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Abstract 
 
The rapid growth of distributed solar photovoltaics (DPV) has critical implications for U.S. 
utility planning processes. This report informs utility planning through a comparative analysis of 
roughly 30 recent utility integrated resource plans or other generation planning studies, 
transmission planning studies, and distribution system plans. It reveals a spectrum of approaches 
to incorporating DPV across nine key planning areas, and it identifies areas where even the best 
current practices might be enhanced. 1) Forecasting DPV deployment: Because it explicitly 
captures several predictive factors, customer-adoption modeling is the most comprehensive 
forecasting approach. It could be combined with other forecasting methods to generate a range of 
potential futures. 2) Ensuring robustness of decisions to uncertain DPV quantities: using a 
capacity-expansion model to develop least-cost plans for various scenarios accounts for changes 
in net load and the generation portfolio; an innovative variation of this approach combines 
multiple per-scenario plans with trigger events, which indicate when conditions have changed 
sufficiently from the expected to trigger modifications in resource-acquisition strategy. 3) 
Characterizing DPV as a resource option: Today’s most comprehensive plans account for all of 
DPV’s monetary costs and benefits. An enhanced approach would address non-monetary and 
societal impacts as well. 4) Incorporating the non-dispatchability of DPV into planning: Rather 
than having a distinct innovative practice, innovation in this area is represented by evolving 
methods for capturing this important aspect of DPV. 5) Accounting for DPV’s location-specific 
factors: The innovative propensity-to-adopt method employs several factors to predict future 
DPV locations. Another emerging utility innovation is locating DPV strategically to enhance its 
benefits. 6) Estimating DPV’s impact on transmission and distribution investments: Innovative 
practices are being implemented to evaluate system needs, hosting capacities, and system 
investments needed to accommodate DPV deployment. 7) Estimating avoided losses associated 
with DPV: A time-differentiated marginal loss rate provides the most comprehensive estimate of 
avoided losses due to DPV, but no studies appear to use it. 8) Considering changes in DPV’s 
value with higher solar penetration: Innovative methods for addressing the value changes at high 
solar penetrations are lacking among the studies we evaluate. 9) Integrating DPV in planning 
across generation, transmission, and distribution: A few states and regions have started to 
develop more comprehensive processes that link planning forums, but there are still many issues 
to address. 
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Executive Summary 

Analysts project that distributed solar photovoltaics (DPV) will continue growing rapidly across 
the United States.1 This growth has critical implications for utility planning processes, potentially 
affecting the size and type of future infrastructure needs as well as the solution set for meeting 
those needs. Developing appropriate techniques for incorporating DPV’s unique characteristics 
into utility planning processes—across generation, transmission, and distribution—is therefore 
essential to ensuring reliable operation of the electric system at least cost. It is also paramount to 
ensuring that the costs and benefits of DPV resources are fully and accurately valued, because 
that value may derive in large part from investments that utilities make or avoid owing to needs 
identified within their planning studies. 
 
With this report, we seek to inform utility planning through a comparative analysis of roughly 30 
recent utility integrated resource plans or other generation planning studies, transmission 
planning studies, and distribution system plans. The rapid growth of DPV has not been 
distributed equally across U.S. utility territories, and the same is true for projected future growth. 
While some of the studies we review forecast 2020 DPV penetrations equivalent to 5% or more 
of retail sales, fewer than half consider penetrations beyond 1% by 2020. Thus it is unsurprising 
that utilities and other planning organizations have differed in their perceptions about the need to 
incorporate DPV into resource and transmission and distribution (T&D) plans. Because of this 
staggered progress, organizations that are just beginning to address DPV can draw on innovative 
practices from organizations that already are incorporating DPV rigorously into their plans. Our 
report reveals this spectrum of approaches across nine key planning areas, and it identifies areas 
where even the best current practices might be enhanced. 
 
Below we summarize current practices and highlight approaches that are innovative and 
potentially worthy of emulation. We conclude with a brief discussion of future work. 
 
Developing a Forecast of DPV Deployment  
The main forecasting approaches across the studies we analyze include stipulated forecast, 
historical trend, program-based approach, and customer-adoption modeling. About 70% of 
relevant studies employ one or more of the first three approaches, which rely on few or no 
quantifiable predictive factors. In contrast, customer-adoption modeling explicitly uses historical 
DPV deployment, location-specific DPV technical potential, various DPV economic 
considerations, and end-user behaviors as predictive factors (Figure ES-1). A quarter of the 
studies use this innovative method, including those by the Northwest Power and Conservation 
Council, PacifiCorp, Pacific Gas & Electric (PG&E), Puget Sound Energy (PSE), and the 
Western Electricity Coordinating Council. Though our analysis suggests various ways to 
improve current customer-adoption models, these models represent the most comprehensive 
forecasting approach available today. 
 

                                                
1 We consider DPV to include PV systems that are relatively small (less than 5 MW), connect to the distribution 
system, and are either in front of or behind the meter. 
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Figure ES-1. Process Commonly Used to Develop Customer-Adoption Models 

The quantities and ranges of DPV deployment forecasted in the studies we analyze vary by 
region, utility, and forecasting method (Figure ES-2). A number of utilities use only a single 
DPV forecast or consider only a small range. Stipulated forecasts generally have the largest 
ranges, whereas program-based forecasts tend to have small ranges, and the high end of third-
party forecasts is above the high end of utility planning forecasts about two thirds of the time. 
Our analysis suggests that combining various DPV forecasting methods could be valuable. Such 
an approach might use program goals discounted for uncertainty as lower bounds, customer-
adoption models to forecast expected levels, and third-party forecasts and stipulated what-if 
scenarios to explore the full range of plausible futures. 
 



  xiii 

 
Note: Additional detailed notes explaining this figure are in the main report (Section 3.4). For full organization 
names, see “Acronyms and Abbreviations” above. 

Figure ES-2. Utility DPV Forecasts in the Near Term and Long Term Compared with Third-Party 
DPV Forecasts 

 
Ensuring Robustness of Decisions to Uncertainty in DPV Quantity 
Robustness of decisions to uncertainty in DPV adoption is most clearly addressed in utility 
integrated resource planning, with some consideration in transmission planning and little in 
distribution planning. The relevant studies we review use one of three methods to address 
uncertainty: single forecast (33% of studies), subject to sensitivity (11%), and per-scenario plan 
(56%). The per-scenario plan method often uses a capacity-expansion model (CEM) to develop 
least-cost plans for various scenarios, including different levels of DPV adoption (Figure ES-3). 
Because it accounts for changes in both net load and the generation portfolio, this is the most 
comprehensive of the three methods. An innovative variation of this approach—acquisition path 
analysis—combines multiple per-scenario plans with trigger events, which indicate when 
conditions have changed sufficiently from the expected to trigger modifications in resource-
acquisition strategy. PacifiCorp and Hawaiian Electric Companies (HECO) use variations of this 
approach in their resource planning. 
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Figure ES-3. Illustration of Process for Developing Per-Scenario Plans 

 
Characterizing DPV as a Resource Option 
Fewer than half of the studies we review evaluate DPV as a resource that could be proactively 
deployed to meet future needs. Those that do consider DPV as a resource use various approaches 
to determine if it should be part of the plan. The two most common are to compare the 
performance of candidate portfolios with varying quantities of DPV and to develop minimum-
cost portfolios via CEMs with DPV as a resource option. Regardless of the characterization 
method used, the ways DPV is distinguished from other resource options are important. Some 
utilities dismiss DPV based only on its higher cost and lower capacity factor relative to utility-
scale PV (UPV). However, DPV’s capacity credit as well as the avoided losses, transmission 
deferrals, and distribution-system cost impact associated with DPV also can be significant (Table 
ES-1). PG&E’s plan stands alone among the utility resource plans we review in accounting for 
all these factors, which are also important for the locational net benefits methodology in the 
California Distribution Resources Plans and the New York Reforming the Energy Vision (NY 
REV) process.  
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Table ES-1. Characteristics Used to Distinguish DPV from UPV or Other Resource Options 

Plan* Characteristic 

Capital 
Cost of 
DPV vs. 

UPV 

Capacity 
Factor of 
DPV vs. 

UPV 

Capacity 
Credit of 
DPV vs. 

UPV 

Avoided 
Losses 

Transmission 
Deferral 

Distribution 
Deferral 

DEI (2015) X      
GPC (2016)    X X  
HECO (2013) X X     
IPC (2015)   X    
LADWP (2014) X    X  
NWPCC (2016) X X X X   
NSP (2015) X X X X   
PG&E (2014) X X X X X X 
PSE (2015) X    X  
TVA (2015) X      
*Plan references are in Appendix A. For full organization names, see “Acronyms and Abbreviations” above. 
 
Incorporating the Non-Dispatchability of DPV into Planning Methods 
Rather than a distinct innovative practice for incorporating the non-dispatchability of DPV in 
planning, innovation in this area is represented by evolving methods for capturing this important 
aspect of DPV. Hourly DPV generation profiles allow for some potential integration issues to be 
included when evaluating portfolios with DPV, including multi-hour ramping impacts and 
overgeneration. Most planning studies in our sample appear to use an hourly DPV profile. 
Impacts of DPV that are not captured with hourly generation profiles, such as sub-hourly 
variability and uncertainty, can be addressed through detailed integration studies. Various studies 
quantify the operational integration costs of solar, suggesting a range of $0.5–$10/MWh (for all 
solar, not just DPV). The methods used to estimate DPV’s capacity credit vary and are not 
always described. A few utilities use detailed reliability-based models to estimate DPV’s 
effective load-carrying capability, whereas others use less-rigorous methods to estimate capacity 
credit. Among the other integration-related issues discussed in the studies, the Los Angeles 
Department of Water and Power (LADWP) highlights the overgeneration potential of low-load 
spring days and considers mitigation via electric vehicle (EV) charging during these periods. 
Combining hourly DPV profiles with detailed production cost models can help in evaluating the 
role of EVs and other technologies and in identifying times when overgeneration may be a 
concern. 
 
Accounting for Location-Specific Factors of DPV 
Transmission and distribution planning studies require projections of DPV locations. We identify 
three methods for estimating future locations: proportional to load (40% of relevant studies), 
proportional to existing DPV (40%), and propensity to adopt (30%).2 The first two methods 
proportionally allocate DPV deployment based on the locations of existing load, population, or 
DPV. The propensity-to-adopt method employs additional predictive factors as well, such as 
demographics and customer load. Utilities that use this innovative analysis include PG&E, 

                                                
2 One study uses both propensity to adopt and proportional to existing DPV. 
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Southern California Edison, and Sacramento Municipal Utility District. Another emerging utility 
innovation is locating DPV strategically to enhance its benefits. Organizations exploring this 
tactic include Duke Energy Indiana, Dominion, PG&E, Georgia Power Company, and ISO New 
England—generally focusing on utility-owned systems. A recent pilot project in Rhode Island 
demonstrates how promotion of strategic locations for behind-the-meter DPV can help defer 
feeder upgrades. 
 
Estimating the Impact of DPV on T&D Investments 
Innovations in estimating the impact of DPV on T&D investments apply differently to different 
organizations, depending on each organization’s current progress in this area as well as its 
projected DPV deployment and the robustness of its T&D infrastructure. For organizations that 
have not yet considered DPV in T&D studies, innovative examples of such planning are 
available from numerous planning entities. Likewise, organizations that find themselves needing 
to calculate hosting capacity—the amount of DPV that can be interconnected to the distribution 
system without violating operating limits—can draw on innovative studies from their peers. 
These include the use of hosting capacity analysis to both screen and steer the location of DPV. 
At the most advanced end of the spectrum, some organizations are already proactively planning 
investments to accommodate additional DPV. Innovative analyses by Pepco, 
Dominion/Navigant, and HECO calculate the cost of various options for increasing hosting 
capacity, including the impacts of advanced inverters and energy storage. 
 
Estimating the Avoided Losses Associated with DPV 
Of the studies we review that mention avoided losses due to DPV and provide sufficient detail, 
we observe three methods to account for these losses: average loss rate (60% of studies), time-
differentiated average loss rate (30%), and detailed analysis of losses (10%). Because of the non-
linear variation of line losses with load, the most comprehensive estimation of system losses—
and thus the potential avoided losses with DPV—is a time-differentiated marginal loss rate. 
However, none of the studies we evaluate appear to use a marginal loss calculation. This 
represents an area for future innovation. The one detailed circuit-level analysis of losses, by PSE, 
offers a different refinement at a relatively small scale. 
 
Considering Changes in Costs and Benefits of DPV with Higher Solar Penetration 
Perhaps because few utilities expect high penetrations of solar in the near future, innovative 
methods for addressing the value changes at such penetrations are lacking among the studies we 
evaluate. Georgia Power Company’s avoided cost of DPV calculations estimate the incremental 
avoided cost for tranches of DPV, though some details are redacted. Many utilities employ 
production cost models, and these tools can be used to show changes with increasing solar 
penetration. CEMs could also account for changes in the costs and benefits of DPV with higher 
penetration, though some models may need to be modified to account for changes in the capacity 
credit with higher penetration. In addition, none of the studies mention changes in avoided losses 
with higher solar penetration. 
 
One complicating factor is that the change in value with penetration may depend on other 
external factors. LADWP, for example, highlights that EV charging during the day may mitigate 
some of the challenges with overgeneration. Customer adoption of EVs and their preferences for 
charging the EVs may therefore affect the value of DPV at high penetration. Given uncertainty in 



  xvii 

how customer preferences and other factors may change over time, scenario analysis and 
analysis of the robustness of decisions may be helpful to decision makers. 
 
Integrating DPV in Planning across Generation, Transmission, and Distribution 
Fully integrating DPV into planning requires a more comprehensive approach in which 
distribution, transmission, and resource planning are more tightly linked. A few states and 
regions—including California, New York, and New England—have started to develop these 
more comprehensive processes, but there are still many issues to address. Understanding the 
range of different approaches across the United States and highlighting innovative practices 
should help accelerate those changes. 
 
Future Research 
With future research, we will analyze whether some of the innovative practices identified here 
can meaningfully affect planning study results. Of particular interest are innovative practices for 
forecasting DPV adoption, examining the robustness of decisions to DPV uncertainty, and 
considering DPV as a resource. 
 
 



  1 

1. Introduction 

Analysts project that distributed solar photovoltaics (DPV) will continue growing rapidly across 
the United States (BNEF 2015; GTM Research and SEIA 2015, 2016; Gagnon and Sigrin 
2016).3 This growth has critical implications for utility planning processes, potentially affecting 
the size and type of future infrastructure needs as well as the solution set for meeting those 
needs. Developing appropriate techniques for incorporating DPV into utility planning 
processes—across generation, transmission, and distribution—is therefore essential to ensuring 
reliable operation of the electric system at least cost (Newcomb et al. 2013, Wiedman and Beach 
2013, Hoke and Komor 2012). It is also paramount to ensuring that both the costs and benefits of 
DPV resources are fully and accurately valued, as that value may derive in large part from 
investments that utilities make (or avoid) as a result of needs identified within their planning 
studies. 
 
The unique characteristics of DPV, however, present a variety of challenges within the context of 
utility planning. For example, DPV deployment is often driven by individual customers’ 
decisions to adopt, rather than by identified system needs. In addition, DPV is located near loads, 
which offers potential cost savings from avoided losses and deferral of transmission and 
distribution (T&D) investments (Cohen et al. 2016), but two-way flows may require upgrades to 
distribution systems (Lindl et al. 2013). And, as with other non-dispatchable resources, 
variability and uncertainty in DPV output may require greater system flexibility and limit the 
contribution of DPV to resource adequacy.  
 
Given the above challenges and the relatively recent growth of DPV, current practices 
surrounding the treatment of DPV in utility planning studies are still rapidly evolving. With our 
research, we seek to inform utility planning through a comparative analysis of roughly 30 recent 
utility integrated resource plans (IRPs) or other generation planning studies, transmission 
planning studies, and distribution system plans. We benchmark current practices across nine key 
methodological areas related to the treatment of DPV (Figure 1). Some issues, such as a trend 
toward bundling DPV with other enabling technologies like storage or load control, are 
crosscutting and impact multiple methodological areas. Our intent is both to characterize the 
range of current practices and to highlight new and innovative practices, which utility planners 
and regulators can reference as they refine their planning studies. Future research will explore 
how effectively incorporating DPV into planning studies can meaningfully affect the outcome of 
the plan, in terms of total resource costs and potential impact on solar deployment. 
 
The present study builds upon the existing body of literature on utility resource planning 
practices, including other comparative analyses of utility IRPs evaluating the treatment of solar 
and other renewables (Wiser and Bolinger 2006, Mills and Wiser 2012a, Sterling et al. 2013), 
energy efficiency (EE) (National Action Plan for Energy Efficiency 2007, Hopper et al. 2009, 
Lamont and Gerhard 2013, Takahashi 2015), and environmental regulatory risk (Barbose et al. 
2008, Luckow et al. 2015, Wilson and Biewald 2013, Wilkerson et al. 2014). Beyond utility 
IRPs, other studies have focused on non-wires alternatives within transmission planning, partly 
                                                
3 We consider DPV to include PV systems that are relatively small (less than 5 MW), connect to the distribution 
system, and are either in front of or behind the meter. 
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in response to planning requirements imposed by Federal Energy Regulatory Commission Order 
1000 (Hempling 2013, Neme and Grevatt 2015, Stanton 2015, Watson and Colburn 2013), while 
recent attention has turned to the impacts of distributed energy resources (DER) on the 
distribution system and associated planning processes (Colman et al. 2016, SolarCity 2015, Edge 
et al. 2014, Lindl et al. 2013, EQL Energy 2015, De Martini and Kristov 2015, Palmintier et al. 
2016). Finally, though this study is not focused on the value of solar, per se, we evaluate current 
planning practices partly by how they account for the myriad potential sources of DPV value, 
drawing from the extensive value-of-solar literature (Denholm et al. 2014, Keyes and Rábago 
2013, Hansen et al. 2013).4 
 

 
Figure 1. Methodological Elements of Planning Studies Addressed in Each Section 

We describe the planning documents included in our review in Section 2. We then address each 
of the nine methodological issues in turn: forecasting the quantity of DPV (Section 3), ensuring 
robustness of planning decisions to uncertainty in the quantity of DPV (Section 4), characterizing 
DPV as a resource option (Section 5), incorporating non-dispatchability of DPV in planning 
studies (Section 6), accounting for location-specific factors of DPV (Section 7), estimating the 
impact of DPV on T&D investments (Section 8), estimating avoided losses associated with DPV 
(Section 9), considering changes in costs and benefits with higher solar penetration (Section 10), 
and integrating DPV across different planning forums (Section 11). In each of these sections, we 
introduce the methodological element by postulating a motivating question that might be asked 
by a planner. We then summarize the range of approaches observed in the planning documents 
and highlight new and innovative practices. Finally, in Section 12, we summarize innovative 
practices that might improve the representation of DPV in planning studies, and we discuss areas 
for future work.   
                                                
4 Numerous state-specific value-of-solar studies are tracked here: http://www.seia.org/policy/distributed-solar/solar-
cost-benefit-studies. 
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2. Planning Documents Included in Review 

The documents included in this review focus on power system planning in which, ideally, the 
outcome of each document is a recommendation for a preferred set of investments or strategy for 
making investments.  
 
We applied additional broad criteria to select our sample of planning documents. All of the 
studies are recent (completed since 2013) and explicitly include DPV to some extent. All are 
publicly available such that major assumptions, methods, and recommendations are available to 
the public, even if proprietary tools/models are used in the process. Nearly all also involve key 
decision makers, in that participants or leaders of the planning process have the authority and 
ability to act based on plans.5 Finally, though we sought to include a broad and representative 
range of studies, we did not comprehensively review all relevant planning studies.  
 
We include three primary types of planning documents: IRPs, transmission plans, and 
distribution system plans. We list the individual studies below and provide additional 
information in Appendix A. 
 
The goal of IRPs is to identify generation- and demand-side measures that can meet projected 
energy and capacity needs, often in a least-cost manner, though objectives such as mitigating 
risk, achieving energy policy goals, and mitigating environmental impact are also considerations. 
Within IRPs, DPV has two potential roles: (1) customer adoption of DPV can reduce energy and 
capacity needs, and (2) DPV can be part of preferred portfolios to meet needs. The IRPs included 
in our review are listed in Table 1. The overall objectives of IRPs are somewhat standard, though 
the amount of detail and role of DPV varies considerably across these studies. We also include 
two studies that are not traditional IRPs: Pacific Gas & Electric’s (PG&E’s) Bundled 
Procurement Plan (BPP) and the Seventh Conservation and Electric Power Plan from the 
Northwest Power and Conservation Council (NWPCC). 
Table 1. IRPs Included in Review 

Entity Title and Year 
Arizona Public Service (APS) 2014 Integrated Resource Plan 

Dominion (DOM) 2015 Integrated Resource Plan 
Duke Energy Carolinas/Progress (DEC/DEP) 2014 Integrated Resource Plan 

Duke Energy Indiana (DEI) 2015 Integrated Resource Plan 

Entergy Louisiana (ELA) 2015 Integrated Resource Plan 

Florida Power & Light (FPL) Ten Year Power Plant Site Plan: 2015–2024 

Georgia Power Company (GPC) 2016 Integrated Resource Plan 

                                                
5 The Western Electricity Coordinating Council (WECC) and NWPCC do not have clear authority or ability to act 
on their plans, but their planning results are often very influential in other decision-making forums.  
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Hawaiian Electric Companies (HECO)6,7 2013 Integrated Resource Planning Report 

Idaho Power Company (IPC) 2015 Integrated Resource Plan 

Los Angeles Department of Water and Power 
(LADWP) 

2014 Integrated Resource Plan 

Nevada Power (NVP) 2015 Integrated Resource Plan 

Northern States Power (NSP) 2015 Resource Plan 

Northwest Power and Conservation Council (NWPCC) Seventh Conservation and Electric Power Plan (2016) 

Pacific Gas & Electric (PG&E) 2014 BPP 

PacifiCorp (PAC) 2015 Integrated Resource Plan 

Public Service of New Mexico (PNM) 2014 Integrated Resource Plan 
Puget Sound Energy (PSE) 2015 Integrated Resource Plan 

Tennessee Valley Authority (TVA) 2015 Integrated Resource Plan 

Tri-State Generation and Transmission (TGT) 2015 Integrated Resource Plan/Electric Resource Plan 

Tucson Electric Power (TEP) 2014 Integrated Resource Plan 

 
The goal of the transmission planning studies is to identify transmission investments for 
reliability, economic, or public policy reasons. In addition, some of the transmission planning 
entities conduct capacity market auctions or assessments to ensure adequate resources will be 
available to meet reliability needs. Within transmission studies, DPV has two potential roles: (1) 
it can impact the need for new transmission or other capacity, and (2) it can be a substitute for 
transmission assets by meeting the same needs (i.e., it can be a non-transmission alternative). 
The transmission planning documents included in our review are listed in Table 2. In addition, 
some of the IRPs in the previous table include transmission assessments (e.g., HECO’s IRP).  
Table 2. Transmission Plans Included in Review 

Entity Title and Year 

California Independent System Operator (CAISO) 2015–2016 Transmission Planning Process Unified 
Planning Assumptions and Study Plan 

ISO New England (ISO-NE) 2015 Regional System Plan 

New York Independent System Operator (NYISO) 2015 Load and Capacity Data Report: “Gold Book” 

PJM 2015 Regional Transmission Expansion Plan 

Western Electricity Coordinating Council (WECC) Integrated Transmission and Resource Assessment: 
Summary of 2015 Planning Analyses 

 
The goal of distribution plans is to ensure adequate distribution infrastructure, though the 
documents included in this review focus much more on process, and revisions to that process in 
the face of growing interest in DER like DPV, rather than on specific investment decisions. 

