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DATA-DRIVEN SPATIALLY DEPENDENT PDE IDENTIFICATION

Ruixian Liu, Michael J. Bianco, Peter Gerstoft, Bhaskar D. Rao

University of California, San Diego

ABSTRACT
We propose a data-driven partial differential equation (PDE) identi-
fication scheme based on ℓ1-norm minimization which can identify
spatially-dependent PDEs from measurements. Spatially-dependent
PDEs refers to that the terms in the PDEs vary across space. In real-
ity a physical system is often governed by spatially-dependent PDEs
because the properties of the medium can be various across space,
and the proposed method is the first data-driven spatially-dependent
PDEs identification scheme. In addition, our method is efficient ow-
ing to its non-iterative nature and efficient implementation by coor-
dinate descent.1

Index Terms— data-driven, ℓ1-norm minimization, lasso,
spatially-dependent PDEs, efficient identification

1. INTRODUCTION

Physical systems are often described by partial differential equations
(PDEs). Given the measurements U∈RNx×Mt at discrete spatial-
temporal coordinates of a physical system U(x, t), the properties of
the system are recovered by identifying its governing PDEs from the
measurements. Recently, there are many data-driven developments
focusing on identifying PDEs [1–11]. As detailed below, they have
two limitations: the requirement of assumed active PDE terms and
the incapability of recovering spatially-dependent parameters.

First, most papers assume an active PDE-term, as the 1st-order
time-derivative Ut [1–7], the 2nd-order time-derivative Utt [8], or
multiple PDE terms [9]. They then derive other active PDE terms
with coefficients (or learn behaviors contributed by other terms [7]).
Thus only parts of the PDE is inferred, this is problematic when the
assumed active term is not obvious. E.g., identifying the governing
PDE for a wave which can either be an inviscid Burgers’ equation
(Ut+UUx=0) or a non-attenuating wave equation (Utt−c2∇2U=
0) with no PDE terms in common. The two papers not requiring as-
sumed active terms use either sparse Bayesian learning (SBL) [10] or
cross-validation (CV) [11]. They both iteratively assume one active
term from a library of terms, identify the PDE for each assumption
using SBL [10] or sparsity penalized CV [11], and select the best
assumption by comparing the posterior confidence [10] or minimal
fitting error [11]. They are time consuming as the identification pro-
cess is repeated for every assumption.

Second, the PDEs governing the observed system can be
spatially-dependent. The properties in a system can vary spatially,
leading to a PDE with varying PDE coefficients across space. The
above methods [1–11] can only identify PDEs with spatially con-
stant terms. The current spatially dependent coefficients recovery
schemes are limited for a few specific PDEs [12, 13] and cannot
be used for PDE identification since they require the kind of PDE
known. We find no methods capable to identify unknown PDEs
which are potentially spatially-dependent.

1Codes available at: https://tinyurl.com/2p94zbfw

This paper aims at solving these two issues above. With no infor-
mation about the spatial distribution of the PDEs, we must identify
the PDE for every location. The challenges to tackle this include:
(a) fewer measurements available for one location compared to the
whole field; (b) longer CPU time because the process is repeated for
all locations. A viable method should be robust to identify the PDE
from limited measurements and be computational efficient.

We propose an ℓ1-norm minimization based data-driven method
that identifies unknown spatially-dependent PDEs without assuming
active terms. An auxiliary vector robustifies the identification from
limited measurements and enables the method to recover all active
PDE terms without iterative assumptions. If the PDE is spatially-
independent, our method can identify it faster than others since it
does not require repeated operations for various assumptions like
[10, 11] and has an efficient implementation scheme [14].

