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ABSTRACT OF THE DISSERTATION

On the Power of the Basic Algorithmic Design Paradigms

by

Sashka Tchameva Davis

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Russell Impagliazzo, Chair

This dissertation formalizes the intuitive notion of the basic algorithmic paradigms. We

present three formal models which aim to capture the intrinsic power of greedy, back-

tracking and dynamic programming algorithms. We develop lower bound techniques for

proving negative results for all algorithms in all models, which allow us to make strong

statements about the limitations of each paradigm.

[14] designed the Priority algorithms, a formal model of greedy algorithms for

scheduling problems. We generalized the priority model to arbitrary problem domain

and in particular graph problems and develop a lower bound technique for proving neg-

ative results for the class of all priority algorithms. We use the lower bound technique

to show that finding shortest path in graphs with negative weights cannot be solved by

a priority algorithm. We also prove that Dijkstra’s algorithm is inherently adaptive and

cannot be made non-adaptive. We show inapproximability results within the model for

minimum weighted vertex cover, minimum metric Steiner tree, and maximum indepen-

dent set problems. We develop a new 1.8-approximation scheme for the Steiner(1, 2)

x



problem.

[1] presented a model of backtracking and dynamic programming algorithms

called prioritized Branching Trees (pBT). We generalize their model to allow free branch-

ing and call this new model prioritized Free Branching Tree (pFBT) algorithms and de-

veloped a lower bound technique for proving negative results for randomized priority

algorithms, pBT and pFBT algorithms. We use the technique to prove that pBT algo-

rithms require exponential width to solve the 7-SAT problem and that pFBT algorithms

require width 2Ω(
√

n) to solve the 7-SAT problem.

Bellman-Ford is a classical dynamic programming algorithm and we show that

pBT algorithms require width of 2Ω(n1/9) to solve the shortest path problem in graphs

with negative weights exactly.

Next we develop a stronger model of dynamic programming algorithms called

prioritized Branching Programs (pBP). pBP algorithms can simulate pBT algorithms

at no additional cost but also capture the notion of memoization which we believe is

an essential part of the dynamic programming paradigm. We show that this class of

algorithms can solve the shortest paths in graphs with negative weights but no negative

cycles efficiently. We also show that two pBP sub-models can be simulated by pBT

algorithms.
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Chapter 1

Do We Need Formal Models of the

Algorithmic Paradigms?

In an algorithm design class, we are taught the basic algorithm paradigms such as

divide-and-conquer, greedy algorithms, backtracking and dynamic programming. The

paradigm is taught by an intuitive example together with a number of counter examples.

Intuitive formulations, while easy to understand, do not allow us to answer the following

natural questions. Suppose we have an optimization problem that we want to solve.

1. What algorithmic design paradigm can help? For example: Do we need dynamic

programming to solve single source shortest path in graphs with negative weights, or

can we solve the problem using some greedy strategy? Do we need flow algorithms to

find a maximal matching in bipartite graphs or can we use a simpler and more efficient

dynamic programming approach?

For example, greedy algorithms are typically simple and have efficient implementa-

tions. Hence, we would like to know whether we can find a greedy algorithm that solves

a given optimization problem. Suppose that, after much thought and effort we were un-

able to find a greedy solution for our problem. Then we would like to be able to make

a strong statement that no greedy algorithm exists that solves the problem exactly. To

do so, we need a formal model of greedy algorithms. Once we certify that our problem

1
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is hard for all greedy algorithms in the model, then we try the next “more powerful”

technique, e.g., a backtracking approach, or dynamic programming.

2. Is a given algorithm optimal? If we were lucky and found an algorithm for our prob-

lem using some algorithmic paradigm, then the next natural question to ask is whether

our solution is the most efficient solution within this class of algorithms. We could give

a precise answer to such a question if we are able to prove lower bounds on resources for

all algorithms that fit a given class (Note that the space of such algorithms is infinite).

After formalizing the algorithm class, if we prove a lower bound matching the resources

used by our algorithm then we have a certificate that our algorithm is optimal within

the paradigm and cannot be improved without radical change. Suppose we exhaust all

known algorithmic techniques and still have not been able to solve our problem, then

we face the next question.

3. How good an approximation scheme can we get? If we cannot solve our problem

exactly using the formalized approaches then we settle for approximation. The question

here is what algorithmic technique delivers the best approximation. And how do we

know that a given heuristic is really the best? We can certify a given approximation

scheme as optimal, similarly as in the case of exact algorithms, if we prove a match-

ing lower bound on the approximation ratio achievable by any other algorithm within a

given class.

Another aspect of this line of work is a general characterization of the power of

the different approaches to optimization. Intuitively greedy algorithms are efficient but

weak, and whatever problems we can solve using greedy algorithms we can solve using

say dynamic programming algorithms. But we would like to back this intuition with

strong formal reasoning, which is impossible as long as our definitions are intuitive and

our lower bounds hold for a single algorithm and not for an infinite class of algorithms.

To answer such questions, we need formal models that capture the intuitive no-

tion of a given paradigm, along with a technique for proving lower bounds on the re-

sources used by all algorithms that fit the given model. Not only can this formal ap-
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proach be used to answer the questions above but it can also help us first to better

understand the intrinsic structure or hardness of our problem, by knowing what algo-

rithmic paradigms can or cannot solve it. We also learn the strength and weaknesses of

the known algorithmic design techniques, which we measure by the kinds of problems

they can solve exactly or approximately, and the types of problems that are hard for the

technique. Third, by understanding the problems and the paradigms better, we improve

our skills as algorithm designers.

1.1 History

Four formal models of algorithmic paradigms have been developed so far. [14]

and [20] formalized the intuitive notion of greedy algorithms, [1] designed a formal

model for backtracking and dynamic programming, [16] generalized the model of [1]

and [17] defined a stronger model for dynamic programming algorithms.

1.1.1 Priority Model

Borodin, Nielsen, and Rackoff ([14]) gave a model of greedy-like algorithms for

scheduling problems and [7] extended their work to facility location and set cover prob-

lems. [14] built a formal model of greedy algorithms for scheduling problems, which

they called Priority algorithms. [20] generalized the Priority models to any problem

domain and instantiated it for graph optimization problems, e.g., shortest paths, vertex

cover, spanning trees, independent set, and minimum Steiner trees. Consider the Vertex

Cover problem. Within the framework of Priority algorithms an instance of the prob-

lems is given by a set of vertices of the graph. Each vertex is described by its name and

a list of the names of its neighbors. At each iteration a Priority algorithm chooses an

ordering of the remaining vertices of the graph. It then considers the first vertex in the

order and commits to a decision to add the vertex to the cover or reject it. The decision

whether to accept or reject a vertex is irrevocable and can only depend on the current



4

and previously considered vertices but not on future unseen vertices. The algorithm

halts when decisions for all vertices are made.

[20] generalized the lower bound technique of [14] by abstracting away the do-

main specific details and defined it as a combinatorial zero-sum game between two play-

ers, an Adversary and a Solver. A strategy for the Adversary in the game establishes a

lower bound on the resources needed by any Priority algorithm, while existence of a Pri-

ority algorithm can be used by the Solver player as a strategy in the game. Priority algo-

rithms were shown to be weaker than dynamic programming algorithms ([14, 20]), and

their power has been characterized by proving lower bounds for a variety of problems.

We would like to point out that Priority algorithms are a very general model of greedy

algorithms which captures the majority of the intuitively named greedy algorithms in

the literature, such as: Kruskal’s and Prim’s algorithms for minimum spanning trees,

Dijkstra’s single source shortest path algorithm, the known greedy 2-approximation of

weighted vertex cover problem, the greedy approximations for set cover problem, facil-

ity location, job and interval scheduling problems.

The Priority algorithm model resembles that of on-line algorithms. In both mod-

els, decisions affecting the output have to be made irreversibly based on partial infor-

mation about the input (See Sect. 2.1.1 for a discussion about Priority algorithms and

on-line algorithms). For this reason, the techniques used to prove bounds for Prior-

ity algorithms often are borrowed from the extensive literature on on-line algorithms

(See [13] for a good overview). However, where an on-line algorithm sees the parts

of its input1 in an adversarial order or one imposed by some real-world constraint such

as availability time, a Priority algorithm can specify the order in which inputs are ex-

amined. [14] considered two variants: FIXED Priority algorithms where this order is

independent of the instance and constant throughout the algorithm, and ADAPTIVE Pri-

1To clarify what we mean by “parts of the input”, consider the on-line vertex cover problem. An
on-line algorithm will see each vertex of the graph together with its adjacency list, one at a time, and
must decide whether to add the vertex to its solution or not. Hence, for this problem the “parts of the
input” refers to the vertices of the graph. For other graph problems the edges of the graph might be more
appropriate “part of the input”.
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ority where the algorithm can change the order of future parts based on the part of the

instance that it has seen (See Sect. 2.2 for precise definitions of Priority algorithms).

They also defined some sub-classes of “intuitive” Priority algorithms: GREEDY Prior-

ity algorithms which are restricted to make each decision in a locally optimal way2, and

MEMORYLESS adaptive Priority algorithms, which must base decisions only on the set

of previously accepted data items.

[14] proved many non-trivial upper and lower bound results for a variety of

scheduling problems (interval scheduling with unit, proportional, and arbitrary prof-

its; job scheduling; minimum makespan). They showed a separation between the class

of ADAPTIVE Priority algorithms and FIXED Priority algorithms, by proving a lower

bound of 3 on the approximation ratio achieved by any FIXED Priority algorithm for in-

terval scheduling on identical machines with proportional profit and observed an ADAP-

TIVE Priority algorithm with approximation ratio 2 for the same problem. For the inter-

val scheduling problem with proportional profit [14] proved that the Longest Processing

Time heuristics is optimal within the class of FIXED Priority algorithms. They also

proved a separation between the class of deterministic and randomized Priority algo-

rithms. The problem [14] considered is interval scheduling with arbitrary profits. They

showed a lower bound of ∆ (the ratio of the maximum to the minimum unit profit

among all intervals) on the approximation ratio achieved by any ADAPTIVE Priority

algorithm, for multiple and single machine configurations. However, if a FIXED Prior-

ity, not necessarily greedy, algorithm is given access to randomness, then it can achieve

an approximation ratio of O(log ∆).

Angelopoulos and Borodin ([7]) proved that no ADAPTIVE Priority algorithm

can achieve an approximation ratio better than lnn− ln lnn + Θ(1) for the set cover

problem. This bound is tight because the greedy set cover heuristic, classified as an

ADAPTIVE Priority algorithm, achieves the bound. [7] also considered the unrestricted
2In the context of scheduling problems a GREEDY Priority algorithm would schedule a job, if the job

does not violate the current schedule. In other words the “greediness” is a property of the decisions made
by the algorithm, not the ordering of the jobs.
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facility location problem, and proved a tight bound of Ω(log n) on the approximation

ratio achieved by any ADAPTIVE Priority algorithm, which is matched by the known

greedy heuristic for the problem. For the metric facility location problem, they were

able to show a tight bound of 3 on the approximation ratio achieved by FIXED Priority

algorithms and a lower bound of 1.463 on the approximation ratio achieved by any

MEMORYLESS or GREEDY Priority algorithm.

Borodin, Boyar and Larsen ([11]) proved a lower bound of 4
3

for the vertex cover

problem in the general Priority model, where a data item encodes a vertex name along

with the names of its neighbors. They also considered the independent set and vertex

coloring problems in more restrictive Priority models, for example, where the priority

function orders the vertices of the graph based on the degree of the vertex, excluding the

names of the vertices adjacent to it. With this restriction on the priority function they

proved stronger bounds on the approximation ratio achieved by such Priority algorithms.

Angelopoulos further studies two different extensions of Priority algorithms frame-

work. In [5] he defines randomized Priority algorithms and proves lower bounds on

the approximation ratio obtained by such algorithms for facility location and makespan

problems. In [6] the author defines a restricted model of Priority algorithms, and shows

lower bounds on the approximation ratio achieved by such algorithms for complete fa-

cility location and dominating set problems.

Papakonstantinou ([39]) studies the performance of different classes of Prior-

ity algorithms (MEMORYLESS, GREEDY, and FIXED Priority algorithms) for Job

Scheduling problems and defines a hierarchy of memoryless priority algorithms.

1.1.2 Prioritized Branching Trees

[1] defined a formal model for backtracking and dynamic programming algo-

rithms, called prioritized Branching Trees (pBT). A pBT algorithm like backtracking

and dynamic programming algorithms, maintains multiple solutions to subproblems and

each computation step extends an already existing solution. [1] defined a hierarchy of
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submodels based on the levels of adaptivity in how the algorithm chooses its ordering

rule: fixed, adaptive and fully adaptive pBT algorithms.

[1] were able to show a variety of non-trivial lower bounds. First they showed

that the ability to branch and maintain multiple solutions to a problem separates makes

them more powerful than the priority algorithms. [14] considered interval scheduling

with proportional profit on a single machine and proved no adaptive priority algorithm

can solve the problem and achieve an approximation ratio of 1
3

(this lower bound is

matched by the LPT, the longest processing time first, algorithm). [1] designed an

adaptive-order pBT algorithm of width 2 and showed that it achieves an approximation

ratio of 1/2.

[1] showed an exponential separation between the power of fixed and adaptive

pBT algorithms by proving that any fixed pBT algorithm requires exponential width

to solve a 2-SAT instance but adaptive pBT algorithms can solve 2-SAT using linear-

width. For the 3-SAT problem [1] showed that fully-adaptive pBT algorithms require

exponential width and exponential depth first size.

For the knapsack problem the standard approximation algorithm which either

accepts or rejected the highest profit item and then sorts items according to their unit

profit (profit to weight ratio) and takes them in this order if possible, can be seen as

a width 2 pBT algorithm. But [1] showed that priority algorithm cannot achieve an

approximation ratio better than n1/4. [1] also showed that any adaptive pBT will require

width
(

n/2
n/4

)

Ω(2n/2/
√
n) to solve the Subset-Sum problem exactly.

1.2 Techniques

The main techniques used to establish the results in this dissertation are competi-

tive analysis of online algorithms, the probabilistic method and the principle of deferred

decisions.

All formal models which we would discuss in this dissertation resemble on-line

algorithms in the sense that the algorithms examine the instance one piece at a time
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in the same way in which an online algorithm sees the input. Competitive analysis

and zero sum games have been applied to the analysis of priority algorithm, the formal

model of greedy algorithms. Good references for online algorithms and competitive

analysis include [13, 23].

For the analysis of prioritized Branching Tree, prioritized Free Branching Tree

algorithms we utilized many basic techniques from probabilistic method union bounds;

martingales; concentration inequalities; together with some basic counting techniques

from discrete mathematics. Good references regarding the probabilistic methods include

[4, 34, 36]. We also used the principle of deferred decisions to construct the input to

those algorithms in stages. [32] contains a good description of the method.



Chapter 2

Priority Algorithms

2.1 Why Study the Greedy Paradigm?

The greedy algorithm paradigm is one of the most important in algorithm de-

sign, because of its simplicity and efficiency. Greedy algorithms are used in at least

three ways: they provide exact algorithms for a variety of problems; they are frequently

the best approximation algorithms for hard optimization problems; and, due to their sim-

plicity, they are frequently used as heuristics for hard optimization problems even when

their approximation ratios are unknown or known to be poor in the worst-case. To cover

all the uses of greedy algorithms, from simple exact algorithms to unanalyzed heuris-

tics, one needs to study a cross-section of problems from the easiest (minimum spanning

tree) to the hardest (NP-complete problems with no known approximation algorithms).

While greedy algorithms are simple and intuitive, they are frequently deceptive.

It is often possible to generate many greedy algorithms for a problem, and one’s first

choice is often not the best algorithm. How do we know whether an algorithm is the best

possible within a given algorithmic paradigm? Here, “best” can mean “most efficient”,

or “the best possible approximation ratio”, or even “conceptually simplest”. To clarify

the last criterion, consider the minimum spanning tree problem. Kruskal’s algorithm for

minimum spanning tree is in some sense simpler than Prim’s algorithm, because it just

9
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scans through the edges in sorted order, rather than dynamically growing a tree. Hence

we could ask the question: can all greedy algorithms be conceptually simplified?

The priority model allows one to formally address all of these uses of greedy

algorithms and issues in design of greedy algorithm. One can use this model to:

1. Tell when a known but slightly complicated greedy algorithm cannot be simpli-

fied. This can be done by defining a sub-model of “simple” priority algorithms,

and showing that this subclass is weaker than the general priority model. (See

the definitions of FIXED and ADAPTIVE priority algorithms in Sect. 2.2 and

the separation results in Sect. 2.4.1).

2. Show that sometimes greedy approximation algorithms need to be counter-intuitive.

This can be done by defining a sub-model of “intuitive” priority algorithms, and

showing that this subclass is weaker than the general priority model. (See the

definition of MEMORYLESS priority algorithms in Sect. 2.5).

3. Formalize the intuition that greedy algorithms are weaker than some of the other

paradigms, by proving lower bounds for priority algorithms for problems with

known algorithms of a different paradigm.

4. Prove that the known greedy approximation algorithm for a problem cannot be

improved, by showing a matching lower bound for any priority algorithm.

5. Rule out the possibility of proving a reasonable approximation ratio for any

greedy algorithm for a hard problem. This is particularly interesting for prob-

lems where greedy algorithms are used as heuristics.

6. Use the intuition behind the lower bound proofs to deepen our understanding of

the intrinsic power and limitations of the algorithmic technique to design better

algorithms.
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2.1.1 What Is a Greedy Algorithm?

The term “greedy algorithm” has been applied to a wide variety of optimization

algorithms, from Dijkstra’s shortest path algorithm to Huffman’s coding algorithm. The

pseudo-code for the algorithms in question can appear quite dissimilar. There are few

high-level features common to most greedy algorithms, unlike say divide-and-conquer

algorithms that almost always have a certain recursive structure, or dynamic program-

ming algorithms, which almost always fill in a matrix of solutions to sub-problems.

What do these algorithms have in common, that they should all be placed in the same

category?

A standard undergraduate textbook by Neapolitan and Naimipour ([38]) de-

scribes the greedy approach as follows: a greedy algorithm “grabs data items in se-

quence, each time taking the one that is deemed ‘best’ according to some criterion,

without regard for the choices it has made before or will make in the future.” This

seems to us a fairly clear and concise informal working definition, except for the words

“without regard for the choices it has made before” which we think does not in fact

apply to most of the “canonical” greedy algorithms. (For example, a graph coloring

algorithm that assigns each node the first color not used by its neighbors seems to be

a typical greedy algorithm, but certainly bases its current choice on previously made

decisions.)

This is the sense of a greedy algorithm the priority model is meant to capture.

More precisely, a priority algorithm:

Definition 1. (Informal definition of PRIORITY algorithms)

A priority algorithm:

1. Views the instance as a set of “data items”.

2. Views the output as a set of “choices” (decisions) to be made, one per “data

item”.
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3. Defines a “criterion” for “best choices”, which orders data items. (Making this

formal leads to two models, FIXED vs. ADAPTIVE priority algorithms.)

4. In the order defined by this criterion, makes and commits itself to the choices for

the data items. Never reverses a choice once made (i.e., decisions are irrevoca-

ble).

5. In making the choice for the current data item, only considers the current and

previous data items, not later data items.

All but the third point are also true of on-line algorithms. The main difference

is that on-line algorithms have the order of choices imposed on them, whereas priority

algorithms can define this order in a helpful way. For example, an on-line algorithm

for the minimum cost spanning tree problem is given the edges of the graph, one at a

time, and must make a decision whether to add the edge to the solution or not. The

on-line algorithm has no control of the order in which the edges will appear. In contrast

a FIXED priority algorithm will choose the edge of the graph, say whose weight is

minimum (other priority functions are possible) and then will decide whether to add it

or not (continuing until all edges of the graph are considered). Many of the lower bound

techniques here, in [14], and in [7] are borrowed from the extensive on-line algorithm

literature.

Are the characteristics listed above the defining features of “greedy algorithms”?

Many of the known algorithms can be classified as priority algorithms (ADAPTIVE or

FIXED). For example, Prim’s and Kruskal’s algorithms for the minimum cost spanning

tree problem are classified as ADAPTIVE and FIXED priority1 algorithms, respectively.

Dijkstra’s single source shortest path algorithm also can be seen to fit the ADAPTIVE

priority model. The known greedy approximation [30] for the weighted vertex cover

problem (WVC) can be classified as an ADAPTIVE priority algorithm. The greedy
1For examples of a formalization of specific greedy algorithms in the framework of priority algorithms

see Adaptive Contract algorithm described in Sect.2.4.3 and formalized in Appendix A; and also the
Adaptive WIS algorithm described in Sect. 2.5.2.
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approximation for the independent set problem [25] also fits our model. As noted in [7],

the best known greedy approximation algorithm for the set cover problem also fits the

framework of priority algorithms, and similarly the greedy algorithms for the facility

location in arbitrary and metric spaces have priority models.

Although Matroids and Greedoids provide theoretical foundation about greedy

algorithms our current work goes beyond the greedy algorithms on Matroids. For ex-

ample, the activity selection problem ([19]) and the problem of finding single source

shortest paths in graphs with non-negative weights, to name a few, have greedy algo-

rithms which are not covered by the theory of Matroids, yet they fit the framework of

ADAPTIVE priority algorithms. Also the greedy algorithm on Matroids seem to fit the

framework of FIXED priority algorithms and we show later (see Sect. 2.4.1, Theo-

rem 4) that the class of FIXED priority algorithms is properly contained in the class of

ADAPTIVE priority algorithms.

However, the term “greedy algorithm” is used in at least one other sense which

the priority model is not meant to capture. A hill-climbing algorithm that uses the

“steepest ascent” rule, looking for the local change that leads to the largest improve-

ment in the solution, is frequently called a “greedy hill-climbing” or simply “greedy”

algorithm. The Dijkstra heuristic for Ford-Fulkerson, which finds the largest capacity

augmenting path during each iteration, is “greedy” in this sense. As far as we can tell,

there is no real connection between this sense of greedy algorithm and the one defined

above. We make no claims that any of our results apply to steepest ascent algorithms,

or any other classes of algorithms that are intuitively “greedy” but do not fit the above

description2.
2While there are a few uses of the phrase “greedy algorithm” that do not seem to fit the priority model,

this seems more a matter of the inherent ambiguity of natural language than a weakness in the model. A
useful scientific taxonomy will not always classify things according to common usage; e.g., a shellfish
is not a fish. There will also always be borderline objects that are hard to classify, e.g., is a marsupial
a mammal? We should not be overly concerned if a few intuitively greedy algorithms go beyond the
restrictions of the priority model and require global information about the instance. However, this will be
motivation to try to extend the model in future work.
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2.2 Priority Models

To make Definition 1 precise, we need to specify a few components: What is

a decision? What choices are available for each decision? What is the “data item”

corresponding to a decision? What is a criterion for ordering decisions? The answers

to these questions will be problem-specific, and there may be multiple ways to answer

them even for the same problem. In this section, we give a format for specifying the

answers to these questions, leaving parameters to be specified later to model different

problems.

The general type of problem we are discussing is a combinatorial optimization

problem. Such a problem is given by an instance format, a solution format, a constraint

(a relation between instances and solutions), and an objective function (of instance and

solution, giving a real number value). The problem is, given the instance, among the so-

lutions meeting the constraint, find the one that maximizes (or minimizes) the objective

function.

We want to view an instance as a set of data items, where a solution makes one

decision per data item. Let Γ denote the type of a data item; thus an instance is a set of

items of type Γ, I ⊆ Γ. (We are not necessarily assuming that every subset of data items

constitutes a valid instance. For scheduling problems any sequence of jobs is a valid

instance. Instances of graph problems have more structure, which prevents some sets of

data items from being valid graphs. We also frequently want to restrict to instances with

some global structure, e.g., metric spaces or directed graphs with no negative cycles.)

The solution format will assign each γ ∈ I a decision σ from a set of options Σ, so a

solution is a set of the form {(γi, σi)|γi ∈ I}.
For example, for k-colorings of graphs on up to n nodes, we need to assign col-

ors to nodes. So Γ should correspond to the information available about a node when

the algorithm has to color it, and Σ = {1, . . . , k} are the k colors. Γ is not uniquely

defined, but a natural choice, and the one we will consider here, is to let the algorithm

see the name and adjacency list for v when considering what to color v. Then the
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data item corresponding to a node is the name of the node and the adjacency list of

a node, i.e., Γ would be the set of pairs, (NodeName,AdjList), where a NodeName

is an integer from {1, . . . , n}; AdjList is a list of NodeNames. We then view G as

being given in adjacency list format: G is presented as the set of nodes v, each with

its adjacency list AdjList(v)3. More generally, a node model is the case when the

instance is a (directed or undirected) graph G, possibly with labels or weights on the

nodes, and data items correspond to nodes. Here, Γ is the set of pairs or triples con-

sisting of possible node name, node weight, or label (if appropriate4), and a list of

neighbors. For example when the instance is a weighted graph then the data item is

a triple (NodeName,NodeWeight ,AdjList). Σ varies from problem to problem; often,

a solution is a subset of the nodes, corresponding to Σ = {accept, reject}.
Alternatively, in an edge model, the data items requiring a decision are the edges

of a graph. In an edge model, Γ is the set of (up to) 5-tuples with two node names, node

labels or weights, and an edge label or weight (as appropriate to the problem). In an edge

model, the graph is represented as the set of all of its edges. Again, the options Σ are

determined by the problem, with Σ = {accept, reject} when a solution is a subgraph.

As another example, [14] consider scheduling problems, where jobs are to be

scheduled on p identical machines. Here, we have to decide whether to schedule a job,

and if so, on which machine and at what starting time. So Σ = {(mi, t)|1 ≤ i ≤
p, t ∈ R} ∪ {Not scheduled}. They allow the algorithm to see all information about

a job when scheduling it. A data item is represented by (ai, di, ti, wi), where ai is the

arrival time of job i, di its deadline, ti its processing time, and wi its weight. Thus,

Γ = {(a, d, t, w)|a < d, t ≤ d− a, w ≥ 0}.
3As mentioned before, not all sets of data items will code graphs. To actually code an undirected

graph, a set of data items has to have distinct node names, and have the property that, if x ∈ AdjList(y)
then also y ∈ AdjList(x).

4The presence of a label in the data item, depends on the particular graph problem. For the vertex
cover and independent set problems labels are not needed. However, labels might be useful in encoding
additional information. For example, if instances are k-partite graphs, the label might encode which partite
set a vertex is a member of. For some network optimization problems each node of the network might
have a different “label”, depending on whether the node is an end-host, or AS router, or a Backbone router.
For the Steiner tree problem the vertices of the graph are partitioned into two sets, Steiner and required
nodes, and labels will be needed to identify whether the node is a Steiner or a required node.
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In fact, we can put pretty much any search or optimization problem in the above

framework. Any solution S to an instance I can be described as an array of elements

from Σ indexed by some set D(I), S ∈ ΣD(I). Assume we give the algorithm access

to the information LocalInfo(d, I) when picking the value of coordinate d ∈ D(I).

Then we can set Γ = {(d,LocalInfo(d, I)) | d ∈ D(I), I is a valid instance}. Since

the union of all LocalInfo is all we are given to solve the problem, we can view I as

{(d,LocalInfo(d, I)) | d ∈ D(I)}.
As in [14], we distinguish between algorithms that order their data items at the

beginning, and those that reorder them at each iteration. A FIXED priority algorithm

orders the data items at the beginning, and proceeds according to that order. The format

for a FIXED priority algorithm is as follows:

FIXED PRIORITY ALGORITHM

Input: instance I ⊆ Γ, I = {γ1, . . . , γn}
Output: solution S = {(γi, σi)|i = 1, . . . , n}

1. Initialize an empty partial instance, solution and a counter: PI ← ∅;S ← ∅;
t← 1

2. Determine a criterion for ordering data items5 π : Γ→ R+ ∪ {∞}

3. Order I according to π(γi), from smallest to largest

4. Repeat

• Go through the data items γi in order

• (a) In step t, observe the t’th data item according to π, let that be γit

(b) Make an irrevocable decision σit∈Σ, based only on currently observed

data items (i.e., the t smallest under the priority function π)
5We could instead use a more general notion, where π is a total ordering of Γ, or use a function

π : Γ→ Rl, for some fixed l. Because we use only finite sets of instances in our lower bounds, all of our
lower bounds also hold for this more general class. Our upper bounds use orderings based on real-valued
priority functions as given here.
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(c) Update the partial solution: S←S ∪ {(γit, σit)}

• Increment counter t← t+1; Go on to the next data item γit+1

Until (decisions are made for all data items)

5. Output S = {(γi, σi)|1 ≤ i ≤ n}.

ADAPTIVE priority algorithms, on the other hand, have the power to reorder the re-

maining decision items during the execution, and clearly can simulate the simpler FIXED

priority algorithms.

ADAPTIVE PRIORITY ALGORITHM

Input: instance I ⊆ Γ, I = {γ1, . . . , γn}
Output: solution vector S = {(γi, σi)|1 ≤ i ≤ n}

1. Initialize the set of unseen data points U to I , an empty partial instance PI and

solution S, and a counter t to 1: U ← I, P I ← ∅, S ← ∅, t← 1

2. Repeat

• Based only on the previously observed data items PI , determine an order-

ing function

πt : Γ→ R+ ∪ {∞}

• Order γ ∈ U according to πt(γ)

• Observe the first unseen data item γt ∈ U according to the order; and add

it to the partial instance, PI ← PI ∪ {γt}

• Based only on PI , S, and γt, make an irrevocable decision σt and add

(γt, σt) to the partial solution S, S ← S ∪ {(γt, σt)}

• Remove the processed data point γt from U , and increment t

Until (decisions are made for all data items, U = ∅)

3. Output S
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The current decision made depends in an arbitrary way on the data points seen so far.

The algorithm also has an implicit knowledge about the unseen data points: no unseen

point has a smaller value of the priority function πt than γt.

[14] also define two other restricted models: GREEDY and MEMORYLESS

priority algorithms. They define a GREEDY priority algorithm as follows: “A greedy

algorithm makes its irrevocable decision so that the objective function is optimized as

if the input currently being considered is the final input.” MEMORYLESS priority al-

gorithms were also defined for facility location and set cover problems in [7]. In the

context of scheduling problems, where any set of jobs constitutes a valid instance, a

GREEDY priority algorithm would schedule a job provided the job does not conflict

with the current schedule. This concept of GREEDY algorithms does not seem to be

well-defined for arbitrary priority models, in particular graph models, where not every

set of data items constitutes a valid instance. Note that, when a priority algorithm for a

scheduling problem has observed a partial instance, the algorithm learns nothing about

the remaining instance, except that the jobs have priorities higher than the ones already

observed. This is not the case for priority algorithms for graph problems. In the latter

case a priority algorithm would know that some data items are not present in the re-

maining instance. For example consider priority algorithms for graph coloring in the

node model. If the algorithm has observed one node, let that be a with its adjacency

list, denote it as adj(a), then the algorithm knows that every valid instance has to be

consistent with the current partial instance, and hence must have node a present in the

adjacency list of each node in adj(a). [11] and [6] study GREEDY priority algorithms

and prove lower bounds on approximation ratio achieved by such algorithms for various

optimization problems.

We formalize the notion of MEMORYLESS algorithms in Sect. 2.5 and show

a separation between the class of MEMORYLESS algorithms and ADAPTIVE priority

algorithms.
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2.3 A General Lower Bound Technique

In this section, we give a characterization of the best approximation ratio achiev-

able by a (deterministic) ADAPTIVE priority algorithm, in terms of a combinatorial

game. The techniques used in this section are borrowed from competitive analysis of

on-line algorithms and can be viewed as a completeness theorem for the style of lower

bound results used in [14].