                                                
6 Hawaiian Electric Companies includes three companies: Hawaiian Electric Company, Hawaii Electric Light 
Company, and Maui Electric Company. For convenience we collectively refer to these companies as HECO.  
7 HECO also recently filed a “Power Supply Improvement Plan” that much more tightly couples customer adoption 
of DPV with the analysis. Where relevant we note the particularly innovative practices employed in the more recent 
plan. 
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Within the distribution studies, DPV has two primary roles: (1) deployment of DPV can impact 
the need for distribution system upgrades, and (2) DPV can substitute for new distribution 
infrastructure. The distribution planning documents included in our review are listed in Table 3. 
Table 3. Distribution Plans Included in Review 

State and Entity Title and Year 

California: PG&E 2015 Distribution Resources Plan (DRP) 

California: Southern California Edison (SCE) 2015 DRP 

California: San Diego Gas & Electric (SDG&E) 2015 DRP 

Hawaii: HECO 2014 Distributed Generation Interconnection Plan 

Hawaii: HECO 2015 Circuit-Level Hosting Capacity Analysis  

Massachusetts: National Grid 2015 Grid Modernization Plan 

New York: New York Department of Public Service 2015 Distributed System Implementation Plan Guidance 
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3. Developing a Forecast of DPV Deployment  

 
 
The future quantity of DPV is driven, at least partially, by customer decisions to adopt DPV that 
are beyond the control of utility planners. The rate of adoption depends on many factors, some of 
which are changing rapidly, including the upfront cost of DPV systems, availability and level of 
incentives, and retail rate designs or net-energy-metering policies that affect the bill savings from 
customer-sited photovoltaics (PV). These changes in the drivers of DPV adoption increase the 
challenge of forecasting DPV installations.  
 
In this section, we summarize the range of approaches utilities use to create DPV forecasts8 and 
the drivers utilities consider in making those forecasts. We also compare DPV forecasts from 
utilities to forecasts from third parties, highlighting regional trends and the impact of forecasting 
methodology. One nascent development in forecasting DPV is the use of customer-adoption 
models. We summarize some of the advances in customer-adoption models that may improve 
upon the approaches used in practice. In this section we focus only on forecasting the quantity of 
DPV. Approaches to forecasting the location of DPV, of particular interest in T&D planning, are 
discussed in Section 7. 
 

                                                
8 Though some utilities also had separate forecasts for other DER, none except TGT explicitly forecast adoption of 
DPV bundled with other enabling technologies like storage or load control. 

Planner’s question: How do you forecast future customer adoption of DPV? 
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3.1 Forecasting Approaches 

Approaches used to forecast DPV deployment vary greatly in the planning studies analyzed. We 
group these approaches under five categories: 
 

• Customer-adoption modeling: DPV forecasts are determined using adoption models 
designed to represent end-user decision making based on PV economics, resource 
potential, diffusion, and other factors. Five of the planning studies explicitly use this 
approach as detailed in Section 3.2.  

• Program-based approach: DPV deployment is assumed to reach predetermined incentive 
program targets. Six of the planning studies examined use this approach. One example is 
TEP, which is required to use distributed generation (DG) to meet 30% of the overall 
15% Arizona renewable portfolio standard (RPS) by 2025.9 As another example, ISO-NE 
relies on state PV policy goals (e.g., state-specific Solar Renewable Energy Credit 

                                                
9 Of the DG, 90% is DPV, and the rest is solar hot water. 

Innovative Forecasting: Customer-Adoption Models 
Because the future is inherently uncertain, the predictive accuracy of methods that forecast 
DPV deployment far into the future cannot be evaluated directly in the present. That said, the 
types and importance of predictive factors accounted for in various methods can be compared 
(Table 4). A large portion of DPV deployment is based on customer-adoption decisions, 
which makes customer-adoption models an important innovation for forecasting DPV 
deployment. Customer-adoption models explicitly use historical DPV deployment, location-
specific DPV technical potential, various DPV economic considerations, and end-user 
behaviors as predictive factors. Organizations that use this approach include NWPCC, PAC, 
PG&E, PSE, and WECC, as described in Section 3.2. 
Table 4. Predictive Factors Used by Various Forecasting Methods  

Method Description Predictive Factors Used  

 Recent 
installation 

rates 

Incentive 
program 
targets 

Technical 
potential 

PV 
economics 

End-user 
behaviors 

Stipulated 
Forecast 

Assumes end-point 
DPV deployment      

Historical 
Trend 

Extrapolates future 
deployment from 
historical data 

X     

Program-
Based 
Approach 

Assumes program 
deployment targets 
reached 

 X    

Customer-
Adoption 
Modeling 

Uses adoption 
models that 
represent end-user 
decision making  

X  X X X 
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[SREC] goals and other incentive programs, net energy metering [NEM] caps, etc.) to 
inform its forecasts.10  

• Stipulated forecast: End-point DPV deployment levels are assumed, sometimes at the 
extremes of plausible futures, and impacts are evaluated based on these assumed levels. 
Seven reviewed planning studies use this approach. Usually no further detail is provided 
to explain how planners came up with their forecast. In some cases, stipulated “what-if 
scenarios” are used to test the robustness of additional planning decisions to high levels 
of DPV, as shown in the case of DEI, HECO, and TGT as detailed in Section 4. 

• Historical trend: Extrapolations from historical data are used to forecast future DPV 
deployment. These forecasts are typically based upon recent installation rates, where the 
data are often sourced from local PV incentive programs (e.g., NVP and PG&E). Planned 
(queued) projects can also inform expected trends (e.g., HECO). 

• Other: Methods that differ from those listed above or are unspecified, often based on the 
judgment of the planners, are employed. These include one planning study with an 
unclear DPV forecasting method (DEC/DEP), one study that uses a proprietary third-
party forecast (PJM), and one study by TVA that ties its forecast to outcomes from 
similar scenarios in the U.S. Energy Information Administration’s (EIA’s) Annual 
Energy Outlook (AEO).11 DPV penetration is small and stagnant in TVA’s “Current 
Outlook” reference scenario, while the “Distributed Marketplace” scenario has more 
substantial growth (with DPV accounting for about 1% of retail sales in 2025). 

 
Table 5 summarizes the DPV forecasting approaches from the studies analyzed. Overall, the 
above five categories demonstrate a wide range of DPV forecasting approaches presently being 
used. In part, this diversity reflects the degree to which utility incentive programs are needed to 
drive DPV markets. Program goals are suitable for forecasts when specific incentive programs 
are required to drive the market, but not when substantial adoption occurs without programs. 
When program goals do not drive DPV adoption, DPV deployment is highly sensitive to the 
customer economics of DPV. By including customer economics as a determinant of DPV 
                                                
10 ISO-NE applies a discount factor to far-future projections to account for forecasting uncertainties. For example, 
the initial projections based on state goals are discounted by 5% for 2015 and 2016, with an increase in the discount 
to 15% in 2017 owing to uncertainty about PV deployment after—at the time the forecast was developed—the 
federal investment tax credit (ITC) was expected to expire. The discount rates then increase to 25% by 2019. 
Beyond the end date of a state’s policy goal, ISO-NE assumes DPV adoption will continue at a level that is 50% of 
the adoption rate prior to the end date of the policy. This approach is a simple means of capturing uncertainty 
associated with future expansion of state policies and/or future market conditions while acknowledging some degree 
of PV growth is expected to continue even after the end of state policies. 
11 The different DPV forecasts are created for each scenario by matching TVA scenarios to scenarios in EIA’s AEO 
(2013) based on the degree of carbon dioxide (CO2) regulation in the respective scenarios. TVA then uses outcomes 
of the EIA scenarios to determine scenario-specific national renewable deployment rates, and it makes scenario-
specific assumptions about what fraction of the national renewable energy deployment is due to customer adoption 
of DPV. For example, 11% of the national renewable energy growth is assumed to come from DPV in the “Current 
Outlook” scenario, whereas 50% comes from DPV in the “Distributed Marketplace” scenario. Finally, TVA 
assumes that TVA customers will adopt DPV at a rate of 75% of the national average. The key factors that drive 
differences in the DPV forecasts across scenarios are (1) CO2 regulations (more stringent regulations increase DPV 
adoption up to a point, though “De-carbonized Future” assumes a larger fraction of renewable energy growth is from 
utility-scale renewables), (2) customer preferences (DPV adoption is higher in the “Distributed Marketplace” 
scenario), and (3) economic growth conditions (DPV adoption is higher in “Growth Economy” than in “Stagnant 
Economy”). 
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deployment, models can directly represent DPV sensitivity to rate restructuring, NEM extension, 
and other singular events (e.g., renewal of the federal ITC). 
Table 5. Approaches to Forecasting DPV in Planning Studies 

Plan Approach Details 

APS 2014 IRP Program-based and 
stipulated 

Assumes compliance with Arizona’s Renewable Energy Standard (15% renewables 
by 2025, with 30% coming from DG) in the base forecast. Assumes higher DER 
adoption in an “Increased Environmental Policy” scenario.  

DOM 2015 IRP Program-based Uses a 30-MW-by-2016 Solar Partnership Program goal for utility-owned DPV on 
leased commercial and industrial customer property and in community settings. 
Other programs (i.e., Solar Purchase Program and NEM) are mentioned, but no 
forecast is specified.  

DEC/DEP 2014 IRP Other Uses a single forecast of behind-the-meter rooftop PV to create an hourly net-load 
forecast. The method used to create the forecast is not clear from the IRP or other 
supporting documents.  

DEI 2015 IRP Stipulated Includes an “Increased Customer Choice” scenario based on stakeholder comments 
in which DPV provides an additional 1% of load per year beginning in 2020. 

ELA 2015 IRP Historical trend and 
stipulated 

Uses a forecast based on a 12-month average of installation rates and average 
system size. No additional growth is assumed after 2017 owing to the ITC 
expiration. Also uses higher “Distributed Disruption” scenario that assumes 
continued state policy support for DG. 

FPL 2015 Ten Year 
Plan 

Stipulated Assumes 444 GWh/year above 2014 levels by 2024. 

GPC 2016 IRP Program-based Uses the Renewable Energy Development Initiative, which establishes a program 
goal of 50 MW of DPV (smaller than 3 MW) that is competitively bid and an 
additional 50 MW of customer-sited DPV that is paid a fixed price by 2019. 

HECO 2013 IRP Historical trend and 
stipulated12 

Grounds the base forecast for new installations on historical installations, current 
growth rates, known projects in queue, and likely projects planned by large 
customers. HECO also gathered information on future customer projects from 
utility discussions with customers about their future plans. They also include 
different DPV deployment rates in several what-if scenarios.  

IPC 2015 IRP Stipulated Assumes an existing 4 MW of NEM customers with an additional ~4 MW of DPV 
per year after 2022 in one stakeholder-driven scenario. 

ISO-NE 2015 
Regional Plan  

Program-based Translates individual state-by-state policy goals, largely incentive programs or 
NEM caps, into capacity estimates: SREC II in Massachusetts (1,600 MWDC by 
2020), ZREC program in Connecticut (323 MW from 2015–2020), and REG 
program (160 MW by 2019) and NEM program in Vermont (until 15% of peak load 
NEM cap is reached), etc. ISO-NE contracted ICF to identify economic drivers 
affecting the potential development of PV in the region (ICF International 2015). 
ISO-NE’s forecast is also informed by historical trends. 

LADWP 2014 IRP Program-based Uses separate capacity goals for three incentive programs by 2020: feed-in tariff 
(FiT, 450 MW), NEM (310 MW), and community solar (40 MW).  

                                                
12 In its 2016 Power Supply Improvement Plan (PSIP), HECO uses a customer-adoption model for DPV from 
Boston Consulting Group.  
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NVP 2015 IRP Historical trend  Bases forecast on trends in installations observed in 2014 for the SolarGenerations 
rebate program along with non-rebated PV that is still eligible for NEM. The 
forecasts are created for residential as well as small and large commercial and 
industrial customer classes. The rate of DPV growth is assumed to decrease after 
the assumed step-down of the ITC after 2016. 

NWPCC 7th Power 
Plan 

Customer-adoption 
modeling 

Integrates the DPV forecast with the demand forecast using a multinomial logit 
customer choice model that weighs preferences for grid electricity vs. electricity 
from DPV. The model estimates customer preferences (including non-economic 
factors) for solar based on historical relationships between retail rates, solar cost and 
performance, and customer adoption. The forecast is then based on projections of 
future rates and PV cost and performance. A projected installed capacity of 100 
MWAC in 2015 increases to 500 MWAC in 2035. 

NSP 2015 Resource 
Plan 

Program-based Uses Minnesota’s requirement that utilities supply 10% of retail load from solar 
resources by 2030, of which 10% is to come from smaller DPV systems (under 20 
kWDC).  

NYISO 2015 Gold 
Book 

Stipulated Develops reasonable forecasts assuming 70%–75% of state DPV goals are met by 
2023 following an S-shaped deployment curve. The 2016 forecast will introduce 
factors like payback and socioeconomics at the county level to develop forecast.  

PAC 2015 IRP Customer-adoption 
modeling 

Uses Navigant-developed forecast based on relationship between simple payback 
and willingness-to-adopt curve (described below). The annual adoption rate is 
determined by the Fisher-Pry model.  

PG&E 2014 BPP 
[Alternate] 

Historical trend  Assumes a 29% growth rate for 2014–2016 based on historical trends. Owing to 
assumed expiration of the ITC, the 2017 adoption rate returns to the 2014 level of 
approximately 300 MW/year and thereafter increase linearly to about 400 MW/year 
by 2024.  

PG&E 2014 BPP 
[California Public 
Utilities Commission 
(CPUC) Mandated] 

Customer-adoption 
modeling 

Uses customer-adoption model forecast from the California Energy Commission 
(CEC) based on the relationship between payback and willingness-to-adopt curve. 
The annual adoption rate is determined by the Bass diffusion model. The CEC 
forecast for non-residential customers is based on historical trends.  

PJM 2015 Forecast 
Manual 

Other Uses a proprietary (not provided) state-by-state DPV adoption forecast from IHS 
Energy. 

PNM 2014 IRP Stipulated Assumes capacity additions of 15 MW in 2014, 18 MW in 2015, and 21 MW 
thereafter. 

PSE 2015 IRP Customer-adoption 
modeling 

Uses customer-adoption model developed by Cadmus. Market penetration rate is 
estimated from regression of historical market penetration rate on annualized simple 
payback and then extrapolated based on estimates of future payback.  

TGT 2015 IRP Stipulated Assumes 20% of all residential customers, or 90,000 customers, would drop 
completely off the grid in a scenario where DPV + storage leads to grid defection.  

TEP 2014 IRP Program-based and 
stipulated 

Bases forecast on requirement that DG (90% of which is DPV) makes up 30% of 
the overall renewable resources used to meet a 15% Renewable Energy Standard by 
2025. Also includes a what-if scenario in which only a portion of the DG 
requirement is met.  

TVA 2015 IRP Other Creates DPV forecasts under five scenarios based on correlating scenarios with EIA 
AEO scenarios based on carbon policy and assuming some fraction of the national 
renewable forecast is derived from rooftop PV.  

WECC 2015 
Transmission 

Customer-adoption 
modeling 

Uses customer-adoption model developed by E3 based on relationship between 
payback and willingness-to-adopt curve. The annual adoption rate is determined by 
the Bass diffusion model. E3 creates a reference forecast that limits DPV adoption 
assuming existing NEM caps stay in place and a high-DG forecast assuming no 
NEM caps and lower DPV capital costs.  
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3.2 Customer-Adoption Modeling  

The customer-adoption modeling approach explicitly models consumer decision making based 
on PV economics. This approach is used in five of the planning studies reviewed, including those 
by PG&E (CPUC Mandated scenario, conducted by the CEC), NWPCC, PAC (conducted by 
Navigant), PSE (conducted by Cadmus), and WECC (conducted by E3).13 A key benefit of 
customer-adoption models is their ability to generate new, self-consistent DPV-adoption 
forecasts with varying assumptions about customer economics or policies. For example, Cadmus 
generates distinct high and low forecasts for PSE based on different assumptions about the 
renewal of DPV incentives. PAC uses customer-adoption modeling to create low-, base-, and 
high-penetration cases from various DPV-cost, DPV-performance, and utility-rate-escalation 
scenarios (Figure 2).14 This approach enables a bottom-up assessment of individual drivers 
instead of presupposing the impact that drivers might have on DPV deployment. On the other 
hand, projections of customer economics are still highly uncertain given potential changes in 
rates, policies, and DPV costs. Customer-adoption models provide a coherent framework for 
assessing the impact of these changes on DPV adoption, but they still produce uncertain 
forecasts.  
 

 
Figure 2. DPV Penetration Scenarios from PAC’s Customer-Adoption Modeling 

Four of the five aforementioned planning studies (all but NWPCC’s, which is discussed at the 
end of this subsection) follow a similar underlying process in their customer-adoption modeling 

                                                
13 Sacramento Municipal Utility District (SMUD) worked with Black & Veatch to develop a DPV forecast based on 
a customer-adoption model, similar to the models described here (Clark 2015, Wilson et al. 2015). We note 
interesting aspects of their analysis throughout this document, but we did not have a particular publicly available 
planning study to comprehensively include in our review. Relative to the other customer-adoption models, a clear 
innovation in the Black & Veatch approach is to add further granularity to where (i.e., on which distribution feeders) 
adoption is likely to occur. This is discussed further in Section 7.  
14 It would also be possible to evaluate the effects of alternative rate designs (e.g., NEM alternatives, time-of-use 
rates, demand charges, or increased fixed charges) on the DPV forecast, but no utility investigated this. Previous 
research by Lawrence Berkeley National Laboratory (Darghouth et al. 2016) uses the National Renewable Energy 
Laboratory’s (NREL’s) SolarDS model to evaluate the impact of alternative rate designs on DPV adoption across 
the United States. Bringing rate-design decisions into utility planning studies is further discussed in Section 11.  
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(Figure 3). DPV deployment is estimated via three steps: (1) assessing the maximum capacity 
that could feasibly be installed, regardless of economics (technical potential); (2) assessing the 
ultimate potential DPV adoption based on the customer economics of PV (willingness-to-adopt), 
which is based, in turn, on a combination of technology costs, retail electricity rates, NEM, and 
other incentives; and (3) simulating deployment over time by combining the adoption curve with 
a theoretical adoption model (diffusion), where the Bass diffusion model and the Fisher-Pry 
model are two of the most popular options (see Text Box 1 below for a brief introduction). The 
basic approaches used by the utilities are similar to NREL’s SolarDS (Denholm et al. 2009) and 
dGen models (Sigrin et al. 2016). 
 

 
Figure 3. Illustration of Process Commonly Used to Develop Customer-Adoption Models 

For three of the studies (PSE, PAC, and PG&E), the technical potential assessments are based on 
estimates of available rooftop space and customer counts. For PSE, the rooftop space is 
estimated based on average floor space, average number of floors, and the customer count for 
each customer type. PSE includes adjustments in available area based on factors like orientation, 
pitch, and fire codes, and it projects that the PV array power density would increase at a rate of 
2.1% per year based on projected efficiency gains in PV systems (PSE 2015, Appendix M). PAC 
estimates technical potential based on the smaller of the customer’s summer peak load or the 
available rooftop space. Rooftop space is estimated based on PAC’s own floor-space surveys and 
assuming an average of two floors per building. The average rooftop space is then reduced based 
on an assumption that only one in four residential customers has a south-facing roof (a PV 
“access factor” of 25%), only a portion of commercial roof space is suitable (an access factor of 
65%), and the power density of a system is only 80% of the density of a module owing to 
maintenance access, footpaths, etc. The technical potential for the CEC forecast used by PG&E 
is based on an approach similar to PAC’s, using an earlier technical potential assessment for 
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California conducted by Navigant (Navigant 2007). The technical potential for WECC assumes 
that 50% of customers could add PV and that typical system sizes are 4 kW for residential and 50 
kW for commercial customers (WECC 2015).  
 
