle of 136� than

for 168�, with acceptable accuracy models ranked 5, 2, 1 and
2 for SAXS, EM2D, EM3D and all three data types combined,
respectively (Supplementary Table S5).

3.2.3 Data-guided filtering and funnel analysis Ideally, the
normalized fitting scores would correlate strongly with the accur-
acy of the model over a broad range of accuracy (i.e. I-RMSD

of 0-5 Å or L-RMSD of 0-15 Å). We now examine whether or
not such a ‘funnel’ exists for each type of data (London and
Schueler-Furman, 2008) and how these funnels relate to specific

complex structures (Fig. 3A). The three experimental datasets

indeed result in pronounced funnels, revealing similar complex

structures (Fig. 3B). Typically, there are three or four funnels

associated with complex structures related by the pseudosym-

metry of the antibody (i.e. light chain versus heavy chain) and

the triangular shape symmetry of PCSK9 (Fig. 3C).

The SAXS dataset produces four funnels. One of them in-

cludes the near-native models, although this funnel is the least

pronounced among the four funnels. The EM2D dataset pro-

duces three funnels with comparable scores. One of the funnels

is centered close to the native structure, demonstrating the

predictive power of EM2D. The EM3D dataset produces four

funnels similar to those from the SAXS dataset. In contrast to

SAXS, the funnel with near-native models has the best EM3D

scores, although this funnel is not centered on the native complex

structure (its center is �11 Å RMSD away from the native struc-

ture). While the EM3D dataset is best in selecting the correct

funnel, the EM2D score is better in picking the highest accuracy

model once the correct funnel has been selected. The shift in the

near-native EM3D funnel relative to the near-native EM2D

funnel can be explained by a distortion of the 3D density map

that results from inaccuracies in the initial density map used for

the 3D reconstruction that was obtained from the 2D class

averages by the random conical tilt method.

4 DISCUSSION

We developed an integrative method for docking two protein

structures by combining protein docking techniques with data

from five experimental methods including SAXS, EM2D,

EM3D, NMR-RTC and CXMS. To assess the accuracy of the

integrative method, we used a benchmark of 176 complex struc-

tures with simulated experimental data. We also applied the

Fig. 3. Modeling of the PCSK9–J16 Fab complex. (A) Scoring funnels as

a function of L-RMSD for different experimental filters. (B) Top-scoring

cluster representatives (red, green, gold and yellow) for integrative dock-

ing with SAXS, EM2D and EM3D filters, superimposed on X-ray crys-

tallographic structure (blue). The models are superimposed on PCSK9

(prodomain in cyan, catalytic domain in blue and C-terminal domain in

dark blue). (C) Fit of the top-scoring cluster representatives to the SAXS

profile, EM2D class averages and EM3D density map
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method to an antibody–antigen complex, relying on experimen-

tal datasets collected specifically for this study.
Additional information, such as sequence conservation and

impact of site-directed mutagenesis on complex formation, has

been used previously to increase the accuracy of pairwise protein

docking (Lensink and Wodak, 2010b; Mashiach et al., 2010b).

Here, we analyze the improved docking success rates afforded by

data from five accessible experimental methods. Our integrative

framework can be modularly extended to support additional

types of experimental data, such as those from footprinting,

site-directed mutagenesis, FRET spectroscopy and atomic force

microscopy (Trinh et al., 2012). In addition to the data types

tested here, binding site residues and distance constraints, if

available, can be added directly to the PatchDock input. In prin-

ciple, experimental datasets can be used either to filter docking

models or directly to drive the sampling. We select the first ap-

proach, because it allows seamless integration of any combin-

ation of datasets and we can rely on efficient global search

methods already developed for pairwise protein docking.

Moreover, driving the docking with global shape data, such as

SAXS and EM2D, is algorithmically challenging.

4.1 Experimental datasets and their impact on docking

The experimental methods were chosen for their utility in a

biotherapeutics discovery context where multiple artificial bind-

ing proteins (such as antibodies) are engineered to bind a specific

drug target and rapid tools for epitope prediction are required.

According to our large benchmark analysis, EM (2D and 3D)

are the most informative of all datasets (Table 1). However,

collecting experimental information to generate a 3D map is gen-

erally possible only for complexes larger than approximately

100 kDa and requires a relatively large amount of work. Here,

we show that 2D class averages, which can be obtained signifi-

cantly faster and for a wider range of samples, can provide the

same information for pairwise docking as 3D density maps. In

contrast to EM, SAXS has the advantage of being able to collect

and analyze multiple samples in a few hours. As a result, purifi-

cation, SAXS data collection and docking of multiple antibodies

binding the same target could be performed in a matter of days.

