
UC Irvine
ICS Technical Reports

Title
Fine-grain loop scheduling for MIMD machines

Permalink
https://escholarship.org/uc/item/52s126jt

Authors
Brownhill, Carrie J.
Kim, Ki-chang
Nicolau, Alexandru

Publication Date
1990-10-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52s126jt
https://escholarship.org
http://www.cdlib.org/

Fine-grain Loop Scheduling for MIMD Machine~

Technical Report 90-34

Carrie J. Brownhil1 Ki-chang Kim and Alexandru Nicolau
::::.:::_ -

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

October 2, 1990

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

c 3
VU>. 90-3f

Abstract

Previous algorithms for parallelizing loops on MIMD machines have been based on assign­

ing one or more loop iterations to each processor, introducing synchronization as required.

These methods exploit only iteration level parallelism, and ignore the parallelism that may

exist at a lower level.

In order to exploit parallelism both within and across iterations, our algorithm analyzes

and schedules the loop at the statement level. The loop schedule reflects the expected com­

munication and synchronization costs of the target machine. We provide test results that

show that this algorithm can produce good speedup of loops on an MIMD machine.

Keywords - MIMD, Static code transformations, parallelizing compilers, loop scheduling,

communication costs.

1 Introduction

Loop scheduling is the process of mapping the operations inside a loop to the available processing

units at compile time. When the loop executes, each processor will execute only the operations

assigned to it, but may need to communicate or synchronize with the other processors, if they

access the same data. The scheduling algorithm should minimize the amount of idle time caused

by this communication and synchronization.

To schedule the work to the available processing units, a loop may be partitioned along operation

boundaries, so that some or all executions of a particular operation are done by one processor. This

mode of execution can be very efficient, as is the case for vector machines [4]. Unfortunately, many

real-life loops contain dependencies and control flow that make them hard to vectorize.

Another way to divide the loop is along iteration boundaries. In this case, one or more iterations

is assigned to each processor [8], with any necessary synchronization added to handle loop-carried

dependencies, e.g., Doall, Dopipe, and Doacross loop scheduling [5,7). These methods of loop

scheduling have been extensively used on MIMD machines. They exploit coarse grain (iteration

level) parallelism, but ignore any parallelism that may exist at a lower level of granularity.

The algorithm we discuss in this paper uses fine-grain (statement level) loop parallelization

techniques in an attempt to fully exploit the parallelism available in a loop. While not all of

the fine-grain parallelism exposed by these techniques can be utilized on machines with relatively

high communication and synchronization costs, we have found that the extra parallelism is often

useful in speeding up the execution time of loops by masking the latency of communication and

synchronization delays.

In principle, the parallelization technique we use is able to expose all of the parallelism available

in a loop, subject only to the data dependencies [1,2). However, in order to map a loop effectively

to an MIMD machine, the communication and synchronization costs of the machine need to be

taken into account. These costs may vary dynamically even on the same architecture. Nevertheless,

a good estimate of the typical cost can usually be obtained. Adapting a loop schedule according

to expected communication and synchronization costs can improve the execution time of the loop,

while minimizing run-time overhead.

1

2 Algorithm

Perfect Pipelining (PP) [1, 2] is a fine-grain parallelization technique that has been developed

for use on VLIW (Very Large Instruction Word) machines, with synchronous processors and no

communication costs. On this type of machine, with sufficient resources, PP produces an optimal

loop schedule. The same schedule will be optimal for an MIMD machine with sufficient resources,

if communication and synchronization costs are negligible. For MIMD machines with measurable

communication and/or synchronization costs, the schedule must be adapted to allow for these costs.

This paper describes the technique for adapting the PP schedule for use on MIMD machines.

The algorithm presented will 'trade-off' communication and synchronization costs for extra paral­

lelism. It will only schedule a statement on a separate processor, if that assignment is expected to

improve the execution time of the loop. Thus, the granularity of the parallelism is automatically

adapted to the operating parameters of the machine.

2.1 Loop Model

To begin, we describe our model of a loop using a dependence graph representation. In the graph·

of a sequential loop, each node represents a statement, and each arc represents a data dependence.

See Figure 1. For simplification of our examples, we will assume that the dependence distances in

the graph are all either zero or one. That is, all dependencies are within the same iteration, or

between adjacent iterations. Loops with larger dependence distances can be handled by unwinding

the loop as required [6). In addition, any branch tests present in the loop must be if-converted, as

described in [3). I

For qur purposes, it is useful to partition the statements of the loop into three disjoint sets.

