
UCLA
UCLA Electronic Theses and Dissertations

Title
Optimization Studies of Liquid Metal Systems for a Fusion Power Reactor

Permalink
https://escholarship.org/uc/item/52v7r0wq

Author
Jiang, Yuchen

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52v7r0wq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Optimization Studies of Liquid Metal Systems for a Fusion Power Reactor

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Yuchen Jiang

2023



© Copyright by

Yuchen Jiang

2023



ABSTRACT OF THE DISSERTATION

Optimization Studies of Liquid Metal Systems for a Fusion Power Reactor

by

Yuchen Jiang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Jeffrey D. Eldredge, Chair

In liquid metal (LM) blankets of a fusion power reactor, the fluid flow is under the influence

of strong electromagnetic forces resulting from applied plasma-confining magnetic field. The

two major concerns of the blanket design are: (1) the compatibility issues between structural

materials and high-temperature flowing LM and, (2) high 3D Magnetohydrodynamic (MHD)

pressure drop that arises from the interaction between the magnetic field and induced electric

currents. To help address these issues, three topics are investigated numerically using the

COMSOL Multiphysics software.

The first topic is a characterization of a LM (PbLi) flow in the thermal convection loop

(TCL), which is used in the experimental corrosion studies. Two modeling tools, a thermohy-

draulics code and a computational model in COMSOL Multiphysics, have been developed,

tested and then applied to the analysis of fluid flow and heat transfer in a TCL. Such a

device has recently been used to experimentally evaluate corrosion compatibility of APMT

(Fe–21Cr–5Al–3Mo) steel with high-temperature molten eutectic lead-lithium (PbLi) alloy

at Oak Ridge National Lab, TN, USA. The 1D thermohydraulics code allows for rapid cal-

culations of the loop parameters as a function of the applied heat flux. The supplemental
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COMSOL finite-element computations provide detailed 3D velocity and temperature field

data but are much more time consuming. Both modelling tools demonstrate an excellent

agreement in the computed circulation velocity as well as maximum and minimum temper-

atures. The performed TCL analysis focuses on flow development in the “hot” and “cold”

legs, formation of Dean vortices in corner regions, blocking effect of the immersed samples,

and radiative and convective cooling effects under the experiment-relevant conditions for

Prandtl number Pr = 0.015, Grashof numbers Gr ∼ 107, and Reynolds numbers Re ∼ 104.

The second topic is the optimization studies of the inlet manifold design with gradual

expansion. MHD flows in a manifold of a liquid metal blanket can significantly contribute

to the blanket pressure drop, which is a feasibility issue for almost all liquid metal blanket

concepts. In this topic, optimization studies for a prototypic inlet manifold that feature flow

expansion are performed for three expansion angles θ, 45◦, 60◦ and 75◦, expansion ratio of

4, and a wide range of Hartmann (Ha) and Reynolds (Re) numbers: 1000 < Ha < 10000,

and 50 < Re < 1000 aiming at the MHD pressure drop reduction and a more uniform

flow distribution at the exit of the manifold. The 150 flow cases computed with COMSOL

Multiphysics in 3D provide an extended database for the pressure drop coefficient, which

is used to construct a correlation for the 3D MHD pressure drop. In addition, many data

analyses were performed to characterize the flow inside the manifold and access the most

important flow characteristics, such as the recirculation flow bubble that appears when the

liquid metal enters the expansion region and the flow development length as a function of

Ha,Re and θ.

The third topic is the LM MHD flow in blanket supply ducts where high MHD pressure

drop is related to a space-varying (fringing) magnetic field. Similar to the manifold cases,

high MHD pressure drop is caused by 3D MHD effects, which are studied numerically for

a non-conducting rectangular duct for 1000 < Ha < 10000, 1000 < Re < 10000 and four

values of the magnetic field gradient in the fringing field region. A total of 80 cases have been

computed and the corresponding pressure drop coefficients calculated to deduce a correlation
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for 3D MHD pressure drop based on linear regression analysis. Strong 3D effects have been

observed in almost all computed cases as demonstrated by comparison against the quasi-fully

developed MHD flow as well as the transverse pressure difference.
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CHAPTER 1

Introduction

Fusion technology is a promising way of producing electricity for its clean emission and high

energy density reactions. The design of liquid metal (LM) blankets used for sustainable en-

ergy conversion is among the most important engineering challenges to be addressed towards

a future fusion facility. Two major concerns regarding liquid metal blanket designs are the

corrosion of structural materials which jeopardizes the safety of the facility and reduces its

lifetime, and high magnetohydrodynamic (MHD) pressure drop of the liquid breeder flows

in the blanket conduits that may become unacceptable due to high stresses in the flow

containing solid structure and a need for high pumping power.

In order to solve various engineering and scientific problems associated with the flow

of electrically conducting liquid breeders (such as eutectic alloy lead lithium PbLi or pure

lithium Li) in the presence of a strong plasma confining magnetic field, understanding of

the fluid flow behaviors in the harsh blanket environment is necessary. This includes effects

of strong electromagnetic loads, high temperature and temperature gradients associated

with volumetric and surface heating, electromagnetic Lorentz forces and complex blanket

geometry. On the other hand, development of experimental facilities, new experiments and

associated computations are also required to accomplish the major design and analysis goals.

Eventually, the optimization studies would be required to further advance the liquid metal

systems and improve the effectiveness of the experimental investigations.

In this dissertation, three problems related to liquid metal systems have been identified

and then studied through 3D numerical computations, including the optimization analysis.
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They are: (1) liquid metal flows and heat transfer in the so-called Thermal Convection Loop

(TCL), which is an experimental device for studying liquid metal corrosion by generating

a buoyancy-driven flow, (2) MHD flows in inlet/outlet blanket manifolds with optimized

gradual expansion geometry to reduce the 3D MHD pressure drop, and (3) MHD flows in a

fringing magnetic field to simulate conditions of the liquid breeder flow in the blanket supply

system where high MHD pressure drops are expected due to sudden changes in the applied

magnetic field. The first problem is purely hydrodynamic, while the other two are MHD

problems that involve both the fluid flow (Navier-Stokes) and electromagnetic (Maxwell)

equations. The proposed analyses include numerical computations and also development

of pressure drop correlations that can be used by blanket engineers and designers. By

characterizing the flow patterns in complex shape blanket conduits and associated MHD

flow pressure drops, a better understanding of the blanket physics can be achieved that

would eventually help in the development of a robust blanket design. The pressure drop

correlations are useful in optimizing piping systems of a blanket to reduce the required

pumping power, thus reducing the electricity cost. Using such correlations is much easier

compared to the expansive full 3D numerical computations for the entire blanket circuit.

The data and correlations acquired are generic and can be used in the design process of any

liquid metal blanket.
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CHAPTER 2

Literature review

2.1 Background of fusion reactor and fusion blanket concepts

As an explanation to reveal the importance of understanding physics in MHD flow within

fusion power reactors, a brief introduction to the fusion nuclear reactor is provided. Different

from nuclear fission where single heavy nuclei are split apart in a small reaction to release

energy, nuclear fusion involves the combination of two light nuclei to form a heavier nuclei,

and thus converting mass to energy. Even though the mass difference of single tiny reaction is

infinitesimal, the Einstein’s famous equation E = mc2 tells that the total energy generated

by all same reactions combined would be enormous. The most straightforward creations

of this type of process are the sun and stars in the galaxy. Based on the choices of light

nuclide, various fusion reactions can be realized, among which the Deuterium (D)-Tritium

(T) cycle grabs attention around the world. D and T are hydrogen isotopes and can be

fused to produce energy and maintain the reaction process. The process can be expressed

by 2
1H(D) + 3

1H(T ) → 4
2He(α) + 1

0n + 17.58MeV with neutron kinetic energy of 14.06MeV

and alpha particle kinetic energy of 3.52MeV . To make the process possible, tritium which

doesn’t exist naturally needs to be generated, in this case through neutron reaction with

lithium (Li) in some form, which is why Li is a must-have in fusion reactor. In this way,

enough tritium is generated to create a sustainable fuel cycle.

The plasma in a fusion reaction core can reach 100 million degrees celsius, which is

extremely high and beyond imagination. Traditional materials are not able to tolerate this
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condition. The most realistic approach is to apply a strong enough plasma confining magnetic

field via toroidal and poloidal superconducting magnets. “Tokamak” is such a well known

device and also the main study object of current fusion reactor designs. The magnetic field

not only confines the hot plasma, but also prevents it from touching any structure materials.

Renewable and pollution-free energy is always seen as a necessity towards future sustain-

able development, with fusion reactor being a long-lasting and promising way of providing

electricity. For this reason, the development of a blanket system for a fusion power reactor

that provides self-sufficient tritium breeding and efficient conversion of the extracted fusion

energy to electricity, while meeting all design limitations is among the most vital fusion

science and technology goals.

In order to meet the design requirements, different blanket concepts have been proposed

around the world. From the phase type view, solid breeder blanket and liquid breeder

blanket are developed. The solid breeder blanket often uses lithium ceramic (Li2O, Li4SiO4,

Li2TiO3, Li2ZrO3) as tritium breeder and helium or water as coolant. Liquid breeder

blanket is often concerned as a suitable way of achieving the target. Inside this type of

blanket, liquid metals are often used for power conversion and tritium breeding. Typical

breeders include liquid metals and molten salts. Molten salts have low conductivity and high

Prandtl number, but high melting point, chemistry, and tritium control problems limit their

application. Liquid metals are often preferred for their high thermal conductivity and low

viscosity. Candidates are pure lithium and the eutectic lead-lithium alloy. Dominant issues

of using liquid metals include MHD effect, chemical reactivity (Li), and tritium permeation

(PbLi).

Despite all mentioned concepts, there is no perfect solution. All these concepts have

their own feasibility and attractiveness issues to be resolved. In this research, the focus is

on liquid metal blanket design and optimization. Liquid metal blanket concepts are poten-

tially more promising for its high heat removal, adequate tritium breeding ratio possible

without beryllium neutron multiplier in liquid metals, relatively simple design, low pressure,
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low pumping power, but feasibility issues arise because of existence of magnetic field, in-

cluding high pressure drop due to interaction of strong plasma confining magnetic field with

electrically conducting fluid, and enhanced corrosion at high operation temperature.

For liquid metal blanket design, major classifications are self-cooled blanket, separately

cooled blanket and dual coolant blanket chronologically. In a self-cooled blanket, liquid

breeder is circulated at high enough speed to also serve as coolant for the first wall. This is

problematic for high flow rates because the large pressure drop caused by MHD effect will

exceed the allowable stress limits of the structural material. Also, insulation coatings are

vulnerable to cracks and cannot efficiently reduce the pressure drop. To solve this problem,

Water-Cooled Lead Lithium (WCLL) blanket and Helium-Cooled Lead Lithium (HCLL)

blanket were proposed, which belong to the separately cooled blanket concepts. In this type

of blankets, the liquid metal is circulated only at low speed for tritium extraction while all the

surface and volumetric heat is removed by a separate coolant like water or helium (He) gas.

However, the separately cooled blanket concept suffers from low coolant exit temperature

dictated by the maximum allowable temperature of the structural material. Moreover, it

is still subject to MHD effects due to magnetic field transients and the need to circulate

the liquid metal for tritium recovery. In order to compensate for the defects of these two

concepts, dual coolant blanket concept was introduced, where the first wall and structure

are cooled with separate coolant (He) while the liquid metal is used for “self-cooling” in the

breeder zone.

The detailed illustrations of examples of each liquid metal blanket type are as follows:

Figure 2.1 shows the US self-cooled lithium/vanadium blanket, which is composed of oblique

poloidal manifolds and toroidal channels. The function of the toroidal ones where lithium

flows in a velocity up to 1m/s is to protect the poloidal manifolds from surface heat flux

as well as volumetric heating. The manifolds are designed to have larger cross section area

to reduce pressure drop. Nevertheless, the biggest pressure drop occurs when the toroidal

channels turn into poloidal direction. Insulating coatings were considered but were not
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tolerant enough to small defects. The HCLL blanket design is demonstrated in Figure 2.2.

Figure 2.1: Self-cooled lithium/vanadium blanket (poloidal/toroidal flow).

It utilizes the available structure and materials but requires PbLi to flow in a slow velocity

(1mm/s) while using He for cooling purpose. Due to the relatively larger velocity in the

feeding system compared to the ducts, the pressure drop is high and possibly stagnant

flow will cause tritium permeation from PbLi to He, therefore resulting in low thermal

efficiency and high tritium loss. The WCLL blanket is similar as the HCLL blanket, except

using water as coolant to remove heat, with illustration shown in Figure 2.3. This type of

design is considered applicable to EU DEMO reactor and also a possible candidate of ITER.

As shown in the figure, the PbLi flow slowly recirculates in the blanket with a velocity

of 1mm/s. All heat generated in the blanket is absorbed by water flowing in numerous

double-walled tubes. Tritium needs to be extracted from both water and liquid metal.

The major drawback of this blanket is safety issues associated with hydrogen generation

in case of water-lithium reactions. Finally, the schematic configuration of DCLL blanket is

shown in Figure 2.4. The advantages of this concept are high temperature allowance and

high efficiency of the system. Basically, high temperature PbLi flows at a speed around
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Figure 2.2: EU HCLL blanket: (left) general view, (right) PbLi flow path.

Figure 2.3: Schematics of the WCLL blanket for EU DEMO.
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10cm/s in large rectangular poloidal ducts, which breeds tritium and removes volumetric

heat. Additionally, pressurized He gas is used solely to lower the temperature of the RAFM

(Reduced Activation Ferritic/Martensitic) steel wall and other structural materials under

critical point. Flow channel inserts (FCI) made of SiC ceramics are placed around the

flow channel for thermal and electrical insulation. There are two mainstream approaches

Figure 2.4: DCLL blanket with poloidal channels and SiC flow channels inserts.

for DCLL blanket. On the left of Figure 2.5 shows the so called ”banana” type, with only

poloidal (10m) channels and manifold at the bottom. The second type of blanket is shown in

the right half of figure, in which modular blankets (2m) are piled up with shared manifold.

The detailed comparison between these two types are unknown so far. As is mentioned,

pressure drop originated from interaction of magnetic field with electrically conducting fluid

can be the key issue of blanket design, with “Blanket Comparison and Selection Study”

(BCSS) [7] limiting the maximum MHD pressure drop in a blanket to be 2MPa. This is

why feasible ways of mitigating MHD pressure drop is important. In order to achieve the

goals, liquid metal magnetohydrodynamics (LM MHD) should be carefully studied. Former

studies have predicted a pressure drop possibly higher than 2MPa for self-cooled blanket,

and an overall pressure drop lower than 2MPa achievable for separately cooled as well as

dual coolant blanket.
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Figure 2.5: Two possible designs of the DCLL blanket, (left) full segment “banana” blanket;

and (right) modular blanket.
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The MHD pressure drop can originate from many sources. As a whole, the pressure

drop exists in the blanket and as well in the ancillary equipment. From the fusion blanket

perspective, the design of inlet/outlet manifold, the feeding pipes, the duct elbow, and the

way nonuniform fringing magnetic field changes the flow can cause pressure loss. Several

factors contribute to the significance of reducing pressure drop:

1. The structure material may experience excessive stress above its limit, therefore cause

structure failure and key safety issues.

2. High total pumping pressure requires high power input for feeding the flow, which will

diminish the energy efficiency of the blanket.

3. There is no available high capacity liquid metal pumps that can be used to compensate

the high pressure drop.

Typically, the pressure drops in a blanket are caused mainly by geometric variations and

magnetic field effects, which can be divided into 2D MHD pressure drop ∆P2D or 3D MHD

pressure drop ∆P3D based on MHD flow characteristics. The 2D MHD flow occurs when the

rectangular duct or circular pipe is sufficiently long under uniform transverse magnetic field

so that the flow can be considered as fully-developed after certain distance. This type of flow

exists in parallel poloidal ducts as well as radial supply pipes. The induced electric currents

are closed loops in 2D cross-sectional planes. Therefore, the corresponding flow-opposing

Lorentz force is only in the axial direction. The 2D pressure drop is caused by viscous

friction and Lorentz force, with Lorentz force dominating when the duct wall is insulating

due to electric current merely existing in the flow. For MHD electrically conducting walls,

depending on the relative relation of wall conductance ratio and Hartmann number, the form

of 2D pressure drop can be established.

Besides 2D fully developed duct flow, the MHD flow in a bend, expansion or contraction

with complex geometry and altered flow direction can essentially be considered as 3D from

a geometry aspect. In 3D MHD flows, three velocity components are present with mainly
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axial electric current affecting the flow perpendicular to the axial direction. The axial current

loop is very unique because it closes inside the fluid, therefore diminishing the effect of wall

conductivity on 3D MHD flow. Also, sudden change of magnetic field, wall conductivity

which will basically reshape the fully developed flow characteristics can lead to 3D MHD

formation. Oftentimes, the resulting ∆P3D can be comparable or even higher than ∆P2D in

MHD flow.

2.2 PbLi flow in a thermal convection loop

A Thermal Convection Loop (TCL), also known as a Natural Circulation Loop (NCL), is

an experimental device, in which a circulation-type fluid flow is generated by heating and

cooling some portions of a fluid-containing closed circuit. In general, the presence of a fluid

density gradient in a gravitational field does not ensure the existence of a circulating flow.

