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Abstract

This paper addresses the problem of formalizing the natural-language definitions of
spatial features. While the Spatial Data Transfer Standard (SDTS) supports the structural
aspects of the definition of spatial features, it falls short of providing means to convey
explicitly their behavior. An approach using functional algebra is developed using the
example of the SDTS standard entity types “dam,” “watercourse,” and “lake,” together
with the operations expressed in the natural-language definitions of these features. Formal
algebraic specifications go beyond the SDTS approach, by providing precise
mathematical representations of the behavior of geographic features and the interactions
among related feature types. Functional specifications also help in refining the selection
of attributes needed to characterize the behavior of a given feature type. An implication
of the functional approach is to provide precise mathematical signatures of feature types
as an alternative to natural-language definitions. Mathematical specifications are
unambiguous across cultures and languages and provide a strict basis for assessing the
interoperability of objects in feature-based GISs.
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1. Introduction

Recently, it has been suggested that even an extended entity-relationship model, i.e., one
that provides for specified relationships between types of geographic features1, would be
insufficient for data exchange in which the meanings associated with feature types are
intended to be well defined and preserved. This is because the meaning conveyed in the
definition of an entity type includes dynamic concepts that involve how the entity in
question will function in a given situation. Operations in this sense are poorly modeled,
and only indirectly observed, in a system based on the static concepts of entity, attribute,
and relationship. Frank and Kuhn (1995) note:

Some data definition languages (e.g., EXPRESS [ISO, 1992]) allow to
specify data types, but lack formal semantics. They describe static data
types with attributes and relationships, omitting the specification of
operations. However, a specification language based on types must have a
method to associate data types with operations. Otherwise the concept of
type remains vacuous.

An example is using a road (a data type) for vehicular traffic (an operation). During the
winter season, in Maine, people cross frozen lakes and rivers, in cars and snowmobiles, as
if they were roads. The same operation would be impossible in the summer time, and
hazardous at other times of year. Is the frozen lake a “road?” If we specify the operations
that are the critical properties of a road, for instance that it handles vehicular traffic, we
have a more robust understanding of this type of feature than if we are content to classify
things by static attributes like size, shape, and composition, or by static relationships such
as the road crossing above the river on a bridge.

Frank (1994), Frank and Kuhn (1995), Kuhn and Frank (1991), Mark (1993), and others
have proposed using functional algebra as a technique for modeling spatial data.  Frank
and Kuhn (1995) assert that functional language data type specifications for “open GIS”
serve to describe differences in semantics of geographic information systems (GIS)
operations. Kuhn (1994) proposed that this technique can be applied directly to the
problem of defining feature types for spatial data transfers. For example, he pointed out
that the SDTS definition for DAM, “a barrier constructed across a watercourse to control
the flow or raise the level of water” (SDTS: 9) includes phrases that describe how a dam
functions. This natural-language definition suggests operations of the entity type DAM,
namely changeFlow (of water) and changeLevel (of water). Thus, he was able to replicate
the SDTS definition precisely, using a functional specification language.

Kuhn also showed that by examining the operations suggested in the definitions, the
German term “Damm” is closer in meaning to the SDTS entity type EMBANKMENT
than it is to the SDTS DAM. Although it appears that the German “Talsperre” is a close
synonym of DAM, it is entirely possible that there is no precise German equivalent of an
entity type that was originally defined in English. Thus, in order for the full meaning of
the definition of DAM to be preserved in a transfer, particularly an international transfer,
the model used for defining entity types must include operations as well as attributes and
relationships. An entity-attribute-relationship model can be used to record the knowledge

1 We use the term feature  in the SDTS sense: the combination of a real world entity type and its representation as
an object in a database. When we use the term entity type , we mean specifically the classification of real world
phenomena as presented in Part 2 of SDTS.
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that the DAM has a certain HEIGHT and DISCHARGE, that the WATERCOURSE has a
depth and a FORCE_OF_FLOW, and that the DAM has a relationship of
CONTROL_OVER_WATER_LEVEL to the WATERCOURSE. However, even
knowing all this, we still do not know, other than from the natural-language definition,
that the basic purpose of a DAM, i.e., its behavior , is to control the flow and raise the
level of water.