The set of flow-in statements includes all statements which either have no predecessors in the

data dependence graph, or which only have predecessors which are themselves in the fl.ow-in set.

Similarly, the set of flow-out statements includes all statements which are not flow-in and which

have no successors, or which have only successors which are themselves in the fl.ow-out set. The

set of cyclic statements includes all statements which are neither flow-in nor fl.ow-out. In Figure 1,

statements 0, 1, 2 3, and 5 are flow-in. Nodes 7, 8, and 10 are flow-out. The rest are cyclic.

Separating the loop into these three sets is a key part of the algorithm. Essentially, the cyclic

1 While PP can exploit fine-grain parallelism beyond conditional branches without if-conversions, the use of such

parallelism does not seem efficient when communication costs are high. Therefore, for the purposes of this paper, we

assume that conditionals are if-converted.

2

Figure 1: Example dependence graph

statements are those statements on the 'critical path' of the loop. They a.re involved in both

producing and consuming values. By scheduling the cyclic statements first, the expected execution

time of the loop can be estimated. The flow-in and flow-out statements can then allocated sufficient

processors (if available) to insure that they finish at about the same time as the cyclic statements.

2.2 Partitioning the Statements

The first step in the algorithm is to divide the statements in the loop into the cyclic, flow-in and

flow-out subsets. The algorithm for this partitioning is as follows.

1. Each statement is given a tag which is originally marked 'cyclic'.

2. All statements without predecessors are marked 'flow-in'.

3. The set of cyclic statements is searched for statements with only predecessors marked ':flow­

in'. If any are found, then they are marked 'flow-in'. This step is repeated until one iteration

is completed without finding any new :fl.ow-in statements.

4. All statements marked 'cyclic' which have no successors are marked 'flow-out'.

Time Scheduled Operations (Iteration)

0 1(1)
1 2(1) 3(1)
2 4(1) 1(2)
3 6(1) 2(2) 3(2)
4 5(1) 4(2) 1(3)
5 7(1) 8(1) 9(1) 6(2) 2(3) 3(3)
6 10(1) 11(1) 5(2) 4(3) 1(4)
7 12(1) 7(2) 8(2) 9(2) 6(3) 2(4) 3(4)
8 10(2) 11(2) 5(3) 4(4)
9 12(2) 7(3) 8(3) 9(3) 6(4)
10 10(3) 11(3) 5(4)
11 12(3) 7(4) 8(4) 9(4)
12 10(4) 11(4)
13 12(4)

Table 1: Schedule for four iterations of Perfect Pipelining example.

5. The set of cyclic statements is searched for statements with only successors marked 'fiow­

ou t'. If any are found, they are marked 'flow-out'. This step is repeated until one iteration

is completed without finding any new flow-out statements.

2.3 Scheduling Cyclic Statements

Intuitively, Perfect Pipelining (PP) schedules on an 'as soon as possible (ASAP)' basis, as restricted

by data and control flow dependencies. Each operation in the loop is scheduled to be executed as

soon as the operations it is dependent on finish execution. The scheduling process continues across

iteration boundaries, with the loop being incrementally unwound. On VLIW machines, the exact

execution time of each operation is known, so that the loop schedule consists of sets of operations

which will be executed in parallel at each cycle. As an example, the schedule of four iterations

of the example loop represented in Figure 1 is shown in Table 1. In the table, the first number

corresponds to the operation, and the number in parentheses is the iteration number.

Eventually, the sets of scheduled operations form a repeating pattern. Once this pattern is

recognized, the loop does not need to be unwound any further. The pattern itself can be substituted

4

Time Operation (Iteration)

0 1(4) 4(3) 5(2) 10(1) 11(1)
1 2(4) 3(4) 6(3) 7(2) 8(2) 9(2) 12(1)

Table 2: Pattern for Perfect Pipelining example.

for the body of the loop. 2 The pattern for the example loop is outlined in Table 1 and shown in

Table 2.

In this algorithm, the PP technique is used to find the loop pattern for the cyclic, flow-in, and

flow-out subsets of statements. The optimal pattern found, is then adjusted to take communication

and synchronization costs into account.

2.4 Adapting the Ideal Pattern to Reflect Communication and Synchronization

Costs

Once the cyclic statements are identified, they can be scheduled. The PP algorithm is used to find

the loop pattern of these statements. This pattern is an optimal schedule for this loop subset, if

there are no communication costs. To produce a schedule which reflects communication costs, the

algorithm is as follows.

