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Abstract

Background: Tumor-based classification of human glioma portends patient prognosis, but considerable unexplained survival
variability remains. Host factors (eg, age) also strongly influence survival times, partly reflecting a compromised immune
system. How blood epigenetic measures of immune characteristics and age augment molecular classifications in glioma
survival has not been investigated. We assess the prognostic impact of immune cell fractions and epigenetic age in archived
blood across glioma molecular subtypes for the first time. Methods: We evaluated immune cell fractions and epigenetic age
in archived blood from the University of California San Francisco Adult Glioma Study, which included a training set of 197
patients with IDH-wild type, 1p19q intact, TERT wild type (IDH/1p19q/TERT-WT) glioma, an evaluation set of 350 patients with
other subtypes of glioma, and 454 patients without glioma. Results: IDH/1p19q/TERT-WT patients had lower lymphocyte
fractions (CD4þ T, CD8þ T, natural killer, and B cells) and higher neutrophil fractions than people without glioma. Recursive
partitioning analysis delineated 4 statistically significantly different survival groups for patients with IDH/1p19q/TERT-WT
based on an interaction between chronological age and 2 blood immune factors, CD4þ T cells, and neutrophils. Median
overall survival ranged from 0.76 years (95% confidence interval¼0.55-0.99) for the worst survival group (n¼28) to 9.72 years
(95% confidence interval¼6.18 to not available) for the best (n¼33). The recursive partitioning analysis also statistically
significantly delineated 4 risk groups in patients with other glioma subtypes. Conclusions: The delineation of different
survival groups in the training and evaluation sets based on an interaction between chronological age and blood immune
characteristics suggests that common host immune factors among different glioma types may affect survival. The ability of
DNA methylation-based markers of immune status to capture diverse, clinically relevant information may facilitate noninva-
sive, personalized patient evaluation in the neuro-oncology clinic.

Identification of molecular subtypes of human glioma has helped
refine these cancers’ classification beyond traditional histopatho-
logic and grade criteria (1-3). The current World Health
Organization (WHO) 2016 glioma classification scheme incorpo-
rates tumor grade, isocitrate dehydrogenase (IDH1/2) mutational
status, and 1p/19q co-deletion status (3). Glioblastomas (GBMs), the

most common type of glioma, are either IDH-mutant (9%) and oc-
cur at a median age of 38 years (with a median overall survival [OS]
of 3.6 years) or are IDH-wild type (WT) (91%) and occur at a median
age of 59 years (with a median OS of 1.2 years) (1,4). Non-GBM as-
trocytomas are either IDH-mutant and occur in younger patients
(median age¼ 36 years), with a median OS of 9.3 years, or IDH-WT
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and occur in older patients (median age¼ 52 years), with a median
OS of 1.9 years (1,4). Oligodendrogliomas have a median age of
44 years and a median OS of 17.5 years and are defined by both IDH
mutation and co-deletion of 1 copy of the 1p and 19q chromosomal
arms. Tumor telomerase promoter mutation (TERT) can further de-
fine subtypes (Molecular Subtypes 2015) (2,5). Up to 20% of patients
with IDH-WT glioblastomas and 35% of those with IDH-WT astro-
cytomas lack 1p/19q co-deletion and TERT mutation (MT) (1); they
are known as IDH/1p19q/TERT-WT gliomas, or “triple-negatives.”
We previously showed that patients with IDH/1p19q/TERT-WT as-
trocytoma had statistically significantly longer and more variable
survival than patients with IDH-WT/1p19q-WT/TERT-MT astrocyto-
mas (4). The median OS was 3.3 years (95% confidence interval
[CI]¼ 2.1 to not available [NA]) for patients with triple-negative as-
trocytoma vs 1.7 years (95% CI¼ 1.4 to 2.0) for those with IDH-WT/
1p19q-WT/TERT-MT astrocytoma (4), which nonmolecular charac-
teristics may further elucidate.

After the WHO 2016 classification, the single most important
prognostic factor in adult glioma is age at diagnosis (6). Among
patients with GBM, being older or younger than 50 years of age
distinguishes shorter- and longer-term survival groups (7-11).
Unknown mechanisms contribute to age as a dominant factor
in glioma survival, but likely age-related immune system
changes play a vital role (12). Most immune response compo-
nents are affected during the aging process, which supports the
concept of immunosenescence (13) and its corollary that a per-
son’s immunologic “age” may diverge from their chronological
age (14). Immune aging phenotypes include the diminished pri-
mary immune responses of older individuals and lower rates of
successful vaccination (15) as well as age-related accumulation
of memory effector T cells (16), deficits of naı̈ve T cells (17), and
central changes in bone marrow stem cell populations (18,19)
leading to shifts in the balance of myeloid and lymphoid com-
partments. Thus, survival from glioma may depend on both pa-
tient age and specific immune characteristics. Measures of
immune status that reflect individual immune aging may help
disentangle the contribution of these interacting factors (20,21).

Both immune cell identification and understanding biological
age have been areas of intensive epigenetic research that implicate
the importance of DNA methylation. Immunomethylomics is an ap-
proach to immune cell profiling based on DNA methylation cytome-
try, which returns quantitative immune profile data using DNA
methylation signatures specific for different immune cells (22-24).
DNA-based immune profiling is reproducible; has a standardized
workflow insensitive to batch and operator; and does not require in-
tact cells, obviating the need for time-sensitive blood processing
(which can include subjective gating procedures). Another line of
epigenetic research has focused on DNA methylation-based epige-
netic clocks as indicators of biological age (14). The initial blood-
based models of Hannum (25) and the multitissue algorithm by
Horvath (26) were trained to predict chronological age and, as such,
strongly correlate with chronological age. Subsequently, more clini-
cally relevant biomarkers of aging have been explored by replacing
prediction of chronological age with the prediction of a surrogate
measure of phenotypic age to differentiate morbidity and mortality
risk among same-age individuals (27). One such novel epigenetic
age metric, DNAmPhenoAge, is based on 513 CpG sites and is a sta-
tistically significant predictor of morbidity and mortality; it is also
correlated with immune profiles signaling immunosenescence (27).
Epigenetic age based on blood has not been examined in glioma sur-
vival, although 1 study assessed it in glioma tumor tissue (28).