The willingness-to-adopt curve is a relationship between the customer economics of PV (often 
represented by the simple payback period) and the ultimate market share that could be achieved 
with enough time (as a percentage of the technical potential). The willingness-to-adopt curves 
used in the utility forecasts are shown in Figure 4. The willingness-to-adopt curves used by PAC 
were developed by Navigant through previous research based on customer surveys, historical 
program data, and industry interviews. The curve used by the CEC for PG&E’s forecast is from a 
customer-adoption model (SolarSim) in an Arizona PV study by R.W. Beck (2009), which 
averages curves from Navigant and curves developed based on heat pump adoption (Kastovich et 
al. 1982).15 PSE references the same curve used by PG&E, though it ultimately develops its own 
curve, citing concern that PSE customers may have different preferences.16 The WECC curves 
have the same functional form found in NREL’s SolarDS model. The simple payback period 
accounts for the cost of purchasing a PV system, the bill savings (which depend on PV 
performance and retail rates), and incentives. 
 

 
Note: Dashed gray lines (WECC) are for existing buildings, and dotted gray lines are for new buildings. 

Figure 4. Willingness-to-Adopt Curves Used in Utility Customer-Adoption Models 

To develop an annual adoption rate, PAC, PG&E, and WECC use a diffusion curve to estimate 
the fraction of the ultimate market share that would be achieved in each year, depending on time 
since PV was introduced into the market (Figure 5). PAC uses the Fisher-Pry curve, while PG&E 
and WECC use the Bass diffusion curve, described below in Text Box 1. For the PG&E forecast, 

                                                
15 PAC’s payback period accounts for state-specific rebates and retail rates. 
16 To develop the willingness-to-adopt curve, Cadmus Group estimated the payback period for historical years and 
the market share as a percentage of the technical potential from historical adoption. It then fit a curve to this 
historical data as the basis for the willingness-to-adopt curve. One limitation of this approach is that it ignores the 
diffusion component that is included in the PAC and PG&E forecasts. HECO used a similar fitting process in the 
customer-adoption forecast used in their 2016 PSIP.  
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the parameters that define the curve shape are derived from a survey of empirical studies.17 The 
source of the parameters is not clear for PAC18 and WECC. For PAC, the “Years Since 
Introduction” starts when the simple payback period is first less than 25 years. In contrast, PSE 
does not appear to use a diffusion curve—the realized market potential is the same as the 
ultimate market potential in each year.  
 

 
Figure 5. Diffusion Curves Used in Customer-Adoption Models 

For comparison, NREL’s dSolar model estimates Bass diffusion parameters for each state based 
on historical adoption rates (Sigrin et al. 2016, Appendix D). The number of years since 
technology introduction, key to these calculations, depends on the state-specific diffusion 
parameters as well as the current penetration rate. The median values across all states shown in 
Figure 5 imply market diffusion starting between 1998 and 2005. Advantages of this approach 
are that the Bass diffusion parameters reflect territory-specific trends and can be readily updated 
as more customers adopt DPV. The disadvantages are that year-to-year volatility in adoption can 
bias estimates, and the parameter estimates invariably embed some knowledge of prior historical 
techno-economic conditions, which may not reflect future conditions. 
 
The S-shape of the diffusion curves in these forecasts is not unique to DPV. Historical adoption 
rates of many different kinds of technologies—including refrigerators, VCRs, internet access, 
and mobile phones—have been modeled with S-shaped curves (Meade and Islam 2006, Kemp 
and Volpi 2008). This pattern of adoption implies that market penetration in 5–10 years can be 
significant even if recently observed shares of adoption are small. However, there appears to be 
no clear agreement about the number of years between DPV introduction and the rapid growth 
phase. Limitations of these existing customer-adoption models are addressed in Section 3.5. 
 

                                                
17 Specifically, the study uses a coefficient of innovation (p) value of 0.03 and a coefficient of imitation (q) value of 
0.38 derived from a survey in Meade and Islam (2006).  
18 Navigant discusses 12 factors that affect the parameters of the Fisher-Pry curve, including the payback period, the 
market risk, the technology risk, and the amount of government regulation. It does not, however, describe how these 
factors translate into the particular parameters it chose to model the diffusion curve. For residential customers, it 
appears Navigant uses a tm of about 15 years and a ∆! of about 16 years. For commercial customers, tm is about 20 
years, and ∆! is about 23 years. Navigant does not explain the differences in the curve parameters.  
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NWPCC’s customer-adoption modeling approach is slightly different than that used in the other 
four studies. Primarily, NWPCC includes in its load forecast adoption of DPV as a choice 
between purchasing electricity from the grid versus purchasing electricity from DPV. 
Specifically, the demand model used by NWPCC (based on the Energy2020 model from 

Text Box 1. Two Diffusion Models 

Many diffusion models in the literature can produce an S-type diffusion curve for new technology 
adoption. Two common choices are the Bass diffusion model and Fisher-Pry model. Borrowing Meade and 
Islam’s (2006) language, while the Fisher-Pry model is purely an internal-influence model, the Bass 
diffusion model is a mixed-influence model: a mix of both internal and external influence. Internal 
influence represents interpersonal communication and the phenomenon of later adopters imitating early 
adopters; on the other hand, external influence represents the impact of innovators that adopt the new 
technology without others’ suggestions. 
 

In mathematical terms, these two diffusion models can be specified in a similar form: 

Fisher-Pry:            !!
(!!!!)

= ! ∙ !!                        (1) 

Bass diffusion model:      !!
(!!!!)

= ! + ! ∙ !!                       (2) 

Where, !!  is annual adoption rate in year !, !! is the cumulative adoption rate in year !, and !!
(!!!!)

 is the 
odds ratio of adoption rate. In the Fisher-Pry model, ! is half the annual fractional growth in the early 
years. In the Bass diffusion model, p is the coefficient of innovation, and q is the coefficient of imitation.  
 

Comparison of the models makes it clear that the Fisher-Pry model relies only on the internal influence that 
is captured by the amount of cumulative adopters (!!), whereas the Bass diffusion model allows for 
external influence based on the coefficient of innovation (p).  
 

The Fisher-Pry model can be solved for the cumulative adoption rate, !!, as follows: 

!! = !

!!!"#!!!" (!")
∆! (!!!!)!

                   (3)     

Where !! is the time to fulfill 50% of the cumulative adoption rate (i.e., the middle point), and ∆! is the 
time it takes for the adoption rate to increase from 10% to 90%.  
 

In the solution of the Bass diffusion model, !! depends on the ! and ! parameters: 

!! = !!!!"(!(!!!)!)
!!!!!"#(!(!!!)!)

                    (4)      

As an illustration, these two models can generate very similar S-curves given appropriate parameterization.  

 

Bass diffusion Model:  
! = 0.0063 
! = 0.4282 
 
Fisher-Pry Model: 
∆! = 10 
!! = 10 
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Systematic Solutions, Inc.) uses a multinomial logistic model to predict consumer decisions 
when faced with competing alternatives, in this case the choice between purchasing grid 
electricity at retail rates or installing behind-the-meter PV. Historical DPV adoption rates, along 
with data for electricity rates and DPV cost and performance, are used to calibrate the model to 
account for economic and non-economic factors. No explicit diffusion curve is used in the 
model, though the multinomial logistic model can produce a forecast that follows an S-shaped 
curve. The forecast is developed from the model by projecting future retail electricity prices and 
PV cost and performance. Variations in the retail electricity prices and PV system costs produce 
different DPV forecasts. NWPCC assumes DPV costs will fall at the same rate as they project 
for utility-scale PV (UPV), but performance (as measured by the state-specific capacity factor) 
will remain the same as today. 
 
3.3 DPV Deployment Drivers 

When developing DPV forecasts, utility planners may consider various drivers of future DPV 
deployment. The relationship to the DPV forecast may be explicit, as with customer-adoption 
modeling, or it can be more implicit, for example, by informing planners’ judgment when 
stipulating DPV growth under a “what-if scenario” approach. We group the drivers of DPV 
deployment considered by utility planners into four categories below. 
 

• DPV economics: The customer economics of PV directly impact deployment and can be 
influenced by many factors, such as DPV technology cost and performance, federal and 
state incentives (e.g., an ITC), new business models (e.g., third-party ownership), 
electricity prices, and rate design (including the availability of NEM). For all planning 
studies that use customer-adoption modeling, DPV economics is a necessary 
consideration, because DPV deployment is forecasted based on payback periods. To 
calculate payback, annual cash flow is required to account for benefits and costs, and 
various DPV economics factors can play an important role. DPV economics is the most 
common driver of DPV forecasts across the various planning studies. 

• Public policy: Other forms of public policy support, beyond direct incentives, can also 
impact DPV economics. Common examples include state RPS requirements and 
environmental policies such as CO2 regulation. HECO, for example, considers the overall 
level of public policy support for clean energy as one of the two dimensions (the other 
being the price of oil) to create four broad scenarios in its IRP. Similarly, ELA includes a 
“Distributed Disruption” scenario that assumes broad state support for DG. APS expects 
higher rates of DPV adoption in its “Increased Environmental Policy Scenario,” because 
it assumes environmental policies will increase demand for renewables and thus increase 
retail rates and the economic attractiveness of DPV. 

• Customer preferences: DPV deployment projections may also be shaped by customer 
preference for DPV technology or, more generally, increased customer choice. Three 
planning studies highlight the importance of customer preferences. DEI includes an 
upper-bound forecast in a stakeholder-inspired “Increased Customer Choice” scenario. 
NSP makes customer participation in a new community solar program its main source of 
uncertainty. TVA has various scenario-specific assumptions that vary based on how 
much customers are assumed to prefer DG.  
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• Macro factors: DPV deployment may also be driven by factors at the macro level, such 
as economic growth, load growth, oil and gas prices, and the cost and availability of 
complementary technologies, such as batteries. One example is a TGT scenario that 
envisions significant grid defection from customers going off-grid with DPV and battery 
systems. The impact of such factors is less direct than the impact of other factors.  

 
3.4 DPV Forecasted Quantities 

As expected, the quantity of forecasted DPV varies substantially by region and utility. Figure 6 
compares the ranges of DPV forecasts across plans, expressed as a percentage of retail sales, in 
the near-term (2020) and long-term (2030); Appendix B provides additional details. These 
forecasts provide context about the applicability of the planning strategies discussed in this 
report to different regions and utilities, as perceived by planners. Fewer than half of utilities 
consider DPV penetration levels beyond 1% of sales by 2020, even at the high end of their 
range—and these low forecasts span areas with high insolation (e.g., the South) and low 
insolation (e.g., the Northwest). As a point of reference, EIA’s forecast of the national average 
DPV penetration is 0.5%–1% of retail sales by 2020 and 0.8%–2% by 2030.19  
 
A number of utilities use only a single DPV forecast or consider only a small range, which might 
indicate opportunities for these utilities to expand the scope of their forecasting approaches. For 
example, though NVP and PNM forecast substantial near-term deployment, the ranges of those 
forecasts are small compared with the forecasts produced by other organizations in their region 
and compared with industry forecasts. ISO-NE and NYISO also have very small ranges, which 
result from the focus of these regional planning organizations on a central case. Numerous 
utilities with low forecasts also have small forecast ranges, but these often accord with the ranges 
of other utilities in their regions.  
 
Figure 6 also shows that the high end of third-party forecasts is above the high end of planning 
forecasts about two thirds of the time, suggesting that differences between these two types of 
analyst groups might result in relatively conservative estimates from utility planners. Some 
differences might be due to different forecast vintages, because most utility forecasts were 
developed before the recent ITC extension. Differences could also stem from different 
forecasting approaches. For example, the long-term APS forecast is primarily driven by RPS 
requirements for DG, whereas the much higher NREL dSolar forecast is driven by customer 
economics. Similarly, GPC’s low long-term forecast is primarily based on a program goal, which 
makes it lower than the high end of the near-term third-party forecasts and lower than the full 
range of the dSolar 2030 forecast. In addition, utilities might make more conservative forecasts, 
because the risks associated with forecasting too little DPV (which can lead to extra costs from 
overbuilding the system) are less acute than the risks of forecasting too much (which can lead to 
reliability issues if insufficient resources are available). In any case, this comparison suggests 

                                                
19 The range is based on the Reference case from the 2015 AEO, which assumes the ITC would sunset after 2016 
and the Clean Power Plan would not be enacted, and the Reference case from the 2016 AEO, which includes the 
recent ITC extension and the Clean Power Plan.  
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that third-party forecasts could provide additional useful context for utility planners, particularly 
when considering plausible high-end forecast values. 
 

 
Note: All utility planner estimates are for the year 2020 (dark blue) and 2030 (light blue, if a forecast was made) 
with the exception of APS, whose long-term estimate is for 2029. Third-party forecasts of DPV adoption include 
BNEF (2015), GTM Research and SEIA (2015, 2016), and NREL’s dSolar forecast (Gagnon and Sigrin 2016). 
Bloomberg New Energy Finance (BNEF)20 and dSolar use a customer-adoption model to generate forecasts. The 
only third-party forecasts for 2030 are from NREL’s dSolar. NREL’s dSolar forecasts include a range of scenarios 
with varying DPV and carbon costs.  

Figure 6. Utility DPV Forecasts in the Near Term (2020) and Long Term (2030) Compared with 
Third-Party DPV Forecasts 

 
Overall, our analysis suggests that combining various DPV forecasting approaches might be 
valuable. Figure 7 separates the forecasts by forecasting approach. It shows that stipulated 
forecasts generally have the largest ranges, whereas program-based forecasts tend to have small 
ranges (with the exception of LADWP, which considers various program portfolios, and APS, 
which stipulated adoption higher than the program goal in one scenario), typically focused on the 
near term. A combined approach might, for example, use program goals discounted for 
uncertainty as lower bounds, customer-adoption models to forecast expected levels, and third-
party forecasts and stipulated what-if scenarios to explore the full range of plausible futures. 
 

                                                
20 BNEF uses a Norton-Bass model that allows for customer choices among several product options (e.g. DPV in 
combination with storage) and calibrates customer-adoption parameters with historical monthly installation data. 
Their model has the resolution of a utility service territory, accounts for regional DPV system price variations, and 
utilizes utility-specific incentives and energy tariffs.  
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Note: All utility planner estimates for the near term (2020) are shown in darker colors. Longer-term estimates are 
depicted in lighter colors and pertain to the year 2030 with the exception of APS, whose long-term estimate 
references the year 2029. As noted in Table 5, some forecasts use multiple methodologies. In such cases, we used 
our judgment to categorize the forecast’s methodology. 

Figure 7. Utility DPV Forecasts Grouped by Forecasting Methodology 

 
3.5 Advancing Customer-Adoption Models  

As discussed in Section 3.2, currently used customer-adoption models do not clearly agree on all 
parameters, methods for developing parameters are not always clear, and the models do not 
always exploit the larger amounts of data available as more customers adopt DPV. As DPV 
deployment has increased, the sophistication of methods used to analyze customer preferences 
and predict PV adoption has also improved. Roughly speaking, these methods predict aggregate 
deployment in a top-down (using regional-level characteristics) or bottom-up (using individual-
level characteristics) manner. In this subsection, we highlight recent state-of-the-art models that 
have been used to forecast DPV adoption, and we note unresolved issues in the literature. 
Though these advanced methods are not employed in the utility planning documents we review, 
they build on the customer-adoption modeling framework described in Section 3.2 and represent 
potential improvements to DPV forecasting tools. 
 
3.5.1 Improving Representation of Customer-Adoption Decisions 

Agent-based models (ABMs) have emerged as common, bottom-up techniques for simulating 
customer adoption of new technologies, because they are well suited to represent the 
complexities of consumer behavior and technology valuation. ABMs are a class of 
computational models for simulating the interactions and actions of distinct autonomous agents 
and, by association, assessing their effects on a larger system. These models have been 
successfully used to forecast aggregate PV deployment at the city, regional (Rai and Robinson 
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2015, Zhang et al. 2015), and national levels (Sigrin et al. 2016). An overarching feature of 
ABMs is the parameterization of the factors that influence decision making by agents 
representing individuals or groups of consumers—and the heterogeneity of the population 
therein, as well as regional descriptors. This class of models is well suited to producing 
geospatial forecasts.  
 
At the core of all bottom-up models, ABM or otherwise, is some defined relationship between 
the adoption decision and the variables that affect this decision. Two ongoing questions in this 
field are how to quantify the elasticity of demand to DPV profitability (Gillingham and 
Tsvetanov 2016) and how to quantify the importance of non-economic factors, such as 
socioeconomic status or environmental concern. Agarwal et al. (2015) define the probability of 
adoption as a function of bill savings and existing penetration levels. This model, which was 
trained on prior adoption history for southern California, finds that demographic factors are a 
second-order effect compared with system profitability. In contrast, Zhang et al. (2015) use 
machine-learning techniques to develop building-level adoption probabilities.  
 
Top-down models are generally statistical in nature, regressing adoption rates on regional 
summary statistics. Davidson et al. (2014) use several types of geospatial information—
including population demographics and housing characteristics—in a stepwise regression model 
to identify which subsets of geospatial information best predict historical PV adoption at the zip 
code level. Discrete choice models, as used in NWPCC’s customer-adoption model described 
earlier, are also popular for modeling technology diffusion (Higgins et al. 2014, Jun and Kim 
2011, Lobel and Perakis 2011, Kim et al. 2005) owing to their ability to model competition 
between several options; this class of models also has a well-defined methodology for soliciting 
customer preferences. A subset of top-down models are probit models (Geroski 2000), regression 
models with binary dependent variables, and threshold models (Kemp and Volpi 2008), in which 
adoption decisions are explicitly modeled though a statistical representation of population 
variance. An example of an empirically derived forecast for German PV adoption using a form 
of discrete choice model called a logit model is shown in Figure 8 (Lobel and Perakis 2011). 
 
 

 
Figure 8. Example of PV Forecast Using Logit Demand Model Fit to Empirical Data from 
Germany (adapted from Lobel and Perakis 2011) 

Quantifying the influence of social networks on probability of adoption is another important line 
of research (Bollinger and Gillingham 2012, Graziano and Gillingham 2015). Related are 

Demand model uses estimates of aD, bD, cD, aI, and bI 
Diffusion process: 

!!!! = !! + !! 
Average customer’s utility of solar: 

!!(!!) = !!!"#!(!!) +  !! log(!!) + !! + !! 
Logit demand: 

!!
(1 − !!)

= !!!(!!)
1 + !!!(!!) 

Net present value of solar: 
!"#!(!!) = (!! − !!(!!))!"#$%&' 

Learning-by-doing: 
!!(!!) = !!!!!! !"#(!!!!)!!! 
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“network externalities” that promote competition and accelerate learning, potentially yielding 
lower prices and increasing adoption (Lobel and Perakis 2011). One consistent finding in this 
field is the importance of “peer effects”—individuals are more likely to consider adopting when 
they are socially or physically proximate to systems adopted by their peers.  
 
Though the PV-diffusion literature is actively growing, a number of questions are unresolved. 
These include, but are not limited to, understanding how gross consumption of customers 
changes after PV adoption (i.e., the “rebound” vs “ripple” effect), how customer demand varies 
with PV profitability and across market segments, and how to determine demand for emerging 
business models such as community solar or aggregated NEM. While no single approach 
reviewed is definitively superior to the others, commonalities among many of the approaches 
highlight the key features in advanced PV adoption models. These include reflecting the 
heterogeneity of potential consumers, representing regional or locational differences, grounding 
methods in empirical data, and including non-economic factors. 
 
3.5.2 Improving Representation of Innovative Business Models 

Innovative DPV business models, such as third-party ownership, or emerging ones, such as 
community solar or aggregated NEM, constituted roughly 60% of installed residential capacity 
in 2015. A growing body of behavioral science research (e.g., Frederick et al. 2002, Rai and 
Sigrin 2013) explains customer preferences for leasing or other low-money-down financing 
options by assuming consumers use high discount rates—higher than the opportunity costs of 
capital—to evaluate energy technology investments. A major appeal of leasing for consumers is 
ready access to financing, often with no down payment required.  
 
Some representation of leasing is therefore important, though it can be challenging to empirically 
represent in customer-adoption models. Recent research indicates that most consumers now use 
monthly bill savings to evaluate potential DPV investments (Sigrin et al. 2015, Dong and Sigrin 
2016). Thus one approach, used in NREL’s dSolar model, is to represent the financial appeal of 
leasing through a monthly bill savings metric as opposed to payback period in the willingness-to-
adopt curve described earlier (see Figure 9). Payback period is undefined for zero-down 
financing. Dong and Sigrin (2016) estimate willingness-to-adopt for the bill savings metric using 
elicited survey data that are further calibrated against historical relationships between bill savings 
and customer adoption.  
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Figure 9. Willingness-to-Adopt Curve Suitable to Leasing Options Used in NREL's dSolar 

Additional constraints that can be considered in models are the fraction of households that have 
sufficient savings for cash purchases and how household creditworthiness (e.g., FICO scores) 
would limit access to financing.  
 
3.5.3 Improving Estimates of Rooftop Technical Potential 

Technical potential for DPV refers to either the feasible number of buildings on which DPV 
could be installed or the feasible amount of DPV generation capacity that could be installed, 
regardless of economic considerations. Because the vast majority of DPV has been sited on 
rooftops, current estimates of DPV technical potential are essentially synonymous with available 
rooftop space for a region’s building stock. Rooftop space can be estimated via top-down or 
bottom-up methods. Top-down estimates are based on territory-wide statistics, such as the 
number of buildings in the area, which are derated by assumptions about the available rooftop 
area per building, the percentage of buildings with usable roofs, and so on (e.g., Denholm and 
Margolis 2008). Bottom-up estimates are typically based on Light Detection And Ranging 
(LiDAR) imagery to identify suitable solar roof areas for a representative sample of actual 
buildings in the region, where shading, tilt, and azimuth attributes can be inferred from the 
rooftop images (Gagnon et al. 2016). For each rooftop imaged, availability constraints can be 
applied to exclude unsuitable rooftop orientations or insufficiently large contiguous areas. Where 
feasible, technical potential estimates can also exclude building stock based on permitting and 
zoning considerations. Such technical potential estimates need to be updated over time to reflect 
building block growth, tree growth/removal, and PV efficiency improvements. 
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4. Ensuring Robustness of Decisions to Uncertainty in DPV Quantity 

 
In general, utilities aim to develop plans that are least cost while meeting specific criteria. One 
challenge to these efforts is the uncertainty of future conditions. Some planners simply identify a 
least-cost plan under expected conditions, without directly addressing uncertainty. Others try to 
address uncertainty by identifying plans that are either robust to changes in conditions or flexible 
enough to adapt to changing conditions. 
 