1. Allocate Pc processors, where Pc is equal to the maximum number of statements scheduled

in parallel in the optimal pattern. (If there is a limited number of resources, the number of

allocated processors can be decreased as described in the next section. However, this may

increase execution time.)

2. Taking each statement in order according to the pattern, schedule it on the processor which

allows it to begin execution soonest, taking into account any synchronization and commu­

nication costs. To do this, the following things are determined for each possible processor

assignment.

2 For the majority of loops encountered in practice, the above description is accurate. However, there a.re some

loops for which a pattern does not emerge naturally. To provide for these loops, restrictions can be placed on the 1

scheduling transformation. Namely, a limit is put on the distance that operations from the same iteration can stretch

from each other in the schedule. This guarantees detection of the pattern, while leaving the optimality virtually

unaffected. For proofs, see [2,1].

(a) Set Sp, the earliest possible start time, to initially be the value of the next free time slot

on this processor.

(b) Iterate over the set of statements in the loop on which this statement is dependent

(in other words, the statement we are scheduling needs to wait for a value from each

statement in this set).

i. Statements which are scheduled on the current processor can be ignored. There is

no synchronization necessary. However, we need to count the statements that are

scheduled on other processors, or not yet scheduled. (We include statements not yet

scheduled to produce a conservative count.) This gives us R, the number of receives

that will be necessary.

11. In addition, for those statements that are already scheduled on another processor,

we need to remember the latest start time of any send to this statement. This time,

LS, is equal to the scheduled start time of the sending statement plus its estimated

execution time.

(c) The earliest start time of the statement on this processor, Sp is therefore equal to the

following:

Sp= max(Sp,LS + T. +Tc)+ (R *Tr)

where:

LS = Latest expected send time

T. = Execution time of one send

Tr = Execution time of one receive

Tc = Expected communication delay between processors

R = Number of receives required

3. Schedule the statement on the processor that has the earliest Sp, and update the next free

cycle time for that processor.

4. Record the longest expected execution time (including communication time) of these pro­

cessors. This number, Ee, is used when allocating processors to the flow-in and fl.ow-out

statements.

6

2.5 Allocating Processors for Cyclic Statements

The number of processors allocated to the cyclic statements is ideally equal to the maximum number

of statements scheduled in parallel in the pattern. As the cyclic statement are scheduled, each one

is assigned to the processor on which it has the earliest expected execution time.

Unless there is no communication and synchronization cost, there is an advantage to scheduling

a statement on the same processor as any statements on which it is dependent, thereby making the

necessary synchronization implicit. However, if there are intervening statements already scheduled

on that processor, then the statement may execute sooner on another, available processor, rather

than having to wait for the intervening statements to finish execution. Therefore, there is a trade-off

between the parallelism, and the communication and synchronization costs. If these costs are high,

the scheduler may actually assign all of the statements to some subset of the allocated processors,

because of the reduced amount of synchronization. Processors which do not end up with any

assigned statements can easily be reclaimed for use by the flow-in and flow-out statements.

If there are limited resources, the number of processors allocated to the cyclic statements can

be reduced to fit the target machine. Because the scheduler only tries to assign statements to the

allocated processors, it automatically adapts the schedule as necessary. If there are less than the

ideal number of processors available, then the scheduler will end up assigning more statements to

each processor. A good heuristic is to make the number of cyclic processors, Pc = min (maximum

parallelism, expected execution time of the cyclic statements / expected execution time of (flow-in

+ flow-out statements).

2.6 Allocating Processors for Flow-in and Flow-out Statements

The scheduler attempts to allocate enough processors to the flow-in and :flow-out statements to

ensure that they finish at approximately the same time as the cyclic statements. To do this, it

must calculate the expected execution time, EJ, of one iteration of the loop subset (flow-in/flow­

out). The execution time of the cyclic statements, Ee, is equal to the longest expected execution

time of all the cyclic processors. (This number was stored as described in Section 2.4.) The number

of processors allocated is then equal to f Ee/ E fl·
Again, if there are a limited number of processors, then the number of processors allocated

to the flow-in and flow-out statements can be reduced heuristically, at the cost of increasing the

execution time of the loop. As in the case of the cyclic statements, the processors are allocated in

the same ratio as the expected execution time of the loop subsets.

