UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Concept Learning as Coarse-to-Fine Probabilistic Program Induction

Permalink

https://escholarship.org/uc/item/52t1w32c

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Bowers, Maddy L Lew, Alexander Qi, Wenhao et al.

Publication Date

2024

Peer reviewed

Concept Learning as Coarse-to-Fine Probabilistic Program Induction

Maddy Bowers

MIT, Cambridge, Massachusetts, United States

Alexander Lew

MIT, Cambridge, Massachusetts, United States

Wenhao Qi

University of California, San Diego, La Jolla, California, United States

Joshua Rule

UC Berkeley, Berkeley, California, United States

Vikash Mansinghka

MIT, Cambridge, Massachusetts, United States

Josh Tenenbaum

MIT, Cambridge, Massachusetts, United States

Armando Solar-Lezama

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Abstract

Program induction is an appealing model for human concept learning, but faces scaling challenges in searching the massive space of programs. We propose a computational model capturing two key aspects of human concept learning – our ability to judge how promising a vague, partial hypothesis is, and our ability to gradually refine these vague explanations of observations to precise ones. We represent hypotheses as probabilistic programs with randomness in place of unresolved programmatic structure. To model the evaluation of partial hypotheses, we implement a novel algorithm for efficiently computing the likelihood that a probabilistic program produces the observations. With this, we guide a search process whereby high-entropy, coarse programs are iteratively refined to introduce deterministic structure. Preliminary synthesis results on list manipulation and formal grammar learning tasks show improvements in sample efficiency when leveraging likelihood guidance, and a preliminary human study explores how model intermediate hypotheses compare to those of participants.