Customer adoption of DPV and growth of DPV through utility programs represent additional 
sources of uncertainty. Different amounts of DPV can change the amount of capacity and energy 
that must be met by other utility resources as well as the temporal profile of those needs (i.e., the 
shape of net load). Robustness of decisions to uncertain parameters is most clearly addressed in 
utility integrated resource planning, though we also find relevant examples in transmission 
planning. We find little evidence that robustness of decisions to DPV forecast uncertainty is a 
consideration in distribution planning, likely owing to a combination of factors. First, 
distribution system planning horizons are shorter than those for resource or transmission 
planning, so DPV quantity forecasts are more certain. Second, planners are less confident that 
DPV can defer distribution system upgrades due to higher variability and less coincidence with 
peak feeder loads, particularly on residential feeders, which lessens the importance of getting the 
DPV quantity right in the plans. These factors are discussed further in Section 8. 
 
In this section, we address methods that utilities use to ensure decisions are robust to uncertainty 
in DPV forecasts. Section 4.1 gives an overview of the methods used, highlighting examples 
from various U.S. utilities. Section 4.2 provides additional detail on the per-scenario-plan 
method as well as an innovative variation of that method: acquisition path analysis. 
 

Planner’s question: How do you make sure your planning decisions make sense even if there 
is uncertainty in how much DPV will be adopted in the future? 
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4.1 Methods for Integrating Uncertainty of DPV Quantity into Planning  

Across the utility studies in our sample, we observe wide variation in the approaches for ensuring 
robustness of decisions to different levels of DPV adoption. For all utilities, DPV uncertainty is 
just one of the many uncertainties faced when developing a plan, and approaches to addressing it 
are shaped by each utility’s overall approach to managing uncertainty.21 We observe three basic 
methods for managing uncertainty in DPV adoption, which we describe below along with 
examples of real-world use. Table 7 compiles the methods used across the plans we reviewed. 
 
Single forecast: Only one forecast of DPV adoption is used, and the utility plans are based on 
this level of DPV adoption.22 DEC/DEP, FPL, GPC, NVP, and PNM use this method. With only 

                                                
21 Related to this, alternative DPV forecasts are sometimes evaluated as an isolated factor that may change 
independently of other sources of uncertainty. At other times, alternative DPV forecasts are evaluated as one of 
multiple changes in an alternative scenario (e.g., as part of an increased environmental policy scenario that includes 
greater DPV adoption, a higher carbon price, and lower load growth). The approach for dealing with alternative 
DPV forecasts is usually driven by the utility’s overall approach to managing uncertainty.  
22 Even if a single forecast of the quantity is used, utilities often consider various output levels of DPV in studies 
depending on the time of day or season. See Sections 6 and 8 for more details.  

Innovative Uncertainty Planning: Acquisition Path Analysis 
Innovations in uncertainty planning revolve around the ability of analytical methods to 
capture multiple sources of uncertainty and inform resource decisions. In this regard, the 
methods discussed in this section provide a spectrum of options for capturing uncertainty 
related to DPV quantity, as summarized in Table 6. Acquisition path analysis, which 
combines multiple per-scenario plans with trigger events to shape resource-acquisition 
strategy, is among the most innovative approaches currently employed by utility planners. 
PAC and HECO use variations of this approach in their resource planning, as described in 
Section 4.2. 
Table 6. Factors Addressed by Various Methods for Addressing Uncertainty of DPV Quantity 

Method Description Factors Addressed  

 Net load 
changes 

Generation 
portfolio changes 

Resource-acquisition 
strategy changes 

Single 
Forecast 

One DPV-adoption 
forecast used    

Subject to 
Sensitivity 

Cost and performance of 
portfolios evaluated under 
different sensitivities 

X   

Per-Scenario 
Plan 

CEM used to develop 
least-cost plans for 
various scenarios 

X X  

Acquisition 
Path Analysis 

Multiple per-scenario 
plans combined with 
trigger events to shape 
resource-acquisition 
strategy 

X X X 
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a single forecast, the utility cannot determine the impact that higher or lower levels of DPV 
adoption will have on the performance of its recommended plan. This makes it difficult to know 
if and when recommended decisions should change if DPV adoption is different than the 
expected level.  
 
Subject to sensitivity: The cost and performance of portfolios are evaluated under different 
sensitivities, including a DPV-adoption sensitivity. DOM and DEI use this method. DOM shows 
that the present value of the revenue requirement (PVRR) of portfolios changes with higher DPV 
adoption, and DEI shows how the ranking of portfolios, based on PVRR, changes with higher 
DPV adoption. However, because the sensitivities change the net load but not the planned 
resources, the only impact to the PVRR is the change in fuel and purchased power costs. This 
approach can show the relative performance of different portfolios under varying conditions, but, 
because the candidate portfolios are fixed, it does not show how the timing or composition of 
resources in a portfolio might change. We cannot ascertain how these sensitivities are used to 
inform selection of the final preferred plan; at best, they show that there are no particular 
shortcomings of the preferred plan across the sensitivities.  
 
Per-scenario plan: A capacity-expansion model (CEM) or similar tool is used to develop a least-
cost plan for each of various scenarios, including scenarios with greater adoption of DPV. Many 
utilities (APS, ELA, HECO, NSP, NWPCC, PAC, PG&E, PSE, TGT, TEP, and TVA) use this 
method, which is illustrated in Figure 10. For some of the planning studies, the utility reports a 
reduction or deferral of conventional capacity in the least-cost plan for scenarios with higher 
DPV adoption (e.g., APS, ELA, TEP, and TVA) and/or a reduction in the capacity of other 
renewable generation (e.g., HECO and TVA).  
 

 
Figure 10. Illustration of Process for Developing Per-Scenario Plans 
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Table 7. Methods for Addressing DPV-Adoption Uncertainty across Reviewed Plans 

Plan Method Details 

APS 2014 
IRP 

Per-
Scenario 
Plan 

Use CEM (Strategist) to develop plans in six scenarios, several with different DPV 
assumptions. Use to show how plans might change if/when conditions change. 

DOM 2015 
IRP 

Subject to 
Sensitivity 

Use CEM (Strategist) to develop plans in five scenarios, then subject each plan to 
sensitivities including DPV growth. 

DEC/DEP 
2014 IRP 

Single 
Forecast 

Use CEM (System Optimizer) to develop plans based on a single DPV forecast. 

DEI 2015 IRP Subject to 
Sensitivity 

Use CEM (System Optimizer) and stakeholder input to develop nine different 
candidate portfolios, then subject each to seven different scenarios including one with 
higher DPV adoption. Rank each portfolio by lowest cost (lowest PVRR) in each 
scenario. 

ELA 2015 
IRP 

Per-
Scenario 
Plan 

Use CEM (Aurora) to develop plans in multiple scenarios, including one “Distributed 
Disruption” scenario. Evaluate each plan under assumptions from different scenarios 
and various sensitivities to show that recommended plan is sufficiently robust. 

FPL 2015 10-
Year Plan 

Single 
Forecast 

Develop plan based on a single DPV forecast. 

GPC 2016 
IRP 

Single 
Forecast 

Use CEM (System Optimizer) to develop plans based on a single DPV forecast. 

HECO 2013 
IRP 

Per-
Scenario 
Plan 

Use CEM (Strategist) to develop plans in four scenarios, each with different DPV 
assumptions, along with other plans under sensitivities within each scenario. Develop 
flexible plan that can be robust to uncertain futures. Monitor conditions to drive 
timing of decisions like building new power plants or retiring old plants. 

NVP 2015 
IRP 

Single 
Forecast 

Develop candidate portfolios based on a single DPV forecast. 

NSP 
Resource Plan 
2015 

Per-
Scenario 
Plan 

Use CEM (Strategist) to develop plans in 12 scenarios that have either a low or high 
quantity of DPV. Rank each plan by lowest PVRR and lowest present value of social 
cost (which includes a ~$22/ton of CO2 cost of carbon). 

NWPCC 7th 
Power Plan 
2015 

Per-
Scenario 
Plan 

Use CEM (Resource Planning Model, developed by NWPCC) to develop plans in 
many different scenarios, including a range of potential DPV adoption rates. 

PAC 2015 
IRP 

Per-
Scenario 
Plan 

Use CEM (System Optimizer) to develop plans in many different scenarios, including 
sensitivities with high and low DPV. The resource plan in the sensitivity is 
benchmarked to a core case to show the change in timing of thermal resource 
acquisition. An acquisition path analysis identifies trigger events, including higher or 
lower sustained DPV penetration levels that will alter the resource acquisition 
strategy. 
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PG&E 2014 
BPP 

Per-
Scenario 
Plan 

Identify procurement needs in scenario using CPUC-mandated assumptions and in 
scenario with PG&E’s higher DPV-adoption assumptions. 

PNM 2014 
IRP 

Single 
Forecast 

Use CEM (Strategist) to develop plans based on a single DPV forecast. 

PSE 2015 
IRP 

Per-
Scenario 
Plan 

Use internal model to build portfolios for different cases including a base case and a 
high-DPV case. Portfolio does not change, in part owing to assumption that DPV has 
no capacity credit in the winter-peaking utility. 

TGT 2015 
IRP 

Per-
Scenario 
Plan 

Use CEM (System Optimizer) to develop plans in nine scenarios, including one that 
assumes a large number of customers go off-grid with DPV and storage. Compare 
resource plan in reference scenario to plans under other scenarios to show robustness 
of plan. 

TEP 2014 
IRP 

Per-
Scenario 
Plan 

Use CEM (Aurora) to develop plans in multiple scenarios, including one with lower 
realization of EE and DG. Compare the resource plan in the reference scenario to 
plans under other scenarios to show robustness of plan. 

TVA 2015 
IRP 

Per-
Scenario 
Plan 

Use CEM (System Optimizer) to develop plans in five scenarios, several with 
different DPV assumptions, using five different resource strategies. Compare the 
resource plan in the reference scenario to plans under other scenarios to show plan 
robustness. 

 
4.2 Using Multiple Per-Scenario Plans and Acquisition Path Analysis 

The studies that develop plans for each scenario differ in how they use the multiple plans to 
develop a recommended plan or action plan. The decision is easy when planners find that the 
plan does not change in the higher-DPV scenario. For example, winter-peaking PSE finds that 
the least-cost portfolio is the same in the reference case and the higher-DPV case, in part owing 
to its assumption that the capacity credit of DPV is zero. In Hawaii, HECO shows that the new 
transmission investments are the same irrespective of the DPV forecast on some islands, though 
transmission needs depend on the DPV scenario on other islands. 
 
Multiple plans can also be analyzed by comparing the composition and timing of investments to 
indicate how the plans might change when the rate of DPV adoption changes from the expected. 
APS and TEP use this approach, as does HECO for transmission needs that vary depending on 
the amount of DPV. Though such comparisons demonstrate the sensitivity of plans to DPV 
forecasts, comparing plans alone does not inform the selection of the preferred plan or action 
plan. 
 
ELA takes the analysis a step further by subjecting each plan, which is least cost under the 
conditions of a particular scenario, to assumptions from the other scenarios and sensitivities. It 
uses this detailed evaluation of each plan under varying outcomes to suggest that the 
recommended plan is sufficiently robust to uncertainties.  
 
Finally, some utilities use the difference in plans across multiple per-scenario plans to develop a 
plan that is flexible enough to adapt to changing conditions. For example, PAC uses the System 
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Optimizer CEM to produce unique resource portfolios across a range of different planning 
assumptions. PAC builds resource portfolios for low and high DG penetration sensitivities, 
which are benchmarked to the core case. With low DG, the timing of the first deferrable thermal 
resource is unchanged relative to the benchmark case, but the total new thermal resource 
capacity increases by 212 MW by the end of the study period. With high DG, the first deferrable 
thermal resource is delayed by 3 years, and the total thermal capacity decreases by 423 MW by 
the end of the study period. PAC uses the different plans from each scenario to create an 
acquisition path analysis, establishing trigger events that include higher or lower sustained DG-
adoption levels (Table 8). If these trigger events occur, PAC will change its near-term and long-
term resource-acquisition strategy. 
Table 8. PAC Acquisition Path Analysis Associated with DG Adoption 
Trigger Event Planning Scenario Resource-Acquisition Strategy 

Near-Term (2015–24) Long-Term (2025–34) 

Higher 
sustained DG 
penetration 
levels 

More aggressive 
technology cost reductions, 
improved technology 
performance, and higher 
electricity retail rates 

• Reduce forward contract 
acquisition  
• Continue to pursue EE 

• Reduce acquisition of gas-
fired resources 
• Balance timing of thermal 
acquisition with forward 
contracts and EE 

Lower 
sustained DG 
penetration 
levels 

Less aggressive technology 
cost reductions, reduced 
technology performance, 
and lower retail electricity 
rates 

• Increase forward contract 
acquisition (primarily 
beginning 2024) 
• Continue to pursue EE 

• Increase acquisition of 
gas-fired resources 
• Balance timing of thermal 
acquisition with forward 
contracts and EE 

 
Similarly, HECO uses its range of resource plans to identify a flexible action plan that is meant 
to be adjusted in response to future conditions. HECO uses the Strategist CEM to develop least-
cost plans under each of four scenarios (each with different levels of DPV adoption) along with 
additional plans based on sensitivities within each scenario. The sensitivities explore impacts of 
decisions such as early retirement of generation or increases in demand response. HECO then 
picks four plans within each scenario to develop an action plan under each scenario. In contrast 
to its previous IRPs, HECO does not develop a single recommended plan. Instead, it identifies a 
flexible plan that can be robust to uncertain future circumstances, and it implements this plan by 
monitoring key parameters, such as DPV adoption rates, to drive the timing of decisions like 
adding new power plants or deactivating older units.  
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5. Characterizing DPV as a Resource Option  

 
In addition to changes in needs due to market-driven DPV, planners can invest in or incentivize 
DPV to meet needs.23 That said, fewer than half of the studies we review evaluate DPV as a 
resource that could be proactively deployed to meet future needs. Some planning studies that do 
not evaluate DPV as a resource cite the higher cost of DPV relative to UPV as justification. FPL, 
for example, indicates that the higher capital and maintenance costs of DPV make it twice as 
expensive as UPV. Studies that do consider DPV as a resource use various approaches to 
determine if it should be part of the plan and various ways to distinguish DPV from other 
resource options, particularly UPV. 
 
This section discusses characterization of DPV as a resource option in resource planning studies 
(Section 5.1) and T&D planning (Section 5.2). It also addresses methods for distinguishing DPV 
from other resource options (Section 5.3) and determining DPV’s cost effectiveness (Section 
5.4). 
 

                                                
23 DPV as a resource can include in-front-of and behind-the-meter PV. Some utilities consider programs to 
incentivize customers to adopt behind-the-meter DPV, while others consider utility investments in DPV, potentially 
on customer premises. Distributed community solar projects can also be considered as a resource, as in the case of 
NSP. Often, however, utilities do not specify the exact DPV business model.  

Planner’s question: How do you evaluate the potential for DPV to be proactively deployed as 
a resource to meet projected needs?  
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5.1 Characterizing DPV as a Resource Option in Resource Planning Studies 

Two methods for considering DPV as a resource in resource planning studies are most 
commonly used, with a number of less common variations. We describe these below, and Table 
10 compiles the methods used across the plans we reviewed. 
 
Candidate portfolio: Planners develop candidate portfolios with varying quantities of DPV and 
then examine the performance of each portfolio in terms of the PVRR and, in some cases, the 
volatility of the PVRR as key assumptions are varied (e.g., load growth rate, future fuel prices, 
and future carbon regulations). The planner or stakeholders in a planning study choose the 
quantity of DPV to be included in each portfolio and any corresponding adjustments to other 
portfolio resources. A comparison of the performance of each candidate portfolio then helps 
guide the planner’s decisions regarding the preferred plan.  
 
This approach is used by DEI, IPC, LADWP, and NSP. The DEI and IPC candidate portfolios 
with higher shares of DPV are stakeholder driven. In both cases, the high DPV portfolio is more 
expensive than other portfolios, so the higher DPV is not included in the preferred plan. LADWP 
and NSP, on the other hand, include higher DPV in their preferred plans. LADWP evaluates 

Innovations in Distinguishing DPV from Other Resource Options 
Some utilities dismiss DPV based only on its higher cost and lower capacity factor relative to 
UPV. However, DPV’s capacity credit as well as the avoided losses, transmission deferrals, 
and distribution-system cost impact associated with DPV also can be important. Section 5.3 
describes the characteristics considered by various utilities, and Table 9 shows which utilities 
use them. PG&E includes the most factors, which are also important for the locational net 
benefits methodology in the California DRPs (see Sections 5.1. and 5.2). In addition, 
customers who install DPV may receive non-monetary benefits, which an even more 
comprehensive cost-effectiveness assessment would address.  
Table 9. Characteristics Used to Distinguish DPV from UPV or Other Resource Options 

Plan* Characteristic 

Capital 
Cost of 
DPV vs. 

UPV 

Capacity 
Factor of 
DPV vs. 

UPV 

Capacity 
Credit of 
DPV vs. 

UPV 

Avoided 
Losses 

Transmission 
Deferral 

Distribution 
Deferral 

DEI (2015) X      
GPC (2016)    X X  
HECO (2013) X X     
IPC (2015)   X    
LADWP (2014) X    X  
NWPCC (2016) X X X X   
NSP (2015) X X X X   
PG&E (2014) X X X X X X 
PSE (2015) X    X  
TVA (2015) X      

*Plan references are in Appendix A. 
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different levels of DPV in response to a FiT program and the NEM program in various candidate 
portfolios. NSP increases the amount of participation in various solar programs, including the 
community solar program, in the Preferred Plan relative to the Reference Plan. Both utilities 
focus on cost minimization along with environmental requirements and strategic flexibility as 
part of their decision-making process. 
 
CEM: A number of utilities use CEMs to develop candidate portfolios, and some include DPV 
as a resource option that can be selected in the model. In contrast to the previous approach, the 
quantity of DPV and the composition of the rest of the portfolio are both chosen by the model to 
minimize cost (typically the PVRR) including the cost of DPV.  
 
This approach is used by HECO, NWPCC, TVA, and PSE. HECO and NWPCC include 
residential and commercial DPV systems as resource options in the Strategist CEM and 
Resource Planning Model, respectively. TVA includes small and large commercial DPV systems 
as resources in the System Optimizer CEM. PSE, in contrast, bundles DPV as a resource option 
along with other demand-side management (DSM) options with a similar levelized cost of 
electricity. PSE develops several different DSM bundles that can then be chosen as resources in 
the PSM III model (an internal model developed by PSE). Across all four of these examples, 
DPV is never selected by the model to be part of the least-cost portfolio that meets utility needs. 
UPV, however, is selected in some scenarios for these same four planning studies.  
 
Other: Some planning studies use other, somewhat unique approaches to evaluate DPV as a 
resource. 
 

• RPS Calculator in PG&E’s BPP: The RPS Calculator, developed by E3 and the CPUC, 
is used to plan resources to meet the RPS requirements net of existing commitments (the 
“net-short”). Each renewable resource option, including DPV, is scored based on four 
metrics: permitting time, net cost, environmental impact, and commercial interest. A 
weighted average of the four scores is then used to identify the most attractive resources 
for meeting the net-short. The weightings are chosen based on the particular scenario, 
with heavy weighting to the commercial interest score used to model the current 
trajectory. DPV is one of the resources chosen to meet the net-short in the scenarios 
analyzed by PG&E in the BPP.  

• GPC: The GPC IRP includes a program that specifically targets development of DPV. 
The quantity is chosen by GPC, somewhat arbitrarily, but the price paid will be 
developed using a competitive process. GPC will solicit bids for up to 50 MW of DPV 
systems. The price paid to the last bid will then be the basis for contracts for another 50 
MW of DPV. GPC will cap the bid prices at its estimated value of solar. This program is 
therefore designed to increase DPV deployment without increasing costs. The value-of-
solar estimate is based on results and tools used in the planning study to estimate the 
avoided energy, avoided capacity, avoided losses, and other costs and benefits of DPV. 
GPC developed the estimates for eight different tranches of 1,000 MW of PV and found a 
decline in the value with growing shares of PV.  
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Table 10. Approaches to Considering DPV as a Resource Option 

Plan Approach Details 

DEI 2015 
IRP 

Candidate 
Portfolio 

Include significant DPV (2,480 MW, much more PV than in any other 
portfolio) in Stakeholder DG portfolio in response to stakeholder comments. 

GPC 2016 
IRP 

Other Set program goal for competitively bid DPV24 with bid price capped at 
estimated value of solar. 

HECO 2013 
IRP 

CEM Include two DPV options, residential (2 kW) or commercial (100 kW), in 
the Strategist CEM. 

IPC 2015 
IRP 

Candidate 
Portfolio 

Include DPV in stakeholder-driven candidate portfolio. 

LADWP 
2014 IRP 

Candidate 
Portfolio 

Include different FiT and NEM program targets in various candidate 
portfolios. The FiT cost is based on a 15-year cost forecast, and NEM cost is 
based on a “revenue loss” analysis. 

NWPCC 7th 
Power Plan 

CEM Include two DPV options, residential (5 kW) or commercial (32 kW), in the 
Resource Planning Model CEM. 

NSP 2015 
IRP 

Candidate 
Portfolio 

Include expanded DPV program levels in a candidate portfolio called the 
Preferred Plan. The cost of the programs, which varies from 12 to 20 
cents/kWh, is included in the revenue requirement.  

PG&E 2014 
BPP 

Other Treat DPV as a resource via (1) a high DG forecast to reflect impact of more 
aggressive customer-sited DPV programs, and (2) including wholesale DPV 
as a resource option in the RPS Calculator used to meet the RPS net-short. 

PSE 2015 
IRP 

CEM Bundle DPV with other DSM program options with a similar levelized cost 
of electricity (based on the full cost of DPV without the ITC), then allow a 
CEM to select DSM bundles to include in a portfolio to meet energy and 
capacity needs. 