7

2. 7 Scheduling Flow-in and Flow-out Statements

The fl.ow-in and flow-out statement sets are scheduled separately, but the algorithm for both is the

same, so it is described only once. First, the pattern for each subset is generated, and the following

method followed.

1. Pf is defined as the number of processors allocated to this set of statements. Give each

processor in Pi a unique number p, ranging from zero to (PJ - 1).

2. For each statement in the set, schedule it on all processors. However, each processor, p, only

executes iterations i, where (i mod P1) = p.

The fl.ow-in and flow-out statements are rearranged according to the pattern found using the

PP technique to reduce the delay caused by loop carried dependencies. Given enough resources,

the flow-in and flow-out processors should not dominate the execution time of the loop, because all

of the dependencies in these subsets go forward.

2.8 Generating the Schedule

Once the schedule has been determined, the program must generate the final schedule for each

process. Any loop prologue or epilogue necessary must be included in the final schedule. In

addition, the program must generate all the necessary synchronizations.

~ach synchronization point contains the following information:

1. The identity of the sending statement.

2. The identity of the processor that the sending statement is sc~eduled on. (This is necessary

for absolute identification, because flow-in and flow-out statements may be scheduled on

multiple processors.)

3. The identity of the receiving statement.

4. The identity of the processor that the receiving statement is scheduled on.

5. Whether this synchronization point is a send or a receive.

6. The iteration of the data being shared.

8

If a statement requires a synchronization with a flow-in or flow-out statement which is scheduled

on multiple processors, the processor identity will depend on the iteration number. The correct

processor can be calculated at run-time according to the iteration number in the synchronization.

Otherwise, the loop can be unrolled by the scheduler, so that the synchronization can be explicit.

Each statement in the schedule is processed in the following way:

1. Iterate over the set of statements in the loop on which this statement is dependent. Generate

a 'receive' synchronization for each of these which is scheduled on a different processor.

2. Generate the statement itself.

3. Iterate over the set of statements in the loop which depend on this statement. Generate a

'send' synchronization for each of these which is scheduled on a different processor.

3 Examples

Our algorithm was implemented on a Sequent Symmetry with eight processors. The program

takes as input the dependence graph of the loop and the expected execution time (latency) of each

statement. The communication and synchronization costs are specified with three numbers: The

estimated time for a send (or synchronization), the estimated time for a receive (or synchronization),

and the communication delay. The number of processors available is also specified. The scheduler

outputs the loop schedule for each processor.

The Sequent is a shared memory MIMD machine. Processors share direct access to memory,

governed by synchronization inserted to preserve the original execution semantics. The cost of

synchronization was timed as described in the following section, and used as input into the scheduler.

The Sequent is not known to facilitate very fast synchronization. While machines with much faster

synchronization exist, we chose the Sequent as our first target, both for reasons of convenience

(it's available at our site at UCI) and because it provides a rather extreme environment. If we

obtain positive results on it, we should do much better on machines with hardwired support for

synchronization, such as the Alliant.

3.1 Synchronization cost

To implement the required synchronization, mailboxes (storage spots) axe allocated. Each pair

of communicating statements gets its own mailbox. 'When the 'sending' statement ha.<: finished

Operation Average Time

Synchronization 1

A[l][i) = A[2J[i) 1

A[l][i) = A[2J[i) + A[3J[i] 2

Table 3: Execution times on the Sequent

calculating the necessary data, it waits until the mailbox is available, and sets it. The 'receiving'

statement waits until it sees the signal, and then resets the mailbox. Because only one processor

does a 'send' and only one processor does a 'receive' to each mailbox, no race conditions exist,

and therefore no locking is necessary. This makes the synchronization fairly efficient, even on the

Sequent.

Actually, each send and receive pair gets allocated two mailboxes, which are used on alternate

iterations. vVhile most of the time, the extra mailbox is not necessary, it allows one process to lag an

iteration behind the other without leaving the mailbox blocked. This may help 'cushion' variations

in execution speed. In addition, with only one mailbox, a processor with a loop carried dependence

may actually force another processor to be always one iteration 'behind', because it continually

uses the value from the previous iteration. The other processor must wait for the mailbox to be

cleared before it can continue. If two processors have loop carried dependencies on each other, they

may both need to be one iteration ahead of the other and will therefore deadlock, waiting for the

mailboxes to clear. Having two mailboxes allows both processors to be executing and writing the

current iteration of values, without waiting for the previous iteration to clear.