Notation: For the measurements U ∈ RNx×Mt , U(ix, it) is
U sampled at the coordinate (ix∆x, it∆t) of U , where 0 ≤ ix ≤
Nx − 1, 0 ≤ it ≤ Mt − 1, and ∆x,∆t are sampling intervals.
Sets Ix, It contain N spatial and M temporal coordinates within the
region of interest (ROI). Use n ∈ [1, N ] as the index of the elements
in Ix. The temporal coordinates in It are indexed by m ∈ [1,M ].
For any matrix A other than U, its entry A(i, j) is at ith row and
jth column where i ≥ 1, j ≥ 1. A(i, :) denotes the ith row, and
A(:, j) the jth column. For a vector a, its ith entry (i≥ 1) can be
denoted by either a(i) or ai. We start from spatially 1D case in the
theory and include a 2D example for experiments.

2. THEORY

Given measurements U∈RNx×Mt , we choose N spatial locations
with M time steps as the ROI, and identify the PDE for every spa-
tial point within it. Suppose we know a range of PDEs that poten-
tially govern the observed system, e.g., in this paper, we assume they
include the heat equation, the (attenuating) wave equation and its
variant WijngGaarden’s equation [15], the (viscous) Burgers’ equa-
tion with a non-linear term UUx, and the sine-Gordon equation with
a non-derivative term sin (U) [16]. They can model the widely-
existing heat diffusion process and various fluid dynamics.

Within the ROI, for the nth spatial location, use u ∈ RM to de-
note its measurements at all M time steps, i.e., from U(Ix(n), It(1))
to U(Ix(n), It(M)). We build a dictionary Φn containing all D=7
PDE terms potentially appearing in the PDEs mentioned above as:

Φn=
[

1
ut

2
utt

3
u ◦ ux

4
uxx

5
utx

6
uttxx

7
sin(u)

]
∈RM×D

(1)
where each term is an M -length vector evaluated at all the M
time steps and the derivatives are computed numerically by fi-
nite difference [17], e.g., the mth entry of ut is calculated by
[U(Ix(n), It(m) + 1) − U(Ix(n), It(m) − 1)]/(2∆t). The
◦ denotes element-wise production, e.g., the mth entry of u ◦
ux is U(Ix(n), It(m)) × {[U(Ix(n) + 1, It(m))−U(Ix(n)−
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1, It(m))]/(2∆x)}. Measurements outside the boundaries of the
ROI should exist so that the spatial derivatives for n= 1 or N and
the temporal derivatives for m=1 or M can be computed by finite
difference, which requires N<Nx−1 and M<Mt−1.

Originally, the problem can be formed as finding the coefficient
an = [an(1) . . . an(D)]T ∈ RD such that

Φnan ≈ 0, ∥an∥1 > 0 (2)

where ∥an∥1 > 0 is to avoid the trivial solution an = 0, and “≈”
is due to M > D (assumed) and the noise introduced by numerical
differentiation. To implement (2), we might consider finding an by

an = W−1
n ān s.t. ∥ΦnW

−1
n ān∥22 ≤ toln and ∥ān∥1 = 1

(3)
where the normalization matrix Wn ∈ RD×D is diagonal with
Wn(i, i)=∥Φn(:, i)∥2, ān=[ān(1) . . . ān(D)]T is the coefficient
corresponding to the normalized dictionary, and toln is the tolerance
of fitting error. However, ∥ān∥1=1 is not a convex set. To make (3)
solvable using convex optimization, we specify the positive/negative
signs in the ∥ān∥1 and thus reduce it to an affine constraint.

We incorporate physical information to reduce ∥ān∥1 = 1 to∑D
i=1 siān(i) = 1, where si ∈ {−1, 1} is determined by the

knowledge of the potential PDE forms, e.g., s1, s2 are the same since
coefficients for Ut and Utt are always of the same sign for the wave
equations we consider [15]. Although there are various PDEs we
consider, the relationship of the coefficient signs for the shared terms
among different PDEs do not conflict, e.g., the signs for Ut and Uxx

are always different for the heat equation, the viscous Burgers’ equa-
tion, or the attenuating wave equation (which indicates s1 and s4 are
opposite). Setting s1 = 1, we obtain s = [s1 . . . sD] ∈ RD for the
dictionary (1) that is consistent with all the potential PDEs as

s = [1, 1, 1,−1,−1,−1, 1]T (4)

and ∥ān∥1 = 1 is reduced to sTān = 1.
The terms in (1) are for all potential PDEs and the true governing

