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Abstract 
The nascent steps in the pyrolysis of the lignin components, salicylaldehyde (o-
HOC6H4CHO) and catechol (o-HOC6H4OH), have been studied in a set of heated 
micro-reactors. The micro-reactors are small (roughly 1 mm ID x 3 cm long); 
transit times through the reactors are about 100 µsec. Temperatures in the micro-
reactors can be as high as 1600 K and pressures are typically a few hundred 
Torr. The products of pyrolysis are identified by a combination of photoionization 
mass spectrometry, photoelectron photoion concidence mass spectroscopy, and 
matrix isolation infrared spectroscopy. The main pathway by which 
salicylaldehyde decomposes is a concerted fragmentation: o-HOC6H4CHO (+ M) 
→ H2 + CO + C5H4=C=O (fulveneketene). At temperatures above 1300 K, 
fulveneketene loses CO to yield a mixture of (HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, 
and HC≡C-CH=C=CH2). These alkynes decompose to a mixture of radicals 
(HC≡C-C≡C-CH2 and HC≡C-CH-C≡CH) and H-atoms. H-atom chain reactions 
convert salicylaldehyde to phenol: o-HOC6H4CHO + H → C6H5OH + CO + H. 
Catechol has similar chemistry to salicylaldehyde. Electrocyclic fragmentation 
produces water and fulveneketene: o-HOC6H4OH (+ M) → H2O + C5H4=C=O. 
These findings have implications for the pyrolysis of lignin itself. 
 
(Revised to J. Phys. Chem. A, June 2018)  
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I. Introduction 

Lignocellulosic biomass, an abundant and renewable resource,1 is a 

complex amalgam of three classes of biopolymers: cellulose, hemicelluloses, and 

lignin. This paper examines the pyrolysis of two common lignin components, 

salicylaldehyde (o-HOC6H4CHO) and catechol (o-HOC6H4OH). Both of these 

species are important thermal decomposition products2 in the conversion of 

lignins to biofuels. The development of biomass derived fuels3,4 as an alternative 

to petroleum-based fuels has become a topic of interest due to climate change5 

and availability of this raw biomass. Biomass is the only renewable source of 

carbon-based fuels and platform organic chemicals.  

After cellulose, lignin6 is the second most abundant terrestrial biopolymer, 

accounting for roughly one third of the organic carbon in the biosphere.7 Lignin is 

a complex, water-insoluble aromatic polymer and a representative structure is 

shown in Scheme 1 (adapted from Fig. 2 of ref. 8). Lignin is essential for the 

structural integrity of the cell wall and the stiffness and strength of the stem. 

Besides waterproofing the cell wall, lignin enables the transport of water and 

solutes through the vascular system and plays a role in protecting plants against 

pathogens. Because lignin protects the cell wall polysaccharides from microbial 

degradation, it is also one of the most important limiting factors in the conversion 

of plant biomass to pulp or biofuels. The removal of lignin from the plant biomass 

is a difficult process.1,8 A glance at the structures in Scheme 1 suggests how 

difficult it is to extract and to process these aromatic polymers into fuels and 
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platform chemicals.  

A promising method for converting raw biomass to usable fuel is 

gasification via pyrolysis of biomass feedstocks.2,9-14 Scheme 2 shows some of 

the common aromatics that are released in the processing of lignin.2 The 

production of syngas (H2 + CO) from biomass gasification can be used to 

synthesize butanol, ethanol, and other liquid fuels. The major advantage of 

biomass gasification via pyrolysis is that lignin, cellulose, and hemicellulose can 

all be processed. However, in the pyrolysis vapor, growth of stabilized polycyclic 

aromatic hydrocarbons and soot places an effective limit on the usable 

hydrocarbon yield of the gasification process.15 

In an effort to understand and improve the biomass conversion yield, the 

unimolecular pyrolyses of lignin model compounds have been studied in many 

groups. These studies identify the initial pyrolysis intermediates, products, and 

mechanisms.16-18 There is potential to study catalysis19-21 or other means of 

chemical manipulation and engineering for the streamlining of biomass pyrolysis. 

A recent review1 provides a "beginning-to-end" analysis of recent advances 

reported in the utilization of lignin.  

To describe the pyrolysis and oxidation of the lignin components, several 

research groups have reported the pyrolysis of the simpler aromatics: phenol 

(C6H5OH),22-25 anisole (C6H5OCH3),26-31 and benzaldehyde (C6H5CHO).32,33 An 

understanding of the thermal decompositions of these singly functionalized 

aromatic systems has led to a predictive understanding of the more complicated 
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lignin model compounds such as methoxyphenol (guaiacol),34-36 

dimethoxybenzene,37 syringol38,39 and vanillin40,41 (see Scheme 2). In earlier 

studies the pyrolysis of two of the simplest molecules, phenol25 and 

benzaldehyde,33 were studied in a hot micro-reactor.  In this paper, we explore 

the thermal decomposition of the ortho isomers of hydroxybenzaldehyde 

(salicylaldehyde, o-HOC6H4CHO) and dihydroxybenzene (catechol, 

o-HOC6H4OH). A peculiarity of salicylaldehyde and catechol is that the two 

substituents (-OH and -HCO) are adjacent to each other. The pyrolysis of 

salicylaldehyde and catechol might be more complicated than C6H5CHO and 

C6H5OH if the ortho substituents interact.  

A proper set of mechanisms is ultimately required to model the pyrolysis 

and combustion of lignin and its components. As Pilling has succinctly stated,42 

“chemical mechanisms must have a quantitative foundation. Mechanisms consist 

of explicit, coupled chemical reactions, together with rate coefficients and product 

yields.” Pilling’s definition of a mechanism is a tall order. Most of the aromatics in 

Scheme 2 are poorly characterized. We are lacking proper heats of formation, 

ionization energies, and decomposition rates for most of these species. To build 

Pilling’s mechanism for lignin pyrolysis, several steps are required. A) The 

separate pyrolysis pathways for the lignin components must be established. B) 

The branching ratios for each of the pathways must be quantified. C) Finally, the 

rate expressions for each of the decomposition reactions must be measured. The 

rate expressions in C) are needed over a wide range of temperatures and 
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pressures. The objective of this paper is the establishment of the initial gas-

phase pyrolysis pathways for salicylaldehyde and catechol. In the following 

experiments, all of the decomposition products arising in the first 100 µsec of 

pyrolysis are identified by the complementary detection schemes of 

photoionization mass spectrometry (PIMS), photoelectron photoion concidence 

mass spectroscopy (PEPICO), and matrix isolation infrared absorption 

spectroscopy (IR). 