Spatial data transfer and data sharing within the emerging Global Information
Infrastructure will require much tighter control over the semantics of the data being
shared. We need methods that will enable producers of data to specify the full meaning of
what they are providing and that will enable data users to understand exactly what
information they are receiving. Otherwise, we will never have information highways , but
only continue to have bit-string highways  (Zemankova, 1995).

In the following sections, we will extend Kuhn's example by providing a more exhaustive
definition of the entity type “dam,” first using the current types, definitions, attributes,
and capability to model relationships found in SDTS, and then using functional algebra to
specify the behavior of the dam.

2. The Entity Type DAM in SDTS

Part 2 of SDTS is based on a “Conceptual Model” of spatial features (SDTS: 2)
consisting of entity types, entity instances, attributes, and attribute values. It is assumed
that all natural phenomena can be described by applying these concepts.

The concept of relationships between entity types is not expressly included in the SDTS
model, although it is possible to represent such relationships as attributes  of one entity for
which the attribute value  is the related entity. Part 2 of SDTS also includes a large
number of included terms, for approximately 1,200 entity types with definitions that
overlap those of one of the 200 standard entity types defined in the standard. Often, an
included term is a subcategory of a standard term. For example, pond is an included term
under the standard term lake . Standard attributes are defined in SDTS to help distinguish
the nuances of meaning between a standard term and an included term. For example, size
is an attribute and so a pond can be encoded into SDTS as a small lake .

There is no logical reason why all the necessary information about real world features
cannot be represented within the framework devised for SDTS. However, critics have
argued, among other things, that

• relationships among entity types should be an explicit part of the SDTS
model;

• natural-language definitions are too vague and unreliable to be
consistently used and understood by diverse individuals, particularly if the
individuals are in different organizations, live in different cultures, or,
worse, speak different natural languages; and

• even if the meaning of a definition is clearly understood, the information
about a particular slice of real world entities provided for a particular
application may be of limited or no use in other applications.

We will return to these criticisms at the conclusion of this paper. First, we review how a
standard entity is recorded in SDTS, using an extended version of Kuhn's example.
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In SDTS, a DAM is a standard entity type. The water controlled by the DAM, in SDTS,
flows through a WATERCOURSE. A related term is RESERVOIR, the standing body of
inland water backed up behind a dam. In SDTS, RESERVOIR is an included term under
the standard term LAKE, the definition for which should read “any standing body of
inland water.” These are defined in SDTS as follows:

DAM A barrier constructed across a watercourse to
control the flow or raise the level of water.

WATERCOURSE A way or course through which water may or does
flow.

LAKE Any standard [sic] body of inland water.

Several SDTS standard attributes may be used to further describe the DAM,
WATERCOURSE, and (or) LAKE and the relationships among them. For example, each
can have a NAME and a WIDTH. The DAM has a HEIGHT and DISCHARGE and is
characterized by CONTROL_OVER_WATER_LEVEL of the WATERCOURSE. It may
be intended for FLOOD_CONTROL, HYDROELECTRIC_POWER, or other purposes.
It is usually MANMADE and may be EXISTING or PROPOSED. The
WATERCOURSE has a DIRECTION_OF_FLOW, WETTED_PERIMETER,
CROSS_SECTIONAL_AREA, FORM_RATIO, and FORCE_OF_FLOW. It may be
INTERMITTENT or PERENNIAL and may be RECREATIONAL. It is related to the
DAM as a FEATURE_PRESENT. The reservoir LAKE has an AREA, a VOLUME, a
SALINITY, and a SEASONAL_DEPTH and is MANMADE. It may be EXISTING or
PROPOSED and may be RECREATIONAL, intended for WATER_SUPPLY or
IRRIGATION, and subject to use RESTRICTIONS. It is related to the DAM and the
WATERCOURSE each as a FEATURE_CONNECTED (Table 1). An instance of each
entity type would be coded in SDTS as a tuple with each field containing an attribute
value (Table 2).