Automation of collecting EM data is more challenging than that

for SAXS, although recent advances in data acquisition and an

increase in computing power have allowed more streamlined

processes in single-particle EM (Lyumkis et al.; Wu et al.,

2012). While cross-linking with mass spectrometry is informative

on its own, it also complements all other data types. With recent

advances in data collection (Rappsilber, 2011), it is becoming a

method of choice for combination with shape informative meth-

ods, such as SAXS and EM.
While validation of integrative docking by a large benchmark

using simulated data has allowed a robust statistical analysis

(Fig. 2), data collection and application to a specific target

with real data has highlighted advantages and challenges of the

integrative docking approach. Unlike NMR-RTC, which de-

pends on protein expression in a cell-free expression system,

both SAXS and EM gave useful data for the PCSK9–J16 Fab

complex. In general, larger size and higher symmetry of a com-

plex simplify EM data acquisition and interpretation. The larger

mass of an IgG (150kDa) compared with a Fab fragment

(50 kDa) would simplify the data acquisition and image process-

ing. However, the flexibility of an IgG may result in a conforma-

tionally heterogenous complex sample, favoring the use of the

more rigid Fab fragment. Although the EM3D data was most

informative for identifying the near-native cluster of models and

predicting the epitope, more accurate structural models could

be selected by the EM2D score. Despite the relatively low infor-

mation content of the SAXS profile, the SAXS score predicted

the same clusters as the EM-based scores. Additionally, the J16

Fab SAXS profile was useful in predicting the Fab structure and

its elbow angle.

4.2 Improvement compared with standard docking

Although integrative protocol succeeds in including a near-

native model among the top 10 models in 42–82% of the cases

(Table 1), state-of-the-art docking methods succeed only in

30–40% of the cases, depending on the benchmark and accuracy

criterion. ZDOCK-ZRANK ranks a model with I-RMSD5
4.0 Å among the top 10 models in 35–40% of the rigid-body

cases of Benchmark 2.0 (Pierce and Weng, 2008). Recently

developed residue potential, SIPPER (Pons et al., 2011), succeeds

to rank a model with L-RMSD 510 Å in 28% of the 81

Benchmark 3.0 complexes, where at least one model with

L-RMSD510 Å was generated by FTDock. In a recent

CAPRI evaluation, an acceptable accuracy model was submitted

by at least one participating group for 11 out of 13 complexes

(Lensink and Wodak, 2010b). However, top 8 predictors could

only predict correctly 6 out of 13 complex structures. While pre-

dictors can use additional information manually, a fully auto-

mated method, ClusPro (Comeau et al., 2004), succeeded to

predict correctly five targets.

4.3 Comparison to other hybrid docking methods

Docking has been previously combined with additional data.

HADDOCK (Dominguez et al., 2003) benefits from a consensus

interface predictor CPORT (de Vries and Bonvin, 2011), suc-

ceeding to rank an acceptable accuracy model among the top

10 models for �19% of the Benchmark 2.0 complexes.

pyDockSAXS (Pons et al., 2010), which combines FTDock sam-

pling with the pyDock scoring function and a SAXS profile,

succeeds to rank a model with L-RMSD510 Å in 43% of the

Benchmark 2.0 complexes (i.e. for 70 of the 84 complexes with

similar molecular mass for bound and unbound structures).

In comparison, our approach applied to the same benchmark

with a SAXS profile only, results in the significantly increased

63% success rate. The increase in the success rate is because of

the increased precision of configurational sampling and higher

accuracy of interface energy score in FireDock (Supplementary

Tables S6 and S7). The integrative approach had a similar

performance for three experimental SAXS dataset from

pyDockSAXS benchmark (Niemann et al., 2008; Pinotsis

et al., 2008; Pons et al., 2010; Schubert et al., 2002)

(Supplementary Table S7).

4.4 Sampling versus scoring

The current work highlights the challenges in protein docking.

Sufficient sampling is required in the global search stage to
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maximize model accuracy, hit rate and the quality-of-fit to the
experimental data (Supplementary Tables S1 and S6). Our inte-

grative approach is designed to benefit from the increasingly

focused molecular docking search space afforded by consider-

ation of experimental data. While an acceptable accuracy

model is contained among the �200 000 models generated by a

global search for 97% of benchmark complexes, our integrative
protocol succeeds to rank such models among the top 10 scoring

models only in 42–82% of the test cases, depending on the data

used (Tables 1 and 2); correct binding sites are identified among

the top 10 scoring models in 84–91% of the cases (Fig. 2A). We

suggest that a combination of finer sampling methods (including

flexible docking) and improved scoring functions with
physico-chemical and/or statistical terms can be helpful for fur-

ther improving the success rate of pairwise protein docking.

Integrative docking, such as that described here, may provide

the best compromise between the relative expediency and

inaccuracy of standard docking on one hand and relative com-

plexity and accuracy of experimental structure determination

by X-ray crystallography or NMR spectroscopy on the other
hand.

Software. The package is downloadable from http://salilab.
org/idock. SAXS, EM2D, EM3D, NMR-RTC and CXMS scor-

ing functions are implemented in our open source Integrative

Modeling Platform (IMP; http://salilab.org/imp). PatchDock

and FireDock are available at http://bioinfo3d.cs.tau.ac.il.

Docking with a SAXS profile can also be done via a webserver

at http://salilab.org/foxsdock.
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