TVA 2015 
IRP 

CEM Include DPV, commercial-small and commercial-large, as an option in the 
System Optimizer CEM. 

 

5.2 Including DPV as a Resource in T&D Planning  

Increasingly, other planning entities are exploring ways to evaluate DPV as a resource option. 
The CAISO transmission-planning process, for example, first identifies transmission needs to 
meet reliability criteria and then examines additional DPV as one potential resource that could 
meet the reliability needs. If increased DPV can meet the needs, CAISO relays this information 
to other decision makers (the CPUC and utilities) so they can develop programs to increase DPV 
where it is needed. In this case, CAISO is only concerned with the feasibility of DPV meeting 
reliability needs; it leaves cost-effectiveness considerations to the other entities.  
 
The California DRPs identify new processes for DG, including DPV, to be considered as a 
resource to meet distribution system needs. They have not considered distributed resources as 
options to meet distribution system needs to date, but they plan to revise their processes. The 
locational net benefit of distributed resources will be used to identify resource alternatives in 
distribution planning. Presumably, where the locational net benefits exceed costs, the resource is 
a cost-effective alternative to the traditional distribution investments. The location net benefit 
methodology is based on the Distributed Energy Resources Avoided Cost Calculator (DERAC) 
                                                
24 The program includes both projects smaller than 3 MW that are competitively bid and an additional 50 MW of 
customer-sited DPV that is paid a fixed price, equivalent to the last winning bid in the competitive DPV process. 
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from the consulting group E3. DERAC includes components like energy value, capacity value, 
ancillary services, avoided losses, avoided RPS costs, avoided environmental impacts, and 
avoided T&D capacity. The base version of the tool uses system-level values, but the utilities 
will use location-specific components. The avoided T&D capacity will include factors like 
avoided distribution voltage and power quality capital as well as avoided reliability and 
resiliency capital. PG&E indicates that revisions to IEEE 1547 and the California Rule 21 
interconnection rules may allow DPV to contribute to meeting voltage-regulation requirements 
through smart inverters. The plans also indicate that resources like DPV can increase the load-
serving capability of the distribution system, but they cannot substitute for aging infrastructure 
replacement.  
 
The New York Reforming the Energy Vision (NY REV) process25 also establishes a process for 
DER, like DPV, to be considered as alternatives to traditional utility distribution investments. At 
the end of June 2016, the utilities filed Distribution System Implementation Plans that identify 
opportunities for DER to avoid traditional distribution investments. The plans list specific 
infrastructure projects by location, and they describe the process for identifying projects where 
DER will be considered as an alternative to traditional grid infrastructure. The plans also identify 
the performance criteria for DER needed to avoid the infrastructure project (for example, a 
certain amount of peak-demand reduction). Finally, the plans describe how the utilities will 
compare DER and traditional infrastructure investments through a utility-developed Benefit Cost 
Analysis handbook. The handbook will be consistent with a Benefit Cost Analysis framework 
outlined by the New York Department of Public Service Staff. The primary cost-effectiveness 
test will be the Societal Cost Test (SCT). 
 
5.3 Distinguishing DPV from Other Resource Options 

In order to consider DPV as a resource option, planners must distinguish it from other options, 
including utility-scale solar. Planners in our sample distinguish DPV in one or more of the 
following ways, which are assigned to each planning study in Table 9 (on page 30): 
 

• Capital cost of DPV vs. UPV: The upfront cost of DPV is often higher than the cost of 
UPV owing to economies of scale. Eight utilities distinguish DPV from UPV based on 
the capital cost. The higher cost of DPV relative to UPV is the only way TVA and DEI 
distinguish DPV from UPV.  

• Capacity factor of DPV vs. UPV: Planners often assume the annual energy production 
from DPV is less than the production from UPV due, at least in part, to the lack of 
tracking for DPV. Four utilities include different capacity factors for DPV and UPV.  

• Capacity credit of DPV vs. UPV: Planners sometimes include a separate estimate of the 
capacity credit for fixed PV (which applies to DPV) and tracking PV (which applies to 
UPV). PG&E, NSP, NWPCC, and IPC use different capacity credits for UPV and DPV. 
IPC assumes that DPV with a southern orientation has a capacity credit of 28% compared 

                                                
25 The New York REV is a collection of initatives to increase the use of clean energy, increase the resilience of the 
grid, and enable customers to adopt distributed energy resources, among other goals.  Portions of the REV involve 
the NY Department of Public Service, who regulates utilities in the state.   
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with a 51% capacity credit for UPV, because it assumes tracking equipment would 
increase UPV production in the late afternoon when IPC’s load is highest.  

• Avoided losses: Losses are lower with DPV than with UPV or other resource options 
sited further from loads, as discussed in Section 9. Four studies assume that DPV avoids 
losses, a benefit that does not apply to UPV.  

• Transmission deferral: DPV lessens the need for transmission investments or imposes 
less need for interconnection than UPV or other resources sited further from loads, as 
discussed in Section 8. Four studies either apply lower interconnection/transmission 
expansion costs to DPV or apply a transmission deferral value to DPV, distinguishing it 
from UPV and other resources sited further from loads. 

• Distribution deferral: Only PG&E has DPV lowering expenses in the distribution system, 
as discussed in Section 8. This distribution-deferral value is included in the cost-
effectiveness score for DPV resources in the RPS Calculator used to develop candidate 
portfolios that meet the RPS net-short.  

The higher capital cost, lower capacity factor, and lower capacity credit assumptions for DPV all 
tend to make it less attractive than UPV. The benefits of avoided losses, transmission deferral 
value, and distribution deferral all tend to make DPV more attractive than UPV. DPV might also 
be considered as a resource to provide additional distribution system services (e.g., voltage 
regulation), or it might have a smoother aggregate output profile due to geographic smoothing 
that could reduce integration costs relative to UPV. However, none of the studies reviewed here 
discuss such benefits. 
 
As described in Section 5.2, the California DRPs from PG&E, SCE, and SDG&E all mention 
factors like avoided losses and T&D deferral benefits in the proposed approaches to estimating 
the locational net benefits of DPV and other distributed resources. Similarly, the Benefit Cost 
Analysis Framework outlined in the NY REV for assessing the cost effectiveness of DER 
alternatives to traditional utility investments addresses a wide range of benefits and costs. The 
benefits of DER will include estimates of avoided capacity (including reserve margin), avoided 
energy, avoided T&D and related operations and maintenance, avoided T&D losses, avoided 
ancillary services, net avoided greenhouse gases, net avoided criteria pollutants, net avoided 
water impacts, net avoided land impacts, and net non-energy benefits. The costs of DER will 
include any program-administration costs (including incentives), added ancillary service costs, 
incremental T&D costs (including metering and communications), participant DER costs 
(reduced by rebates if included in program-administration costs), and non-energy costs (e.g., 
indoor emissions, noise). 
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5.4 Determining the Cost Effectiveness of DPV as a Resource  

Determining the cost effectiveness of DPV can be relatively straightforward if it is a supply-side 
resource: the planner can compare the cost of building and operating DPV compared with DPV’s 
value or avoided costs. But how should a planner determine the cost effectiveness of a program 
that incentivizes customers to install behind-the-meter DPV, such as a rebate, NEM, or FiT 
program? This question is similar to the question of how planners should treat EE as a resource 
in planning studies. The primary guidance for considering cost effectiveness is the California 
Standard Practice Manual, which describes several cost-effectiveness tests (National Action Plan 
for Energy Efficiency 2007): 
 

• Participant Cost Test (PCT): Is it worth it to the customer to install the resource? 
• Ratepayer Impact Measure (RIM): What happens to rates and bills for non-

participants?  
• Utility Cost Test (UCT): Do total utility costs increase or decrease?  
• Total Resource Cost Test (TRC): What are the net costs and benefits to the utility and 

its customers?  
• Societal Cost Test (SCT): Are all of the benefits, including indirect benefits, greater 

than all of the costs? 
 

Aside from the NY REV process, which explicitly states it will use the SCT to compare DER to 
traditional utility investments, the planning studies do not describe which test they use to 
determine cost effectiveness. Instead, we use information in the documents and our own 
judgment to identify which tests most closely parallel the way DPV is considered as resource in 
the planning studies.  
 
As Table 11 shows, the TRC appears to be the most common approach to gauging cost 
effectiveness. However, using the TRC to evaluate the cost effectiveness of EE as a resource 
ignores non-monetary benefits a customer may include when choosing EE (Neme and Kushler 
2010), and customers may similarly choose DPV even if its monetary benefits do not exceed its 
costs. By using the TRC, planners are essentially treating DPV as if it were an investment choice 

Text Box 2. Community Solar as a Resource 

Community or shared solar allows a customer to own, lease, or purchase a share of a PV system 
located on the premises of another customer or elsewhere in the power system. Community 
solar plants could be considered DPV (located near load, connected to the distribution system, 
and smaller than 5 MW), or they could be larger UPV plants. Community solar could increase 
the benefits and reduce the costs of PV. For example, community solar might be easier to site in 
beneficial locations through siting on utility property, targeting locations in development 
requests for proposals, having developers internalize interconnection costs, and including utility 
incentives or contract terms for plants in beneficial locations. Community solar that uses single-
axis tracking might also have a higher capacity credit than fixed PV. These potential differences 
between community solar and rooftop PV are not discussed in significant detail in the planning 
studies, though several note pilot projects that may help inform future planning studies. 
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only by the utility (like a supply-side resource) and potentially ignoring the factors that might 
drive a customer to invest in DPV. 
Table 11. Apparent Cost-Effectiveness Tests Used to Evaluate DPV as a Resource  

Entity  Cost-Effectiveness 
Test  

Description 

DEI  TRC Includes the full cost of customers purchasing DPV in the PVRR of a 
candidate portfolio with DPV. 

GPC  UCT Compares the bid price from customers selling DPV power to the utility to 
the avoided utility costs. 

HECO TRC Includes the full cost of customers purchasing DPV to characterize DPV in 
a CEM. 

IPC TRC Includes the full cost of customers purchasing DPV in the PVRR of a 
candidate portfolio with DPV. 

LADWP UCT/RIM Includes the full cost of DPV in the form of a FiT (UCT) and the lost 
revenue from NEM (RIM) to characterize different DPV programs in 
candidate portfolios. 

NSP RIM Includes the incentives and compensation to DPV owners at the retail rate 
in the PVRR of candidate portfolios with DPV. 

NWPCC TRC Includes the full cost of customers purchasing DPV to characterize DPV in 
a CEM. 

NY DPS SCT Declares that benefit/cost analysis will use the SCT to compare DER to 
traditional utility investments. 

PG&E TRC Compares the full cost of DPV to the avoided utility costs (including 
environmental compliance costs). 

PSE TRC Includes the full cost of customers purchasing DPV to characterize DPV in 
a CEM. 

TVA TRC Includes the full cost of customers purchasing DPV to characterize DPV in 
a CEM. 
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6. Incorporating the Non-Dispatchability of DPV into Planning Methods 

 
 
One characteristic of DPV that distinguishes it from conventional resources is the non-
dispatchable nature of its generation profile. DPV generation is variable, because its output 
changes with the level of sunlight and cloud cover, and uncertain, because the movement and 
size of clouds cannot be perfectly forecast. In the context of planning, non-dispatchability of 
DPV impacts the net load and therefore the need for other resources. This may include the need 
to burn fuel in conventional generators, use flexibility and/or ancillary services from other 
generators, and build T&D infrastructure. The non-dispatchable nature of DPV generation also 
means that its contribution to overall system adequacy will be less than its full nameplate 
capacity; its capacity contribution depends on the correlation between DPV generation system 
demand. When considering DPV as a resource, all of these impacts factor into the avoided cost 
or value of DPV. Planners have adopted a variety of practices to account for the non-
dispatchability of DPV in studies. 
 
This section discusses methods for addressing the hourly (Section 6.1) and sub-hourly (Section 
6.2) characteristics of DPV. It also examines approaches for including the contribution of DPV 
to resource adequacy (Section 6.3) as well as other non-dispatchability issues addressed in 
planning studies (Section 6.4).  
 

 
 
6.1 Capturing the Hourly Generation Profile of DPV 

A significant amount of the variability of DPV can be captured using an hourly generation 
profile, which can then be used in production cost models or CEMs to reflect the energy value of 
DPV. The hourly profile can also be used to calculate DPV’s contribution to resource adequacy 
(the capacity credit) and other integration issues like ramping needs and overgeneration. These 
issues are prominent in the so-called California “Duck Curve,” which shows the increasing 

Planner’s question: How do you account for the variable and uncertain nature of generation 
from DPV when assessing its impacts on needs or its potential value as a resource?  

Innovations in Incorporating the Non-Dispatchability of DPV 
Rather than a distinct innovative practice for incorporating the non-dispatchability of DPV in 
planning, innovation in this area is represented by evolving methods for capturing this 
important aspect of DPV in utility plans. Hourly DPV generation profiles allow for some 
potential integration issues to be included when evaluating portfolios with DPV, including 
multi-hour ramping impacts and overgeneration. LADWP highlights the overgeneration 
potential of low-load spring days and considers mitigation via EV charging during these 
periods. Combining hourly DPV profiles with detailed production cost models can help in 
evaluating the role of EVs and identifying times when overgeneration may be a concern. 
Impacts of DPV that are not captured with hourly generation profiles, such as sub-hourly 
variability and uncertainty, can be addressed through detailed integration studies. Finally, 
DPV’s resource adequacy contribution can be evaluated using standard reliability tools to 
estimate the effective load-carrying capability (ELCC), which is the most rigorous way to 
estimate capacity credit. 
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challenges from higher ramp rates in the net load during sunrise and sunset along with increased 
risk of midday overgeneration (CAISO 2016). The hourly generation profile can be used directly 
or subtracted from the hourly load to develop an hourly net-load profile.  
 
Most planning studies in our sample appear to use an hourly DPV profile. One exception, TGT, 
only models DPV through a scenario in which customers add both DPV and storage and 
disconnect from the grid. In this case, TGT simply scales down customer demand in all hours, 
making an hourly DPV profile unnecessary. Some other utilities, particularly those with small 
forecasts of future DPV levels, appear only to adjust the average energy and capacity needs of 
the utility due to customers adding DPV, without taking into account the hourly DPV generation 
profile. These include DOM, DEI, ELA, and FPL.  
 
A few utilities specify how they develop hourly DPV generation data. In all cases the hourly data 
are modeled PV production based on historical satellite-derived estimates of cloud cover, not 
actual PV plant output.26 Broadly applicable resources used by utilities in planning studies 
include NREL’s System Advisor Model or PVWatts, PVSyst, and profiles from Clean Power 
Research.27 
 
The studies differ widely in how many sites are used to generate the hourly profiles. Geographic 
diversity of DPV sites can affect the aggregate hourly profile in ways that impact the energy 
value, capacity value, and integration needs of DPV. NV Power uses a single site (Reno, NV) for 
its generation profile, GPC uses five sites, NWPCC uses 16 sites, and TVA uses 26 sites. 
 
Finally, two studies indicate that they developed hourly profiles based on PV system 
characteristics that matched current industry trends; in particular, they model systems with a 
higher inverter loading ratio (ILR). The ILR is the ratio of the PV array capacity to the PV 
system inverter capacity, and it is also known as the DC-to-AC (direct current to alternating 
current) ratio. A higher ILR indicates that the PV arrays are sized larger than the inverter 
capacity, which tends to clip PV production in hours with the highest insolation. The overall 
DPV generation profile therefore becomes slightly wider than it would be with a lower ILR. The 
ILR can affect the hourly net load shape, the capacity factor of DPV, and the capacity credit of 
DPV. The CEC uses an ILR of approximately 1.24–1.29 for fixed-tilt PV, and GPC assumes an 
ILR of 1.2. In contrast, the default ILR for PV systems in PVWatts is 1.1. 
 
6.2 Adjustments for Sub-hourly Variability and Uncertainty 

DPV systems also increase sub-hourly variability and uncertainty, factors not often considered 
directly within the planning tools used to evaluate portfolios in IRPs. Instead, planners 
sometimes introduce an “integration cost” to reflect the additional costs of managing increased 

                                                
26 Some planners would like access to actual PV production data, but they would need a protocol for data sharing. 
27 PAC and NSP use NREL’s System Advisor Model. GPC uses commercial software called PVSyst with insolation 
data from NREL’s Solar Prospector. TVA uses profiles from Clean Power Research. NWPCC uses NREL’s 
PVWatts. The CEC developed hourly generation profiles, which PG&E uses in the BPP via the New Solar Homes 
Partnership incentive calculator. 
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sub-hourly variability and uncertainty, developed in detailed “integration cost studies.”28 It 
appears that these integration cost estimates are often applied when considering solar as a 
resource, though similar additional costs might be expected for market-driven DPV.29 None of 
the integration costs focus specifically on DPV; rather, they are developed for solar in general.  
 

 
Figure 11. PV Integration Costs Used in Utility Planning Studies 

 
Studies that quantify the operational integration costs of solar suggest a range of $0.5–$10/MWh 
(Figure 11). Within the same integration cost study, higher integration costs correspond to higher 
penetration, though the methods and other characteristics of the estimate also lead to differences 
across studies. These detailed studies can account for additional issues like sub-hourly 
variability, uncertainty, and flexibility needs. APS, for example, uses results from Black & 
Veatch to estimate additional costs of $2/MWh in 2020 and $3/MWh in 2030. The integration 
costs in that study account for the operating and capital cost of operating reserves to cover the 
sub-hourly variability of DPV and UPV (Black & Veatch 2012). IPC estimates an incremental 
integration cost for increasing tranches of solar ranging from $0.5–$7.8/MWh depending on the 
tranche. The integration costs are due to the cost for increasing the operating reserves that cover 
the hour-ahead scheduling uncertainty and sub-hourly variability of UPV (Idaho Power 2014). 
DEC estimates integration costs of $1.43–$9.82/MWh depending on the PV penetration and year 
(Lu et al. 2014). The integration costs in that study account for the operating cost of increased 
startups and shutdowns, operating reserves to cover the day-ahead uncertainty, and sub-hourly 
variability of DPV (Lu et al. 2014).30 NWPCC uses a $1/MWh integration cost that the 
Bonneville Power Administration applies to solar resources. That integration cost includes the 
operating and capital cost of providing additional operating reserves to manage the uncertainty of 

                                                
28 The term integration cost is used in a variety of ways. Here we focus on the costs associated with managing the 
increased variability and uncertainty of solar in the bulk power system, because this is the most common meaning in 
the studies. As a result, these integration costs do not include factors like upgrading T&D equipment (addressed in 
Section 8) or the decline in the energy and capacity value of solar (addressed in Section 10). 
29 The main difference is that market-driven DPV is usually treated as an adjustment to the net-load forecast prior to 
any analysis of the cost of candidate portfolios. Later in the studies, when solar is considered as a resource to meet 
forecasted needs, the planners discuss the integration costs associated with solar.  
30 In addition, Lu et al. (2014) use a “reference generation profile” that is different than PV’s profile, which may 
result in some of the energy value (more specifically the difference in the energy value of PV and the energy value 
of the reference generator) being embedded in the integration costs.  
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hourly schedules and sub-hourly variability. TEP applies a $5.2/MWh integration cost to solar, 
including fixed-tilt PV, based on the difference in production cost when using a flat average 
profile instead of an 8,760-hour profile. The integration cost does not include operating reserves 
to cover sub-hourly variability. 
 
Other utilities discuss integration costs without providing values. GPC includes a “Support 
Capacity” cost in its estimate of the value of DPV, which appears similar in definition to other 
integration costs, though the values used are redacted. NV Energy implicitly increases costs by 
adjusting the regulation reserve requirements in its production cost model based on the amount 
of PV in a scenario, though no explicit integration cost is reported. Finally, SCE is currently 
conducting a detailed integration cost study that will help establish an integration cost to use in 
the California Long Term Procurement Planning process. 
 
6.3 Contribution of DPV to Resource Adequacy 

Almost all utilities assign a capacity credit31 to DPV that is less than its nameplate capacity. The 
capacity credit is most often used when considering DPV as a resource, though some utilities 
also apply the capacity credit to market-driven DPV when estimating resource adequacy 
requirements, net of the contribution of market-driven DPV. For the most part, the capacity 
credits described here are used in utility planning and capacity markets. Similar approaches are 
sometimes used to capture the reduction in peak load for T&D planning, though the methods for 
T&D planning often have variations, as discussed in Section 8. 
 

 
Figure 12. DPV Capacity Credits Applied in Planning Studies 

 
With the exception of winter-peaking utilities, the capacity credit of DPV in planning studies is 
26%–50% of the nameplate capacity (Figure 12). The differing alignments of DPV generation 

                                                
31 Despite their similar names, the capacity factor and capacity credit of DPV should not be confused. The capacity 
factor measures how much energy a resource produces relative to what it could produce if generating at full capacity 
in all hours of the year. The capacity credit describes the contribution of PV to meeting the overall system peak 
requirements, which is heavily dependent on the coincidence between solar generation and electricity demand. 
Capacity credits for solar tend to be higher in summer-peaking systems and lower in winter-peaking systems. 
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with peak demand in each region are a major reason for the variability across studies. 
Methodological differences may also contribute to the variation. Two winter-peaking utilities 
assign a 0% capacity credit.  
 
The reported capacity credit can vary by PV system characteristics. TVA, for example, assigns 
capacity credits of 50% to fixed-tilt DPV and 68% to single-axis-tracking PV. TEP applies a 
capacity credit of 33% to fixed-tilt PV and 51% to tracking PV. IPC accounts for orientation, 
reporting capacity credits of 28% for south-facing fixed PV and 46% for southwest-facing fixed 
PV, compared with 51% for tracking PV. FPL assumes a slightly higher capacity credit for DPV 
on commercial buildings (37%) than on residential buildings (34%) without explanation. APS 
and GPC note that capacity credit declines with increasing PV penetration, as discussed in 
Section 10. 
 