Each of the entity types and attributes in SDTS has a standard definition. However, there
is no standard linkage between entities and attributes. In the above examples, the
attributes listed for each entity type are available to be used, but are not required. As a
result, any two encoders of SDTS entity and attribute information will likely arrive at
different attribute schemas for any given entity type. Even more importantly, attributes
that are crucial for modeling the behavior or operation of a particular entity type may be
omitted from the data transfer. Finally, even this relatively simple example shows that the
relationships among various entity types are a critical part of the information to be
conveyed. A dam cannot exist without a corresponding watercourse, nor a reservoir
without both. Once a dam is included, we also need an attribute of the watercourse that
indicates how its level is affected by the dam. The previously proposed attribute “depth”
could serve this purpose.

A more important limitation of the current SDTS model is that the operations of (or
affecting) entity types are not specified. If the Orono Town Dam were to be used in a
hydrologic model of the Stillwater River, for example, the model and certain properties of
the dam would have to be transferred outside SDTS as part of a “private agreement”
between the data producer and the user. On the other hand, if the data were only being
used as part of an inventory of the locations of and dimensions of existing dams, the
SDTS description might be entirely sufficient.



5

SDTS Entity Type SDTS Attribute Relates to Entity Type

DAM NAME
WIDTH
HEIGHT
DISCHARGE
CONTROL_OVER_WATER_LEVEL WATERCOURSE
FLOOD_CONTROL
HYDROELECTRIC_POWER
MANMADE/ARTIFICALLY_IMPROVED/NATURAL
EXISTING/PROPOSED

WATERCOURSE NAME
WIDTH
depth*
DIRECTION_OF_FLOW
WETTED_PERIMETER
CROSS_SECTIONAL_AREA
FORM_RATIO
FORCE_OF_FLOW
INTERMITTENT/PERENNIAL
RECREATIONAL
FEATURE_PRESENT DAM

LAKE NAME
WIDTH
AREA
VOLUME
depth*
SALINITY
SEASONAL_DEPTH
MANMADE/ARTIFICALLY_IMPROVED/NATURAL
EXISTING/PROPOSED
RECREATIONAL
WATER_SUPPLY
IRRIGATION
RESTRICTIONS
FEATURE_CONNECTED DAM
FEATURE_CONNECTED WATERCOURSE

* Note: the attribute DEPTH was among several entries in The American Cartographer

proposed standard that were removed in the final editing of SDTS. Therefore, it must

currently be defined by the user.

Table 1: Selected Entity Types and Attributes.
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Field Value

ENTITY_TYPE DAM
NAME Orono Town Dam
WIDTH 200 meters
HEIGHT 10 meters
DISCHARGE 100 cubic meters per second
CONTROL_OVER_WATER_LEVEL <foreign identifier>*
FLOOD_CONTROL true
HYDROELECTRIC_POWER true
MANMADE/ARTIFICALLY_IMPROVED/NATURAL MANMADE
EXISTING/PROPOSED existing

* points to the entry for Stillwater River in the table of watercourses

Table 2: An Instance of the Entity Type DAM.

3. Functional Algebras for Entity Type Definitions

Functional algebras , also called universal algebras, algebraic specifications , and
functional [programming] languages , are a formal method of specifying the behavior of
abstract data types. They are “… based on the evaluation of expressions, suitably
generalized to allow complex data structures to be specified. The description 'functional'
arises from their use of side-effect-free functions as the main program structuring and
abstraction device.” (Bailey, 1990).