PDE is only consist of a few of them. So it is preferable for the
identified PDE to have as fewer active terms as possible under the
data fitting constraint. Thus we use the ℓ1-norm minimization to
find an due to its promotion of sparsity [18]:

Φ̄n = ΦnW
−1
n , Φ̄

s
n =

[
Φ̄n

sT

]
∈ R(M+1)×D (5a)

̂̄an = argmin ∥ān∥1 s.t. ∥Φ̄s
nān − e∥22 ≤ τn (5b)

ân = W−1
n ̂̄an (5c)

where all entries in e ∈ RM+1 are zero except e(M+1) = 1, τn >

∥Φ̄s
nΦ̄

s†
n e−e∥22 is a constant larger than the minimal fitting error (†

for pseudo-inverse). Φ̄n is normalized. The (5) enables identifying
all active PDE terms simultaneously, which is faster than first itera-
tively assuming one active term in the dictionary and finding others
to fit it, and then selecting the correct assumption as in [10, 11].

The physical information in the auxiliary vector s robustifies the
method on identifying PDEs from limited data, because it encour-
ages (5b) to select ān whose non-zero entries have the same signs
as their corresponding entries in s, and thus filter out the potential
combinations of columns in Φ̄n which are better fitted but mean-
ingless physically. To see this, suppose there are 2 vectors p,q ∈
RD satisfying Φ̄

s
np ≈ Φ̄

s
nq ≈ e, which indicates

∑D
i=1 sipi ≈∑D

i=1 siqi ≈ 1. If the signs of non-zero entries in p are the same
as corresponding entries in s, while for q one entry qi0 has the op-
posite sign of si0 resulting in si0qi0 < 0, then when

∑D
i=1 sipi

and
∑D

i=1 siqi are sufficiently close to 1, ∥q∥1 =
∑D

i=1 siqi −
2si0qi0 > 1 ≈

∑D
i=1 sipi = ∥p∥1.

We repeat (5) for every location in the ROI (in total N points),
and thus recover the physical properties described by spatially de-
pendent PDEs. To solve (5), a convex optimization tool is required.
But to our knowledge, there is no such tool that can support solving
(5) for all n in a short time when N is large. To accelerate it, we
solve (5b) using its Lagrangian (i.e., lasso [19]):̂̄an = argmin

ān

∥ān∥1 + λ(∥Φ̄s
nān − e∥22 − τn)

= argmin
ān

∥Φ̄s
nān − e∥22 + λn∥ān∥1 .

(6)

where λn=
1
λ
=0.2λ0 is chosen empirically with λ0=2∥Φ̄sT

n e∥∞=
2 the boundary parameter above which the output of (6) is 0 ac-
cording to the lasso path [20]. The advantage of (6) is that the
lasso objective can be efficiently solved by coordinate descent [14],
where a complete iteration of updating all D entries in ān costs
O((M + 1)D) operations, and the number of iterations to reach
convergence is often small. Our experiments show that a same ān

can be achieved by solving (6) at least 40x faster than by solving
(5b) via CVX [21].

The ān minimizing (6) may not be sparse enough due to the
noise from numerical computation. To further promote sparsity, we
threshold entries of ān using an adaptive threshold proportional to
∥ān∥∞, and use least squares regression to solve the coefficients
only in the T kept entries (denoted by ãn(Ω), where Ω with cardi-
nality T is the set of indices for the T kept non-zero entries) and
assign 0 to other entries. Thus (5c) is replaced by:

Ω = {∀i, |ān(i)| ≥ ϵ∥ān∥∞} (7a)

Φ̃
s
n = [Φn(:,Ω)