The execution of the synchronization primitives was timed, so that this information could be

used when scheduling loops. In addition, the execution times of operations on data of type double

were also measured, in order to estimate the execution time of the loop statements. The results

are in Table 3. The average execution times were calculated by taking the total execution time of

360 iterations, subtracting the loop overhead time, and dividing the result by 360.

The execution times were used to estimate the cost of synchronization and the execution times of

loop statements on the Sequent. Although the actual execution times could be used, the variance on

a multi-processing machine like the Sequent do not warrant such precision; we chose to approximate

the synchronization cost as one unit. Each statement in the loop was estimated to take an execution

time in units equal to the number of data loads on the right hand side of the equation.

10

3.2 The Effect of Communication and Synchronization Costs on Schedules

By using parallelism to mask synchronization latency, our performance improves over previous

techniques, since more parallelism is available for this purpose. Of course, if communication cost is

disproportionately large, relative to instruction execution time, the most efficient way of executing

the code may well be sequential, and neither our approach, or any other, will be able to speedup

execution.

The possible effect of the communication and synchronization costs on the loop schedule can

be seen in an example taken from [5]. The sequential code for this loop is shown in Figure 2 and

the dependence graph is shown in Figure 3. In this example, there are six cyclic statements (1, 2,

3, 4, 6, and 7) and eleven flow-in statements. There are no flow-out statements.

If the communication and synchronization costs are input as zero, the schedule produced for

the cyclic statements is that shown in Figures 4 and 5. The schedule for the flow-in statements is

shown in Figure 6. However, if the synchronization costs are specified as being one unit for a send

and one unit for a receive (as was timed on the Sequent), the schedule for the cyclic statements

changes to that shown in Figures 7 and 8. The schedule for the flow-in statements does not

change. Notice that there is less synchronization required in the second schedule, but there are

more statements scheduled on one processor than on the other, which would appear to be less

efficient, if the communication delay is not taken into account.

These two schedules were run on the Sequent. As a comparison, the loop was also scheduled and

run using a Doacross scheduling algorithm, with redundant synch~onizations removed. The same

synchronization method was used for all the loops. The total execution times were measured and are

shown in Table 6. Speedup is also shown and was calculated using the standard formula, speedup

= (sequential time - parallel time) / sequential time. These numbers illustrate that adapting the

schedule to the expected communication costs can produce a better speedup.

for Ci • 1; i <• I; i++)
{

}

1[0](i] • B[i];
1[1] [i] • 1[7] [i - 1];
1[2] [i] • 1[4][i - 1];
1[3][i] • 1[2][i] + 1[6][i - 1];
1[4] [i] • 1[1] [i];
1[S][i] .. 1[0][i] + 1[12][i - 1];
1[6] [i] .. 1(3] [i];
1[7] [i] • 1[3] [i] + 1[4] [i] + 1[16] [i - 1];
1[8][i] • 1[0][i];
1[9][i] .. 1[8][i] + 1[14][i - 1];
1[10][i] • 1[8][i];
1[11][i] • 1[8](i];
1[12] [i] • 1[11] [i];
1[13][i] • 1[12][i];
1[14] [i] • 1[13] [i];
1[16] [i] .. 1[13] [i];
1[16] [i] = 1[13] [i];

Figure 2: Sequential loop example from [5].

Time Statement (Iteration)

0 A2 A[7](1)

1 A[3](2)

2

3 A[1](2) A(6](2)

4 A(4)(2)

· Table 4: Pattern for cyclic statements.

Time Statement (Iteration)

0 A(O)(l)

1 A(8)(1)

2 A(ll)(l) A(10](1)

3 A(12)(1)

4 A(5)(1) A[13](1)

5 A[15](1) A[14](1) A(16](1)

6 A[9)(1)

7

Table 5: Pattern for fl.ow-in statements.

12

Figure 3: Dependence graph

I• Loop prologue •/
1[2][i] • 1[4](i - 1];
JlECEIVE_n<Jll..S6;
1[3][i] • 1[2][i] + 1[6][i - 1];
SEID_TO_S6;
SEID_TO_S7;
JlECEIVE_n<Jll..S7;
1[1][i] • 1[7][i - 1];
1[4] [i] • 1[1](i];
SEID_TO_S7;

for Ci • 1; i <•I - 1; i++)
{

}

1[2] [i + 1] .. 1(4] [i];
llECEIYE_F.aK_S6;
1[3] [i + 1] .. 1[2][i + 1] + 1[6](i];
SEID_TO_S6j
SEID_TO_S7;
llECEIYE_F.aK_S7;
1[1] [i + 1] • 1(7] [i];
1[4](i + 1] • 1[1] [i + 1];
SEID_TO_S;

Figure 4: Schedule for processor O, no communi­

cation costs.