Therefore, natural circulation in a fluid filled closed loop is always established by placing a

heat sink in the loop above the heat source, similar to natural convection. By doing this, the

flow driving force is the buoyancy force associated with the difference in the fluid density be-

tween the “hot” and “cold” fluid. In engineering practices, such buoyancy-driven flow loops

are considered as relatively inexpensive flow devices compared to more complicated forced

convection loops where the fluid motion is driven by a pump. Depending on areas of appli-

cation, there can be many TCL designs varying in dimensions, materials, heating/cooling

schemes, flow configurations and type of working fluids. Due to its simplicity, low cost, noise

free and maintenance free operation, thermal convection loops have been intensively used

in experimental studies of fluid flow and heat/mass transfer for fission reactors [8], chemical

extractors [9], electronic cooling systems [10], solar heaters [11], geothermal applications [12],

cryogenic refrigeration systems [13], turbine blade cooling [14], thermosiphon reboilers [15],

and refrigeration and air conditioning systems [16].

The flow and heat transfer characteristics of TCLs are illustrated in various ways, with
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Sabharwall et al. [17] theoretically analyzing the stability of TCLs for liquid metal reactors.

A generalized flow equation was proposed by [18] for natural convection loops with laminar

and turbulent regions in the flow simultaneously and a stability map was constructed to

guide the flow characterization in such loops. In the majority of related studies, a thermal

convection loop was used to characterize corrosion processes of candidate materials immersed

in the flowing hot liquid at various temperatures and velocities [1, 2, 19, 20, 21, 22, 23, 24, 25].

Most of these studies were aimed at qualification of structural and functional materials to

be used in a fusion power reactor. In fusion applications, such as liquid metal or molten salt

blankets [26], high corrosion losses are expected because of the use of pure lithium, lithium

containing alloys or molten salts as breeders/coolants, which are chemically aggressive to

most of the steels and ceramics. High corrosion losses in a high-temperature blanket and

deposition of corrosion products in a cold sections of the breeder circuit are considered to be

among the most critical blanket feasibility issues [26]. The corrosion losses raise significantly

with temperature and to a lesser degree with velocity. For example, the Sannier’s equation

for corrosion of ferritic steels in a turbulent PbLi flow [27] suggests that the material mass

loss depends on the PbLi temperature T as e−25690/1.98T and on the velocity U0 as U0
0.875.

To interpret correctly the corrosion data, it is important to have the flow and temperature

field in the loop well characterized. With the modern computers and up-to-date numerical

techniques, this goal can be achieved through computations as the experimental diagnostics

is often limited and more expensive.

2.3 MHD flow in a manifold

A very important part of the fusion reaction facility blanket design is the liquid metal breeder

supply and collection system, which includes inlet manifold for flow distribution, poloidal

ducts for blanket functionality, and outlet manifold for flow gathering. A manifold is shaped

such that the flow can be expanded or contracted from entrance to exit. The inlet manifold
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located at the entrance of a blanket is responsible for distributing “cold” breeder from a

feeding pipe into a breeding zone and cooling channels. The outlet manifold at the exit of

the blanket collects “hot” breeder from multiple ducts inside the blanket into a single pipe

through which the flowing liquid leaves the blanket towards the blanket ancillary system. A

typical manifold system can be illustrated with the example of a Dual Coolant Lead Lithium

(DCLL) blanket [28], where eutectic lead-lithium (PbLi) alloy is used for breeding tritium

and cooling the breeding zone, while helium gas is used for cooling the First Wall (FW)

and the internal blanket structure. In the DCLL inlet manifold, the PbLi flows first in a

smaller size radial duct or pipe, enters the expansion region of a larger size, and from there

is distributed into several poloidal ducts in the breeding zone. The outlet manifold has a

similar geometry but unlike the inlet manifold, the LM flow features a contraction. When

flowing through the manifold in the presence of a strong plasma-confining magnetic field, the

LM breeder experiences strong electromagnetic forces responsible for a significant 3D MHD

pressure drop [29]. As shown in several studies (see e.g. [4]), the highest MHD pressure

drop in the manifold is caused by a sudden change in the flow geometry (i.e. expansion or

contraction) due to strong flow opposing forces associated with the formation of an internal

MHD shear layer in the flowing liquid, often referred to as the Ludford layer [30]. Because

of this, studies of MHD pressure drop in a manifold are often narrowed to the analysis of

MHD flows in the expansion (inlet manifold) or contraction (outlet manifold) region. Due

to its unique geometry, manifolds contribute to up to 50% of the total pressure drop of the

entire blanket [31].

The basic problem of MHD flow in a rectangular or circular duct with insulating wall

or conducting wall under uniform magnetic field has been addressed since middle of last

century, with three different dimensionless parameters: Ha (Hartmann number) which is

related to ratio of electromagnetic force and viscous force, Re (Reynolds number) describing

the ratio of inertial force and viscous force, as well as N (interaction number) representing

ratio of electromagnetic force and inertial force. Hartmann [32] and Shercliff [33, 34] first
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derived the analytical solution for velocity distribution of MHD duct flow in a transverse

magnetic field bounded by insulating wall perpendicular to the field, with relation for linear

pressure drop. They discovered the MHD sublayer near the wall with the rest of flow (core)

being highly uniform. The thin boundary layer was then called “Hartmann layer”. After

that, Chang et al. [35] obtained exact solutions for MHD duct flow in a perfectly conducting

channel. Hunt [36] found solutions for two special cases with MHD flow bounded by both

walls perpendicular and parallel to the magnetic field. The behavior of flow near the side

wall which is parallel to the field is quite interesting. Hunt et al. [37] studied MHD flow

in a rectangular duct with insulating Hartmann walls and perfectly conducting side walls

using a boundary layer technique. They found the thickness of Hartmann layer near the

wall perpendicular to the magnetic field to be scaled as O (Ha−1), while side layer near the

wall parallel to the magnetic field to be scaled as O
(
Ha−

1
2

)
. Walker [38] used asymptotic

expansions to study the fully developed MHD duct flow with a small conductance ratio.

Ludford [39] identified a new type of internal layer along magnetic field lines when the flow

is diverged by an obstacle at high Hartmann numbers. Hunt et al. [30] studied 2D version

of the layer in a diverging wall over a body. Their conclusion was that the structure of the

flow depends on the relative magnitude of Ha and N . The mathematical definition of the

two dimensionless parameters will be given later.

In the 90s, with the rapid advancement of computer technology, numerical tools became

available for simulation of MHD flow characteristics. Sterl [40] conducted a numerical study

on rectangular duct MHD flow with varying wall conductivity. More recently, Zhou et al. [41]

numerically examined the MHD flow in a circular pipe with self-developed code for high Ha

tolerance.

MHD duct flow can be described using three parts: the highly uniform core flow, Hart-

mann layer and side layer. In the Hartmann layer, the flow exhibits larger velocity gradient

and changes from uniform flow velocity to zero at the wall in a very short distance, which

is the Hartmann layer thickness O (Ha−1). The side layer of insulating duct exhibits similar
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behavior as Hartmann layer. While for the side layer of conducting duct, the flow will be

accelerated dramatically in the cross section. The side layer is thicker than Hartmann layer

and scale as O
(
Ha−

1
2

)
in the rectangular duct and O

(
Ha−

2
3

)
∼ O

(
Ha−

1
3

)
in the circular

pipe.

The unique shape of MHD flow in a duct is closely related to induced electric current in

the liquid metal, which will generate corresponding Lorentz force on the flow. The Lorentz

force can be of several orders of magnitude higher than the inertial and viscous forces, and

is the source of pressure drop. Wall conductivity can influence the pressure drop. For

insulating duct, the entire current loop is inside the fluid domain. For conducting duct

however, the current can exist in the wall and create a totally different distribution near the

wall. Therefore, FCIs are used to help reduce the pressure drop.

Since nearly half of the total pressure drop occurs in the manifold, MHD flow in expansion

and contraction ducts have been studied by many researchers. Bühler [42] derived solutions

for inductionless inertialess MHD flow in a rectangular duct expanding in the direction

parallel to the applied strong uniform magnetic field using core flow approximation. The

core flow (inviscid) and boundary layers (viscous Hartmann layer and side layer) as well as

the added “expansion layer” formed by the sudden expansion of the duct geometry were

analyzed, for conducting and insulating duct. Detailed flow characteristics were explained

using electric potential, current density and Lorentz force. Experimental study of similar

duct was given by Horanyi et al. [43], with a Ha up to 5500, which is close to real blanket

conditions. Mistrangelo [44] developed a numerical tool to study the MHD in duct flow,

using case of a rectangular duct with perfectly conducting wall and expansion parallel to

magnetic field as an example. By changing the magnetic flux intensity and the inertial force,

effects on current distribution and pressure drop were shown. The importance of inertia

forces is shown in [45] as well. Bühler et al. [46] also did experimental study under fusion-

relevant numbers and revealed the 3D MHD pressure drop caused by 3D electric currents

as well as examined flow structure predicted analytically in [47] at the expansion region.
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Aitov et al. [48], Myasnikov et al. [49] and Kumamaru [50] numerically investigated the

MHD flow in rectangular expansion duct with insulating walls, while Myasnikov et al. [49],

Mistrangelo [44] and Kim [51] accomplished the same geometry cases with conducting walls.

Kim [52] and Kumamaru [53] studied flow with same geometry but with sudden contraction.

Before 2018, poor-accuracy semi-empirical correlations were used to predict the ∆P3D in

manifold. Since the contribution of the pressure drop comes from many sources depending on

the flow and applied magnetic field, a relation incorporating the inertial and electromagnetic

effects is constructed with formula same as hydraulic pressure loss: ∆P3D = kpN
ρU2

2
, where

kp is a coefficient strongly depending on flow geometry. Here N is the interaction number,

while ρ and U are fluid density and velocity. This relation was applied in many manifold

studies involving insulating/conducting walls [54], rectangular duct/circular pipe [55].

In 2018, Rhodes et al. [4] built the accurate correlations of ∆P3D for the inlet manifold

with sudden expansion taking into consideration the manifold geometry and inertial, viscous

as well as electromagnetic force balance regimes. Recently, it is demonstrated that the

same correlations can be applied to outlet manifold with sudden contraction [56]. These

conclusions and numerical predictions from the earlier studies are in a good agreement with

more recent MHD flow computations for a full DCLL blanket prototype [54, 57] for a strong

5T magnetic field. The research regarding gradual expansion/contraction manifold MHD

flow is still rare, and the effect of expansion length on pressure drop is still unknown. No

correlations on pressure drop of this type of manifold has been established.

2.4 MHD flow in a fringing magnetic field

A fringing magnetic field is a peripheral area of magnetic field outside the magnet core. In

the core, the magnetic field can be assumed as uniform and parallel, while decaying of the

field occurs near the edges, thus forming the fringing magnetic field. As a special case of

MHD flow effect, the 3D MHD pressure drop brought by the spatially varying magnetic field
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can play an important role in designing fusion reactor blankets. With a fringing magnetic

field described by hyperbolic function, the electrically conducting liquid metal flow will expe-

rience an increase in magnitude of magnetic field at the entry and a decrease at the exit. This

simulates the effects of a more realistic nonuniform conservative magnetic field on inlet and

outlet pipes connected to manifold, which is non-negligible. The flow profile is fully devel-

oped hydrodynamic when entering the magnetic field region, where it changes to ”M shape”

due to 3D electric current induced by magnetic field interaction with flow. When exiting

the fringing magnetic field, the flow will slowly return to hydrodynamic with possible transi-

tion from laminar to turbulent state due to lack of Lorentz force to suppress the instability.

Analytical approach to calculating the pressure drop using integration method for such flow

was proposed by Miyazaki et al. [6]. Reed et al. [5] carried out experiments on flow in an

electrically conducting rectangular duct. The numerical simulations of 3D fringing magnetic

field MHD flow generally adopt two types of descriptions for the magnetic field. The first

is a reduced axial direction-dependent only field with decay (non-conservative/inconsistent),

while the second is a curl/divergence free full field with all three spatial components (conser-

vative/consistent). Reed et al. [5], Votyakov et al. [58], Moreau et al. [59] and Zhou et al. [60]

numerically studied the flow with reduced field in a rectangular duct, with conducting and/or

insulating walls. Reed et al. [5], Chico et al. [61], Li et al. [62] and Pulugundla et al. [63]

performed similar studies on circular pipes. In Moreau et al. [59, 64] and Chico et al. [61], the

differences in results calculated by using simplified versus full magnetic field for rectangular

duct were analyzed, which were included in Li et al. [62], Li et al. [65], Pulugundla et al. [63]

as well. The studies reveal that difference in pressure and velocity distribution for two types

of magnetic fields mainly exists in downstream area, and is more obvious for electrically

conducting pipe than for insulating one. The improvement of using full consistent magnetic

field on results is limited, with computational cost increased. From an engineering aspect, it

is generally acceptable to use a reduced filed to simulate the MHD flow in a fringing magnetic

field. Chico et al. [61] compared the results of MHD flow with reduced and full magnetic
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field in circular pipes. These studies show that using reduced magnetic field assumption can

accurately predict the flow characteristics before the inflection point of the field, where the

gradient of the field is steepest. After that, due to 3D axial current effects, the results may

not be precise enough compared with full field experimental data. Moreover, the flow in a

fringing magnetic field exhibits great resemblance as that in a uniform field, making predic-

tion of pressure drop utilizing correlations for the fully developed flow possible. However,

real fusion reactors have much steeper magnetic field gradient and the extent to which the

pressure drop relation can apply still remains to be determined.
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CHAPTER 3

Main goals of study

The main goals of the current study include:

1. Characterization study of a PbLi flow driven by buoyancy forces in a TCL, including

analysis for the bulk circulation velocity, maximum and minimum temperatures, distribution

of velocity and temperature in the loop, corner flow patterns and the influence of inserted

specimens and their shape and size on the flow and heat transfer. The most important goal

is to elucidate the effect of the applied heat flux on the bulk flow velocity and minimum and

maximum temperatures in the loop. This is needed to further characterize the effect of the

flow in the thermal convection loop on the corrosion of immersed samples as the corrosion

rate is known to be strongly dependent on the fluid velocity and especially its temperature.

This will eventually help to explain various corrosion data acquired by experiments, which

are often contradicting.

2. Optimization of the manifold design where the liquid from the small-size duct enters

the large-size duct through a gradual transition section (inlet manifold) or vice versa from a

large to a small duct (outlet manifold). In such flows, high 3D MHD pressure drop is caused

due to axial currents generated in the expansion or contraction region. The main goal

of this study is to perform parametric numerical studies for the inlet and outlet manifold

flows and then use the obtained data for the 3D MHD pressure drop to deduce pressure

drop correlations. The expectation is that the manifold design with gradual expansion (or

contraction) will demonstrate significantly lower MHD pressure drop compared to the design

with a sudden change of the duct geometry.
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3. Characterization studies of MHD flows and 3D MHD pressure drop in a duct or pipe

flow of liquid metal in a fringing magnetic field. These studies will include parametric 3D

MHD computations for a broad range of Hartmann and Reynolds numbers. The obtained

results will be used to deduce correlations for the MHD pressure drop caused by sudden

changes in the applied magnetic field. A part of this study is investigation of the influence of

the applied magnetic field distribution and intensity in the fringing field region on the flow.

The most important goal here is to look at the flow physics related to 3D effects and provide

better prediction of the related MHD pressure drop.
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CHAPTER 4

Problem formulation

4.1 Governing equations

In real blanket, the geometry is complex with applied magnetic field and neutron volumetric

heating. Therefore, the buoyancy-driven flow and MHD effect are present simultaneously in

momentum equation, and coupled with energy equation. The electric currents are described

by Ohm’s law and charge conservation. To formulate the real problem, two approximations

are adopted. The first one is inductionless approximation, which states that for the magnetic

field composed of applied and induced terms Btotal = B + Bi, the second term can be

neglected if magnetic Reynolds number Rm is much smaller than unity, Rm ≪ 1. The

magnetic Reynolds number is a dimensionless number characterizing the relative strength of

induction of a magnetic field by fluid motion over magnetic diffusion. The second assumption

is the Boussinesq approximation, where the fluid density is treated as a constant except in

the buoyancy force term, for which a linearized function of fluid density with respect to

temperature is used.

Finally, using all these approximations, the MHD flow with volumetric heating can be

described by the Eqs. 4.1∼4.5, which corresponds to the problem shown in Figure. 4.1:

∂ρ

∂t
+∇ · (ρv) = Dρ

Dt
+ ρ (∇ · v) = 0 (4.1)

∂v

∂t
+ v · ∇v = −1

ρ
∇P + ν∇2v + g − βg(T − T0) +

1

ρ
J×B (4.2)

ρCp

(
∂T

∂t
+ (v · ∇)T

)
= k∇2T + q′′′ (4.3)
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J = σ (−∇ϕ+ v ×B) (4.4)

∇ · (σ∇ϕ) = ∇ · (σv ×B) (4.5)

In the above equations, ρ is the fluid density, v is the velocity vector, ν is kinematic viscosity,

P is the pressure, g is the gravity vector, β is thermal expansion coefficient, T and T0

are temperature field and reference temperature, J is the electric current vector, B is the

magnetic flux density vector, Cp is specific heat capacity, k is thermal conductivity, σ is

electrical conductivity, q′′′ is volumetric heating value, and ϕ is electric scalar potential.

Figure 4.1: Sketch of a pressure driven LM flow in a complex geometry thin-walled duct

with applied magnetic field and volumetric heating in the presence of gravity forces.

Specifically, the three dimensional form of the Lorentz force term in Navier-Stokes equa-

tions and the induced current term in electric current density can be written as: J × B =

(JyBz−JzBy )̂i+(JzBx−JxBz)ĵ+(JxBy−JyBx)k̂, v×B = (vBz−wBy )̂i+(wBx−uBz)ĵ+

(uBy − vBx)k̂, where î, ĵ, k̂ are the orthogonal unit vectors in Cartesian coordinates.