Let Π be a maximization problem, with objective function µ. Let Σ, and Γ be a

priority model for Π. Let T be a finite collection of instances of Π. The ADAPTIVE

priority game for T and a fixed ratio ρ≥1 between two players a Solver and an Adver-

sary is as follows:

Adaptive Priority Game (Solver, Adversary, ratio ρ):

1. Initialize an empty partial instance PI and a partial solution PS . The Adversary

picks any subset Γ1 ⊆ Γ

2. Repeat until (Γt = ∅)
begin; (Round t)

(a) The Solver picks γt ∈ Γt, and σt ∈ Σ

(b) γt is added to PI , and deleted from Γt. (γt, σt) is added to PS

(c) The Adversary replaces Γt with a subset Γt+1 ⊆ Γt

end; (Round t)

3. In the endgame, the Adversary presents a solution S for PI

4. The Solver wins if one of the following three events occurs

• if PI 6∈ T

• PI ∈ T , but S is not a valid solution
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• PI ∈ T , and S and PS are valid solutions to PI , and µ(S)
µ(PS )

≤ ρ (when Π

is a maximization problem6)

Otherwise the Adversary wins.

Lemma 1. There is a winning strategy for the Solver in the Adaptive Priority game if

and only if there is an ADAPTIVE priority algorithm that achieves an approximation

ratio of ρ on every instance of Π in T .

Note that the Lemma does not trivially hold. There is a difference between the

actions of the Solver in the adaptive combinatorial game and the structure of an adaptive

priority algorithm. At each round the Solver selects a data item from a finite set, and

makes a decision for it. In contrast the priority algorithm has to define an ordering on

all data items, without looking at the instance, and then has to make a decision for the

data item with highest priority value. Hence the algorithm cannot directly act as the

Adversary in the adaptive priority game.

Also note that existence of a priority algorithm for a problem Π does not trans-

late to existence of an efficient algorithm. The reason is that we do not place com-

plexity restrictions on the priority functions used by the priority algorithm to order the

data items. The only restriction applied to the priority function πt used during the t-

th iteration of an ADAPTIVE priority algorithm is information theoretic. Observe that

πt : Γ → R+ ∪ {∞}, as defined, can only depend on the previously observed data

items PI but not on future items. The priority function does not have to be polynomi-

ally time computable function or FNP, in fact it could be any non-computable function,

obeying the information-theoretic restrictions imposed by the model. However, in all

upper bounds here, the algorithm is also polynomial-time and usually near linear-time.

Furthermore the lower bounds results in this paper hold against any algorithm using a

priority function with the imposed information-theoretic restrictions.

• Assume there is an ADAPTIVE priority algorithm achieving approximation ratio

6When Π is a minimization problem the ratio is µ(PS)
µ(S) ≤ ρ.
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ρ on all instances of T.

The Solver uses the following strategy. The strategy maintains the invariant

that after the first t rounds of the game, on any instance I ∈ T with PI ⊆
I and I − PI ⊆ Γt+1, the first t data items seen and decisions made by the

priority algorithm are equal to the moves γ1, . . . , γt and σ1, . . . , σt for the Solver

player in the game, and so that there is at least one such I . In round t + 1, the

Solver simulates the priority algorithm on the partial instance PI , and obtains

an ordering πt+1 of Γt+1. She chooses the first element under πt+1, γt+1, as her

move, and simulates the algorithm on the additional data item γt+1 to get the

corresponding decision σt+1. The Adversary chooses Γt+2 ⊆ Γt+1, so for any

I with PI ∪ γt+1 ⊆ I and I − PI − γt+1 ⊆ Γt+2, the first t seen data items

will be γ1, . . . , γt by the induction hypothesis, and the πt+1-first unseen one at

step t+1 will be γt+1, so the algorithm will view γt+1 next, and by definition of

the strategy, choose σt+1 as the decision. So the invariant is maintained until the

endgame. In the endgame, the Adversary presents a solution S, and the Solver

will output a solution PS. Since the algorithm achieves an approximation ratio

ρ, then ρ · µ(PS) ≥ µ(S).

• For the converse, assume that the Solver has a winning strategy for the the game

for an approximation ratio ρ. We describe an ADAPTIVE priority algorithm

that ensures approximation ratio ρ on all instances in T .

Let I ∈ T be the input. We maintain the invariant that there is a game position

so that the first t items seen by our algorithm on I are from the first t moves of

the Solver; and the first t decisions are from the first t moves of the Solver, and

I − PI ⊆ Γt. For the t+1’st iteration the algorithm now orders the possible

data items in Γt as follows: It considers the above run of the game. It then sets

the next move Γt+1 = ∆1 of the Adversary to be the set ∆1 of all data items

γ ∈ Γt − γt so that there is some I ′ ∈ T with PI ∪ {γt} ⊆ I ′, I ′ − PI ⊆ Γt

and γ ∈ I ′. (Since I is such an I ′, we know I − PI − γt ⊆ ∆1.) Let δi be the
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Solver’s data item response to the Adversary choosing Γt+i = ∆i. Then let ∆i+1

be the subset of ∆i of all data items γ ∈ ∆i − δi so that there is some I ′ ∈ T
with PI ∪ {γt} ⊆ I ′, I ′ − PI − γt ⊆ ∆i − δi and γ ∈ I ′. Repeat until ∆i is

empty. Let j be the maximal j ′ so that I − PI − γt ⊆ ∆j′ . Since the condition

is true for j ′ = 1, such a j must exist.

The algorithm uses the priority function πt+1 that gives δj priority j, and all other

elements of Γ infinite priority. We claim the next data item the algorithm views

is δj . Since I − PI − γt ⊆ ∆j , no smaller priority δj′ can be in U . On the other

hand, if δj 6∈ U , U ⊆ ∆j − δj so all elements of U are in ∆j+1, which would

contradict maximality. The algorithm then simulates the move in the previous

round of the Adversary setting Γt+1 = ∆j . By definition, the Solver responds

with γt+1 = δj , the same data item as the algorithm, and same decision σt+1.

The algorithm uses σt+1 as its next decision, maintaining the invariant.

When U is empty, the algorithm outputs the solution. To see that this is within ρ

of optimal, simulate the Adversary moving to the endgame, and choosing I and

an optimal solution S ′ for I as its endgame moves. The Solver must respond with

a solution S extending PS; but, since we’ve seen the entire output, S = PS, so

the Solver is forced to provide the same output as our algorithm. Since the Solver

wins the game for the fixed ratio ρ, then µ(S′)
µ(S)
≤ ρ, so our algorithm achieves an

approximation ratio of ρ.

Corollary 2. If there is a strategy for the Adversary, in the game defined above, that

guarantees a payoff of at most ρ, then there is no ADAPTIVE priority algorithm that

achieves an approximation ratio better than ρ.

We can similarly characterize the FIXED priority model by replacing steps 1 and

2(a) as follows. The rest of the game is the same.

1′ Initialize an empty partial instance PI and a partial solution PS . The Solver picks a

total ordering < on Γ. The Adversary picks any subset Γ1 ⊆ Γ.
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2(a)′ Let γt ∈ Γt be the <-first element of Γt. The Solver picks σt ∈ Σ.

Lemma 3. There is a winning strategy for the Solver in the game if and only if there is

a FIXED priority algorithm that achieves an approximation ratio ρ on every instance of

Π in T .

2.4 Results for Graph Problems

In this section we present our results for FIXED and ADAPTIVE priority al-

gorithms. The proofs of lower bounds here and in Sect. 2.5 resemble derivation of

integrality gaps for given LP formulation, in that easy instances are used to establish

bounds on the approximation ratio (See [48] for examples). Our results are used to eval-

uate the power and weaknesses of the priority algorithms framework and not to establish

hardness of approximation results for the particular problem in general.

2.4.1 Shortest Paths

FIXED priority algorithms are simpler and ADAPTIVE priority algorithms can

simulate them. We want to show that the two priority models ADAPTIVE and FIXED,

are not equivalent in power. We define the following graph optimization problem.

Definition 2 (SHORTEST PATH PROBLEM). Given a directed graphG=(V,G) and two

nodes s ∈ V and t ∈ V , find a directed tree of edges, rooted at s. The objective function

is to minimize the combined weight of the edges on the path from s to t.

We consider the SHORTEST PATH problem in the edge model. The edge model

is natural for graph problems where the solution is a path or a tree, because the solution

labels the edges, either in or out. Furthermore, the standard algorithm for this problem

(Dijkstra’s) is a priority algorithm, in the edge model. A minor point is that, if we

consider the problem in the edge model, then we could define the problem for multi-

graph instances.
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The data items are the edges in the graph, represented as a triple (u, v, w),

where the edge goes from u to v and has a weight w. The set of options is Σ =

{accept, reject}. A valid instance of the problem is a graph, represented as a set of

edges, in which there is at least one path from node s to t. An alternative definition of

the SHORTEST PATH problem would insist on the edges selected to form a path, rather

than a tree. However, most standard algorithms construct a single source shortest paths

tree, rather than a single path. In fact, not only is constructing a tree a more general ver-

sion of the problem; it is not difficult to show that no priority algorithm can guarantee a

path. (A brief justification why no priority algorithm can guarantee a path is given in a

paragraph, after the end of the proof of Theorem 4.)

The well-known Dijkstra algorithm, which belongs to the class of ADAPTIVE

priority algorithms, solves this problem exactly.

Theorem 4. No FIXED priority algorithm can solve the SHORTEST PATH problem with

any constant approximation ratio ρ.

Proof: We show an Adversary strategy for the FIXED priority game for any ρ.

Let k ≥ 2ρ. Let T be the set of directed graphs on four vertices s, t, a, b with edge

weights either k or 1, so that t is reachable from s. The Adversary selects the set Γ1,

as shown on Figure 2.1. For example, u stands for the edge from s to a, with weight

k. Note that the parallel edges in the figure are just possible data items; the instance

graph will be guaranteed to be a simple graph. The next move is by the Solver. She

must assign distinct priorities to all edges, prior to making any decisions, and this order

cannot change. Thus one of the edges y and z must appear first in the order. Since the set

of data items is symmetrical, we assume, without loss of generality, that y appears before

z in this order. The Adversary then removes edges v and w, restricting the remaining set

of data items to Γ2 = {x, y, z, u}. The Adversary’s strategy is to wait until the Solver

considers edge y before deleting any other items, and applies the following strategy after

he observes Solver’s decision on y:

1. If the Solver decides to reject y, then the Adversary removes z from the remain-
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s

z(1)

u(k)
y(1)

x(1)

v(1)

w(k)

t

a

b

Figure 2.1: Adversary selects Γ1 = {x, y, z, u, v, w}.

ing set of data items. The Adversary does not subsequently remove any other

data items. Thus, the instance will be I = {v, x, y}. The Adversary outputs a

solution S = {y, v}, while the Solver’s solution PS ⊆ {v, x} cannot contain

any path from s to t.

2. If the Solver decides to accept y, then the Adversary never deletes any data

items, making I={u, x, y, z}. In the end game, the Adversary presents solution

S = {x, z}, with cost 2. If the Solver picks edge z, then the Solver failed to

satisfy the solution constraints, since no sub-graph with both y and z can be a

directed rooted tree. Otherwise, PS ⊆ {u, x, y} and thus the cost of the Solver

is at least k+1. The approximation ratio is: k+1
2
> ρ, so the Solver loses.

2

Note that almost the same Adversary strategy can force any priority algorithm to fail to

produce a solution which is a simple path. The Adversary presents Γ1 = {x, z, v, y}.
If the algorithm accepts v, then the Adversary presents Γ2 = {x, z}. If v was rejected

then the Adversary presents Γ2 = {y}. Either way the Solver will fail to output a valid

solution. The other cases are symmetric.

We conclude that the two classes of algorithms FIXED and ADAPTIVE priority

are not equivalent in power. Dijkstra’s algorithm can solve the above problem exactly

and belongs to the class of ADAPTIVE priority algorithms.

Dijkstra’s algorithm, however, does not work on graphs with negative weight
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edges. Is dynamic programming necessary for this problem? Perhaps there exists an

ADAPTIVE priority algorithm which can solve the Single Source Shortest Paths prob-

lem on graphs with negative weight edges, but no negative weight cycles?

Theorem 5. No ADAPTIVE priority algorithm can solve the SHORTEST PATH problem

for graphs with weight function we : (E) → R, allowing negative weights, but no

negative weight cycles.

Proof. We view the problem in the edge model. The Adversary chooses Γ1 to be the set

of directed edges shown on Figure 2.2 and k > ρ. Although the set Γ1 defines a graph

with a negative weight cycle, the final instances T are subgraphs of the graph shown in

Figure 2.2, with a path from s to t, and no negative weight cycle. The set of decision

options is Σ = {accepted, rejected}. We will refer to the edge from v to u of weight

−k as d(−k), or just d, for short. The Adversary and the Solver play the combinatorial

s
b(1)

c(-k) d(-k)

e(k)

f(k
)

t

v

u

a(
1)

Figure 2.2: The set of edges initially selected by the Adversary Γ1={a, b, c, d, e, f}

game defined in Sect. 2.3. The Adversary observes the first data item selected and the

decision committed by the Solver and uses the following strategy.

1. The first data item chosen by the Solver is a.

• If the Solver decides to accept a, then the Adversary presents the instance

I = {a, b, c, e, f}
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and a solution Sadv = {b, c, e} of cost 1. The Solver is forced to either

take Ssol = {a, b, e} or Ssol = {a, b, f} and loses the game because the

approximation ratio is µ(Ssol)
µ(Sadv)

= k+1
1
> ρ.

• If the Solver decides to reject a, then the Adversary presents the instance

I = {a, e} and a solution Sadv = {a, e}, while the Solver would fail to

construct a path and hence loses the game.

2. The first data item chosen by the Solver is c.

• If the Solver decides to accept c, then the Adversary presents the instance

I = {a, c, e} and a solution Sadv = {a, e} and wins the game, because the

Solver would fail to construct a rooted tree.

• If the Solver decides to reject c, then the Adversary presents the instance

I = {a, b, c, e} and a Sadv = {b, c, e} of cost 1. The only solution left for

the Solver is Ssol = {a, e} of cost k+ 1; so she loses the game because the

approximation ratio is µ(Ssol)
µ(Sadv)

= k+1
1
> ρ.

3. The first data item chosen by the Solver is e.

• If the Solver decides to accept e, then the Adversary wins the game be-

cause, he presents the instance I = {b, e, f} and a solution Sadv = {b, f},
while the Solver would fail to construct a rooted tree.

• If the Solver decides to reject e, then the Adversary presents the instance

I = {a, e} and a solution Sadv = {a, e}, while the Solver failed to construct

a rooted tree, and hence lost the game.

The cases when the Solver considers edges b, d, or f first, have the same analysis as the

cases already discussed and will be omitted. The Adversary can set k arbitrarily large,

thus he can win the game for any approximation ratio ρ.
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This result shows a separation between priority algorithms and dynamic pro-

gramming algorithms for shortest path problems. A similar separation was shown by

[14] for interval scheduling on a single machine with arbitrary profits.

2.4.2 The Weighted Vertex Cover Problem

In this section we examine the performance of ADAPTIVE priority algorithms

on the weighted vertex cover problem (WVC). An instance of the problem is a graph

G = (V,E) with a positive weight function w on the set of vertices w : V → R+.

The problem is to find a subset of the vertices C ⊆ V subject to the constraints that if

(u, v) ∈ E, then either u ∈ C, or v ∈ C. The objective is to minimize the combined

weight of the vertices in the cover set C,
∑

u∈C w(u).

WVC is an NP-hard problem and unless P =NP , no polynomial time algorithm

can approximate it with ratio better than 1.3606,[22]. The well known 2-approximation

algorithm [30], fits our ADAPTIVE priority model, and we show that no ADAPTIVE

priority algorithm can achieve an approximation ratio better than 2. On the other hand no

algorithm is known (greedy or otherwise) to achieve an approximation ratio better than

2 for the weighted vertex cover problem in arbitrary graphs. For graphs with bounded

degree, using semidefinite programming relaxation [26] achieves an approximation ratio

of 2− 2 ln ln ∆
ln ∆

, where ∆ is the maximum degree of the graph.

Next we define the notion of an unseen node which we use in the lower bound

proofs in the remaining sections of the paper.

Definition 3. (unseen node) Let t be the round of the game between the Solver and the

Adversary. Let PI be the instance presented by the Adversary in the endgame and let v

be a vertex, such that v ∈ PI .

• For graph problems in the node model let PIt denote the set of data items seen

by the Solver up until time t. Each data item is represented as its name and

adjacency list: (u, adj(u)). We call v unseen node at time t + 1 if (v, adj(v)) /∈
PIt.
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• For graph problems in the edge model let PIt denote the set of edges that have

been considered by the Solver up until the t-th iteration of the game. A node u is

unseen at time t + 1 if u /∈ V (PIt).

Intuitively a vertex (node) is unseen at time t+1 if it belongs to the final instance

and during iterations 1, 2, . . . , t, the Solver hasn’t made a decision about it (for node

model), or if it is not being touched by an edge for which the Solver has committed to a

decision (for edge model).

We consider the vertex cover problem in the node model. The data items are

nodes, with their name, weight, and adjacency list. The set of options is Σ = {accept,
reject}, meaning the vertex is added to the vertex cover or thrown away.

Theorem 6. No ADAPTIVE priority algorithm can achieve an approximation ratio bet-

ter than 2 for the weighted vertex cover problem.

Proof. For any ρ < 2, we show a winning strategy for the Adversary in the game defined

in Sect. 2.3. For a suitably large n, the Adversary picks a complete bipartite graph Kn,n

and sets T to be the set of instances with this underlying graph, where node weights are

either 1 or n2. Since the underlying graph is fixed, Γ contains two data items for each

node, varying only in the node weight.

Each time the Solver selects a data item corresponding to a node v, the Adversary

deletes the other such item (avoiding inconsistency). The Adversary otherwise does not

delete any items until one of the following three events occurs:

• Event 1: The Solver accepts a node v with weight n2.

• Event 2: The Solver rejects a node v (of any weight).

• Event 3: The Solver accepts n − 1 nodes of weight 1 from either side of the

bipartite graph.

Eventually, one of these three events must occur. If Event 1 occurs first, then the Ad-

versary fixes the weights of all nodes on the opposite side to 1, by deleting all data items
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giving weight n2. This is possible, since previously the Solver has only accepted nodes

of weight 1, so no data item giving a node weight 1 has been deleted. Similarly, for each

node on the same side with two possible weights, Adversary deletes the data item of

weight 1. This fixes the instance. Eventually, the Solver will consider all remaining data

items, and output a solution PS with v ∈ PS , so PS has cost at least n2. The Adversary

outputs a solution S consisting of all nodes on the other side, which has cost n, winning

if ρ < n2/n = n.

If Event 2 occurs, the Adversary fixes the weights of all unseen nodes on the

opposite side of v to n2 and the weights of remaining nodes (those not yet considered)

on the same side to 1 (by deleting the data items of other weights.) Since neither Events

1 or 3 have previously occurred, it is feasible to define an instance with all nodes on

the same side have value 1, and there are at least 2 unseen nodes on the opposite side.

Eventually the Solver outputs a vertex cover PS with v 6∈ PS . Hence, all nodes on the

opposite side must be in PS , for a total cost of at least 2n2. The Adversary outputs all

nodes on the same side of v, for a cost of at most n2 + n − 1. The Adversary wins if

ρ < 2n2

n2+n−1
= 2− o(1).

If Event 3 occurs first, the Solver has committed to all but one vertex on one

side, say A, of the bipartite graph. Then the Adversary fixes the weight of the last

unseen vertex in A to n2 (by deleting the data item giving it value 1) and unseen nodes

on the other side are set to weight 1.

The Solver outputs a set either containing all of A and hence having weight at

least n2, or containing all but one node of A and all nodes of the other side B, giving a

total weight of 2n−1. The Adversary presents as a solution all nodes of sideB, winning

if ρ < 2n−1
n

= 2− o(1).

Thus, for any ρ < 2, the above is a winning strategy for the Adversary for a

suitably large value of n.

The class of instances Kn,n can be solved easily. However, what Theorem 6

shows is that a large class of greedy algorithms cannot approximate the WVC problem
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with approximation ratio better than 2. This bound is tight, because the known greedy

heuristic achieves an approximation ratio 2, and thus is optimal in the class of adaptive

priority algorithms.

It was important to our bound that nodes had weights. Boyar and Larsen ([11])

consider the unweighted version and prove a lower bound of 4
3

for any priority algorithm.

2.4.3 The Metric Steiner Tree Problem

We examine the performance of the ADAPTIVE priority algorithms on the met-

ric Steiner tree problem. The instance of the problem is a graph G = (V,E), with

the vertex set partitioned into two disjoint subsets, required and Steiner. There is a

weight function w on the edges of the graph w : V × V → R+, such that w(u, v) ≤
w(u, x) + w(x, v), ∀u, v, x ∈ V . The problem is to find a minimum cost tree, spanning

the required vertices (but may contain any number of Steiner nodes). The metric prop-

erty implies that any two vertices within the same connected component are connected

by an edge. Furthermore if G has more than one connected components then the cost

of any Steiner tree will be infinity. Hence, we assume that each valid instance of the

problem is a complete graph, whose edge weights obey the triangle inequality.

Note the difference between the minimum spanning tree and the Steiner tree

problems. For the former, the algorithm is presented with an undirected weighted

graph, and must produce a tree, of minimal cost, which spans all vertices of the graph.

Kruskal’s algorithm solves the problem exactly, by considering the edges of the graph

one at a time in non-decreasing order. For each edge, the algorithm decides to add the

edge to the solution, if the solution remains a forest, otherwise the edge is rejected. But

when we consider the Steiner tree problem, the solution needs to span only the required

nodes of the graph, and it is not obvious how to make use of the greedy strategy above,

because the Steiner nodes are optional and may or may not be included in the final

solution.

We are interested in the metric version, where the edge weights obey the triangle
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inequality. The reason is that many greedy algorithms for the Steiner tree problem first

reduce the instance to the metric version, by precomputing the shortest path distances.

Thus, it is reasonable to only consider priority algorithms for the metric version, i.e.,

where this preprocessing has occurred. The standard 2-approximation algorithm for the

Steiner tree problem discovered independently by [33] and [41] belongs to the class of

FIXED priority greedy algorithms. In the restricted case when the edges of the graph

have weights either 1 or 2, known as the STEINER(1,2) problem, Bern and Plassmann

([9]) proved that the average distance heuristic ([49], [42]), is a 4
3
-approximation. The

average distance heuristic, however, does not seem to fit our priority model. To our

knowledge the best known polynomial-time approximation algorithm for the Steiner

tree problem is [43] with approximation ratio of 1 + ln 3
2
≈ 1.55 for general graphs, and

approximation ratio of ≈ 1.28 for STEINER(1,2) problem. [43]’s algorithm does not fit

the framework of priority algorithms.

On the negative side in [9] Bern and Plassmann also showed that STEINER(1,2)

problem is MAX SNP-hard, implying that it is unlikely that the metric Steiner tree

problem with edge weights in [1, 2] has a polynomial-time approximation scheme. [18]

proved that, unless P = NP , Steiner tree is hard to approximate within a factor of

(1 + ε), for small ε > 0.

Our lower bounds are for an intermediate class of Steiner problems, where edge

weights are in the interval [1, 2]. This very local restriction implies the metric property,

which helps the adversary argument. To show that we cannot get a tight bound of 2 using

this restriction, we give a new priority algorithm for this restricted class, achieving an

approximation ratio of 1.8.

The edge model is natural for graph problem where the solution is a path or a

tree and we consider the metric Steiner tree problem in the edge model.

Theorem 7. No ADAPTIVE priority algorithm in the edge model can achieve an ap-

proximation ratio better than 1.2 for the metric Steiner tree problem, even when edge

weights are restricted to the interval [1, 2].
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Proof. We consider the metric Steiner tree problem in the edge model. The data items

are edges in the graph represented as a 5-tuple (v1, t1, v2, t2, w(v1, v2)), where v1, v2

are the names of the nodes; t1, and t2 are their type, t1, t2 ∈ {r, s} (r for required,

s for Steiner), and w(v1, v2) is the weight of the edge. The set of decision options is

Σ = {accepted, rejected}; Ssol, Sadv are the solutions chosen by the Solver and the

Adversary, respectively.

s3

s2

s1

r2

r3

r1

Figure 2.3: K6 with three required and three Steiner nodes

The set of instances selected by the Adversary are graphs shown on Figure 2.3,

where the vertices of the graph V = R∪S. The set of required nodes isR = {r1, r2, r3}
and S = {s1, s2, s3} is the set of Steiner nodes. The weight function defined on the set

of edges in Γ1 is specified as follows. An edge between two required nodes, or between

two Steiner nodes has a fixed weight of 2. An edge between a Steiner and a required

node can have weight 1 or (2 − ε), where the value of ε ∈ (0, 1) will be determined

later. Therefore, in the initial set Γ1 each edge between Steiner and required nodes will

have two data items, one with weight 1 and the other with weight 2− ε, the other edges

correspond to a single data item. The set of instances T is a finite set of graphs K6,

shown on Figure 2.3, with edges from Γ1. The Solver must chose a data item from Γ1

and a decision for it. The goal of the Adversary is to make the decisions made by the

Solver unfavorable and his strategy is described below.

Remark 8. We use shorter notation for data items when we describe the solutions of

the Adversary and the Solver. Note that the set of required nodes R = {r1, r2, r3}
is disjoint from the set of Steiner nodes S = {s1, s2, s3}, so we can safely omit the

types r, s. Instead of the 5-tuple notation (v1, t1, v2, t2, w(v1, v2)), for brevity we will
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use a triple. For example, a data item (sj, s, ri, r, 1) will be represented by the triple

(sj, ri, 1), when we describe the solutions Sadv and Ssol.

• Suppose the first data item selected by the Solver is and edge between a Steiner

and a required node of weight 1, let it be (si, s, rj, r, 1).

– Case 1: If the Solver decides to accept it, then the Adversary makes sj as

far away from the remaining required nodes as possible, by restricting Γ2

as follows:

∗ He leaves in Γ2 edges between sj and the other required nodes of

weight (2− ε) only.

∗ Then he chooses another Steiner node, say sk, and removes from Γ2

edges between sk and all required nodes of weight 2−ε, i.e., only edges

of weight 1 between sk and the required nodes remain in Γ2.

The Adversary selects a Steiner tree Sadv = {(sk, r1, 1)(sk, r2, 1)(sk, r3, 1)}
of cost 3. The Solver must select a valid solution, which includes edge

(sj, s, ri, r, 1). The best choices7 for her are either

Ssol = {(sj, ri, 1)(sk, r1, 1)(sk, r2, 1)(sk, r3, 1)}

of cost 4, or

Ssol = {(sj, ri, 1)(sj, rk, 2− ε)(sj, rl, 2− ε)},

where {ri, rk, rl} = R, of cost 1 + 2(2 − ε). The approximation ratio is

either µ(Ssol)
µ(Sadv)

= 4
3

or µ(Ssol)
µ(Sadv)

= 5−2ε
3

.

– Case 2: If the Solver decides to reject it, then the Adversary does the op-

posite.
7Note that, there are other valid solutions. For example {(sj , ri, 1), (ri, rj , 2), (rj , rk, 2)} of cost 5,

but the approximation ratio is even worse.
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∗ He makes the Steiner node sj close to the remaining required nodes,

by restricting Γ2 to edges between sj and the remaining required nodes

of weight 1 only.

∗ He further restricts Γ2 by removing edges between the other two Steiner

nodes and the required nodes of weight 1.

The Adversary chooses solution Sadv = {(sj, r1, 1)(sj, r2, 1)(sj, r3, 1)} of

cost 3, while the best the Solver can do is to select a spanning tree of cost

4. One possible solution for the Solver is two edges of weight 1 between sj

and the other two required nodes, and one edge between two required nodes

of weight 2, re-connecting rj. The other solution is two edges between

required nodes, each of weight 2. (There are two other solutions of cost

6− 3ε, but we will ignore them because we choose ε ≤ 2
3

as it will be seen

later at the end of the proof.) The approximation ratio is µ(Ssol)
µ(Sadv)

= 4
3
.

• The first data item selected by the Solver is an edge between a Steiner and a

required node of weight 2− ε, let it be (sj, s, ri, r, 2−ε).

– Case 3: If the Solver decides to accept it, then the Adversary defines Γ2 as

follows:

∗ He leaves in Γ2 edges between sj and the other required nodes of

weight (2− ε) only.

∗ Then he selects another Steiner node, say sk, and removes from Γ2 all

edges between sk and all required nodes of weight (2− ε).

The Adversary chooses Sadv = {(sk, r1, 1)(sk, r2, 1)(sk, r3, 1)} of cost 3,

while the best the Solver can do8 is select a Steiner tree of cost 3 + 2− ε =

5− ε. The approximation ratio is µ(Ssol)
µ(Sadv)

= 5−ε
3

.

– Case 4: If the Solver decides to reject it, then the Adversary restricts Γ2 to:
8Again other choices are possible, for example a solution {(sj , r1, 2− ε)(sj , r2, 2− ε)(sj , r2, 2− ε)}

of cost 3(2− ε) and the approximation ratio will not be improved, since we will choose ε = 2
2 .
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∗ Edges from sj to the remaining required nodes of weight 1 only.

∗ Then only edges between the remaining required and Steiner nodes of

weight (2− ε) are left in Γ2.

The Adversary outputs a solutionSadv = {(sj, ri, 2−ε)(sj, rk, 1)(sj, rl, 1)},
where {ri, rk, rl} = R, of cost 2 + 2− ε = 4− ε. The best the Solver can

do is select a Steiner tree of cost 4 or 3(2− ε) and the approximation ratio

is µ(Ssol)
µ(Sadv)

= 4
4−ε

or µ(SSol)
µ(SAdv)

= 3(2−ε)
4−ε

, respectively.

• The first edge observed by the Solver is an edge between two required nodes,

say it is (ri, r, rj, r, 2).

– Case 5: If the Solver decides to accept it, then the Adversary restricts Γ2 to

edges between Steiner and required nodes of weight 1, only. The Adversary

selects a Steiner tree Sadv = {(s1, r1, 1)(s1, r2, 1)(s1, r3, 1)} of cost 3. The

best the Solver can do is select a Steiner tree of cost 4. The approximation

ratio is µ(Ssol)
µ(Sadv)

= 4
3
.

– If the Solver decides to reject it, then the Adversary awaits the next choice

of the Solver and uses the same strategy as in Case 1, 2, 3, 4, or 5, respec-

tively, depending on the type of edge chosen by the Solver.

• Suppose the Solver chooses an edge between two Steiner nodes and decides to

accept it. The Adversary will fix the weight of all edges between Steiner and

required nodes to 1, by removing data items between Steiner and required nodes

of weight 2 − ε from Γ2. The approximation ratio will become worse, because

any valid solution for the Solver will have cost at least 5, while the Adversary

chooses a solution Sadv = {(s1, r1, 1), (s1, r2, 1), (s1, r3, 1)} of cost 3.

If the Solver rejects all edges between two Steiner nodes, she still has to consider

one of the previous cases, eventually, and then the Adversary uses the strategy

described above. If the Solver rejects all edges then she will fail to output a

solution and the approximation ratio will be infinity.
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Considering the cases above, for ε ∈ (0, 1), the best approximation ratio achieved is 4
4−ε

and 3(2−ε)
4−ε

. The Adversary chooses ε = 2/3 and wins the game for any ρ < 6
5

= 1.2.

Next we present an algorithm achieving an approximation ratio of 1.8 for the

metric Steiner tree problem with edge weights restricted to the interval [1, 2]. (Note that

having weights w ∈ [1, 2] implies the metric property.) First we design an algorithm

called Contract, and will prove that it guarantees an approximation ratio of 1.75 (c.f.

Theorem 9). The algorithm Contract makes decisions (accept or reject) about edges of

the instance but it is not obvious whether it is a priority algorithm or not. Then we use

Contract to devise another algorithm called Adaptive Contract, which fits the frame-

work of ADAPTIVE priority algorithms. We show that Adaptive Contract achieves an

approximation ratio of 1.8 (c.f. Theorem 12).

From here on, when we refer to a metric graph G, we also assume that the

weights of the edges are in the interval [1, 2]. (Recall that the metric property implies

that and any two nodes are connected by an edge.) The input to the algorithm are

the edges of the graph and each edge is represented as a five tuple: names of the two

endpoints, their type Steiner or required, and the weight of the edge. The algorithm

runs in two stages. In the first stage we grow a spanning forest by contracting nodes.

The contraction operation modifies a graph by replacing a set of nodes, with a single

contracted node. The nodes to be removed (contracted) are connected by edges in the

original graph and form a connected component. The distance between any uncontracted

node u and the new node becomes the shortest distance between u and a node in the

contracted node.