II. Experimental 

Samples of o-hydroxybenzaldehyde (salicylaldehyde) and o-

dihydroxybenzene (catechol) were obtained from Sigma Aldrich with a stated 

purity of >99%. No further purification was performed. The catechol-d4 

(HOC6D4OH) and salicylaldehyde-d1 (DO-C6H4CHO) were prepared by dissolving 

approximately 300 mg of either salicylaldehyde-d0 (99% CDN Isotopes) in 75 mL 

D2O or catechol-d6 (99% CDN Isotopes) in 75 mL of H2O in a separatory funnel. 

About 100 mL of chloroform was then added and the mixture was shaken. The 

organic layer containing chloroform and the extracted isotopically labeled sample 

were then drained from the bottom of the funnel into a round bottomed flask. The 

chloroform shaking process was repeated several times. The chloroform was 

evaporated by a roto-evaporator and the conversion yield was approximately 

80%. Since both salicylaldehyde (room temperature liquid) and catechol (room 

temperature solid) have low vapor pressures, the molecular beams were 

generated by passing the carrier gas (He, Ne, or Ar) over a heated sample (30-
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100ºC). Dilutions were approximated by taking the ratio of the sample vapor 

pressure to the backing pressure of the carrier gas. Typical dilutions were about 

0.1% or less. 

The products of the thermal decomposition reactions were generated 

inside a resistively heated (300-1800 K), microtubular (0.6 – 1.0 mm ID), SiC flow 

reactor with either pulsed or continuous gas injection as described below. The 

dilute pyrolysis products generated in the reactor were expanded into vacuum (< 

10-6 Torr) and further chemistry was quenched. Multiplexed product detection and 

characterization was carried out with either IR spectroscopy of matrix isolated 

samples, (in Ne or Ar), or time-of-flight PIMS (in He or Ar). 

 The microtubular reactor has been described in detail.29,43-46 Recent 

computational fluid dynamics simulations47 have found that the micro-reactors 

are complex, non-linear devices. Chemical reactions in the micro-reactors vary 

exponentially with the gas temperature (which is rising) and quadratically with the 

pressure (which is falling). Consequently there is a small volume (“sweet-spot”) in 

which most chemical reactions occur. The size and location of the sweet-spot 

can vary strongly with changes in the mass flow-rate, reactor dimensions 

(diameter, length), material (SiC, quartz, or Al2O3), and the nature of the buffer 

gas (He, Ne, Ar). In this paper four different micro-reactors have been deployed: 

1 mm ID SiC reactor with pulsed He, 0.66 mm ID SiC reactor with continuous 

flow of He, 1 mm ID SiC reactor with pulsed Ar, and 1 mm ID SiC reactor with 

continuous flow of Ar. 
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Matrix isolation infrared spectroscopy 

Roughly 200—400 Torr of carrier gas is passed over the heated sample 

and through a pulsed valve (30 Hz, 300 μs open time), resulting in a cryogenic 

matrix deposition rate of 1-3 Torr min-1. The heated microtubular reactor is 

separated from the cryogenic CsI collection window by a copper radiation shield 

with 5 mm aperture for passage of the molecular beam. The reactor output 

expands into the vacuum and deposits onto the CsI window (10-8 Torr and 4 K for 

Ne, or 10-6 Torr and 20 K for Ar). FTIR (Nicolet Magna) spectra are collected with 

0.125 – 0.25 cm-1 resolution and are composite averages of 1000 scans. Infrared 

spectroscopy is quite sensitive for the identification of dilute reaction products, 

and vibrational bands with IR intensities as weak as 0.1 km mol-1 are readily 

detected.45,48 

Fixed frequency 118.2 nm photoionization mass spectrometry 

The molecular beam is generated with a pulsed valve, in the same way as 

described above for matrix isolation, except that the reactor output is sent 

through a skimmer. However, for the fixed energy PIMS, He carrier gas is used 

for both its high transmission in the VUV and its high efficiency for heating. 

Photoionization is accomplished at 30 Hz with 118.2 nm (10.487 eV) radiation 

generated from the 9th harmonic of a Nd:YAG laser (Spectra Physics). This 

method is convenient in that the VUV generation is laser based and relatively 

intense.49 A reflectron time-of-flight mass spectrometer (Jordan) with a multi-

channel ion detection plate detector (MCP) is used with a mass resolution of 
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about 0.08 amu. 

Dissociative ionization is a common problem in fixed energy PIMS 

detection and refers to the subsequent fragmentation of the parent ion: AB + 

!ω → [AB]+ + e— → A+ + B. Because PIMS is used as a means to detect 

pyrolysis products emerging from the hot micro-reactor, dissociative ionization is 

a potential source of confusion. The daughter ions will obscure the parent ions 

characteristic of the thermal fragmentation. Dissociative ionization is commonly 

observed50 in the electron impact (EI) ionization mass spectrometry of aldehydes; 

the resulting spectra typically contain a large peak (P-1) in addition to the parent 

ion peak (P). Photoionization is a more gentle ionization method than EI. The 

118.2 nm PIMS of benzaldehyde33 only contains the parent peak at m/z 106 

when examined at 300 K. The IE(C6H5CHO) is reported51 as 9.50 ± 0.08 eV and 

heating benzaldehyde to 1300 K shows only small signs of dissociative ionization 

(see Fig. 7 of ref.33). The ionization energies for both salicylaldehyde and 

catechol are poorly known. The IE(o-HOC6H4OH) was reported52 to be 8.6 eV 

while that of o-HOC6H4CHO has not been measured. The para isomer has been 

studied53 and IE(p-HOC6H4CHO) was measured (9.32 ± 0.02 eV) by electron 

impact ionization; the IE(salicylaldehyde) is likely to be about 9.3 ± 0.1 eV. The 

thermochemistry and ionization energies of salicylaldehyde, catechol, and related 

species are collected in Table 1. 

Photoionization with Tunable VUV Radiation 

Synchrotrons provide intense (better than 1012 photons s-1), 
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monochromated (50 meV resolution), tunable VUV radiation for molecular 

diagnostics. Coupled with time-of-flight mass spectrometry, this is an effective 

detection method. Photoionization efficiency (PIE) spectra were collected at the 

Advanced Light Source (ALS) Chemical Dynamics Beamline (9.0.2). PIE spectra 

are generated by tuning through a photon energy range, typically with 25 meV 

steps, and monitoring the ion counts at a particular value of m/z in the mass 

spectrum. This provides the identification of species based on ionization energies 

(IEs), and differentiation of isomers at a particular m/z based on characteristics of 

the PIE spectrum. The Chemical Dynamics Beamline54,55 and the PIMS 

experiment56-58 have been described in detail elsewhere. Molecular beams 

generated for PIMS studies at the ALS were continuous He flow for two reasons. 