/• Loop prologue •/
RECEIVE_FROH_S3;
A[6] [i] '" A [3] [i] ;
SEID_TO_S3;

for (i = 1; i <= I - 1; i++)
{

}

RECEIVE_FROH_S16;
RECEIVE_FROM_S3;
RECEIVE_FROH_S4;
A[7][i] .. .l[3][i] + A[4][i] + .l[16] [i - 1];
SEJID_TO_Sl;
RECEIVE_FROM_S3;
.l[6] [i + 1] = ![3] [i + 1];
SEID_TO_S3;

/* Loop epilogue •/
RECEIVE_FROM_S16;
RECEIVE_FROM_S3;
RECEIVE_FROM_S4;
A [7] [i] = A [3] [i] + A[4] [i] + A[16] [i - 1] ;
SEJID_TO_S1;

Figure 5: Schedule for processor 1, no communi­

cation costs.

for (i z proc_num; i <= I; i = i + 2)
{

}

A[O] [i] = B [i] ;
A[S] [i] = A[O][i];
A [11] [i] = A[S] [i] ;
A [10] [i] = A[S] [i];
A[12][i] = A[U][i];
SEID_TO_S5;
RECEIVE_FROM_S12;
A[5] [i] = A [OJ [i] + ![12] [i - 1];
![13] [i] = ![12) [i];
A[15][i] = ![13][i];
A [14] [i] = 1[13] [i] ;
SEID_TO_S9;
![16] [i] .. ![13] [i];
SEID_TO_S7;
RECEIVE_FROll.S14;
.l[9] [i] " J.[8] [i] + A[14] [i - 1];

Figure 6: Schedule for flow-in statements.

13

/• Loop prologue •/
A[2][i] "' A[4][i - 1];
SEID_TO_S3;
A [1] [i] • ![7] [i - 1] ;
A [4)[i] ., J. [1] [i] ;

for (i E 1; i <=I - 1; i++)
{

}

.l[2][i + 1] " i[4][i];
SEID_TO_S3;
ll.ECEIVE_FROH_S16;
RECEIVE_FROH_S3;
A[7][i] .. .l[3][i] + J.[4][i] + J.[16][i - 1];
.l[l] [i + 1] ,. ![7] [i];
A[4][i + 1] = A[1][i + 1];

I• Loop epilogue •/
RECEIVE_FROM_S16;
RECEIVE_FROH_S3;
A [7] [i] ,. A[3] [i] + A[4] [i] + A [16] [i - 1] ;

Figure 7: Schedule for processor 0, with commu­

nication costs.

/• Loop prologue •/
RECEIVE_FROH_S2;
A[3][i] = A[2][i] + .A[6][i - 1];
SEID_TO_S7;
J.[6][i] • J.[3][i];

for (i • 1; i <• I - 1; i++)
{

}

llECEIVE_FIUlH_S2;
J.[3][i + 1] • A[2)[i + 1] + J.[6] [i];
SEID_TO_S7;
![6] [i + 1] .. ![3] [i + 1];

Figure 8: Schedule for processor 1, with commu­

nication costs.

Execution Speedup

Time (µs) (%)
Sequential 34067

Assuming No Comm. Cost 25772 24

Assuming Comm. Cost 22571 38

Doacross 68037 -100

Table 6: Loop execution times and speedup on

the Sequent

3.3 Test Results

To test the scheduling algorithm, a random loop generator was implemented. The loop generator

takes four inputs: the number of statements in the loop, the total number of in-loop dependencies,

the total number of loop carried dependencies, and the maximum number of dependencies for each

statement. The loop generator uses a standard random number generator with a time-stamp seed

and outputs the dependencies of the loop.