Here, we integrated cutting-edge bioinformatic techniques
to profile immune phenotype and epigenetic age using genome-
scale DNA methylation measures. Our goal was to assess

whether noninvasive epigenetic measures, such as blood im-
mune profiles and epigenetic age, and interactions of such
measures with clinical variables delineate survival risk groups
among IDH/1p19q/TERT-WT glioma patients and whether such
risk group characterizations could be applied to other glioma
subtypes.

Methods

Patient Samples

The San Francisco Adult Glioma Study (AGS) is a case-control
study that includes 3164 patients newly diagnosed with glioma
between 1991 and 2012 who were residents of the San Francisco
Bay Area or patients of the University of California San
Francisco (UCSF) neuro-oncology clinic and 2140 people without
glioma who were residents of the San Francisco Bay Area or
seen in the UCSF phlebotomy clinic (29). This study was ap-
proved by the institutional review board of the UCSF Human
Research Protection Program in the Office of Ethics and
Compliance under UCSF federal-wide assurance 00000068.
Informed consent was obtained from all study participants.

The study population consisted of 2 independent sets of AGS
patients with glioma (ie, the training and evaluation sets) plus a
group of 454 AGS participants without glioma (Figure 1, A). Among
patients with blood samples and molecular tumor marker data,
methylation arrays were run for 197 patients with IDH/1p19q/
TERT-WT (the training set) and 350 patients with other glioma sub-
types (evaluation set: 41 IDH-MT gliomas [32 astrocytomas and 9
GBMs]; 130 IDH-WT gliomas [78 astrocytomas and 52 GBMs]; 141
patients with IDH-MT/1p19q co-deleted oligodendrogliomas; and
38 participants who could not be categorized according to WHO
2016) (Figure 1, A) (1,30). The 454 participants without glioma were
partially matched to patients with IDH/1p19q/TERT-WT by age, sex,
race, and AGS study phase. Blood samples were collected approxi-
mately 3 months after diagnosis.

DNA Methylation Array

Frozen anticoagulated whole blood was processed for DNA iso-
lation and bisulfite conversion, as previously described (24). The
Illumina 850K EPIC DNA methylation platform (Illumina, Inc,
San Diego, CA) was used except for a subset of the evaluation
set samples on the Illumina 450K array. Preprocessing and qual-
ity control of methylation array data are described in the
Supplementary Methods (available online).

Immunomethylomic Assay

Using the preprocessed and normalized methylation data, we
applied an optimized reference-based cell mixture deconvolu-
tion methodology (31) to the 3 cohorts to estimate the propor-
tions of CD4þ T cells, CD8þ T cells, B cells, natural killer cells,
monocytes, neutrophils, and 3 cell ratios (neutrophil-to-lym-
phocyte ratio [NLR], lymphocyte-to-monocyte ratio [LMR], and
CD4þ T/CD8þ T cells).

Accuracy and reproducibility of cell deconvolution are previ-
ously described (23,24,32). A comparison of cell deconvolution us-
ing the 450K and 850K platforms run on the same 12-evaluation-
set patients indicated close correspondence of cell proportion esti-
mates across the 2 platforms (Supplementary Figure 1, available
online), and comparison of CD4þ T cell estimates by flow
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cytometry vs cell deconvolution in 72 AGS patients illustrates their
similarity (Supplementary Figure 2, available online).

DNAmAge, DNAmPhenoAge, and HannumAge
Estimation

DNA methylation-based epigenetic clocks can be indicators of
biological age (14). The 3 clocks evaluated were the initial blood-
based models of Hannum (25) (HannumAge), a multitissue algo-
rithm to predict chronological age (26) (DNAmAge), and a subse-
quent algorithm (27) to predict a surrogate measure of
phenotypic age to differentiate morbidity and mortality risk
among same-age individuals (DNAmPhenoAge).

Statistical Analysis

OS was defined as the time from the date of diagnosis until
the date of death (ie, event) or date of last follow-up (ie, cen-
sored). Cox proportional hazards models were used to evalu-
ate associations of overall patient survival with baseline
clinical variables, immune profiles, and WHO 2016 glioma
classification (Table 1). Because of violations of the linearity
and proportional hazards assumptions and our primary goal
to examine interactions, we assessed combinations of clinical
and epigenetic markers via partDSA (33,34), a recursive parti-
tioning algorithm that accommodates censored data (see the
Supplementary Methods, available online, for details). We
built models of increasing complexity in the training set: first,

Figure 1. Adult Glioma Study (AGS) glioma cases and participants without glioma. A) Data flow diagram for the AGS participants, with World Health Organization

(WHO) 2016 glioma classification and molecular subtypes 20152, for IDH/1p19q/TERT-wild type (WT) gliomas (training set) vs other glioma groups (evaluation set). B)

Survival curves for the AGS glioma cases by WHO 2016 glioma classification and molecular subtypes 20152 classification. Astro¼astrocytoma; GBM¼glioblastoma;