T s(Ω)]T ∈ R(M+1)×T , ̂̃an(Ω) = Φ̃
s†
n e (7b)

where the cut-off parameter ϵ = 10−4 is chosen empirically.
If we know in prior that the PDE to be identified is spatially-

independent, i.e., the an for ∀n are the same, we can identify the
PDE from measurements for all locations simultaneously to increase
the robustness of identification, instead of using the result for one
location as the PDE for the whole ROI. That is, build Φ̄

s
all as:

Φall = [ΦT
1 ΦT

2 . . . ΦT
N ]T ∈ RNM×D

Φ̄
s
all = [(ΦallW

−1
all )

T s]T ∈ R(NM+1)×D
(8)

where the normalization matrix Wall ∈ RD×D is diagonal with
Wall(i, i) = ∥Φall(:, i)∥2. Let eall ∈ RNM+1 be an all-zero vector
except its last entry being one, we solve the coefficient ā ∈ RD bŷ̄a = argmin

ā
∥Φ̄s

allā− eall∥22 + λall∥ā∥1 (9)

where λall = 0.2λ0 is chosen empirically with λ0 = 2∥Φ̄sT
alleall∥∞ =

2 the boundary parameter above which (9) will output 0. Finally,
the coefficients in the correct scale are obtained by implementing
(7) with ān, Φn, e replaced by ā, Φall and eall respectively.

3. NUMERICAL EXPERIMENTS

This part includes 1 spatially independent (which is not known in
prior) and 2 spatially dependent PDE identification experiments, and
an efficiency comparison between the proposed, the SBL based [10]
and the cross-validation based [11] methods for spatially indepen-
dent (known in prior) PDE identification. All datasets are generated
by finite difference modeling.

3384
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(a) (b)

Fig. 1: For the Burgers’ equation (10), (a) U with spatially inde-
pendent ν = 0.15, ∆x = 1 m, ∆t = 0.01 s. So 0 ≤ ix ≤ 120,
0 ≤ it ≤ 200. The ROI is {ix|40 ≤ ix ≤ 90} between the red lines
where obvious dynamics can be observed. (b) log10|ān(i)| where i
corresponds to the superscripts in (1) for all n = 1 . . . 51, magni-
tudes less than 10−5 are not shown.

3.1. Spatially-independent Burgers’ equation

The Burgers’ equation

Ut + UUx − νUxx = 0 (10)

is non-linear and can model the formation of shock waves, where
ν ≥ 0 is the viscosity being a constant for a same liquid.

A dataset U ∈ R121×201 with ∆t = 0.01 s and ∆x = 1 m
modeling the process governed by (10) where ν = 0.15 is generated
as Fig.1a. The initial state is a scaled normal distribution probability
density function (PDF), and as time goes by, the peak is tilting to the
positive direction of x-axis, which forms a shock.

We choose the spatial region where the dynamics can be easily
observed as the ROI, to be specific, choose Ix = {ix|40 ≤ ix ≤
90} which is bounded by the red lines in Fig.1a, so N = 51 and
n = 1 corresponds to ix = 40. We do not consider the temporal
boundaries where the derivatives are not well defined and thus use
It = {it|1 ≤ ix ≤ 199} for the ROI, i.e., M = 199.

Build Φ̄
s
n according to (1),(4) and (5a) for every 1 ≤ n ≤ N .

From (6), the coefficients are distributed as Fig.1b. After thresh-
olding, {ut,u ◦ ux,uxx} appearing in the Burgers’ equation are
selected for all locations in the ROI.

For every location, we build Φ̃
s
n and compute ãn as (7). The

coefficients for Ut and UUx are always nearly identical since∑N
n=1 |ãn(3) − ãn(1)| = 3.0 × 10−14. The estimated viscos-

ity is ν̂ = − ãn(4)
ãn(1)

, which equals to 0.15 for every n. This example
indicates the method can work when the PDE to be identified is in
fact spatially-independent but not known in prior.