The methods used to estimate DPV’s capacity credit vary and are not always described. A few 
utilities, including APS and GPC, appear to use detailed reliability-based models that calculate 
the ELCC of DPV, which is the most rigorous way to estimate capacity credit. Others—such as 
IPC, ISO-NE, and TVA—describe methods that focus on DPV production during a set of peak 
hours. For NVP and PAC, the capacity credit is implicit in the way they estimate capacity needs 
from the peak net load, after reducing the load by the hourly DPV profile. The peak-net-load 
method is seen in utility resource planning studies and in some transmission planning studies, but 
this approach may overemphasize the 1 peak hour of the year relative to probabilistic reliability 
methods. 
 
6.4 Other Non-Dispatchability Issues Addressed in Planning Studies 

Other integration-related issues are discussed in the planning studies.32 LADWP identifies 
overgeneration—when the system cannot absorb all available renewable energy—as an issue on 
low-load spring days. It explores this issue with the hourly PV production data and a detailed 
production cost model (Prosym). One strategy LADWP considers to mitigate overgeneration is 
electric vehicle (EV) charging. The two portfolios with the highest share of renewables are also 
assumed to have the largest increase in EV adoption, and EVs may enable load shifting and 
absorbing of overgeneration from renewable resources. LADWP also expects other technologies 
might help—including EE, storage, and static capacitors and reactors—and highlights the need to 
better understand the integration needs of DPV and other variable renewables. PSE includes 
estimates of flexibility demand from varying load and renewables as well as flexibility supply 
from its portfolio of resources. Several of the resource planning studies also discuss integration 
challenges with DPV at the conceptual level. APS points to an increased need for flexible 
resources. DEI indicates a need for resources to offset ramping effects of solar such as storage or 
flexible combustion turbines. 
 
In a few cases, utilities suggest pilot studies for better understanding integration challenges and 
solutions. FPL, for example, plans to conduct a pilot study with PV and storage at a commercial 

                                                
32 In some cases, the utilities also conduct or participate in detailed integration studies in parallel to the standard 
planning process. A few examples include HECO (Eber and Corbus 2013), DOM (Navigant 2016a, 2016b), 
DEC/DEP (Lu et al. 2014), and APS (Black & Veatch 2012).  
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customer site. It will use data generated in the project to develop operational best practices for 
addressing any potential problems identified in the pilot. ELA also plans a DPV and storage pilot 
to determine the viability and performance of the technologies in Louisiana.   
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7. Accounting for Location-Specific Factors of DPV 

 
 
For the majority of IRPs, the specific location of DPV is not important, because IRPs generally  
focus on meeting system-level needs. The rare exceptions are where the resource planners 
attempted to use location-specific factors to distinguish different DPV options or distinguish 
DPV from other resources. Location can matter in estimating avoided losses, avoided T&D 
costs, the DPV generation profile, and the capacity credit. In T&D planning, however, the 
location of DPV is much more important. For independent system operators (ISOs) that operate 
capacity markets or plan the transmission system, the location of DPV matters down to the 
granularity of dispatch or load zones.33 Location down to specific feeders is important for 
distribution planners.  
 
This section reviews the approaches used by planners to identify where DPV will be located 
(Section 7.1). We describe a few examples of how location-specific factors are then used in 
planning (Section 7.2). In addition, we highlight a few examples of potential ways to incentivize 
siting of DPV in the most favorable locations (Section 7.3).  
 

                                                
33 Load zones represent large areas within the footprint of the ISO where transmission is usually not a constraining 
factor for delivering generation to load during peak times. Loads often pay for energy based on the load zone price 
rather than the nodal price used for generators.  

Planner’s question: How do you account for the fact that the benefits and impacts of DPV can 
vary depending on location? How do you predict where DPV will be located?  
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7.1 Estimating the Location of Future DPV 

The resource planning studies that are the primary focus of many of the other sections provide 
little insight into how planners account for location-specific factors. T&D planning studies, 
including studies by ISOs for transmission and capacity market planning, provide more details 
on projected DPV locations and are the primary source of information for this section. Here we 
focus only on methods to identify where DPV, sited primarily behind the meter, will be located 
within the system—methods to estimate the aggregate quantity of DPV are discussed in Section 
3. Below we describe the three basic methods for estimating the location of future DPV along 
with examples of real-world use. Table 13 compiles the methods used across the plans we 
reviewed. 
 
Proportional to load: This method assumes DPV is distributed in proportion to load or 
population. Barring other information, it may be reasonable to expect that DPV growth will 
occur where more customers and load are concentrated. GPC allocates DPV to five major 
population centers in the state, with most DPV located near Atlanta. PG&E in the BPP allocates 
DPV to specific substations proportional to the substation peak load. The aggregate quantity of 
DPV comes from a DPV forecast specific to its service territory. PJM allocates state-level DPV 

Innovations in Predicting and Influencing Future DPV Locations 
Simple methods for predicting the locations of future DPV proportionally allocate the 
deployment based on the locations of existing load, population, or DPV. Innovative 
approaches employ additional predictive factors as well, such as demographics and customer 
load, as summarized in Table 12 and described in Section 7.1. Utilities that use such 
innovative “propensity to adopt” analysis include PG&E, SCE, and SMUD. Another 
emerging utility innovation is locating DPV strategically to enhance its benefits. 
Organizations exploring this tactic include DEI, DOM, PG&E, GPC, and ISO-NE—generally 
focusing on utility-owned systems. A recent pilot project in Rhode Island demonstrates how 
promotion of strategic locations for behind-the-meter DPV can help defer feeder upgrades 
(Text Box 3).  
Table 12. Factors Used by Various Methods for Predicting Future DPV Locations 

Method Description Predictive Factors Used  

 Location of 
existing load or 

population 

Location of existing 
DPV 

Detailed 
customer 

characteristics 
Proportional to 
Load 

Assumes DPV is 
distributed in proportion 
to load or population 

X   

Proportional to 
Existing DPV 

Assumes DPV grows in 
proportion to existing 
DPV 

 X  

Propensity to 
Adopt 

Predicts customer 
adoption based on 
factors like 
demographics or 
customer load 

X X X 
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forecasts to PJM load zones in proportion to the peak demand. SDG&E assumes that future 
DER, including DPV, would be evenly dispersed across its service territory and its distribution 
system in its DRP. 
 
Proportional to existing DPV: This method assumes DPV grows in proportion to existing DPV 
or based on recent interconnection requests. Additional factors like customer demographics, 
availability of rooftops, and activity of local DPV marketers could impact the deployment 
patterns of DPV. A simple way to account for these factors is to assume that future DPV will 
tend to be installed near where DPV has been installed in the past. NYISO allocates DPV to its 
11 load zones in proportion to the existing DPV in those load zones. A slight variant on this 
approach, used by ISO-NE, is to allocate DPV to 19 dispatch zones based on a survey of DPV in 
interconnection queues from distribution system owners. PG&E’s DRP assumes that wholesale 
DPV will be located similarly to the most recent winning bids from the renewable auction 
mechanism solicitations. HECO, in its Distributed Generation Interconnection Plan, applies a 
single DPV growth rate across its service territory.  
 

 
Figure 13. PG&E’s Projected DPV Adoption via the “Propensity to Adopt” Method (PG&E 2015) 

 
Propensity to adopt: With additional data at the city, neighborhood, or even individual 
household level, it is possible to estimate the propensity of a household to adopt DPV based on 
directly observable factors like demographics or customer load. PG&E, in its DRP, uses a 
logistic regression to predict the probability of a customer adopting DPV. For residential 
customers, the predictive factors include information about housing, customer demographics, 
electricity consumption, and geography. For non-residential customers, the factors include 
customer sector, electricity consumption, and tariff. PG&E fits the regression using information 
about previous DPV adopters and then applies it to all customers to estimate the probability of 
adoption (Figure 13). It then selects customers with the highest probability to adopt until the 
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FIGURE 3-8   
PG&E SERVICE AREA – SCENARIO 1 - ESTIMATED PV INSTALLED IN 2020 AND 2025 
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amount of DPV adopted matches the aggregate DPV adoption forecast for the utility. PG&E’s 
approach is guided in part by similar research from NREL (Davidson et al. 2014).  
 
SCE follows a similar approach in its DRP, though it provides less detail on how the propensity 
of individual customers to adopt DPV is estimated. SMUD worked with Black & Veatch to 
develop feeder-level estimates of DPV adoption (Wilson et al. 2015). Like PG&E, they develop 
a propensity to adopt and use it to identify which customers will adopt DPV up to the aggregate 
DPV forecast (developed through other means, see Section 3). In the model, propensity to adopt 
is based on demographic factors that are assigned to different Nielsen PRIZM market-
segmentation datasets. The PRIZM dataset categorizes households into one of 66 different 
“demographically and behaviorally distinct types” that can be used to discern customer behaviors 
and purchasing preferences (Nielsen 2016). Then, a diffusion factor increases the probability of 
adoption based on the number of PV systems within a specified influence radius. For each year 
of the forecast, specific homes are selected to adopt DPV based on a random number draw 
dependent on the probability of adoption. The diffusion factor for the next year then depends on 
which customers adopted in the previous year.  
 
More advanced methods for estimating the location of DPV adoption, in addition to the quantity, 
are discussed in Section 3.5. These include bottom-up agent-based models (e.g., Rai and 
Robinson 2015) and top-down statistical models (e.g., Higgins et al. 2014, Graziano and 
Gillingham 2015). 
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Table 13. Methods for Estimating the Location of Future DPV 

Plan Method Details 
GPC 2016 Proportional to 

load 
Location is a factor in avoided losses and avoided transmission estimates 
for DPV. GPC assumes DPV is distributed across five major load centers 
in Georgia (with 63% in Atlanta). 

HECO Distributed 
Generation 
Interconnection Plan 
2014 

Proportional to 
existing DPV34 

The growth rates of DPV are applied uniformly across each company 
without detailed projections by circuit or specific areas in distribution 
system modeling. 

ISO-NE 2015 Proportional to 
existing DPV 

Location is a factor in the capacity market and transmission planning. 
ISO-NE allocates the DPV forecast to 19 dispatch zones (each within a 
state) based on a survey of distribution owners’ interconnection queues. 

NYISO 2015 Proportional to 
existing DPV 

Location is a factor in the capacity market and transmission planning. 
NYISO allocates DPV to 11 load zones in proportion to the existing DPV 
in the load zone. 

PG&E BPP 2014 Proportional to 
load 

DPV forecasts are made by utility load zone, but then DPV is allocated to 
specific substations proportional to the peak load. The RPS calculator 
includes location-specific T&D costs that are used to affect the resource 
ranking. 

PG&E DRP 2015 Propensity to 
adopt & 
proportional to 
existing DPV 

Aggregate DPV forecast is allocated to distribution feeders based on an 
estimate of a customer’s propensity to adopt DPV. Wholesale DPV is 
assumed to be located in areas similar to the most recent results from the 
renewable auction mechanism solicitations. 

PJM 2015 Proportional to 
load 

Location is a factor in the capacity market and transmission planning. PJM 
allocates state-by-state forecasts of DPV to PJM load zones proportional 
to the peak demand. The peak demand in that load zone is then reduced by 
the on-peak contribution from DPV (based on historical DPV production 
for the hour ending 5 pm during June–August). 

SCE DRP 2015 Propensity to 
adopt 

Aggregate DPV forecast is allocated to distribution feeders based on an 
estimate of a customer’s propensity to adopt DPV. 

SDG&E 2015 Proportional to 
load  

SDG&E states that DPV forecast is allocated evenly across the utility 
service territory and the distribution system, which we interpret as 
proportional to load. 

SMUD 2015 Propensity to 
adopt 

Aggregate DPV forecast is allocated to distribution feeders based on an 
estimate of a customer’s propensity to adopt DPV. Propensity is based on 
household classification into different market segments (PRIZM) and 
adoption by neighbors. 

 
7.2 Using Location of DPV in Planning 

The location of DPV matters in capacity markets, transmission planning, and distribution 
planning. Because the avoided costs of DPV depend on its location, location can also influence 
the relative attractiveness of DPV as a resource in IRPs.  
 
Only the GPC and PG&E IRPs bring location-specific information into the evaluation of DPV. 
PG&E uses location-specific losses, transmission costs, and avoided distribution costs to affect 
the relative cost ranking of DPV resources in the RPS Calculator. These parameters are specific 
to the individual competitive renewable energy zone or the utility service territory within the 
calculator. GPC uses the assumed DPV location in estimating avoided losses and avoided 
                                                
34 A similar assumption was made in HECO’s 2016 PSIP. 
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transmission for DPV in the value-of-solar calculations that set maximum bid prices for 
procuring DPV. 
 
Capacity markets and transmission planning require DPV locations down to load-zone levels. 
ISO-NE and NYISO use the load-zone-level DPV forecast in their capacity markets and 
transmission planning. PJM adjusts the load-zone peak demand by the on-peak contribution of 
DPV for its capacity market and transmission planning.  
 
Distribution planning requires feeder-level forecasts of DPV adoption. The California DRPs 
describe a process to incorporate DPV forecasts into estimates of the peak demand on feeders. In 
addition, location-specific DPV forecasts can be used to identify where the capacity of the 
distribution system to accommodate DPV without upgrades, the “hosting capacity,” is likely to 
be limited relative to projected growth. This allows for either proactive upgrades or signaling to 
the market where interconnection may be more challenging. Both topics are addressed further in 
Section 8. 
 
7.3 Strategically Locating DPV 

Edge et al. (2014) outline several options for strategically locating DPV, including online maps 
showing DPV feeder penetration, targeted interconnection processes, locational incentives, 
locational interconnection costs, power-purchase rates that differ by location, and proactive 
distribution upgrades with costs allocated to the beneficiaries of the upgrades. Most of the 
strategies are useful for in-front-of-the-meter DPV or DPV that is utility owned, while only a 
subset, like targeted interconnection processes or locational incentives, are applicable to behind-
the-meter DPV. 
 
Somewhat unexpectedly, we find some discussion of strategically locating DPV in resource 
planning studies. One option suggested by DEI is utility ownership of DPV, where the utility 
could choose locations that provide the most benefits. DOM’s Solar Partnership Program is a 5-
year demonstration program to study the benefits and impacts of utility-owned solar DG on 
targeted distribution circuits. PG&E’s BPP uses the RPS Calculator to evaluate potential DPV 
resources where the cost metric is influenced by location-specific losses, transmission costs, and 
avoided-distribution benefits. GPC mentions that estimates of DPV interconnection costs can be 
used in the evaluation of DPV bids to identify which locations are more cost effective. ISO-NE 
suggests that its identification of system needs, including capacity and transmission, across 
different load zones can signal where it expects resources can provide the greatest benefit and 
where wholesale prices will tend to be higher. This may help incentivize in-front-of-the-meter 
DPV. However, other incentive mechanisms, as discussed by Edge et al. (2014), will be needed 
to influence the location for behind-the-meter DPV.  
 
Finally, in the distribution planning process outlined in the NY REV and the California DRPs, 
the utility is to highlight where there is potential for DPV to offset investments. The location-
specific value analysis (the benefit-cost assessment for NY REV and the locational net benefits 
for the California DRPs) will then show a higher assessment of benefits in locations where DPV 
is likely to defer or avoid the greatest costs. The next challenge is determining how to direct 
projects to those areas that have the greatest locational benefits. One recent pilot project from 
Rhode Island provides a viable approach (Text Box 3). 
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Text Box 3. Strategic Siting of DPV to Defer Distribution Upgrades 

Rhode Island, through the Office of Energy Resources (OER), recently implemented a 
pilot project to demonstrate that strategically sited DPV can defer a $2.9 million 
distribution upgrade (Musher 2016). The pilot project builds on an existing 
“DemandLink” program from National Grid, which deploys EE and demand-response 
resources as non-wires alternatives where cost effective. The DemandLink program was 
in part developed in response to a legislative “Least Cost Procurement Mandate” that 
involves the evaluation of non-wires alternatives. 
 
Currently, two feeders serve approximately 5,200 customers in two communities. 
Projected load growth would have led to an overload in 2014, which could be mitigated 
by adding a third feeder. The peak loads driving the upgrade occur in summer months 
during late afternoon and early evening. The non-wires alternative required 150 kW of 
load relief from the customers in 2014, growing to 1 MW in 2018, to defer the upgrade 
for 4 years.  
 
OER designed the DPV pilot project to involve two approaches for incentivizing DPV 
deployment in the program area: a competitive solicitation and a targeted “Solarize” 
campaign. In both cases, the pilot was designed to incentivize DPV system designs that 
would provide the most load relief in late afternoon hours (e.g., west-facing panels). For 
the competitive solicitation, OER solicited applications for smaller-sized ground-
mounted solar installations (less than 0.5 MW). It selected a 250-kW single-axis 
tracking project that required the smallest grant to deploy a system that was most 
aligned with the load profile of the feeder. The “Solarize” campaign incentivized a west-
facing orientation of rooftop PV systems by compensating system owners for lower 
production and bill savings relative to a south-facing system. The “Solarize” campaign 
led to the installation of 67 rooftop systems totaling 485 kW, which was twice as much 
participation as the program administrators originally planned. Altogether the DPV pilot 
is expected to contribute 362 kW of peak-load reductions toward the deferral of the 
distribution asset upgrades. The performance of this pilot will be evaluated in 2016 and 
2017, and the positive experience so far is likely to inform development of Rhode 
Island’s Common Cost-Benefit Framework.  
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8. Estimating the Impact of DPV on T&D Investments 

 
 
Because DPV is often located on the distribution system, close to loads, its impact on the T&D 
system is different than the impact of utility-scale resources. Furthermore, because the 
distribution system was traditionally designed to accommodate only the flow of power from the 
transmission system to the customer, locating DPV on the distribution system fundamentally 
changes traditional approaches to distribution planning. Three key questions relate to the 
increasing impacts of DPV on the T&D system: 
 

• System needs: How does DPV impact the traditional drivers of investments in the T&D 
system? 

• Interconnection: How much DPV can be accommodated on the existing distribution 
system? 

• Proactive planning for DPV: What investments are needed to accommodate more DPV 
on the distribution system? 

Various T&D planning studies are beginning to address these questions. This section 
summarizes the range of approaches used or proposed in these studies, and it highlights some 
innovative approaches. 
 

 
 
8.1 System Needs: Impact of DPV on Traditional Drivers of T&D Investments 

Adding DPV on the distribution system near loads reduces demand for electricity from the bulk 
power system that would otherwise need to be moved over the T&D system to customers. 
Accounting for this decline in demand can defer or eliminate the need to build new transmission 
or distribution infrastructure. Here we describe how planners are beginning to account for DPV 
in their T&D planning studies so these benefits can be realized. In Section 8.2, we describe 

Planner’s question: How do you evaluate the impact that DPV will have on the need to invest 
in the T&D system?  

Innovations in Estimating the Impact of DPV on T&D Investments 
Innovations in estimating the impact of DPV on T&D investments apply differently to 
different organizations, depending on each organization’s current progress in this area as well 
as its projected deployment of DPV and the relative robustness of its T&D infrastructure. For 
organizations that have not yet considered DPV in T&D studies, innovative examples of such 
planning are available from numerous planning entities, as described in Section 8.1. Likewise, 
organizations that find themselves needing to calculate hosting capacity—the amount of DPV 
that can be interconnected to the distribution system without violating operating limits—can 
draw on innovative studies from their peers. These include the use of hosting capacity 
analysis to both screen and steer the location of DPV (see Section 8.2). At the most advanced 
end of the spectrum, some organizations are already proactively planning investments to 
accommodate additional DPV. Innovative analyses by Pepco, DOM/Navigant, and HECO 
calculate the cost of various options for increasing the hosting capacity, including the impacts 
of advanced inverters and energy storage (see Section 8.3).  
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efforts by utility planners to assess how much DPV can be accommodated on the distribution 
system before it triggers the need for new T&D investments. 
 
8.1.1 Impact of DPV on Drivers of Transmission Investments 

Transmission planning primarily focuses on satisfying reliability requirements, with 
supplementary studies that consider the economic benefits from expanding transmission (e.g., 
lower congestion costs) or the need to expand transmission to support public policy goals (e.g., 
accessing low-cost renewables to meet state RPS goals). Reliability-based transmission planning 
often focuses on the operation of the transmission system during forecasted peak-load conditions 
(additional scenarios might examine off-peak, but still stressful, conditions). The studies aim to 
ensure operation is within limits during normal operation and during contingencies. When 
operation falls outside of the limits and results in a violation, transmission planners identify 
solutions, like investment in additional transmission capacity, to mitigate the violation. Because 
adding DPV to the system can lower the peak load, planners may include forecasts of DPV in 
determining the peak load for the reliability studies. 
 
Increasingly, transmission planning entities are beginning to account for DPV forecasts in 
transmission planning studies, including ISO-NE, NYISO, PJM, CAISO, NV Energy, WECC, 
and HECO. For the most part, these studies consider a single forecast of DPV adoption,35 though 
HECO considers the robustness of transmission investment needs by examining extreme 
bookend scenarios with high or low DPV adoption (as discussed in Section 4). HECO finds, for 
some islands, that transmission is needed in the scenario with low DPV adoption but is not 
needed in the scenario with high DPV adoption. Approximately $152 million of transmission 
upgrades over the 10-year planning period are needed to accommodate load growth in the low-
DPV scenario, but these are not needed in the high-DPV scenario. GPC similarly identifies 
transmission needs with and without incremental DPV tranches to quantify the incremental 
avoided transmission cost of DPV in their value-of-solar calculations. The magnitude of the 
avoided transmission cost, however, is not public. WECC includes DPV adoption in a reference 
case and a high-DPV case used to study future transmission congestion. The high-DPV case 
increases congestion on some transmission lines in Southern California where solar penetrations 
are high.  
 
The location of DPV can be important to consider in transmission planning studies. The various 
approaches used to estimate the location of future DPV are discussed in Section 7.  
 