Oligo¼oligodendroglioma.
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Table 1. Demographic and clinical characteristics of patients in the adult glioma study: training set of 197 IDH/1p/19q/TERT wild type patients,
evaluation set of 350 patients with another glioma, and 454 participants without glioma

Variable

Training Evaluation set Control

Training vs con-
trols, P value

Training vs eval-
uation, P value

Evaluation vs
controls, P value

IDH/1p19q/TERT
WT patients

(n¼ 197)

Patients with an-
other glioma

(n¼ 350)

participants
without glioma

(n¼ 454)

Clinical variables
Chronological age,
median (IQR), y

52.0 (41-64) 48.0 (40-56) 52.0 (41-63) .91a .002a <.001a

Days between diagnosis and
blood draw, median (IQR)

103 (72-161) 104.5 (33-182) — — .63a
—

Sex, No. (%) .20b .71b .27b

Female 79 (40.1) 146 (41.7) 207 (45.6)
Male 118 (59.9) 204 (58.3) 247 (54.4)

Smoking status, No. (%) <.001b .19b .001b

Missing 0 2 1
Current 26 (13.2) 35 (10.1) 61 (13.5)
Ever/past 84 (42.6) 126 (36.2) 164 (36.2)
Never 87 (44.2) 187 (53.7) 228 (50.3)

Alcohol drinking status, No. (%) <.001b .003b <.001b

Missing 0 2 1
Current 116 (58.9) 169 (48.6) 226 (49.9)
Ever/past 65 (33.0) 152 (43.7) 160 (35.4)
Never 16 (8.1) 27 (7.8) 67 (14.8)

BMI, median (IQR), kg/m2 25.7 (23.3-29.1) 26.1 (23.2-29.5) 25.8 (23.3-29.8) .16a .41a .44a

Race, No. (%) .06b .02b <.001a

Asian 18 (9.1) 20 (5.7) 32 (7.0)
Black 7 (3.6) 1 (0.3) 50 (11.0)
Native American 1 (0.5) 1 (0.3) 2 (0.4)
Other 9 (4.6) 11 (3.1) 17 (3.7)
Pacific Islander 0 (0.0) 1 (0.3) 1 (0.2)
White 162 (82.2) 316 (90.3) 352 (77.5)

Vital status, No. (%) — <.001b
—

Alive 28 (14.2) 145 (41.4) —

Dead 169 (85.8) 205 (58.6) —

Follow-up, median (95% CI), y 15 (12.9 to 19.0) 12.3 (10.6 to 13.7) —

WHO 2016 Glioma Classification,
No. (%)

— <.001b
—

Missing 0 38 —

IDH-WT glioblastoma 146 (74.1) 52 (16.7) —

IDH-WT astrocytoma 51 (25.9) 78 (25.0) —

IDH mutant glioblastoma 0 (0.0) 9 (2.9) —

IDH mutant astrocytoma 0 (0.0) 32 (10.3) —

IDH mutant/1p19q co-deleted
oligodendroglioma

0 (0.0) 141 (45.2) —

Glioma diagnosis grade, No. (%) — <.001b

Missing 0 1 —

Grade 2 18 (9.1) 163 (46.7) —

Grade 3 33 (16.8) 120 (34.4) —

Grade 4 146 (74.1) 66 (18.9) —

Molecular subtype (based on
IDH, 1p19q, and TERT)c*, No. (%)

— <.001b
—

Missing 0 (0.0) 63 (18.0) —

IDH only 0 (0.0) 39 (11.1) —

TERT only 0 (0.0) 108 (30.9) —

Triple negative 197 (100.0) 0 (0.0) —

Triple positive 0 (0.0) 140 (40.0) —

Surgery, No. (%) — .48b
—

Biopsy only 26 (13.2) 39 (11.1) —

Surgery 171 (86.8) 311 (88.9) —

Chemotherapy, No. (%) — .001b
—

Missing 0 3 —

No 41 (20.8) 117 (33.7) —

Yes 156 (79.2) 230 (66.3) —

(continued)
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Clinical Variables Only; then, Clinical and Immune Profiles; fi-
nally, Clinical, Immune Profiles, and Epigenetic Ages.
Subsequently, the risk groups’ generalizability was assessed
by the evaluation set—see the Supplementary Methods (avail-
able online) for details. For training and evaluation sets,

within- and between-group summary measures were based
on the restricted mean survival time (RMST), which does not
require the proportional hazards assumption (35). Two-sided
tests of statistical significance were used, and P< .05 was se-
lected as the cutoff for statistical significance. All analyses

Table 1. (continued)

Variable

Training Evaluation set Control

Training vs con-
trols, P value

Training vs eval-
uation, P value

Evaluation vs
controls, P value

IDH/1p19q/TERT
WT patients

(n¼ 197)

Patients with an-
other glioma

(n¼ 350)

participants
without glioma

(n¼ 454)

Radiation, No. (%) — <.001b
—

No 15 (7.6) 141 (40.3) —

Yes 182 (92.4) 209 (59.7) —

Treatment, No. (%) — <.001b
—

Missing 0 3 —

Both chemotherapy and
radiation

152 (77.2) 160 (46.1) —

Chemotherapy only 4 (2.0) 70 (20.2) —

Radiation only 30 (15.2) 47 (13.5) —

Neither 11 (5.6) 70 (20.2) —

Taking dexamethasone at blood
draw, No. (%)

<001b <.001b <.001b

Missing 1 6 6
No 97 (49.5) 229 (66.6) 447 (99.8)
Yes 99 (50.5) 115 (33.4) 1 (0.2)