According to the physical nature of the problems, the governing equations can be sim-

plified and solved with the application of various boundary conditions. Two models are

established using part of the equations.
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4.1.1 Governing equations for hydrodynamic flows with buoyancy effects

The first model involves hydrodynamic flow in a TCL with buoyancy forces caused by surface

heating and cooling. In all cases, the flow is incompressible, so that the continuity Eq. 4.1

can be simplified as:

(∇ · v) = 0 (4.6)

The momentum of the flow is described by omitting the Lorentz force term and preserving

buoyancy force in Eq. 4.2:

∂v

∂t
+ v · ∇v = −1

ρ
(∇ (p− ρgz))− βg (T − T0) + ν∇2v (4.7)

The energy equation can be simplified to the form without volumetric heating:

ρCp

(
∂T

∂t
+ (v · ∇)T

)
= k∇2T (4.8)

4.1.2 Governing equations for MHD flows

The second model is used to characterize the MHD flow in a duct or pipe.

Similarly, the continuity equation can be written as Eq. 4.6.

The momentum equations can be written by omitting the buoyancy force and gravity

term in Eq. 4.2 as:
∂v

∂t
+ v · ∇v = −1

ρ
∇p+ ν∇2v +

1

ρ
J×B (4.9)

Eq. 4.4 and Eq. 4.5 needs to be used for solving electric currents in the MHD flow.

4.2 Dimensionless parameters

The governing equations for MHD flow can be non-dimensionalized using characteristic quan-

tities: the bulk velocity Ū as scale for velocity, B0 for magnetic field, L for length, ∆T for

temperature. Other scales can be expressed by these basic ones: L
Ū

for time, ŪB2Lσ for
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pressure, ŪBL for electric potential and ŪBσ for electric current density. Therefore, the

dimensionless equations can be written in Eqs. 4.10∼4.14:

∇ · ṽ = 0 (4.10)

∂ṽ

∂t̃
+ ṽ · ∇ṽ = −∇p̃+

1

Fr2
g

g
+

1

Re
∇2ṽ +N · J̃× B̃ (4.11)

∂T̃

∂t̃
+ (ṽ · ∇) T̃ =

1

Re · Pr
k̃∇2T̃ + q̃′′′ (4.12)

J̃ = −∇ϕ̃+ ṽ × B̃ (4.13)

∇ ·
(
σ∇ϕ̃

)
= ∇ ·

(
σṽ × B̃

)
(4.14)

The dimensionless numbers include Re,Gr,Ha, Fr and N . The dynamic viscosity is

represented by µ and gravity scalar value by g. The Reynolds number is defined by: Re =

ρŪL
µ

= ŪL
ν
, which characterizes the ratio of inertial force to viscous force. The Grashof

number Gr = gβL3∆T
ν2

is the ratio between buoyancy force and viscous force. The Hartmann

number Ha = B0L
√

σ
µ
represents the square root of electromagnetic force over viscous force.

While the interaction number, related to Re and Ha by N = Ha2

Re
= σB0

2L
ρŪ

, states the ratio

between electromagnetic force and inertial force. The Froude number Fr = Ū√
gL

is the ratio

of inertial force to gravity. The Prandtl number, Pr = Cpµ

k
= ρCpν

k
, is the ratio of momentum

diffusivity to thermal diffusivity. The aforementioned wall conductance ratio for problems

with conducting duct or pipe is defined by cw = σwtw
σfL

, giving the relative conductance of wall

compared to fluid, where σw is the duct wall electrical conductivity, tw is the wall thickness,

σf is the fluid electrical conductivity.

4.3 Boundary conditions

In order to make the solution of mathematical models unique, various boundary conditions

need to be added. There are three classes of boundary conditions for physics appearing in

the problem of MHD flow: fluid flow, electric current with magnetic field, and heat transfer.
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For fluid flow domain, the no-slip and no flow through condition are always satisfied.

Basically, the fluid with viscosity should stick to the wall at fluid/wall interface, whether it

is static or moving. To write in equation form we have: vt|wall = vwall, vn|wall = 0, which

means the tangential component of fluid velocity at the wall equals to the wall velocity, and

the normal component of fluid velocity vanishes at the physical boundary. The inlet and

outlet conditions can be classified as combinations of velocity and pressure. Fully developed

velocity and electric current condition can be used with constant temperature and no pressure

gradient for the inlet if variations of flow characteristics along axial direction are negligible

for MHD flow. The outlet features a “continuative” boundary representing zero derivatives

for all quantities except pressure. The pressure is often set to be zero at the outlet.

While for electric currents in fluid and solid wall, the electric contact is perfect if no

contact resistance exists between the fluid/solid interface. The component of electric current

normal to the wall and electric potential are continuous under this circumstance. However,

the tangential component of electric current, due to different conductivities of fluid and solid

wall, will experience a sudden change. The thin wall boundary condition can be applied

when the wall thickness is negligible compared to the characteristic length of the duct, which

implies that the electric current, though exists in the wall, flows only in tangential direction

with the normal variation neglected. On the contrary, the thick wall boundary implies no

penetration of current at the outside wall of the duct which corresponds to zero normal

component of electric current, similar to the no flow through condition. As a whole, the flow

duct is electrically insulated on all boundaries to form a closed area for electric currents to

circulate. If the electrically conducting wall has a different electrical conductivity compared

to the liquid metal inside, the insulation should be applied to the outer boundaries of the

wall.

For thermodynamic processes occurring in fluid and solid domain such as conduction,

convection and radiation, three types of boundary conditions can be imposed. The first type

is called “Dirichlet” boundary condition, which gives the temperature value at the boundary.
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This is almost always a simplified assumption which can be expressed by Twall = T0(x, y, z, t).

The second type is Neumann boundary condition, with normal heat flux specified. This is

related to the temperature gradient at the boundary and can be written as: −n · (−k∇T ) =

q0(x, y, z, t). If q0 = 0, it implies thermal insulation. The last type is in the form of Robin

boundary condition, or physically Newton’s law of cooling, which is a mixed one depending

on both T and ∇T . The mathematical form is −n · (−k∇T ) = h(Text − T ), in which the

heat transfer coefficient h and external temperature Text are the key controlling parameters.

Typically, Text is fixed by the problem and h can be calculated by empirical relations. For

natural convection, gas has a heat transfer coefficient of h = 2 ∼ 25W/(m2 ·K) and liquid of

h = 50 ∼ 100W/(m2 ·K). For forced convection, the heat transfer coefficient is significantly

higher, with gas of 25 ∼ 250W/(m2 · K) and liquid of 100 ∼ 20, 000W/(m2 · K). Besides

the three forms of boundary conditions, radiation which occurs when large temperature

difference exists needs to be considered, and the rate of radiation per square meter area

can be expressed by q = ϵσ (T 4
h − T 4

c ) if an hot object is radiating energy to its cooler

surroundings.
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CHAPTER 5

Characterization of PbLi flows in thermal convection

loop (TCL)

In this study, the main goal is the development of computational tools and characterization

of fluid flow and temperature fields in a TCL under specific conditions of the corrosion

experiments. The analysis is limited to a particular experimental facility and operation

conditions employed at the Oak Ridge National Lab (ORNL), USA. This type of facility has

been used in experimental studies of corrosion behavior of fusion materials for decades. The

Corrosion Science & Technology Group at ORNL has a long experience of using TCLs for

materials qualification. In one of the first experimental campaigns dated back to 1982 [25],

three TCLs were constructed to perform experiments on corrosion of Fe−Ni−Cr alloys in

the flowing molten salt NaNO3−KNO3 at temperatures around 600◦C. Natural circulation

of the salt was induced in these closed loops through controlling the temperature profile by

heating one of the two ∼ 0.8m vertical sections and cooling the other. The loops were

designed to allow the insertion and removal of corrosion coupons with minimal disruption

of the salt flow. The corrosion coupons of approximately 0.019 × 0.008 × 0.001m were

placed within the “hot” and “cold” legs. Tubing for the loops ranged from 0.019 to 0.025m

in outside diameter (OD) and from 0.002 to 0.003m in wall thickness. The nominal salt

velocity U0 was 0.04m/s and the temperature difference between the hottest and coldest

liquid in the loop, ∆T = Tmax − Tmin, was from 150 to 250K depending on the loop. Such

TCL designs were adopted in several subsequent experimental campaigns at ORNL, varying

in materials and heat loads. In the most recent studies [1, 2], several similar corrosion loops
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were constructed to explore the upper temperature limit of a breeding fusion blanket utilizing

eutectic Pb− 17at.%Li alloy as a coolant and breeder.

In [2], three mono-metallic thermal convection loops were fabricated from alloy APMT

(Fe − 21Cr − 5Al − 3Mo) and operated with commercial PbLi at peak temperatures of

550◦C, 600◦C and 650◦C, and ∆T of 85 ∼ 115K. The outside diameter of the TCL tubes

was nominally 0.0267m with a wall thickness of 0.0031m. The vertically oriented sections of

the TCL were approximately 0.5m apart, and the not quite horizontal sections (about 1:4

slope) were about 0.75m apart as shown in Figure 5.1. Heating was provided using clamshell

heaters placed around the bottom, near-horizontal section and one of the two vertical sections

(“hot leg”). The heated portions of the loop were heavily insulated while other unheated

portions (“cold leg”) were only lightly insulated.

Figure 5.1: ORNL PbLi thermal convection loop: (a) picture, (b) schematics and (c) “dog-

bone” samples and spacers [1, 2] immersed in the liquid.

Two chains of APMT “dogbone” 0.0254m long specimens including six spacers were hung

in the hot and cold legs of the loop to evaluate corrosion losses after 1000h exposures in each

28



experiment. Most APMT specimens were pre-oxidized to form alumina prior to exposure

and exhibited small mass losses. Specimens without pre-oxidation exhibited higher mass

losses. While promising for increased blanket temperatures, the small mass losses suggest

that the surface oxide is not completely stable. However, even at the highest temperature,

there was no indication of classic dissolution/precipitation behavior, suggesting that higher

temperature compatibility may be possible. Based on the temperature data in [1, 2], in these

experimental studies, the Grashof number defined here as Gr = gβ∆Td3

ν2
(g is the acceleration

due to gravity, ν is the kinematic viscosity, d = 2R is the inner pipe diameter, and β is the

thermal expansion coefficient of PbLi) varied in the range (2.0 ∼ 3.0) × 107. The Prandtl

number Pr = ν
α
was 0.015. The estimated nominal velocity in the experiment was around

0.07m/s, suggesting the hydrodynamic Reynolds number around 10,000.

The Re and Gr magnitudes in the experiments suggest that the PbLi flows were turbu-

lent. In addition, taking into account the presence of sharp corners and corrosion specimens

hanging in the PbLi, unsteady flow features can be expected. Such flow conditions were

reproduced in computations in the present study using two modeling tools. The first one

is a user-defined model for a buoyancy-driven flow in the TCL implemented in COMSOL

Multiphysics [66]. The second is a newly developed thermohydraulics code. Both the compu-

tational model in COMSOL and the thermohydraulics code were developed to cover laminar

and turbulent flow regimes for Re numbers below and above the turbulence threshold. The

thermohydraulics code also has an option for adding an applied transverse magnetic field to

simulate special experiments where a permanent magnet is used to reproduce conditions of

a MHD flow, similar to that in a liquid metal blanket.

5.1 Mathematical formulation of the problem

The flow in TCL uses the first model mentioned in Section 4.1, therefore Eqs. 4.6∼4.8 are

solved for this problem. The corresponding boundary conditions need to be applied.
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For the reason that the TCL is a closed loop, there is no inlet/outlet condition for the flow.

The pipe wall has no slip boundary condition at the fluid-solid interface. The temperature

boundary condition can be formulated separately for hot and cold legs. For the hot leg, the

constant heat flux boundary is a Neumann boundary condition, which can be expressed by:

−k
∂T

∂r
= q′′ at r = R (5.1)

For the cold leg, it has convective or Robin type boundary condition written as:

−k
∂T

∂r
= h(T − Tair) at r = R (5.2)

in which h is the heat transfer coefficient that characterizes the rate of heat loss from the

cold leg into the surrounding air of the temperature Tair. In this problem, the convection

and radiation heat transfer are both present and cannot be negligible against each other,

such that a total heat transfer coefficient is estimated h = hc + hr. Unlike hc which depends

solely on material and natural/forced convection, the radiation-based hr strongly depends on

temperature. A linearized equation is often used in general engineering practice hr = ϵσ(T +

Tair)(T
2+T 2

air), where ϵ is the thermal emissivity of the surface and σ = 5.67×10−8W/(m2 ·

K4) is the Stefan-Boltzman constant. Under the conditions of experimental studies [1, 2],

the coefficients are estimated as hc = 5 ∼ 10W/(m2 ·K) and hr = 30 ∼ 60W/(m2 ·K), which

shows that in a high temperature convection loop, the radiation effect is very important to

consider. In this study, for simplicity, the applied heat flux q′′ for hot leg and heat transfer

coefficient h for cold leg are assumed constant and uniform. When steady state is achieved,

the heat flux should balance with heat loss.

5.2 Validation case for the numerical tool

Before going to full three-dimensional analysis of model similar to the experiment, computa-

tional tool-COMSOL Multiphysics 5.4 was tested for ability to successfully predict simpler

case results. Mixed convection flow in a vertical pipe was picked and this case can be solved
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analytically, as illustrated in Figure 5.2. A verified code was already established to examine

the accuracy of COMSOL predicting the results. The verification code solves the following

set of non-dimensionalized equations:
1

r̃

d

dr̃

(
r̃
dθ̃

dr̃

)
= 2ũz (r)

0 = −dp̃∗

dz̃
+

1

Re

1

r̃

d

dr̃

(
r̃
dũz

dr

)
+

Gr

Re2
θ̃ (r)

(5.3)

with boundary conditions and constraints:
∫ 1

0

2r̃ũzdr̃ = 1∫ 1

0

2r̃ũz θ̃dr̃ = 1

(5.4)

Comparison of results from COMSOL and code [3] for velocity distribution at fully-

developed region is shown in Figure 5.3. Clear observation of good match between both

results can prove that COMSOL is a robust tool in solving mixed convection problems when

applying different heat flux values.

5.3 Computational setup in COMSOL

The computational setup of the problem depends on flow characterizing parameters. Unlike

the majority of natural convection flows where the liquid flows upwards near the hot wall

and downwards near the cold wall, such that the mean velocity is zero due to the mass

conservation, the flow in the TCL is of a circulation type [17, 67]. For this reason, a standard

Reynolds number similar to that in forced convection flows can be constructed using the

circulation velocity as introduced in section 1 to distinguish between laminar and turbulent

flows. In the experimental studies in [18], transition to turbulence was studied in a TCL

facility, which was very similar to that in the present study. The flow was found to be

laminar if Re < 900. For 900 < Re < 3200, the TCL flow is transitional from laminar to

turbulent. It becomes fully turbulent if Re > 3200. Based on these data, in the present
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Figure 5.2: Schematic illustration of fluid flow in vertical heated pipe for validation.

32



Figure 5.3: Comparison of results given by computational code [3] and COMSOL.
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study Recr = 3200 was used as the Reynolds number threshold. Most of the analysis in this

study was performed for flow velocities U0 > 0.05m/s (Re > 7200) using a turbulent flow

solver. Several turbulence models are offered in COMSOL [66]. In this study, the classical

k − ϵ model was chosen [68]. The model introduces two additional transport equations and

two dependent variables: the turbulent kinetic energy k, and the turbulent dissipation rate,

ϵ. The turbulent viscosity added into momentum equation is modeled by two variables as:

µT = ρCµ
k2

ϵ
, where Cµ is a model constant [68]. Standard wall-functions were used as

boundary conditions to simulate turbulence properties in the near-wall region.

In COMSOL, a finite-element stationary solver or a time dependent solver can be selected

in various forms to determine the coupling and sequence of calculations. In this study, both

the stationary solver and time dependent solver were employed as it is not a priori known if

the flow is stationary or transient.

In stationary computations, fluid flow, heat transfer, and non-isothermal flow physics are

solved at the same time. The computations are based on the segregated approach using the

algebraic multigrid solver embedded in the software with a convergence criterion of 10−3 as

a default. Convergence criteria of 10−4 to 10−6 were also implemented to compare with the

default case. The segregated approach has a maximum iteration number of 400, and pseudo

time stepping for stabilization and acceleration with initial CFL number of 3. The multigrid

solver uses maximum number of iterations of 500 and residual tolerance of 0.01.

For time dependent computations, a more robust “fully coupled” solver with the residual

tolerance of 10−6 was used to reproduce the transient flow behavior. The solver uses an

automatic Newton-Raphson method for better convergence with maximum iteration number

of 50. The backward differentiation formula (BDF) is used for time stepping. A small initial

time step of 0.001s was set to ensure a more accurate prediction of the flow at the beginning.

The time step is gradually increased in the course of the computations as the results become

steadier by choosing “free” time stepping in COMSOL settings. Both stationary and time

dependent solvers use the same spatial mesh of tetrahedral second order elements and first-

34



order shape functions.

A mesh sensitivity study was performed first. Three types of meshes were tested for

the case with no samples as shown in Figure 5.4, including coarse, normal and fine meshes.

As there is almost no difference in the results between the normal and fine meshes (see

Table 5.1), the normal mesh was considered sufficient, such that the most of the computations

in this study were conducted on the normal mesh. It should be noted that the cases with

the immersed samples require very fine meshes to resolve the temperature field inside the

samples, pipe walls and fluid. The number of mesh elements in such cases is enormous

(75,935,516) resulting in very time-consuming computations of full 7 days using a 32-core

workstation with 512 Gb RAM.

Figure 5.4: Tetrahedral meshes with different density used in COMSOL computations: (left)

coarse, (middle) normal and (right) fine.