Definition 4 (contract operation). The contract operation takes a metric graph G =

(V,E) and a set of nodes C = {v1, . . . , vk}, C ⊂ V , and outputs a new metric graph

G′ = (V ′, E ′) with reduced set of vertices V ′ = V − C ∪ {c(v1, . . . , vk)}, where

c(v1, . . . , vk) is a single node representing the nodes v1, . . . , vk. E ′ = E−E0−E1∪E2,

where E0 = {(u, v) | u, v ∈ C}, E1 = {(u, v) | u ∈ V −C, v ∈ C}, and E2 =

{(u, c(v1, . . . , vk)) | ∃ (u, vi) ∈ E1 and w(u, c(v1, . . . , vn)) = min(u,vi)∈E1
w(u, vi)}.
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The second stage builds a minimum cost spanning tree on the graph induced by

the contracted nodes, which are considered required nodes, and the remaining (uncon-

tracted) required nodes using edges between required nodes only. The following is a

high level description of the algorithm, which we modify later to fit the priority algo-

rithm model.

Algorithm Contract

1. Contract required nodes

An edge between a Steiner and a required node is called lightweight edge if its

weight is 1.4 or less. Let the lightweight degree of a Steiner node be the number

of lightweight edges incident to it.

Find all Steiner nodes, whose lightweight degree is five or more. Order these

Steiner nodes according to their lightweight degree in non-increasing order, and

choose the Steiner node first in this order, let that be x. Add all the lightweight

edges incident to x to the current forest. Contract x and the required nodes con-

nected to the Steiner node x by the lightweight edges to a single required node.

Recompute the lightweight degree of each remaining uncontracted Steiner node

and repeat the procedure above until all remaining Steiner nodes are connected

to at most four required nodes with lightweight edges.

We call the graph obtained at the end of this phase contracted graph.

2. Create a spanning tree

Each contracted node from the previous phase is considered to be a single re-

quired node. Use Kruskal algorithm to build a minimum cost spanning tree on

the subgraph induced by the current set of required nodes, by considering edges

between two required nodes only.

end (Algorithm Contract)
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First we argue that the algorithm builds a tree. This follows from the fact that

before the algorithm starts the instance is a complete graph on Steiner and required

nodes. At the end of the first stage we have contracted nodes, in which at least five

required nodes and one Steiner node are connected by a path, and required nodes. The

last stage connects contracted nodes, created in the previous stage, and the remaining

required nodes by a spanning tree. Obviously the solution connects all required nodes

and no cycle is created at any time because no edge between two already connected

nodes is accepted.

Theorem 9. The algorithm Contract is a 1.75 approximation algorithm for the metric

Steiner tree problem on graphs with weights in the interval [1, 2].

Proof. We analyze the two phases separately. Lemmas 10 and 11 are needed to bound

the cost during the contract required nodes and create a spanning tree phases, respec-

tively.

• Analysis of contract phase.

Let G be the instance graph. We want to compare an optimal Steiner tree in G to

the tree built by our algorithm, by applying the contract operation on the nodes

connected by edges chosen by our algorithm. We will use the following lemma

repeatedly during the conversion.

Lemma 10. Let G = (V = R ∪ S,E) be any metric graph, where R, S are

the set of required and Steiner nodes, respectively. Let w : E → [1, 2] be a

weight function on the edges, and r1, r2 ∈ R be any two required nodes, τ be

any Steiner tree. There exists a Steiner tree τ1 in G1 = contract(G, r1, r2) such

that

Cost(τ) ≥ Cost(τ1) + 1. (2.1)

Proof. (Lemma 10) Since we consider metric graphs with edge weights in [1, 2],

then in any spanning tree τ , in the path from r1 to r2, the weight of any edge in
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the path is at least 1, and contracting the two nodes will necessarily remove at

least one edge, along the path between them, from the Steiner tree. Therefore

Cost(τ) ≥ Cost(τ1) + 1.

(Lemma 10)

Let k be the number of contractions performed by the algorithm during the first

phase. Each contraction removes from the instance at least five required nodes

and adds one new node representing the removed nodes as a single contracted

node.

Consider a single iteration of this phase. Say the algorithm contracts a Steiner

node s and required nodes r1,1 , . . . , r1,t , where t ≥ 5, into one node, by adding

edges (s, r1,1), . . . , (s, r1,t) to its solution. The cost incurred by the algorithm

during the iteration denoted as Cost(A1) is Cost(A1) ≤ 1.4t, because the al-

gorithm adds lightweight edges whose weight is 1.4 or less, only. Let τ be the

optimal Steiner tree in G, and τ1 be the optimal Steiner tree in the contracted

graph G1 = contract(G, {r1,1 , . . . , r1,t, s}). Then we apply Lemma 10 (t−1)

times and derive that Cost(τ) ≥ Cost(τ1) + t− 1 ≥ Cost(τ1) + t−1
1.4t
Cost(A1).

Note that α(t) = t−1
1.4t

, t ∈ [5,∞) is an increasing function on t so the smallest

α is obtained when t = 5. Therefore Cost(τ) ≥ Cost(τ1) + ( t−1
1.4t

)Cost(A1) ≥
Cost(τ1) + 4

7
Cost(A1), or Cost(A1) ≤ 7

4
(Cost(τ)− Cost(τ1)).

Let Cost(AC) be the total cost of the algorithm incurred during the contract

phase, and Gi = contract(Gi−1, {ri,1
. . . r

i,ti
}), for i = 1, . . . , k. Then we can

show inductively that Cost(AC) =
∑k

i=1Cost(Ai) = 7
4
(Cost(τ) − Cost(τk)),

where τk is an optimal spanning tree in the contracted graph Gk.

• Analysis of “Create a spanning tree” phase.

During the second phase the algorithm builds a minimum cost spanning tree

on the required nodes (including contracted nodes during the previous phase,

which count as required nodes) and does not use any Steiner nodes. There could
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be three types of edges remaining in the instance before the algorithm enters

the second phase: between two Steiner nodes, between a Steiner and a required

node, and between two required nodes. For short denote the three types as edges

of type (s, s), (r, s), and (r, r), respectively.

Lemma 11. Let G = (S ∪R,E) be any metric graph with a weight function on

edges

w : E → [1, 2], so that the lightweight degree of any Steiner node s ∈ S is

smaller than or equal to 4. Let τ be the minimum cost Steiner tree in G. Then

there is a spanning tree τ ′ on R in G, such that Cost(τ ′) ≤ 1.6Cost(τ).

Proof. (Lemma11) If τ does not have Steiner nodes, then we simply chose τ ′ =

τ . If τ does contain Steiner nodes, then we want to convert the graph G to a

graph G′, where all Steiner nodes used by τ are removed. The basic idea of the

conversion process is in each step to remove a set of Steiner nodes that are a

connected component in τ containing only Steiner nodes. We delete the Steiner

nodes in this connected component, and all the edges incident to them from τ .

We reconnect the disconnected required nodes by a path with edges of type (r, r)

only. (Recall that the instance is a complete graph and all possible edges exist.)

Let Di and Ai be the edges deleted from and added to the tree τ during the

i-th iteration of the conversion, respectively. Consider first i = 1. Let S1 be

any connected component of Steiner nodes in τ , and let |S1| = m. Let R1

be the set of required nodes adjacent to nodes in S1, and let |R1| = n. The

combined cost of the edges A1, needed to connect the nodes in R1 by a path is

Cost(A1) ≤ 2(n − 1). The edges deleted from τ used to connect nodes in S1

and R1 in a single connected component are of two types (s, s) and (r, s). Since

there are m Steiner nodes and they form a connected component, then the cost

of the edges of type (s, s) is greater than or equal to m−1, because m−1 edges

are needed to connect m Steiner nodes, and the weight of each edge is at least

1. Recall, that the lightweight degree of each Steiner node is at most 4 and there
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are n edges in the cut (S1, R1). To lower bound the Cost(D) we consider the

following two cases:

1. If n ≤ 4m, then the cost of edges of type (r, s) is greater than or equal to

n, because each required node is connected to a Steiner node with an edge

of weight at least 1.

n ≤ 4m⇒ m ≥ 0.25n, therefore Cost(D1) ≥ m− 1 + n ≥ 1.25n− 1.

2. Otherwise, when n > 4m, the cost of edges in the cut (S1, R1) is greater

than 4m+1.4(n−4m), because only 4m required nodes can be connected

with lightweight edges to S1, the remaining required nodes have to be con-

nected with edges of weight strictly greater than 1.4.

n > 4m⇒ m < 0.25n;

Cost(D1) ≥ m− 1 + 4m+ 1.4(n− 4m)

= 1.4n− 0.6m− 1

≥ 1.4n− 0.15n− 1 ≥ 1.25n− 1.

The two sets of edges D1 and A1 are disjoint, because A1 consists of edges

between two required nodes only, whileD1 are edges of type (s, s) and (r, s). In

both of the above cases:

Cost(A1) ≤ 2n− 2,

Cost(D1) ≥ 1.25n− 1 >
5

8
(2n− 2) ≥ 5

8
Cost(A1),

Cost(D1) ≥
5

8
Cost(A1).

(2.2)

Similarly,

Cost(Di) ≥
5

8
Cost(Ai), ∀i = 1, . . . , l, (2.3)

where l is the number of connected components of Steiner nodes in τ .
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LetG′ be the graph obtained after all connected components of Steiner nodes are

removed, and the required nodes connected to them contracted to single node.

Therefore G′ is a graph with required nodes only. Since τ is a minimum Steiner

tree in G then it must span the nodes in G′. Let τ ′ be a subset of edges of τ

spanning the nodes of G′. Then

Cost(τ) = Cost(τ ′) +

l
∑

i=1

Cost(Di) ≥ Cost(τ ′) +
5

8

l
∑

i=1

Cost(Ai)

≥ 5

8
(Cost(τ ′) +

l
∑

i=1

Cost(Ai)).

We used Equation (2.3) to obtain the first inequality above.

(Lemma 11)

Note that the graph Gk obtained from the instance G at the end of the first phase

of the algorithm and the tree τk, which is an optimal Steiner tree in Gk do satisfy

the conditions of Lemma 11. Note that the tree built by the algorithm during

phase two denoted as τA2 , is a minimum cost spanning tree on R in Gk. Then

Cost(τA2) ≤ Cost(τk) +
n
∑

i=1

Cost(Ai),

where Cost(Ai) are the edges used in Lemma 11, and τk is the optimal tree τ .

Applying Lemma 11 we conclude that Cost(τA2) ≤ 8
5
Cost(τk) ≤ 7

4
Cost(τk).

Now we complete the proof of Theorem 9. The cost incurred by the algorithm is:

Cost(A) = Cost(AC) + Cost(τA2) ≤
7

4
(Cost(T )− Cost(τk)) +

7

4
Cost(τk)

=
7

4
Cost(T )

(2.4)

Does the algorithm Contract fit the model of adaptive priority algorithms? The

first phase must compute the lightweight degree of each Steiner node, an operation

which does not seem to fit the model of adaptive priority algorithms. Nevertheless,
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the ideas discussed above give rise to an adaptive priority algorithm which mimics the

actions of algorithm Contract, and performs almost as well. Below follows the descrip-

tion of the Adaptive Contract algorithm, achieving an approximation ratio of 1.8 (c.f

Theorem 12).

Algorithm Adaptive Contract

I. First the algorithm learns whether the instance has 0, 1, or greater or equal than 2

Steiner nodes. The edges of the instance are sorted according to the following priority

function:

• π(e) = 0 if e is an edge between two Steiner nodes. If such an edge exist, it is

rejected. Note that, the algorithm Contract does not use edges between Steiner

nodes, and therefore they can be safely rejected. If there is such an edge, the

algorithms learns that the number of Steiner nodes is greater or equal to 2, and

also records their names. Then to to step II.3 below.

• π(e) = 3 − w(e), if e is an edge between a Steiner and a required node. If the

algorithm sees such an edge then, the edge will be rejected (note that e would

be the heaviest weight edge). If the first data item of the instance has a priority

value in the interval [1, 2], then the number of Steiner nodes in the instance is

exactly 1; In this case go to step II.2 below.

• π(e) = 2 + w(e), if e is an edge between two required nodes. If the first data

item is of this type, then the edge is accepted. In this case the instance graph con-

sists of required nodes only. Note that accepting the minimum weight required-

required edge is the first step of Kruskal algorithm. Go to stage II.1 below.

The above priority function is used only once at the beginning of the algorithm.

II. Next we consider three cases, based on the number of Steiner nodes in the instance

(determined in step I):
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1. Suppose the instance has no Steiner nodes. Then the metric Steiner tree problem

reduces to the problem of finding a minimum cost spanning tree in the graph,

and we continue with the Kruskal algorithm.

2. Suppose the instance has exactly one Steiner node, call it s. In this case, the

heaviest edge e = (s, ri) was rejected in stage I.

(a) First accept the lowest weight edge e = (ri, rj) between two required

nodes, ri, rj, contracting them into a single required node, call it c1(ri, rj)

(Note that the first step of Kruskal algorithm is the same). This is done to

connect ri. If there is no such an edge, then the instance has zero or one

required nodes and the algorithm terminates without accepting any edges.

Then the algorithm rejects the heaviest edge between ri or rj and an unseen

required node, until all required nodes are seen. In doing this the algorithm

computes the contracted graph G1 = contract(G, c1(ri, rj)) and learns the

number and the names of all required nodes.

(b) Reject all edges of type (r, s) of weight greater than 1.4 and calculate the

lightweight degree of s. The degree is the number of required nodes com-

puted in step 2(a) minus the number of heavyweight edges rejected.

(c) If the lightweight degree of the Steiner node is greater or equal to five, then

accept all lightweight (weight smaller than 1.4) edges of type (r, s), where

r ∈ R \ {r1, r2} ∪ {c1} and contract all those nodes to a single required

node. Otherwise go to the next step.

(d) Connect the remaining required nodes (if any) and the contracted nodes

via a minimum cost spanning tree, using Kruskal’s algorithm considering

edges between required nodes only9.

9Note that, if the instance has three, four, or five required nodes only, then the algorithm builds a
minimum cost spanning tree using the Kruskal algorithm.
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3. Suppose the instance has two or more Steiner nodes. First learn the number and

the names of Steiner and required nodes (will become clear below). Then reject

the heavyweight edges (weight bigger than 1.4) between Steiner and required

nodes. Since the instance is a complete graph the lightweight degree of each

Steiner node can be obtained by subtracting from the total number of required

nodes the number of rejected heavyweight edges incident to that Steiner node.

Then continue with the algorithm Contract. Details follow below.

(a) Reject all edges of type (s, s) and learn the number and the names of all

Steiner nodes in the instance.

(b) Learn the names and number of the required nodes as in 2(a): accept the

smallest weight edge between two required nodes and then compute the

contracted graph10.

(c) Learn the lightweight degree of each Steiner node in the instance: Reject all

heavyweight edges (weight strictly greater than 1.4) of type (r, s). For each

Steiner node s dynamically compute the set of required nodes connected to

it, called this set Rs. Recall that the instance is a metric graph, therefore

each Steiner node s is connected to all required nodes in the instance. At

the beginning of this step for each Steiner node s, Rs is initialized to the

set of all required nodes. When an edge (r, s) is rejected the required node

r is removed from the corresponding set of the Steiner node s and Rs ←
Rs−{r}. When all heavyweight edges are removed, the lightweight degree

of each Steiner node s is simply the size of set Rs.

(d) At this point all remaining edges of type (r, s) have weight smaller than or

equal to 1.4. If any Steiner node has a lightweight degree higher than five,

then all edges incident to the highest degree such node, call it S, are added

to the solution and the connected required nodes are contracted to a single
10See Contract required nodes phase of algorithm Contract for a formal description of the contracted

graph.
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required node. To update the lightweight degree of the remaining Steiner

nodes we proceed as follows. Let s1 be one such Steiner node and let Rs1

be the set of required nodes connected to it via lightweight edges. We

remove from Rs1 all but one, if there are multiple required nodes members

of RS . The new lightweight degree of s1 is the size of the new Rs1 .

(e) When no Steiner node has a degree higher than four all remaining edges

between Steiner and required nodes are rejected.

(f) The remaining edges in the instance are between required nodes (con-

tracted required nodes are considered required). Continue with Kruskal’s

algorithm to build a minimum cost spanning tree.

A formalization of the algorithm within the framework of adaptive priority algo-

rithms can be found in Appendix A.

Theorem 12. The Adaptive Contraction algorithm is a 1.8-approximation for the metric

Steiner tree problem for graphs with edge weights [1, 2].

Proof. If the instance has no Steiner nodes, then the solution is optimal because the

Adaptive Contract simulates Kruskal algorithm and builds a minimum cost spanning

tree. If the number of required nodes is zero or one, then the solution is the empty set

and therefore optimal. If the instance has two required nodes, the solution is the edge

between them and thus is optimal.

If the number of required nodes r, in the instance is between three and five then

the algorithm builds a minimum cost spanning tree using the Kruskal’s algorithm. The

cost of such a tree is at most 2(r − 1). If the optimal Steiner tree does not use Steiner

nodes then the optimal Steiner tree is a spanning tree in the graph induced by the required

nodes only and therefore the choices made by the algorithm are optimal. Otherwise the

cost of an optimal Steiner tree must be at least r, in which case the approximation ratio

is at most 2− 2
r
≤ 1.6
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The remaining case is when there are at least six required nodes and at least

one Steiner node. Let G be an instance graph. Let the edge (r1, r2) be the mini-

mum weight edge of type (r, r) in G. Let T and T1 be optimal Steiner trees in G

and G1 = contract(G, {r1, r2}), respectively. Let TA1 be the tree built by the algo-

rithm Contract on G1. Note that, the solution output by Adaptive Contract on G is

TA = TA1 ∪{(r1, r2)}, therefore Cost(TA) = w(r1, r2) +Cost(TA1) ≤ 2 +Cost(TA1).

Also note that, TA1 is the result of running the algorithm Contract on G1. Therefore, by

Theorem 9 Equation(2.4) we have that Cost(TA1) ≤ 1.75Cost(T1). Combining the last

two inequalities we have that

Cost(TA) ≤ 2 + 1.75Cost(T1) = 1.75(Cost(T1) + 1) +
1

4

≤ 1.75Cost(T ) +
1

4
.

We used Equation (2.1) of Lemma 10 to obtain the above inequality.

Since the instance is a graph with at least six required nodes, then the cost of

any tree spanning the set of required nodes is at least five, then 1.75Cost(T ) + 1
4
≤

1.8Cost(T ), concluding that

Cost(TA) ≤ 1.8Cost(T ).

2.4.4 Maximum Independent Set Problem

We study the performance of ADAPTIVE priority algorithms for the MIS prob-

lem. Given an instance graph G = (V,E) the problem is to find a subset I ⊆ V , such

that if u ∈ I and v ∈ I , then (u, v) /∈ E. The objective is to maximize |I|.
In this section we prove a lower bound of 3

2
on the approximation ratio for the

MIS problem on graphs with maximum degree 3.

Theorem 13. No ADAPTIVE priority algorithm in the node model can achieve an ap-

proximation ratio better than 3
2

for the MIS problem, even for graphs of degree at most

3.
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Proof. We view the MIS problem in the node model. The set of data items are the

vertices of the graph with their names and adjacency lists. The set of decision options is

Σ = {accepted, rejected}. The Adversary sets T to be the graphs shown in Figure 2.4,

and all isomorphic copies of these graphs. Therefore Γ1 is all possible tuples of node

name and adjacency lists of size 2, and 3. Both graphs G2 and G3 have same number

of vertices equal to 6, and the degree of each vertex is either 2 or 3, hence the Solver

cannot distinguish whether the instance is a graph isomorphic to G2 or G3 a priori. The

Solver orders all possible data items. Based on her first choice and decision made, the

Adversary plays the following strategy:

1. The first data item chosen by the Solver is a vertex of degree 3.

• If the Solver decides to accept it, then the Adversary presents an isomorphic

copy of graph G3, where the node chosen by the Solver is C. The possible

solutions for the Solver are {B,C} or {C,E}, while the Adversary selects

Sadv = {A,D,E}, with |Sadv|
|Ssol| = 3

2
. The Adversary wins the game for any

approximation ratio ρ < 3
2
.

G3 F

E
DC

BA

G2

ED

A CB

F

Figure 2.4: Nemesis graphs chosen by the Adversary

• If the Solver decides to reject the node, then the Adversary presents an iso-

morphic copy of G3, such that the node chosen by the Solver is D. The

possible solutions for the Solver are

{C,B}, {C,E}, {F,A}, {F,B}, or, {E,A}. The Adversary selects solu-

tion {A,D,E}, and wins any game for approximation ratio ρ < 3
2
.
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2. The first data item chosen by the Solver is a vertex of degree 2.

• If the Solver decides to take it, then the Adversary presents an isomorphic

copy of G2, in Figure 2.4, in which the data item chosen by the Solver

is A. Any solution for the Solver has size at most 2, and the possibilities

are {A,C}, {A,E}, {A, F}, while the Adversary chooses {B,D, F} and

wins the game for any ratio ρ < 3
2
.

• If the Solver decided to reject the node of degree 2, then the Adversary

presents an isomorphic copy of graph G3 in Figure 2.4, in which the node

chosen by the Solver isA. The possible solutions for the Solver are {B,C},
{B,F}, {C,E}, or {D,E} of size 2, while the Adversary chooses {A,D,
E} and wins the game for any approximation ratio ρ < 3

2
.

2.5 Memoryless Priority Algorithms

Memoryless priority algorithms are a subclass of adaptive priority algorithms.

Although the model is general, it can only be applied for problems where the decision

options are Σ = {accept, reject}. Problems having this form include some schedul-

ing problems, some graph optimization problems (vertex cover, Steiner trees, maximum

clique, path problems, etc.), and also facility location, set cover, and several network

optimization problems. Memoryless priority algorithms have a restriction on what part

of the instance (data items considered in the past) they can remember. We would like to

think of the decision of the algorithm to reject a data item as a ‘no-op’ instruction. The

state of the algorithm and the remaining data items and their priorities do not change,

but the current data item is “forgotten” by the algorithm and removed from the remain-

ing sequence of data items. The algorithm stores in its memory (state) only data items

that were accepted. Each decision made by the algorithm is based on the information

presented by the current data item and the state. An example of a memoryless priority
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algorithm is Kruskal’s algorithm for building minimum cost spanning tree. The algo-

rithm considers the edges of the graph in non-decreasing order one at a time. The “state”

of the algorithm is the current spanning forest F , namely those edges that have been ac-

cepted. Initially F = ∅. At each step the algorithm considers the next edge e, according

to the order and accepts e, provided F ∪ {e} remains a forest. If the edge e is accepted,

then the state of the algorithm is updated F ← F ∪ {e}, otherwise the edge is rejected

and forgotten. The algorithm terminates when all edges in the graph are considered.

The formal framework of a memoryless adaptive priority algorithm is:

MEMORYLESS PRIORITY ALGORITHM

Input: instance I ⊆ Γ, I = {γ1, . . . , γd}
Output: solution S = {(γi, σi)| σi = accept}

- Initialize: a set of unseen data items U ← I , a partial solution S ← ∅, and a

counter t←1

- Determine an ordering function: π1 : Γ→ R+ ∪ {∞}

- Order γ ∈ U according to π1(γ)

Repeat

• Observe the first unseen data item γt ∈ U

• Make an irrevocable decision σt ∈ {accept, reject}

• If (σt = accept), then

– update the partial solution: S ← S ∪ {γt}

– determine an ordering function: πt+1 : Γ→ R+ ∪ {∞}

– order γ ∈ U−{γt} according to πt+1

• If (σt = reject), then

– Forget γt, i.e., delete it from current state
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• Remove the processed data item γt from U ; t← t + 1

Until (U = ∅)
Output S

The differences between adaptive priority algorithms and memoryless algorithms are:

• Reordering the inputs: Priority algorithms with memory can reorder the re-

maining data items in the instance after each decision, while memoryless algo-

rithms can reorder the remaining input after they accept a data item.

• State: Memoryless algorithms forget data items that were rejected, while mem-

ory algorithms keep in their state all data items and the decisions made.

• Decision making process: In making decisions, memory algorithms consider

all processed data items and the decisions made, while memoryless algorithms

can only use the information about data items that were accepted.

On one side, memoryless algorithms are intuitive. Consider Prim’s and Dijkstra’s al-

gorithms. Both algorithms are adaptive priority algorithms and grow a tree by adding

an edge at each iteration. In the case of Prim’s algorithm, when all nodes of the graph

are connected by the currently grown spanning tree the algorithm rejects all remaining

edges of the graph. In this sense Prim’s algorithm is memoryless, since the priority

function and the decisions made depend only on the edges added to the current span-

ning tree. Note that once this algorithm rejects an edge, it never accepts another edge

(in this sense any algorithm with this structure can trivially be regarded as a memoryless

algorithm). Similarly, Dijkstra, and the known greedy heuristics for the facility location,

set cover, and vertex cover problems can be classified as memoryless.

On the other hand, memoryless algorithms can be considered counterintuitive, in

the sense that the algorithm could explore the structure of the instance by giving lower

priority to “unwanted” data items and rejecting them, and thus could achieve better

performance. For example, consider the weighted independent set problem on cycles. If
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an algorithm rejects the smallest weight node, then the algorithm has learned 1) the value

of the smallest weight; 2) no other vertex of the instance has a smaller weight; 3) the

name of the vertex with the smallest weight; 4) the names of the neighbors of the node

with the smallest weight. Perhaps exploring this knowledge could give the algorithm

more power? To characterize the power of memoryless adaptive priority algorithms

we first define a combinatorial game and use the game to prove lower bounds on the

performance of all algorithms in the class.

2.5.1 A Memoryless Adaptive Priority Game

We define a two person game between the Solver and the Adversary to character-

ize the approximation ratio achievable by a deterministic memoryless adaptive priority

algorithm.

Let Π be a maximization problem, with priority model defined by µ, Σ, and Γ,

where µ is the objective function, Γ is the type of a data item, and Σ = {accepted,
rejected} is the set of decision options available for each data item. Let T be a finite

collection of instances of Π. The game between the Solver and the Adversary for a fixed

approximation ratio ρ ≥ 1 is as follows:

Memoryless Game (Solver, Adversary, ratio ρ)

1. The Solver initializes an empty memory M , M ← ∅, and defines a total order

π1 on Γ

2. The Adversary picks a finite subset Γ1 ⊆ Γ with at least one instance I ⊆ Γ1,

I ∈ T ; R← ∅; t← 1

3. repeat until (Γt = ∅)
begin (Round t)

(a) Let γt be the next data item in Γt according to πt
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(b) The Solver picks a decision σt for γt

• if (σt = accepted) then the Solver does the following

– M ←M ∪ {γt}

– Γt ← Γt − γt

– define a new total order πt+1 on Γt

• else (σt = rejected)

– The Adversary remembers the rejected data item R← R ∪ {γt}

– The Solver forgets γt; Γt ← Γt−γt

(c) The Adversary chooses Γt+1 ⊆ Γt

t← t+1

end; (Round t)

4. Endgame: The Adversary presents an instance I∈T with M ⊆ I ⊆M∪R, and

a solution Sadv for I . The Solver wins the game if one of the two events happen

• No such instance I exists

• If I exists and it is a valid instance and Solver presents a valid solution Ssol

for I such that M ⊆ Ssol and µ(Sadv)
µ(Ssol)

≤ ρ.

Lemma 14. Let Γ1 be any finite set of data items. There is a winning strategy for the

Solver in the Memoryless game defined above for a ratio ρ if and only if there is a

memoryless adaptive priority algorithm that achieves an approximation ratio ρ on every

instance of Π in T .

Proof. • Suppose the Solver has a winning strategy for the game with a ratio ρ on

all instances in T . We describe a memoryless adaptive priority algorithm which

achieves an approximation ration ρ.

Let I be the input instance. The memoryless algorithm plays the role of the

Adversary in the game between the Solver and the Adversary. Each round of
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the game corresponds to one iteration of the loop of the memoryless algorithm

and the memoryless algorithm maintains the invariant that: 1) At the beginning

of each round the data item next in the order according to π is a data item from

I; 2) The decision of the Solver and the memoryless algorithm during the round

are the same (M=S).

Suppose the invariant is maintained for the first i rounds. During round i+1, let

γi+1 be the first item in the order defined by πi+1, where γi+1 ∈ I . If the Solver

accepts γi+1 so does the memoryless algorithm, S = S ∪ {γi+1}. The memory-

less algorithm observes πi+2 defined by the Solver, and computes the new Γi+2

as follows. Let γi+2 = minγ∈I−{γ1 ,...,γi,γi+1} πi+2(γ), where {γ1, . . . , γi} are the

i data items of I processed during rounds 1, . . . , i. Then Γi+2 = Γi+1 − {γ :

(γ∈Γi+1)∧ (πi+2(γ) < πi+2(γi+2))}. The memoryless algorithm removed from

Γi+1 all data items with πi+2 values smaller than πi+2(γi+2) which therefore

would have appeared in the πi+2 order before γi+2.

If the Solver rejects γi+1 the memoryless algorithm rejects as well. The order

of Γi+1 − {γi+1} does not change. A new Γi+2 is computed as follows. Let

γi+2 = minγ∈I−{γ1 ,...,γi+1}πi+1(γ), then Γi+2 = Γi+1−{γ : (γ ∈ Γi+1∧γ /∈
I) ∧ (πi+1(γ)<πi+1(γi+2))}.

The invariant is maintained during round i+1, the decisions made are the same

and the data item according to the order π during the next round is a data item

from I . By induction the invariant is maintained until the end of the game.

The memoryless algorithm terminates the game when all data items from I are

processed, say that happens at round t, then the memoryless algorithm truncates

Γt =∅.

During the Endgame the memoryless algorithm presents an instance I and a

solution S = M . Since the Solver has a winning strategy for the game with a

ratio ρ, µ(Sadv)
µ(S)

≤ ρ, then the approximation ratio secured by the algorithm is at

most ρ, because ρ · µ(S) ≥ Sadv , for any valid Sadv .
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• For the converse, suppose there is a memoryless adaptive priority algorithm that

achieves an approximation ratio ρ on every instance in T . We show a winning

strategy for the Solver in the game defined above. The Solver simulates the

actions of the memoryless adaptive priority algorithm during each round of the

game. Thus the strategy of the Solver is to maintain the invariant that after

the first t rounds of the game, the decisions made by her are the same as the

decisions made by the memoryless priority algorithm, the ordering functions on

data items πt, and the memory M=S are also the same.

During round t+1 the Solver simulates the memoryless algorithm on the data

item γt+1, which is the first data item according to πt+1. If the memoryless

algorithm accepts γt+1, then the Solver updates her memory M accordingly,

and defines the new total order on Γ according to the ordering πt+2 used by the

memoryless algorithm. If the memoryless algorithm rejects γt+1, so does the

Solver and the next round begins. The invariant is maintained during round t+1

and by induction it holds until the Endgame phase.

During the Endgame the Adversary presents an instance I subject to the con-

straints M ⊆ I ⊆ M∪ R. If that is not the case, the Adversary loses the game

and the Solver wins. Otherwise the Solver simulates the memoryless algorithm

on the portion of I not processed thus far. Say S is the solution output by the

memoryless algorithm, then the Solver commits to solution M∪S. Because the

adaptive priority algorithm achieves approximation ratio ρ on any instance then

ρ · µ(M ∪ S) ≥ µ(Sadv), for any valid solution Sadv for the instance I , and the

Solver wins the game.

Corollary 15. If there is a winning strategy for the Adversary in the game defined above

for a ratio ρ, then there is no memoryless adaptive priority algorithm that achieves an

approximation ratio better than ρ.

Theorem 16. There is an optimal strategy for the Solver for the Memoryless game, that
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has the following property: once the Solver rejects one data item, she never accepts any

later data items.11

Proof. To prove the theorem it suffices to show that any winning strategy for the Solver

for the Memoryless game for a fixed ρ, in which accepting and rejecting decisions are not

separated into distinct phases, can be converted to a winning strategy for the game with

same ρ, in which the Solver never accepts after she has rejected a data item. Intuitively,

since Π is a maximization problem, whose decision options are {accept, reject}, the

Solver gains nothing after rejecting a data item (the value of the objective function of

her solution depends only on the data items accepted and hence does not increase when

a data item is rejected). Furthermore, the Adversary can choose to either add the data

item to the final instance during the Endgame or not, depending on whether he would

gain from accepting the data item or not. Thus the action of the Solver to reject a data

item in the model of memoryless algorithms could only benefit the Adversary’s strategy

but Solver’s.