A specification using functional algebra consists of three main kinds of expressions:
abstract data types, functions, and axioms. Abstract data types are specified by sort
identifiers , functions are specified by operation identifiers, and axioms , or equations,
specify the behavior of the operations on the sorts. The combination of sort and operation
identifiers constitutes the signature of the data type.

Functions are of two basic types: constructor functions and observer functions.
Constructors add new instances or modify the current state of a sort. In terms of the
SDTS model, we would say that constructor functions create or change entity instances.
Observers return information about the sort without adding to it or changing its state.
They return attribute values of entity instances. Axioms specify the results for each
observer function of the operation of each constructor function.

Using Gofer (Jones, 1993) syntax, abstract data types can be specified using data
statements. Functions are defined by the :: symbol and axioms as equalities using the
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symbol =. An example of a Gofer language specification is Kuhn's “glas spec.” The sort
identifier  introduces the abstract data type Glas with two possible states: it is a new glas
or it has been filled:

data Glas = NewMug (Int) | Fill (Glas, Int)

The new glas is of type integer where the value is the size of the glas. The filled glas is of
type (glas, integer) where the value of the integer is the amount of water added to the
glas.

The operation  on the glas is to take a drink. The observer functions include noting the
size of the glas, the level of beer remaining, and whether the glas is empty or full. Note
that the constructor function  “drink” is an operation that affects the glas itself, whereas
the observer functions simply return data values.

drink    ::  (Glas, Int) -> Glas
size     ::  Glas -> Int
level    ::  Glas -> Int
empty    ::  Glas -> Bool
full     ::  Glas -> Bool

The operation “drink” includes an argument of type integer  which is the amount of water
consumed in the drink. The resulting “glas” has that much less remaining to be
consumed. The observer “size” keeps track of the maximum capacity of the glas
expressed as an integer. The observer “level” keeps track of the amount of beer in the
glas, another integer quantity. The Boolean operators “empty” and “full” are either true or
false for a given state of the glas.

The axioms  for the glas are as follows. Note that there are two axioms for each of the
operations “drink,” “size,” and “level,” one for each of the two types of glas. The values
of the observers “empty” and “full” are derived from values of the other observers “level”
and “size.”
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drink (NewMug (i), j) = NewMug (i)
drink (Fill (m,i), j)

| full (Fill (m,i)) =
                  Fill (NewMug (size (m)), size (m) - j)

| i>j = Fill (m, i-j)
| otherwise = drink (m, j-1)

size (NewMug (i)) = i
size (Fill (m,i)) = size (m)
level (NewMug (i)) = 0
level (Fill (m,i))
| (level (m) + i) > size (m) = size (m)
| otherwise = level (m) + i

empty (m) = level (m) == 0
full (m) = level (m) == size (m)

The first axiom indicates that there is nothing to drink from a new glas. The second
shows that there are three possible outcomes of drinking from a filled glas. If the glas
starts out full, its level is lowered by the amount of the drink. If the glas is not full and the
amount of the drink is less than what remains in the glas, the level is again lowered by the
amount of the drink. If the amount to be drunk is at least as much as the amount
remaining in the glas, the result is that the amount to be drunk is lowered by one unit
(until the amount to be drunk equals the amount remaining). The size of the new glas is
given (3rd axiom) and does not change when the glas is filled (4th axiom). The level of
the new glas is zero (5th axiom). The sixth axiom shows that the level of the glas
increases by the amount it is filled, unless the amount of beer added is beyond its
capacity, in which case the glas is simply filled up. The glas is empty if its level is zero
(7th axiom) and full if it is filled to capacity (8th axiom).

The glas example can serve as an analogy for the reservoir created when a new dam is
constructed. The following section presents a more detailed specification of a dam and its
associated reservoir along a watercourse.

4. A Definition of Dam using Functional Algebra

For the purpose of this example, the abstract data types correspond to entity types in
SDTS. Because functional algebra requires that we specify operations, the critical first
step in arriving at a specification is to be clear about precisely which operations are
involved. In the example of a dam, we can take the natural-language definition from
SDTS and picture a series of operations as illustrated below. First, while the dam is only
proposed, we have a single entity, the watercourse, with attributes of depth2 and flow.