The synchrotron light is quasi-continuous (500 MHz) and use of a continuous 

flow molecular beam gives signal increases of about two orders of magnitude. 

Equally important, the use of a continuous flow in the micro-reactor and the 

computational fluid dynamics is much easier to characterize.47 A mass flow 

controller was used to deliver about 300 standard cm3 min-1 (sccm) of He through 

a heated sample compartment and into a 0.66 mm i.d x 2.5 cm long SiC tube. 

The beam was skimmed in a 2 mm aperture and expanded into the interaction 

region (10-6 Torr). The flow rate and reactor geometry were chosen based on 

extensive modeling and characterization. For a more complete description of the 

gas flow characteristics (temperature, pressure, and residence time profiles) in 

this reactor, see ref.47.  



	 -	10	-	

The molecular beam emerging from the pyrolysis source was intersected 

with synchrotron VUV radiation in a pulsed electric field (17 kHz), and ions were 

accelerated into a field free region where they were separated by mass and 

detected on a time sensitive MCP detector. Typical mass spectra were composite 

averages of more than 106 sweeps of the pulsed field at each photon energy, 

typically with 0.05 amu mass resolution and 20-50 meV stepsize.  

The pyrolysis of salicylaldehyde and catechol with photoelectron photoion 

coincidence (PEPICO) detection was carried out at the Swiss Light Source (SLS) 

VUV Beamline. The experiment at the SLS has been described in detail 

elsewhere,59-62 and will be briefly summarized here. The interaction chamber is 

evacuated by cryopumping (roughly 5000 L s-1), therefore Ar was used as the 

buffer gas. A backing pressure of about 750 Torr of Ar is passed over the sample 

and through a 100 µm pinhole, providing continuous, effusive gas injection into a 

1 mm i.d. x 2.5 cm long SiC microtubular reactor. The products emerge from the 

reactor and are expanded into the interaction region where they are ionized in a 

constant electric field (120 V cm-1). Photoelectrons are imaged within a few tens 

of ns on a position sensitive delay line anode detector and are used as time zero 

for time-of-flight detection of photoions in a coincidence setup.59-62  

IV. Results and Discussion 

Salicylaldehyde 

 Based on the decomposition pathway for phenol,25  Scheme 3 shows the 

anticipated decomposition pathway for salicylaldehyde. The initial step in the 



	 -	11	-	

pyrolysis of C6H5OH is a keto-enol isomerization to cyclohexadienone, followed 

by isomerization to a bicyclo [3.1.0] ketone. The ketone fragments to carbon 

monoxide and cyclopentadiene (see eq. (8) in ref. 25). Salicylaldehyde in Scheme 

3 is asymmetric so there are two expected formyl-cyclohexadienones. Further 

decompositions lead to a single formyl-cyclopentadiene (C5H5CHO, m/z 94) 

followed by fragmentation to the formyl-cyclopentadienyl radical, (C5H4CHO, m/z 

93). It is unlikely that the formyl-cyclopentadienyl radical will be stable in the hot 

micro-reactor and fulveneketene, C5H4=C=O (m/z 92), is the expected product. 

At higher temperatures, CO loss from C5H4=C=O leads to the unstable carbene, 

cyclopentadienylidene (C5H4, m/z 64). The singlet carbene, C5H4, is anticipated 

to ring open to yield the alkynes, HC≡C-C≡C-CH3 and HC≡C-CH2-C≡CH, or the 

substituted allene, HC≡C-CH=C=CH2; all are m/z 64. Loss of H-atoms from these 

unsaturated alkynes will form the conjugated radicals, HC≡C-C≡C-CH2 and 

HC≡C-CH-C≡CH, m/z 63. 

 Fig. 1 shows the 118.2 nm PIMS resulting from a dilute sample of 

o-HOC6H4CHO pyrolyzed in a pulsed SiC reactor. As salicylaldehyde is heated 

from 300 — 1000 K in the micro-reactor, the PIMS in Fig. 1 shows only the 

expected parent peak at m/z 122 and the small (7 %) 13C isotope peak. Even 

though the 118.2 nm VUV laser (10.487 eV) is roughly 1 eV above the ionization 

threshold for o-HOC6H4CHO (see Table 1), there are no signals at m/z 121 

characteristic of dissociative ionization. Heating o-HOC6H4CHO to 1100 K leads 

to the first appearance of a signal at m/z 92 (C5H4=C=O) as suggested by 
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Scheme 3. Further heating of salicylaldehyde to 1200 K shows additional 

fragmentation to both m/z 92 and m/z 64 (predicted in Scheme 3 to be a mixture 

of HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, and HC≡C-CH=C=CH2). The PIMS at 

1300 K reveals several new species, tentatively assigned as a mixture of the 

C5H3 radicals (m/z 63), either (HC≡C-C≡C-CH2, HC≡C-CH-C≡CH), the 

cyclopentadienyl radical (C5H5, m/z 65), o-benzyne (o-C6H4, m/z 76), and phenol 

(C6H5OH, m/z 94).  

Fig. 2 is a scan of the 10.5 eV PIMS of salicylaldehyde pyrolyzed in a 0.66 

mm ID, micro-reactor with He carrier gas at the ALS. In order to benefit from the 

quasi-continuous synchrotron light source, the reactor was operated continuously 

with the mass flow rate fixed at 280 sccm, generating the pyrolysis products in a 

He supersonic jet expansion. In contrast, Fig. S1 is the 10.5 eV PIMS of pyrolysis 

of salicylaldehyde63 in a 1 mm ID micro-reactor with Ar as the carrier gas at the 

SLS. In this case the gas mixture is regulated by a needle valve and a 

continuous, effusive jet of pyrolysis products is produced. In each of these 

experiments, PIMS signals at m/z 92 and then m/z 64 appear early as the first 

pyrolysis products. Pyrolysis in a pulsed reactor (Fig. 1) and a continuous reactor 

(Fig. 2) yield the same results.  

At higher temperatures all PIMS spectra in Figs. 1 and 2 have a fragment 

at m/z 94 and (1 + 1) REMPI spectra identify this as C6H5OH (see below). In the 

earlier pyrolysis study33 of C6H5CHO, the presence of H-atom chain reactions 

was found at higher temperatures: C6H5CHO + H ⇋ [C6H6CHO]* → C6H6 + H + 
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CO. The decomposition of fulveneketene generates the radicals 

(HC≡C-C≡C-CH2, HC≡C-CH-C≡CH) and H-atoms. If the H-atoms subsequently 

attack the o-HOC6H4CHO sample, two decomposition pathways become possible 

as shown in Scheme 4. Addition of H-atoms to the phenyl ring yields an activated 

complex, [HOC6H6CHO]*, which can collapse to phenol and the formyl radical 

(top of Scheme 4). Because the CH bond energy64 of HCO is only 16 kcal mol-1, 

the formyl radicals will never survive in the hot micro-reactor. Dissociation of 

HCO to CO and H-atoms ensues and the H-atoms continue the chain reaction.  