Epigenetic age variable
DNAmAge, median (IQR), y 57.4 (47.0-66.0) 54.8 (46.6-63.0) 56.7 (44.9-66.4) .51a .17a .46a

DNAmPhenoAge, median
(IQR), y

48.7 (36.9-58.1) 42.9 (34.0-51.8) 43.3 (31.5-54.9) <.001a <.001a .55a

HannumAge, median (IQR), y 45.8 (35.9-53.7) 45.0 (35.5-53.2) 42.9 (32.9-52.7) .04a .44a .10a

DNAmPhenoAge acceleration
with IPs, median (IQR), y

�0.3 (-3.1-3.7) �0.9 (�3.5 to 3.1) �0.0 (�3.6 to 3.7) .37a .08a .32a

DNAmPhenoAge acceleration
without IPs, median (IQR), y

2.6 (�1.8 to 6.5) 0.8 (�3.0 to 5.1) �2.0 (�6.4 to 2.4) <.001a .003a <.001a

HannumAge acceleration with
IPs, median (IQR), y

�1.0 (�4.2 to 1.3) 0.3 (�2.4 to 3.2) 0.1 (�2.6 to 2.5) .003a <.001a .09a

HannumAge acceleration
without IPs, median (IQR), y

0.4 (�2.4 to 2.5) 1.5 (�1.8 to 5.9) �2.1 (�4.8 to 0.4) <.001a <.001a <.001a

DNAmAge acceleration with
IPs, median (IQR), y

�1.1 (�3.7 to 1.9) 1.0 (�2.4 to 4.1) �0.6 (�3.7 to 2.8) .89a .002a <.001a

DNAmAge acceleration with-
out IPs, median (IQR), y

�0.8 (�3.5 to 1.9) 1.3 (�1.8 to 4.8) �1.4 (�4.2 to 2.2) .15a <.001a <.001a

IP variable
B cell, median (IQR) 2.1 (1.3-3.4) 3.3 (2.0-4.9) 5.3 (4.0-7.0) <.001a <.001a <.001a

Monocyte, median (IQR) 7.5 (6.0-9.5) 7.7 (5.9-10.0) 7.4 (6.0-9.4) .28a .74a .07a

Neutrophils, median (IQR) 70.4 (61.7-80.5) 64.5 (55.4-71.9) 57.9 (51.0-65.5) <.001a <.001a <.001a

NK, median (IQR) 2.9 (1.9-4.5) 3.3 (1.9-5.1) 4.7 (3.4-6.2) <.001a .37a <.001a

CD4-positive T, median (IQR) 8.9 (5.2-14.2) 12.5 (8.2-17.8) 15.7 (11.8-19.7) <.001a <.001a <.001a

CD8-positive T, median (IQR) 6.3 (3.4-9.6) 7.3 (4.4-11.4) 8.9 (6.1-12.6) <.001a .002a <.001a

CD4-positive T/CD8-positive T,
median (IQR)

1.5 (0.9-2.6) 1.6 (1.1-2.4) 1.7 (1.2-2.6) .16a .08a .19a

LMR, median (IQR) 2.8 (1.9-4.2) 3.8 (2.3-5.3) 4.8 (3.8-6.4) <.001a <.001a <.001a

NLR, median (IQR) 3.2 (2.0-5.9) 2.3 (1.4-3.7) 1.6 (1.2-2.2) <.001a .002a <.001a

Total lymphocytes, median
(IQR)

21.3 (13.8-30.6) 28.3 (19.7-37.8) 37.1 (29.4-43.9) <.001a <.001a <.001a

aLinear model ANOVA. All tests were 2-sided. ANOVA¼analysis of variance; BMI¼body mass index; CI¼ confidence interval; IP¼ immune profile; IQR¼ interquartile

range; LMR¼ lymphocyte-to-monocyte ratio; NK¼natural killer; NLR¼neutrophil-to-lymphocyte ratio; WHO¼World Health Organization; WT¼wild type.
bPearson v2 test. All tests were 2-sided.
cPatients were categorized into 5 glioma groups based on 3 tumor molecular markers: IDH, 1p19q, and TERT. Details of how these were categorized can be found in

Eckel-Passow et al. (2).
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were performed in R, version 4.0.2 (R Foundation for Statistical
Computing, Vienna, Austria) (36).

Results

Clinical and Demographic Characteristics of Patients
With Glioma and Controls

Figure 1 shows the 3 sets of participants and molecular classifi-
cations for patients with glioma. Clinical and demographic
characteristics are in Table 1. Because of frequency matching
for choosing participants without glioma, age, race, and sex
were similar to those of IDH/1p19q/TERT-WT glioma patients.
Fewer participants without glioma than IDH/1p19q/TERT-WT
glioma patients consumed alcohol, smoked, or took dexametha-
sone at blood draw. Evaluation set patients were younger, less
likely to consume alcohol at blood draw, predominantly White,
less likely to receive chemotherapy or radiation, and less likely
to be on dexamethasone than the training set patients.
Compared with the participants without glioma, the other
patients with glioma were younger, less likely to be current
smokers, more likely to have consumed alcohol, and more likely
to be White.

Blood Immune Profiles Alterations in IDH/1p19q/TERT-
WT Patients

The IDH/1p19q/TERT-WT patients had increased fractions of
neutrophils and lower proportions of B cells, CD4þ T, CD8þ T,
natural killer cells, and total lymphocytes compared with par-
ticipants without glioma (all P< .001; Figure 2 and Table 1). The
NLR was higher among IDH/1p19q/TERT-WT patients compared
with participants without glioma (median [interquartile range
(IQR)]¼ 3.2 [2.0-5.9] vs 1.6 [1.2-2.2], P< .001), while LMR was
lower (median [IQR]¼ 2.8 [1.9-4.2] vs 4.8 [3.8-6.4], P< .001), and
the CD4þ T–to–CD8þ T cell ratio was not statistically signifi-
cantly different (median [IQR]¼ 1.5 [0.9-2.6] vs 1.7 [1.2-2.6],
P¼ .16).