Cross-sectional views of this pre-dam situation are illustrated in Figure 1.

2 To simplify the metrics of the problem, we assume that the gradient of the watercourse and its cross-sectional
area, taken together, result in a constant value for the attribute "depth" over the segments where the dam will be built.
We can then use this attribute to operationalize the variable "water level" in the definition of dam.
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Fig. 1.  WATERCOURSE

The situation can also be represented algebraically (Specification 1), with an abstract data
type WATERCOURSE, whose only functions are to observe the depth and flow of the
stream.

Specification 1:

data Watercourse          =  Stream (Int,Int)
streamDepth              ::  Watercourse -> Int
streamFlow               ::  Watercourse -> Int
streamDepth (Stream(u,v)) =  u
streamFlow (Stream(u,v))  =  v

4.1 Constructing a Dam

The first phrase in the definition of DAM is, “a barrier constructed across…” So, we have
an operation “construct the dam.” As a result of this operation, several changes occur in
the objects shown in Figure 1. Of course, there is a new DAM where there was none
before. The WATERCOURSE is now split into two parts that will behave differently, an
upstream part and a downstream part. Also, a portion of the valley through which the
WATERCOURSE flows is about to be flooded. This RESERVOIR area will become a
new LAKE. Figure 2 illustrates the situation after the DAM has been built, but before the
LAKE is filled.

Fig. 2.  New DAM

The algebraic specification now involves the entity types DAM and LAKE in addition to
WATERCOURSE. The operations include constructing a dam and creating a new lake.
We then observe that the new dam is (as yet) open, its height is zero, and its discharge is
zero. The new lake is empty and its depth is also zero. The maximum height of the dam is
set at the time of construction (Specification 2)
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Specification 2:

data Dam        = ConstructDam (Int) | Operate (Dam,Int,Int)
data
Watercourse=Upstream(Int,Int)|Downstream(Watercourse,Int.Int)
data Lake       = NewLake (Int) | Fill (Lake, Int)

maxHeight       :: Dam -> Int
damHeight       :: Dam -> Int
damOpen         :: Dam -> Bool
streamDepth     :: Watercourse -> Int
streamFlow      :: Watercourse -> Int
lakeDepth       :: Lake -> Int
lakeEmpty       :: Lake -> Bool

maxHeight (ConstructDam (k))    = k
damHeight (ConstructDam (k))    = 0
damOpen (ConstructDam (k))      = True
streamDepth (Upstream(u,v))     = u
streamDepth (Downstream(w,u,v)) = streamDepth (Upstream (u,v))
streamFlow (Upstream(u,v))      = v
streamFlow (Downstream(w,u,v))  = streamFlow (Upstream (u,v))
lakeDepth (NewLake(m))          = 0
lakeEmpty (NewLake(m))          = True

4.2 Raising a Dam

The next operation is to raise the height of the dam and begin to fill the reservoir. This is
illustrated in Figure 3.

Fig. 3.  Raise DAM

We add the operation of raising the dam, which results in the dam being closed and
stopping the flow of water downstream. We add a condition to the operation of raising
the dam that prevents the dam from being raised higher than its maximum possible height
(or lower than zero). The mutual interdependence of the entity types is reflected in more
complex operations and equations (Specification 3).
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Specification 3:

data Dam        = ConstructDam (Int) | Operate (Dam,Int,Int)
data Watercourse= Upstream(Int,Int)|Downstream(Watercourse,Int,Int)
data Lake       = NewLake (Int) | Fill (Lake, Int)