Instead of adding to the phenyl ring, the H-atoms could attack the carbonyl 

group of salicylaldehyde in two different manners; see the bottom of Scheme 4. 

The most stable adduct results from addition to the oxygen to form the 

hydroxybenzyl radical: o-HOC6H4CHO + H ⇋ [o-HOC6H4CHOH]*. This benzyl 

radical persists before reverting back to H-atoms and salicylaldehyde. In 

contrast, H-atom addition to produce the alkoxy radical, [o-HOC6H4-CH2-O]*, 

triggers several fragmentations. From the earlier case of benzaldehyde,33 one 

anticipates that the o-HOC6H4-CH2-O radical will fragment to CH2=O and the 

o-hydroxy-phenyl radical, o-HOC6H4. Hydroxy-phenyl radicals have been 

scrutinized earlier65 and it was found that they easily rearrange to the phenoxy 

radical: o-HOC6H4 → C6H5O. Phenoxy radicals decarbonylate27,29,65 to 

cyclopentadienyl radicals, C5H5 (m/z 65), that further fragment to HC≡CH and 

HCCCH2. Instead of isomerizing to phenoxy, the o-HOC6H4 radical could lose OH 
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to produce o-benzyne, o-C6H4 (m/z 76). It is known66 that benzyne decomposes 

to HC≡C-C≡CH + HC≡CH.  

At the highest reactor temperatures, all PIMS have salicylaldehyde 

pyrolysis products at m/z 76 (benzyne), 65 (cyclopentadienyl radical), 50 

(diacetylene), and 39 (propargyl radical). The presence of both CH2=O and 

HC≡CH (from o-C6H4 fragmentation) are detected by IR spectroscopy (see 

below). At first glance, it seems as if Schemes 3 and 4 properly describe the 

pyrolysis of o-HOC6H4CHO. 

As stated in the introduction, an interesting feature of salicylaldehyde is 

the ortho relationship of the –OH and –CHO groups. Because m-HOC6H4CHO is 

an isomer of salicylaldehyde, Fig. 3 is the control experiment. Salicylaldehyde 

and its two isomers have similar thermodynamic properties (see Table 1). The 

keto-enol fragmentation pathway outlined for salicylaldehyde in Scheme 1 will 

equally apply to both of the isomeric m-HOC6H4CHO and p-HOC6H4CHO. A 

glance at the thermal cracking of m-HOC6H4CHO in Fig. 3 shows that there is a 

problem with the keto-enol chemistry in Scheme 3. Instead of pyrolysis of 

m-HOC6H4CHO beginning about 1100 K to produce a single species, m/z 92, the 

decomposition of m-HOC6H4CHO produces fragments at m/z 94 (phenol), m/z 66 

(cyclopentadiene), m/z 65 (cyclopentadienyl radical) and m/z 39 (propargyl 

radical) at 1300 K. The feature at m/z 94 is positively identified to be C6H5OH by 

its (1 + 1) REMPI spectrum (Fig. 3) recorded at NREL.40 At 1400 K, a new 

feature at m/z 78 grows in. This is certainly benzene. But there are no m/z 92 
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signals present in Fig. 3. Comparison of the PIMS spectra in Figs. 1 and 3 

implies that the keto-enol pathway in Scheme 3 is not a low-energy path for 

salicylaldehyde decomposition. There must be another pathway for pyrolysis of 

o-HOC6H4CHO (m/z 122) to produce fulveneketene (m/z 92). 

Catechol 

 Catechol has recently been subjected to catalytic pyrolysis with a zeolite 

catalyst, identifying fulvenone ketene using the PEPICO technique at the SLS.67 

Earlier studies have subjected o-HOC6H4OH to pyrolysis in tubular reactors with 

residence times of a few seconds. The decomposition products were collected 

and were analyzed by gas chromatography (GC) with EI mass spectroscopy68 or 

flame ionization detection.69 Instead of GC analysis products have been trapped 

in on the cold finger of a Dewar mounted inside an EPR cavity.70,71 EPR 

spectroscopy was then used to identify the product radicals. A set of DFT/RRKM 

calculations72 have been used to interpret these results. Preliminary results for 

the pyrolysis of catechol and hydroquinone with a heated SiC micro-reactor have 

been presented.25  

To anticipate the results of pyrolysis of o-HOC6H4OH, Scheme 5 applies 

the keto-enol chemistry25 of phenol to catechol, o-HOC6H4OH (m/z 110). This 

predicts the loss of CO to generate the hydroxyl-cyclopentadiene, HOC5H5 (m/z 

82). The C-H bond energy of the parent cyclopentadiene73 is 83 kcal mol-1; 

consequently we expect that loss of H from hydroxyl-cyclopentadiene to generate 

the hydroxyl-cyclopentadienyl radical (m/z 81) will require about 80 kcal mol-1. 
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Further decomposition of the C5H4OH radical leads to H-atom and to the well 

characterized48,74-77 cyclopentadienone, C5H4=O (m/z 80).  

 Fig. 5 is the 118.2 nm PIMS that is observed when a sample of catechol is 

heated in a pulsed, 1 mm SiC micro-reactor. The 400 K spectrum shows the 

expected parent peak at m/z 110; there is no dissociative ionization observed at 

10.487 eV (See Table 1). At 1300 K, features in the PIMS appear at m/z 82 and 

92. Based on Scheme 5, m/z 82 is assigned as hydroxyl-cyclopentadiene but m/z 

92 does not appear in this scheme. In the spectra of salicylaldehyde (Figs 1-2), 

the major product was m/z 92 and was assigned as fulveneketene. Like 

salicylaldehyde, it seems that o-HOC6H4OH is also cracking to C5H4=C=O. The 

catechol spectrum in Fig. 5 agree with earlier findings.25,40 Fig. 5 shows that 

heating catechol to 1500 K produces several new products at m/z 94 (phenol), 

m/z 80 (C5H4=O), m/z 78 (C6H6), m/z 76 (o-C6H4), m/z 65 (C5H5), m/z 64 

(possible mixture of HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, HC≡C-CH=C=CH2), m/z 

63 (either HC≡C-C≡C-CH2 or HC≡C-CH-C≡CH), m/z 54 (CH2=CH-CH=CH2), m/z 

52 (CH2=CH-C≡CH2), m/z 50 (HC≡C-C≡CH), and m/z 39 (HCCCH2). Separate (1 

+ 1) REMPI spectra40 confirm the identity of the m/z 94 feature as phenol. 