Let S be any strategy for the Solver, and πi be the ordering functions used by

the Solver during the rounds (i = 1, 2, ..) of the game. We construct a new strategy S ′

with the properties defined in the theorem and ordering functions π ′
i. The idea is to give

priority values of infinity for all data items that were rejected (denoted by the set R in

the conversion algorithm below) under the strategy S.

Conversion Algorithm

Input: S a strategy for the Solver

Output: S ′ modified strategy for the Solver

1. Initialize: R← ∅; t← 1; Γ1 = Γ.

2. repeat until (Γt ⊆ R)

• Obtain πt : Γt → R+ from S;

compute the first γt ∈ Γt according to πt, such that σγt =accept under S.
11Similar result was proved in [14],[11],[7]. [11] refers to memoryless priority algorithms as

“acceptance-first” adaptive priority algorithms.
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• R←R ∪ {γ | (γ∈Γ) ∧ (π(γ)≤π(γt)) ∧ (σγ =reject)}

• Set the ordering function and decision for S ′ as follows:

π′(γ) = π(γ)|Γt−R

π′(γ) =∞, ∀γ ∈ R
σ′

γt
= accept

• Γt+1 ← Γt − R− {γt}
t← t + 1

3. ∀γ ∈ R, σγ = reject.

Now we argue that the two strategies S and S ′ have the same decisions on data items and

thus the ratio of the value of the objective function µ for the solution output by Solver is

the same regardless which strategy she plays. Therefore, if S is a winning strategy for

the Memoryless game with a fixed ratio ρ, then S ′ will be a winning strategy with the

same ratio ρ. Let AS and AS′ be the set of data items accepted by strategies S and S ′,

respectively. We claim that AS ⊆ AS′ . Suppose there exists γ ∈ AS and γ /∈ AS′ . This

means that the strategy S accepted γ and S ′ rejected it. S ′ rejects γ if and only if γ ∈ R.

But γ ∈ R if and only if S has rejected γ. Thus there is no such γ and AS ⊆ AS′ .

Similar argument establishes AS′ ⊆ AS , thus concluding the proof.

2.5.2 Separation Between the Class of Adaptive Priority Algorithms

and Memoryless Adaptive Priority Algorithms

In this section we show that the class of adaptive priority algorithms are more

powerful than memoryless adaptive priority algorithms. Subsequently to the work in

this paper, [39] proves separations between different sub-classes of priority algorithms

in the context of Job Scheduling problems and defines a hierarchy for priority algorithms

of bounded memory.

We consider the weighed independent set problem on cycles (WIS-2), where the

weight of the nodes is 1 or k only, for some non-negative integer k. Note, that the inde-
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pendent set problem in cycles with arbitrary weights can be solved exactly in polynomial

time, however we can use the problem to separate the power of priority algorithms and

the class of memoryless priority algorithms. We show that memoryless adaptive priority

algorithms cannot achieve an approximation ratio better than 2. Then we will show an

adaptive priority algorithm (not memoryless) which achieves an approximation ratio of

(1 + 2
k−1

).

We first address the lower bound. We view the WIS-2 problem in the node

model, with the following priority model: Γ = (name, weight, adjacency list),weight∈
{1, k}, |adj. list |=2, Σ={accepted, rejected}.

Theorem 17. No memoryless adaptive priority algorithm can achieve an approximation

ratio better than 2 for WIS-2 problem.

Proof. The Adversary chooses the set of instances T to be the graph shown on Figure

2.5 and all isomorphic copies (the exact weight of each node will become clear shortly).

The Solver must order the possible data items, and until she casts an accepting

decision, she cannot reorder the data items. The Adversary’s strategy is to wait until the

Solver accepts a data item.

a b

c

d

e

Figure 2.5: The nemesis graph for MIS problem.

• Case 1: If the first data item accepted by the Solver has weight k, then, the Adver-

sary presents an isomorphic copy of the graph on Figure 2.5, where the vertices

a, b, c, d, e have weights {(a, k), (b, k), (c, 1), (d, 1), (e, k)}, and the data item ac-

cepted by the Solver is (a, k). The Adversary chooses a solution SAdv(I) =
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{b, e}, while the best the Solver can do is SSol(I) = {a, c}, and the approxima-

tion ratio is ρ = SAdv

SSol
≥ 2k

k+1
= 2− 2

k+1
.

The Adversary can choose k arbitrarily large, thus as k →∞, ρ→ 2.

• Case 2: If the first data item accepted by the Solver has weight 1, then the

Adversary presents an isomorphic copy of the graph with the following weight

assignments {(a, 1), (b, k), (c, 1),

(d, 1), (e, k)} and the accepted by the Solver data item is (a, 1). The Adversary

chooses a solution SAdv(I) = {b, e}, while the best the Solver can do is output

SSol(I) = {a, c}. The approximation ratio is ρ = SAdv

SSol
≥ 2k

2
= k, the constant k

can be chosen to be greater than 2.

If the Solver never accepts a data item, then the Adversary will select any non-empty

independent set, and the approximation ratio will be infinity. Therefore the Adversary

wins the game for any approximation ratio ρ < 3
2
.

To show the separation between the models we present an adaptive priority algo-

rithm (non-memoryless) achieving approximation ratio (1+ 2
k−1

) for the WIS-2 problem.

We give an informal description of the algorithm first, and then a formalization as an

adaptive priority algorithm, called ADAPTIVE WIS.

The algorithm first rejects the node with the smallest weight. Then it chooses

a direction in which to traverse the cycle, by identifying what node will be considered

next. The algorithm considers the two neighbors of the rejected node and selects the

one with the bigger weight. If the weights of the two neighbors are the same, then the

lexicographically first node is chosen. Let a and r point to the node to be considered

(the current node), and the one rejected last, respectively. Note that once the direction

of traversal is chosen, r and a would point to exactly one node of the instance, each. At

any time the algorithm makes a decision about a and the neighbor of a, which has not

been considered yet. Let that node be n, see Figure 2.6. The decision of the algorithm

depends on the weights of a and n. If a has weight k, then a is added to the independent
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nar d

Figure 2.6: Fraction of the cycle considered.

set and n is rejected. For the next operation n becomes the next rejected node. If a has

weight 1 and n has weight 1, then the algorithm behaves as before, that is a is added to

the independent set, n is rejected, and n becomes the next r. If n has weight k, then n is

added to the independent set. Let the other (unseen) neighbor of n be d (see Figure 2.6).

Then d becomes the new r node. To distinguish between nodes a and n (refer to Figure

2.6) the ADAPTIVE WIS algorithm uses a predicate P . P evaluates to true when node

n has weight k and a has weight 1. In this case, we want the algorithm to accept n and

reject a.

Below we give a formalization of ADAPTIVE WIS algorithm in the framework

of priority algorithms. We use the following notation: w(γ) denotes the weight of data

item γ and γr is the last rejected node.

Algorithm ADAPTIVE WIS

Input: Sequence of nodes I ⊂ Γ.

Output: S ⊂ I , S is an independent set in I .

Step 1 Initialization: M ← ∅, S ← ∅
Step 2 Reject the smallest weight node:

• π(γ)=w(γ); γr = minγ∈I π(γ); σγr = reject.

• update memory: M ←M ∪ {γr}.

• a is set to be the neighbor of γr with largest weight, or the lexicographically first

node if both neighbors have same weight.

Step 3 repeat until (I = M )
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• Define a predicate P = (|{adj(v)}\M | = 2) ∧ ({adj(v) ∩ adj(γr)} 6= ∅) ∧
(w(v) = k)

π(v) =











































0 if |{adj(v)} \M | = 0

1 if (|{adj(v)}\M | = 1) ∧ (w(v) = k)

2 if P holds

3 if |{adj(v)}\M | = 1 ∧ (w(v) = 1)

∞ otherwise

• a = minγ∈I,γ /∈M{π(γ)}. If π(a) ≤ 3, then accept a and reject its neighbors

(adj(a)). Add a and adj(a) to M :

– if π(a) = 0 then σa = accept

else if π(a) = 1 then σa = accept

else if π(a) = 2 then σa = accept

else if π(a) = 3 then σa = accept

– S ← S ∪ {a}

– R = {γ | γ ∈ adj(a)\M}; ∀γ ∈ R : σγ = reject

γlast = adj(a)\adj(γr ) ; γr ← γlast

– M ←M ∪ {a} ∪ {adj(a)\M}

Output S;

End.

Theorem 18. ADAPTIVE WIS achieves an approximation ratio of (1+ 2
k−1

).

Proof. Let S0 be the first node rejected by the algorithm. Let Si be the set of nodes

either accepted or rejected by the algorithm during the i-th iteration of the loop. Let

ALGi = w(ADAPTIVE WIS(Si))

be the combined weight of the nodes in Si, accepted by the algorithm. Then clearly

ALG0 = 0, because the algorithm rejected the first node. And let OPTi = w(Si)
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be the combined weight of those nodes in Si accepted by the optimal solution. I =

S0 ∪ S1 ∪ . . . ∪ Sn is the set of all nodes in the instance graph.

OPT (I) = OPT0 +
n
∑

i=1

OPTi

ALG(I) = ALG0 +
n
∑

i=1

ALGi =
n
∑

i=1

ALGi

We will analyze the performance of the algorithm during Step 2, during which the algo-

rithm rejects the first node, and Step 3 separately.

Suppose we can bound from above the ratio

OPTi − ALGi

OPTi

≤ x, for each iteration i ∈ {1, 2, . . . , n} of the loop during Step 3,

for some constant x, whose value will be determined shortly. Then we have:

OPTi − ALGi

OPTi
≤ x, ∀i ∈ {1, . . . , n}

1− ALGi

OPTi
≤ x

(1− x)OPTi ≤ ALGi

(1− x)
n
∑

i=1

OPTi ≤
n
∑

i=1

ALGi = ALG(I)

If we choose x = 1
k+1

, then we have ALG(I) ≥ k
k+1

(
∑n

i=1OPTi)

Lemma 19. During each iteration of repeat-until loop in Step 3, OPTi−ALGi

OPTi
≤ 1

k+1

holds.

Proof. (Lemma 19) To prove the claim we consider the four cases for π, which deter-

mine the decision and the payoff for the algorithm. We show that OPTi−ALGi

OPTi
≤ 1

k+1
in

all cases.

Case 0: π(a) = 0
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Assuming the input is a valid instance (a cycle) of the problem, then if the case

ever occurs, it can only happen while processing the last data item, and the algo-

rithm does not lose anything (the algorithm always takes that element).

ALGn ≥ OPTn, OPTn−ALGn

OPTn
≤ 0,

and the claim holds trivially.

Case 1: π(a) = 1

In this case the algorithm adds one node, say a, with weight k to the independent

set and removes from the unseen sequence a’s neighbor. Thus ALGi = k and

OPTi ≤ k.

OPTi−ALGi

OPTi
≤ 0 , and the claim holds trivially.

Case 2: π(a) = 2

The algorithm takes a node, say a, with priority 2, only if Case 1 cannot happen.

The algorithm adds one node of weight k to its independent set and removes

the neighbors of a (two nodes), from the remaining unseen sequence, whose

combined weight is at most k + 1. Thus ALGi = k and OPTi ≤ k + 1:

OPTi−ALGi

OPTi
≤ k+1−k

k+1
= 1

k+1
, and the claim holds .

Case 3: π(a) = 3

The algorithm takes node with priority 3 only when no node has priority 1, or 2.

In this case the algorithm adds a node of weight 1 and removes a node of weight

1. Thus ALGi = 1 and OPTi ≤ 1:

OPTi−ALGi

OPTi
≤ 0, and the claim holds trivially.
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Case 4: π(a) =∞

We claim this case never happens. Every valid instance of the problem is a

cycle and a singleton is not a valid instance. The algorithm initially removes

the node with the minimum weight. If the number of nodes in the instance is

greater or equal to five, then after the removal of the node with the smallest

weight, there will be nodes with degree one and two left, thus there will be

nodes with π values 1, 2, or 3. Now assume the number of nodes in the instance

is smaller than five. The algorithm performs optimally on cycles of size 2 and

3, where the independent set is one node, by selecting the heaviest weight node.

On squares, the independent set is of size 2 and algorithm’s worse performance

is observed on instance, {(a, 1), (b, 1), (c, k), (d, 1)}, where the algorithm selects

an independent set with weight k, while OPT gets k + 1 and the claim holds.

This concludes the proof of the claim.

We finish the proof of Theorem 18 by evaluating the performance of the ADAP-

TIVE WIS during Step 2. Initially, the algorithm removes a node of weight 1 or k. If

the algorithm removed a node with weight k, then every node in the cycle has weight k

and the algorithm performs optimally by selecting every other node as an independent

set. Similarly the algorithm is optimal on cycles where all nodes have weight 1. Thus

we have to analyze the performance of the algorithm on instances whose weights are k

and 1. For those cycles it is obvious that ALG0 = 0 and OPT0 = 1. What we have so

far is:

ALG(I) = ALG0 +

n
∑

k=1

ALGi ≥
k

k + 1

n
∑

i=1

OPTi (2.5)

OPT (I) = OPT0 +

n
∑

i=1

OPTi = 1 +

n
∑

i=1

OPTi (2.6)

n
∑

i=1

OPTi = OPT (I)− 1 (2.7)
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Equations (2.5), (2.6), and (2.7) imply:

ALG(I) ≥ k

k + 1
(OPT (I)− 1) (2.8)

We can trivially bound the weight of the independent set for OPT from below in

this case (instances are cycles with weights 1 and k): OPT (I) ≥ k. Thus 1 ≤ OPT (I)
k

and OPT0 = 1 ≤ 1
k
OPT (I).

ALG(I) ≥ k

k + 1
(OPT (I)− 1

k
OPT (I))

ALG(I) ≥ (1− 2

k + 1
) OPT (I)

(

1 +
2

k − 1

)

ALG(I) ≥ OPT (I)

Note that as k →∞, ALG(I)
OPT (I)

→ 1.

2.6 Notes

The work presented in this chapter initially appeared in 2004 SIAM SODA con-

ference “Models of Greedy Algorithms for Graph Problems” by Sashka Davis and Rus-

sell Impagliazzo [20]. A full version was published in 2007 in Algorithmica [21] “Mod-

els of Greedy Algorithms for Graph Problems” by Sashka Davis and Russell Impagli-

azzo.



Chapter 3

Prioritized Branching Tree and

Prioritized Free Branching Tree

Models

In this chapter we focus on two very important optimization techniques the back-

tracking approach and dynamic programming algorithms. First we discuss a model for

backtracking and dynamic programming designed by [1], called prioritized Branching

Tree Algorithms. Next we present a new general model called prioritized Free Branch-

ing Tree Algorithms. We design a lower bound technique which we use to derive nega-

tive results for both models for the 7-SAT problem.

Backtracking is an important technique because it is general enough and can be

applied to both search and optimization problems. At a very high level, a backtracking

algorithm inspects the search space for a problem in depth first search manner and at

each step attempts to determine whether some partial solution is promising or not. If the

node is promising then it is explored, otherwise the whole subtree rooted at it is pruned.

The state space tree could be traversed in either DFS or BFS manner. The Branch-and-

Bound technique is a refinement of the backtracking approach which is applied only to

optimization problems. Branch-and-Bound explores the search space tree, however it

67
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tries to choose the order traversal wisely so as to minimize the number of the branches

visited and uses a bound (for a minimization problem that would be a lower bound and

for a maximization problem we need an upper bound) for pruning the search.

It is hard to overstate the importance of dynamic programming paradigm as a

technique for designing both exact and approximation algorithms. It has been suc-

cessfully applied to solve exactly many graph optimization problems, scheduling prob-

lems, problems in bioinformatics and network optimization. The dynamic programming

paradigm has been used to solve many problems approximately as well. [31] described

the approach as follows: “To set about developing an algorithm based on dynamic pro-

gramming, one needs a collection of subproblems derived from the original problems...

such that the solution to the original problem can be easily computed from the solu-

tions to the subproblems..There is a natural ordering on subproblems from smallest to

largest... that allows one to determine the solution to a subproblem from the solutions

to some number of subproblems.” [1] designed a formal model of backtracking and

dynamic programming algorithms which encompasses the backtracking approach and

some of the known dynamic programming algorithms. The string edit distance algo-

rithm, many scheduling algorithms, the standard knapsack approximation algorithm and

others seem to fit the model. The DP-simple class of algorithms of Woeginger [51], are

seen to fit the framework of fixed (order) pBT algorithms. A DP-simple algorithm on

an input instance X1, . . . , Xn “...goes through n phases. The k-th phase (k = 1, . . . , n)

processes the input piece Xk and produces a set Sk of states,... every state in the set Sk

encodes a solution to the subproblem specified by the partial input X1, . . . , Xk,... and

the state space Sk is obtained from the state space Sk−1.”

Before we present the formal model for backtracking and dynamic programming

algorithms of [7] let us look at an example. Consider the problem of finding the maxi-

mum weighted independent set on line graphs. The instance can be encoded as an array

of elements I = I1, I2, . . . , In, where the i-th element of the array, Ii, is the weight of

the i-th element of the line graph. There are two decision options per node either to add

the node to the independent set or not. Obviously not all possible decisions would result
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in a valid solution. Consider an instance of size n, where In denotes the weight of the

last node. Let OPTi be the maximum weighted independent set of the first i elements.

The i-th node Ii is either part of the optimal solution or it not, therefore:

OPTi = max {OPTi−1, OPTi−2 + Ii} (3.1)

The recurrence relation (3.1) gives rise to a backtracking algorithm for finding the max-

imum weight independent set on line graphs. For example, consider and instance of the

I=223

I4 ∈ S?
S=2N3

I=22322

I6 ∈ S?
S=2N3NN

I=2232

I5 ∈ S?
S=2N3N

I = 22322
S=2N3N2
I6 ∈ S?

S=2N3N2N
I=223223

I = ∅
S = ∅
I1 ∈ S?
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I3 ∈ S?
S=2N

I=2
S=2
I2 ∈ S?

I=223223
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⊥

subsumed

dominated

I=22
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⊥

dominated
I6 ∈ S?
S=2NN2N
I=22322

I=223

I4 ∈ S?
S=2NN

I=2232
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N
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⊥

⊥
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S=2N3NNN

⊥

Y

Figure 3.1: Example of a computation of a backtracking algorithm on an instance I =

223223.

problem I = 223223. Figure 3.1 shows the computation of a backtracking algorithm
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with pruning, which examines the solution space in BFS order. There are three situations

in which a backtracking algorithm can terminate a branch and hence prune the whole

subtree rooted at the terminated node. All solutions in which the algorithm chooses to

accept two adjacent nodes are illegal, because such solutions will no longer encode valid

independent sets. All these branches are terminated with⊥ on Figure 3.1. Another type

of pruning occurs at nodes whose partial solution is dominated by another node. For ex-

ample, at level two of the backtracking tree, the solution S = NN with partial weighted

independent set of weight 0 is dominated by the partial solution S = 2N whose weight

is 2. Note that any legal solution which can extend S = NN will be able to extend

S = 2N as well, and the former will achieve a higher weight of the independent set. An

example of the last type of pruning is seen on the third level of the backtracking tree.

The branch encoding solution S = N2N is terminated because there is another branch

at the same level, S = 2NN , such that both branches encode solutions with the same

partial weight of 2 and any legal extension of branch S = N2N will also be a legal

extension of branch 2NN . Therefore branch S = N2N can be terminated because it

cannot deliver solutions with higher weights than already existing branch. The optimal

solution is the double box solution S = 2N3NN3 of weight 8. For this problem, the

natural ordering in which partial solutions are build is defined by the order of elements

in the line. Initially we inspect the first element and commit to solutions about it. At

level j we inspect the j-th node of the graph and will extend the live branches with

the two possible decisions for Ij. Branches corresponding to illegal, dominated or sub-

sumed solutions will be pruned. The backtracking algorithm for weighted independent

set on line graphs runs in polynomial time because there are only two branches alive at

any given time: a branch with optimal weight such that the currently inspected node is

added to the solution and a branch, where the node is not added to the solution. Each

partial solution extends one of the two previous partial solutions. When the algorithm

has committed to decisions for all nodes of the line graph, the optimal solution is the one

whose objective function value is the best. In our case the optimal solution is chosen

from S = 2N3NN3 and S = 2N3N2N . The maximum weighted independent set
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has weight eight (denoted by a box with double border on Figure 3.1). The prioritized

Branching Tree model of [1] is a formal model for backtracking and dynamic program-

ming, and the example algorithm on Figure 3.1 does fit the mode. In what follows we

compare the pBT model to the Priority model, described in Chapter 2 and then will

formally define the pBT model.

The prioritized Branching Tree model of [1] is related to the Priority model.

Recall the Priority model from the previous chapter. We could view the computation of

a priority algorithm (on an instance of some optimization problem) as a path, in which

each node chooses the next data item from the instance (using a priority function) and

then commits to one irrevocable decision about it. [1] asked the questions: What if

the algorithm is allowed to explore more than one option per data item? Would such

algorithms be more powerful than the class of Priority algorithms? The pBT model of

[1] extends the priority model by allowing the algorithm to explore multiple options for

a given data item and thus to maintain and extend more than one solution to a problem at

a given time. The pBT model resembles the priority model and both models explore the

instance one data item at a time. A pBT algorithm branches when it decides to explore

more than one option for a given data item, so the computation of a pBT algorithm on a

given instance resembles a tree. We could view each individual path in the computation

tree as a priority algorithm. The priority functions used by a pBT algorithm have only

information theoretic restrictions and no computational limits, as is the case for priority

algorithms.

3.1 The prioritized Branching Tree Model

Before we formally describe the pBT model of [1] lets look at another example.

Consider the 3-SAT problem. A valid instance is a Boolean formula in conjunctive

normal form (CNF), such that each clause has at most three literals and the problem

is to assign values to the variables such that all clauses of the formula are satisfied.

To describe the priority model for 3-SAT we need to specify the set of data items and
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the set of decision options. A data item is represented1 as a variable name, together

with full description of all clauses in which the variable participates in. For the 3-SAT

problem each clause must have at most three literals. For example, data item (x1, (x1 ∨
xk ∨ xl), (¬x1∨, xi ∨ ¬xj)) corresponds to variable x1, where x1 participates in two

clauses. For 3-SAT formulas on n variables, the set of data items D has to contain all

possible data items needed to describe all possible CNF formulas on n variables. The

set of decision options is Σ = {0, 1}. An n-variable Boolean formula in CNF form

(satisfiable or not) is encoded as a set of n data items. As it was the case for the node

priority model for graph problems presented in Chapter 2, for the 3-SAT problem not

all sets of data items encode valid instances. There is a dependence between different

data items and the description of same clauses must agree in all data items. To clarify,

suppose ψ is a Boolean formula in CNF, and supposeC1 = (x1∨¬x2∨xk) ∈ ψ, then the

three data items corresponding to the variables x1, x2, xk must be consistent and have to

contain C1 in their clause lists.

While a priority algorithm chooses exactly one option for each data item of the

instance, the pBT model extends the priority model by allowing a pBT algorithm to

explore multiple assignments for each variable, thus a pBT algorithm maintains multiple

partial assignments. The computation of a pBT algorithm is a rooted tree in which partial

paths are identified by the partial instance and the partial solution. The partial instance

is a set of data items observed (for 3-SAT those will be some set of variables and the

clauses in which they participate), and the partial solution is the decisions made (for

3-sat, that will be assignments to the variables observed).

The next node in the path orders all possible data items, views the first data item

in this order from the instance formula, say that is (xi, Ci1, . . . , Cik). Then the node can

choose to explore one of the two possible assignments xi = 1 or xi = 0, or both, or

could terminate (⊥), the branch2. If ψ ∈ 3-SAT then a correct pBT algorithm must have
1Weaker models are defined by not revealing the full description of the clauses in which the data item

occurs and reveal only their name. Intuitively the more information is revealed the stronger the model and
the more interesting the lower bounds will be.

2Note that pBT algorithms have the power to terminate a branch without justification.
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at least one path in the tree, such that the choices made by the algorithm along this path

define a satisfying assignment.

[1] gave the following formal definition of pBT algorithms.

Definition 5 (pBT Algorithm). A pBT algorithm A for a search or optimization prob-

lem Π with priority model (D,Σ) and a family of objective functions f n : Dn × Σn 7→
{0, 1} when Π is a search problem (fn : Dn × Σn 7→ R when Π is an optimization

problem) is described by:

• Ordering (priority) functions: πk
A : Dk × Σk 7→ O(D), where Dk,Σk describe

the data items observed the decisions committed, respectively.

• Choice functions: ckA : Dk+1 × Σk 7→ O(Σ ∪ {⊥}).

Suppose I ⊂ Dn is an instance of Π then the computation of A induces an oriented3

computation tree TA(I) with the following recursive definition:

• The root of the tree TA(I) has an empty label.

• Each node u at level k is labeled by (Du
1 , . . . , D

u
k , σ

u
1 , . . . , σ

u
k ), where Du

i , i =

1, . . . , k are the data items observed by the algorithm along the path from the

root to node u, and σu
1 , . . . , σ

u
k are the corresponding decision options.

• If node u at level k < n has a label (Du
1 , . . . , D

u
k , σ

u
1 , . . . , σ

u
k) and suppose

Du
k+1 is the first data item from I \ {Du

1 , . . . , D
u
k} according to the total order

πk
A(Du

1 , . . . , D
u
k , σ

u
1 , . . . , σ

u
k ) and suppose ck(Du

1 , . . . , D
u
k , D

u
k+1, σ

u
1 , . . . , σ

u
k) =

(c1, . . . , cd,⊥, cd+1 . . . ), ci ∈ Σ, ∀i, then u has d children (if d = 0 then, u has

no children). When d > 0, then the children of u from left to right are u1, . . . , ud

where the label of ui is

(Dui
1 , . . . , D

ui
k , D

ui
k+1, σ

ui
1 , . . . , σ

ui
k , σ

ui
k+1) = (Du

1 , . . . , D
u
k , D

u
k+1, σ

u
1 , . . . , σ

u
k , ci).

3Meaning that the leaves of the tree are ordered from left to right.
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Naturally when Π is a search problem then a pBT algorithmA is correct if given

an instance I = {D1, . . . , Dn}, I ∈ Π such that if I is a YES instance, the tree TA(I),

generated by A on input I , contains at least one leaf node labeled

(Di1 , . . . , Din, σ1, . . . , σn) such that both conditions are satisfied:

1. {Di1 , . . . , Din} = {D1, . . . , Dn},

2. fn(Di1, . . . , Din , σ1, . . . , σn) = 1.

[1] defined three submodels, which differ on how the priority functions are defined, i.e.,

what they are allowed to depend on.

• Fixed-order pBT algorithms the priority functions rk cannot depend on k or on

its arguments - the data items observed and the decisions made.

• Adaptive-order pBT algorithms have order functions rk which depend on k and

only on the data items observed D1, . . . , Dk.

• Fully-adaptive-order pBT algorithms have priority functions which depend on

both arguments, that is rk depends on both D1, . . . , Dk and σ1, . . . , σk.

[1] showed separations between fixed-order and adaptive-order algorithms.

3.1.1 Complexity Measure for pBT Algorithms

[1] measured the efficiency of pBT algorithms by their width. Given a pBT

tree TA(I) built by a pBT algorithm A, on an instance I , the width of TA(I) is the

maximum over all levels of the number of nodes at a given level and will be denoted

as WA(I). This measure is natural because the width of the tree is directly related to

the complexity of BFS search for backtracking algorithms and the space complexity of

dynamic programming algorithms. On an instance of size n, any branch will have to

read and commit to a decision for each item, hence has length at least n, and therefore

the number of states in the tree is polynomially related to the maximum width of the
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tree. The width of a given pBT algorithm A, for instances of a given fixed size n is

WA(n) = max{WA(I) | |I| = n}.

3.2 The prioritized Free Branching Tree Model

The prioritized Free Branching Tree model (pFBT) takes the pBT model one

step further. In addition to allowing multiple decision options to be explored, it allows

multiple priority functions to be explored (no bounds on the fan-out). A pBT algorithm

builds a tree in which each node of the tree uses an ordering/priority function to choose

the next data item, and then commits to decisions about it. What if a node is allowed to

use not one but many ordering functions, where each function selects the next data item

from the instance, independently on the other functions, and therefore the algorithm

could branch not on one but many data items from the instance? It could be possible

that such an algorithm could detect inconsistent solutions earlier and could be able to

terminate those fruitless branches earlier and hence be more efficient in solving hard

problems. Allowing branching on many data items also increases the independent par-

allelism of the algorithm, which could be helpful when solving some problems more

efficiently than the pBT model. The pBT model does not allow branching on more than

one priority function at a time and the prioritized Free Branching Tree model extends

the pBT model by inheriting all its capabilities, in addition it allows ‘free branching’ on

many priority functions.

A prioritized Free Branching Tree algorithm has two types of states free branch-

ing states and input reading states. A free branching state makes a guess (we could

call the free branching states also guessing states). The guess is an integer i ∈ N =

{1, 2, . . . } and cannot depend on the actual instance, meaning that the free branching

state cannot read data items from the input instance and the guess making should be

instance independent. The free branching state specifies its successors, which could be

many, but the number of successors should be at most the value of the guess. Each

successor is an input reading state, which has the same semantics as a state in the pBT
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model. An input reading state has a label, and invokes a priority function which orders

all data items, then reads the next data item from the input instance according to the or-

der and commits to a set of options. An input-reading state is augmented by appending

the guess of its free branching parent to its label.

Below we give a definition of a prioritized Free Branching algorithm. A pFBT

algorithmA for a search (or optimization) problem Π with priority model (D,Σ) and a

family of objection functions fn : Dn × Σn 7→ {0, 1} (or fn : Dn × Σn 7→ R when Π

is an optimization problem) is described by:

• Guessing functions at level k output an integer gk ∈ N.

• Ordering/priority functions at level k πk
A : Dk × Σk × Nk 7→ O(D), where Dk

describes the k data items observed so far, Σk describes the decisions committed,

Nk describes the guesses made so far.

• Choice functions at level k ckA : Dk+1 × Σk 7→ O(Σ ∪ {⊥}).

Let I ⊂ Dn be an instance of Π, then the computation of A induces an ordered

(from left to right) computation tree TA(I) such that, each level k < n of the tree

is composed of two sublevels. First is the sublevel of the branching nodes at level k

followed by the sublevel of the input reading nodes at level k.

Formally the tree is defined recursively as follows:

• The root of the tree is at level 0 and is a branching state whose label is empty.

• A free branching state at level k has a label of type (Dk,Σk,Nk).

Suppose uf is a free branching state at level k < n whose label is:

(D
uf

1 , . . . , D
uf

k , σ
uf

1 , . . . , σ
uf

k g
uf

1 , . . . , g
uf

k )

and suppose uf makes the guess g ∈ N, then uf has gk+1 successors, which

are input reading nodes ur1 , . . . , urgk+1
. The labels of the successors are of type
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(Dk,Σk,Nk+1) and label of the i−th successor uri
is:

(Duri
1 , . . . ,Duri

k , σ
uri
1 , . . . , σ

uri
k , g

uri
1 , . . . , g

uri
k+1)

= (Duf

1 . . . ,Duf

k , σ
uf

1 , . . . , σ
uf

k , g
uf

1 , . . . , g
uf

k , i),

for i = 1, . . . , g.

• Let ur be an input reading node at level k < n with a label

(Dur
1 . . . ,Dur

k , σ
ur
1 , . . . , σ

ur
k , g

ur
1 , . . . , g

ur
k+1).