In addition, DPV generation during periods of peak demand is an important consideration. For 
the most part, transmission planners appear to use the same methods used to estimate the 
capacity credit to account for reduced peak demand with DPV (as discussed in Section 6). There 
are some variations, however. ISO-NE, for example, estimates the capacity credit of DPV for the 
forward capacity market based on production between 2 and 6 pm in summer months, leading to 
a capacity credit of 40%. But in the transmission planning, it uses DPV production in a narrower 
window, between 4 and 6 pm in summer months, to estimate the reduction in peak demand, 
which is only 26% of the solar nameplate capacity. PJM uses DPV generation during 4–5 pm for 
                                                
35 The methods used by these planners to develop the forecasts are addressed in Section 3.  



  52 

June–August to estimate the capacity credit for the capacity market. However, PJM uses extreme 
summer peak-load conditions for its transmission base case, where DPV’s contribution is 
estimated based on generation in the peak hour of the 10 highest load days in the previous year. 
Both ISO-NE and PJM consider a winter case too, in which DPV generation during winter is 
assumed to be much lower than during the summer peak.  
 
8.1.2 Impact of DPV on Drivers of Distribution Investments 

Distribution planning is largely driven by forecasts of peak load relative to the distribution 
system capacity. The traditional distribution planning process, as described in the documents we 
reviewed, is often an annual process where planners forecast peak-load growth on distribution 
feeders or substations and then assess whether the distribution system can manage expected 
growth over the next 1–5 years (with less-refined assessments out to 10 years). The planners then 
identify options for reconfiguring the distribution system to move load from overused to 
underused feeders or projects needed to add capacity to the distribution system. 
 
One document, PG&E’s DRP, describes how in current practices the planners forecast peak-load 
growth starting with the observed peak load at substations, without explicitly accounting for 
DPV. Because existing DPV on some feeders lowers the observed peak load, the forecasts of 
peak load are lower than they would have been without DPV. As a result, the forecasts already, 
to some extent, account for recent additions of DPV when planning the distribution system.36 
Going forward, the utility plans to include explicit forecasts of DPV in the peak-load forecasts 
used for distribution planning, which will help ensure that distribution system upgrades that can 
be deferred by customer adoption of DPV are deferred. 
 
Distribution planning is somewhat more straightforward than generation planning, because 
options for increasing distribution capacity can largely be compared based on capital cost. 
Resource planning decisions, on the other hand, depend on capital cost, operating cost, and 
impacts on the dispatch of other resources. Furthermore, distribution planning focuses on a 
shorter horizon than does resource planning. While planning horizons vary across utilities, 
distribution planners tend to focus on distribution needs in the upcoming 1–2 years, with a 
broader outlook over the next 5–10 years, while resource planners focus on system needs over 
the next 10–20 years. Forecasting challenges and uncertainty may therefore be larger in a 
resource planning context than for distribution planning.  
 
The economic value of DPV in deferring distribution system investments is largely derived from 
the time value of money: the deferral value of DPV will be greatest on feeders where the current 
peak load is near the capacity of the distribution system and where DPV production is coincident 
with the peak load on the feeder (Figure 14). DPV’s deferral benefits will be much lower where 
the peak load of the feeder is well below the feeder capacity, where DPV is not coincident with 

                                                
36 This contrasts with PJM’s approach, which separates the load and DPV forecast. PJM is very careful at the 
transmission level to first “reconstitute” the load by adding in estimated historical DPV production. It uses the 
reconstituted load to create the load forecast. Then, the net load forecast is estimated by bringing in historical DPV 
plus the forecast of DPV growth (Falin 2015).  
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peak load, or where feeders must be upgraded owing to aging infrastructure issues rather than 
insufficient capacity. 
 

 
Figure 14. Illustration of the Distribution Capacity Deferral Value of DPV (from Cohen et al. 2016) 

The NY REV process provides guidance on how to estimate the avoided distribution capacity 
value of DER in the Benefit Cost Analysis Framework. It highlights the need for utilities to 
estimate the value of avoided T&D based on the latest detailed marginal-cost-of-service studies. 
As described above, one of the primary drivers of this cost will be how close the system is to 
reaching capacity. Reducing the peak load for equipment that is near capacity will provide more 
deferral value than reducing it for equipment with significant excess capacity. For a particular 
DER application, the avoided investment cost then depends on the generation during the single 
hour of peak demand. Whether this hour of peak demand is based on the coincident system peak 
or the local non-coincident peak depends on the design criteria of the equipment. For example, 
deferral of a transmission line would depend on the reduction in the transmission system peak, 
whereas deferral of secondary distribution cables would depend on reduction in a new 
customer’s non-coincident peak demand.  
 
An emerging issue is how to consider DPV as a resource that can be used to meet T&D needs. 
Once distribution planners have identified a need for upgrades to T&D, what process is available 
for DPV to be evaluated as a potential alternative to traditional T&D investments? These 
questions are addressed in Section 5.  
 
8.2 Interconnection: How Much DPV Can Be Accommodated? 

Growing deployment of DPV raises concerns about two-way power flows and other concerns 
regarding distribution systems that were originally designed only to deliver power from 
substations to customers. These concerns often lead to conservative limits on how much DPV 
can interconnect to a feeder, with additional detailed studies required for interconnection 
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requests beyond the limits. Owing to their time-consuming nature, these studies can become a 
barrier to DPV deployment.  
 
To address this, some distribution planners are beginning to undertake hosting capacity analysis 
to streamline the interconnection process and better inform stakeholders, developers, and 
customers. Hosting capacity refers to the amount of DPV that can be interconnected to the 
distribution system without violating operating limits including voltage, thermal, and protection 
limits. In general, these studies are performed by simulating the operation of a distribution 
system with increasing additions of DPV at random locations throughout the feeder. As shown in 
Figure 15, the minimum hosting capacity is the highest DPV penetration where, no matter where 
the DPV is located, no violations occur. Additional DPV deployment will begin to produce 
violations, depending on where the DPV is located. The maximum hosting capacity is the 
penetration where any additional DPV will lead to violations, irrespective of where the DPV is 
located (EPRI 2015). HECO recently completed a hosting capacity analysis for all feeders in its 
system. The California DRPs, the NY REV process, and Massachusetts’ grid-modernization 
plans all highlight a role for hosting capacity analysis. 
 

 
Figure 15. Illustration of Hosting Capacity Analysis (adapted from EPRI 2015) 

Hosting capacity analysis can be used in two ways: as an interconnection screen and to steer 
development. When DPV on a feeder is below the minimum hosting capacity, additional DPV, 
by definition, can be located anywhere on the feeder without causing violations. Thus, 
interconnection requests can be expedited where DPV is below the hosting capacity, whereas 
additional study and/or additional equipment may be needed when DPV exceeds the minimum 
hosting capacity.  
 
Providing an estimate of the hosting capacity to stakeholders, developers, and customers can also 
help steer development to locations with adequate hosting capacity. A number of utilities suggest 
that they plan to integrate hosting capacity analysis into their distribution planning tools and 
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eventually develop publicly accessible maps of hosting capacity. Distribution planning tools 
specifically mentioned for conducting hosting capacity analysis include CYME and Synergi. 
While some of the California DRPs conduct a hosting capacity analysis for every distribution 
feeder, SCE conducts detailed studies on select representative feeders (30) and extrapolates the 
hosting capacity to all other feeders (4,636) based on features like voltage class, climate zone, 
circuit loading, transformer capacity, circuit miles, customer mix, and distribution equipment. 
Navigant (2016a) similarly identifies a select number of representative feeders (selecting 14 to 
represent 1,813) to study the impact of DPV on DOM’s system. Navigant uses a clustering 
algorithm to select the representative feeders such that simulation results for the representative 
feeder are expected to be comparable to all other feeders in the cluster. Clustering is based on 11 
different properties of the feeders, including voltage class, circuit miles, load, and ratio of the 
high voltage to low voltage on the feeder. 
 
8.3 Proactive Planning for DPV: Investments to Accommodate More DPV 

Some regions have specific policy goals to allow for more customer choice, including 
installation of a DPV system. Under these circumstances, the utility may need to proactively plan 
to expand the hosting capacity of the distribution system in a least-cost manner. Hosting capacity 
studies can identify which violations currently limit penetration of DPV (e.g., voltage, thermal, 
protection). Additional studies are then required to identify options to mitigate those violations 
and the cost of each option. For example, if the hosting capacity is limited by older protection 
equipment that does not operate properly with two-way flow from a distribution feeder to a 
transmission line, then the hosting capacity can be expanded through options like new protection 
equipment that allows two-way power flow or storage on the feeder to absorb excess generation.  
 
Pepco, through a U.S. Department of Energy Sunshot grant, used distribution planning software 
from Electrical Distribution Design (EDD) to identify the base hosting capacity for 20 different 
feeders on its system. They then found the incremental increase in hosting capacity and 
incremental cost of implementing several alternative measures. These include using dynamic 
load tap changer set points, changing voltage regulator settings, having smart inverters operated 
with a fixed, absorbing power factor of 0.98 (instead of 1.0), and using a small battery storage 
system on the distribution system (Steffel et al. 2015). 
 
Navigant conducted a similar study for DOM based on 14 representative feeders (Navigant 
2016a). First, the Synergi distribution system model is used to estimate the hosting capacity of 
the representative feeders, based on the penetration at which additional PV would trigger the 
need for upgrades to address violations in thermal, voltage, or operational limits. Then, more 
DPV is progressively added to the feeder, and the system upgrade costs to address violations are 
noted. The system upgrade costs include traditional measures such as line reconductoring, load 
balancing, adding additional phases, and adding voltage-regulating devices. The upgrade costs 
using these traditional measures are shown for all 14 feeders in Figure 16.  
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Figure 16. Estimated Costs to Increase the Hosting Capacity of 14 Representative Feeders for DOM 
(adapted from Navigant 2016a) 

Navigant also examines the upgrade costs for a select set of feeders assuming use of DPV with 
advanced inverters capable of supporting voltage through power factor control (Adv. Inverter) or 
that both batteries and advanced inverters are available (Adv. Inverter + Storage). As shown in 
Figure 17, the availability of advanced inverters could substantially lower the upgrade costs and 
increase the hosting capacity on a particular feeder, representing cluster 11. Adding storage does 
not lower the upgrade costs (assuming advanced inverters are available). Navigant notes, 
however, that taking advantage of advanced inverters requires that the utility invest in system-
wide telecommunications and distribution management systems that are neither currently 
available at DOM nor included in the upgrade cost estimates. Strategies to roll out advanced 
inverters at various U.S. utilities are described by Edge et al. (2015).  
  

 
Figure 17. Comparison of Traditional Upgrade Costs to Costs with Emerging Technologies for 
Cluster 11 (adapted from Navigant 2016a) 

In a similar analysis, HECO identifies the cost of increasing the hosting capacity of its 
distribution systems. It first identifies conditions that would trigger the need for upgrades and 
then uses forecasts of DPV adoption, including expectations for grid-friendly inverters, to 
identify how many distribution feeders would hit triggers as well as the cost of the upgrades. The 
total upgrade costs to 2030 are projected at around $200 million, assuming that all customers 
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with DPV continue to export power to the grid as they have in the past. HECO also identifies 
how much lower the upgrade costs would be for different shares of customers that are assumed 
to be “non-export” customers who use all DPV onsite. Presumably the non-export customers 
would use technology like solar plus storage or solar plus load controls to reduce the share of 
exports. The upgrade costs with non-export customers are substantially lower. HECO uses 
Synergi for steady-state analysis and PSS/E for transient and dynamic analysis in its studies. 
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9. Estimating the Avoided Losses Associated with DPV 

 
 
Siting PV near loads avoids losses that would otherwise occur between generation at the bulk 
power system level and consumption at the consumer level, and this distinguishes DPV from 
other generation resources, including UPV. A Navigant study for DOM, for example, shows 
greater avoided losses for DPV, located near loads, than for the same quantity of UPV, located in 
more rural areas with available land (Navigant 2016b). That said, DPV can increase losses if 
sited in areas that tend to export significant amounts of power or losses can increase with higher 
DPV penetration levels.  
 
Reducing losses lowers both the amount of energy and the capacity needed at the bulk power 
level. One important characteristic of losses is that they increase non-linearly with increased load 
on T&D lines. This in turn has two important implications. First, a small reduction in load 
reduces losses by the marginal loss rate rather than the average loss rate. The non-linear 
relationship means that the marginal loss rate is different, and often higher, than the average loss 
rate.37 Second, reductions in load during heavily loaded times reduce losses to a 
disproportionately greater extent than reductions in load during light-load times. The ability of 
DPV to avoid losses therefore depends not only on its proximity to load, but also on the 
correlation of DPV generation with times of high load. 
 

                                                
37 This depends on how high the fixed losses are in the system, but, if the variable (I2R) losses dominate the fixed 
losses, then the marginal loss rate will exceed the average loss rate.  

Planner’s question: How do you estimate the impact of DPV on power system losses?  
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Many of the studies in our sample make no specific mention of the impact of DPV on losses.  
Using information from those that do mention avoided losses and provide sufficient detail, we 
describe each method below and provide real-world examples, and we describe one additional 
method (marginal loss rate) that none of the studies appear to use. Table 15 compiles the 
methods used across the plans we reviewed. 
 
Average loss rate: The simplest way to account for DPV’s impact on losses is to scale the sales 
by a single average loss rate applied across all hours of the year to determine the load at the bulk 
power system level. Because DPV is removed from the load prior to the scaling up by the 
average loss rate, the planners implicitly account for the avoided losses of DPV based on the 
utility average losses, regardless of the correlation of DPV production and line loading. ELA, 
ISO-NE, LADWP, NVP, NSP, and NWPCC all specifically describe an average loss rate 
approach, though we expect this same approach is used by some utility planners who do not 
provide more detail in the planning documents. 
 
Time-differentiated average loss rate: In a few cases, planning studies describe an approach for 
differentiating the loss rate based on the timing of the avoided losses. APS, for example, applies 
separate loss rates for each month to calculate load at the bulk power system level (Figure 18). 
APS also applies a separate capacity loss rate (11.7%, compared with 6.3% average energy 

Innovations in Estimating Avoided Losses Associated with DPV 
Because of the non-linear variation of line losses with load, the most comprehensive 
estimation of system losses—and thus the potential avoided losses with DPV—is a time-
differentiated marginal loss rate, as shown in Table 14. However, none of the studies we 
evaluate appear to use a marginal loss calculation. This represents an area for future 
innovation. One utility, PSE, provides a detailed circuit-level analysis of losses, which offers 
a different refinement at a relatively small scale. 
Table 14. Characteristics Addressed by Various Methods for Estimating System Losses 

Method Description Loss Characteristics Addressed  

 Varied losses 
over time 

Marginal loss 
rate differs from 

average 

Circuit-
level losses 

Average Loss Rate Applies single average 
loss rate across all hours 
of the year 

   

Time-Differentiated 
Average Loss Rate 

Differentiates average 
loss rate based on timing 
of avoided losses 

X   

Marginal Average 
Loss Rate  

Applies an average 
marginal loss rate based 
on line loading 

 X  

Time-Differentiated 
Marginal Loss Rate 

Differentiates marginal 
loss rate by hour, month, 
or “peak” vs. “energy” 

X X  

Detailed Analysis of 
Losses 

Uses a circuit-level 
model to analyze losses X X X 
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losses) to estimate the peak demand at the bulk power system level. APS accounts for the 
avoided energy losses of DPV by estimating the production of DPV in each month, and it 
includes the avoided capacity losses in its calculation of the capacity contribution of DPV. 
 

 
Figure 18. Example of Average Energy Loss Rate Differentiated By Month (APS) 

GPC uses a value-of-solar analysis in its IRP to establish a ceiling for DPV bid prices, applying 
several loss categories related to DPV: reduced transmission losses (energy related), reduced 
transmission losses (capacity related), and reduced distribution losses (energy related). The 
energy-related reduced T&D losses are used to increase the avoided energy benefits of DPV. The 
capacity-related reduced transmission losses are used in the calculation of the deferred 
transmission capacity impact of DPV. GPC does not include a capacity-related component for 
reduced distribution losses, because it does not expect that DPV can defer distribution capacity 
investments.38 The reduced distribution losses are estimated by weighting an hourly estimate of 
distribution losses by the hourly DPV profile. The hourly loss rates are not public.  
 
PG&E uses assumptions provided by the CPUC in the Long Term Procurement Plan proceeding. 
The CPUC provides time-differentiated “peak” and “energy” loss rates for each of California’s 
investor-owned utilities to apply to estimates of the avoided losses for any demand-side 
measures including DPV. For PG&E, the “peak” loss rate (9.7%) is nearly identical to the 
“energy” losses rate (9.6%), though there are bigger differences for SCE and SDG&E. The 
CPUC also differentiates between losses at the transmission level and distribution level.  
 
Detailed analysis of losses: PSE does not address avoided losses in its evaluation of resource 
plans, but it does provide a supplementary, detailed analysis of the impact of high DPV 
penetrations on the distribution system. The analysis uses a detailed engineering model of four 
circuits with DPV penetrations that range from 9% to 135% of the circuit’s peak load. PSE finds 
that losses increase with DPV on winter-peaking circuits with high DPV penetration, but losses 
are avoided with DPV on summer-peaking circuits with lower DPV penetration. It is not clear 
from the study description, but the study may assume that the distribution feeder cannot have 

                                                
38 GPC assumes that the distribution equipment must be sized to meet the full load on a distribution circuit, 
regardless of the DPV on a circuit, owing to current IEEE 1547 interconnection standards that require DPV to trip 
offline if the inverters sense low voltage on the grid and owing to the rapid decline in DPV production with clouds.  
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negative load (e.g., export power to the transmission system) and that any excess DPV 
generation is included in the losses.  
 
Marginal loss rate: None of the studies appear to use the marginal loss rate when estimating 
avoided losses. Because losses increase non-linearly with line loading, a small decrease in load 
during high-load times can decrease losses by more than the average loss rate. To account for 
this benefit, one would use the marginal loss rate instead of the average loss rate. Lazar and 
Baldwin (2011), for example, use a rule of thumb that marginal losses are about 1.5 times 
average losses. This marginal loss rate could be time-averaged over the year, or it could be time-
differentiated by hour, month, or “peak” versus “energy” as utilities have done with the average 
loss rates. 
Table 15. Methods Used to Account for the Avoided Losses of DPV 

Plan Method Details 
APS 2014 IRP Time-

differentiated 
average loss 
rate 

The average energy loss rate varies each month, with an average of 6.3% 
over the year. An avoided capacity loss rate (11.7%) is applied to the DPV 
capacity contribution. 

ELA 2015 IRP Average loss 
rate 

DPV reduces demand, and load is grossed up to the system level based on 
average T&D losses. 

GPC 2016 IRP Time-
differentiated 
average loss 
rate 

Avoided cost calculations include avoided losses. They account for 
avoided energy and capacity losses at the transmission level and avoided 
energy at the distribution level. 

ISO-NE 2015 Average loss 
rate 

DPV reduces distribution losses at the average distribution loss rate of 
5.5% of load. 

LADWP Average loss 
rate 

Accounts for avoided energy losses. 

NVP 2015 IRP Average loss 
rate 

Uses the average loss rate of 3.8% of sales to account for system peak net 
of DPV and avoided energy losses. 

NSP 2015 IRP Average loss 
rate 

Uses the historical average loss rate for each jurisdiction. 

NWPCC 7th 
Power Plan 

Average loss 
rate 

The reduction in load from DPV is adjusted for transmission (assumed to 
be 2.3%) and distribution (assumed to be 4.7%) system losses. 

PG&E 2014 
BPP 

Time-
differentiated 
average loss 
rate 

Avoided losses are based on average “peak” (9.7%) and “energy” (9.6%) 
loss rates. 

PSE 2015 IRP Detailed 
analysis of 
losses 

PSE does not mention avoided losses in the evaluation of DPV as a 
portfolio option but does show a supplementary analysis of the impact of 
high penetrations of DPV on the distribution system. High DPV 
penetration can increase losses on winter peaking circuits and decrease 
losses on summer peaking circuits. 
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10. Considering Changes in Costs and Benefits of DPV with Higher Solar Penetration  

 
 
As the penetration of PV increases on the grid, we expect the marginal value of additional PV to 
decrease (Lamont 2008, Mills and Wiser 2012a, Hirth 2013, Hirth 2015), as depicted in Figure 
19. The primary drivers of this change are the declining capacity value (ability to avoid the need 
to build conventional capacity resources) and energy value (e.g., avoided fuel and purchased 
power costs) (Mills and Wiser 2012a). The capacity value decreases as the timing of the peak net 
load shifts from summer afternoons, when PV is generating significant amounts of power, to 
early evenings, when PV is off (Mills and Wiser 2012b, Muñoz and Mills 2015). The energy 
value decreases owing to additional PV displacing lower and lower variable-cost plants (like 
more efficient combined-cycle gas turbines or coal plants) and eventually requiring curtailment 
of excess PV production (Denholm and Margolis 2007, Denholm et al. 2009, Mills and Wiser 
2012a, Denholm et al. 2016). In some cases, integration costs, avoided losses, and other factors 
might also depend on PV penetration. Where planners are considering potentially significant 
DPV penetrations, it may be important to account for these changes in value. 
 

 
Figure 19. Estimate of PV’s Declining Marginal Economic Value in California in 2030 with 
Increasing PV Penetration (Mills and Wiser 2012b)39 
In this section, we examine the approaches that utility planners use to account for changes in the 
costs and benefits of DPV with changing PV penetration. This is important both for market-
driven DPV, in terms of identifying the remaining system need to meet the net load, and for DPV 
as a resource, in terms of comparing the benefits of DPV to its costs. 
 

                                                
39 DA in the legend is an abbreviation for day-ahead.  

Planner’s question: How do you account for the fact that the benefits and impacts of DPV can 
change with higher levels of deployment?  
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Very few of the utility planning studies explicitly describe how they account for changes in the 
costs and benefits of DPV with increasing penetration. Many of the utilities, however, evaluate 
portfolios with DPV using a detailed hourly production cost model. If the utility includes both an 
hourly DPV generation shape and the hourly load shape, then the resulting production cost from 
the portfolio will reflect the potential changes in the avoided resources as DPV increases. Users 
of a detailed production cost model with hourly net load include APS (PROMOD), IPC 
(AURORA), LADWP (Prosym), NV Energy (PROMOD), and PSE (AURORA). LADWP 
highlights results from its production cost modeling with overgeneration during low-load spring 
days with high solar. 
 