 The pyrolysis of catechol-d4 is consistent with that of catechol-d0. Pyrolysis 

of o-HOC6D4OH (m/z 114) in Fig. 6 produces hydroxyl-cycylopentadiene-d4 (m/z 

86) and cyclopentadienone-d4 (m/z 84). Decomposition of C5D4=O generates 

acetylene-d2 and DC≡C-CD=CD2 (m/z 58). However, just as in the case of 

catechol-d0, fulveneketene-d4 (m/z 96) is formed. Thermal cracking of C5D4=C=O 
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(m/z 96) produces a mixture of [CD3C≡C-C≡CD, HC≡C-CD2-C≡CD, and 

HC≡C-CD=C=CD2] (m/z 68) as well as D atoms and the radicals at m/z 66 

(CD2C≡C-C≡CD and HC≡C-CD-C≡CD). 

 As discussed earlier for salicylaldehyde, the keto-enol pathway for 

catechol (Scheme 5) should equally apply to resorcinol or hydroquinone. 

Resorcinol is m-HO-C6H4-OH and is an isomer of o-HO-C6H4-OH. Fig. 7 is the 

PIMS of the pyrolysis of resorcinol and is presented as a control the thermal 

cracking of catechol. Catechol begins decomposition at 1300 K (Fig. 5) but m-

HO-C6H4-OH starts fragmenting at 1400 K to m/z 66 (C5H6) and small amounts of 

m/z 81 (probably HC≡C-CHC(O)CH3) and m/z 82 (likely HC≡C-CH2C(O)CH3). No 

signals at m/z 92 are ever observed for resorcinol. A detailed analysis of the 

pyrolysis of m-HO-C6H4-OH in Fig. 7 is beyond the scope of this paper.  

 Schemes 5 for the decomposition of catechol is now suspect because it 

does not have a pathway to generate fulveneketene-d0 (m/z 92) or 

fulveneketene-d4 (m/z 96). It does not seem that the keto-enol chemistry25 of 

phenol describes a low energy decomposition pathway for catechol. 

 How could the thermal cracking of o-HOC6H4OH produce the C5H4=C=O 

(m/z 92) in Figs. 5 and 6? A possible connection of the pyrolysis of catechol to 

that of salicylaldehyde is shown in Scheme 6. Loss of H2O from catechol (m/z 

110) could produce the keto-carbene at m/z 92; subsequent rearrangement of 

this carbene leads to fulveneketene. If catechol-d4 is the substrate, C5D4=C=O 

(m/z 96), would be predicted. Scheme 6 also shows a pathway for pyrolysis of 
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salicylaldehyde (m/z 122) to result in loss of H2 with the production of a reactive 

ketene, m/z 120. Loss of CO from the m/z 120 ketene, generates the same, m/z 

92 keto-carbene which isomerizes to the observed fulveneketene, m/z 92. Notice 

that H2 pathway for salicylaldehyde in Scheme 6 is distinct from the keto-enol 

route in Scheme 3. 

 The predictions of Scheme 6 offering a path to fulveneketene can be 

tested by infrared spectroscopy. The matrix IR spectra that result from heating 

either o-HOC6H4OH (black trace) or o-HOC6H4CHO (red scan) to 1300 K in a 

pulsed, Ar micro-reactor are shown in Fig. 8. The green spectrum is that of the Ar 

carrier gas heated to 1300 K. The IR spectra of Fig. 8 show the presence of 

known modes of C5H4=C=O (ν3, ν5, ν7, and ν26) resulting from of the pyrolysis of 

either catechol or salicylaldehyde. Characteristic bands for methyl-diacetylene, ν1 

and ν11(HC≡C-C≡C-CH3), acetylene, ν3(HC≡CH), and propargyl radical, 

ν1(HCCCH2), are detected in Fig. 9. The IR spectra in Fig. 10 identify 

cyclopentadienone as a thermal decomposition product of catechol; the known48 

bands (ν3, ν14, ν15, ν21) of C5H4=O are all clearly present. The IR spectra of Figs. 8 

– 10 as well as the PIMS in Figs. 1, 2, 5, and 6 demonstrate that both C5H4=C=O 

and HC≡C-C≡C-CH3 result from the pyrolysis of either o-HOC6H4OH or o-

HOC6H4CHO. 

 Fig. 11 is further confirmation of the H-atom/salicylaldehyde chain 

reactions at the bottom of Scheme 4. The IR spectra in Fig. 11 demonstrate that 

pyrolysis of o-HOC6H4CHO produces HC≡CH and CH2=O. The 11.5 eV PIMS in 
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the bottom right hand panel also confirms the presence of HC≡CH (m/z 26) and 

CH2=O (m/z 30). 

 Because of the differences between the PIMS of o-HOC6H4CHO and 

m-HOC6H4CHO in Figs. 1 and 3, an alternative scheme for pyrolysis of 

salicylaldehyde was proposed at the top of Scheme 6. The detection of molecular 

hydrogen would be a “signature” for Scheme 6. Unfortunately the 118.2 nm PIMS 

cannot ionize H2 (see Table 1) and homonuclear diatomic molecules do not 

absorb in the IR. Fig. 12 shows the results of a search with a synchrotron for H2 

following the pyrolysis of o-HOC6H4CHO. Figure 12 is a set of PIMS scans of a 

mixture of (salicylaldehyde-d0 and salicylaldehyde-d1) that were recorded by the 

synchrotron at the ALS. Heating (o-HOC6H4CHO and o-DO-C6H4CHO) to 1100 K 

leads to the production of both H2 (m/z 2) and HD (m/z 3). The spectra in the left 

panel of Fig. 12 show that the synchrotron VUV energy of 15.5 eV is sufficient to 

ionize both H2 and HD (see Table 1).  Scheme 6 also provides an explanation for 

the feature at m/z 120 in the PIMS recorded by synchrotron at the SLS (Fig. S1). 

Entraining salicylaldehyde in Ar with a continuous 1 mm micro-reactor leads to an 

effusive beam of the dissociation products. At reactor temperatures of 900, 1000, 

and 1100 K, there is clearly a pyrolysis product at m/z 120. Scheme 6 assigns 

this product as the ketene, O=C6H4=C=O. 