In addition to the mesh sensitivity study, other testing effort included comparison between

the results obtained with the stationary and time dependent solver. When using the time

dependent solver, the computations were started from the zero velocity and T = T0 and

continued over a long period of time corresponding to several full fluid circulations in the loop.

To assure convergence, the applied heat flux was varied exponentially in time over about 20

seconds from zero to the maximum value. As shown in Figure 5.5, the time dependent flow

evolves eventually to a steady state. In a few cases, at the highest Re numbers, the flow
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Table 5.1: Summary of computed results for three meshes, coarse, normal and fine for

q′′ = 20kW/m2 and h = 45W/(m2 ·K).

Mesh

quality

Number of

elements

Computational

time, s

Average velocity, m/s Average temperature, ◦C

Coarse 353829 4541 0.070439 457.99

Normal 800656 10928 0.070453 458.22

Fine 1871981 18847 0.070457 458.26

was observed to exhibit slightly unsteady periodic behavior with the period of about 40s.

However, even in these cases, the difference with the predictions obtained with the stationary

solver did not exceed a few percent such that most of the computational results shown below

were obtained with the stationary solver assuming that the steady state solution exists.

Figure 5.5: Time history computed with the time dependent solver at q′′ = 20kW/m2 and

h = 45W/(m2 ·K): (a) velocity, and (b) temperature.
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5.4 Results and discussion of 3D computations using COMSOL

5.4.1 Reference case

To characterize the velocity distribution and temperature field in the TCL, a reference case

was selected first, which is the thermal convection loop without samples (Figure 5.6), with

the applied heat flux q′′ in the hot leg of 20kW/m2 and the heat transfer coefficient h in

the cold leg of 45W/(m2 · K). The heat transfer coefficient includes both convective and

radiative components such that about 15% of heat in the cold leg is removed by air through

convection and the rest is by radiation. In addition to the loop schematics, Figure 5.6 shows

2D cross-sectional velocity and temperature isolines in the middle of the vertical part of

the hot leg. More details of the flow and temperature field in the reference case are shown

in Figure 5.7∼5.9. Figure 5.7 shows velocity profiles at several positions along the vertical

sections of the hot and cold legs. Interestingly, the velocity distributions of the hot and

the cold leg are anti-symmetric. For example, both the hot leg and the cold leg velocity

profile right downstream of the corner have the same shape with a velocity peak near the

outer pipe wall and a plateau-like distribution near the inner wall. Further downstream, the

velocity profiles become more uniform. Eventually, almost fully developed flow in both legs

is achieved at a relatively short distance of about 0.2m downstream from the corner. The

flow remains fully developed over the major part of each vertical section of about 0.5m as

seen in Figure 5.8.

When approaching the corner, the velocity profile in the vertical section of the loop

becomes non-uniform again. The most significant changes in the flow field occur in the

corners themselves, where the flow demonstrates two large stationary vortices as shown in

Figure 5.8. Such large vortices are known in the hydrodynamics of pipe flows as Dean

vortices [69]. Their formation is caused by centripetal forces when a fluid is moving along a

straight pipe that after some point becomes curved, e.g. in a bend. As a result, the generated

secondary motion is superimposed on the primary flow with the fluid in the center of the
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Figure 5.6: Reference case: TCL loop without samples, q′′ = 20kW/m2, h = 45W/(m2 ·K).

(a) TCL schematics. (b) Velocity (top) and temperature (bottom) distributions in the middle

of the vertical part of hot leg.

38



Figure 5.7: Velocity profiles in the reference case in the (a) “hot” and in the (b) “cold” leg.

Figure 5.8: Reference case. Flow development effects. (a) Counter plot of the axial velocity

component over the entire loop. (b) Formation of Dean vortices in the TCL corner.
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pipe being swept towards the outer side of the bend while the fluid near the pipe wall returns

towards the inside of the bend. This secondary motion appears as a pair of counter-rotating

cells.

There have been many studies of this phenomenon for laminar, transitional and turbu-

lent flows [70, 71] at different values of the Dean number, which is the key dimensionless

parameter that defines laminar to turbulent transitions in flows with abrupt changes in the

flow direction [70]. The Dean number is defined as De = Re
√
γc where γc is the curvature

ratio of the bend. Generally, if De is higher than 400, the flow is considered to be fully tur-

bulent [71]. In this study, De varied from about 6500 to 10,000, suggesting a turbulent flow

regime. The present findings regarding the flow in the corners are consistent with previous

studies for pipe flows in the reference range of De.

Figure 5.9: Temperature profiles in the reference case in the (a) ”hot” the (b) ”cold” leg.

Figure 5.9 shows the temperature profiles in the hot and cold legs. Similar to the velocity

profiles, they also demonstrate anti-symmetry. The temperature increases almost linearly

with the axial distance in the hot leg and decreases in the cold leg in the same manner.

Higher temperatures occur near the center of pipe in the cold leg and near the walls in the

hot leg. The radial non-uniformity of the temperature profiles can be characterized by the
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ratio Tcenter

Twall
. For almost all temperature profiles plotted in Figure 5.9 in the hot leg, this

ratio is about 1.02, so that the temperature profiles demonstrate high degree of uniformity

due to the effect of buoyancy forces and turbulent mixing.

5.4.2 Effect of the heat flux

The heat flux is the most important operation parameter of the TCL as it affects the cir-

culation velocity and maximum and minimum temperature in the loop. When planning

experiments, a researcher has to select proper heaters to make sure that the required circu-

lation velocities can be established. The velocity magnitude along with Tmax and Tmin can

be predicted with the thermohydraulics code [72]. The effect of applied heat flux on flow

characteristics is shown in Figure 5.10. Further analysis by COMSOL shows the effect of the

applied heat flux on the velocity and the temperature field in the loop for three selected heat

fluxes, 15, 20 and 26kW/m2. The results of these three cases are compared in Figure 5.11.

Figure 5.11 shows the effect of q′′ on the velocity profile in the middle of the vertical part of

the hot leg. Clearly, a higher heat flux results in a higher circulation velocity but the shape

of the velocity profile remains about the same. The same trend can be seen in the effect of

q′′ on the temperature profile in Figure 5.11. As mentioned earlier, the temperature profiles

demonstrate high degree of uniformity in the radial direction. Figure 5.12 illustrates the

corner flows for the same three heat fluxes. In all three cases, the Dean vortices are clearly

seen but no qualitative differences can be observed in the location and size of the vortices.

5.4.3 Effect of the immersed samples

The samples immersed in the PbLi in the loop obstruct the flow, resulting in lower velocities

and higher Tmax and lower Tmin. This tendency is clearly seen in the results computed with

the thermohydraulics code in Figure 5.13 where the circulation velocities and Tmax and Tmin

are plotted as a function of the local pressure drop coefficient K. To investigate the effect of
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Figure 5.10: The (a) PbLi velocity and maximum and minimum PbLi temperatures (b) as

a function of the applied heat flux in the TCL without samples. The surface emissivity of

the cold leg is 0.78 (oxidized steel).

Figure 5.11: Effect of the applied heat flux on the velocity and temperature profile in the

TCL in the middle of the vertical section of the “hot” leg. (a) Effect of q′′ on the velocity

profile. (b) Effect of q′′ on the temperature profile.
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Figure 5.12: Effect of the applied heat flux on the PbLi flow in the corner region: (a)

q′′ = 15kW/m2, (b) q′′ = 20kW/m2, (c) q′′ = 26kW/m2.

the immersed samples on the flow in more detail, COMSOL computations were conducted

for two more cases at the same applied heat flux of 20kW/m2 as shown in Figure 5.14. In the

case shown in Figure 5.14, the shape of the samples was simplified to elongated bars for faster

computations. In the more experiment-relevant case in Figure 5.14, all 20 dogbone samples

and 3 spacers in each sample chain were carefully modeled as shown in Figure 5.15. It

should be noted that both the bar-like and the prototypic dogbone samples occupy the same

volume inside the loop, which is about 1.64% of the entire loop volume. Any difference in the

temperature or velocity is thus directly associated with the shape of the samples. Table 5.2

illustrates the differences in the computed results between three cases: the reference case

(no samples), bar-like samples and dogbone samples with spacers.

Table 5.2: Summary of COMSOL computations for TCL with and without samples for

q′′ = 20 kW/m2 and h = 45 W/(m2 ·K).

Case U , m/s Tmax,
◦C Tmin,

◦C ∆T,K

Reference case (no samples) 0.0708 481.63 435.05 46.58

Bar-like samples 0.067 483.85 433.8 50.05

Dogbone samples 0.0568 489.43 430.26 59.17

As seen from the table, the maximum circulation velocity occurs in the TCL loop without

samples. Slightly lower velocity (5.5% difference) is seen in the TCL with bar-like samples.
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Figure 5.13: Effect of corrosion samples immersed in the liquid metal on the velocity and

temperature at q′′ = 20 kW/m2 and ϵ = 0.78: (a) PbLi velocity, and (b) maximum and

minimum temperatures.

The lowest velocity occurs in the loop with the dogbone samples (19.8% reduction compared

to the reference case). This case also demonstrates the highest temperature difference of all

three cases.

Figure 5.16 shows cross-sectional velocity and temperature distributions in the middle

of the vertical section of the hot leg where the flow becomes fully developed. There is a

clear asymmetry in the velocity distributions such that higher velocity in all three cases

occurs in the left (inner) half of the pipe. This might indicate the influence of the corner

flows. Figure 5.17 shows the flows in the corner. All three cases demonstrate Dean vortices.

Similar to the previous analysis of the applied heat flux, no significant variations have been

observed.
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Figure 5.14: Schematics of the TCL loop with the immersed corrosion samples: (a) Simplified

bar-like samples, (b) A chain of dogbone samples with spacers.
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Figure 5.15: Model of dogbone samples and spacers in COMSOL. (a) Schematics with di-

mensions. (b) Finite-element tetrahedral mesh of 90,000 elements inside each sample.
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Figure 5.16: Comparison of the (upper) velocity and (lower) temperature distribution in the

middle of the vertical section of the “hot” leg, including the case with (left) no samples,

(middle) bar-like and (right) dogbone samples.

Figure 5.17: Comparison of the flow in the corner region for three cases: (a) with no samples,

(b) bar-like and (c) dogbone samples.
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5.5 Comparisons between the thermohydraulics code and COM-

SOL

Comparisons between the thermohydraulics code and COMSOL have been done for the

circulation velocity and Tmax and Tmin for the TCL flow without samples as shown in Fig-

ure 5.18.

The thermohydraulics code is a self-developed code based on Fortran by Dr. Smolentsev

to accurately compute all kinds of TCL related parameters. The code solves the bulk flow

and heat transfer equations to give an accurate estimate of bulk circulation velocity and

temperature values for comparison, combined with other possible effects. The code can also

be applied to the data analysis in corrosion experiments to evaluate the effect of temperature

and velocity on corrosion rates. The main capabilities of the code include: (1) estimation

of the circulation flow velocity and maximum and minimum temperatures in the loop as a

function of the applied heat flux, (2) analysis of the flow with and without the samples for

various sample shapes and sizes, (3) analysis for laminar and turbulent flows, (4) analysis

of the effect of a magnetic field on the liquid metal flow in the loop, and (5) analysis of

the cooling conditions in the cold leg, including convection and radiation losses. These

capabilities are further. The details of the code and equations solving procedures can be

found in [72].

A range of heating power from 1.2 to 3.5kW was covered in the computations with the

thermohydraulics code while only three flows corresponding to 1.5, 2.0 and 3.6kW were

computed with COMSOL. For these three flows, the computed parameters with the two

codes are in a very good match.

48



Figure 5.18: Comparisons between the thermohydraulics code and COMSOL at

h = 45W/(m2 · K) : (a) PbLi velocity, and (b) maximum Tmax and minimum Tmin PbLi

temperature.
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CHAPTER 6

Optimization studies for blanket manifolds

6.1 Mathematical formulation of the problem

A sketch illustrating an MHD flow in a section of the inlet manifold with a gradual expansion

is shown in Figure 6.1. The LM enters the manifold through a small rectangular duct with

the width 2d, height 2a, and the length Lin at the velocity of Uin. From there, it flows into

the expansion region with the length Lexp, and then proceeds into a big rectangular duct of

the width 2b and the length Lout. The entire length of the manifold is L = Lin+Lexp+Lout.

The flow occurs in the presence of a uniform transverse magnetic field of induction B.

The Cartesian coordinate system is chosen in such a way that the flow occurs along

the x axis and the magnetic field is parallel to the y axis. Three expansion angles θ are

studied: 45◦, 60◦ and 75◦. The fourth case of a sudden expansion θ = 90◦, which is shown

in Figure 6.2, was studied earlier in [4] and is used here for testing and comparing against

the present results. The duct dimensions are shown in Table 6.1. These parameters are kept

unchanged in all the computations. The expansion ratio is defined as γexp =
b
d
and is fixed at

4. The liquid metal eutectic alloy PbLi is used as the working fluid with density ρ, kinematic

viscosity ν and electrical conductivity σ defined at the temperature 500◦C [73] and given

in Table 6.2. The duct walls are assumed to be electrically non-conducting, such that the

computations are limited to the flow domain. This model is a close approximation to the

conditions of a real DCLL blanket where the PbLi flow is decoupled from the electrically

conducting steel walls with an insulating flow channel insert (FCI) [74]. The PbLi inlet
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Figure 6.1: Geometry for gradual expansion manifold case.
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velocity Uin and the magnetic field strength B are varied to assure the Hartmann and

Reynolds numbers in the computations up to 10, 000.

Table 6.1: Geometry details of gradual expansion manifold

Upstream duct half width (d) 0.05 m

Downstream duct half width (b) 4d = 0.2 m

Duct half height (a) 0.8d = 0.04 m

Upstream duct length (Lin) 4d = 0.2 m

Downstream duct length (Lout) 4b = 0.8 m

Expansion ratio (b/d) 4

Expansion region length (Lexp) 3d · cotθ m

Table 6.2: PbLi liquid metal properties used in study

Density (ρ) 9600 kg/m3

Dynamic viscosity (µ) 0.0011436 Pa · s

Electric conductivity (σ) 8.1236× 105 S/m

For the described problem of LM MHD flow in blanket inlet manifold, it corresponds

to the second model mentioned in section 4.1, solving Eqs. 4.4∼4.6, 4.9. Therefore, the

governing equations can be written as:

(∇ · v) = 0

∂v

∂t
+ v · ∇v = −1

ρ
∇p+ ν∇2v +

1

ρ
J×B

J = σ (−∇ϕ+ v ×B)

∇2ϕ = ∇ · (v ×B)

The fluid flow satisfies no slip/no flow through conditions, and the inlet flow is set as

fully developed, with a outlet pressure of 0. Electrical insulation needs to be applied to all
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Figure 6.2: Schematic illustration of different expansion angle cases.

the outer boundaries, with current conservation enforced in the fluid domain. The electrical

insulation is applied at the outer boundaries, including inlet and outlet. The main dimen-

sionless parameters used for flow characterization and correlation construction are the Ha

and Re. The characteristic length is the half duct width of the downstream big duct b and

the characteristic velocity is the outflow velocity Uout shown in Figure 6.1.

The computational matrix for MHD flow in a manifold is shown in Table 6.3. In the

matrix, the Ha varies from 1000 to 10,000, while the Re varies from 1000 to 10,000 as

well. The interaction number Ha2

Re
is calculated in the table. It is an indication of relative

magnitude of electromagnetic forces and inertia forces. From the geometry perspective,

by adjusting Lexp, the angle of expansion from small duct to large duct can be changed

correspondingly. As mentioned, three different angles are chosen (θ = 90◦ has been studied).

The total number of cases computed is 150 for 5 differentHa, 10 different Re and 3 expansion

angles.
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Table 6.3: Interaction number N for different Ha and Re cases

Ha/Re 50 100 200 400 600

1000 20000 10000 5000 2500 1667

3000 180000 90000 45000 22500 15000

5000 500000 250000 125000 62500 41667

7000 980000 490000 245000 122500 81667

10000 2000000 1000000 500000 250000 166667

Ha/Re 1000 2000 3000 5000 10000

1000 1000 500 333 200 100

3000 9000 4500 3000 1800 900

5000 25000 12500 8333 5000 2500

7000 49000 24500 16333 9800 4900

10000 100000 50000 33333 20000 10000

6.2 Validation case for the numerical tool

In order to validate the ability of COMSOL Multiphysics in predicting MHD flow in a duct

or manifold, a test case was chosen. As mentioned, fully developed 2D MHD duct flow

solutions were obtained by Hartmann, Shercliff and Hunt using Fourier series and Walker

using asymptotic expansions. A proper code has already been established to compute the

exact solutions given in their papers. However, applicability of fully developed 2D MHD duct

flow doesn’t necessarily mean an acceptable prediction for 3D MHD flow. The computational

tool needs to be further examined for its accuracy in 3DMHD benchmark cases in comparison

to existing correlations given for 3D MHD pressure drop. Therefore, the validation problem

features the solution of 3D MHD manifold flow in a straight insulating rectangular duct

with sudden expansion, when a uniform transverse magnetic field is present. A sketch of the

problem is shown in Figure 6.3. The details of geometry used for the validation are shown

in Table 6.4.
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Figure 6.3: Schematic illustration of 3D MHD flow in sudden expansion manifold for vali-

dation.

Table 6.4: Geometry details of validation case

Upstream duct half width (d) 0.05 m

Downstream duct half width (b) 4d = 0.2 m

Duct half height (a) 0.8d = 0.04 m

Upstream duct length (Lin) 4d = 0.2 m

Downstream duct length (Lout) 4b = 0.8 m

Expansion ratio (b/d) 4
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The computational tool needs to be examined for both 2D and 3D MHD flow prediction

capability. The results of 2D fully developed MHD flow in a rectangular duct involve both

upstream and downstream profiles in two cross sectional directions, which are shown in

Figure 6.4. As can be seen from the comparison, COMSOL exhibits perfect description of

characteristics for 2D MHD flow.