damRaise     :: (Dam,Int) -> Dam
maxHeight    :: Dam -> Int
damHeight    :: Dam -> Int
discharge    :: Dam -> Int
damOpen      :: (Dam,Watercourse,Lake) -> Bool
damClose     :: (Dam,Watercourse,Lake) -> Bool
streamDepth  :: (Dam,Watercourse,Lake) -> Int
streamFlow   :: (Dam,Watercourse,Lake) -> Int
lakeDepth    :: (Dam,Watercourse,Lake) -> Int
lakeEmpty    :: (Dam,Watercourse,Lake) -> Bool

maxHeight (ConstructDam(k)) = k
maxHeight (Operate (d,i,j)) = maxHeight (d)
damHeight (ConstructDam(k)) = 0
damHeight (Operate (d,i,j)) = i
discharge (ConstructDam(k)) = 0
discharge (Operate (d,i,j)) = j

streamDepth (d,Upstream(u,v),l) = u
streamDepth (d,Downstream(w,u,v),l)
| damClose (d,w,l) == True = 0
| damOpen (d,w,l) == True  = streamDepth (d,w,l)
 + lakeDepth(d,w,l) - damHeight (d)

| otherwise                = streamDepth (d,Upstream(u,v),l)
streamFlow (d,Upstream(u,v),l)  = v
streamFlow (d,Downstream(w,u,v),l)
| damClose (d,w,l) == True = 0
| damOpen (d,w,l) == True = streamFlow (d,w,l)
+ discharge (d)

| otherwise               = streamFlow
(d,Upstream(u,v),l)

damOpen (ConstructDam (k),w,l) = True
damOpen (Operate(d,k),w,l)     = damHeight (d) < lakeDepth (d,w,l)

lakeEmpty (ConstructDam(d),w,l) = True
lakeDepth (ConstructDam(d),w,l) = 0

damRaise (ConstructDam (d),h)         = error
“Cannot raise height of a dam under construction”

damRaise (Operate (d,i,j),h)
        | (h>i) && (h < maxHeight(d)) = Operate (d,h,j)
        | otherwise = error “Illegal new height for dam”
damClose (d,w,l) = damHeight (d) > lakeDepth(d,w,l)
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4.3 Reservoir is Full

The above state of affairs continues until the reservoir fills to the level of the dam, as
illustrated in Figure 4.

Fig. 4.  LAKE Full

We add an observer function to indicate when the lake is full (Specification 4).

Specification 4:

lakeFull        :: (Dam,Watercourse,Lake) -> Bool
lakeFull (d,w,l) = lakeDepth (d,w,l) == damHeight (d)

When this occurs, the dam is neither “open” (discharging extra water into the downstream
segment of the watercourse) nor “closed” (preventing any water from flowing
downstream). The downstream segment of the watercourse returns to its normal upstream
depth.

4.4 Lowering a Dam (discharging)

An operation that has different consequences is illustrated in Figure 5: lowering the dam.

Fig. 5.  Lower DAM

When this happens, there is a period of time when the height of the reservoir exceeds that
of the dam. The downstream flow is increased relative to the upstream flow by the
additional amount of discharge from the dam. The dam-lowering operation and its effects
are shown in Specification 5.



13

Specification 5:

discharge :: (Dam, Watercourse, Lake) -> Int
discharge (ConstructDam (k),w,l) = 0
discharge (Operate (d,i,j),w,l)
| damOpen (d,w,l) = (( lakeDepth (d,w,l) - damHeight (d)) /
streamDepth (d,w,l)) * streamFlow (d,w,l)

damLower  :: (Dam,Int) -> Dam
damLower (ConstructDam (k),h) = error “Cannot lower a new dam”
damLower (Operate (d,i,j),h)
        | (h<i) && (h >= 0) = Operate (d,h,j)
        | otherwise = error “Illegal new height for dam”

As shown in Figure 6, eventually the level of the reservoir falls to the height of the dam
and the system is again in equilibrium (as observed by the functions “dam not open”,
“dam not closed”, and “lake full”).