A code generator was used to translate the dependencies into actual statements. The state­

ments were created so that the dependencies specified by the loop generator actually existed in the

statements. This was done by putting the appropriate data values on the right hand side of an

assignment statement. For example, if statement 5 was specified as having a loop-carried depen­

dence on statement 7, and an in-loop dependence on statement 3, then the code generator would

output statement 5 as, A[5)[i] = A[7][i - 1) + A[3][i]. The execution time of this statement is esti­

mated to be equal to the number of dependencies, in this case 2. Statements which were allocated

no dependencies by the loop generator were assumed to read constants. For example, statement

3 might have the form, A[3][i] = B[i], with no dependencies. In this case, the execution time is

assumed to be 1. The code generator was used in conjunction with the scheduler to automatically

produce, schedule, and run various test loops.

By varying the parameters to the loop generator, loops with a variety of characteristics can be

obtained. The question is, how to create loops which are similar to loops found in real programs.

According to [9), loops in real programs can be characterized by the number of operands on the

right hand side of assignment statements. The percentage of statements of each size found in loops

in real programs is shown in Table 7. We chose our test parameters to create loops with similar

characteristics. These are also shown in Table 7. The test loop parameters were permutations of

the following: 20 and 25 statements, 10 and 15 in-loop dependencies, and 5 and 10 loop carried

dependencies, with a maximum of 4 dependencies for each statement. Each combination of param­

eters was used to generate 4 different loops, for a total of 32 loops. Of the 32 loops, 10 had cyclic

statements. Therefore, at least 22 of the loops were vectorizable.

For each loop, the sequential loop, the schedule produced by our algorithm, and one produced

by a Doacross schedule were run for 360 iterations and timed. The total execution time and percent

speedup are shown in Table 8 and graphed in Figure 9.

Although negative speedups were recorded for some of the loops scheduled using Doacross,

in practice, expected speedup can be checked at compile time. Those loops which would have a

14

RHS Operands Real Programs Test Loops

1 80 77

2 15 16

3 3 5

4 2 2

Table 7: % of loop statements of various sizes

loo_E.# Statements ln-lOO_f. lcds S~uentlal pp Doacross pp Doacross
loo_EQ_ 20 10 5 39,674 14,117 62,420 64% -57%
loo...e_1 20 10 5 39,244 14,019 60,458 64% -54%
loojl_2 20 10 5 38,622 14,071 36,716 64% 5%
IOOjl_3 20 10 5 37,536 12,422 24,900 67% 34%

loo__Ei_ 20 10 10 41,634 16,630 59,599 60% -43%
loojl_5 20 10 10 42,760 16,081 57,887 62% -35%
looj)§_ 20 10 10 44,420 17,641 51,978 60% -17%
loop 20 10 10 41,674 16,820 37,521 60% 10%

lo~ 20 15 5 41,591 13,282 53,635 68% -29%
loo~ 20 15 5 46,381 14,883 51,584 68% -11%

loojl_10 20 15 5 41,492 14, 116 13,268 66% 68%
loojl_11 20 15 5 38,531 13,344 17,418 65% 55%
loojl_12 20 15 10 40,437 16,709 69,969 59% -73%
100):>13 20 15 10 42,626 47,630 72,954 -12% -71%

1~4 20 15 10 50,530 31,266 76,702 38% -52%
100):>15 20 15 10 46,192 30,720 . 67,412 33% -46%
loo...e_16 25 10 5 39,635 14,998 50,319 62% -27%
loojl_17 25 10 5 41,754 16,649 60,2n 60% -44%
loojl_18 25 10 5 42,759 19,397 41,664 55% 3%
loojl_19 25 10 5 45,579 15,699 52,873 66% -16%
loojl_20 25 10 10 44,969 23,759 73,034 47% ~
looj>21 25 10 10 46,354 19,168 56,848 59% -23%
loo_E.22 25 10 10 47,932 19,472 73,137 59% -53%

loo~3 25 10 10 46,790 18,205 27,232 61% 42%
loo_p24 25 15 5 47,393 15,914 16,187 66% 66%
loojl_25 25 15 5 45,819 27,918 58,697 39% -28%
loop26 25 15 5 46,458 15,476 53,670 67% -16%
looj>_27 25 15 5 48,915 16,269 37,620 67% 23%
looj>28 25 15 10 53,843 29,842 81,972 45% -52%
loojl_29 25 15 10 50,557 22,483 41,506 56% 18%
loop30 25 15 10 56,750 24,258 62,066 57% -9%

loo~1 25 15 10 56,697 20,972 76,251 63% -34%

Table 8: Test loop parameters, execution times in µsand% speedup

80%

n

60%

40%

20%

Speed 0%

Up

h. n h1

IT l'I u Li'
w

-20% t- I- H I- HI- HI- I- H

'-'