Figure 6.4: Comparison between analytical [3] and computed solution for 2D fully developed

MHD flow upstream and downstream.
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The 2D fully developed MHD pressure drop relations for both electrically conducting

and insulating duct with rectangular or circular cross section can be written in the following

form with λ as the pressure drop coefficient:

∆P = λ
ρU2

2

x

L
,

where length scale is defined as:

L =

b, half duct width for rectangular duct

R, radius for circular pipe
.

For rectangular duct and insulating wall, the approximate correlation that takes into

account flow resistance in the Hartmann and side layers was obtained by Shercliff [33]:

λ =
2Ha

Re

(
1− 1

Ha
− 0.852

βHa
1
2

)−1

.

If Hartmann walls are insulating, side walls are perfectly conducting, then for rectangular

duct, Hunt et al. [37] gives:

λ =
2Ha

Re

(
1− 0.956

βHa
1
2

− 1

Ha

)−1

.

If all walls are perfectly conducting for a rectangular duct, from Branover [75]:

λ =
2Ha2

Re
· 1

1−Ha−1 − 2.4Ha−
3
2β−1

.

For circular pipe and insulating wall, the relation is obtained by Shercliff [76]:

λ =
3πHa

4Re

(
1− 3π

4Ha

)−1

.

For circular pipe and conducting wall, if Ha ≫ 1, asymptotic relation was obtained

in [77]:

λ =
3πHa

4Re

(
1 + 0.883cwHa− 0.019 (cwHa)2

)
.
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In [4], 3D MHD pressure drop correlations ∆P3D were obtained from computations for a

wide range of parameters:

∆P3D =


ρU2

2

(
kveN ·Ha−1/2 + dve

)
,
Ha3/2

N
< 3

ρU2

2

(
kieN

2/3 + die
)
,
Ha3/2

N
> 3

,

where kve = 0.31γexp + 3.08

dve = 342.92γexp − 1563.85
,

kie = 0.33γexp + 1.19

die = −11.55γ2
exp + 85.43γexp − 264.39

.

In the test case, Ha = 1000 and Re = 210, therefore according to the paper [4], ∆P3D =

603.0 × ρU2

2
. The result computed by COMSOL, derived from the difference of pressure

when assuming fully developed 2D MHD flow, is shown in Figure 6.5 with a predicted

∆P3D = 587.2 × ρU2

2
. The relative difference for these two results is 2.6% which indicates

a very good match between the empirical correlation and COMSOL computation. Here we

should note that U in [4] indicates the bulk velocity downstream of the rectangular duct,

which is Uout in the sketch.

The validations of 2D and 3D MHD flow cases prove COMSOL to be a suitable tool

in computing related MHD problems. A slightly different geometry with the same physical

setting will be used in the next part.

6.3 Computational setup in COMSOL

As stated, the main goals of the current study is to compare the 3D pressure drop of different

manifold designs and establish the correlations for calculating pressure drop for a more

gradual expansion geometry. The sudden expansion validation cases are utilized in further

comparisons, while the mainly computed gradual expansion manifold model is shown in

Figure 6.1. It adds an extra parameter of expansion length Lexp in the geometry, which can

be used to adjust the gradualness of the transition from the smaller upstream duct to larger
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Figure 6.5: Comparison of 3D pressure drop result between relation given by [4] and by

validation case in COMSOL.

downstream duct. All other parameters are basically the same as in sudden expansion cases,

and the walls are insulating as well.

MHD flow, whether 2D or 3D, is a fluid flow added with electric current loops inside,

which generate flow-obstructing Lorentz force that reshapes the flow. Therefore, it cannot

be characterized merely by hydrodynamic Re number. For this reason, the dimensionless

numbers Re and Ha combined can characterize the flow. Based on experimental data [75],

the flow can be considered as laminar if Ha
Re

> (Ha
Re

)cr, where (Ha
Re

)cr = 1
130

for span-wise

magnetic field, (Ha
Re

)cr =
1

225
for wall-normal magnetic field, (Ha

Re
)cr = 2.5× 10−2 for stream-

wise magnetic field. In the planned cases, the lowestHa/Re combination isHa = 1000, Re =

10, 000, which means laminar solver should be chosen for all the cases.

In COMSOL, when using physics definition, various options can be chosen. The “Mag-

netic and Electric Fields” physics from AC/DC module can help couple the electric current
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with the magnetic field applied. However, difficulty arises in defining a single component

constant magnetic field corresponding to the middle part of magnets as in the problem. Also,

the induced magnetic field are not present under inductionless approximation when magnetic

Reynolds number is much smaller than unity. On the other hand, under “Electric currents”

physics the magnetic field can be manually coupled into “external current density” term,

where the flow-induced currents can be taken into consideration. Meanwhile, in “Laminar

flow” physics, the Lorentz force can be inserted in the equation as a volume force term, with

its formula mentioned before. In this way, the manual coupling of electric currents and fluid

flow can be realized.

Based on the already exist analytical solutions for duct MHD flow, the flow in this type

of problems is expected to reach a steady state. Primarily, a finite element based stationary

solver is selected.

In stationary computations, the electric currents and laminar flow are solved simultane-

ously. The direct solver was chosen by using “PARDISO” (Parallel Direct Sparse Solver),

which can take advantage of shared memory multiprocessors to solve large sparse linear sys-

tems of equations. However, the direct solvers, although significantly faster than iterative

solvers, consume a lot of memory. Even though an “out of core” mode can be turned on to

allocate extra memory using hard disc drive, the speed is rather limited in data transmission.

Therefore, the storage of RAM (512GB) was used only. A “fully coupled” or “segregated”

approach are tested for the trade-off between memory and computational time for such a

complicated computation. The fully coupled solver is more memory consuming compared

to the segregated solver, but it was found to be significantly faster. For example, the case

of Ha = 1000, Re = 210, θ = 60◦ required about 6 hours to converge with the fully coupled

solver while the use of a segregated solver resulted in more than 10 days of computations.

It should be noted that upon convergence, both solvers give the same results, shown in Fig-

ure 6.6. In all the cases, the “Double dogleg” nonlinear solver was chosen. The nonlinear

solver is a sophisticated combination of the Steepest descent and Newton-Raphson methods,
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which has a maximum iteration number of 100. The whole solver uses a relative residual tol-

erance of 1×10−6, meaning that both linear and nonlinear solver need to meet this criterion

for convergence.

Figure 6.6: Pressure distribution along center axis for fully coupled and segregated approach,

Ha = 1000, Re = 210, θ = 60◦.

Firstly, a mesh sensitivity study was performed for the case. Due to the symmetric nature

of the problem in direction parallel to magnetic field, the geometry is reduced into half to

enable a more rapid computation using direct solver. Corresponding symmetry boundaries

are added for fluid flow and electric currents. Three types of meshes were constructed for the

gradual expansion geometry, with coarse, normal and fine mesh details shown in Figure 6.7.

The axial pressure and fully developed velocity profile for selected cross section of three cases

are shown in Figure 6.8. From the comparison, conclusion can be made that the normal mesh

is enough to resolve the problem. It includes 50 points for the side layer direction with 12

in the side layer, 40 points for half of the geometry in Hartmann layer direction (parallel

to magnetic field) with 8 points in Hartmann layer. In the axial direction there are a total
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of 110 points with nonuniform distribution. The mesh cells are made clustered near the

beginning and end of expansion region to capture flow variations and the total number of

mesh elements is 220,000.

Figure 6.7: Structured meshes with different density used in COMSOL computations: (left)

coarse, (middle) normal and (right) fine.

6.4 Flow characterization and distributions

For MHD flow in a manifold, the flow characteristics, including velocity distributions, electric

potential, electric currents, and pressure distribution are shown in the current section.

In the small upstream duct and large downstream duct, the flow exhibits fully developed

2D MHD characteristics after certain distance. In fact, the small and big ducts were chosen

to be long enough compared to the expansion region to make sure that the MHD flow

in these two sections is about fully developed to assure that the flow in the expansion,

which is of the most interest in this study, is not affected by the inlet and outlet. The

case with Ha = 1000, Re = 210, θ = 45◦ is chosen to represent this phenomenon. The

2D fully developed velocity profile for small duct is shown in Figure 6.9(a) and large duct

shown in Figure 6.9(b). The velocity possesses a highly uniform core with thin boundary

layers near the wall. In the fully developed flow region upstream in the smaller duct and
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Figure 6.8: Comparison of computed results for three meshes, coarse, normal and fine, (a)

axial pressure and (b) velocity profile.

downstream in the larger duct, the electric currents are two dimensional, and so is the flow.

The electric currents form loops in the half cross section and are symmetric with respect to

the geometric symmetry plane, shown in Figure 6.10. The electric potential change for fully

developed upstream and downstream duct are shown in Figure 6.11(a) and Figure 6.11(b).

From the figures, a linear change of electric potential can be observed for both the upstream

and downstream duct, which corresponds to the steady state solution for 2D MHD duct flow.

To further characterize the 3D MHD flow, similar variables are plotted for the whole

geometry. Here, the case of inlet manifold with insulating wall, and Ha = 5000, Re = 1000,

θ = 60◦ is chosen to demonstrate the flow patterns, shown in Figure 6.12. These parameters

are about in the middle of the computational matrix, such that the observed flow features

are common to almost all computed cases. When the flow enters the expansion region from

the small duct, it experiences 3D effects, while in the small inlet duct itself and in the big

outlet duct the flow is mostly 2D. When entering the expansion region, the flow experiences

strong electromagnetic forces, resulting in the deflection of the flow from its main axial

direction towards the walls as seen in Figure 6.12(a)(b). The velocity profile here becomes

63



Figure 6.9: Upstream and downstream fully developed MHD flow velocity profile for case

Ha = 1000, Re = 210, θ = 45◦.

Figure 6.10: Electric currents in the half cross section for half of upstream and downstream

duct for case Ha = 1000, Re = 210, θ = 45◦.
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Figure 6.11: Upstream and downstream electric potential for case Ha = 1000,

Re = 210, θ = 45◦.

“M-shaped” with high velocity near-wall jets at the manifold top and bottom and a velocity

deficit region in the central part of the cross-section. In this part, the velocity is negative

due to the formation of a recirculation zone (“recirculation flow bubble”), which consists

of a pair of two symmetric counter-rotating standing vortices as seen in Figure 6.12(c).

The vortices occupy the entire expansion region and even extend downstream of it. The

associated electric current distribution in the expansion region is 3D with the dominant

axial current component, shown in Figure 6.12(d). The pressure distribution along the duct

axis in Figure 6.12(e) is linear with the axial distance over the small and big ducts where the

flow is about fully developed. There are significant non-linear changes in the pressure within

the expansion region, including an abrupt pressure drop at the exit of the small duct and a

pressure recovery zone downstream. As seen from this figure, the most significant pressure

drop occurs in the expansion region. The associated 3D MHD pressure drop ∆P3D is defined

at the middle of the expansion region as also shown in Figure 6.12(e). This definition

of the ∆P3D is used throughout the paper for all computed cases. These observations of

the flow are consistent with all previous studies of MHD flows in the expansion region,
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including [42, 44, 45, 56, 50].

The more detailed illustration of the 3D electric currents phenomenon is shown in Fig-

ure 6.13. During the expansion, the electric potential distribution changes, which causes the

electric currents to flow in the axial direction. For 2D electric currents, the circuit closes in

the cross sectional area of the duct, while for 3D electric currents, the circuit exists in the

bulk fluid and the induced Lorentz force in the direction perpendicular to the magnetic field

will push the flow to the side layers, therefore shaping the velocity as the profile shown in

Figure 6.12(c).

Figure 6.14 shows the pressure contour and streamlines in the side layer, where z =

a − a
2
√
Ha

. Similar to the sudden expansion case, the flow right after the expansion will

exhibit different behaviors. Here we define two critical lines, x1 and x2 to help understand

the flow in the side layer. The flow to the left of x1 flows into the expansion wall, the flow

between x1 and x2 enters the Hartmann wall and the flow to the right of x2 stays in the

core flow region. This indicates that due to the distribution of pressure and Lorentz force,

the flow will be separated and redistributed in the side layer, especially when the majority

of flow in the expansion region enters the side layers. The electric currents and Lorentz

force z component (J×B)z contour in the side layers are plotted in Figure 6.15. In the

small duct near expansion, the electric currents are still 2D, and are restricted in the cross-

sectional area. Near the expansion, the currents become 3D and have both negative and

positive x components. Such a current path will lead to a Lorentz force in the +y direction

in the middle of the expansion region and −y direction near the wall. This helps explain the

observation that the pressure is higher in the center flow and lower near the wall.

Figure 6.16 takes a closer look at the z component of Lorentz force in the side layer.

Here, we can conclude that near the expansion where geometry changes, the Lorentz force

induced by axial currents reaches a maximum value, and then decreases further downstream.

The uneven distribution across the duct is caused by the difference in the magnitude of the

axial current, and thus driving the flow upwards or downwards in the y direction.
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Figure 6.12: Characterization of the MHD flow in a gradual expansion at Ha = 5000,

Re = 1000, θ = 60◦. (a) 2D velocity profiles (axial velocity component u) at several axial

locations. (b) 3D velocity streamlines in the xy direction parallel to the magnetic field. (c)

3D velocity streamlines in the xz direciton perpendicular to the magnetic field. (d) 2D/3D

streamlines of the induced electric current. (e) 1D pressure distribution along the duct

centerline showing the definition of ∆P3D.
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Figure 6.13: Electric current streamlines and electric potential contours in the center xz

plane for Ha = 5000, Re = 1000, θ = 60◦.

Figure 6.14: Pressure contour and streamlines in the side layer xy plane at z = a− a
2
√
Ha

for

Ha = 5000, Re = 1000, θ = 60◦.
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Figure 6.15: Electric currents and z direction Lorentz force in the side layer at z = a− a
2
√
Ha

for Ha = 5000, Re = 1000, θ = 60◦.
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Figure 6.16: A more detailed contour of z direction Lorentz force in the side layer at

z = a− a
2
√
Ha

for Ha = 5000, Re = 1000, θ = 60◦.

Figure 6.17: Five different particle paths in the manifold flow for

Ha = 5000, Re = 1000, θ = 60◦.
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Figure 6.17 shows the five different particle paths in the manifold. The left figure

(Figure 6.17(a)) is three different paths in the y direction. Near the center of the duct

(y = 0, z = 0), the fluid particle p1 will go straight through the expansion area in y direc-

tion, but will change its path into the side layer due to the Lorentz forces. The particle p2

entering near (y = −d
2
, z = 0) will be diverted in the larger duct and eventually exit through

the outer side of the duct. Close to the Hartmann wall, the particle p3 will go straight along

the wall in the small duct, involved in the vortex in the expansion region and eventually

exit through the center of the duct. This phenomenon is caused by the difference of pressure

(outer side has lower velocity and higher static pressure, downstream has higher pressure

than upstream), the Lorentz force has a component in +z direction, so the particle is pushed

upwards and form a stationary vortex in the middle across the expansion region and also in

the large duct. The right figure (Figure 6.17(b)) shows the different paths in the z direction

near the wall. Particle p4 enters the small duct in a position near the Hartmann wall and

in the +z region. It shows a path similar to p2 by flowing in the expansion direction and

then exit the duct through straight line in the large duct. Particle p5 represents the flow

in the corner of the duct. It goes through the small duct in the boundary layers and then

continues its path in the boundary layers of the expansion region as well as the large duct.

The viscous force in the boundary layer helps keep the flow in this region consistent and

not entering the main flow during expansion or the core flow with vortices. Overall, the

flow downstream after expansion quickly turns into fully developed state due to the Lorentz

force balancing the pressure, and creating a 2D MHD flow pattern. The main flow changes

happen in the expansion region with particles moving from the side to the middle of the duct

through vortices, middle to outer middle through expansion and side to side due to viscous

force.
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6.5 3D MHD pressure drop

As mentioned before, the 3D MHD pressure drop can be expressed by ∆P3D = k× ρU2

2
, where

k is the 3D pressure drop coefficient. For each expansion angle, the pressure drop coefficient

was calculated by extending the fully developed pressure curve upstream and downstream to

intersect with the expansion region center position, and subtracting the values of two points.

The calculated values for k for different angles are shown in Table 6.5, 6.6 and 6.7.