Suppose Dur
k+1 is the first data item from I \ {Dur

1 , . . .Dur
k+1} according to the

total order

πk
A(Dur

1 , . . . ,Dur
k , σ

ur
1 , . . . , σ

ur
k , g

ur
1 , . . . , g

ur
k+1),

and suppose

ck(Dur
1 , . . . , D

ur
k+1, σ

ur
1 . . . , σur

k , ) = (c1, . . . , cd,⊥, cd+1 . . . )

then, reading state ur has d children. Each child is a free branching state at level

k + 1. The children of ur are v1, . . . , vd, such that the label of vi is

(Dvi
1 , . . . ,Dvi

k+1, σ
vi
1 , . . . , σ

vi

k+1, g
vi
1 , . . . , g

vi

k+1)

= (Dur
1 , . . . ,Dur

k+1, σ
ur
1 , . . . , σ

ur
k , ci, g

ur
1 , . . . , g

ur
k+1)

Note that the pFBT model subsumes the pBT model. The guesses used by the

pFBT algorithm are integers. If the values of all guesses is 1, then every free branching

state has exactly one child and then we have the pBT model.

The metric for measuring efficiency of the computation of a a pFBT algorithm

is the same as the one used for pBT algorithms.

Lemma 20. [Width bound lemma] If A is a pFBT algorithm for some problem Π such

that WA(I) < w then on all valid instances I ∈ Π the pFBT tree TA(I) has width

bounded by w: |WTA(I)| ≤ w, for any I ∈ Π. Then w is a bound on the fan-out of any

free branching state used by A.
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3.3 Lower Bound for pBT Algorithms for 7-SAT

In this section we consider the 7-SAT problem. The 7-SAT problem is given

a Boolean formula in CNF such that each clause has at most seven literals, find an

assignment which satisfies all clauses. We will develop a lower bound technique which

can be used to show negative results for all algorithms which fit the pBT and the pFBT

models and will use it to establish a lower bound of 2Ω(n) on the width of any pBT

algorithm for solving the 7-SAT.

The computation of a pBT algorithm on a valid instance of a problem creates a

binary tree. Along each branch of the tree the algorithm learns information about the

instance.

Definition 6. (partial instance PI in) The set PI in is the set of all data items queried

along a path of the tree and found to belong to the instance.

Definition 7. (partial instance PIout) PIout is the set of data items found to not be in

the instance.

The revealed partial information along a branch of the tree is PI = PI in ∪
PIout. PS will denote the partial solution committed along a branch, which consists of

decisions about items in PI in. Let n be the size of an instance, hence each valid instance

consists of n data items. The general technique for proving lower bounds is defined as

follows.

1. Define a finite family of valid and hard instances, call it Fn and a probability

distribution P on the instances in the family Fn. Each valid instance in Fn must

have a unique solution. The branches of the computation tree TA(I) of any pBT

algorithmA on an instance I ∈P Fn are divided into two types: the good paths

and the bad paths. Let l be a parameter, which is the maximum number of data

items read by the algorithm. The parameter l depends on the problem and the

hardness of the instances. Let N be a parameter which is much larger than the

number of non-items a pBT algorithm can typically learn, without examining
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and committing to decisions on l data items. Branches in the tree TA(I) are

uniquely identified by PI in, PIout and PS.

Definition 8 (good paths). Good paths are those paths of TA(I), where the

algorithm has learned fewer than N items, which do not belong to the instance

(non-items), by the time it has committed to decisions for exactly l data items.

Hence, if a path defined by the partial information PI in
g , P I

out
g is good then

|PI in
g | = l and |PIout| < N .

Definition 9 (bad path). A path defined by PI in
b , P I

out
b is bad if |PI in

b | < l and

|PIout
b | ≥ N . Conversely by the time |PIout| = N , the algorithm has read and

committed to a decisions to fewer than l data items from the instance, |PI in| < l.

We analyze branches of the tree generated by any pBT algorithm A such that,

the partial instance PIn is of size at most l.

Definition 10 (consistent path). Let p be a branch in TA(I), determined by

the revealed information PI in ∪ PIout and the partial solution PS. We call p

consistent with respect to an instance I if PI in ⊆ I and PIout ∩ I = ∅.

Remark 21. We assume that the algorithms we analyze maintain only consistent

paths, hence TA(I) contains only consistent branches, for all TA(I).

Let I ∈P Fn be an instance and S(I) be its unique solution.

2. Prove that along any good path the solution committed PS is unlikely to be

consistent with the unique solution S(I).

Lemma 22. [Good path bound]

Let I ∈P Fn. Let pk be any good path, defined by the sets PI in
k , P I

out
k , and

PSk. Prove that:

Pr
I∈PFn

[

PSk consistent with S(I) | (PI in
k ⊆ I) ∧ (PIout

k ∩ I = ∅)
]

≤ O

(

1

f1(n)

)

.
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3. When analyzing bad paths we need to establish that they are highly unlikely to

exists and that their total probability is small.

(a) To show that on a typical instance from the probability distribution bad

paths are unlikely to exist we use a super decision. The super decision

tree TA contains all trees TA(I), for all instances I ∈ Fn. Each node in

the super decision tree represents the query “Does data item d belong to

the instance I (d ∈ I)?”. There are two possibilities (hence the super

decision tree is binary and each node has two children). The state of the

algorithm is described by the pair (PI in, PS). Each node of the super

decision tree is described by tuple where the first element describes the

current state of the algorithm; the second element describes the set of non-

items observed: ((PI in, PS), P Iout). Initially the state of the algorithm is

(PI in, PS) = (∅, ∅) and PIout = ∅. A data item can contradict the partial

instance PI in, P Iout if no valid instance I ∈ Fn exists which is consistent

with the partial information PI in, P Iout. A data item d contradicts the

partial information PI in, P Iout if there does not exists a valid instance I ,

such that d ∈ I and I is consistent with PI in, P Iout. If the data item is

not contradictory, then it could either belong to the instance I or not. The

root node of the super decision tree is described by the triple ((∅, ∅), ∅).
Suppose a decision node of the decision tree TA is described by the triple

((PI in, PS), P Iout).

• A decision node with descriptor ((PI in, PS), P Iout) does the follow-

ing:

– Invokes the ordering function π|PS|(PI in, PS);

– Searches for the first data item in the order which is not contra-

dictory with the partial information and is not part of the partial

instance observed so far.
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while ((dk ∈ {PI in ∩ PIout}) ∨ ( dk contradicts PI in, P Iout))

k ← k + 1.

– makes the query “dk ∈ I?”.

Each decision node has two children. Right edge leaving the node

is labeled YES and corresponds to the query answer “d ∈ I”, while

left edge leaving the node is labeled NO and corresponds to the query

answer “d /∈ I”.

• A right child of the node updates the state of the algorithm and invokes

the appropriate choice function. PIout remains unchanged and will be

propagated to the next node.

– State update:PI in ← PI in ∪ {dk}.

– Choice function invocation: c|PS|(PI in, PS). Say the two choices

are c1, c2.

A right child node will then simulate the algorithm and will have two

children which are decision nodes whose description is:

– ((PI in, PS ← PS ∪ {dk = c1}), P Iout)

– ((PI in, PS ← PS ∪ {dk = c2}), P Iout)

Recurse on each decision child4.

• A left child does not change the state of the algorithm, but updates

PIout.

– PIout ← PIout ∪ dk.

A path is bad if |PI in| < l and |PIout| ≥ N . A path is good if |PI in| = l

and |PIout| < N . The number of bad paths in the super decision tree TA is

a pessimistic upper bound of the number of bad paths in any TA(I) because

some bad paths in TA would not be consistent with the specific instance I .
4invoke ordering function π|PS|(PI in, PS) and make decision about 1-st data item in the correspond-

ing list of data items.
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Lemma 23. [Any fixed bad path is unlikely to exist]

Let I ∈P Fn. Let pb be any bad path. Let pb be defined by setsPI in
b , P I

out
b .

Prove that

Pr
I∈PFn

[

(|PIout
b | > N) ∧ (PI in

b ⊆ I) ∧ (PIout
k ∩ I = ∅)

]

≤ f2(n).

(b) Show that the total probability of bad paths is small.

3.3.1 Proof Framework

We will define the family of hard formulas Fn, the sampling distribution on Fn,

the good and the bad paths, and will setup the framework of the proof. We define the

decision tree associated with a pBT algorithm5 which we use in the analysis and will

relate it to the computation tree of the algorithm.

[1] used uniquely satisfiable 3-SAT formulas encoded by a linear system of

mod 2 equations Ax = b, where A ∈ {0, 1}n×n is a non-singular matrix and a very

strong expander and b is a uniformly chosen binary vector of dimension n. Similarly as

in [1] the hard formulas we use for the lower bound are 7-SAT instances with unique

solutions defined by linear system over expanders. To define Fn we need a matrix

M ∈ {0, 1}n×n which has to satisfy all of the following conditions:

1. M is non-singular (has rank n).

2. Each row sums to seven, hence each row has exactly seven ones and exactly

(n− 7) zeros.

3. Each column of M sums up to at most K, where K is a constant and does not

depend on n.

4. M is (r, 7, c) boundary expander, with c > 1 and r ∈ Θ(n):
5The decision tree of each algorithm is unique, and contains as a subtree the pBT tree generated by

the algorithm on any instance. Later we will relate the two trees.
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Definition 11. (boundary expander) A (r, 7, c) boundary expander6 is a binary

matrix in which each row contains exactly 7 ones and (n−7) zeros, and satisfies

the following property: for every set of rows I , such that |I| ≤ r, the size of the

unique neighbors of I called the boundary of I , denoted as ∂M(I), is at least c|I|
(an element is in the boundary of I , ∂I , if the element has exactly one neighbor

in I).

In Section 3.5 we prove that a square non-singular binary matrix M which satisfies all

of the above conditions exists and it is (r, 7, 3) boundary expander.

From now on we assume that M ∈ {0, 1}n×n is a fixed non-singular matrix,

which is also (r, 7, 3) boundary expander, where r ∈ Θ(n) and each column of M sums

up to a constant K. Once M is fixed it is used to define all instances in the family Fn.

Perhaps it will be more appropriate to denote the family by Fn(M) but for shortness

of we will use Fn instead. Let b ∈u {0, 1}n be an arbitrary vector, then the system

Mx = b encodes a 7-SAT instance in the following way. Each row defines one mod 2

equation which is satisfied by half (64 of the 128) of all clauses. All the clauses that

satisfy the equation belong to the formula. Thus each variable of the formula appears in

equal number of clauses in negative and positive orientation. A data item corresponds to

a variable, and is defined by the index of the variable, and a list of all clauses in which

it participates in. Consider the linear system Mx = b. The data item corresponding to

variable xi is defined by the i-th column vector of M and reveals those bits b in which

the corresponding column vector has a one. Because each column of M sums up to

K, then each data item is determined by the exact value of at most K bits of b and a

variable reveals at most K bits of b. A data item is describable as a pair d = (i, g),

where the first component i ∈ [n] identifies the variable, so here d describes xi. The

second component is a vector g ∈ {0, 1, X}n, where (g1, . . . , gn), describe the guesses

for the corresponding components of b. Since each column has at most K ones, then g
6If M was just an expander then it would have had to satisfy the weaker expansion condition that any

set of rows I such that |I | ≤ r the neighbors of I are at least c|I |: any set of row I , such that |I | ≤ r the
neighbors of I are at least c|I | (no uniqueness requirement).
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should have X in at least (n − K) positions and at most K zeros or ones. A data item

d = (i, g) is consistent with the matrix M and hence belongs to D if:

1. for all j ∈ [n] if (M)j,i = 0 then bj = X;

2. for all j ∈ [n] if (M)j,i = 1 then bj ∈ {0, 1}.

The set of all data items D, needed to describe all formulas in Fn has cardinality

|D| ≤ 2Kn. The family of hard formulas Fn, contains all formulas defined by mod 2

equations in the system Mx = b, and b ∈u {0, 1}n, hence |Fn| = 2n. The distribution

on instances we use is the uniform and we choose an instance I at random from Fn by

choosing a vector b ∈u {0, 1}n. We assume that D contains only data items consistent

with the matrix M hence if (i, g) ∈ D then ∀i ∈ [n] (gi = X) ⇔ ((M)i,j = 0). If

gi = X then the data item does not depend on the i-th bit of b. Otherwise gi ∈ {0, 1} and

the guess bit gi is compared against the real bit bi. If ((M)i,j = 1)∧(gi 6= X)∧(gi = bi)

then the guessed correct, otherwise it is not ((M)i,j = 1) ∧ (gi 6= X) ∧ (gi 6= bi). A

data item can contradict the current knowledge of vector b, or if it does not, then it

can belong to the instance, or not. Select an instance I ∈u Fn by randomly choosing

b ∈u {0, 1}n. I is encoded by the linear system Mx = b, and the unique solution is

M−1b. A data item belongs to a 7-SAT instance I if it is consistent with vector b. A

data item d = (j, (Bj,1, . . . , Bj,n)) is consistent with b if and only if for all k ∈ [n] the

following holds true:

1. ((M)k,j = 0)⇒ (Bj,k = X)

2. ((M)k,j = 1)⇒ (Bj,k = bk)

The first condition says that the data item must be valid and should agree with the matrix

M , while the second condition requires all guesses for the corresponding bits of vector

b to be correct.

We assume that a pBT algorithm knows the matrix M but does not know the

vector b. The distribution on instances we use is the uniform distribution on the formulas
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defined by Mx = b, for b ∈u {0, 1}n. A data item describing variable xi is determined

exactly by the value of at most K bits of b, corresponding to the rows in which the

i-th column vector of M has values 1. Since b is chosen uniformly at random from

{0, 1}n, then given the matrix M , the probability of a data item is at least 1
2K . Any pBT

algorithm for the 7-SAT instances will be specified by the ordering and choice functions

as in Section 3.1, Definition 5. We need to establish a lower bound on the expected

width of the tree TA(I), where I ∈u Fn. The algorithm A is specified by defining

all choice and ordering functions and the computation of A on an instance I generates

a binary tree (see Definition 5), call it TA(I). We consider the tree TA(I) at depth l,

such that along all branches exactly l variables of I are assigned values. To analyze

paths in TA(I) we define a super decision tree TB , associated with a pBT algorithm A,

for learning the bits of vector b. Each data item is represented by a tuple of the type

(j, g), where j is a selector for the column vector of M , and g is an n-vector where

gi ∈ {0, 1, X}, ∀i ∈ {1, . . . , n}.
Let b = (b1, . . . , bn)T be the vector defining the instance formula (Mx = b), let

b = (b1, . . . , bn)T denote the bits of vector b learned by the algorithm. Initially none of

the bits of b are known and b = (⊥, . . . ,⊥)T . A data item d = (j, g):

• is contradictory with respect to the partial knowledge b if:

∃k ∈ [n] such that ((M)k,j = 1) ∧ (bk 6=⊥) ∧ (g 6= X) ∧ (bk 6= gk). If an item

is contradictory then it cannot belong to the instance.

• belongs to the instance if for all k ∈ [n]:

1. ((M)k,j = 0)⇔ (gk = X);

2. ((M)k,j = 1)⇒ (gk = bk).

• does not belong to the instance if both conditions hold:

1. ∀k ∈ [n] ((M)k,j = 0)⇔ (gk = X);

2. ∃k ∈ [n] |((M)k,j = 1)(gk 6= bk).
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Let (PI in, PS) be the state of the algorithm. Let PIout be the set of data items

confirmed to not be in the instance. The super decision tree TB has two kinds of nodes

query and algorithmic. A query node maintains b, (the current knowledge of the algo-

rithm about the instance I). An algorithmic node simulates the algorithm A and com-

mits assignments to variables. A node of TB is described by a tuple ((PI in, PS), P Iout, b).

The root node of the tree TB has descriptor ((∅, ∅), ∅, (⊥, . . . ,⊥)).

• A query node with descriptor ((PI in, PS), P Iout, b) does the following:

1. Invokes the ordering function π|PS|(PI in, PS) = (d1, d2, . . . , d|D|);

k ← 1;

2. while (dk contradicts b) ∨ (dk ∈ {PI in ∪ PIout}) k++;

Let dk = (j, (g1, . . . , gn)); i← 1;

3. while (i ≤ n) ∧ ((gi = X) ∨ (gi = bi)) i++;

4. branch on “(gi == bi)?”

(a) YES: label right edge “YES”

if (gi is the last guessing bit of g)7

(i) then Right child is an algorithmic node with descriptor

((PI in ◦ dk, PS), P Iout, b|bi←gi
).

(ii) else Left child is a query node with descriptor

((PI in, PS), P Iout, b|bi←gi
).

(b) NO: label right edge “NO”

Left child is a query node with descriptor

((PI in, PS), P Iout ∪ {dk}, b|bi←¬gi
).

• An algorithmic node

1. Calls the choice function c|PS|(PI in, PS).

– If the choice function is empty, then the branch is terminated.
7This happens when either i > n, or i < n and gj = X , for all j ∈ [i..n].
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– If the choice function has one possibility, call it V , then create one

query node as a child with descriptor ((PI in, PS ◦ {xj = V }), b),
label the edge (xj = V ).

– If the choice function specifies both assignments, T and F , then create

two children:

∗ Right child with descriptor ((PI in, PS ◦ {xj = T}), b) and label

the edge (xj = T );

∗ Left child with descriptor ((PI in, PS ◦ {xj = F}), b) and label

the edge (xj = F );

To analyze the tree TA(I) at depth l we consider the branches of the tree TB of

length r or less. A data item which belongs to the instance reveals at mostK bits for two

reasons. First, each column vector of M contains at most K ones, therefore at most K

bits defining a data item are guessing bits. Second, as more bits of b become set, a data

item might be defined by some bits already known, hence such a data item will reveal

fewer bits. A data item (l, g) which could have been in the instance but it is not (hence

belongs to PIout) would reveal one bit, if the first bit queried at the branching point

disagrees. It could reveal (in the extremely rare case) K bits when it depends on exactly

K bits of b, and none of the bits have been queried before, and all but the last guessing

bits agree with b. In this unlikely case the algorithm will learn K bits of b from an item

which belongs to PIout, a.k.a non-item. The probability of an item which belongs to the

instance is at least 1
2K therefore the probability of a non-item is at most 1− 2

K
. Paths in

TB are good or bad based on which of the following two events happens first:

• (Event 1) There are l algorithmic nodes along the path, therefore at the last algo-

rithmic node |PI in| = |PS| = l.

• (Event 2) r bits of b are set (to zero or one), and since a non-item reveals at

most K bits, then the number of non-items along the branch are at least N and

|PIout| ≥ r
K

= N .
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Definition 12. (good path) A path is good when Event 1 happens before Event 2, there-

fore a good path in TB is characterized by |PI in| = |PS| = l, b has fewer than r bits

set, and |PIout| < N .

Definition 13. (bad path) A path is bad if Event 2 happens before Event 1. Along a bad

path in TB we have |PIout| ≥ N , |PI in| = |PS| < l.

Next we establish relations between paths in the trees TB and TA(I).

Lemma 24. Let g1 be a good path in TB and suppose g1 is consistent with the instance I .

Let (PI in
l , PSl) be the state of the algorithm at the time exactly l variables (data items)

have been assigned values along g1. Then there exists a path g at level l in TA(I), such

that the state of the algorithm at that point is (PI in, PS).

Proof. Let I = i1, . . . , in, be the input instance and l < n. Since g1 is good in TB
then it contains l algorithmic nodes. For i = 1, . . . , l let (PI in

i , PSi) be the state of

the algorithm at the l algorithmic states along g1. We claim that there is a path g in

TA(I) of length l such that the state of the algorithm at each state in the tree TA(I) along

the path is (PI in
m , PSm), for m = 1, . . . , l. The proof is by induction on i. The root

node of the tree TB has descriptor ((∅, ∅), ∅, b), and will invoke the ordering function

π0(∅, ∅) = O(D), which totally orders D. Let ii1 be the first data item from I in the

orderO(D) and let π0(∅, ∅) = (d1, . . . , dm, ii1 , . . . ). Then in the tree TB the path g1 will

have a sequence of query nodes which would process each data item di whose position

in the order π0 is before ii1 . Since di /∈ I then they contradict the vector b defining I and

none of the items di will be assigned values. The query node which will process data

item ii1 will have a descriptor (∅, ∅), P Iout, b). Since ii,1 ∈ I then all guess bits defining

ii,1 agree with b and some query node processing ii1 along the path g1 in TB will reach

point 4.(a).(i) and will create an algorithmic state with descriptor ((ii1 , ∅), P Iout, b).

The state will invoke the choice function c0(ii1 , ∅). Since g1 is not terminated then it

will correspond to some decision V ⊆ {c0(ii,1, ∅)}. So the first algorithmic state of g1

in TB will create a query state with descriptor (({ii,1}, {V }), {d1, . . . , dk}, b). Now let
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us consider the the root node of the tree TA(I). It will call the same ordering function

π0(∅, ∅), since ii,1 is the first data item of I in the order then the state will set the partial

instance PI in
1 = {ii,1}, and will invoke choice function c0(ii,1, ∅), which is the same

as the choice function called by the first algorithmic node along g1. Hence the choice

V ⊂ T, F will have to be explored in TA(I) as well. Continuing the process we reach

the last algorithmic state of g1 which will have some descriptor ((PI in
l , PSl), P I

out, b)

and (PI in
l , PSl) since both paths call the same ordering and choice functions.

Lemma 25. Let g1 and g2 be two good distinct paths in TB consistent with the instance

I . Then both correspond to paths in TA(I) ending at different nodes at level l.

Proof. Since both paths are good, then they have committed values of l variables. By

Lemma 24 they will correspond to a node at level l in the tree TA(I). Since g1 and g2

are distinct in TB, then they split somewhere. If they split at a left query node then one

of them is not consistent with I , but they are consistent with I , therefore that cannot

happen. Otherwise g1 and g2 split at a right node. That implies that the algorithm A
has committed to different decisions, hence g1 and g2 have distinct partial solutions say

PS1, PS2, PS1 6= PS2, hence they correspond to different nodes at level l in TA(I).

Corollary 26. The number of good paths consistent with an instance I in TB is at most

the width of the algorithmA, WA(n).

Lemma 27. Every path at level l of the tree TA(I) has a corresponding path in TB
(consistent with I).

We characterize the branches of the tree TB according to how many bits of vector

b the algorithm has learned along the path. Intuitively along a good path the algorithm

has fewer than N bits and has assigned values to l variables. Along a bad path the

algorithm has learned N bits but has committed to values of fewer than l variables.

When we analyze the good paths, we use the hardness of the instances in Fn and show

that learning fewer than r bits of b, reveals insufficient information about the unique
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solution and there are exponentially many solutions consistent with the revealed partial

information. The unique solution is M−1b and depends on all bits of b.

Definition 14. (intermediary) A branch is called an intermediary if at most l variables

are committed along it and the bits of vector b revealed along it are consistent with the

instance.

Definition 15. (good intermediary) A branch is called a good intermediary if it is an

intermediary, i.e., exactly l variables are committed, and the number of bits of b learned

is less than or equal to r.

Definition 16. (bad intermediary) A branch is called a bad intermediary if the algorithm

has learned the values of r0 bits of b but has committed the values of fewer than l

variables along it.

Note that, the system Mx = b has always a solution, which is unique because

M is non-singular. Hence, for any pBT tree built by any pBT algorithm we have:

Pr
b∈u{0,1}n

[

∃ alive branch consistent with M−1~b
]

≤ 1.

If the algorithm is correct then this probability will be one. Note that we are evaluating

the probability of a good and bad intermediary already in the reduced sample space of

partial paths that corresponding to partial instances consistent with the final instance.

1 ≤ Pr
b∈u{0,1}n





∃ alive branch

consist. with M−1b



 ≤ Pr
b∈u{0,1}n





∃ alive intermediary

consist. M−1b





≤ Pr
b∈u{0,1}n





∃ bad intermediary

consist. with M−1b



 + Pr
b∈u{0,1}n





∃ good intermediary

consist. with M−1b



 .

3.3.2 Analysis of Good Intermediaries

Along a good intermediary the algorithm has learned fewer than r bits of b and

has committed to the values of exactly l variables. To show that any good intermediary,

has an exponentially small probability of being consistent with the unique solution we
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will use the hardness of the hard formulas in Fn. Suppose that the algorithm has exam-

ined l data items and has learned in total r0 < r bits of ~b. Let b1, . . . , br0 be the partial

information about ~b known to the algorithm. We consider a fixed branch of the pBT

tree, defined by the committed decisions for the variables examined along the branch,

say those are x1, . . . , xl, and the partial knowledge of ~b is b1, . . . , br0 .

Lemma 28. Let M be (r, 7, c) be boundary expander with c ≥ 3. Consider the system

Mx = b, where b ∈u {0, 1}n, x1, . . . , xl be a partial solution committed by the algorithm

and b1, . . . , br0 be the bits from b known to the algorithm where r0 < r. Then

Pr
~b consistent with b1,...,br0

[

x1, . . . , xl consistent with M−1~b
]

≤ 2−Ω(l).

Proof.

Pr
~b consist.

with b1, . . . , br0

[

x1, . . . , xl consist. M−1~b
]

= Pr
~x consis. with

Ax = (b1, . . . , br0
)T

[ ~x consist. x1, . . . , xl ] .

Consider the mod 2 equations defined by the r0 bits of ~b known to the algorithm and

let the corresponding rows of M be denoted as I, |I| = r0. We need to find the number

of solutions to the subsystem of equalities Ix = (b1, . . . , br0)
T , consistent with a specific

value of x1, . . . , xl, committed by the algorithm (l ≤ r0). We seek to find the column

rank of {x1, . . . , xl}. In order to estimate the column rank of x1, . . . , xl in I , we reduce

the system from I equations to I0 equations, such that column rank of {x1, . . . , xl}
in I and the column rank {x1, . . . , xl} in I0 are the same. We do that by eliminating

equations one at a time. Let Fixed = {x1, . . . , xl} be the set of the variables whose

assignment is fixed along the path. The boundary variables of I is denoted by ∂(I). For

a boundary variable xi ∈ ∂(I), let Ii be the row in which xi appears.
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GAUSSIAN-LIKE ELIMINATION OF ROWS
I0 ← I

while (cr0 > l)

1. pick xB ∈ ∂(I0) \ Fixed
2. xB ←− value that satisfies (I)B · xB = (b)B

3. I0 ←− I0−(I)B

4. r0 ←− r0−1.

Each iteration of the loop selects a boundary variable xB , whose boundary status is

determined with respect to current set I0, not the original I . The boundary variable xB

occurs in exactly one row and xB /∈ Fixed. Each iteration of the procedure maintains

the invariant that column rank{x1, . . . , xl} in I0 does not change, hence at the end it is

the same as the column rank{x1, . . . , xl} in I . Consider the mod 2 equation defined

by row IxB
. Because xB does not appear anywhere else, then there are no restriction

on its value and we can set it anyway it is needed to satisfy the equation. Since c > 1,

and r0 ≤ r, we can always find a boundary variable in the body of the loop, because

|∂(I0)| ≥ c|I0|, c > 1.

The Gaussian-like elimination of rows terminates when c · r0 ≤ l. Consider the

reduced system I0·x = b0, after the Gaussian-like elimination. Let b0 = (b1, . . . , br0) de-

note the bits whose corresponding to the equations that have survived the Gaussian-like

elimination. The reduced system has l boundary variables, which appear in exactly one

equation and has a full row rank, which is r0 ≤ l
c
. Then the number of solutions to the

reduced system is at least 2l− l
c . None of the fixed variables Fixed = {x1, . . . , xl} have

been eliminated, hence the particular assignment to the variables {x1, . . . , xl} commit-

ted by the algorithm is one of the 2l− l
c possible assignments and has probability 2−(l− l

c
).

Pr
~b consistent with b1,...,br0

[

x1, . . . , xl consistent with M−1~b
]

≤ 2−
l(c−1)

c . (3.2)

But M is (r, 7, 3) boundary expander, hence c = 3, and the probability of any particular

assignment is at most 2−2l/3 = 2−Ω(l).

(Lemma 28)
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3.3.3 Analysis of Bad Intermediaries

A path in the tree is a bad intermediary if the branch is consistent with the in-

stance and |PI in| ≤ l − 1 and |PIout| ≥ N . Bad intermediaries are paths in the tree TB
of length r with at most l − 1 variables committed. We argue that the probability of a

bad path is exponentially small.

Let (i, g) be one data item, where g ∈ {0, 1, X}n. Let the number of {0, 1}
components of g be k ≤ K (where K is the maximum column sum of M ). If (i, g) is

in conflict with b, then it cannot be in the instance and the algorithm learns nothing. On

the other hand if a data item is in the instance the algorithm learns at most k < K bits

of b, because some bits could have already been revealed. The probability of such data

item is at least 1
2K . A data item that could have been in the instance but is not reveals

between 1 and at most8 k < K bits of b. Such an item has a probability at most 1− 1
2K .

Let N be the number of data items examined,N = r
K

(r ∈ Θ(n) is the 1-st parameter of

the boundary expander M ). Let D1, D2, . . . , DN be indicator random variables defined

as follows:

Di =







1, if the i-th data item examined is in the instance,

0, otherwise.

Conditioning on {D1, . . . , Di−1}, data item Di is not independent and the dependence

is captured by the matrix A. However, note that Pr[Di = 1] ≥ 1
2K , for all i. Our goal is

to prove that it is unlikely that the algorithm has learned more than the expected number

of bits of~b. A bad branch in the tree TB defines a walk of length r, hence at leastN = r
K

non-items are seen along it and l−1 or fewer variables are set. Fix an assignment for the

variables in PI in. The assignment would determine the direction of the walk when we

reach an algorithmic node in TB, F for the left child and T for the right child (encoded

as 0 and 1, respectively). The path is bad and at the time when the N -th data item was

examined at most l − 1 variables were committed and |PI in| ≤ l − 1 We express the
8Revealing k bits is extremely unlikely and will happen if none of the k bits has been revealed and all

but the last guess bits of g agree with b.
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number of data items found as the sum of the indicator variables
∑N

i=1Di. When the

branch of the tree is a bad intermediary then many of the indicators evaluated to 0, at

most l − 1 evaluated to 1, hence
∑N

i=1Di < l. If l < εN
2K then the probability of a bad

intermediary is

Pr

[

N
∑

i=1

Di < l

]

< Pr

[

N
∑

i=1

Di ≤
εN

2K

]

.

Lemma 29. [Probability of a fixed bad intermediary]

Assume that l < εN
2K then the probability of a bad branch is at most

Pr
b∈{0,1}n

[

N
∑

i=1

Di < l

]

< Pr
b∈{0,1}n

[

N
∑

i=1

Di <
εN

2K

]

< e−Ω(N).

Proof. Define

Zi =
i
∑

j=1

Dj.

Note that (Zi) forms a submartingale because

E[ Zi |D0, . . . , Di−1 ] = E[ Zi−1 |D0, . . . , Di−1 ] + E[ Di | Dj, j < i ]

= Zi + E[ Di |Dj, j < i ] ≥ Zi.

Further note that |Zi−Zi−1| = Di, hence |Zi−Zi−1| ∈ [0, 1],Z0 = 0, and E[Di |Dj, j <

i ] ≥ 1
2K . Therefore the conditions of Theorem 50 are satisfied, with µi = 1

2K , ∀i and

µ =
∑N

i µi = N
2K . By Theorem 50 for δ ∈ (0, 1) we have

Pr
b∈{0,1}n

[

ZN < (1− δ) N
2K

]

< e−
δ2µ
2 = e−

δ2N

2K .

In our case N = r
K

, and r ∈ Θ(n).

Lemma 30. [Total probability of a bad intermediary]

Pr
b∈u{0,1}n

[ ∃ bad intermediary] = o(1).
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Proof. Recall that n is the number of variables in the formula, l is the number of vari-

ables committed along a good path and r is the parameter of the expander matrix M .

M is (r, 7, 3) boundary expander and r ∈ Θ(n), N = n
K

, where K is a large constant

which does not depend on n. We guess that l = ε1n, where ε ∈ (0, 1) is also a small

constant and does not depend on n.

To bound the probability that there exist a bad living intermediary we use a

union bound. We need an upper bound on the number of bad intermediaries. Consider

the super decision tree TB, associated with any pBT algorithmA. Each node in the super

decision tree checks the guess bits of a data item against the real values of vector b. If

all guesses agree then the data item belongs to the instance the set PI in is updated and

the algorithm A is simulated, and assignment for xi is committed. Otherwise the data

item (i, g) does not belong to the instance because some guess bit of g disagrees with b.

The number of new bits of b learned is at lest 1 and at most K.