 The PIMS spectra of H2 and HD in Fig. 12 show only the smallest traces of 

H-atoms. It is straightforward to show75 that the photoion signal, J+(H atom), is 

proportional to the density of H-atoms (nH) and the photoionization cross section, 
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σ(H). The photoionization cross sections for H-atom78 and molecular79 H2 have 

been reported. At the photoionization energy of Fig. 12, σ(H, 15.5 eV) = 4.7 x 

10-18 cm2 while σ(H2, 15.5 eV) = 1.3 x 10-18 cm2. So the ratio of ion signals at 15.5 

eV in Fig. 12 can be written: 

J+(H-atom)
J+(H2 )

 ≅  nH  σ (H-atom)
nH2

 σ (H2 )
 = 4nH  

nH2

	 (1) 

The observed J+(H-atom) signals in Fig. 12 are small compared to either J+(H2) 

or J+(HD) so we conclude that there are very few H-atoms in the beam relative to 

H2 or HD.  

V. Conclusion 

 The pyrolysis of (salicylaldehyde, catechol) is a complicated process. It is 

clear that for both species, the lowest decomposition pathways feature the 

interaction of the two ortho-substituents as described in Scheme 6. Pyrolysis of 

salicylaldehyde in Figs. 1 and 2 leads to initial production of fulveneketene (m/z 

92) about 1100 K. Heating salicylaldehyde80 to 1200 K continues decomposition 

to fulveneketene and subsequent fragmentation of C5H4=C=O to the 

(HC≡C-C≡C-CH3, HC≡C-CH2-C≡CH, HC≡C-CH=C=CH2) mixture at m/z 64. By 

1300 K this mixture of alkynes releases H-atoms and the set of radicals 

(HC≡C-C≡C-CH2, HC≡C-CH-C≡CH,) at m/z 63. The H-atom chemistry, as 

outlined in Scheme 4, produces CH2=O (m/z 30), C6H5OH (m/z 94), o-benzyne 

(m/z 76). Further fragmentation of phenol generates cyclopentadiene (m/z 66) 

that leads to C5H5 (m/z 65). The cyclopentadienyl radicals further fragment to 
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HC≡CH (m/z 26) and HCCCH2 (m/z 39). The keto-enol chemistry outlined in 

Scheme 3 is consistent with all of PIMS and IR spectra of salicylaldehyde 

pyrolysis products. But Scheme 3 can be applied to (m-HOC6H4CHO and p-

HOC6H4CHO) where it fails. Consequently we are forced to Scheme 6 that is 

confirmed by the PIMS detection of (H2 and HD) as decomposition products from 

the (o-HOC6H4CHO, o-DOC6H4CHO) mixture.  

 The pyrolysis of catechol is even more complex. Heating o-HOC6H4OH to 

1300 K produces both hydroxyl-cycylohexadiene (m/z 82) and fulveneketene 

(m/z 92). It seems that both the catchol fragmentations in Scheme 5 and Scheme 

6 are operational here. As the pyrolysis temperature is raised to 1500 K, the 

C5H4=C=O decomposes to the C5H4 alkynes (m/z 64) and H-atoms plus the C5H3 

mixture of radicals (m/z 63). The H-atoms attack the starting catechol to produce 

phenol (m/z 94). Phenol further decomposes to CO and cyclopentadiene (m/z 66) 

that rapidly fragments to C5H5 (m/z 65) and on to HCCH (m/z 26) plus HCCCH2 

(m/z 39). There is a minor fragmentation pathway for C6H5OH (see Figs. 1 and 7 

in ref.25) that leads to (o-benzyne, H2O); this is the source of diacetylene (m/z 

50). The hydroxyl-cycylopentadiene (m/z 82) decomposes to C5H4=O (m/z 80) 

that produces75 HC≡C-CH=CH2 (m/z 52) and HC≡CH. 

 The decomposition of salicylaldehyde to H2 and [O=C6H4=C=O] → CO + 

C5H4=C=O  (Scheme 6) is a striking result. We believe that the formation of H2 is 

a concerted process rather than the result of step-wise H atom abstractions. We 

have already invoked H-atom chain reactions as being responsible for the 
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generation of CH2=O, benzyne, and C6H5OH (Figs 1, 2, and 11). But the 15.5 eV 

PIMS in Fig. 12 demonstrate that density of H-atoms is much less that that of 

molecular hydrogen (H2 and HD). As far as we know there have been no kinetic 

studies of H + HOC6H4CHO → products. Reactions of H-atoms with C6H5CHO 

have been investigated81 but the H-atoms always add to the aromatic ring and 

never lead to formation of H2. Reactions of phenol with H-atoms82 was observed 

to produce H2 and C6H5O. For the case of salicylaldehyde, such an H-atom 

abstraction would generate the OC6H4-CHO radical. It is known34 that phenoxy 

radicals easily lose CO to form cyclopentadienyl radicals; consequently one 

anticipates that the OC6H4-CHO radicals would produce formyl cyclopentadienyl 

radicals, C5H4-CHO (m/z 93). Scheme 3 predicts that C5H4-CHO will decompose 

to fulveneketene, C5H4=C=O (m/z 92) — which is observed. Such H-atom 

abstractions for m-HOC6H4CHO and o-HOC6H4CHO would predict formation of 

C5H4=C=O (m/z 92) for these isomers but this is not observed. However because 

only trace amounts of H-atoms are observed in the PIMS of Fig. 12, we believe 

that most of the observed H2 is the result of electrocyclic processes in Scheme 6.  

The only other report83 of H2 formation by a concerted elimination is that of 

the pyrolysis of 1,4-cyclohexadiene at (500 K — 900 K) to hydrogen and 

benzene. Gas chromatographic detection of benzene was accomplished but the 

lost of H2 had to be inferred. A reviewer has made the point that “significant 

amounts of H2 from the pyrolysis of the salicylaldehyde, could trigger a 

phenomenon called dihydrogen catalysis.84 Dihydrogen assisted 
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dehydrogenation of  salicylaldehyde  could form the m/z 120-product, similar to 

what occurs with tetralin and other compounds interacting with H2 which 

significantly lowers the activation energy.” The concerted loss of H2 is an 

interesting process and warrants further detailed examination. 

Early theoretical studies70-72 of the pyrolysis of catechol predicted a 

concerted elimination of water to a singlet carbene. This is described in Scheme 

6 and accounts for the formation of the observed fulveneketene, C5H4=C=O (m/z 

92) from catechol but not resorcinol.  

We return to the lignin structure itself in Scheme 1. Do these findings of 

the pyrolysis pathways for o-HOC6H4CHO and o-HOC6H4OH, or those of the 

lignin components in Scheme 2, provide any insight to the pyrolysis of lignin 

itself? We believe so. The weak bonds in Scheme 1 are the aryl ether linkages. 