Table 6.5: Pressure drop coefficient k for expansion angle 45◦

Re/Ha 1000 3000 5000 7000 10000

50 1.380E+03 8.097E+03 1.760E+04 2.915E+04 4.912E+04

100 7.060E+02 4.124E+03 8.872E+03 1.463E+04 2.438E+04

200 3.644E+02 2.122E+03 4.544E+03 7.053E+03 1.165E+04

400 1.914E+02 1.111E+03 2.347E+03 3.699E+03 6.132E+03

600 1.312E+02 7.673E+02 1.612E+03 2.590E+03 4.293E+03

1000 8.000E+01 4.893E+02 1.042E+03 1.723E+03 2.375E+03

2000 3.768E+01 2.714E+02 5.866E+02 9.720E+02 1.458E+03

3000 2.180E+01 1.925E+02 4.169E+02 6.967E+02 1.060E+03

5000 7.794E+00 1.242E+02 2.833E+02 4.921E+02 7.057E+02

10000 9.566E+01 1.702E+02 2.847E+02 4.501E+02

6.5.1 Effect of expansion angle θ, Ha and Re

Characterizing the effect of the expansion angle is one of the key outcome of this study as

adjustments of this parameter can result in optimized manifold designs with a lower MHD

pressure drop and a more uniform flow distribution at the exit of the manifold. The manifold

with gradual expansion can reduce the 3D MHD pressure drop across the expansion region

compared to sudden expansion geometry. Two cases with different Hartmann numbers are
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Table 6.6: Pressure drop coefficient k for expansion angle 60◦

Re/Ha 1000 3000 5000 7000 10000

50 1.637E+03 9.207E+03 2.137E+04 3.394E+04 5.769E+04

100 8.322E+02 4.692E+03 1.048E+04 1.780E+04 2.987E+04

200 4.463E+02 2.444E+03 5.349E+03 8.808E+03 1.462E+04

400 2.394E+02 1.318E+03 2.834E+03 4.671E+03 7.846E+03

600 1.659E+02 9.392E+02 1.992E+03 3.316E+03 5.489E+03

1000 1.056E+02 6.144E+02 1.299E+03 2.135E+03 3.587E+03

2000 5.444E+01 3.280E+02 7.340E+02 1.239E+03 2.079E+03

3000 3.548E+01 2.319E+02 5.530E+02 8.862E+02 1.522E+03

5000 1.688E+01 1.561E+02 3.772E+02 5.958E+02 1.026E+03

10000 2.137E+02 3.430E+02 6.159E+02

Table 6.7: Pressure drop coefficient k for expansion angle 75◦

Re/Ha 1000 3000 5000 7000 10000

50 1.913E+03 1.037E+04 2.357E+04 3.960E+04 6.826E+04

100 1.001E+03 5.409E+03 1.167E+04 2.012E+04 3.480E+04

200 5.307E+02 2.858E+03 6.124E+03 1.042E+04 1.776E+04

400 2.889E+02 1.563E+03 3.400E+03 5.667E+03 9.608E+03

600 2.036E+02 1.126E+03 2.383E+03 4.055E+03 6.838E+03

1000 1.302E+02 7.342E+02 1.584E+03 2.635E+03 4.426E+03

2000 6.935E+01 4.277E+02 9.151E+02 1.519E+03 2.556E+03

3000 4.686E+01 3.098E+02 6.637E+02 1.101E+03 1.794E+03

5000 2.611E+01 2.057E+02 4.568E+02 7.307E+02 1.273E+03

10000 1.109E+02 2.670E+02 4.401E+02
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computed: Ha = 1000, 5000. The results derived from definition of ∆P3D are shown in

Figure 6.18. As can be clearly seen from the figure, the coefficient for pressure drop is

reduced by approximately 30% when switching from sudden expansion geometry to a more

gradual one.

Figure 6.18: Comparison of 3D pressure drop across expansion region between sudden and

gradual expansion manifolds.

The pressure distributions along the duct center axis for three selected angles are shown in

Figure 6.19. It confirms that smaller expansion angles would result in a significant reduction

of the manifold pressure drop coefficient. This trend of reducing the 3D MHD pressure drop

at smaller expansion angles persists at all other Ha and Re computed in this study. The

effect of the Reynolds number Re and Hartmann number Ha on pressure drop coefficient

k is shown in Figure 6.20 for 1000 < Ha < 10, 000 and 50 < Ha < 10, 000. For all Ha

numbers, the pressure drop coefficient decreases as Re increases but the most significant

changes in k occur at lower Re < 1000. The increase of Ha always results in higher k as

seen in Figure 6.20. However, this effect is more pronounced at lower Re.

74



Figure 6.19: Effect of expansion angle on the pressure distribution along the center axis.

Figure 6.20: Effect of Ha and Re. Pressure drop coefficient k (a) as a function of Re and

(b) as a function of Ha.
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6.5.2 Construction of correlation

As stated in Chapter 1, the main goal of the manifold study is to deduce accurate 3D MHD

pressure drop correlations based on all 150 cases computed. In the initial effort to develop

a correlation for k, we attempted to use the parameters suggested in the 2D Ludford layer

theory for MHD flows with abrupt changes in the duct geometry that occur in the plane

parallel to the applied magnetic field [30]. This theory attributes high MHD pressure drop

to the formation of a thin internal MHD shear boundary layer located near the sudden

geometry change.

The asymptotic analysis of Ludford layers (see e.g. [78]) suggests the existence of essen-

tially three possible flow regimes depending on the force balance inside the Ludford layer. The

viscouselectromagnetic (VE) regime holds for N ≫ Ha
3
2 , and the inertial-electromagnetic

(IE) regime for N ≪ Ha
3
2 . A third regime where all three forces might be important is the

inertial-viscouselectromagnetic (IVE) regime that holds for N ∼ Ha
3
2 . In accordance with

the Ludford layer theory, the pressure drop coefficient scales as NHa−
1
2 in the VE regime

and as N
2
3 in the IE regime. The earlier analysis and the developed correlations for k in the

MHD flow with a sudden expansion (θ = 90◦) in [4, 56] suggest two regimes, resembling

VE and IE regimes in the Ludford layer theory, with the transition threshold at Ha
3
2 . The

same two regimes were initially sought in our studies for θ = 45◦, 60◦ and 75◦. However,

the analysis of the 150 computed cases has not clearly confirmed the existence of these two

regimes. In fact, the best fit for all computed cases was found using NHa−
1
2 , which in the

Ludford layer theory represents the VE regime. This departure from the classical Ludford

layer theory can be attributed to its limitations compared to the full computations. Namely,

the present computations indicate various 3D flow features, whereas the Ludford layer theory

is 2D. Moreover, the Ludford layer theory cannot predict the formation of a recirculation

flow bubble as seen in the present studies, which is an important flow characteristic with a

significant impact on the pressure drop.
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Figure 6.21: Best fit for the obtained data for the 3D MHD pressure drop coefficient k for

different expansion angles, based on the 150 computed cases.

The linear regression analysis that incorporated all computed data point for three ex-

pansion angles suggests the following correlation:

k = (0.0314θ + 1.031) ·NHa−
1
2 (6.1)

where θ is in degree. The high accuracy of this fitting formula is illustrated in Figure 6.21

that suggests the R-squared parameter R2 at 0.9992, which is very close to unity, meaning

that the proposed linear regression function in Eq. 6.1 fits the computed data very well. To

compare, R2 in the proposed correlations for the flow with sudden expansion [4] is close but

slightly lower: 0.9989 in the VE regime and 0.9980 in the IE regime.

6.6 Recirculation and flow development length

Apart from the MHD pressure drop, the flow field in the manifold requires a special consid-

eration. In the blanket developments, the optimal manifold design should provide a uniform
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Figure 6.22: To the definition of the recirculation length Lrec and the flow development

length Ldev. Velocity distribution and flow streamlines are shown for Ha = 5000, Re = 1000,

θ = 60◦.

flow distribution at the exit of the big duct to guarantee that all poloidal channels are

equally fed. Therefore, it is important to make sure that the big duct is long enough so that

a uniform fully developed flow can be formed before the liquid turns to flow poloidally. In

practice, this requirement cannot be easily met because of the limited available space at the

bottom of the vacuum chamber of a fusion reactor where the manifolds are usually placed.

The two related flow characteristics that need to be assessed are the flow recirculation length

Lrec and the flow development length Ldev as shown in Figure 6.22.

Here, Lrec is defined as a length over which the axial velocity component at the duct axis

is negative. The negative axial velocity indicates the formation of the two symmetric vortical
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Figure 6.23: A recirculation flow bubble in the expansion region at

Ha = 1000, Re = 1000, θ = 45◦. 3D flow streamlines are shown.

structures stretched in the flow direction as shown in Figure 6.12(c), which we also refer to

as a “recirculation flow bubble”. The other parameter, Ldev, is a length of the duct section

located downstream of the expansion zone where the flow develops to the fully established

one. Both Lrec and Ldev are strongly affected by Re and Ha and depend on θ.

The recirculation flow bubble is shown in Figure 6.23, where the 3D flow streamlines are

plotted inside the expansion region and the two short adjacent duct sections upstream and

downstream. As seen in this figure, at relatively low Re, the recirculation flow bubble is

slightly bigger than the expansion section. The effect of the Ha number on the recirculation

flow is illustrated in Figure 6.24, where 2D flow streamlines are plotted in the duct midplane

y = 0. The figure shows that the recirculation flow bubble becomes less stretched in the

flow direction and moves closer to the entrance of the expansion region as the Ha number

increases. When Ha is increased from 1000 to 10,000 the recirculation flow length becomes

roughly two times shorter.

The effect of Re on the recirculation flow is more complicated as shown in Figure 6.25.

At the lowest Re of 50, the recirculation flow bubble is almost all localized within the expan-
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Figure 6.24: Effect of Ha on the recirculation flow at Re = 1000, θ = 60◦. 3D streamlines

are plotted in the xz direction.
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Figure 6.25: Effect of Re on the recirculation flow bubble for Ha = 1000, θ = 60◦.

sion region. At higher Re (100 < Re < 3000) it stretches further downstream outside the

expansion region reaching several sizes of the expansion region. If Re further increases, the

recirculation bubble disappears as seen in Figure 6.25 for Re = 5000 and Re = 10, 000. This

phenomenon can be explained by the fact that when Re is high enough compared to Ha, the

flow is closer to hydrodynamic state with Lorentz forces stabilizing it. Typical hydrodynam-

ics flow in a gradual expansion duct will not form recirculation structure naturally. When

Ha is relatively high, the flow obstructing electromagnetic force will push the flow to the

boundary layers, thus resulting in a recirculation zone in the bulk flow. Figure 6.26 shows

the effect of the expansion angle θ, which manifests in more stretching the recirculation flow

bubble in the flow direction and moving it closer to the entrance of the expansion region as

θ is increased.

The computed Lrec and Ldev for all 150 flow cases are summarized in Figure 6.27 and

Figure 6.28. In these figures, the two lengths are scaled using the size of the expansion region

Lexp, which seems to be a relevant length scale for this problem (not counting the case of
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Figure 6.26: Effect of the expansion angle on the recirculation flow bubble at

Ha = 5000, Re = 1000. The two vertical lines show the location of the expansion re-

gion.

Figure 6.27: Effect of Re and Ha on the recirculation flow length: (a) θ = 45◦, (b) θ = 60◦,

and (c) θ = 75◦.

82



Figure 6.28: Effect of Re and Ha on the flow development length: (a) θ = 45◦, (b) θ = 60◦,

and (c) θ = 75◦.

θ = 90◦ where Lexp = 0). The general trend in the changes of Lrec for all computed expansion

angles is the fast increase with Re for Re < 5000 followed by its saturation for Re ∼ 5000.

At higher Re, the recirculation flow bubble has not been identified for almost all Ha and θ

as appears to be a consequence of a strong inertia impact on the flow. The flow development

length increases almost linearly with Re for the majority of the computed cases. The slope

of the line Lrec

Lexp
as a function of Re depends on the Hartmann number. Higher slopes are

seen at lower Ha. This suggests the trend of reducing the flow development length in a

stronger magnetic field. Typically, the flow development length is significantly higher than

the size of the recirculation bubble. The highest Lrec

Lexp
of 20 was observed in the case of the

most abrupt expansion of θ = 75◦, while the maximal Lrec

Lexp
is 9 at Re = 5000 for the same

expansion angle.

6.7 Importance of inertia forces

In the first analyses of MHD flows with sudden changes of the duct geometry that occur

in the plane parallel to the applied magnetic field, the computational model was limited to

the so-called inertialess approximation. In this approach, following the order of magnitude
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analysis at high Hartmann numbers, the inertia forces are neglected in the entire flow domain.

In doing so, the flow can be subdivided into an inviscid core, where strong electromagnetic

forces are balanced by pressure gradients, and thin viscous boundary layers, including near-

wall (Hartmann and side layers) and internal shear layers, e.g. the Ludford layer. In [42], a

special term “expansion layer” was coined to emphasize differences between the 2D Ludford

layer and the actual internal boundary layer that forms in the 3D expansion region near the

abrupt change in the flow geometry. The role of inertia forces was further investigated in the

consequent studies (see e.g. [44]). Strong inertia effects that manifest themselves through

the velocity distribution, pressure and electric currents were found as the Reynolds number

increases or/and the Hartmann number decreases.

In the present study of MHD flows in ducts with a gradual expansion, the important role

of the inertia forces was also found for almost all computed cases except for several cases

at lower Re (typically, Re < 1000). In Figure 6.29, all forces acting on the flow are plotted

along the duct axis, i.e. within the core flow region. It is clearly seen that the inertia and

viscous forces here are negligibly small, while the electromagnetic forces are balanced by the

pressure gradient. The effect of inertia forces, which are localized within the thin internal

boundary layer at the entrance to the expansion region are illustrated in this study by

comparing the full computations where all forces are retained with the computations based

on a reduced flow model, where the convective terms in the momentum equation are dropped.

The reduced flow model can easily be chosen in COMSOL without any programming. In

fact, the full computations were performed first and then the inertialess computations were

run using the results from the full model as an initial condition to reduce the computational

time. Although the inertia forces are confined in the thin boundary layer, their effect is

global, i.e. significant changes can be seen in the integral flow characteristics, such as the

overall pressure drop and the size of the recirculation zone. The comparisons are made in

Figure 6.30 for the MHD pressure drop and in Figure 6.31 for the recirculation flow.

For a very small flow velocity (Re = 100) and high Ha of 5000 the difference in the
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pressure drop between the two models is only 3% (Figure 6.30(a)). This suggests that for

such a low Re, the flow is inertialess. If Re increases, the discrepancy increases dramatically,

showing a difference of 16% at Re = 1000 (Figure 6.30(b)) and 40% at Re = 5000 (Fig-

ure 6.30(c)). This obviously emphasizes a strong inertia effect. Similar trends showing higher

pressure drops computed with the full model can be seen at other Ha and expansion angles.

The 3D flow streamlines computed with the two models are compared in Figure 6.31. Both

Ha and Re in this comparison are high (Ha = 5000, and Re = 5000) so that the differences

between the two models are more distinctive. When the inertialess flow model is used, the

recirculation flow bubble is confined to the expansion region, and the flow upstream and

downstream of the bubble is fully developed. When using the full flow model with the iner-

tia forces, the recirculation flow extends over the downstream duct. The flow development

length being significantly higher than the length of the expansion region is clearly seen. All

these observations do confirm that under the real blanket conditions where both Ha and Re

can be significantly higher compared to the parameters in the present study, using the full

flow model is mandatory. Using the inertialess flow model will significantly underestimate

the MHD pressure drop.
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Figure 6.29: Force balance in the core flow at Ha = 5000, Re = 3000, θ = 60◦. The forces

are plotted along the duct axis.

Figure 6.30: Effect of inertia forces on the pressure distribution for Ha = 5000, θ = 60◦ for

different Re.
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Figure 6.31: Recirculation flow bubble in 3D computed with and without inertia forces for

Ha = 5000, Re = 5000, θ = 60◦.
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CHAPTER 7

MHD flow in a supply duct (flow in a fringing

magnetic field)

7.1 Mathematical formulation of the problem

The sketch showing a MHD flow in the rectangular access duct under the influence of fringing

magnetic field is shown in Figure. 7.1. The outlet of the access duct was selected to avoid

turbulent hydrodynamic flow under high Hartmann and Reynolds numbers. The LM flows

into the access duct with width 2d, height 2a, and length L at the velocity Uin. The flow

occurs in the presence of a transverse fringing magnetic field B, which has uniform regions

at the beginning and end of the section, and steep change in the middle.

As shown in the figure, the cartesian coordinate system is chosen such that the LM flows

in x direction, which is aligned with center axis of the duct. The magnetic field is applied in

y direction. Different fringing fields with various maximum magnetic field intensity gradient(
dB
dx

)
max

are used for study and will be explained later.

The rectangular duct has a similar dimension to DCLL blanket design with d = a =

0.0439m. The length of the duct should meet the requirement for the flow to change from

fully developed 2D MHD flow to 3D MHD flow and then hydrodynamic flow. Here the duct

length L = 30d. The flow enters the duct under the influence of a constant magnetic field. In

the middle of the duct, the magnetic field decreases suddenly. At the exit of the duct, a small

constant magnetic field Badd is intentionally added to assure that laminar flow model could

be used. The eutectic alloy PbLi is used as a working fluid, and the properties including
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Figure 7.1: Schematic illustration of formulation of the problem.

density ρ, dynamic viscosity µ and electric conductivity σ are defined at 500◦C. In real

blanket, the PbLi flow is decoupled from electrically conducting walls through insulating

flow channel insert. Therefore, the computations in current study are limited to the fluid

flow domain. The fringing magnetic field and inlet velocity are varied to ensure the flow

Hartmann and Reynolds numbers can reach 10,000.

For LM MHD flow in a fringing magnetic field, the basic equations used are the same as

those in MHD duct and manifold flow for incompressible, isothermal, laminar flow written

in inductionless approximation [78] which assumes that the induced magnetic field can be

neglected compared to the applied one. The boundary conditions for fluid flow includes the

no slip condition at the duct side walls, Uin as uniform inlet velocity and p = 0 at the outlet.

Due to the insulating duct assumption, the Neumann boundary condition which enforces no

electric current through the wall is applied to all the duct boundaries.

Similar to the MHD flow in a manifold, the Hartmann number Ha and Reynolds number
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Re are chosen to help characterize the flow. Here, the Hartmann number is given by Ha =

Bmaxd
√

σ
µ
and Bmax is the maximum magnitude of the magnetic field at the inlet of the

duct. In order to help establish the correlation for 3D MHD pressure drop, which is one

of the main goals of the study, another dimensionless parameter Ha∗ is constructed as

Ha∗ = abs
((

dB
dx

)
max

)
d2
√

σ
µ
.