There were consistent differences in leukocyte proportions
for grade 4 vs grade 2 to 3 IDH/1p19q/TERT-WT tumors
(Supplementary Table 1, available online). Further stratification
of the 196 IDH/1p19q/TERT-WT patients with dexamethasone
status known at blood draw revealed a greater neutrophil pro-
portion; higher NLR; and lower CD4þ T, CD8þ T, natural killer–
cell, and B-cell proportions among dexamethasone-exposed vs
nonexposed patients (Supplementary Table 2, available online).
Similar relationships were seen in the other patients with gli-
oma (Supplementary Tables 3 and 4, available online).

The IDH/1p19q/TERT-WT patients also had an increased frac-
tion of neutrophils and higher NLR than the other patients with
glioma and decreased B cells, CD4þ T cells, CD8þ T cells, total
lymphocytes, and LMR (Table 1). The distributions of immune
profiles were statistically different between the other patients
with glioma and the participants without glioma, except for
monocytes (Table 1).

Correlations Between Epigenetic Age and Immune
Profiles in IDH/1p19q/TERT-WT Patients and
Participants Without Glioma

Among the 3 DNA methylation age estimates, DNAmPhenoAge
and HannumAge were higher in patients with IDH/1p19q/TERT-

WT than in participants without glioma (Table 1). The
DNAmPhenoAge and HannumAge age acceleration were also
increased. Once adjusted for leukocyte cell type composition,
only HannumAge age acceleration remained statistically signifi-
cant (median [IQR]¼ –1.0 [–4.2 to 1.3] vs 0.1 [–2.6 to 2.5], P¼ .003).
Both in IDH/1p19q/TERT-WT patients and in participants with-
out glioma, chronological age was modestly negatively corre-
lated with lymphocyte subsets and positively associated with
neutrophils (Supplementary Figure 3, available online). Stronger
associations were observed for the HannumAge and
DNAmPhenoAge measures.

Survival in IDH/1p19q/TERT-WT Patients and Variations
in Blood Immune Profiles

The median OS for the 197 IDH/1p19q/TERT-WT patients was
1.5 years (95% CI¼ 1.4 to 1.8) (Figure 1, B and Supplementary
Table 5, available online). Split by the WHO 2016 classification,
the IDH-wildtype GBMs had a median OS of 1.3 years (95%
CI¼ 1.2 to 1.52), and the IDH-WT astrocytomas had 3.3 years
(95% CI¼ 1.97 to NA). Univariate survival models are in Figure 3,
A and Supplementary Table 6 (available online).

Clinical Variables Only. Interactions were explored by construct-
ing survival recursive partitioning analyses (RPAs), including
univariately statistically significant clinical variables (Figure 3,
B). Important interactions among age, dexamethasone use, and
body mass index (BMI) were elucidated and separated the
patients into 4 mutually exclusive risk groups (Supplementary
Figure 4, A, available online). The patients with the best survival
were younger, not taking dexamethasone, and had a lower BMI
(group 1, gold: n¼ 34, median OS¼ 9.19 years [95% CI¼ 6.18 to
NA]). The second-best survival risk group included the younger
patients not taking dexamethasone but with higher BMI (group
2, tan: n¼ 26, median OS¼ 3.33 years [95% CI¼ 1.74 to NA]). The
second-worst survival group included 2 subgroups: younger
patients taking dexamethasone and older patients with a low
BMI (group 3, gray: n¼ 89, median OS¼ 1.47 years [95% CI¼ 1.31
to 1.69]). The patients who had the worst survival were older,
with a higher BMI (group 4, blue: n¼ 47, median OS¼ 0.78 years
[95% CI¼ 0.67 to 0.99]). RMST estimates for the group assign-
ment are given in Table 2 (Model A: Clinical Variables).

Clinical Variables and Immune Profiles. We then added immune
profile variables to the clinical variables (Figure 3, B).
Interactions among age, CD4þ T cell, and neutrophil proportions
separated the patients into 4 mutually exclusive survival groups
(Figure 4, A). The patients with the best survival were younger,
with a high CD4þ T-cell proportion (group 1, gold: n¼ 33; median
OS¼ 9.72 years [95% CI¼ 6.18 to NA]). The second-best survival
risk group included young patients with a low CD4þ T-cell pro-
portion (group 2, tan: n¼ 93; median OS¼ 1.75 years [95%
CI¼ 1.50 to 2.06]). The second-worst survival was experienced
by those who were older and had a low neutrophil proportion
(group 3, gray: n¼ 43, median OS¼ 1.27 years [95% CI¼ 0.83 to
1.64]). The patients who had the worst survival included those
who were older and had high neutrophil proportions (group 4,
blue: n¼ 28, median OS¼ 0.76 years [95% CI¼ 0.55 to 0.99]).
Kaplan-Meier survival curves show the discrimination of sur-
vival groups (Figure 4, B). IDH-WT GBM comprises 96.4% of
group 4, 81.4% of group 3, 74.2% of group 2, and 45.5% of group 1
(Figure 4, A; Supplementary Table 7, available online). Kaplan-
Meier curves are in Figure 4, B, and RMST estimates are in
Table 2 (Model B: Clinical þ Immune Profiles). Blood draw
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treatment time points were included in the survival RPA, but
this variable did not statistically significantly affect the survival
results (Supplementary Table 8, available online).