Only a few studies mention capacity credits for DPV that change with penetration level.40 NV 
Energy and PAC both use the peak hourly net load to set capacity requirements, which implicitly 
reflects a declining capacity value of DPV if the peak net load hours shift to early evening. APS 
and GPC both explicitly calculate capacity credits that depend on the solar penetration level. The 
declining incremental capacity credit with increasing penetration of DPV used by GPC is shown 
in Figure 20. 

                                                
40 PNM (2014) also accounts for declining capacity contribution of PV with increasing penetration, but only for 
utility-scale plants included in the Strategist CEM.  

Innovations in Accounting for Value Changes at High Solar Penetration 
Perhaps because few utilities expect high penetrations of solar in the near future, innovative 
methods for addressing the value changes at such penetrations are lacking among the studies 
we evaluated. GPC’s avoided cost of DPV calculations estimate the incremental avoided cost 
for tranches of DPV, illustrating a general approach to explicitly accounting for changes with 
increasing solar penetration, though some details are redacted. Many utilities employ 
production cost models, and these tools can be used to show changes with increasing solar 
penetration. 
 
Though not mentioned in any study we evaluated, CEMs can also account for changes in the 
energy value with penetration, depending on the temporal resolution of the model. The 
capacity credit, on the other hand, is often specified exogenously to the CEM, which requires 
planners to specify a capacity credit that changes with penetration. Alternatively, CEMs could 
be structured to include an endogenous estimate of PV’s capacity credit that reflects changes 
with penetration (e.g., Muñoz and Mills 2015). 
 
One complicating factor is that the change in value with penetration may depend on other 
external factors (Mills and Wiser 2015). LADWP, for example, highlights that EV charging 
during the day may mitigate some of the challenges with overgeneration. Customer adoption 
of EVs and their preferences for charging the EVs may therefore affect the value of DPV at 
high penetration. Given uncertainty in how customer preferences and other factors may 
change over time, scenarios analysis and analysis of the robustness of decisions (see Section 
4) may be helpful to decision makers. 
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Figure 20. Incremental Capacity Credit of DPV for Each 1,000-MW DPV Tranche (GPC 2016) 
Two utilities, DEC and IPC, include integration costs that depend on the level of PV 
penetration.41 The integration costs for DEC are derived from a study led by Pacific Northwest 
National Laboratory that examines three different PV deployment cases (Compliance, Mid, 
High). The study calculates the integration cost in different years between 2014 and 2022 for 
each deployment case, finding that integration costs increase in the Mid and High deployment 
cases and with time. For 2022, the integration costs in the Compliance case are about $6/MWh 
(and PV capacity is about 5% of peak load), increasing to almost $10/MWh in the High 
deployment case (PV capacity is about 19% of peak load). IPC similarly estimates an integration 
cost for increasing tranches of PV ranging from $0.5/MWh to $7.8/MWh depending on the 
tranche. 
 
GPC calculates the avoided costs for incremental tranches of DPV. In this approach, all 
categories of avoided costs can vary with the tranche. Unfortunately, all of the avoided cost 
estimates are redacted from the publicly filed plan, and many of the formulas are also redacted. 
GPC appears to account for changes in avoided energy cost, avoided capacity cost, and avoided 
T&D. The avoided transmission is calculated by first establishing a baseline transmission plan 
without DPV, assuming a certain amount of load growth. GPC then increases DPV deployment 
in each tranche to determine if any of the baseline transmission projects could be deferred. The 
reduction in the present value of the cost with the deferral is then used as the basis for the 
avoided transmission cost for each tranche. GPC also includes three other categories of avoided 
costs that change with the tranche: a generation remix cost (related to a shift in the preferred 
conventional capacity to meet the net load), support capacity costs (related to flexible reserves 
and the integration costs discussed in other studies), and bottoming-out costs (related to 
curtailment of DPV starting at the 5,000-MW tranche).  
 

                                                
41 The factors included in the integration costs are described in more detail in Section 6. Here we only provide 
details regarding the changes in the integration costs with penetration.  
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None of the studies mention changes in avoided losses.42 Aside from GPC’s study, other studies 
only mention changes in T&D costs with increasing penetration in qualitative terms or with 
respect to identifying the hosting capacity of feeders. 
 

 
 
 
  

                                                
42 GPC has avoided cost of losses that changes with the tranche, but only due to changes in the avoided energy 
costs—the loss rates are independent of the tranche.  

Text Box 4. Evaluating Bundled DPV Options 

One commonly discussed option to enhance the value of DPV and prevent changes in value 
with high penetration is to bundle DPV with enabling technologies such as storage or load 
controls. In our review, we see mention of several utility pilots that would demonstrate DPV 
plus storage applications, TGT considers a grid-defection scenario in which customers use 
DPV plus storage to disconnect entirely, HECO considers a “no-export” scenario in its 
distribution planning in which customers with DPV would use storage or load control to 
prevent net exports from the home, and Navigant (2016a) evaluates the cost of increasing 
hosting capacity, including storage as an option. Aside from these scattered examples, 
however, most utilities consider only DPV, without bundling it with other technologies. Given 
the rapid increase in interest, utility planners may want to consider evaluating these bundled 
technologies in future planning studies, particularly where rapid DPV growth is expected.  
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11. Integrating DPV in Planning across Generation, Transmission, and Distribution 

 
 
In most regions, the planning forums are isolated. Resource, transmission, and distribution 
planning are all conducted by different entities or functional groups within utilities. They may 
involve different regulators, they can have different objectives, and they have different time 
frames. In areas with growing shares of DPV, however, planning decisions cannot be made in 
isolation. For example, the need for generation resources depends on losses on the T&D system, 
which can, as described in previous sections of this report, change with the share of DPV. 
Similarly, the cost effectiveness of DPV as a resource depends on the impact of DPV on T&D 
investments. These challenges can be addressed through better coordination and integration of 
the different planning functions or forums (Sterling et al. 2015).  
 
One way to achieve better coordination is to ensure that consistent scenarios, assumptions, and 
data are passed between different planning entities. The Long Term Procurement Planning 
process in California, for example, coordinates planning assumptions among the CEC, CPUC, 
and CAISO. Forecasts of customer DPV adoption developed by the CEC are used by the utilities 
in developing procurement plans and by CAISO. The CPUC also uses an RPS Calculator, which 
includes DPV as a resource, to develop portfolios of resources to include in planning studies by 
the utilities and CAISO. The recent DRPs by the California investor-owned utilities similarly 
build, in part, on a common DPV forecast from the CEC. Additional examples include the 
NYISO coordinating load and capacity assumptions through its annual “Gold Book.” The 2015 
Gold Book includes a base DPV forecast by load zone. Also, ISO-NE uses a regional system 
planning process to identify the region’s electricity needs over a 10-year horizon, including a 
DPV forecast. ISO-NE uses the same DPV forecast in transmission planning and the capacity 
market, then shares the forecast with other regional planning entities for their planning process. 
 
A second approach is to develop iterative planning practices that directly link the different 
planning forums. One example of this approach, illustrated in Figure 21, creates multiple flows 
of information between distribution and integrated resource planning. This proposal emerged 
from SMUD while assessing the impacts of growing shares of DPV. Key aspects of that 
information flow include forecasting DER adoption, both at the system level and feeder by 
feeder, and coupling distribution system impact modeling with bulk power system modeling. 
HECO recently implemented a similar process in its recent 2016 PSIP by linking several 
different models (including models of the distribution and bulk power system) and iterating 
between the models.  

Planner’s question: How do you coordinate assumptions, scenarios, benefits, and impacts of 
DPV across generation, transmission, and distribution planning functions?  
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Figure 21. Proposal to Integrate Distribution and Resource Planning (Wilson et al. 2015) 

One of the challenges to integrating different planning forums is the different levels of 
granularity. Distribution planning, for example, is very granular in terms of the location of 
individual elements in the grid, though it often focuses on conditions during peak load. 
Conversely, IRPs have very little locational granularity, but economic cost-effectiveness 
questions require assessments of costs across all hours of the year, projected at least 10–20 years 
into the future. A recent assessment of planning capabilities indicates that “distribution planning 
tools currently in use are not equipped to support the analysis of where and how DER systems 
can provide alternatives to traditional equipment and sources of supply” (EQL Energy 2015). 
However, emerging analysis platforms allow utilities to automate distribution planning analysis 
and integrate with transmission planning (e.g., EDD’s DEW/ISM used by Pepco), conduct 
detailed bottom-up, location-specific value analysis of DER resources from detailed distribution 
plans and aggregate those values to be used in IRPs (e.g., Integral Analytics’ LoadSEER used in 
PG&E’s DRP), or more generally integrate several sources of utility data into a distribution 
planning framework (e.g., Qado’s GridUnity used by SCE). These emerging tools help to more 
fully evaluate the impacts and benefits of DPV and other DER from the distribution system up. 
The key advances leveraged by several of these technologies are automated planning steps, 
advanced algorithms, and high-performance cloud computing. The rapid pace at which complex 
analysis can be done enables relatively quick analysis of “what-if” scenarios and evaluation of 
different assumptions. This can provide additional insight and increase the level of understanding 
for a broad set of stakeholders. Colman et al. (2016) provide additional background and uses of 
these emerging tools.  
 
Beyond integration across planning forums, full consideration of DPV will require integration 
into procurement, programs, and pricing decisions. For example, DPV may affect the design of 
retail rates (e.g., NEM or time-of-use periods), which in turn impacts customer adoption of DPV 
and the need for other resources. DOM, for example, includes an analysis of alternative rate 
designs to estimate future loads. This is not connected to the DPV forecast, but in the future 
alternative rate designs could be a factor that impacts DPV deployment and planning needs.   
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12. Conclusions 

The rapid growth of DPV has not been distributed equally across U.S. utility territories, and the 
same is true for projected future growth. While some of the studies we review forecast 2020 
DPV penetrations equivalent to 5% or more of retail sales, fewer than half consider penetrations 
beyond 1% by 2020. Thus it is unsurprising that utilities and other planning organizations have 
differed in their perceptions about the need to incorporate DPV into resource and T&D plans. 
Because of this staggered progress, organizations that are just beginning to address DPV can 
draw on innovative practices from organizations that already are incorporating DPV rigorously 
into their plans. Our report reveals this spectrum of approaches across nine key planning areas, 
and it identifies areas where even the best current practices might be enhanced. Here we 
highlight approaches that are innovative and potentially worthy of emulation. We conclude with 
a brief discussion of future work. 
 
Developing a Forecast of DPV Deployment  
Customer-adoption modeling explicitly uses historical DPV deployment, location-specific DPV 
technical potential, various DPV economic considerations, and end-user behaviors as predictive 
factors. A quarter of the studies use this innovative method, including those by NWPCC, PAC, 
PG&E, PSE, and WECC. Though our analysis suggests various ways to improve current 
customer-adoption models, these models represent the most comprehensive forecasting approach 
available today. Our analysis suggests that combining various DPV forecasting methods could be 
valuable. Such an approach might use program goals discounted for uncertainty as lower bounds, 
customer-adoption models to forecast expected levels, and third-party forecasts and stipulated 
what-if scenarios to explore the full range of plausible futures. The customer-adoption models 
used in practice could be improved by better reflecting the heterogeneity of potential consumers, 
representing regional or locational differences, grounding methods in empirical data, and 
including non-economic factors. 
 
Ensuring Robustness of Decisions to Uncertainty in DPV Quantity 
Robustness of decisions to uncertainty in DPV adoption is most clearly addressed in utility 
integrated resource planning, with some consideration in transmission planning and little in 
distribution planning. The per-scenario plan method uses a CEM to develop least-cost plans that 
account for changes in both net load and the generation portfolio for various scenarios. An 
innovative variation of this approach—acquisition path analysis—combines multiple per-
scenario plans with trigger events, which indicate when conditions have changed sufficiently 
from the expected to trigger modifications in resource-acquisition strategy. PAC and HECO use 
variations of this approach in their resource planning. 
 
Characterizing DPV as a Resource Option 
Fewer than half of the studies we review evaluate DPV as a resource that could be proactively 
deployed to meet future needs. Those that do consider DPV as a resource use various approaches 
to determine if it should be part of the plan. The two most common are to compare the 
performance of candidate portfolios with varying quantities of DPV and to develop minimum-
cost portfolios via CEMs with DPV as a resource option. Regardless of the characterization 
method used, the ways DPV is distinguished from other resource options are important. Some 
utilities dismiss DPV based only on its higher cost and lower capacity factor relative to UPV. 
However, DPV’s capacity credit as well as the avoided losses, transmission deferrals, and 
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distribution-system cost impact associated with DPV also can be significant. PG&E’s plan stands 
alone among the utility resource plans we review in accounting for all these factors, which are 
also important for the locational net benefits methodology in the California DRPs and the NY 
REV process.  
 
Incorporating the Non-Dispatchability of DPV into Planning Methods 
Rather than a distinct innovative practice for incorporating the non-dispatchability of DPV in 
planning, innovation in this area is represented by evolving methods for capturing this important 
aspect of DPV. Hourly DPV generation profiles allow for some potential integration issues to be 
included when evaluating portfolios with DPV, including multi-hour ramping impacts and 
overgeneration. Most planning studies in our sample appear to use an hourly DPV profile. 
Impacts of DPV that are not captured with hourly generation profiles, such as sub-hourly 
variability and uncertainty, can be addressed through detailed integration studies. Various studies 
quantify the operational integration costs of solar, suggesting a range of $0.5–$10/MWh (for all 
solar, not just DPV). The methods used to estimate DPV’s capacity credit vary and are not 
always described. A few utilities use detailed reliability-based models to estimate DPV’s ELCC, 
whereas others use less-rigorous methods to estimate capacity credit. Among the other 
integration-related issues discussed in the studies, LADWP highlights the overgeneration 
potential of low-load spring days and considers mitigation via EV charging during these periods. 
Combining hourly DPV profiles with detailed production cost models can help in evaluating the 
role of EVs and other technologies and in identifying times when overgeneration may be a 
concern. 
 
Accounting for Location-Specific Factors of DPV 
Transmission and distribution planning studies require projections of DPV locations. The 
propensity-to-adopt method employs predictive factors such as demographics and customer load. 
Utilities that use this innovative analysis include PG&E, SCE, and SMUD. Another emerging 
utility innovation is locating DPV strategically to enhance its benefits. Organizations exploring 
this tactic generally focus on utility-owned systems, though other strategies have also been 
demonstrated in pilots. It is important to understand opportunities to strategically site DPV in 
planning, because location can affect the benefits of DPV (e.g., deferral of T&D upgrades) and 
the costs (e.g., incentives for DPV adoption in key locations).  
 
Estimating the Impact of DPV on T&D Investments 
Innovations in estimating the impact of DPV on T&D investments apply differently to different 
organizations, depending on each organization’s current progress in this area as well as its 
projected DPV deployment and the robustness of its T&D infrastructure. For organizations that 
have not yet considered DPV in T&D studies, innovative examples of such planning are 
available from numerous planning entities. Likewise, organizations that find themselves needing 
to calculate hosting capacity—the amount of DPV that can be interconnected to the distribution 
system without violating operating limits—can draw on innovative studies from their peers. 
These include the use of hosting capacity analysis to both screen and steer the location of DPV. 
At the most advanced end of the spectrum, some organizations are already proactively planning 
investments to accommodate additional DPV. Innovative analyses by Pepco, DOM/Navigant, 
and HECO calculate the cost of various options for increasing hosting capacity, including the 
impacts of advanced inverters and energy storage. 
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Estimating the Avoided Losses Associated with DPV 
Because of the non-linear variation of line losses with load, the most comprehensive estimation 
of system losses—and thus the potential avoided losses with DPV—is a time-differentiated 
marginal loss rate. However, none of the studies we evaluate appear to use a marginal loss 
calculation. This represents an area for future innovation. The one detailed circuit-level analysis 
of losses, by PSE, offers a different refinement at a relatively small scale. 
 
Considering Changes in Costs and Benefits of DPV with Higher Solar Penetration 
Perhaps because few utilities expect high penetrations of solar in the near future, innovative 
methods for addressing the value changes at such penetrations are lacking among the studies we 
evaluate. GPC’s avoided cost of DPV calculations estimate the incremental avoided cost for 
tranches of DPV, though some details are redacted. Many utilities employ production cost 
models, and these tools can be used to show changes with increasing solar penetration. CEMs 
could also account for changes in the costs and benefits of DPV with penetration, though 
modifications to the models might be necessary. In addition, none of the studies mention changes 
in avoided losses with higher solar penetration. 
 
One complicating factor is that the change in value with penetration may depend on other 
external factors. LADWP, for example, highlights that EV charging during the day may mitigate 
some of the challenges with overgeneration. Customer adoption of EVs and their preferences for 
charging the EVs may therefore affect the value of DPV at high penetration. Given uncertainty in 
how customer preferences and other factors may change over time, scenarios analysis and 
analysis of the robustness of decisions may be helpful to decision makers. 
 
Integrating DPV in Planning across Generation, Transmission, and Distribution 
Fully integrating DPV into planning requires a more comprehensive approach in which 
distribution, transmission, and resource planning are more tightly linked. A few states and 
regions—including California, New York, and New England—have started to develop these 
more comprehensive processes, but there are still many issues to address. Understanding the 
range of different approaches across the United States and highlighting innovative practices 
should help accelerate those changes. 
 
Future Research 
With future research, we will analyze whether some of the innovative practices identified here 
can meaningfully affect planning study results. Of particular interest are innovative practices for 
forecasting DPV adoption, examining the robustness of decisions to DPV uncertainty, and 
considering DPV as a resource.  
 
More generally, planners could improve the representation and evaluation of DPV bundled with 
other enabling technologies such as storage and load control across multiple methodological 
areas. These include forecasting, consideration as a resource option, assessing the impacts to the 
T&D system, and understanding the impacts of bundled DPV at high solar penetration levels.  
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Appendix B. Forecasts of DPV Penetration  

We contrast the DPV electricity-penetration forecasts in long-term planning documents from 19 
utilities and two ISOs to forecasts from two solar industry sources (BNEF and GTM Research) 
and results of NREL’s dSolar model. DPV penetration is defined as the ratio of annual DPV 
electricity generation to annual utility sales, after accounting for energy savings from EE 
programs, demand response programs, and customer-sited generation such as DPV. Such a 
metric allows us to easily compare DPV growth among utilities of various sizes in terms of 
customer base, annual energy consumption, and geographic footprint. Where possible, we extract 
both the DPV generation and the utility sales directly from consistent scenarios in the long-term 
planning documents. In some cases, not all numbers are explicitly provided, so we estimate the 
figures using the methodology described below. 
  
DPV Forecasts 
 
In the planning documents, the cumulative DPV capacity for a given year is calculated based on 
annual DPV capacity additions and known base quantities for prior years as listed in the IRPs. If 
capacity is listed in AC terms, we convert it into DC terms with a standard DC-AC derate factor 
of 0.88 (similar to the standard assumptions in the PVWatts model). 
 
We combine the GTM Research and BNEF annual state-level residential and commercial PV 
capacity estimates and supplement them with state-level cumulative DPV capacity information 
for the year 2010. Neither GTM Research nor BNEF provide capacity projections out to 2030, so 
we do not include them in our long-term comparison. For both GTM Research and BNEF, we 
differentiate between estimates that include extension of the solar ITC until 2022 and those that 
assume it expires at the end of 2016. BNEF explicitly creates scenarios with and without the ITC 
extension, holding all other factors constant (BNEF 2015). The GTM Research/SEIA DPV 
forecasts from early 2015 were developed prior to the ITC extension, while those from early 
2016 were developed after the ITC extension. We include the 2015 and 2016 forecasts but note 
that they also incorporate other policy and market changes that occurred between the two 
forecasts (GTM Research and SEIA 2015, GTM Research and SEIA 2016). 
 
We use a range of scenarios from NREL’s dSolar modeling results for near- and long-term DPV 
capacity projections in Section 3.4 (Gagnon and Sigrin 2016). All scenarios include the 2016 
ITC extension, which differs from the assumptions in most of the utility forecasts. The dSolar 
Reference Scenario is based on NREL’s Annual Technology Baseline Midcase Cost Scenario. 
The SunShot Cost Scenario assumes achieving SunShot cost targets for residential and 
commercial installations by 2020 without any further cost reductions in years to follow. The Low 
Cost Scenario also assumes meeting SunShot cost targets in 2020, but it includes further price 
declines until 2030. The $10 Carbon Scenario assumes Reference Scenario project prices and an 
additional $10 per metric ton of CO2 emissions that increases electricity rates and thus makes the 
customer economics of DPV more attractive. The scenarios do not otherwise differ in 
assumptions about electricity price changes (escalate following EIA AEO projections) or NEM 
policies (based on current state laws).  
 
Across all forecasts, we estimate annual DPV electricity generation using a statewide rooftop 
capacity factor derived from Lopez et al. (2012, Table 4) and the forecasted DC capacity of 
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DPV. We use estimates by Piwko et al. (2012) for Hawaii. Where the utility service territory 
covers multiple states, we use a capacity-weighted average capacity factor. 
 
Utility Sales 
 
We extract sales forecasts for the utility planning studies from the original planning documents. 
To develop load forecasts used to calculate forecasted industry and dSolar DPV penetrations, we 
start with the most recent state-level retail-sales information from EIA Form-861 and then apply 
annual load-growth rates implicit in EIA’s 2015 Annual Electricity Outlook (EIA 2015).  
 
Comparison of DPV Penetration 
 
Because our third-party DPV forecasts are available only at the state level, and not at the service-
territory level, we compare utility DPV estimates with third-party forecasts for the same state, 
though we recognize that utility service territories may differ in terms of solar resource quality 
and customer economics from the statewide average. As a result, third-party DPV estimates are 
the same for utilities in the same state. For example, the third-party estimates for TEP and APS 
both use the state-level forecasts for Arizona. Where a utility is active in more than one state, a 
utility-specific load-weighted average is calculated from the state-level third-party estimates. 
PAC’s load, for example, is split with 44% of load in Utah, 23% in Oregon, 17% in Wyoming, 
7% in Washington, 6% in Idaho, and 1% in California. 
 