Fig. 6.  LAKE FULL

This condition was specified earlier. The only difference is that there are new values of
the observations for the height of the dam and the depth of the lake. A complete
specification, including all the operations described above, is appended.

5. Conclusions

5.1 Summary

The natural-language definition for DAM expresses operations that can be formalized in
terms of algebraic specifications for the operations (construct, raise, lower, open, close)
and their effects (discharge, stream depth, stream flow, lake depth, lake empty, lake full).
Such specifications are precise and capable of being expressed in any number of natural
languages without ambiguity.

Functional algebra offers a formal method for refining the work begun in an informal
fashion with the development of Part 2 of SDTS. The SDTS model of entity types and
attributes is rigorously supported in algebraic specifications in the form of abstract data
types and observer functions. The example of the dam shows that relationships among
entity types can also be precisely modeled using functional algebra. In order to express
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the operation of a dam and its effects, one must include the related entity types
WATERCOURSE and LAKE as arguments to some of the functions of the dam.

Functional algebra goes beyond current entity-attribute-relationship models by specifying
the operations of entity types. Without this methodology, the behavior of such
phenomena as roads, dams, and watercourses can only be described through a natural-
language definition, or modeled through a specific computer program that accompanies
the data.

5.2 Discussion

Attributes are specified in terms of observer functions that are needed to describe the
operations of entity types and (or) the effects of these operations on other entity types.
The standard attributes defined in SDTS were obtained informally through an analogous
process: by determining which attributes were necessary to distinguish one standard
entity type from another, or to capture the nuance of meaning between a standard entity
type and an “included term.” Functional specifications offer the possibility of refining the
selection of attributes to include only those that are essential to understanding the
operations of entity types.

Functional specifications also offer an advantage for transfer of data across applications.
A given view of an entity type can be specified as a series of operations. For example, the
effects of raising the dam may be of interest to a hydrologist and also to an ecologist,
whereas its mere existence may be sufficient for the purposes of an airplane navigator.
Functional specifications cannot solve the problem that data collected for one purpose
may not meet other requirements, but at least they can help to clarify whether a problem
exists and why.

Perhaps the most significant contribution that functional algebra can make in the area of
exchange standards is to identify functionally equivalent entity types. If the signature of a
given entity type in one system matches, or is mathematically equivalent, to that of an
entity type in another system, these entity types are not only synonyms—in the sense of
natural language—but also they are, strictly speaking, interoperable. Thus, algebraic
specifications of entity types can be useful in overcoming cultural and linguistic barriers
to spatial data exchange.

Algebraic specifications also present some difficulties. Although fairly easy to use for
experienced programmers familiar with the method, they are not intuitively obvious to
the beginner. There are, for example, three possible kinds of statements that can be used
to specify abstract data types: a type statement, a data statement, or a class statement. The
arguments to functions appearing on the right hand side of an axiom must be also appear
on the left hand side, which in turn imposes a rigorous control over data type
specifications and the form of functional specifications. We were unable to find reference
materials written at a sufficiently high level to set forth the full power of functional
programming languages to specify complex geographic entity types and their behaviors.
The examples presented here only succeeded after many hours of trial and error. Better
reference materials are needed before this approach can be widely accepted as a basis for
feature definitions.
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5.3 Future Work

We envision perhaps a two-stage process in the future evolution of standards for entity
type definitions. Starting immediately, is it possible to review current standards and begin
to develop operational specifications to represent the meanings that are implicit in the
natural-language definitions of entities, attributes, and relationships. The systematic
thinking that is required to express these operations algebraically should lead to
immediate improvements in such areas as conciseness of definitions, selection of
attributes, and standardization of concepts of relationships among entity types. In the not-
too-distant future, perhaps these natural-language definitions will be completely replaced
by mathematical specifications which, in turn, can be translated as desired into any given
natural language.

Functional specifications can serve as a solid foundation for the future development of
feature-based geographic information systems (GIS) in an Open GIS environment.
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