As mentioned, the fringing magnetic field can be represented through approximation

relation By = B0 ×
1−tanh[γ(x

d
−c)]

2
+ Badd, where

1−tanh[γ(x
d
−c)]

2
is the function to simulate the

distribution of real magnetic field decaying in the fringing region [61]. B0 is the difference

between the maximum and minimum intensity of the magnetic field, Badd is the additional

magnetic field component, and c is a constant. In this formula, γ determines the maximum

gradient of the magnetic field. Four different values of γ are chosen: 0.3, 0.45, 0.75 and

1. The resulting magnetic field distributions are shown in Figure 7.2. The magnetic field

gradient increases with γ and the change becomes more sudden at the same time. The

Ha∗ is related to the absolute value of maximum magnetic field gradient, and therefore, by

taking the derivative of the relation for magnetic field and finding the maximum value, the

Ha∗ can be expressed as Ha∗ = γd
2

√
σ
µ
. From this relation, Ha∗ is linearly related to γ as

Ha∗ = 585.02γ.

Naturally, the magnetic field should meet the “curl free/divergence free” condition, or

∇ · B = 0,∇ × B = 0. The magnetic field that satisfies the conditions is named as “full

field” or “consistent field” [61], while the magnetic field with only one component is called

“reduced field” or “inconsistent field”. The reduced field has only one component and is

given by Bred = (0, By(x), 0) where By(x) is defined as By(x) = B0 ×
1−tanh[γ(x

d
−c)]

2
. The full

field takes the form Bfull = (Bx(x, y), By(x, y), 0), and the components are related to the

reduced field by

By = B0 ×
[
By(x)−

∂2By(x)

∂x2
· y

2

2
+

∂4By(x)

∂x4
· y

4

24

]
;

Bx = B0 ×
[
∂By(x)

∂x
· y − ∂3By(x)

∂x3
· y

3

6

]
.
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Figure 7.2: Magnetic fields used in current study with varying γ.

[61]. It depends on both x and y directions. Figure 7.6 shows the comparison of results

computed by full field, reduced field and from the experiment [5]. Two pressure related

characteristics are compared, the center axis pressure gradient scaled as dP
dx

∗
=

dP
dx

σUB2 and

the difference of pressure (transverse pressure difference) in Hartmann layer and side layer,

which is given by ∆P ∗ = ∆P
σdUB2 . The difference of pressure gradient distribution along the

axial direction between reduced field and full field is quite small, and slightly different from

the experiment. For the transverse pressure difference in the Hartmann layer and side layer,

the relative difference of peak value between reduced field and full field is less than 10%,

while the experiment gives a significantly higher value (35% difference) than the full field.

Therefore, we consider that the reduced field is enough for capturing flow characteristics

and generating precise 3D MHD pressure drop for measurement. The observation from the

results of COMSOL is consistent with Chico [61] that the effect of other field components

on the pressure drop is small.

In this study, the Ha and Re are chosen as Ha = 1000, 2000, 3000, 5000, 10000 and Re =
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Figure 7.3: Reduced magnetic field with only y-component By(x) in (left) 2D, (right) 3D.

Figure 7.4: Full magnetic field By(x, y) in (left) 2D, (right) 3D.

Figure 7.5: Full magnetic field Bx(x, y) in (left) 2D, (right) 3D.
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Figure 7.6: Comparison of full/reduced field computational results and ALEX [5] experi-

mental results for pressure gradient and transverse pressure difference.

1000, 2000, 5000, 10000, Ha∗ = 175.5, 263.3, 438.8, 585.0. The total number of computed

cases is 80, with corresponding interaction number N shown in Table 7.1. Based on the

experimental data [75], the flow is assumed to be laminar based on the empirical criterion

for turbulence suppression in MHD channel flows for the case of a wall-normal magnetic field

that suggests the MHD flow laminarization for Ha
Re

>
(
Ha
Re

)
cr
≈ 1

200
. In this study, the lowest

Ha is 1000 and the highest Re is 10,000, and therefore the minimum value of Ha
Re

is 0.1,

which means the flow is laminar. Due to the nature of fringing magnetic field distribution,

the magnetic field intensity at the outlet of the duct can reach a value where turbulence

cannot be suppressed by electromagnetic force anymore. Therefore, the added magnetic

field Badd functions as the artificial term to meet the minimum laminar flow requirement.

7.2 Validation case for quasi-2D MHD flow

The validation case of 2D fully developed MHD duct flow under the influence of a uniform

magnetic field was already mentioned in the last manifold problem. However, COMSOL’s
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Table 7.1: Interaction number N for different Ha and Re cases

Ha/Re 1000 2000 5000 10000

1000 1000 500 200 100

2000 4000 2000 800 400

3000 9000 4500 1800 900

5000 25000 12500 5000 2500

10000 100000 50000 20000 10000

capability of predicting MHD flow in a spatially-varying magnetic field is still unknown.

Therefore, a validation case was created which involves the same geometry and magnetic

field given in [62]. The magnetic field is expressed by one component:

By = Bu ×
1 + tanh(10x+ 7.315)

2
.

The geometry and magnetic field distribution are shown in Figure 7.7. In this case,

Ri=0.0111 m, Ro=0.0127 m, L=0.8 m, Re = 9700, Ha = 322. Here the characteristic

length is chosen to be the inner radius Ri.

The formula of 2D fully developed MHD flow pressure drop in a circular conducting duct

is given by Miyazaki et al. [79]:

∆p = Le ·
cw

1 + cw
· σfUB2

0 ,

where the wall conductance ratio is defined by:

cw =
σw

σf

· R
2
o −R2

i

R2
o +R2

i

.

For the estimation of pressure drop for MHD flow in a strong fringing magnetic field

region, Miyazaki et al. [6] proposed a simple integral method of pressure gradient along

magnetic field:

∆p =
cw

1 + cw

∫
σfUB2dx,
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Figure 7.7: Schematic illustration of 3D MHD flow in fringing magnetic field for validation.

while for a steady flow with constant temperature, the relation can be simplified by:

∆p =
cw

1 + cw
· σfU

∫
B2dx.

Therefore, by comparing results computed by COMSOL and predicted by Miyazaki,

the computational tool can be shown to have the ability to simulate MHD flow in a fringing

magnetic field. The comparison of pressure drop for a fixed distance of ∆L=0.6m using same

fully developed pressure gradient estimation method in [62] by COMSOL and by Miyazaki et

al. [6] is shown in Figure 7.8. An excellent agreement can be seen from the figure, indicating

that the prediction of pressure distribution is precise for such a flow.
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Figure 7.8: Comparison of results given by Miyazaki et al [6] and COMSOL.

7.3 Validation case for the rectangular duct for high Hartmann

number

Despite the successful validation of quasi-fully developed MHD flow in a fringing magnetic

field for COMSOL, more studies are needed for high Hartmann number cases where the axial

currents will dominate over the cross-sectional currents, when 3D effects are more prominent.

The computational results for high Hartmann number cases would be compared against ex-

perimental data for rectangular duct obtained in [5] (ALEX results), in which measurements

of MHD pressure drop were performed for both rectangular duct and circular pipe geome-

tries, and for two sets of Ha/Re combinations. The details of the ALEX experiments are

shown in Table 7.2. The axial pressure distribution and the transverse pressure difference

within Hartmann and side layers are shown in Figure 7.9. In this validation, the rectangular

duct case with Ha = 2900 and Re = 540 was selected.

The geometry used for the validation is shown in Figure 7.10, in which d = a = 0.0439m,
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Table 7.2: Details of ALEX experimental cases

Parameter Round Square

duct half width, cm 5.41 4.39

wall conductance ratio 0.03 0.07

B field (max/min), T 2.08/0.97 2.3/1.1

Ha (max/min) 6640/3070 5800/2900

N (max/min) 11000/606 126000/540

U (max/min), cm/s 27.9/7.0 33.9/0.58

Figure 7.9: ALEX results for rectangular (square) duct: (left) axial pressure distribution at

centerline, (right) transverse pressure difference for Hartmann and side layers.
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Figure 7.10: Schematic illustration of case validation of ALEX results.

L = 30d. In this case, a reduced form of magnetic field was chosen with the maximum

magnetic field intensity being 1.1T . A specific form of the magnetic field with γ and d

defined in [61] was used for approximation of experimental magnetic field, which gives:

By = 1.1×
1− tanh[0.45( x

0.0439
− 0.33)]

2
.

The magnetic field defined in computation is plotted against the experimental field in Fig-

ure 7.11, in which the two fields correspond with each other very well.

The comparisons of results from Reed et al. [5] and COMSOL for the described case

are shown in Figure 7.12. Also, the computed results from HIMAG by previous studies

are plotted on the figure. As mentioned in [5], the axial pressure gradient is scaled as:

dP
dx

∗
=

dP
dx

σUB2 and transverse pressure difference scaled as: ∆P ∗ = ∆P
σbUB2 . A good match can

be observed for the results from all three data for the dimensionless pressure gradient along

axis. While for the transverse pressure difference, HIMAG and COMSOL correspond well

with each other, with slight deviation from the experimental data. The results indicate that
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Figure 7.11: Comparison of magnetic field used in experiment and COMSOL.

COMSOL can accurately predict the MHD flow in a fringing magnetic field.

7.4 Computational setup in COMSOL

The computational setup for MHD flow in a fringing magnetic field in COMSOL is quite

similar to that in the expansion/contraction manifold. Instead of being constant, a spatially-

varying magnetic field should be defined properly, which can be realized through analytical

function definition in COMSOL. The electric currents caused by fluid motion and the Lorentz

forces are user-defined in the laminar flow and electric currents physics section. Also, various

solvers can be chosen for computations, with iterative/segregated solvers consuming less

memory but require more time for convergence, compared to the direct solver which can

be more efficient but needs a large amount of memory. Based on the study of the relation

between number of mesh elements and virtual memory required, a total maximum number of

around 500,000 elements can be used for computation considering the 512GB RAM capacity
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Figure 7.12: Comparison of axial pressure gradient from experiment, HIMAG and COMSOL.

Figure 7.13: Three types of structured meshes used in mesh sensitivity study: (left) coarse,

(middle) normal and (right) fine.

using direct solver. The mesh elements are clustered near the center of the duct where

the absolute value of magnetic field gradient reaches maximum to better resolve the flow

characteristics. Again, at least 7 elements in the Hartmann layer and 12 points in the side

layer are guaranteed to precisely compute the flow in these regions.

Before continuing with the computational matrix, a mesh sensitivity study was con-

ducted. Three types of meshes were created, as shown in Figure 7.13. The coarse mesh

consists of 1,075,200 elements, the normal mesh has 2,100,000 elements and the fine mesh

has 4,963,200 elements. Results of axial pressure gradient and transverse pressure difference

for three types of meshes are shown in Figure 7.14. The normal and fine meshes exhibit
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Figure 7.14: Comparison of results for (left) axial pressure gradient and (right) transverse

pressure difference for three meshes.

very small difference for the results, which are not exactly the same as the coarse mesh.

Therefore, the normal mesh is considered to be enough for solving this problem.

7.5 Flow characterization and distributions

Similar to description of flow in a manifold, the flow in a fringing magnetic field needs to be

characterized for velocity, pressure, electric current changes.

The liquid metal PbLi enters the non-conducting rectangular duct and quickly becomes

fully developed 2D MHD flow in the uniform magnetic field region. When approaching

the middle of the duct, the flow experiences 3D effects for both velocity, pressure, electric

potential and electric currents. Such a region is related to the abrupt change of magnetic

field and the resulting Lorentz force. The Lorentz force reshapes the flow velocity field,

causing the induced electric currents to change from 2D cross-sectional to 3D with axial

component. This change will also cause dramatic 3D MHD pressure drop, which resembles
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the effect of a sudden change in geometry. The 3D effects are also determined by Ha∗,

which controls the gradualness of the change of magnetic field. The extreme case of uniform

magnetic field will provide lowest pressure drop but is not realistic for fringing field. In this

section, the typical characteristics of the flow will be shown for particular case of Ha =

3000, Re = 2000, Ha∗ = 263.3, which is about in the middle of the computational matrix

and thus considered a representative case of the flow. The effect of Ha,Re,Ha∗ on the

flow is prominent and will be further explained. The characteristics of the flow includes 3D

electric currents, 3D MHD pressure drop, flow redistribution near the center of the duct and

2D cross section flow velocity contours, which will be illustrated through 1D, 2D and 3D

figures.

Figure 7.15 shows the main characteristics of the MHD flow in a fringing magnetic field.

The 2D velocity contour illustrates axial velocity change along the duct, shown in Fig-

ure 7.15(a). The flow enters the rectangular non-conducting duct with plateau-like fully de-

veloped velocity, and continues to remain the same profile until close to the center of the duct,

where dB
dx

increase dramatically, and the flow is diverted into the side layers due to Lorentz

forces. The mid-plane (y = 0) velocity streamlines in Figure 7.15(b) clearly describe the flow

characteristics in the middle of the duct, and it can be observed that two steady counter-

rotating vortices are present. The vortices are created by the flow-obstructing Lorentz force

due to axial electric currents, which will be explained later. The pressure along axial direc-

tion shown in Figure 7.15(d) is made up of three parts: a fully-developed 2D MHD for 1/4 of

the total duct length, a rapidly dropping and slowly rising 3D MHD pressure change for 1/2

of the duct, followed by another fully-developed 2D MHD with weaker magnetic field for 1/4

of the duct. The 3D MHD pressure drop ∆P3D is defined such that it is measured by inter-

secting the middle position of the duct (where dB
dx

reaches maximum value) with upstream

and downstream fully developed 2D MHD pressure line. Besides velocity and pressure, the

electric currents are also changing in different sections of the duct, shown in Figure 7.15(c).

Near the inlet, the electric currents gradually become 2D cross-sectional due to the nature
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Figure 7.15: Characterization of MHD flow in a fringing magnetic field for

Ha = 3000, Re = 2000, Ha∗ = 263.3. (a) 2D velocity contour along axial direction for

MHD flow in fringing field. (b) 3D velocity streamlines in xz direction (c) 2D/3D electric

currents streamlines (d) 1D pressure distribution along the center line showing the definition

of ∆P3D.

of fully developed 2D MHD flow. In this section, the Lorentz force J×B is pointing at −x

direction and obstruct the core flow to create a flat velocity profile with very thin Hartmann

and side layers. Under the effect of fringing magnetic field, the electric currents develop an

axial component, and the corresponding Lorentz force alters its direction to y, pushing the

flow to side layers. Such a phenomenon becomes less prominent when entering the second

developing section, where the electric currents return to 2D near the outlet and the velocity

takes a much longer distance to become fully developed again.

In order to understand the 3D MHD effects in the middle of the duct where abrupt

change of magnetic field happens, the electric potential and electric currents at y = 0 plane

are shown in Figure 7.16. For the region right after fully developed flow x < −0.15m, the
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Figure 7.16: Electric current paths and electric potential contour in the y = 0 center plane

for Ha = 3000, Re = 2000, Ha∗ = 263.3.

Figure 7.17: Pressure contour and velocity streamlines in y = 0 center plane for

Ha = 3000, Re = 2000, Ha∗ = 263.3.

electric potential is more linearly distributed. The 3D effect can be observed when electric

potential is more uniform in the y direction and steeply changes near the wall. Such a

phenomenon causes the electric currents to flow in the axial direction, whose circuit is closed

upstream and downstream of each xz plane. The resulting Lorentz force will exhibit different

directions, pointing +y for the y > 0 region and −y for y < 0 region.

Figure 7.17 shows the pressure and streamlines in Hartmann layer at y = −b+ b
2Ha

. Near

x = 0, there exists a low pressure area, where the pair of counter-rotating vortices starts.

The pressure recovery after x = 0 cause the flow to recirculate in the middle of the duct.

The flow which is not involved in the center vortices is diverted into the region near the

wall, and after passing the recirculation zone, gradually returns to the center of the duct.
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The streamlines clearly illustrates this phenomenon, which also helps explain the effect of

Lorentz force on the flow characteristics.

7.6 3D MHD pressure drop

The 3D MHD pressure drop is closely related to the 3D nature of the flow near the center of

the duct, which is caused by the sudden change of fringing magnetic field, and the resulting

3D electric currents. The detailed observation of physics of the flow are already explained

in previous section, and in this section the main focus is on the analysis of pressure drop

and establishment of correlations. The measurement of 3D MHD pressure drop ∆P3D has

been defined in Figure 7.15(d). As mentioned, in this study, the dimensionless parameters

are chosen such that Ha = 1000, 2000, 3000, 5000, 10000;Re = 1000, 2000, 5000, 10000 and

Ha∗ = 175.5, 263.3, 438.8, 585.0. In total, 80 cases were finished and the corresponding

pressure drops were computed to fill into matrix, shown in Table 7.3, 7.4, 7.5 and 7.6.

Table 7.3: Pressure drop coefficient k for Ha∗ = 175.5

Ha/Re 1000 2000 5000 10000

1000 4.419E+01 2.385E+01 1.155E+01 7.273E+00

2000 1.173E+02 6.984E+01 3.374E+01 2.020E+01

3000 2.098E+02 1.271E+02 6.085E+01 3.563E+01

5000 4.427E+02 2.505E+02 1.196E+02 7.034E+01

10000 1.099E+03 6.415E+02 2.664E+02 1.901E+02

7.6.1 Effect of Ha, Ha∗ and Re

Characterizing effect of Ha∗ on the pressure drop coefficient is one of the main goals of

the study for the reason that it is related to the suddenness of change of magnetic field.