Clinical Variables, Immune Profiles, and Epigenetic Ages. Next, we
included HannumAge and DNAmPhenoAge and the clinical and
immune profile data (Figure 3, B). Important interactions
among HannumAge, CD4þ T cells, and neutrophil proportions
were identified (Supplementary Figure 5, A, available online).
Patients fell into 1 of 4 risk groups. The patients with the best
survival had a younger HannumAge and a high CD4þ T-cell pro-
portion (group 1, gold: n¼ 31, median OS¼ 14.0 years [95%
CI¼ 8.33 to NA]). The second-best survival risk group included
younger HannumAge, with a low CD4þ T-cell proportion (group
2, tan: n¼ 77, median OS¼ 1.97 years [95% CI¼ 1.54 to 2.91]). The
second-worst survival was experienced by those who were
older by HannumAge and had a lower neutrophil proportion
(group 3, gray: n¼ 52, median OS¼ 1.27 years [95% CI¼ 0.89 to
1.69]). The older patients by HannumAge who had a higher neu-
trophil proportion had the worst survival (group 4, blue: n¼ 37,
median OS¼ 0.79 years [95% CI¼ 0.63 to 0.99]). Kaplan-Meier
curves are shown in Supplementary Figure 5, B (available on-
line), and RMST estimates are in Table 2 (Model C: Clinical þ
Immune Profiles þ HannumAge). An interaction between
DNAmPhenoAge and years of education was identified
(Supplementary Figure 6, A, available online). Kaplan-Meier
curves are shown in Supplementary Figure 6, B (available on-
line) and RMST estimates are in Table 2 (Model C: Clinical þ
Immune Profiles þ DNAmPhenoAge).

Survival Among Other Patients With Glioma. The 350 other
patients with glioma had a median OS of 7.5 years (95% CI¼ 6.1
to 10.6). Survival by WHO 2016 and Molecular Subtype 2015
guidelines are shown in Figure 1, B and Supplementary Table 5
(available online). We assessed whether the same variables and
cut points built by the 4 RPA models also distinguished survival
among the other glioma cases. Only the RPA from the Clinical
Variable and Immune Profiles (Figure 4, C and D) distinguished
4 survival groups based on the same cut points generated by the
training set, whereas in the other 3, 2 of the 4 groups collapsed
(Supplementary Figures 4, C; 5, C; and 6, C, available online;
Table 2). The Kaplan-Meier curves in Figure 4, D, estimate the
median OS for group 4 as 0.7 years (95% CI¼ 0.4 to 1.4), for group
3 as 2.5 years (95% CI¼ 1.6 to 5.7), for group 2 as 8.2 years (95%
CI¼ 6.2 to NA), and for group 1 as 13.6 years (95% CI¼ 10.6 to
18.2). The RMST estimates are in Table 2. Oligodendrogliomas
comprise 0% of group 4, 30.8% of group 3, 35.9% of group 2, and
56.1% of group 1 (Figure 4, C; Supplementary Table 9, available
online). Groups by Molecular Subtype 2015 are in Supplementary
Figure 7 and Supplementary Table 9 (available online).

Discussion

In this study, we explored the utility of blood DNA methylation-
based measures of age and immune cells to create prognostic
patient subgroups that may augment traditional WHO classifi-
cation. Consistent with past studies in the IDH-WT gliomas, age
at diagnosis (chronological or epigenetic) figured prominently in

Figure 2. Comparisons of immune cell fractions in blood from the training set of 197 IDH/1p19q/TERT-wild type (WT) patients, evaluation set of 350 other glioma groups,

and 454 participants without glioma.

aIndicates a statistically significant difference in the specified immune cell fractions via analysis of variance.
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survival models (11). Although strongly correlated with chrono-
logical age, epigenetic-based age algorithms are designed to
represent multisystem proxies of physiologic dysregulation.
Such markers could convey patient-specific information about
disease outcomes, but these epigenetic age measures were not
consistently informative for glioma survival because neither the
HannumAge nor the DNAmPhenoAge RPAs generalized to the
other glioma patients. Nonetheless, in these models, immune
cell proportions were associated with survival. Given the corre-
lation between immune cell proportions and epigenetic age,
epigenetic age appears to be a proxy of immune status, the lat-
ter being better captured by the immune cell proportions
themselves.

Specifically, we showed that proportions of CD4 T cells and
neutrophils and patient chronological age divided both sets of
patients into 4 groups with statistically significantly different
survival experiences. In both the training and evaluation sets,
younger patients (aged �58 years) with higher CD4þ T-cell pro-
portions and older patients (aged >58 years) with lower neutro-
phil proportions both had better survival. The reciprocal

increase in myeloid cells and decreased lymphocytes associated
with worse survival are a recurring theme in many cancers (37).