Note that the computation of the pBT algorithm on any particular instance I is

a subtree of the super decision tree TB. Hence the number of bad paths in any pBT tree

TA(I) is at most the number of bad paths in TB which are consistent with I . We bound

the total number of bad paths in TB, by counting both paths consistent with the instance

and those which are not. A bad path has r bits of b read and fewer than l variables

committed along it or N data items inspected and fewer than l variables committed. In

the martingale in Lemma 29, we fixed the assignment of the variables found to belong

to the instance. For a fixed assignment to the variables, by Lemma 29 the probability of

a path of length greater or equal to N with fewer than l variables committed is e−
δ2N

2K .

Since there are at most l − 1 variables assigned along a bad paths, hence the possible

number of assignments is at most 2l−1, therefore by a union bound

Pr
b∈u{0,1}n

[ ∃ bad intermediary] ≤ 2l · Pr
b∈u{0,1}n

[ZN < (1− δ) N
2K

]

≤ 2l · e− δ2N

2K = 2l · e− δ2N

2K .

Choose l = δ2r
10K2K , then l < δ2N

2K = δ2r
K2K . In our case the boundary expander M has
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r < n, r ∈ Θ(n), therefore the probability that there exists a bad intermediary is o(1):

Pr
b∈u{0,1}n

[∃ bad intermediary] ≤ 2

“

δ2r

10K2k

”

· e−
“

δ2r

K2K

”

= o(1).

Theorem 31 (pBT width lower bound for 7-SAT). Any pBT algorithm A solving

the 7-SAT problem on instances selected uniformly at random from Fn requires width

WA(n) ≥ 2Ω(n).

Proof. Let WA(n) be the width of any pBT algorithm A on instances in Fn. Let I ∈u

Fn, where I is defined by Mx = b, with unique solution M−1b. We consider paths of

length l as above, l < n, l ∈ Θ(n) in TA(I). In the sequence of inequalities below “cont.

w.” stands for “consistent with”.

1 ≤ Pr
b∈u{0,1}n

[

(∃ path p ∈ TA(I)) ∧ (p const. w. M−1b) ∧ (p const. w. I)
]

= Pr
b∈u{0,1}n

[

(∃ path p ∈ TB) ∧ (p const. w. M−1b) ∧ (p const. w. I)
]

= Pr
b∈u{0,1}n

[

(∃ good path p ∈ TB) ∧ (p const. w. M−1b) ∧ (p const. w. I)
]

+ Pr
b∈u{0,1}n

[

(∃ bad path p ∈ TB) ∧ (p const. w. M−1b)
]

≤
∑

g good

g ∈ TB

Pr
b∈u{0,1}n





assign. along g

const. w. M−1b

∣

∣

∣
g const. w. I



 · Pr
b∈u{0,1}n

[g const. w. I]

+o(1)

≤
∑

g good

g ∈ TB

2−Ω(l) · Pr
b∈u{0,1}n

[g const. w. I] + o(1)

= 2−Ω(l)
∑

g good

g ∈ TB

Pr
b∈u{0,1}n

[g const. w. I] + o(1)

≤ 2−Ω(l) · E[# of paths at level l in TA(I)] + o(1) ≤ 2−Ω(l) ·WA(n) + o(1).

We have used Lemmas 30 and 28 in lines four and five to establish the inequality. The

very last line implies that

WA(n) ≥ 2Ω(l)(1− o(1)).
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We have chosen l = δ2r
10K2K = Θ(n), (because r ∈ Θ(n) and K is a constant), then

l ∈ Θ(n) and WA(n) = 2Ω(n). We conclude that any pBT algorithm solving 7-SAT

instances requires exponential width to solve the problem correctly.

3.4 Lower Bound for pFBT Algorithms for 7-SAT

We use the same hard instances Fn and uniform distribution on them. The anal-

ysis of good intermediary is the same. The only difference is in the analysis of total

probability of bad intermediary. When a pFBT algorithm reads a data item from the

instance then it can branch on many ordering functions on the remaining data items.

While the computation tree of a pBT algorithm has a fan-out of two, the computation

tree of a pFBT algorithm has no bound on the fan-out of a branching node. By Lemma

20 if a pFBT algorithm A is a width w algorithm, then on any instance the width of

the tree built by A is bounded by w, and therefore w is also a bound on the maximum

fan-out of a free branching node.

The super decision tree TB for a pFBT algorithm will differ from the super de-

cision tree of a pBT algorithm. An algorithmic node makes a decision about a data

item which belongs to the instance. It has 0, 1, or 2 children depending on the choice

function. A child of an algorithmic node is a free branching node. The fan-out of a

free-branching node is bounded by w by Lemma 20, where the children will be query

nodes.

Along a bad intermediary r bits of b are derived and the values of fewer than

l variables are set. We derive a bound on the total probability of a bad intermediary

using Lemma 29. Fix an assignment for those variables in the super decision tree which

belong to the instance. Then by Lemma 29 the probability of a bad path is Pr[
N
∑

i=1

Di <

l] < e−
δ2N

2K . We need to find values for l and w so that the total probability of all bad

intermediaries denoted as PALL BAD is at most say 1
4
. In the super decision tree the total

number of paths with at most l variables being assigned is 2l ·wl, hence by union bound
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and Lemma 29:

PALL BAD ≤ 2l · wl · Pr [a fixed bad intermediary] ≤ 2l · wl · Pr
b∈u{0,1}n

[

N
∑

i=1

Di < l

]

≤ wl · 2l · e− δ2N

2K+1 ≤ 2l+l log w · e− δ2r

2K2K

Recall that r ∈ Θ(n) and if we choose l =
√
n and w = 2α

√
n then,

PALL BAD ≤ wl · 2l · e− δ2r

2K2K ≤ (2α
√

n)
√

n · 2
√

n · e−Ω(n) = 2−Ω(n),

for sufficiently small α.

Theorem 32. The width of any pFBT algorithmA is at least WA(n) ≥ 2Ω
(√

n
)

.

Proof.

1 ≤ Pr
b∈u{0,1}n

[

(∃ path p ∈ TA(I)) ∧ (p const. w. M−1b) ∧ (p const. w. I)
]

= Pr
b∈u{0,1}n

[

(∃ path p ∈ TB) ∧ (p consist. w. M−1b) ∧ (p const. w. I)
]

≤
∑

g good

g ∈ TB

Pr
b∈u{0,1}n





assign. along g

const. w. M−1b

∣

∣

∣
g const. w. I



 · Pr
b∈u{0,1}n

[g const. w. I]

+PALL BAD

≤
∑

g good

g ∈ TB

2−Ω(l) · Pr
b∈u{0,1}n

[g const. w. I] +
1

4

= 2−Ω(l)
∑

g good

g ∈ TB

Pr
b∈u{0,1}n

[g const. w. I] +
1

4

≤ 2−Ω(l) · E[# of paths at level l in TA(I)] + o(1)

≤ 2−Ω(l) ·WA(n) +
1

4
.

We conclude

WA(n) ≥ 2−Ω(l) = 2−Ω(
√

n).



99

The lower bounds established in here and in Section 3.3 imply lower bounds on

the number of branches visited by both BFS and DFS traversals. It is so because we

showed that any branch has either exponentially small probability of being in the tree or

subexponential probability of being consistent with the unique solution.

3.5 Boundary Expander Matrix

Definition 17. A matrix A is (r, k, c) boundary expander if each row has at most k ones

and for any set I , such that |I| ≤ r, then the number of unique neighbors |∂A(I)| is at

least c|I|: |∂A(I)| ≥ c|I|.

Here we need to prove that a square matrix A ∈ {0, 1}n×n exists such that

1. Each row sums to exactly 7.

2. Each column sums up to 7∆ - a constant.

3. A is of full rand and hence is non-singular.

4. A is a (r, 7, c) boundary expander for c > 1 and r ∈ θ(n).

Let ∆ be a constant, whose exact value will be determined later. First we define

a distribution on ∆n × n binary matrices, such that each row has exactly 7 ones and

each column sums up 7∆. Then we show that a random matrix from that distribution is

a good boundary expander. Next we argue that with high probability a matrix from that

distribution has a full column rank. Then we are done because any n linearly indepen-

dent rows of that matrix will inherit the expansion of the big matrix and is non-singular.

Furthermore, each column will sum up to 7∆ which is a constant and does not depend

on n, and each row sums to exactly 7.

The columns of the matrix are the variables. Each variable has 7∆ distinct equa-

tion in which it should appear. The rows are the equations with exactly 7 variables each.

The total number of 1s in the matrix is 7∆n. How do we match variables to equation
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and preserve the constraint? Model the matrix as a bipartite graph. Left side are the

equations there are ∆n of them each has 7 slots (for distinct variables). On the other

side we have n variables each has 7∆ slots for the 7∆ equations in which a variable par-

ticipates it. The distribution on matrices is all random perfect matchings of this bipartite

graph.

Pick a row at random. From the available unmatched variables pick one at ran-

dom, remove it (we sample from the columns without replacement). Decrease the num-

ber of remaining slots the selected variable has for future selection. Repeat until all

7 variables are chosen. We claim that any set I of at most r rows according to this

distribution has boundary greater than c|I|, c > 1.

Lemma 33. Let ∆ be a constant whose value will be set later. For any sufficiently large

n there exists a matrix A ∈ {0, 1}∆n×n, which is also a (r, 7, 3) boundary expander.

Proof. We claim that the probability over the random choices without replacement of

the variables in each row, that A is a (r, 7, c), c = 3 boundary expander is greater than 0.

The set of rows I , |I| = t ≤ r, define t equations and 7t variables of which B are

boundary and the remaining D are duplicates. Initially, before the sampling begins each

variable has all its 7∆ slots available. Once a variable is chosen it becomes a boundary

variable and has only 7∆ − 1 slots free. Consider the walk of length 7t from Figure

3.2 beginning at state B = 0/D = 0 and assume that r ∈ Θ(n). At time i, i variables

are picked and i of the 7∆n slots are used. Suppose at time i the number of boundary

variables is D and the duplicates is D, respectively. The total slots available to from the

boundary variables is B(7∆−1). If a boundary variable is picked again then it becomes

a duplicate. The number of boundary variables decreases by 1, the set of duplicates

increases by one, and slots of duplicates increases by 7∆ − 2. Each duplicate has at

most 7∆ − 2 slots left and each time a duplicate is chosen again to participate in an

equation, the number of available slots decreases. The remaining variables n− B −D
have all their slots empty and available to be chosen, that is 7∆(n− B −D) slots. We

need to estimate the probability that after 7t steps the chain will end in a state where
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D + 1

B − 1

p=

p++
p−−

B

D D

B + 1

Figure 3.2: Transition function of state B/D.

B < 3t. Assume that after i ≤ 7t steps the current state is B/D. Only i slots are

occupied and B + 2D ≤ i ≤ r, r ∈ Θ(n). With probability

p++ =
7∆(n−B −D)

7∆n− i > 1− B +D

n

the next step will increase the boundary and we go to a state B + 1. With probability

p−− =
(7∆− 1)B

7∆n− i <
B

n

the next step will decrease the boundary and we go to a state B − 1. With probability

p= ≤
(7∆− 2)D

7∆n− i <
D

n

the next step will not change the boundary and the duplicate sets.

From here on when we say forward for the direction of the walk, we mean in-

crease the boundary, and as an overestimate when we say backwards we mean decrease

or do not change the boundary9. Although those probabilities depend on the current

state we will simplify the analysis by modeling the experiment as a Binomial random

variable B(7t; p̂). We define the success probability p̂ to be the largest probability that

a walk of length 7t can finish in a state with B ≤ 3t. Note that any walk of length

7t where we go to the right, that is we increase the boundary for 5t steps or more will

not be able go back to B < 3t state. Then p̂ < 1 − (1 − B+D
n

) = B+D
n
≤ 5t

n
. Now

9Note that this assumption leads to not tight analysis because some walks “backwards” will not finish
in a state B < 3t but will be counted as such. We trade precise estimate for simplicity.
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the event that after 7t steps we end up in a state with less then 3t boundary elements

happens with probability less than the probability that in 7t independent trials we have

5t forward steps and 2t backward steps (or 2t successes and rest failures), which is:
(

7t

2t

)

p̂2t(1− p̂)5t <

(

7t

2t

)

p̂2t.

To find the probability pt that there exists a set I of size at most t whose boundary is at

most 3t we use the union bound:

pt <

(

∆n

t

)(

7t

2t

)

p̂2t ≤
(

e∆n

t

)t (
7e

2

)2t (
5t

n

)2t

≤ ∆t · e3t · 202t ·
(

t

n

)t

≤
[

e3 · 202

(

∆t

n

)]t

<

[

(20e)3

(

∆r

n

)]t

Then the probability that there exists a set of size t ≤ r whose boundary is at

most 3t is

p =

r
∑

t=1

pt.

If we choose r = n
3∆·(20e)2

∈ Θ(n), then p1 <
1
2

and p < 1, hence such an expander

exists.

Next we need to show that with high probability a random matrix chosen from

the distribution has a full column rank.

Lemma 34. Let A be a random {0, 1}∆n×n matrix with exactly 7 ones in each row and

exactly 7∆ ones in each column. Then with high probability rank(A) = n.

Proof. Suppose not. Suppose the rows of the matrix are contained in a proper subspace

(a subspace of dimension k < n). Let

xi1 + · · ·+ xik = B (3.3)

be the subspace equation, where B = 1 or B = 1. To be a valid subspace the 0 vector

must satisfy Eq. (3.3), hence it cannot be the case that B = 1, and any valid subspace
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equation for the matrix A (whose rows define mod 2 equations) is of the form:
∑

i∈S⊂[n]

xi = 0. (3.4)

Furthermore, each row equation of A must satisfy Eq. (3.4) therefore each row of A

must contain exactly two, four, or six variables which also participate in the subspace

equation. Any equation from the matrix which has odd number of variables from the

subspace equation will contradict Eq. (3.4). Hence we need to bound the probability that

a fixed subspace equation is satisfied by each matrix equation ofA, given the constraints.

We consider two cases when the number of variables in the subspace equation is small

and when it is large.

1. Say the number of variables in the subspace equation is t ≤ n
12

(it must be the

case that t ∈ Θ(n) otherwise the probability all ∆n matrix equations satisfy the

subspace equation, given the distribution of the matrix A is zero). Intuitively, no

such equation exists because when t is small the probability that the subspace

equation will be satisfied by all rows is small.

Fix the variables in the subspace equation. Let those be F = {xi1 , . . . , xit}.
Then the subspace equation is:

xi1 + xi2 + · · ·+ xit = 0. (3.5)

So need to express the probability that a fixed equation is a valid subspace equa-

tion for A. Now we evaluate the probability that Eq. (3.5) is satisfied by all rows

from the matrix A. Meaning each row of A must have at least two but even (four

or six) number of variables from F , given the distribution that no variable in F

can participate in more than 7∆ equations and that each equation has exactly 7

variables.

Now consider the matrix equations one by one. Each matrix equation must have

two, four, or six variables from F . But also each variable in F can participate in

exactly 7∆ equations (no more!).
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Definition 18. Call a matrix equation surviving if it has an even number of

variables sampled from F without replacement.

Each variable in each equation is chosen at random without replacement from

the remaining available variables. Initially the t variables in F have all their

7∆t slots available and the probability that the first matrix equation survives is

at most the probability that at least one of the remaining six variables is sampled

from F . Then by union bound the probability the first equation survives is

6× 7∆t

7∆n
=

6t

n
.

Say at time i when the first i equations have survived the variables from F have

at most 7∆t − 2i slots available and in total 7∆n − 7i slots are used. The the

probability that the i + 1-st equation survives by union bound is bounded by

6(7∆t− 2i)

7∆n− 7i
≤ 6t

n
.

Now the probability that Eq. (3.5), is satisfied by all ∆n equations of the matrix

A is at most the probability that the first ∆t equations have survived and the

probability of that is at most ( 6t
n
)∆t.

Hence by a union bound the probability that there exists an equation of t vari-

ables which is satisfied by all equations of A is bounded above by:
(

n

t

)

·
(

6t

n

)∆t

<
(en

t

)t

·
(

6t

n

)∆t

= (6e)t ·
(

6t

n

)(∆−1)t

For t ≤ n
12

and ∆ > 5 the probability above is 2−Ω(n).

2. Consider the case when the subspace equation has greater than n
12

variables. We

argue that a reasonable fraction of all matrix equations are likely to contradict

the subspace equation because we show that it is likely that all variables from

the matrix equation are also in the subspace equation. Hence the probability that

many equations equations survive is exponentially small.
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Initially the variables in the subspace equation have all their slots available, in

total 7∆t slots. Refer to the slots for the variables in the subspace equation as T ,

|T | = t > n
12

.

Definition 19. We say that an equation is in violation if all its variables are from

T , and thus will contradict the subspace equation. If an equation contradicts the

subspace equation then we say that it cannot survive.

We seek to bound from above the probability that at least the first ∆n
12

equations

are not in violation by bounding from below the probability they contradict the

subspace equation.

Consider the first matrix equation. The probability that the first variable is from

T is 7∆t
7∆n
≥ 1

13
because t > n

12
. The probability that the second variable is also

from T is at least 7∆t−1
7∆n−1

> 1
13

. Then the probability that the first equation is in

violation and all seven variables are from T is at least
(

1
13

)7. And the probability

that the first equation survives is at most 1− ( 1
13

)7.

Given that the i-th matrix equation has survived, then the probability that the

i+ 1-st matrix equation is in violation is at least

7
∏

j=1

(

7∆t− 7i− j
7∆n− i− j

)

≥
(

1

13

)7

,

And for i ≤ ∆n
132 the probability that the i-th equation survives is at most

(

1−
(

1

13

)7
)

.

Fix a subspace equation with more than n/12 variables. The probability that all

matrix equation survive the subspace equation is at most the probability that the

first i = ∆n
132 equations survive, which is at most

(

1−
(

1

13

)7
)

∆n
132

≤ e−
∆n
139
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Then by union bound the probability that there exists a matrix equation with

t > n
12

variables is:
(

n

t

)

· e− ∆n
137 < 2n · e− ∆n

139

As long as ∆ > 139 the above probability is exponentially small.

By Lemmas 33 and 34 for reasonably large n there exists a non-singular binary

matrix which is (r, 7, 3) boundary expander in which each column sums up to a constant

K = 7∆. Choose ∆ = 2 · 139, then K = 14 · 139.

3.6 Notes

The pFBT model presented here and the 7-SAT lower bounds for pBT and pFBT

algorithms are part of manuscript “A General Model for Backtracking and Dynamic

Programming Algorithms”, by Josh Buresh-Oppenheim, Sashka Davis and Russell Im-

pagliazzo, [16]. Jeff Edmonds recently obtained a pFBT algorithm solving the 7-SAT

instances in the family Fn of width bounded by O(2
√

n log n). The upper bound and

Theorem 31 imply an exponential separation between the power of pBT and pFBT al-

gorithms.



Chapter 4

Can pBT Algorithms Solve the

Shortest Path Problem?

In this chapter we present another technique for proving lower bounds on the

width of pBT algorithms. We use this technique to obtain an exponential lower bound on

the width of fully adaptive pBT algorithms for shortest path problem where the weights

on the edges can be negative. The shortest path problem we consider is defined as

follows:

Definition 20. (SSSP) Given a directed graph G = (V,E) and a node s ∈ V (G). Find

the simple shortest path from s to a node in G.

The lower bound technique we use here is different and not as general as the

technique used in Chapter 3. The technique we define in this chapter can only be used

for problems where the set of decisions is Σ = {accept, reject}. Let A be a pBT

algorithm for some problem and consider the tree T = TA(I) for some fixed instance

of this problem. Each state s in T is defined by the partial solution PSs and the partial

information PIs = {PI in
s , P I

out
s }. PI in

s are data items which belong to the instance and

are assigned decisions along the path from the root to s. A data item e belongs to PI out
s ,

if there is a state s′ along the path from the root to s, and the ordering function at the

state s′ is π(s′) = {. . . , e, . . . , e′ . . . } such that e′ is the first data item in the total order

107
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π(s′) which belongs to the instance I . If e ∈ PIout then it is the case that e /∈ PI in.

PSs is that subset of PI in
s that has been accepted.

Definition 21. (consistency) We call an instance I consistent with a partial information

PIs = {PI in
s , P I

out
s } if (PI in

s ⊆ I) and (I ∩ PIout
s = ∅).

Definition 22. (unique extension) Let PSs be the set of data items accepted along a

branch. Then PSs is uniquely extendible with respect to PIs if there is an instance Is

consistent with PIs such that, the only solutions to the problem on Is are equal to PSs

when restricted to PIs.

Definition 23. (agreeable data item) A new item e agrees with the partial information

PIs and the partial solution PSs if there is a valid instance Is consistent with PIs which

has some optimal solution consistent with PSs that contains e.

Definition 24. (competing data item) If a data item is not agreeable then it is competing.

The lower bound is defined as a game played by a Solver and an Adversary,

which we call the Q-improbability game. The game proceeds in rounds.

1. The Adversary privately selects an instance I , which might not be a valid in-

stance. Then sets Q0 ← 1; t← 1.

The Solver initializes empty revealed information and partial solution:

PI in
0 , P I

out
0 , PS ← ∅.

2. round t begins

(a) The Solver picks a data item dt /∈ PIt−1.

(b) The Adversary reveals whether dt ∈ I or not.

• If dt /∈ I then the Solver updates PIout
t ← PIout

t−1 ∪ {dt} and next

round begins.
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• If dt ∈ I , then the Solver updates PI in
t ←PI in

t−1∪{dt}. The Adversary

picks probability qt.

With probability qt, PS ← PS ∪ {dt}; Qt ← Qt−1 × qt;
With probability 1−qt, PS remains unchanged;Qt ← Qt−1×(1−qt);

round t ends; t← t+ 1.

3. Game ends when at the beginning of some round t, Qt ≤ Q. Let PI and PS

denote the partial information and solution at the end of the game.

4. The Adversary wins if there exists a valid instance I ′ consistent with PI so that

every optimal solution in I ′ agrees with PS, otherwise the Solver wins.

Lemma 35. Let Πn be a problem with a finite set of data items Dn. If there is a width

w pBT algorithm for Πn, then Solver wins with probability 1−Qw.

Proof. Let A be a width w pBT algorithm for Πn, as specified in Chapter 3. Solver

simulates A to pick the next data item as follows: Initially, Solver runs A and obtains

the ordering πS0(D). Let d be the first data item in the ordering, then Solver sets d1 = d.

At round i Solver maintains PI in
i , P I

out
i , and PS. PS and PI in

i uniquely define a

branch of the BT tree and a state in it, let that state be s. Then the Solver uses πs and

picks di to be the first item in the ordering. The game ends when the probability of the

current path (determined uniquely by PI = PI in, P Iout, PS) falls below Q.

The Adversary loses when the branch corresponding to PS and PI at the end of

the game is not part of any BT tree TA(I) built by A on any valid instance I . But A is

width w algorithm, so the probability the branch defined by PS and PI is in the tree is

at most Qw, hence Solver wins with probability 1−Qw.

Corollary 36. If Adversary can win with probability greater than 1/2 then all pBT

algorithms have width w ≥ 1
2Q

.

Definition 25. (competing edge) An edge (u, v) is competing with respect to a given

partial solution PS if there exists edge (u, x) ∈ PS or there exists edge (w, v) ∈ PS.

Otherwise it is agreeable.
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A competing edge cannot be part of the solution because, adding such an edge

to PS will destroy its validity (PS will no longer be a simple path).

Now we describe the strategy for the Adversary for the shortest path in graphs

with negative weights but no negative cycles. Let t and p parameters which depend on

n such that t = n1/9 and p = n−3/4. The Adversary picks an instance I at random from

G(n, p). Each edge if present has a weight of −1. Let PIi = PI in
i , P I

out
i and PSi be

the revealed information and the partial solution after round i has finished. At round

i+ 1 the Solver selects an edge e: If e is competing with PI in
i then qi+1 = 0. Otherwise

qi = 1/2. Then at the end of the round we have Qi+1 = 1
2ti

, where ti is the number

of agreeable edges seen so far. Without loss of generality, we assume that the Solver

views all competing edges after each edge e is added to PS. The Q-improbability game

is played for Q = 1
2t . In what follows we first characterize the random instance I chosen

by the Adversary before the first round of theQ-improbability game. Then we show that

there exists another valid instance with the same revealed information as the revealed

information at the end of the game, such that the partial solution at the end of the game

is consistent with the unique solution in the valid instance, hence the Adversary wins

the game with probability greater than 1/2, establishing exponential lower bound on the

width of any pBT algorithm for the shortest path problem.

Lemma 37. Let PI = (PI in, P Iout) be the partial information and PS be the partial

solution. If they satisfy the following three invariants, then PS is uniquely extendible

with respect to PI:

[P.1] PI in contains no cycles.

[P.2] |PI in| is o(√n).

[P.3] Any node in PS with in(out)-degree 0 in PS has in(out)-degree o(n) in PI in ∪
PIout. Any node in V (PIout) \ V (PI in) has in(out)-degree o(n) in PI in ∪ PIout.

Proof. We will exhibit a set of edges M such that, M is disjoint from PI and PS ∪M
is the unique longest path starting at s in PI in ∪M .

Since PI in contains no cycles then PI in is a directed acyclic graph. View PS
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as a set of disjoint simple directed paths, let those be P1, . . . , Pk such that, Pi goes

from, say, ui to vi. If PS doesn’t touch s, then we assume P1 begins at u1 and ends

at v1, where u1 = v1 = s otherwise, u1 = s and v1 6= s be the end of the path in

PS leaving s. Since PI in is a directed acyclic graph it defines a partial order on the

paths Pi. Let ≺ be a total order on the paths P1, . . . , Pk consistent with the partial order

defined by PI in such that, Pi ≺ Pj ⇒ i < j. Let V be the nodes not touched by PI in,

V = V (G) \ V (PI in) = [n] \ V (PI in), and let E be the set of all possible edges minus

those in PI in ∪ PIout. We construct k disjoint simple directed paths Q1, . . . , Qk such

that, Qi goes from vi to ui+1 for i < k and Qk goes from vk to some node in V . Note

that the edges in {Q1, . . . , Qk} respect the order≺. The set of simple paths {Q1, . . . Qk}
satisfies the following conditions:

• |Qi| > |PI in|, ∀i = 1, . . . , k,

• the intermediate nodes of each Qi are from V ,

• the edges of each Qi are all from E.

M will be the set of all edges in {Qi}. Note that PI in ∪M is cycle free because the

paths Qi respect the order ≺.

Claim 38. P = PS ∪M is the unique longest path in PI in ∪M .

Proof. Let P ′ be any other path P ′ 6= P . They both must originate at s and since they

are distinct they must diverge at some node d ∈ V (P1 ∪ · · · ∪ Pk). It could not be the

case that d ∈ {Q1 ∪ · · · ∪ Qk} because each Qi is a simple path. Suppose d ∈ Pi. Let

(d, u) be the edge in P ′ then (d, u) ∈ PI in. If the path P ′ never rejoins with P , then

it must skip at least one Qi, but |Qi| > |PI in|, hence P ′ is shorter than P . The path

P ′ cannot rejoin P within the segment Pi because PI in has no cycles. Also note that

P ′ cannot rejoin P at some segment Pm, for m < i because to do so we need an edge

which disagrees with the order ≺, but all edges in PI in agree with the order ≺ and the

edges in {Q1, . . . , Qk} also respect the order. Hence no such edge exists. On the other



112

hand if the section of P ′ after node d rejoins with P then it must be at a segment Pj with

j > i, thus missing all edges in Qi, and because |Qi| > |PI in| then P ′ is shorter.

To construct the paths {Qi} from E we need the following claim:

Claim 39. Let H = (S,E(S)) be a graph of order m, |S| = m such that, each node

x ∈ S has at least m− o(m) in neighbors and at least m− o(m) out neighbors in S. Let

u, v ∈ S be two nodes such that1 |Γ(u)out| > m
2

and and |Γ(v)in| > m
2

, then there exists

at least one node w such that (u, w) ∈ E and (w, v) ∈ E.

Proof. By the pigeon hole principle.

Initially H = (V,E). Also note that u2, . . . uk have n− o(n) in-neighbors in V

and every v1, . . . , vk has n − o(n) out-neighbors in V . Let |PI in| = L ∈ o(√n). We

need to construct k paths of length L+1, where k ≤ t+1, and we know that L ∈ o(√n).

Note that invariant [P.3] implies that any node with zero in(out)-degree in PS has o(n)

out(in)-degree in PI . Nodes with zero out-degrees in PS are nodes v1, . . . vk and they

will have at least n− o(n) degree in E. Similarly nodes u2, . . . , uk have zero in-degree

in PS and by invariant [P.3] are guaranteed to have n−o(n) degree inE. Also note, that

all other nodes V (PI) \V (PS) have zero in or out degree in PS and again by invariant

[P.3] are guaranteed to have n − o(n) degree in E. The remaining nodes [n] \ V (PI)

have in and out degrees n in E.

We construct paths Q1, . . . , Qk, such that Qi = vi, w
i
1, . . . , w

i
L, w

i, ui+1. We

begin with Q1. Choose w1
1, w

2
1 ∈ V such that (v1, w

1
1), (w

1
1, w

1
2) ∈ E, remove w1 from

V . Continue until we have a path v1, w
1
1, w

1
2, . . . , w

1
L of length L. Because both w1

L

and u2 have had n− o(n) in-out neighbors in E at the beginning and L ∈ o(√n), then

by Claim 39 there exists a node w1 such that (w1
L, w

1) ∈ E and (w1, u2) ∈ E. Let

Q1 = v1, w
1
1, . . . w

1
L, w

1, u2, then the length of Q1 is |Q1| = L + 2 > |PI in| = L. Note

that we have removed L + 1 ∈ o(√n) nodes from V and hence the in and out degrees

of nodes V in E remain n− o(n). The remaining paths Q2, . . . , Qk are built in the same
1We use the standard mathematical notation: Γ(x)in is the set of neighbors of x such that (u, x) ∈ E

and Γ(x)out is the set of neighbors of x such that (x, u) ∈ E.
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way as the path Q1. The procedure is possible because each path removes L+ 1 ∈ o(n)

nodes from V , repeated at most t + 1 times, in total at most n1/9+1/2 = o(n) nodes are

removed. Therefore at any stage during the construction of the paths Qi the remaining

nodes will still have in and out degrees of at least n− o(n) in E.

Our goal is to show that at the end of the Q-improbability game PI and PS

satisfy invariants [P.1], [P.2], [P.3] with high probability. Edges which were rejected but

were agreeable with the current partial solution PS are denoted by R. Whenever A
accepts an edge (u, v) and adds it to PS, then all edges of G out of u and into v are

revealed. Those edges are called competing with PS and are denoted by C. At the end

of theQ-improbability game the edges present in the graph are PI in = R ∪ C ∪ PS and

the revealed information PI = PI in, P Iout. Define t = |R|+ |PS| (t is the number of

agreeable items seen at the end of the Q-improbability game). We show tight bounds on

the sizes of the sets of edges PS,R, C, and PIout. Recall that t = n1/9 and p = n−3/4.

The Adversary stops the game when t reaches n−1/9.

Consider the partial solution PS. Let Xi for i = 1, . . . , t be a family of indicator

random variables such that Xi = 0 if the i-th edge was in PS and 0 otherwise. By the

path picking strategy Pr[Xi = 0] = Pr[Xi = 1] = 1/2. Then the expected number of

accepted edges is:

E [|PS|] = E

[

t
∑

i=1

Xi

]

=
t
∑

i=1

Pr[Xi = 1] =
t

2
.

Because X1, . . . , Xt are independent, then for any 0 < δ1 ≤ 1 and δ2 ≤ 2e− 1 we can

apply Chernoff’s bound, Pr
[

|PS| < (1− δ1) t
2

]

< e−
tδ21
8 = e−Ω(n1/9) and

Pr

[

|PS| > (1 + δ2)
t

2

]

< e−
tδ22
8 = e−Ω(n1/9). (4.1)

Same argument establishes that the expectation of the number of rejected edges and the

probability that this number deviates from the expectation.