Because of the aromatic stabilization of the phenoxy radical, the bond energy for 

anisole, C6H5O-CH3, is 63 kcal mol-1 (see footnote 63 in ref.34). There are a large 

number of O-CH3 bonds in all lignins. As the structure in Scheme 1 is heated, 

most of the peripheral –C6H4O-CH3 bonds will rupture over a narrow temperature 

range to release CH3 radicals.37 At slightly lower temperatures the aryl ether 

linkages along the backbone of the lignin in Scheme 1 will disintegrate; such a 

breakage is shown in Scheme 7. Cleavage along the backbone at the dotted line 

(top of Scheme 7) will require roughly 60 kcal mol-1 and generates a (phenoxy, 

alkyl) radical pair. The resulting alkyl radical (bottom of Scheme 7) is subject to β-

scission to produce H-atom and a substituted styrene. The sister phenoxy radical 
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has two pathways. As observed earlier,27,29,34,37 phenoxy radicals decarbonylate 

rapidly to release cyclopentadienyl radicals that fragment to substituted 

cyclopentadienones75 and CH3 radicals. A more interesting fate of the phenoxy 

radicals is that they may suffer a Mulcahy rearrangement37,85-88 to produce 

salicylaldehyde derivatives and H-atoms. The salicylaldehydes follow the 

pathway of Scheme 6 to substituted fulveneketenes and more H-atoms. 

 These conjectures predict that heating lignin samples to a threshold 

temperature will release a shower of CO, H-atoms and CH3 radicals. The 

radicals, particularly the H-atoms, trigger chain reactions33 (see Scheme 4) that 

will trigger the wholesale destruction of the aromatic lignin polymer. 
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Table 1. Thermochemistry 
 ∆fH298/ kJ mol-1 ∆fH298/ kcal mol-1 

C6H5OH  (phenol) -96.4 ± 0.9  -23.0 ± 0.2 89 

o-HO-C6H4-OH (catechol) -267.5 ± 1.9  -63.9 ± 0.5 90 

m-HO-C6H4-OH (resorcinol) -274.7 ± 2.2  -65.7 ± 0.5 89 

p-HO-C6H4-OH (hydroquinone) -265.3 ± 2.3  -63.4 ± 0.5 89 

o-HO-C6H4-CHO (salicylaldehyde) -245.6 ± 2.2  -58.7 ± 0.5 91 

m-HO-C6H4-CHO -213.7 ± 0.6  -51.1 ± 0.1 92 

p-HO-C6H4-CHO -217.8 ± 0.4  -52.1 ± 0.1 92 
___________________________________________________________ 

D0(C6H5O-H) 3.721 ± 0.004 eV 85.8 ± 0.1 kcal mol-1 93 

D0(o-HOC6H4O-H)                 ≤ 3.407 ± 0.006 eV   78.6 ± 0.1 kcal mol-1 94 
___________________________________________________________ 

IE(H) 13.59843449402 ± 0.00000000001 eV 95 

IE(H2) 15.42580277 ± 0.0000005 eV 95 

IE(HD) 15.44452374 ± 0.0000004 eV 96 

IE(C6H5OH) 8.508 ± 0.001 eV 97 

IE(o-HO-C6H4-OH) 8.6 ± 0.1 eV 52 

IE(m-HO-C6H4-OH) 8.6 ± 0.1 eV 52 

IE(p-HO-C6H4-OH) 8.4 ± 0.1 eV 52 

IE(o-HO-C6H4-CHO)  —         

IE(m-HO-C6H4-CHO)  —         

IE(p-HO-C6H4-CHO) 9.32 ± 0.02 eV 53 

IE(HC≡CH) 11.4006  ±  0.0002 eV 98 

IE(CH2=O) 10.8850 ± 0.0002 eV 99 
___________________________________________________________ 
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EA(C6H5O) 2.2538 ± 0.0008 eV 100 

EA(o-HOC6H4O) 2.3292 ± 0.0004 eV 101,102 

EA(m-HOC6H4O) 2.3292 ± 0.0004 eV 103 
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Scheme 1. Partial lignin structure from poplar trees; adapted from Vanholme et al.8 
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catechol25,40 resorcinol40 hydroquinone40 

	
o-dimethoxy m-dimethoxy p-dimethoxy 
-benzene37 -benzene37 -benzene37 

	
salicylaldehyde37 3-hydroxy- 4-hydroxy- 
 benzaldehyde37 benzaldehyde37 

  
o-guaiacol34-36 syringol38,39 vanillin40,41 
Scheme 2. Some common components associated with	lignins.   
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Scheme 3. Application of the phenolic keto-enol tautomerism pathway25 to the 

thermal decomposition of salicylaldehyde. 
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Scheme 4. Possible H-atom chain reactions33 in the thermal decomposition of 

salicylaldehyde. 

	

	
	

Scheme 5. Application of the phenolic keto-enol tautomerism25 in the thermal 

decomposition of catechol. 
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Scheme 6. Interaction of the functional groups in the thermal decomposition of 

both salicylaldehyde and catechol are predicted to generate fulveneketene, m/z 

92. 
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Scheme 7. The initial steps conjectured for the pyrolysis of lignin in Scheme 1. 
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Fig. 1. The 118.2 nm (10.487 eV) spectrum of salicylaldehyde diluted (0.1 % or 

less) in He and pulsed through a 1 mm ID SiC reactor. The onset of pyrolysis 

identifies first m/z 92 (C5H4=C=O) and then 64 (HC≡C-C≡C-CH3, 

HC≡CCH2C≡CH, HC≡C-CH=C=CH2) as the initial thermal decomposition 

products. Further heating generates signals at m/z 63 (HC≡C-C≡C-CH2 or 

HC≡C-CH-C≡CH), m/z 65 (C5H5), m/z 76 (o-C6H4) and m/z 94 (C6H5OH).  
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Fig. 2. The ALS synchrotron VUV (10.5 eV) PIMS spectra of salicylaldehyde 

diluted (0.1 % or less) in He with continuous flow through a 0.66 mm ID reactor. 