3.2. Spatially-dependent heat equation

The heat equation is the PDE that models the diffusion of heat within
medium. The equation is

Ut − αUxx = 0 (11)

where α > 0 is the potentially spatially-dependent thermal diffusiv-
ity of the medium.

We generate a dataset U ∈ R101×2001 depicting the process of
the heat diffusion from 3 sources at the beginning time U(25, 0) =
U(50, 0) = U(75, 0) = 1000 and the boundaries for all the time
U(0, :) = U(100, :) = 1000 to other places with zero heat origi-
nally, as shown in Fig.2a with ∆x = 0.1 m and ∆t = 5 × 10−5 s.

(a) (b)

Fig. 2: For the heat equation (11), (a) log10(U) with spatially de-
pendent α, ∆x = 0.1 m, ∆t = 5 × 10−2 ms. So 0 ≤ ix ≤ 100,
0 ≤ it ≤ 2000. Magnitudes less than 10−4 are not shown. (b)
log10|ān(i)| where i corresponds to the superscripts in (1) for all
n = 1 . . . 97, magnitudes less than 10−5 are not shown.

Fig. 3: For the heat equation, the true α and the recovered α̂ in the
ROI. They are basically equivalent with RMSE = 1.4× 10−16.

We choose the ROI to be Ix = {ix|2 ≤ ix ≤ 98} so that the bound-
aries and their immediate neighboring locations influenced by them
when calculating derivatives by finite difference are excluded, and
choose It = {it|1 ≤ it ≤ 1999}, so N = 97, M = 1999 and
n = 1 corresponds to ix = 2. The diffusivity α is distributed as a
tanh function offset to positive values:

α(x) = 0.05 tanh (x− 50∆x) + 0.2, 0 ≤ x ≤ 100∆x. (12)

Build Φ̄
s
n according to (1),(4) and (5a) for every 1 ≤ n ≤ N .

From (6), the coefficients are distributed as Fig.2b. After thresh-
olding, {ut,uxx} appearing in the heat equation are selected for all
locations within the ROI.

For every location in the ROI, we build Φ̃
s
n and compute ãn as

(7), the diffusivity is recovered by α̂ = − ãn(4)
ãn(1)

, shown by the red
triangles in Fig.3. The recovery is nearly perfect with the root-mean-
square error RMSE = 1.4× 10−16.

3.3. 2D spatially-dependent wave equation

A 2D wavefield U ∈ R32×32×200 in which ∆x = ∆y = 0.1 m
and ∆t = 0.01 s describing waves excited by an initial perturbation
and propagating through various media is used for experiments. The
PDE governing it is the wave equation

Utt + αUt − c2∇2U = 0 (13)

where α ≥ 0 the attenuating factor, c > 0 the phase speed and ∇2

the Laplacian, i.e., Uxx + Uyy . The initial perturbation is shaped as
a scaled 2D normal distribution PDF, and the phase speeds 2 ≤ c ≤
3 m/s and attenuation α ∈ {0, 0.025, 0.05} are varying across the
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(a) (b)

Fig. 4: (a) The true attenuating factors α and phase speeds c for ix, iy
in [1, 30] (∆x=∆y=0.1m). Waves can not arrive the places where
either ix or iy being 0 or 31 because of the boundary condition. (b)
Number of identified active PDE terms within the ROI.

Fig. 5: The wavefield governed by (13) with spatially dependent c
and α at 3 selected time points. ∆x=∆y=0.1 m,∆t=0.01 s. So
ix, iy both ranged from 0 to 31.

domain as shown in Fig.4a. Some frames are shown in Fig.5. The
spatial boundaries are kept zero. We choose the ROI to be all the
spatial regions without the boundaries and its immediate neighboring
points (i.e., 2 ≤ ix ≤ 29, 2 ≤ iy ≤ 29) and the time steps 1 ≤ it ≤
198. So N = 282 = 784, M = 198 and n = 1 corresponds to
ix = iy = 2. The 2D locations within ROI are indexed from 1 to N
in the row-major manner.