E[|R|] =
t

2
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Pr[|R| > (1 + δ4)
t

2
] < e−

tδ24
4 = e−Ω(n1/9). (4.2)

Now we consider the set edges C competing with PS (revealed after an agree-

able edges was accepted by A). Let Di for i = 1, . . . , t be the number of edges inci-

dent to the nodes of the i-th edge, then for all i = 1, . . . , t we have E[Di] = np and

Pr[Di > (1 + δ)2np)] < e−δ2np = eΩ(n1/4), for any δ ∈ [1, 2e− 1].

Pr

[

t
∑

i=1

Di > (1 + γ)2tnp

]

< e−
2γ2tnp

2 .

The number of competing edges is |C| = ∑i∈ADi and E[|C|] =
∑t

i=1 E[Di]:

Pr

[∑t
i=1Di

2
>

(1 + γ)2tnp

2

]

= Pr

[

t
∑

i=1

Di > (1 + γ)2tnp

]

,

hence

Pr[|C| > (1 + γ)2tpn] = Pr

[∑t
i=1Di

2
> (1 + γ)tnp

]

< e−
2γ2tnp

2 = e−Ω(n13/36). (4.3)

Next we look at the size of PIout. LetXi, for i = 1, . . . , t, be a family of random

variables, such that Xi is the number of non-existing edges learned by the algorithm A
prior to querying the i-th agreeable edge (we have in total t agreeable edges along P ) of

the instance along the path P . Note that Xi’s are independent and identically distributed

geometric random variables with parameter p, and the number of nonexistent edges is

|PIout| =
∑t

i=1Xi, with expectation E[|PIout|] = t
p
. Let X be a geometric random

variable with parameter p. Then

Pr

[

X <
1 + δ

p

]

= 1−
∑

i≥ 1+δ
p

(1− p)i = 1− (1− p) 1+δ
p

p
> 1− e−(1+δ)

p
.

Choose δ = 2 ln 1
p
, then Pr

[

X <
1+2 ln 1

p

p

]

> 1 − p
e
. We will use the Hoeffd-

ing’s inequality ([28]), which states that if Z1, ..., Zt are independent random variables

assuming values in the range [ai, bi], respectively, and S =
∑

i Zi then

Pr[S − E[S] ≥ x] ≤ exp

(

− 2x2

∑t
i=1(bi − ai)2

)

.
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We define a new random variable X̃ =







X, if X < 1+δ
p

;

0, otherwise.
Then with probability 1− e

p
we have that

∑t
i=1 X̃i =

∑t
i=1Xi and E[X̃i] < E[Xi] = 1

p
,

for all i. Now we apply the Hoeffding’s inequality for
∑

X̃i.

Pr

[

∑

X̃i > (1 + γ)
t

p

]

< exp

(

−2(γt/p)2

t(1+δ
p

)2

)

= e
− 2γ2t

(1+δ)2 = e
−Ω

„

n1/9

ln2 n

«

. (4.4)

We prove the validity of the invariants out of order.

Lemma 40. With probability 1− o(1) invariant [P.2] holds and |PI in| ∈ o(n).

Proof. PI in = R ∪ PS ∪ C and the expected size of PI in is

E[|R|] + E[|PS|] + E[|C|] = t+ 2tpn = n1/9 + n13/36 = o(
√
n).

Then by Equations (4.2), (4.1), and (4.3) the probability |PI in| exceeds o(
√
n) is strictly

smaller than 2e−Ω(n1/9) + e−Ω(n13/36).

Lemma 41. [P.1] With probability 1− o(1) PI in is cycle free (in undirected sense).

Proof. Invariant [P.1] holds true with probability 1 − e−Ω(n13/36) and the size of PI in

is t + 2tpn < 3tpn. We ignore direction of edges here and will reason about PI in as

an undirected graph. If PI in is a single connected component then a cycle is created

if an edge between any two nodes is added to PI in. If PI in is a forest of connected

components then adding an edge between two nodes touched by PI in might or might

not create a cycle. Therefore a cycle exists in PI in with probability at most
(

3tpn
2

)

p <

9t2p2n2p = 9(tn)2p3 = 9n−1/36 ∈ o(n).

Lemma 42. With probability 1− o(1) invariant [P.3] holds true.

Proof. Fix a node, let it be x, such that x ∈ V (PS). Suppose x’s in-degree in PS is 0.

If x’s in degree in PI in is 0 then x must have a very high degree in PIout. By Equation

(4.4) with probability e
−Ω

„

n1/9

ln2 n

«

the number of non-edges revealed during the whole
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game exceed 2t
p

= n31/36 = o(n). The total size of PIout is a bound on the number

of edges in PIout incident to x. The expected number of non-edges is E[|PI out|] = t
p
,

and each non-edge appears independently with probability 1− p, hence the probability

a fixed node x has more than than 2t/p = 2n31/36 = o(n) is at most (1− p)2t/p = e−2t.

e
−Ω

„

n1/9

ln2 n

«

.

If x’s degree in PI in is non-zero then all edges coming into x must have been

queried and rejected since none of the edge in PI in coming into x would be competing

and revealed (for free during the game). The number of rejected edges coming into x is

at most t = n1/9 = o(n) and this happens with probability 2−t, therefore such a node

will have a high in-degree in PI in ∪ PIout if it has a high degree in PIout. Similarly

as before the probability that x has a degree at least 2t/p in PI out is at most e−2t. Then

by a union bound the probability there exists a node which violates invariant [P.3] is at

most ne−Ω(t).

Lemma 43. Let p = n−3/4 and t = n1/9. Consider the Q-improbability game, for

Q = 1
2t , played by the Solver and the Adversary for the shortest path problem on a ran-

dom graph G ∼ Gdir(n, p). The probability, over random G and the random coin tosses

of the Adversary, that PS is not uniquely extendible with respect to PI is o(1).

Proof. By Lemma 37 the partial information and solution at the end of the

Q-improbability game is uniquely extendible if all three invariants [P.1],[P.2],[P.3] are

satisfied. By Lemmas 41, 40, and 42 the probability that the partial information PI

and the partial solution PS will violate any of the invariants is: n−5/18 + 2e−Ω(n1/9) +

2−Ω(n13/36) + ne
−Ω

„

n1/9

ln2 n

«

= o(1). Hence with probability 1 − o(1) at the end of the

Q-improbability game the partial instance is uniquely extendible.

Theorem 44. Any fully adaptive pBT algorithm for shortest path with negative weights

and no negative cycles on graphs of size n requires width Ω(2n1/9
).

Proof. Lemma 43 guarantees a single graph G for which the result of the
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2n1/9-improbability game is uniquely extendible with probability 1− o(1). The theorem

now follows directly from Lemma 35.

4.1 Notes

The lower bound proof presented in this chapter is part of manuscript “A Stronger

Model for Dynamic Programming Algorithms” by Josh Buresh-Oppenheim, Sashka

Davis, and Russell Impagliazzo, [17], which is being prepared for publication.



Chapter 5

prioritized Branching Programs

Although the pBT model of [1] captures large class of dynamic programming

algorithms, in Chapter 4 we proved that no pBT algorithm can solve the single source

shortest path problem in graphs with negative weights. In this chapter we will build a

formal model which inherits the power of pBT algorithms but also is capable of solving

efficiently the shortest path problems in general graphs.

In the framework of Priority algorithms an instance is represented as a set of

items. The algorithm orders the data items from the instance according to a priority func-

tion and once it observes a data item it has to commit to a decision, which is irrevocable.

The algorithm begins with no knowledge of the contents of these items, but it can order

them. In each step, the first item in the ordering is revealed and the algorithm makes

a decision about it. This decision-making process restricts the algorithm to maintain a

single partial solution during its computation. The pBT model generalizes the priority

framework by allowing the algorithm to maintain a tree of partial solutions, while the

pFBT model generalized the pBT model by allowing in addition many priority functions

to be explored in parallel. Our new model called prioritized Branching Programs (pBP

model), like the pBT model, maintains multiple partial solutions, but also allows mem-

oization which seems essential to the concept of dynamic programming. Consider the

following intuitive definition ([19]): ”Dynamic-programming algorithms typically take

118
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advantage of overlapping subproblems by solving each subproblem once and then stor-

ing the solution in a table where it can be looked up when needed....There is a variation

of dynamic programming that offers the efficiency of the usual dynamic-programming

approach while maintaining a top-down strategy. The idea is to memoize”. The Priori-

tized Branching Programs (pBP) algorithms combine the power of branching with the

power of memoization. Branching allows multiple partial solutions to be maintained,

while merging allows different branches of the computation to memoize the solution to

common subproblems for later reuse (so in a sense pBP = BRANCH+ MERGE).

Any discrete optimization problem can be solved by a pBP algorithm, although possibly

not an efficient one. The computation of a pBP algorithm consists of three phases. On

a given input instance the algorithm generates a directed acyclic graph top-down suc-

cessively as it sees more and more of the input. It then traverses the DAG bottom-up to

obtain the value of the best solution it computed, and then finds the actual solution with

one more top-down traversal. The number of states in the computational DAG (size) is

closely related to the quality of the solution an algorithm finds. In particular, if we allow

an exponential size we can solve any optimization problem.

5.1 The pBP Model

We begin with formal definitions and then illustrate them with examples. We

will define infinite problems Π as a collection of finite problems {Πn|n ∈ N}, where n

is a size parameter. When n is understood, we will drop the subscripts. Algorithms will

also be non-uniform, in that the size parameter is known to the algorithm, and we will

not enforce any connection between the algorithms for different size parameters n.

For each n the problem Πn has the following priority model:

1. A universe of possible data items,D. There is a special element end /∈ D which

is a marker to halt the computation before all data items are seen. So in a sense

end signals the absence of unseen items.
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2. A collection of valid instances, where each valid instance I is viewed as a set of

data items, I ⊆ D. Each valid instance contains end.

3. A set Σ = Σn of decision options for each data item.

4. An objective function F =Fn which takes an input of the form

(d1, σ1), . . . , (dk, σk) with di ∈ D−{end} and σi ∈ Σ and returns a real number,

infinity, or negative infinity. (Without loss of generality, we can assume that the

objective is to maximize F ; we can model minimization by maximizing −F .

We also usually assume {d1, . . . , dk} is a valid instance; however, we can give F

an arbitrary value such as 0 if not. We can model search and decision problems

by picking F to be a Boolean function which has value 1 on feasible outputs.)

Given an instance of the search/optimization problem I ⊂ Dk the problem is

to find a solution, which is an assignment of an option σi ∈ Σ to each data item

di ∈ I−{end}. So a solution for I = {d1, . . . , dk, end} is a set of the form {(di, σi)|i =

1, . . . , k}, where each σi ∈ Σ}, and we wish to, given I, find a solution such that

F ((d1, σ1), (d2, σ2), . . . , (dk, σk)) is maximized. The additional item end has no choices

associated with it, and represents terminating the algorithm when all edges have been

labeled.

5.1.1 Definition of a General pBP Algorithm

In the following, since we allow algorithms to be non-uniformly tuned to the size

parameter, we omit this parameter as a subscript.

For any Π, a pBP algorithm specifies S, a set of computation states (possibly

infinite) and T ⊂ S, a set of terminal states. There is a special empty state S0 ∈ S,

which is the initial (start) state of any pBP algorithm. (Note that S and T are problem-

specific, but not instance-specific. Intuitively, one can think of each state s ∈ S as

representing a “sub-problem” to be solved recursively, with the terminal states as the

“base cases” of the recursion. The sub-problem might not be determined by s alone,
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but also by the unseen or unremembered parts of the input; e.g., S0 always represents

“The complete instance, whatever it is”. Alternatively, like in a memoized dynamic

programming algorithm, one can think of states as encoding the class of partial solutions

to the problem that cause the state to be reached.) LetM(R) be the set of all monotone

functions from R∪{∞,−∞} to R∪{∞,−∞}. LetO(D) be the set of all total orderings

of D.

A pBP algorithm A for a given optimization problem Π = (D,Σ, F ) is defined

by specifying the set of states and three components for each state. In addition, it can

also specify σdef ∈ Σ, a default option. Let s ∈ S be any state, then the algorithm

defines:

1. A priority ordering,

πs ∈ O(D ∪ {end}),

This is used to determine which data item is branched on in this state.

2. A state transition function

gs : D × Σ 7→ S ×M(R) ∪ {⊥}.

If d, σ maps to s′, f , we think of this as defining a directed edge (s, s′) labeled by

(d, σ, f). We insist that the graph induced on S by {gs}, which we call DAGA, be a

(multi)dag. As we shall see later, this requirement is usually ensured by imposing a

natural layered structure on the graph. We can interpret such an edge intuitively as: if,

recursively, we find a value v solution for the sub-problem at s′, we can obtain a solution

to the sub-problem at s of value f(v) by appending (d, σ). Also, any transition where

d = end must go to some s′ ∈ T .

3. For s ∈ T , the algorithm defines a value

vs ∈ R ∪ {∞,−∞}.

Intuitively, this represents “The value returned in the base case s”.

The computation of a pBP algorithm on a given instance traces out a subgraph

of the above graph. For a pBP algorithmA, we define the computation ofA on instance



122

I ⊂ D as follows. A pBP computation has three stages: build the (multi)dag, output the

value of the best solution, and output the solution itself.

Stage I Build the pBP DAG. The algorithm A builds DAGA(I) top down. Let S1 =

{S0} and assume that at step i ∈ 1, 2, 3... we have a set of frontier states Si. For

each node s ∈ Si−T , do the following: let d ∈ I be the first item in I according

to the ordering πs. For each σ ∈ Σ, check if gs(d, σ) = ⊥; if not, say it equals

(s′, f). Then, put s′ in Si+1 and include both s′ and the edge (s, s′) labeled by

(d, σ, f) inDAGA(I). It is the algorithm’s responsibility to ensure that for some

finite i, Si is empty and that all sinks in the graph are in T . Note that the only

source in the graph is S0.

Stage II Compute the value of the best solution.

The second stage begins after the DAGA(I) is fully defined. It determines the

value of the optimal solution. This stage traverses the DAGA(I) bottom up

and successively computes values for each state. The value of the start state

S0 will be the value of the algorithm’s solution. First, consider any sink s in

DAGA(I). Since s ∈ T , the algorithm defines a value vs. We assign this value

to s. Now consider any s in DAGA(I) that does not yet have a value but such

that all of its children do. Let the outdegree of s be k and let s1, . . . , sk be its (not

necessarily distinct) children. They have assigned values val(s1), . . . , val(sk).

Finally, assume that the edge (s, si), i ∈ [k], is labeled by the monotone function

fi. Now we compute val(s) as

max{f1(val(s1)), . . . , fk(val(sk))}.

When computing the value of each s, we also remember which of its outgoing

edges contributed the maximum value by marking that edge. If there is a tie,

it is broken arbitrarily; that is, the algorithm has no control over which of the

maximum-value edges is chosen. Hence there will be one marked edge out of

every non-sink in DAGA(I).
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Stage III Recover the best solution.

The third stage recovers the actual solution by traversing DAGA top down by

following the marked directed path from S0 until a leaf state is reached. This

path is well-defined and gives, for each of its edges, an assignment of a decision

to an item. This partial assignment is then extended to a complete assignment by

assigning any unlabeled item the default label, σdef . The algorithm must ensure

that this assignment is consistent (in that the same data item is not assigned

different options), and that when the problem’s optimization function FPn is

applied to this assignment, it yields the same value that the algorithm reported

in Stage II.

It is clear that the pBP model subsumes the pBT model. How does this model

capture some notion of dynamic programming? Our model resembles the recursive-

memoization implementation of dynamic programming. The nodes of the DAG rep-

resent sub-solutions only to those subproblems which we definitely need and the set

of states reachable in the DP dag represent exactly those subproblems that are needed

during the computation.

Just as in the pBT case, a pBP algorithm can solve any optimization problem

by considering the items in some fixed order and exploring each possible assignment of

decisions to those items on a separate path. So, similarly to the pBT case, the complexity

measure of interest will be the number of states used in any execution of the algorithm.

More formally, define

sizeAn = max{|DAGA(I)| : I ⊂ Dn, I is a valid instance of Pn},

where |G| denotes the number of states in G. Call a family of pBP algorithms {An}
polynomial if there exists a polynomial p such that sizeAn ≤ p(n) for all n.

As was the case for priority, pBT, and pFBT algorithms the functions used in

this model have only information-theoretic restriction and no computational limits are

imposed.
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5.1.2 Submodels of the pBP Model

The pBP model defined above is quite general. Here we will consider several

natural ways to refine the model. These refinements will help us to classify more pre-

cisely various dynamic programming algorithms.

The first four restrictions deal with how many times an algorithm may view the

same data item on a single path and what it may do with that data item. Any valid algo-

rithm in the model must return a consistent path, but we may want a stronger consistency

requirement.

Definition 26. (Read-Once) Consider any path in the computation DAG from the root

state to a terminal state. Suppose each data item appears at most once on this path, then

this path satisfies the Read-Once (RO) property.

Definition 27. (Path Consistency) Call a path from the root state to a terminal state of

the DAG consistent if for each data item d ∈ D there are not two edges along the path

labeled (d, σ, ...) and (d, σ′, ...), respectively, where σ 6= σ′.

Definition 28. (Syntactic consistency) We call a pBP algorithm A syntactically con-

sistent if, for every instance I , every path from the root node S0 to a terminal state in

DAGA(I) is consistent.

Definition 29. (Semantic consistency) We call a pBP algorithmA semantically consis-

tent if, for every valid instance I , the optimal path from the root node S0 to a terminal

state in DAGA(I) is consistent.

Definition 30. (Syntactic RO property) We call a pBP algorithm A syntactically RO if,

for every instance I , every path from the root node S0 to a terminal state in DAGA(I)

is RO.

Definition 31. (Semantic RO property) We call a pBP algorithm A semantically RO if,

for every valid instance I , the optimal path from the root node S0 to a terminal state in

DAGA(I) is RO.
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Definition 32. (Honest pBP algorithm) For the path found in phase 3, our pBP definition

guarantees that the data items and decisions on the edge labels along the path code a

solution which has a value equal to f1(f2(. . . (fk(v)) . . . )), where fi is the function

labeling the i’th edge in the path, and v is the value assigned to the terminal state the

path ends in. Intuitively, this should also be true for non-optimal solutions. Call an

algorithm honest if the same is true for any path from the start state to a terminal state.

The next figure shows natural containments of the subclasses defined above. Let

SynCons, SemCons, SynRO and SemRO denote the class of problems that can be solved

by polynomial pBP algorithms that have the syntactic consistency, semantic consistency,

syntactic read-once and semantic read-once properties, respectively. SemCons is the

most powerful because it can trivially simulate the rest. The weakest class of algorithms

is the class of SynRO.

SynRO

SemRO

SemCons

SynCons

Figure 5.1: Submodel Lattice

We do not know whether the containments are proper.

We can also restrict the variety of orderings that the states use. The following

three variants also appeared in the case of the pBT model. Before we describe them,

however, one structural point is in order: given a pBP algorithm An for a problem Pn,

we can create an algorithmA′
n such thatDAGA′n is leveled where sizeA′n ≤ n·sizeAn if

An is semantic read-once or sizeA′n ≤ (maxI depth(DAGAn(I)))·sizeAn ≤ (sizeAn)2

in general. To do this, let d be the depth ofDAGAn . The new state space will be S× [d],

where the levels are S × {i} for each i, and we will make each edge increase exactly

one level. Hence, we will often assume that DAGA is levelled.
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1. Fully Adaptive (order) pBP algorithms.

Each state can have an entirely arbitrary ordering.

2. Adaptive (order) pBP algorithms.

Consider the DAG DAGA(I) defined by the algorithm A. Here we require that

for each instance I , all states at the same level use the same ordering. Hence,

in any computation, all paths of the same length from the root will include the

same data items. Note that such algorithms are either syntactic read-once or are

not read-once at all.

3. Fixed (order) pBP algorithms.

All states at the same level have the same ordering and that ordering is the same

as the previous level’s ordering except that the item viewed at the previous level

is moved to the end of the ordering, i.e., the data items after “end” in the ordering

are precisely the previously viewed data items, and the other data items are in

the same order as in the start state. In essence, all states use the same ordering,

but technically that ordering must be updated in each level so that the same input

item isn’t viewed repeatedly forever. Such algorithms are syntactic read-once.

Again, define Fixed pBP, Adaptive pBP and Fully Adaptive pBP, respectively, to

be the classes of problems that can be solved by polynomial pBP algorithms with the

corresponding property. It is clear that Fixed pBP ⊆ Adaptive pBP ⊆ Fully Adaptive

pBP. While we will see strong evidence that this hierarchy is strict, it remains an open

question.

5.2 Examples

1. Longest Increasing Subsequence problem

Consider the following pBP formulation for the longest increasing subsequence.

The instance is an array of integers A of length n, coded as follows. A data item
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is a pair (a, i), where a ∈ Z and i ∈ {1, . . . , n} is the position in the array A,

where a appears. A valid instance is a set of n data items in which each i from

1 to n occurs exactly once. For short we will use array index notation and will

refer to the data item as a[i]. The set of decisions is Σ = {0, 1}, where 0 means

that the current number is not chosen to be part of the LIS, and 1 means it is

chosen. The computation states are all pairs (B, i), where B is a sequence of

integers of length at most n and 0 ≤ i ≤ |B| is a natural number. The intended

meaning is that B is the prefix of the input A viewed so far and i is the index of

the rightmost element of that prefix chosen to be in the LIS. A terminal state is a

state which has observed the full input, therefore is identified with (B, i), where

|B| = n and 0 ≤ i ≤ n.

• The algorithm will use a fixed ordering on the items. That (initial) ordering

puts all items with index 1 first, followed by all items with index 2, etc.

Within each index partition, the items are ordered arbitrarily.

• Consider a state s = (B, i), and a new item (a, j). If j 6= |B|+ 1, then the

instance is invalid and we may as well terminate. Otherwise, gs((a, j), 0) =

((B ◦ a, i), f(x) = x). If i = 0 or a ≥ B[i], then gs((a, j), 1) = ((B ◦
a, j), f(x) = x + 1); otherwise gs((a, j), 1) = ⊥.

• All terminal nodes will have value 0.

Below we give an example of the DAG built by the algorithm for the input

5, 1, 2, 3: The forward edges are labeled with the data item and the decision

made by the algorithm on each data item. The edges are labeled with x + 1 if

the decision was to accept the data item and x otherwise. The best solution has

length 3 and the bold backward arrows indicate the path of the winning solution.

Following the bold path from the root to the leaf we can recover the solution as

1; 2; 3. Each level will have at most n states in any computation, so the size of

the above algorithm is at most n2.
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(5,1,inc)

(5,1,2),0(5,1,2),1(5,1,2),2(5,1,2),3

(5,1,2,3),4 (5,1,2,3),3 (5,1,2,3),2 (5,1,2,3),1

(5,1),1 (5,1),0(5,1),2

(5),0(5),1

(5,0,id)

So=((),0)

(5,1,2,3),0

(1,0,id)
(1,1,inc)(1,0,id)

(2,0,id)(2,0,id)

(2,1,inc)

(3,0,id)(3,1,inc)

(3,0,id)(3,0,id)

(2,1,inc)
(2,1,inc)

(2,0,id)

(3,0,id)

Figure 5.2: pBP DAG for LIS on instance 5, 1, 2, 3

Basically the same solutions can be implemented in fixed order pBT with the

same size, similarly as Example 3.1 from Chapter 3. Both problems view data

items in fixed predetermined order, hence each branch of the tree knows whether

the subsolution along it is to be subsumed or is dominated by another branch.

2. Single Source Shortest path in graphs with negative weights

We consider a simplified version of the shortest paths problem, where we are

interested in the path starting at a specified source, s, of smallest total length (to

any destination) in a weighted directed graph that contains no negative-weight

cycles. Because the solution to the problem is a subset of edges which form

a path, it is natural to use the edge model. Here each data item is an edge,

represented as the names of the two end points and the weight (u, v, `), where

the names of nodes are the numbers in [n]. (Note that each graph yields a set of

data items, but only those subsets of data items that code graphs with no negative

cycles are valid.) The set of decision options is Σ = {1, 0}, meaning accepted

and rejected, respectively. The number of vertices, n, and the name of the source,

s are part of the problem definition and hence are known to the algorithm. We

will implement a version of the well-known Bellman-Ford algorithm in the pBP

model. Note that in the absence of negative weights, a priority algorithm can
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solve the problem by implementing Dijkstra’s algorithm ([20]).

• The default label is 0; all edges not explicitly accepted along the final out-

put path will be considered rejected.

• A computation state is encoded as the name of the currently reached vertex,

u, the last vertex we rejected going to from u, v (with v = 0 meaning

no edges have yet been rejected), and an upper bound, k, on the length

(number of nodes) on the path from s to the current vertex, which is always

less then or equal to n− 1.

A terminal states are a special “no more neighbors” state or one where the

value of k is n− 1.

The start state is (s, 0, 0).

From the definition it is clear that the cardinality of the set of states is

O(n3), because there are n nodes and the number of possible lengths is

n− 1.

• Every terminal node (u, v, k = n− 1) and “no more neighbors” has value

0.

• Consider a computation state a = (u, v, k), where k < n− 1. The order πa

will first put all items of the form (u, v′, `) where n ≥ v′ > v in order of

increasing v′ and put all other items after “end”. Data items with the same

v′ are ordered arbitrarily.

• Again, consider state a and assume (u, v ′, `), v′ > v is the data item viewed.

Set ga((u, v
′, `), 0) = ((u, v′, k), f(x) = x), and set ga((u, v

′, `), 1) =

((v′, 0, k + 1), f(x) = x + `). Otherwise, the data item viewed is “end”,

and we go to the “no more neighbors” state and terminate, with f(x) = 0

for the transition.

We showed that the LIS example can efficiently be implemented by a pBT. Note

that the computation will be semantically read-once, but not syntactically read-
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once. It seems difficult to explore paths in a graph using a small number of

computation states without allowing for viewing the same edge more than once

on a given computation path because the states cannot encode which nodes have

already been visited. It also seems necessary to use full adaptivity.

Next we illustrate the computation of the pBP algorithm for SSSP problem with

the following example. Consider the graph on Figure 5.3. We want to find the

V2 V3

V4

V1
e1;5

e4; −5

e2,−5

e3;0

e5,−10

Figure 5.3: Example SSSP instance

V1,V2,0V2,0,1

V3,0,1

V3,V2,1 V2,0,2

V4,0,3 V2,V4,0V3,V4,1

(v3,v2),N,id (v3,v2),Y,add(−10)

V4,0,3V3,V4,1 V2,V4,0

(D,N,id)(D,N,id) (D,N,id)

V2,V3,0

V2,V3,0

(D,N,id)

V4,0,2

V4,0,2

(D,N,id)(D,N,id)

V2,V4,1

V2,V4,1

(v2,v4),Y,add(0)

(v3,v4),Y,add(0)
(v3,v4),N,id (v2,v4),N,id

(v2,v4),N,id

(v1,v3),Y,add(−5) (v1,v3),N,id

(v1,v2),Y,add(5)

V1,0,0

(v1,v2),N,id

(v2,v4),Y,add(0)

So

Figure 5.4: pBP DAG for the instance graph on Figure 5.3

shortest path from s to any other vertex in the instance. Each edge has a label

and weight. We want to find the shortest path from s to any vertex in G. For this

instance there are three paths from s to t each of length 2. The path e1, e3 has

total weight 5, while e2, e4 has weight −10, and e2, e5, e3 has length −15.
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3. TSP

The fastest known exact algorithm for general TSP is due to Held and Karp.

The idea is as follows. Let the set of vertices be [n], the start node of the tour

be 1, the end node of the tour be n. For every vertex i ∈ [n] and every subset

U ⊂ [n]\{i, n},OPTU,i is the shortest tour beginning at i, finishing at n, visiting

all the nodes in U exactly once, and not visiting any nodes outside U ∪ {i, n}.
Intuitively, what makes TSP susceptible to dynamic programming is the fact that

OPTU,i = min
j∈U
{OPTU−{j},j + w(i, j)}.

To put this algorithm in our model, we consider the problem in the edge model,

where each data item is an edge of the graph with a weight. We explore paths

originating at node 1 just as we did in the previous example, except now states

will keep track not just of the current node and how many steps it took to get

there, but of the complement of the set of nodes visited so far. For this reason,

the pBP algorithm will be syntactic read-once. More precisely, just as in the

recurrence above, a state will be encoded by a tuple (U, i), where U ⊂ [n]

and i ∈ [n]. Technically, there will be a little overhead, just as in the previous

example, so that, if we are currently at vertex i, we can explore all edges leaving

i. There will be O(n22n) states. The terminal states will be those that have

current node n; those with empty subset U represent successful TSPs, while

those with nonempty U represent failed traversals. The remaining details are

quite analogous to the shortest path example.

• Each computation state has two components. The first is a subset of the

vertices of the graph, and the second is a vertex name. This corresponds

directly to the recurrence above. In addition, there will be one special state

called FAIL, which we will use if we detect there is no TSP. Hence for a

graph of order n the number of computation states is O(n2n)

• The set of terminal states will be those that have as a second component
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the target of the tour n, plus the state FAIL.

• The ordering function initially would consider edges incident to vertex n.

If we view the DAG level by level, at level i we will have subsets of size

n − i. The ordering function at state (U, i) will explore all edges incident

to i.

• State generation function. Say we are at state (PI, u) and have considered

and accepted edge (u, v) then the state g(PI,u),(u,v),accepted = PI ∪ {u}, v.

The value function, the backward labeling function are the same as in the previ-

ous example.

5.3 Simulations of pBPs by pBTs

We show that, under certain natural conditions, fixed and adaptive pBT algo-

rithms can simulate fixed and adaptive pBP algorithms, respectively, without an increase

in size. In the next section, we show that this is not the case for fully-adaptive pBP.

First, a subtle point: our definition of pBT algorithms requires that, for a pBT

algorithmA,DAGA must be a tree. It is not hard to see that, given the weaker condition

that DAGA(I) is a tree for every instance I , we can create an algorithm A′ that satis-

fies the stronger condition without increasing the complexity. More generally, if two

paths merge in DAGA but there is no instance I such that both of those paths appear in

DAGA(I), then we may as well make two copies of the state where the merge occurred.

The point is that increasing the size of the state space S does not hurt the complexity of

the algorithm if there is no instance which uses both copies of the original state.

Lemma 45. LetA be a fixed (respectively, adaptive) order pBP algorithm for optimiza-

tion problem P . If the monotone functions labeling the edges of DAGA are all linear

functions of the form x+ce, where ce is a constant that depends on the edge e, then there

is a fixed (respectively, adaptive) order pBT algorithmB for P such that, sizeB ≤ sizeA.
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Proof. B simulates DAGA, but remembers the following information: the partial in-

stance PI , the partial solution PS, the state in DAGA reached, and the sum of the

weights ce along the transitions on its current path. At depth t, it views the same input

as DAGA at this state, but before simulating a transition, it uses PI , which is the same

along every other path, to simulate all other t + 1 step paths of DAGA; if any of them

reach the same state with a smaller sum of transition constants, or if a lexicographically

prior partial solution gives the same sum and the same state, then that branch is pruned.

If it reaches a terminal state, then it assigns all unassigned data items the default value,

and terminates with value equal to the objective function at the (now total) solution.

Since B’s states remember PI and PS, they form a tree. If B on I simulated

two paths that arrived at the same state, either one has a smaller sum of transition con-

stants, or both have the same sum, and one has a lexicographically prior partial solution.

Therefore, one of the two will be pruned. Thus, there is at most one unpruned path in

B per reachable computation state in DAGA(I), so the width is at most the complexity

of DAGA. Finally, consider an algorithm that, when two transitions give a state s the

same value, breaks ties according to the lexicographical ordering on the label. Then in

the third phase of the algorithm, if from s0 we reach node v, the chosen path will always

have the highest sum of transition constants among possible paths from s0 to v (other-

wise, whatever value v is assigned, a higher value is assigned to s0 along the other path)

and among such paths, it will be the lexicographically first. Thus, the optimal solution’s

path, which is found in phase 3 of DAGA, is not pruned in B, so in returning the best of

the solutions found at its branches, B will return an optimal solution.

As a corollary of this theorem, we see that the LIS and the LCS problems can be

solved by a polynomial width fixed order pBT algorithm.

The following lemmas show another condition under which pBT algorithms can

simulate FIXED or ADAPTIVE pBP algorithms for search problems.