Figure 7.18 shows the dimensionless pressure distribution along center axis of the duct for
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Table 7.4: Pressure drop coefficient k for Ha∗ = 263.3

Ha/Re 1000 2000 5000 10000

1000 6.055E+01 3.350E+01 1.552E+01 8.700E+00

2000 1.644E+02 9.549E+01 4.493E+01 2.645E+01

3000 2.847E+02 1.623E+02 8.155E+01 4.726E+01

5000 5.802E+02 3.284E+02 1.630E+02 9.671E+01

10000 1.423E+03 7.853E+02 3.747E+02 2.236E+02

Table 7.5: Pressure drop coefficient k for Ha∗ = 438.8

Ha/Re 1000 2000 5000 10000

1000 7.755E+01 4.510E+01 2.176E+01 1.291E+01

2000 2.094E+02 1.219E+02 6.543E+01 4.010E+01

3000 3.704E+02 2.158E+02 1.085E+02 7.051E+01

5000 7.477E+02 4.360E+02 2.096E+02 1.348E+02

10000 1.936E+03 1.167E+03 5.012E+02 3.163E+02

Table 7.6: Pressure drop coefficient k for Ha∗ = 585.0

Ha/Re 1000 2000 5000 10000

1000 9.153E+01 5.305E+01 2.500E+01 1.511E+01

2000 2.472E+02 1.447E+02 7.551E+01 4.279E+01

3000 4.246E+02 2.502E+02 1.270E+02 9.221E+01

5000 8.924E+02 5.012E+02 2.607E+02 1.594E+02

10000 2.100E+03 1.158E+03 7.099E+02 4.307E+02
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Figure 7.18: Effect of Ha∗ on pressure distribution. Dimensionless pressure is shown along

the duct center axis.

all Ha∗, for Ha = 5000, Re = 2000. As can be seen, the pressure drop coefficient significantly

increases by over 2 times when Ha∗ increase, which corresponds to the steeper change of the

magnetic field. This trend persists for all other Ha and Re combined and is vital in studying

the effect of fringing field on the MHD flow.

The effect of Re and Ha on k is shown in Figure 7.19. The 3D MHD pressure drop

coefficient decreases with Re when Ha,Ha∗ are fixed, which is a result of increased flow

velocity and the inertia force making the flow pressure distribution smoother. While for the

same Re,Ha∗, the pressure drop coefficient will increase with Ha. This is caused by higher

flow-obstructing Lorentz force due to the increase of magnetic field intensity. When Ha,Re

are fixed, the pressure drop coefficient becomes higher when Ha∗ increases.
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Figure 7.19: Pressure drop coefficient k (a) as a function of Re, and (b) as a function of Ha.

7.6.2 Construction of correlation

After studying the effect of Ha,Ha∗ and Re on 3D MHD pressure drop, the correlation is

constructed using the form ∆P3D =
(
s ·HaaReb

)
·
(

ρU2

2

)
, where s, a, b are three coefficients

that need to be determined. The power coefficients a, b are computed using R-square linear

regression analysis to find the highest R-square value from the range a = −3 ∼ 3, b = −3 ∼ 3.

The optimum a, b values are obtained for different Ha∗ and the results are highly consistent.

The linear regression gives the value of a = 1.33, b = −0.8. This indicates that the pressure

drop is dependent on Ha,Re at the same time as expected. The last step is to find out the

relationship between s and Ha∗, and with a, b fixed, the s values can be easily calculated

for curve-fitting against Ha∗. The second-order polynomial gives a perfect fitting with the

correlation s = −5.09× 10−6Ha∗2 +6.96× 10−3Ha∗ +0.2416, so that the correlation for the

3D MHD pressure drop coefficient k is constructed such that:

k = (−5.09× 10−6Ha∗2 + 6.96× 10−3Ha∗ + 0.2416) ·Ha1.33Re−0.8 (7.1)

This correlation describes the pressure drop for a data range of 1000 < Ha < 10000,

1000 < Re < 10000, 175 < Ha∗ < 585. The data points for 80 cases are plotted on
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Figure 7.20: Best fit for the obtained data for the 3D MHD pressure drop coefficient k for

different magnetic fields, based on 80 computed cases.

the same figure against the correlation, and the R-square value is 0.9967, which indicates

the correlation to be a perfect fit for predicting the 3D MHD pressure drop, as shown in

Figure 7.20.

7.7 Recirculation and flow development zone

Besides the 3D MHD pressure drop, the flow demonstrates other 2D and 3D characteristics.

At the sudden change of magnetic field, the flow is obstructed by the Lorentz forces, and

hence two symmetric counter-rotating vortices form. The vortices exist in a certain region,

defined here as the recirculation zone. After this region, the flow axial velocity in the center

line will increase and reach a constant value after certain distance. This process is described

through the flow development zone, where the flow transits from full 3D to quasi-2D state.

The recirculation flow structure is shown in Figure 7.21, where 3D streamlines are plotted

109



Figure 7.21: A recirculation flow bubble in the recirculation zone at

Ha = 3000, Re = 2000, Ha∗ = 263.3. 3D flow streamlines are shown.

near the center of the duct to show the detailed recirculation flow bubble. As shown in the

figure, the recirculation zone extends through the duct width in y direction and further

downstream of the duct in x direction.

The effect ofHa on the recirculation flow is shown in Figure 7.22, in which the streamlines

are plotted in the middle xz plane at y = 0 for Re = 2000, Ha∗ = 263.3 for different

Ha. When Ha = 1000, the recirculation zone is not formed. As the increase of Ha, the

recirculation zone begins to exist and is more stretched into the downstream region, and the

recirculation bubble expands in the z direction.

Figure 7.23 illustrates the effect of different Re on the recirculation flow for Ha =

1000, Ha∗ = 263.3. Re plays the opposite role in the formation of recirculation zone. As can

be seen in the figure, the increase of Re will lead to the shrinkage and finally disappearance

of recirculation zone above 2000. At the same time, the flow becomes fully developed in a

shorter distance downstream of the duct.
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Figure 7.22: Effect of Ha on the flow recirculation zone at Re = 2000, Ha∗ = 263.3, flow

streamlines plotted on the middle plane.

Figure 7.23: Effect of Re on the recirculation flow for Ha = 1000, Ha∗ = 263.3.
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Figure 7.24: Effect of Ha∗ on the recirculation flow for Ha = 1000, Re = 1000.

The gradualness of change of the fringing magnetic field also affects the recirculation

zone. This influence is shown in Figure 7.24 by varying Ha∗ for Ha = 1000, Re = 1000. For

Ha∗ = 175.5, the magnetic field is relatively smooth, and therefore the recirculation zone

doesn’t exist. When Ha∗ = 263.3, the recirculation flow begins to form and takes the center

region of the duct. As the further increase of Ha∗, the recirculation zone becomes larger in

the y direction and stretched in the x direction.

7.8 3D effects, force balance and inertia

The MHD flow in a fringing magnetic field in this study exhibits 3D effects which cannot

be predicted by the quasi-2D assumption for this type of flow. The recirculation zone is

one of the key indications that the flow is not similar to the 2D developed MHD flow.

To further illustrate the 3D effects, the magnitude of pressure difference in the Hartmann

layer at y = −d+ d
2Ha

, z = 0 and side layer at z = −a+ a
2
√
Ha

, y = 0 non-dimensionalized by
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σdUinB
2 is plotted in Figure 7.25 for Ha = 3000, Ha∗ = 263.3. In the fully developed region,

the pressure difference in the two boundary layers (transverse pressure difference ∆P ∗) is 0,

which indicates no difference for pressure distribution in the cross section of the duct in these

regions. However, in the fringing region where magnetic field experiences sudden change, the

pressure difference is obvious and changes with Re. As the increase of Re, ∆P ∗ also increases,

which explains the strong 3D effects experienced by the flow. To reveal the 3D effects on the

flow caused by change of magnetic field furthermore, the pressure gradient at the center axis

is calculated using quasi-2D assumption, where the locally defined pressure drop coefficient λ

is related to the pressure gradient as ∆P
x

= λ(B)
d

· ρU
2
in

2
. For a rectangular duct with insulating

wall, the pressure drop coefficient is given by λ = 2Ha
Re

(
1− 1

Ha
− 0.852

βHa
1
2

)−1

where β is the

duct aspect ratio. The results of comparison between COMSOL computations and quasi-2D

calculations are shown in Figure 7.26(a) for Ha = 1000, Re = 1000 and Figure 7.26(b) for

Ha = 1000, Re = 5000. It can be clearly observed that the flow pressure gradient is totally

different from a locally 2D flow, which indicates the significant 3D effects present. As the

increase of Re, the 3D effect will become more prominent.

In the present study of MHD flow in the fringing magnetic field, the effect of inertia on the

flow is prominent for cases with higher Re (Re > 2000). In Figure 7.27, all the forces acting

on the flow, including electromagnetic forces, pressure, inertia and viscous forces are shown

along the duct center axis, which falls in the core flow region. It can be clearly observed that

the electromagnetic force and pressure are balancing each other in the bulk flow, while the

inertia and viscous forces are negligible compared to them.

The effect of inertia forces on the flow can be shown by comparing the full flow model

which includes all existing forces with the reduced model with no convective term in the

momentum equation. In COMSOL, the inertialess approximation can be applied by choosing

“neglect inertia forces” and using so-called “creeping flow” for the fluid model. Although the

inertia forces are confined in the thin boundary layers, the effect of them on the flow is non-

negligible, such as the pressure drop in Figure 7.28 and recirculation zone in Figure 7.29.
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Figure 7.25: Transverse pressure difference for Ha = 3000, Ha∗ = 263.3 for different Re.

Figure 7.26: Comparison of pressure gradient at center axis computed by quasi-2D relation

and 3D simulation for (a) Ha = 1000, Re = 1000 (b) Ha = 1000, Re = 5000.
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Figure 7.27: Force balance in the core flow at duct center axis for

Ha = 3000, Re = 2000, Ha∗ = 263.3.

For small velocity (Re = 1000) and Ha = 5000, the relative difference of pressure drop

coefficient k using inertia/inertialess model is 8%, which indicates that the inertia effect

is small. However, as flow velocity and Re increases the discrepancy between two flow

models increases rapidly, with 20% for Re = 2000 and 34% for Re = 5000. This shows

that the inertia effects are strong and the flow cannot be treated as “creeping” any more.

The recirculation bubble length and size are also different for the two flow models. When

using the full model, the recirculation flow extends more downstream of the duct, and the

corresponding pressure drop caused by the recirculation will be larger. Also, the full flow

model predicts two pairs of recirculation bubbles while the reduced model only predicts

one. Such a phenomenon further confirms that under the real blanket conditions when

Ha and Re are significantly higher than in the current study, the inertia effects must be

considered and a full momentum equation should be solved, otherwise the pressure drop will

be underestimated.

115



Figure 7.28: Effect of inertia forces on the pressure distribution for Ha = 3000, Ha∗ = 263.3

for different Re.

Figure 7.29: Recirculation flow bubble in 3D computed with and without inertia forces for

Ha = 3000, Re = 2000, Ha∗ = 263.3.
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CHAPTER 8

Conclusions and future studies

In this dissertation, three topics related to liquid metal systems in DCLL blanket were

investigated thoroughly through numerical analyses.

For the thermal convection loop simulation, the developed thermohydraulics code and

the computational model in COMSOL Multiphysics are effective predictive capability tools

for the design and analysis of a thermal convection loop, for the experimental planning

and for the analysis of experimental data. The thermohydraulics code can especially be

recommended for a rapid analysis when designing a new loop, while the COMSOL model

allows for detailed computations of the 3D velocity and temperature field in the flowing fluid.

The main observations were made including elucidations of the flow phenomena and

recommendations to the experimentalists. The conclusions are valid for the specific data

range of Ha ∼ 104, Gr ∼ 107 and Pr = 0.015. The flow in the TCL is turbulent, of a

circulation type, with the liquid flowing upwards in the hot leg and downwards in the cold

leg. It is predicted that the PbLi flow is about fully developed over the major length of the

hot and cold leg and is in is steady state. The most significant changes in the flow occur

in the corner regions where Dean vortices were observed in all computed cases. There is

anti-symmetry between the cold and hot leg in both the velocity and temperature. Over

the fully developed flow section, the temperature profile demonstrates only small variations

in the radial direction. Placing samples inside the loop causes flow obstruction resulting in

lower velocities, higher maximum temperatures and lower minimum temperatures. Using a

permanent magnet 0.2 ∼ 1T as a part of the electromagnetic flow meter can significantly
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reduce the circulation velocity in the loop by a factor of 2 ∼ 3. The surface emissivity of the

flow containing pipe is a very important parameter that needs to be carefully controlled in

the experiments as its change in the course of the experimental studies (e.g. due to oxidation)

can cause significant variance of the loop temperature.

The main accomplishment of the manifold study is the development of a correlation for

the 3D MHD pressure drop in a non-conducting duct with a gradual expansion that occurs

in the plane parallel to the applied magnetic field. The correlation was obtained in the wide

range of flow parameters: 1000 < Ha < 10, 000; 50 < Re < 10, 000 and 45◦ < θ < 75◦.

Although the magnitudes of Ha and Re in this study are significantly higher compared

to other studies, they are still lower compared to the fusion blanket parameters where Ha

and Re can be as high as 105. Therefore, more analysis at higher Ha and Re can be

recommended in the future to proof the applicability of the obtained correlation to a real

blanket or provide additional information that might help in constructing a better correlation.

Also, a real manifold design may differ from that considered in this study. If the differences

are not very significant, the obtained correlation can still be recommended for the pressure

drop estimates. For example, the correlation could still be useful if the expansion angles

∼ 30◦. For the expansion angle ∼ 90◦, we recommend correlations obtained earlier for the

duct with a sudden expansion by Rhodes et al [4]. The correlation can also be applied

to the outlet manifold, in which the flow experiences contraction; as shown in [56], the

difference in the MHD pressure drop between the expansion and contraction is not higher

than 10%. The new correlation suggests a significant reduction in the MHD pressure drop at

smaller expansion angles, but such manifold designs may require a long downstream section

to assure that the flow at the exit of the manifold is uniform. The present study suggests

that the flow development length can be as high as 20 expansion lengths at the highest Re

numbers employed in these investigations. As shown in this study, the observed high MHD

pressure drop is related to the thin internal boundary layer formed at the entrance to the

expansion region. Here, significant changes occur not only in the pressure distribution but
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also in the velocity field and induced electric currents. These observations are consistent

with all previous computations for similar MHD flows where abrupt changes in the flow

geometry occur, which are referred to in this article. However, it was found that the Ludford

layer theory, which is often used to explain the 3D MHD pressure drop in the flows with

expansions or contractions, is insufficient to explain the present results. The discrepancies

can be attributed to the fact that the Ludford layer theory is limited to 2D MHD flows, while

the present results suggest distinctive 3D flow features. Also, the Ludford layer theory cannot

predict the formation of a recirculation zone, which was found in almost all computations

in the present study and is one of the peculiar features of the MHD flow in a manifold. Due

to the fact that the major designs for blanket involve poloidal manifold, the focus of recent

studies are on this type of orientation in the paper where the magnetic field applied is parallel

with the expansion. Some previous studies also took a look at the case with magnetic field

in different directions. As to the expansion design, the wall shape can be linear or curved.

The curved wall design is also interesting but may result in higher pressure drop, which is

worth further examination.

In the study for flow in access duct, MHD flow in a non-conducting rectangular duct

with applied fringing magnetic field was studied using COMSOL Multiphysics for the range

of 1000 < Ha < 10000, 50 < Re < 10000, Ha∗ = 175.5, 263.3, 438.8, 585.0. The flow experi-

ences 3D effects characterized by 3D MHD pressure drop, 3D electric currents and velocity

changes. The sudden change of magnetic field is responsible for the generation of axial elec-

tric currents, and the Lorentz forces that influence velocity distribution. The flow enters the

duct and becomes fully developed MHD flow in a short distance. In the middle of the duct,

two counter-rotating vortices are formed and the majority of flow enters the side layers, which

have high velocity near the wall. More downstream in the duct, the flow remains in the side

layers for a long distance and re-enters the center of the duct. The recirculation zone length

is related to Ha,Re,Ha∗ and the size of vortex bubbles change with these parameters. The

flow development length is also affected by Ha,Re,Ha∗ and shows similar pattern as recir-

119



culation zone length. The most important feature – 3D MHD pressure drop was computed

for a total of 80 cases. Since k cannot be related to Ha or Re alone, a linear regression

analysis was carried out and Ha1.33Re−0.8 gave the best fit. Then the slop was fitted for

different Ha∗ to describe the pressure drop coefficient such that k = f(Ha∗)Ha1.33Re−0.8.

The acquired correlation can be applied to future design of the breeding blanket for pressure

loss estimation.

In real blanket, the Ha and Re are higher, which will cause difficulty in solving the

problem. The purpose of the current study is to reveal the primary influence of a fringing

magnetic field on liquid metal flow and to estimate 3D MHD pressure drop caused by sudden

change of magnetic field. This is similar to what the flow will experience in the access duct

in the inlet and outlet section. In this study, the highest Ha is 10,000 and Re is 10,000, and

the magnetic field changes for Ha∗ = 175.5, 263.3, 438.8, 585.0. The correlation established

provides a good estimation through this data range, and can be potentially used in real

blanket conditions. The computational model used in the current study is examined and

verified for MHD flow simulation, which is not limited by the geometry. The geometry used

in the study is a simple straight rectangular duct to take into consideration just the effect

of fringing magnetic field on the flow. For DCLL blanket, the access duct is connected

to the manifold, and further downstream flow channels, with also change of flow and duct

directions. In this situation, it is hard to predict the flow characteristics and the source of

the MHD pressure drop. However, the computational model can still be used to solve larger

problems.

Further study should focus on testing the applicability of the correlation for 3D MHD

pressure drop prediction of inlet access duct with similar fringing magnetic field, and at the

same time the examination for precision of the MHD computational model on higher flow

parameters. Such studies can make the design of the blanket to be more complete and help

test the durability of the model and correlation obtained.
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