For this 2D case, we extend the dictionary (1) and s (4) to

Φn = [
1
ut

2
utt

3
u ◦ ux

4
u ◦ uy

5
uxx

6
uyy

7
utx

8
uttxx

9
uty

10
uttyy

11
sin(u)]

s = [1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1]T .

(14)

Build dictionaries using (14) according to (5a), and from (6), the ā1

to āN are acquired as Fig.6(a). After thresholding, the kept non-zero
entries are indicated in Fig.6(b).

Comparing Fig.6(b) to (13), the method successfully identifies
the PDEs for all 784 locations. Fig.4b shows the number of iden-
tified active PDE terms for each location in the ROI, where the 3

(a) (b)

Fig. 6: For 2D wave equation, (a) log10|ān(i)| where i corresponds
to the superscripts of Φn in (14) for all n = 1 . . . 282; (b) the lo-
cations of their active entries after thresholding. The 2D 28 × 28
locations are indexed from 1 to 784 in the row-major manner, i.e.,
n = 1, . . . , 28 corresponds to ix = 2, . . . , 29 with iy = 2, and
n = 29, . . . , 56 corresponds to ix = 2, . . . , 29 with iy = 3, etc.

SBL [10] CV [11] Proposed
Burgers’ eq. 0.98 s 0.30 s 0.01 s
Heat eq. 15.87 s 0.51 s 0.02 s
Non-attenuating wave eq. 30.48 s 16.92 s 0.03 s
Attenuating wave eq. 30.16 s 16.74 s 0.03 s

Table 1: The average time used for 10 trials to correctly identify
spatially independent PDEs on 4 datasets using the SBL based (SBL)
[10], the cross-validation based (CV) [11] and the proposed method.
All tests are run on a same computer.

terms contain {utt,uxx,uyy}, and for 4 terms ut is also included.
Build Φ̃

s
n and compute ãn as (7), the coefficients for Uxx and Uyy

are nearly identical as
∑N

n=1 |ãn(5) − ãn(6)| = 3.4 × 10−15.

The recovered ĉ =
√

− ãn(5)+ãn(6)
2ãn(2)

and α̂ = ãn(1)
ãn(2)

, which are

nearly perfect as the RMSE = 5.1 × 10−15 for phase speeds and
9.9 × 10−15 for attenuating factors with respect to the ground truth
in Fig.4a across the whole ROI.

3.4. Compare efficiency: identify spatially independent PDEs

We use 4 datasets governed by spatially independent PDEs for effi-
ciency comparison between the proposed method and [10, 11] that
do not require assumed active term. One is the data used in Sec.3.1.
Three other datasets describe fields governed by: (a) heat equation
(11) with α= 0.2; (b) non-attenuating 2D wave equation (13) with
α = 0, c = 2.5 m/s; (c) attenuating 2D wave equation (13) with
α= 0.025, c = 2.5 m/s. All other settings (dataset size, sampling
interval, ROI, etc.) are the same as in Sec. 3.2 and 3.3. All experi-
ments are performed on one MacBook Pro.

For the SBL based method [10], the dictionary

Φ = [ΦT
1 ΦT

2 . . . ΦT
N ]T (15)

is built as required in [10]. It correctly identified the PDEs for all
cases. For the cross-validation based method, also use (15) as the
input and it successfully identified all PDEs. We implement each of
the methods 10 times, and record the average time used in Table.1.

For the proposed method, the PDEs are also correctly identified
from (8) and (9), and Table.1 shows the average time used for 10
implementations. Comparing the time spent, the proposed method
is significantly more efficient. This owes to its non-iterative nature
regarding to assumed active PDE terms and the efficient implemen-
tation of lasso (i.e., coordinate descent [14]).

4. CONCLUSION

We proposed an ℓ1-norm minimization based PDE identification
method that can identify spatially-dependent PDEs, and validated
it with multiple numerical experiments. The method can also iden-
tify spatially-independent PDEs without assumed active terms more
efficiently than previous developments.
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