-40% -H H H I- H t------1 t---

-60% I-

-80%

0 2 3 4 !5 8 7 8 8 10 11 12 13 14 15 18 17 18 111 20 21 22 23 24 25 28 27 28 28 30 31

Loop N1.mber

0 Ooacrma

Figure 9: Test loop speedup in%, PP versus Doacross

16

80%

80%

40%

20%

Speed 0%

Up

-20%

_L

I
~

i--:

~\PW II q ·~ Ill ~
:~~

-40%

-80%

-80%

o 1 2 3 4 s a 1 e e 10 11 12 13 14 15 1a 11 1s 1e 20 21 22 23 24 25 28 27 28 2B 30 31

loop Numbef

B PP 0 Ooacross I

Figure 10: Test loop speedup in %, versus Doacross with 5, 6, and 7 processors

negative speedup would instead be run sequentially. By averaging the speedup over all of the test

loops (weighted according to number of statements), we can estimate what the overall speedup

would be for a real program. Even assuming that loops with negative speedup are instead run

sequentially, the overall speedup for a program containing these 32 loops would be 57.2% with our

technique, as opposed to 10.1 % with Doacross.

In order to see the effect of limited resources on the loop execution time, we ran the same 32

loops on 5, 6, and 7 processors. The results a.re graphed in Figure 10. Most loops showed a steady

incremental decrease in execution time as processors were increased. The exceptions were those

loops whose ideal schedule already used less than 8 processors, which were therefore not affected

by the processor limit.

4 Conclusions

In the past, loop scheduling on MIMD machines has consists primarily of assigned one or more

loop iterations to each available processor, with synchronization added if necessary. This technique

exploits any coarse grain (iteration level) parallelism available, but ignores any parallelism that may

exist at a lower level. The scheduling algorithm presented in this paper uses fine-grain (statement

level) parallelism techniques to try to exploit all of the parallelism present in the loop.

In addition, the algorithm adjusts the loop schedule according to the expected communication

and synchronization costs of the target machine. Extra parallelism is exploited only when it is

expected to improve the loop execution time.

A heuristic approach to rearranging statements within iterations to maximize Doacross overlap

was presented in [6]. While interesting, this approach does not take into account communication

costs, and is therefore not directly comparable with our technique. In the absence of communication

costs, Perfect Pipelining is provably superior in exposing parallelism, and is therefore a better

starting point when scheduling for MIMD machines.

We tested the algorithm on a synthetic benchmark of 32 loops. The loops were run on a Sequent,

a shared memory MIMD machine, with 8 processors. The overall speedup of the loops was 57.2%.

In addition, we ran the loops with resources restricted to 5, 6, and 7 processors, and found that

the loop speedup tended to increase incrementally as the number of processors increased.

References

[1] Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. In Proceedings of the

1988 ACM SIGPLAN Conference on Programming Language Design and Implementation, June

1988.

[2] Alexander Aiken and Alexandru Nicolau. Perfect pipelining: a new loop parallelization tech­

nique. In Proceedings of the 1988 European Symposium on Programming, Springer Verlag

Lecture Notes in Computer Science no. 300, March 1988.

[3) J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data

dependence. In Proceedings of the 1983 Symposium on Principles of Programming Languages,

pages 177-189, January 1983.

18

[4] R. Allen and K. Kennedy. Automatic translation of fortran programs to vector form. ACM

Transactions on Programming Languages and Systems, 9(4), October 1987.

[5] R. G. Cytron. Doacross: beyond vectorization for multiprocessors. In Proceedings of the 1986

International Conference on Parallel Processing, pages 836-844, August 1986.

[6] A.A. Munshi and B. Simons. Doacross: beyond vectorization for multiprocessors. In Proceedings

of the 1987 International Conference on Parallel Processing, June 1987.

[7] D.A. Padua. Multiprocessors: Discussion of some theoretical and practical problems. PhD

thesis, University of Illinois at Urbana-Champaign, 1979.

(8] C.D. Polychronopoulos and D.J. Kuck. Guided self-scheduling: a practical scheduling scheme

for parallel supercomputers. IEEE Transactions on Computers, C-36(12), December 1987.

(9) Andrew S. Tanenbaum. Structured Computer Organization. Prentice-Hall, Inc., Englewood

Cliffs, NJ 07632, 3 edition, 1990.

19