Although the same factors distinguished survival in the 2 in-
dependent sets of patients, the groups’ median survival times
were different, reflecting the different underlying survival of
participants according to glioma subtype. Interestingly, because
of the inclusion of subgroups with better survival, there were
somewhat greater differences in the survival times of the
patients in the evaluation set than in the training set. Notably,
among the IDH/1p19q/TERT-WT patients, although a large ma-
jority of the older patients with high neutrophils (ie, the
highest-risk group), were IDH-WT GBM, as expected; almost half
of the lowest risk group (ie, the younger patients with high
CD4þ T cells) were also IDH-WT GBM. Similarly, in the other
patients with glioma, although just over half of the lowest-risk
group had oligodendrogliomas, one-third of the third-highest
risk group (ie, the older patients with lower neutrophil propor-
tion) also had oligodendrogliomas. Finally, patients whose
tumors could not be assigned to a WHO subtype still were dis-
tributed across each of the 4 risk groups. Therefore, an

Figure 3. Forest plot of hazard ratios for univariate survival models and recursive partitioning analysis (RPA) model inclusion. A) The hazard ratios (squares) and 95%

confidence intervals (error bars) for the training set of 197 IDH/1p19q/TERT-wild type (WT) gliomas in light blue and the 350 other glioma groups in dark blue. For the

IDH/1p19q/TERT-WT gliomas, violations of the proportional hazards assumption occurred in the univariate models for chronological age, monocytes, DNAmAge,

DNAmPhenoAge, and HannumAge. For the other gliomas, violations of the proportional hazards assumption occurred in the univariate models for chronological age,

World Health Organization (WHO) grouping, diagnosis grade, taking dexamethasone, monocytes, neutrophils, natural killer cells, CD4-positive T cells, CD8-positive T

cells, DNAmAge, DNAmPhenoAge, and HannumAge. B) Variable groupings depict which variables are included in each of the 3 RPA models: clinical variables only; clin-

ical variables þ immune profiles (IPs); clinical variables, IPs, and epigenetic ages. Astro¼astrocytoma; GBM¼glioblastoma; Oligo¼oligodendroglioma.
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interaction between chronological age and immune cell compo-
sition may fine-tune the current prognostic molecular classifi-
cation systems and, if validated in other studies, may be critical
when molecular data are insufficient for classification.

One of this study’s limitations was that blood samples were
obtained after diagnostic surgery (on average within 3 months
of diagnosis), not at uniform times relative to other treatments.
Blood draw timing did not affect our analyses’ outcome
(Supplementary Table 8, available online). Other limitations are
that the 6 immune factors are cell proportions rather than abso-
lute cell counts and do not capture additional subtypes. Finally,
we had incomplete data on some tumor markers, such as EGFR,
TP53, CDKN2A/B, and MGMT, but our evaluation set of patients
with glioma represented the various WHO 2016 glioma subtypes
not represented in the training set. We also acknowledge that
some of the variability in the survival data could have been the
result of potential diagnostic misclassification despite the use
of several relevant tumor markers. For example, studies have
shown that classification by tumor methylation arrays can
change diagnoses in up to 12% of patients with glioma and is
becoming a more standard diagnostic approach where available

(38). It will be many years, however, until cohorts of patients
with glioma diagnosed using today’s methylation arrays or
other, new diagnostic paradigms have sufficient events for rig-
orous outcomes studies. Thus, the use of the available markers
on this historic, well-characterized cohort is of value now and
in future glioma research.

Abnormalities in peripheral blood immune profiles have
long been observed in patients with glioma (39-42) and associ-
ated with glioma outcomes (30,43). The current studies illus-
trate how peripheral blood is a rich source of immune
biomarker information, reflecting the dynamic interactions of
tumor and host and the beneficial or deleterious effects of ther-
apeutic interventions (44,45). The critical impact of the systemic
immune compartment on antitumor immunity has been
highlighted in recent studies of checkpoint inhibition therapy in
animal models (46) and humans (47-49). These observations’
potential relevance for patients with GBM was illustrated in a
recent neoadjuvant programmed death-ligand 1 blockade trial
that found response rates linked with pretherapy (baseline)
blood immune profiles (50). DNA methylation has significant
potential to contribute to these efforts and provide noninvasive

Table 2 Recursive partitioning analysis models: training set of 197 IDH/1p19q/TERT wild type patients and evaluation set of 350 patients with
another glioma from the adult glioma study

Model description Groupa

Training set (n¼ 197) Evaluation set (n¼ 350)

RMST (95% CI) P valueb RMST (95% CI) P valueb

Model A: clinical variablesc Clinical-only tree
Best survival (group 1, gold) 9.14 (7.17 to 11.12) .12 10.36 (9.12 to 11.61) .68
Second-best survival (group 2, tan) 6.66 (4.26 to 9.07) (Referent) 10.01 (8.89 to 11.13) (Referent)
Second-worst survival (group 3, gray) 2.86 (2.08 to 3.65) .003 6.82 (5.70 to 7.94) <.001
Worst survival (group 4, blue) 1.40 (0.76 to 2.05) <.001 3.91 (2.51 to 5.30) <.001

Model B: clinical þ IPsd Clinical þ IPs tree
Best survival (group 1, gold) 9.33 (7.32 to 11.34) <.001 10.09 (9.08 to 11.11) .03
Second-best survival (group 2, tan) 4.07 (3.08 to 5.07) (Referent) 8.50 (7.53 to 9.48) (Referent)
Second-worst survival (group 3, gray) 2.07 (1.16 to 2.98) .004 5.18 (3.68 to 6.68) <.001
Worst survival (group 4, blue) 1.15 (0.36 to 1.95) <.001 0.83 (0.54 to 1.12) <.001

Model C: clinical þ IPs þ
HannumAgee

Clinical þ IPs þ HannumAge tree

Best survival (group 1, gold) 9.74 (7.68 to 11.80) <.001 10.18 (9.10 to 11.27) .90
Second-best survival (group 2, tan) 4.69 (3.54 to 5.85) (Referent) 10.08 (8.87 to 11.30) (Referent)
Second-worst survival (group 3, gray) 1.98 (1.22 to 2.73) <.001 6.44 (5.32 to 7.56) <.001
Worst survival (group 4, blue) 1.13 (0.52 to 1.73) <.001 2.66 (1.63 to 3.69) <.001