Given a maximizationP , letPv denote the same problem except thatFPv returns

1 on those solutions where FP is at least v, and 0 otherwise.
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Lemma 46. Let A be an honest fixed (respectively, adaptive) order pBP algorithm for

optimization problem P . For any v = v(n), consider the corresponding search problem

Pv. Then there is a fixed (respectively, adaptive) order pBT algorithm B for this search

problem such that, sizeB ≤ sizeA.

Proof. B simulates A, remembering the partial instance PI , and the partial solution

PS, as well as the current state in DAGA, and a value vt given by: v0 = v and vt =

f−1
t (vt−1), where ft is the monotone function labeling the transition at time t. As before,

when B simulates the transition, if there is a path reaching the same state of DAGA and

yielding a smaller value of vt or if there is a lexicographically prior such a path giving an

equal value for vt, the path is pruned. When we get to a terminal node, we give it value

1 if A gives it value at least vt and 0 otherwise. Hence, at most one path that reaches

any given state of DAGA is not pruned, so the total size for B is at most that of A.

Assume s0 is given value 1 in B. Then phase 3 returns a path in B s0, s1, . . . , st

with st a terminal, where all nodes along the path are given value 1. Each transition in

B corresponds to a transition in A, so we can look at the series of functions f1, . . . , ft

labeling the edges in this path in A, and the series of values v0, . . . , vt defined v0 =

v, vi = f−1
i (vi−1). Then since st is a terminal given value 1, in A, st is assigned a

value ≥ vt. Assume that si+1 is assigned a value in A which is ≥ vi+1. Since the

value of si is the maximum of a number of terms, one of which is fi(v(si+1)) and fi is

monotone, si is assigned a value in A at least fi(vi+1) = fi(f
−1
i (vi)) ≥ vi by definition

of inverse. Thus, f1(f2(. . . (v(st)) . . . )) ≥ v, which, by the honesty condition implies

that the edges on the path code a solution of value at least v. So if B claims there is a

solution, it successfully solves the search problem.

Then assume there is a solution of value≥ v. Let s0, . . . , st be the path returned

by A in phase 3, coding an optimal solution (and hence one of value ≥ v). Define the

series of values v0, ..vt by v0 = v, vi = f−1
i (vi−1), where fi labels the transition. Since B

only aborts a path to si when it finds another path where the composition of the inverse

functions on v, wi, along that path is as small, B contains paths to each state of A with
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search value wi equal to the smallest such composition of any path to si. Thus, it will

have a path to st of label at most vt, and will thus give st value 1. Since the value of the

root s0 in B is the or of the values of the terminal states, this means that B returns a 1 in

phase 2. By the previous paragraph, this means it finds a solution of value at least v in

phase 3.

Lemma 47. Let A be a pBP algorithm for a problem P and let V ⊂ R be a finite set

such that, for every instance I and every state s in DAGA(I), the value of s computed

in phase II is contained in V . Let w be the maximum value in V . There exists a pBP

algorithm B for Pw where sizeB ≤ |V |sizeA which uses the identity function as its only

monotone function. Furthermore, ifA is fixed (respectively, adaptive) order, then B will

also be fixed (respectively, adaptive) order.

Proof. Let S be the state space ofA. The state space ofB will be ((S\{S0})×V )∪{S0}.
If t is a terminal state for A that returns value val(t), then for all v ∈ V , (t, v) will be a

terminal state for B that returns 1 if v ≤ val(t) and 0 otherwise. In general, if there is

an edge (s, s′) in DAGA labeled by (d, σ, f), then, for v, v′ ∈ V , there will be an edge

((s, v), (s′, v′)) labeled by (d, σ, id) if v ≤ f(v′). The root state of B will be S0. If there

is an edge (S0, s
′) in DAGA labeled by (d, σ, f), then, for v′ ∈ V , there will be an edge

(S0, (s
′, v′)) labeled by (d, σ, id) if w ≤ f(v′). If a state (s, v) in B has no children and

s is not a terminal state inA, then make (s, v) a terminal state in B with value 0.

Given any instance I , it is clear by induction on the height of a state s in

DAGA(I) that the state (s, v) will achieve value 1 on instance I in B if and only if

state s achieved value at least v on instance I inA. B will choose as its solution an arbi-

trary path from S0 to a sink in DAGB(I) labelled (d1, σ1), . . . , (dk, σk) such that every

state along this path achieves value 1 (if there is such a path). This path corresponds to

a path in A that contributed value w to the state S0. Since every such path in A must

constitute a valid solution of value w (note this is not necessarily true in a non-honest

algorithm if w is not the max value), so must this path.

Note that, in the previous lemma, if A was fixed or adaptive order, then B satis-



136

fies the assumptions of Lemma 45. Hence there is a pBT algorithm with the same size

computing Pw in this case.

We would like to point out that most natural implementations of dynamic pro-

gramming algorithms as pBPs seem to satisfy the conditions of Lemmas 45 and 46 (cer-

tainly those in Section 5.1 do). This is strong evidence that the separation between fixed

order and adaptive order pBTs given in [1] also holds for pBPs. In Chapter 4 we showed

that pBT algorithms require exponential width to solve shortest paths in graphs with

negative weights while pBP can solve the problem using O(n3) states, thus separating

the models.

5.4 Notes

Manuscript [17] “A Stronger Model for Dynamic Programming Algorithms”

by Josh Buresh-Oppenheim, Sashka Davis, and Russell Impagliazzo, contains the pBP

model and the simulation results presented in this chapter. In addition, in [17], it was

shown that pBP algorithms require 2(Ωn1/9) states to find a perfect matching in bipartite

graphs. Flow algorithms can find perfect matching in bipartite graphs in polynomial

time, thus exponentially separating the power of flow algorithms from pBP algorithms.



Chapter 6

Open Questions

Figure 6.1 shows the current formal models and how they relate to the existing

basic algorithmic paradigms. An edge from model A to model B is present if every

algorithm in model B can be simulated (usually at no cost) by an algorithm in model A.

To show a proper containment we need to exhibit a problem for which we can obtain a

lower bound on the resources for all algorithms in class B, of say Ω(n), and to exhibit

an algorithm in class A which uses o(n) resources. If a separation is achieved then the

arrow is labeled by $ together with the problem which separates the models.

Currently we have four formal models: Priority algorithms, prioritized Branch-

ing Tree algorithms (pBT), prioritized Free Branching Tree algorithms (pFBT), and pri-

oritized Branching Programs (pBP). Priority algorithms were introduced by [14] as a

formal model of greedy algorithms for scheduling problems. In this dissertation we ex-

tended the Priority model to a model of greedy algorithms for arbitrary problem domain.

The pBT model of [1] captures the power of backtracking algorithms and many of the

known dynamic programming algorithms. [1] showed that the pBT model is exponen-

tially stronger than the Priority model. In this dissertation we extended the pBT model

by allowing free branching. We showed that pBT algorithms required 2Ω(n) width to

solve a family of hard 7-SAT instances. We further proved that pFBT algorithms re-

quired 2Ω(
√

n) width to solve the same family of hard 7-SAT instances. Jeff Edmonds
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Dijkstra’s SSSP, Kruskal, Prim, WVC 2−approx.

pBT

Priority Algorithms

2−SAT

SPN

MCM, OBT

GnP = pFBP + partitioning

GnP

7−SAT

? ?

?MCM

pBP
pBP = pBT + merging

Bellman−Ford

pFBT

LCS, Scheduling, Knapsack approx.

pFBT = pBT + free branching

pFBP = pBP + free branching

pFBP

Figure 6.1: Lattice of the algorithmic models. SPN stands for the problem of finding

shortest paths in graphs with negative weights; LCS stands for the longest common sub-

sequence problem; MCM stands for matrix chain multiplication problem; OBT stands

for the optimal binary tree problem.
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developed a width 2O(n log n) pFBT algorithm for the same family of hard instances. This

establishes an exponential separation between pBT and pFBT algorithms. The classical

dynamic programming algorithm of Bellman-Ford for solving shortest path in graphs

with negative weights but no negative weight cycles could not be seen to fit any of the

existing models (Priority, pBT, pFBT) so we proposed a new model pBP, which is capa-

ble of solving the shortest path problem in graphs with negative weights and no negative

weight cycles using O(n3) states. We further showed that any pBT algorithm requires

width 2Ω(n1/9) to solve the shortest paths in graphs with negative weights, thus separating

the pBT and the pBP models. The open questions roughly fall into four categories.

6.1 Inside the Existing Models

Although many non-trivial lower and upper bounds have been obtained for the

four known formal models, the work towards understanding their true power and lim-

itations is all but done. The Priority model seems a flexible and useful tool for under-

standing the limitations of the simple greedy algorithms. However, some “intuitively

greedy” algorithms fall outside our model. One such natural extension will be to con-

sider a model where the algorithm is given access to “global information”, or to redefine

the notion of local information associated with a data item. For example consider graph

problems, suppose the type of data item encodes not just the names of the neighbors,

but also neighbors of the neighbors of a node as well, assuming the problem is viewed

in the node model. Would that additional information, given to the algorithm during the

decision-making process, increase the power of the Priority algorithms? What kind of

lower bounds can we prove for those models?

The pFBT algorithms were shown to be exponentially more powerful that the

pBT algorithms. What kind of upper and lower bounds can we obtain for pFBT for

other optimization problems, say independent set, subset sum, maximum clique? What

kind of lower bounds on the approximation ratio by such algorithms can we prove for

TSP?
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There are two “standard” approaches to apply dynamic programming technique

and solve hard problems approximately: trimming-the-state-space technique (introduced

by Ibarra and Kim [29], see also [51]) and rounding-the-input technique (introduced by

[47], see also [51]). Can we develop lower bound techniques for the pBP and the pFBP

models and use them to show interesting lower bounds on the approximation ratio for the

standard dynamic programming approaches to approximation for various optimization

problems?

6.2 Are the Containments Proper?

pFBT algorithms extended the pBT model by allowing free branching, similarly

the pBP model could be extended by allowing free branching and it is not difficult to see

that a pFBP algorithm could simulate the Bellman-Ford algorithm using O(n2) states.

Free branching was proven to give additional power to pFBT algorithms so we ask the

analogous question. Are pFBP algorithms more powerful than pBP algorithms or does

there exist a non-trivial simulation of pFBP algorithms by pBP algorithms?

(pFBP = pBP) or (pBP $ pFBP)?

The pBP model extended the pBT model by allowing merging, and we showed that

merging is essential and it makes the class of pBP algorithms exponentially more pow-

erful than the pBT algorithms. Does merging make pFBP more powerful than pFBT

algorithms or not?

(pFBT = pFBP) or (pFBT $ pFBP)?

6.3 Beyond pFBP

While many dynamic programming algorithms we have encountered fit into the

pBP model, some do not. For example, the dynamic programming algorithm for build-

ing optimal binary tree (OBT) and the algorithm for the matrix chain multiplication
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(MCM) are not seen to fit in any of the existing models. Both algorithms seem to utilize

two paradigms the divide-and-conquer approach together with dynamic programming.

The pBP model does capture the notion of memoization but the divide and conquer em-

ploys partitioning of the problem into smaller subproblems and solving those smaller

subproblems independently. Therefore if the pFBP model can be extended to allow for

partitioning of the instance then, such a model will be able to model dynamic program-

ming algorithms utilizing divide and conquer strategies as well. The last box on Figure

6.1 represents our candidate for such a model. GnP which stands for Guess and Par-

tition, GnP = DnC + DP, will be a model for dynamic programming and divide and

conquer paradigms. If the model could guess a partitioning point on the input and then

use a pFBP to solve the subproblem, while memoizing common subproblems then such

a model would simulate the dynamic algorithms for MCM and OBT problems.

6.4 Beyond the Basic Algorithmic Paradigms

Greedy, backtracking and dynamic programming algorithms deliver exact solu-

tions and elegant approximation schemes for variety of optimization problems. How-

ever, the most powerful techniques we have are the linear programming relaxations and

semi-definite programming relaxations. The basic algorithmic paradigms have a com-

mon property that they all have a local access to the input instance. For example, the

graph is inspected one edge at a time, regardless of how many decision options would be

explored; in the context of scheduling problems we consider one job at a time and make

scheduling decision about it without considering the remaining instance. The same does

not hold true for say flow algorithms, LP relaxations or SDP relaxations. In our mod-

els if the algorithm knows the entire instance then it can solve any problem. Hence, it

is not clear how the techniques we have developed here would help to analyze those

advanced approaches to optimization which work on the solution space. Formalizing

and analyzing those advanced approaches to optimization will give a clear and precise

answer of the weaknesses of our techniques, and perhaps it would be a staring point for
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development of new innovative approaches to algorithm design.



Appendix A

Priority Formalization for Adaptive

Contract

Recall the formal definition of ADAPTIVE priority algorithms. An ADAPTIVE

priority algorithm proceeds in rounds. At the beginning of round t the data items not

yet observed are sorted according to a priority function πt. Then the πt-first data item is

considered and an irrevocable decision is made about it. Here we translate the algorithm

Adaptive Contract from Section 2.4.3 in this framework.

The priority model for the Steiner Tree problem is as follows: The input to the

algorithm is the edge set of the graph. Each edge e is a 5-tuple (v1, t1, v2, t2, w), where

v1, v2 are the names of the end points, t1, t2 are the types, t1, t2 ∈ {r, s}, r for required,

and s for Steiner, and a weight w ∈ [1; 2]. The decisions the algorithm can make are

Σ = {accept , reject}.

Algorithm Adaptive Contract

Input: Sequence of edges I: ∀e ∈ (v1, t1, v2, t2, w), w ∈ [1; 2]

Output: Edges accepted form a Steiner tree.

1. Initialization:

143
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• Iteration counter: t← 1;

• Counter for the number of required nodes in the instance: NR ← −∞;

• Indicator for the number of Steiner nodes present in the instance. Will be

set to: 0 if the instance has no Steiner nodes; 1 if there is only one Steiner

node; a value greater than or equal to 2 if there are 2 or more Steiner nodes

in the instance: NS ← −∞;

• Set of Steiner nodes: Steiner ← ∅;

• Set of Required nodes: Req ← ∅;

• For each Steiner node u ∈ Steiner , the algorithm will maintain a dynamic

set Ru, containing the names of required nodes to which u is connected via

lightweight edges, hence |Ru| represents the lightweight degree of u;

• Variable representing a contracted node: c← ∅;

• Variable which keeps the lightweight degree of the Steiner node when the

instance has exactly one Steiner node: Degree ← 0;

• Flag set by the algorithm after the names and number of Steiner nodes

in the instance is learned. Learning ← YES. When the value of the

flag becomes NO, then the algorithm has learned the precise number of

Steiner nodes NS and Steiner contains the names of all Steiner nodes in

the instance;

• S,Deg(S ), RS will eventually point to the Steiner node of maximum

lightweight degree, and the number of lightweight edges of that node, and

the set of required nodes to which S is connected via lightweight edges,

respectively. Max ,Deg(Max ) are temporary variables which also point to

the Steiner node of maximum lightweight degree.

Deg(Max )← −∞; Deg(S )← −∞;

2. while(I 6= ∅)
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(a) if (t = 1)

• Sort edges in the instance according to

π1(vi, ti, vj, tj, w) =



















0 if ti = tj = s

3− w if ti = s and tj = r

2 + w if ti = r and tj = r

• Let e = (vi, ti, vj, tj, w) be the π1-first edge

• Make a decision about e

A. if (π1(e) = 0) then reject(e);

NS ← 2; Steiner ← Steiner ∪ {vi, vj}

B. if (π1(e) ∈ [1, 2]) then reject(e);

NS ← 1.

C. if (π1(e) ∈ [3, 4]) then accept(e);

NS ← 0.

• t← t + 1

(b) if (t ≥ 2 and NS = 0) then continue with Kruskal’s algorithm:

• Sort edges according to

πt(vi, ti, vj, tj, w) = w

• Let e be the πt-first edge in this order

• accept(e), if the solution remains a forest, otherwise reject(e)

• t← t + 1

(c) if (NS = 1) then

i. if (t = 2) then

• Sort edges according to

π2(vi, ti, vj, tj, w) =







w if ti = r and tj = r

2 + w if ti = r and tj = s
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• Let e = (vi, ti, vj, tj, w) be π2-first edge

• Make decision about e

A. if (π2(e) ∈ [1; 2]) then accept(e)

c ← {ri, rj} is 1-st contracted node (counts as a single

required node)

NR ← 1

B. if (π2(e) ∈ [3, 4]) then reject(e) and halt

The instance has one Steiner and one required node.

• t← t+ 1

ii. if (t ≥ 3) then

• Sort edges according to

πt(vi, ti, vj, tj, w) =











































3− w if (1) holds true

5− w if (ti = r) ∧ (tj = s) ∧ (w > 1.4)

3 + w if (2) holds true

5 + w if (3) holds true

7 + w if (ti = r) ∧ (tj = r)

(1) =
(

(ti = r) ∧ (tj = r) ∧ (vi ∈ c) ∧ (vj /∈ Req)
)

;

(2) =
(

(ti = r) ∧ (tj = s) ∧ (w ≤ 1.4) ∧Degree ≥ 5
)

;

(3) =
(

(ti = r) ∧ (tj = s) ∧ (w ≤ 1.4) ∧Degree < 5
)

;

• Let e = (vi, ti, vj, tj, w) be πt-first edge

• Make a decision about e

A. if (πt(e) ∈ [1, 2]) then reject(e)

Compute G1 = contract(G, c) and learn names and number of

required nodes

Req ← Req ∪ {vj};NR ← NR + 1; Degree ← NR
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B. if (πt(e) ∈ [3, 3.6)) then reject(e)

e is heavyweight edge, update the lightweight degree of the

Steiner node, with respect to the contract operation1 performed

in step 2(c)

Degree ← Degree − 1

C. if (πt(e) ∈ [4, 4.4]) then accept(e)

e is lightweight edge and the Steiner node has lightweight de-

gree ≥ 5

D. if (πt(e) ∈ [6, 7]) then reject(e)

the lightweight degree of the Steiner node is less than 5

E. if (πt(e) ∈ [8, 9]) then accept(e) if it does not create a cycle,

otherwise reject(e)

Here we use the Kruskal’s algorithm to build a minimum cost

tree spanning the required nodes.

• t← t+ 1

(d) if (NS ≥ 2 and Learning = YES) then “count” the number of Steiner

nodes in the instance

• Sort edges according to

πt(vi, ti, vj, tj, w) =



















0 if ti = tj = s

w if ti = tj = r

2 + w if (ti = s) ∧ (tj = r)

• Let e = (vi, ti, vj, tj, w) be πt-first edge

• Make a decision about e
1 If e is an edge between the Steiner node, call it S, and a required node not contracted by c = {ri, rj}

in step 2(c), then the algorithm will simply decrement the degree as noted. When e is an edge between S

and one of the two required nodes previously contracted, then the algorithm does not immediately decre-
ment Degree. Only when both edges (S, ri) and (S, rj) are heavyweight, then Degree is decremented
by 1, to be consistent with G1 = contract(G, c).
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A. if (πt(e) = 0) then reject(e)

e is of type (s, s), learn names and number of Steiner nodes

– Steiner ← Steiner ∪ {vi, vj}

– NS ← NS + 2

B. if πt(e) ∈ [3, 4] then reject(e) and halt

e is of type (r, s) hence the instance has only one required node

C. if (πt(e) ∈ [1, 2]) then accept(e)

Contract the two required nodes into a single required node:

– c1 ← {ri, rj}

– NR ← 1

– Req ← Req ∪ {c1}

– Ru ← {c1}, ∀u ∈ Steiner

– Learning ← NO

• t← t + 1

(e) if (NS ≥ 2 and Learning = NO) then

• Sort edges according to:

πt(vi, ti, vj, tj, w) =























































3− w if (4) holds true

5− w if (5) holds true

7− w if (6) holds true

9− w if (7) holds true

11− w if (ti = r) ∧ (tj = s)

10 + w if (ti = r) ∧ (tj = r)

(4) =
(

(ti = r) ∧ (tj = r) ∧ (vi ∈ c1) ∧ (vj /∈ Req)
)

(5) =
(

(ti = r) ∧ (tj = s) ∧ (w > 1.4)
)

(6) =
(

(ti = r) ∧ (tj = s) ∧ (vj = Max ) ∧ (Deg(Max) ≥ 5)
)

(7) =
(

(ti = r) ∧ (tj = s) ∧ (vj = S) ∧ (Deg(S) > 0)
)
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• Let e = (vi, ti, vj, tj, w) be πt-first edge.

• Make a decision about e:

A. if (πt(e) ∈ [1, 2]) then reject(e)

Compute G1 = contract(G, c1); learn names and number of re-

quired nodes

For each Steiner node u initialize the set Ru to be all required

nodes

– Req ← Req ∪ {vj};NR ← NR + 1

– Ru ← Req, ∀u ∈ Steiner

B. if (πt(e) ∈ [3, 4]) then reject(e)

e is heavyweight edge; Update the sets Rv

– Decrease lightweight degree of vj, respecting the contract oper-

ation performed in step 2(d) (See footnote 1 for details.)

Rvj
← Rvj

\ {vj}

– Identify the Steiner node of highest lightweight degree at the

moment

Max← argmaxu∈Steiner |Ru|
Deg(Max)← |RMax|

C. if (πt(e) ∈ [5, 6]) then accept(e)

Initialize S to be the Steiner node of the highest degree

– S ←Max; Deg(S)← Deg(Max)

– Uninitialize Max: Max← ∅, Deg(Max)← −∞

– Update the lightweight degrees of the remaining Steiner nodes

For all u ∈ Steiner − {S} such that |Ru ∩ RS| ≥ 2

while(|Ru ∩RS| ≥ 2)

Pick w ∈ (Ru ∩ Rs)

Ru ← Ru \ {w}
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end-do

D. if (πt(e) ∈ [7, 8]) then accept(e)

e is incident to S; accept all edges between S and nodes in RS

– Update the lightweight degree of S: Deg(S)← Deg(S)− 1

– If all the lightweight edges of S have been accepted then find a

Steiner node whose lightweight degree is maximum

if (Deg(S ) = 0) then

Steiner ← Steiner − {S}
Max ← argmaxu∈Steiner ; Deg(Max )← |RMax |

E. if (πt(e) ∈ [9, 10]) then reject(r)

e is a lightweight edge, but the lightweight degree of vj is less than

5

F. if (πt(e) ∈ [11, 12]) then accept(e) if e does not form a cycle with

the edges already accepted, otherwise reject(e)

(Build a minimum cost spanning tree on required and contracted

nodes.)

• t← t + 1

end(while)

End Adaptive Contraction



Appendix B

Concentration Inequalities and Some

Simple Bounds

B.1 Chernoff Style Bounds and Chebyshev’s Inequality

Proposition 48. [48]. Let Xi be i.i.d. Bernoulli variables with Pr[Xi = 1] = p, ∀i ∈
[1, n], n > 1. Let X =

∑

iXi and E(X) = µ = np then

1. Lower tail. For any δ ∈ (0, 1]:

Pr[X < (1− δ)E(X)] < e−
µδ2

2 .

2. Upper tail. For any δ > 0:

Pr[X > (1 + δ)E(X)] <

(

eδ

(1 + δ)(1+δ)

)µ

.

3. Upper tail (simplified). For any δ > 2e− 1:

Pr[X > (1 + δ)E(X)] < 2−(1+δ)µ.

4. Upper tail (simplified). For any δ ≤ 2e− 1:

Pr[X > (1 + δ)E(X)] < e−
µδ2

4 .
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Chebyshev’s inequality states that if X is a random variable with finite variance

σ2 and let γ > 0 then

Pr[|X − E(X)| > γσ] <
1

γ2
.

B.2 Martingale and Submatringale Concentration In-

equalities

The inequalities and definitions in this sections are from [46, 28, 4, 37, 36].

Definition 33. A sequence of random variables (Zi)
∞
i=1 is a martingale with respect to

another sequence (Yi)
∞
i=0 if E[Zi|Y0, . . . Yi−1] = Zi−1.

Definition 34. A sequence of random variables (Zi) is a submartingale with respect to

another sequence (Yi) if E[Zi|Y0, . . . Yi−1] ≥ Zi−1.

Definition 35. A sequence of random variables (Zi) is a supermartingale with respect

to another sequence (Yi) if E[Zi|Y0, . . . Yi−1] ≤ Zi−1.

B.2.1 Properties of Conditional Expectation

Definition 36. (Tower property of conditional expectation)

Let F ,G be two σ-fields such that G ⊆ F and X is a random variable, measurable with

respect to F ,G, then the following two properties hold.

E [E[X|F ]|G] = E[X|G] (B.1)

E [E[X|G]|F ] = E[X|G] (B.2)

Equations (B.1) and (B.2) are called the tower property of conditional expecta-

tion because if you order the σ-fields in a tower from larger to smaller, then the smaller

field always wins.
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B.2.2 Doob Martingales

Let (X)n
i=1 be a sequence of random variables. Let F be a random variable,

which depends on (X)n
i=0 (Usually F is a fuction of X0, X1, . . . , Xn), such that E[F ] <

∞. A Doob martingale of F with respect to (X)n
i=0 is defined asZi = E [F |X0, . . . , Xi].

Z0 = E[F ],

Z1 = E[F |X0, X1],

...

Zn = E[F |X0, X1, . . . , Xn].

Obviously the sequence Zn
i=0 is a martingale because of the tower property of

conditional expectation (a.k.a. “the smaller field wins.”).

1) E[Zi] <∞.

2) E[Zi|X1, . . . , Xi−1] = E[E[Y |X1, . . . , Xi]|X1, . . . , Xi−1]

= E[Y |X1, . . . , Xi−1] = Zi−1.

The Doob martingale of F gives us better estimates of the random variable F , as more

variables Xi become available. Initially we know only the expectation E[F ], at the end

when all Xi become available we know E[F |X0, . . . , Xn] whichi is the actual value (a

deterministic quantity).

Suppose (Z)n
i=0 is a martingale sequence with respect to the sequence (X)n

i=1,

then a martingale difference sequence is

Yi = Zi − Zi−1.

If the martingale difference sequence is bounded then the Azuma-Hoeffding inequality

gives the following concentration result.

Theorem 49 (Azuma). Let (Zi) be a martingale with respect to a sequence (X)n
i=0 (or

itself) and let Yi be a martingale difference sequence defined as Yi = Zi − Zi−1. If
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|Yi| ≤ ci, ∀i then

Pr[Zn ≥ Z0 + λ]

Pr[Zn ≤ Z0 − λ]







≤ exp

(

− λ2

2
∑n

i=1 c
2
i

)

We show the proof of the upper tail.

Proof. [36] We use the standard technique by introducing additional variable t whose

value we later optimize and exponentiate the two sides and apply the Markov’s inequal-

ity.

Pr[Xk −X0 ≥ λ] = Pr[t(Xk −X0) ≥ tλ] =

Pr[et(Xk−X0) ≥ etλ] ≤ E
[

et(Xk−X0)
]

etλ

Define Yi = Xi − Xi−1, hence |Yi| ≤ ci. Furthermore, since (Xi) is a martingale we

have

E[Yi|X0, . . . , Xi−1] = E[Xi −Xi−1|X0, . . . , Xi−1]

= E[Xi|X0, . . . , Xi−1]− E[Xi−1|X0, . . . , Xi−1]

= E[Xi|X0, . . . , Xi−1]−Xi−1 = Xi−1 −Xi−1 = 0.

We want to bound E[etYi |X0, . . . , Xi−1] next. Because ex is a convex1 function then

etYi = et(−ci(
1−Yi/ci

2
))+ci(

1+Yi/ci
2

)

≤ (
1− Yi/ci

2
))e−tci + (

1 + Yi/ci
2

)etci

=
e−tci + etci

2
+
Yi

2
(etci − e−tci)

1If f(x) is convex then f(αxx + (1− α)x2) ≤ αf(x) + (1− α)f(x2), for any α ∈ (0, 1).
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E[etYi |X0, . . .Xi−1] ≤ E

[

e−tci + etci

2
+
Yi

2
(etci − e−tci)|X0, . . .Xi−1

]

= E[

[

e−tci + etci

2
| X0, . . .Xi−1

]

+E[

[

Yi

2
(etci − e−tci) |X0, . . .Xi−1

]

=
e−tci + etci

2
+

(ecci + e−tci)

2
· E[Yi |X0, . . .Xi−1]

=
e−tci + etci

2
+

(etci + e−tci)

2
· 0

≤ e−tci + etci

2
.

Now by the Maclaurin expansion of ex we have that ex =
∑∞

i=1
xi

i!
, hence

ex + e−x = 1 + x +
x2

2
· · ·+ 1− x+

x2

2
+ · · · ≤ 1 + x +

x2

2
+ 1− x +

x2

2

= 2(1 +
x2

2
) ≤ 2e

x2

2 .

Hence

E[etYi | X0, · · · , Xi−1] ≤
1

2
(e−tci + etci) ≤ e

(tci)
2

2 . (B.3)

We are ready to conclude the proof.

E
[

et(Xk−X0)
]

= E
[

Πk
i=1e

tYi
]

= E
[

etYi |X0, . . . , Xi−1

]

· E
[

Πk−1
i=1 e

tYi
]

= E
[

etYi |X0, . . . , Xi−1

]

· E
[

etYi−1 |X0, . . . , Xi−2

]

· · ·E
[

etY1
]

= e((tc1)2+···+(tck)2)/2.

Finally

Pr[Xk −X0 > λ] ≤ E[et(Xk−X0)]

etλ
= e

t2

2
(
Pk

i=1 c2i )−tλ = e
− λ2

(2
Pk

i=1
c2
i
) .

For t = λ
P

c2i
.
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B.2.3 Submartingales

The following concentration result about bounded difference submartingale is

from [46].

Theorem 50. [46] Let (Zi) be a submartingale withZ0 = 0 andXi = Zi−Zi−1 ∈ [0, 1],

for all i. If E[Xi | X1, . . . , Xi−1] ≥ µi and let µ =
∑

i µi then

Pr[Zn < (1− δ)µ] < e−
δ2µ
2 ,

for all δ ∈ (0, 1), x > 1.

Proof. The proof is similar as above.

Pr[Zn ≤ (1− δ)µ] = Pr[e−tZn ≥ e−t(1−δ)µ] ≤ E
[

e−tZn
]

e−t(1−δ)µ

Note that we know the conditional expectation of Xi’s but not of etXi , which we need.

By the convexity of ey, for any y ∈ [0, 1] we have that eαy = e(1−y)0+yα ≤ (1− y)e0 +

yeα = 1− y + yeα. Similarly for any random variable X ∈ [0, 1] we can lower bound

E[e−tX ] ≤ E[(1−X) +Xe−t] = 1 + E[X](e−t − 1).

Now we continue with E[e−tZn ].

E
[

e−tZn
]

= E
[

e−t
Pn

k=1 Xk

]

= E
[

Πn
k=1e

−tXk
]

= E
[(

Πn−1
k=1e

−tXk
)]

· E
[

e−tXn |X1 . . .Xn−1

]

≤ E
[

Πn−1
k=1e

−tXk
]

· E
[

1 + (1 + e−t)Xn | X1 . . .Xn−1

]

= E
[

Πn−1
k=1e

−tXk
]

·
(

1 + (e−t − 1)
)

E [Xn |X1 . . .Xn−1]

= E
[

Πn−1
k=1e

−tXk
]

·
(

1 + (e−t − 1)E [Xn | X1 . . .Xn−1]
)

= E
[

Πn−1
k=1e

−tXk
]

·
(

1 + (e−t − 1)µn

)

...

= Πn
k=1

(

1 + (e−t − 1)µk

)

< Πn
k=1

(

e(e
−t−1)µk

)

= e(e
−t−1)

Pn
k=1 µk

= e(e
−t−1)µ
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Pr[Zn ≤ (1− δ)µ] <
e(e
−t−1)µ

e−t(1−δ)µ

Choose t = − ln (1− δ)

Pr[Zn ≤ (1− δ)µ] <

(

e−δ

(1− δ)(1−δ)

)µ

The Maclaurin expansion of ln(1+x) gives us ln(1−δ) ≥ −δ+ δ2

2
, and because

(1− δ) < 1 then (1− δ)(1−δ) ≥ e−δ+ δ2

2 . Now we conclude the proof:

Pr[Zn ≤ (1− δ)µ] < e−
δ2µ
2 .
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