The initial thermal decomposition product at m/z 92 is C5H4=C=O at 1300 K, 

followed by m/z 64 (HC≡C-C≡C-CH3, HC≡CCH2C≡CH, HC≡C-CH=C=CH2) at 

1400 K. Further heating generates products at m/z 65 (C5H5) 76 (o-C6H4), and 94 

(C6H5OH).  
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Fig. 3. The 118.2 nm (10.487 eV) PIMS resulting from heating a mixture of 

roughly 1 Torr m-hydroxybenzaldehyde in 2000 Torr He (0.05%) in a pulsed, 1 

mm ID SiC reactor. The onset of pyrolysis identifies first m/z 94 (C5H5OH), 66 

(C5H6), and m/z 39 (HCCCH2) as the initial thermal decomposition products. No 

signals at m/z 92 (C5H4=C=O) are found.  
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Fig. 4  The resonance-enhanced multiphoton ionization (REMPI) spectrum of 

the cracking products of meta-hydroxybenzaldehyde. The top trace is a 

REMPI scan of the pyrolysis of m-HO-C6H4-CHO at 1400 K. These spectra 

record the presence of the C6H6OH+ ion at m/z 94 resulting from a (1 + 1) 

REMPI process. The laser scanned over the known104-106 phenol resonance, 

Ã 1A” (1B2) ← X̃1A’ (1A1), corresponding to T0(C6H5OH) = 275.1 nm or 36 

348.9 cm-1 (4.507 eV). The IE(C6H5OH) is reported97 to be 8.508 ± 0.001 eV 

so absorption of a 2nd 275 nm photon leads to ionization. The top trace is a 

0.3 to 0.4% m-HO-C6H4-CHO/He mixture heated in the pulsed reactor to 

1400 K. The bottom trace is an authentic sample of phenol and expanded 
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through the micro-tubular reactor at room temperature. The (0,0) transition 

for C6H5OH is observed at 275.1 nm. Figs 1 and 2 show small amounts of 

phenol (m/z 94) at the high temperature pyrolysis of salicylaldehyde. The (1 

+ 1) REMPI (similar to Fig. 3) verify that this m/z 94 feature is C6H5OH. 
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Fig. 5. The thermal decomposition of catechol (m/z 110) diluted in He pulsed into 

a 1 mm ID SiC reactor shows m/z 82 (C5H5OH) and m/z 92 (C5H4=C=O) as the 

initial decomposition products. Further heating generates products at m/z 39 

(HCCCH2), m/z 50 (HC≡C-C≡CH), m/z 52 (HC≡C-CH=CH2), m/z 54 

(CH2=CH-CH=CH2), m/z 63 (HCC-CC-CH2 or HCC-CH-CCH), m/z 64 
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(HC≡C-C≡C-CH3, HC≡C-CH2-C≡C-CH3, or HC≡C-CH=C=CH2), m/z 65 (C5H5), 

and m/z 80 (C5H4=O). 
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Fig. 6. The thermal decomposition of catechol-d4 (m/z 114) diluted in He and 

pulsed into a 1 mm ID SiC reactor. Assignments are m/z 96 (C5D4=C=O), m/z 68 

(DC≡C-C≡CCD3, DC≡C-CD2-C≡CCD or DC≡C-CD=C=CD2), m/z 66 

(DC≡C-C≡CCD2 or DC≡C-CD-C≡CD); m/z 58 is not easily assigned. 
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Fig. 7. The 118.2 nm (10.487 eV) PIMS resulting from heating a mixture of 

approximately 1 Torr resorcinol (an isomer of catechol) in 2000 Torr He (0.05%) 

in a pulsed, 1 mm ID SiC reactor. The onset of pyrolysis of m-HOC6H4OH at 

1400 K identifies only products at m/z 66 (C5H6). No signals at m/z 92 

(C5H4=C=O) are observed. 
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Fig. 8. The pulsed Ar matrix isolation IR spectrum of the thermal decomposition 

products of both salicylaldehyde and catechol show identical peaks in good 

agreement with IR bands arising from C5H4=C=O.  
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Fig. 9. The Ar matrix isolation IR spectrum of the thermal decomposition products 

of both salicylaldehyde and catechol show identical peaks arising from the 

vibrations of methyl diacetylene (HC≡C-C≡CCH3), propargyl radical (HCCCH2), 

fulveneketene (C5H4=C=O), and acetylene (HCCH). The bullet in the right panel 

is a known48 vibration (ν15) of C5H4=O generated from the thermal decomposition 

of catechol. 
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Fig. 10. The Ar matrix isolation IR spectrum of the thermal decomposition 

products of catechol have includes the known48 IR bands (ν3, ν14, ν15, ν21) of 

C5H4=O. The bullet (•) marks ν26(C5H4=C=O). 
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Fig. 11. Heating o-HOC6H4CHO to 1500 K leads to the production of both 

HC≡CH and CH2O. The three Ar matrix IR spectra have a background spectrum 

of salicylaldehyde deposited at 300 K (thin black line). The solid black lines at the 

top are authentic samples of acetylene. An authentic sample of formaldehyde is 

plotted as a solid black line in the bottom IR spectrum. The red traces are the IR 

spectra that result when salicylaldehyde is subjected to pyrolysis at 1500 K. The 

presence of HCCH is identified107 by the presence of the ν3 DDR resonance and 

ν5. Formaldehyde is detected108 by the observation of the intense ν2(CH2=O). 

The PIMS scan in bottom right results from pyrolysis of o-HOC6H4CHO at 1500 K 

with the ALS synchrotron tuned to 11.5 eV. The ionization energies of acetylene 
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and formaldehyde are known to be 11.4 eV and 10.9 eV (see Table 1). Both 

HC≡CH and CH2=O are observed at m/z 26 and m/z 30. 
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Fig. 12. Left panels: The 15.5 eV PIMS spectra of a mixture of salicylaldehyde-d1 

(m/z 123) and salicylaldehyde-d0 (m/z 122) diluted in He and passed through a 

0.66 mm ID SiC are direct evidence of the functional group interaction 

mechanism shown in Scheme 6. Intense signal is observed at m/z 2 and 3 from 
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the elimination of H2 and HD. There appears to be only a minute amount of H-

atoms (m/z 1). The presence of m/z 95 is assigned to phenol-d1 confirmed by 

PIE, and m/z 92 is due to C5H4=C=O. Trace amounts of m/z 94 (C6H5OH) and 

m/z 93 (13C isotope peak of m/z 92) were identified via PIE scans.  
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Fig. S1. The SLS synchrotron VUV (10.0 eV) PIMS spectrum of salicylaldehyde 

diluted (0.1 % or less) in Ar with continuous flow through a 1 mm ID SiC reactor 

shows signals at m/z 120 (assigned as the keto-carbonyl o-O=C6H4=C=O) and 

121 along with m/z 92 (C5H4=C=O) and m/z 64 (HC≡C-C≡C-CH3 or 

HC≡C-CH=C=CH2). Further heating generates signals at m/z 39 (HCCCH2), 63 

(C5H3), 65 (C5H5), 76 (o-C6H4), and 94 (C6H5OH). 
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