Model D: clinical þ IPs þ
DNAmPhenoAgef

Clinical þ IPs þ DNAmPhenoAge tree

Best survival (group 1, gold) 8.07 (6.50 to 9.64) <.001 10.65 (9.73 to 11.58) <.001
Second-best survival (group 2, tan) 3.58 (2.54 to 4.63) (Referent) 6.72 (5.66 to 7.78) (Referent)
Second-worst survival (group 3, gray) 1.64 (0.96 to 2.33) .003 6.98 (5.50 to 8.46) .78
Worst survival (group 4, blue) 1.29 (0.30 to 2.28) .002 2.80 (0.99 to 4.61) .002

aModel A: Group 1 (gold) were �58 years of age, were not taking dexamethasone at the time of blood draw, and had a BMI �26 kg/m2. Group 2 (tan) were �58 years of

age, were not taking dexamethasone at the time of blood draw, and had a BMI >26 kg/m2. Group 3 (gray) were either >58 years of age and had a BMI �24 kg/m2 or were

�58 years of age and took dexamethasone at the time of blood draw. Group 4 (blue) were >58 years of age and had a BMI >24 kg/m2. Model B: Group 1 (gold) were

�58 years of age and had a CD4-positive T-cell count >14. Group 2 (tan) were �58 years of age and had CD4-positive T-cell count �14. Group 3 (gray) were >58 years of

age and had a neutrophil count �77. Group 4 (blue) were >58 years of age and had a neutrophil count >77. Model C: Group 1 (gold) consisted of the 31 patients who

were �47 years of age by HannumAge and had CD4-positive T-cell count >14. Group 2 (tan) were �47 years of age by HannumAge and had CD4-positive T-cell count

�14. Group 3 (gray) were >47 years of age by HannumAge and had a neutrophil count �74. Group 4 (blue) were >47 years of age by HannumAge and had a neutrophil

count >74. Model D: Group 1 (gold) were �39.5 years of age by DNAmPhenoAge. Group 2 (tan) were between 39.5 and 63.2 years of age by DNAmPhenoAge and had

>15 years of education. Group 3 (gray) were between 39.5 and 63.2 years of age by DNAmPhenoAge and had �15 years of education. Group 4 (blue) were >63.2 years of

age by DNAmPhenoAge. BMI¼body mass index; CI¼ confidence interval; IP¼ immune profile; RMST¼ restricted mean survival time; RPA¼ recursive partitioning

analysis.
bTwo-sided P values were calculated using the Wald test.
cRMST for RPA in Supplementary Figure 4, A (available online).
dRMST for RPA in Figure 4, A.
eRMST for RPA in Supplementary Figure 5, A (available online).
fRMST for RPA in Supplementary Figure 6, A (available online).
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Figure 4. Clinical 1 immune profiles (IPs) recursive partitioning analysis (RPA), and Kaplan-Meier curves in the training and evaluation sets. A) For the clinical þ IPs

RPA in the training set of 197 IDH/1p19q/TERT-wild type (WT) patients, chronological age was the RPA’s primary node, with neutrophil counts and CD4 T-cell counts as

secondary nodes. Patients fell into 1 of 4 risk groups: Group 1 (gold) consisted of the 33 patients who were �58 years of age and had CD4 T-cell counts >14, with a me-

dian overall survival (OS) of 9.73 years (95% confidence interval [CI]¼6.18 to NA). Group 2 (tan) consisted of the 93 patients who were �58 years of age and had CD4-pos-

itive T-cell counts �14, with a median OS of 1.75 years (95% CI¼1.50 to 2.06). Group 3 (gray) consisted of the 43 patients who were >58 years of age and had a neutrophil

count �77, with a median OS of 1.27 years (95% CI¼0.83 to 1.64). Group 4 (blue) consisted of the 28 patients >58 years of age with a neutrophil count >77 and a median

OS of 0.76 years (95% CI¼0.55 to 0.99). World Health Organization (WHO) 2016 glioma classifications for 4 groups are shown in pie charts. B) Kaplan-Meier curves are

shown for the training set based on the clinical þ IPs RPA. Kaplan-Meier curves and risk table in the training set of 197 IDH/1p19q/TERT-WT patients for risk groups 1-4

are defined in Figure 4, A. C) The evaluation set of 350 patients with another glioma for risk groups 1-4 are defined by the training set RPA in Figure 4, A. Evaluation set

patients fell into 1 of 4 risk groups defined by the training set. Group 1 (gold) consisted of the 123 patients who were �58 years of age and had CD4 T-cell count >14,

with a median OS of 13.58 years (95% CI¼ 10.57 to 18.18). Group 2 (tan) consisted of the 156 patients who were �58 years of age and had a CD4 T-cell count �14, with a

median OS of 8.26 years (95% CI¼6.21 to NA). Group 3 (gray) consisted of the 52 patients who were >58 years of age and had a neutrophil count �77, with a median OS

of 2.496 years (95% CI¼1.58 to 5.72). Group 4 (blue) consisted of the 19 patients >58 years of age, with a neutrophil count >77 and a median OS of 0.70 years (95%

CI¼0.36 to 1.44). WHO 2016 glioma classifications for the 4 groups are shown in pie charts. D) Kaplan-Meier curves are shown for the evaluation set based on the train-

ing set clinical þ IPs RPA. Kaplan-Meier curves and risk table in the evaluation set of 350 patients with another glioma for risk groups 1-4 are defined by the training set

in Figure 4, A. Astro¼astrocytoma; GBM¼glioblastoma; Oligo¼oligodendroglioma.
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blood-based immune markers as an additional tool for glioma
survival risk prediction.
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