
UCSF
UC San Francisco Previously Published Works

Title
Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event
Using R Package reReg

Permalink
https://escholarship.org/uc/item/52v8483m

Journal
Journal of Statistical Software, 105(5)

ISSN
1548-7660

Authors
Chiou, Sy Han
Xu, Gongjun
Yan, Jun
et al.

Publication Date
2023

DOI
10.18637/jss.v105.i05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52v8483m
https://escholarship.org/uc/item/52v8483m#author
https://escholarship.org
http://www.cdlib.org/

Regression Modeling for Recurrent Events Possibly with an
Informative Terminal Event Using R Package reReg

Sy Han Chiou,
Department of Mathematical Sciences, University of Texas at Dallas, 800 W. Campbell Road,
Richardson, TX 75080, United States of America

Gongjun Xu,
Department of Statistics, University of Michigan, 1085 South University Avenue, Ann Arbor, MI
48109, United States of America

Jun Yan,
Department of Statistics, University of Connecticut, 215 Glenbrook Road U-4120, Storrs, CT
06269, United States of America

Chiung-Yu Huang
Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th.
Street, San Francisco CA 94158, United States of America

Abstract

Recurrent event analyses have found a wide range of applications in biomedicine, public health,

and engineering, among others, where study subjects may experience a sequence of event of

interest during follow-up. The R package reReg offers a comprehensive collection of practical

and easy-to-use tools for regression analysis of recurrent events, possibly with the presence of

an informative terminal event. The regression framework is a general scale-change model which

encompasses the popular Cox-type model, the accelerated rate model, and the accelerated mean

model as special cases. Informative censoring is accommodated through a subject-specific frailty

without any need for parametric specification. Different regression models are allowed for the

recurrent event process and the terminal event. Also included are visualization and simulation

tools.

Keywords

event plot; frailty; joint model; mean cumulative function; simulation; survival data

1. Introduction

Recurrent event data arise when a study subject can experience a sequence of nonfatal

events such as hospital admissions, repeated infection episodes, and tumor recurrences,

during follow-up. A simple approach is to perform survival analysis with the first event only.

schiou@utdallas.edu .

HHS Public Access
Author manuscript
J Stat Softw. Author manuscript; available in PMC 2024 April 05.

Published in final edited form as:
J Stat Softw. 2023 ; 105: . doi:10.18637/jss.v105.i05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

However, this approach discards information on subsequent events and might not properly

characterize the covariate effects on the recurrent event process (e.g., Claggett, Pocock,

Wei, Pfeffer, McMurray, and Solomon 2018). Thus, approaches that address the sequential

feature of the recurrent event times without information loss have attracted considerable

attention (e.g., Cook and Lawless 2007; Amorim and Cai 2015; Charles-Nelson, Katsahian,

and Schramm 2019).

A few R (R Core Team 2022) packages offer nonparametric methods for recurrent events.

The survfit() function from the survival package (Therneau 2022) can compute the

Nelson-Aalen estimator (Lawless and Nadeau 1995) of the cumulative intensity function of

the recurrent event process, with the standard errors obtained from an infinitesimal jackknife

approach (Efron 1982). This allows users to perform two-sample tests by visually checking

if the confidence intervals of the Nelson-Aalen estimates overlap. The reda package (Wang,

Fu, Chiou, and Yan 2022) also provides an implementation of the Nelson-Aalen estimator

via the mcf() function, with different options for variance estimation and the pseudo-score

test (Cook, Lawless, and Nadeau 1996) for comparing Nelson-Aalen estimate from different

groups.

Many regression models have been implemented via R packages. The popular Andersen-

Gill (AG) model (Andersen and Gill 1982) can be fit with the coxph() function from

the survival package as a generalization of the Cox relative risk model, with possibly

time-varying coefficients. The cph() function from the rms package (Harrell Jr 2022)

extends the AG model to allow for time-dependent covariates. Both the coxph() and

cph() provide an option to calculate a robust sandwich variance estimator of Lin, Wei,

Yang, and Ying (2000) to account for the within-subject dependence. The tpr() function

from the tpr package (Yan 2022) fits a temporal process regression that models the

recurrent event process at each time point marginally (Fine, Yan, and Kosorok 2004). The

condGEE package (Clement 2022) models the recurrent gap time process using methods

of generalized estimating equation (Clement and Strawderman 2009). A different approach

to account for the association between the recurrent events is to introduce frailty variables

in the model. The rateReg() function from the reda package implements a gamma frailty

model (Fu, Luo, and Qu 2016; Ma, Qu, and Fu 2021), whose estimating procedure requires

a parametric assumption on the frailty variable and the recurrent event process. All these

approaches require the censoring time to be independent of the recurrent event process given

the covariates.

Recurrent events can be terminated by an informative censoring or a terminal event. The

frailtypack package (Rondeau, Mazroui, and González 2012) provides a collection of

frailty models to relax the conditional independent censoring assumption and jointly model

the recurrent event process and the terminal event. Although these frailty models allow

for a positive or negative association between the two outcome process, the validity of

the inferences relies on a correct parametric assumption on the frailty variable. For this

reason, frailty models that account for informative censoring without imposing parametric

assumptions are particularly appealing. Such models can be formulated as, for example,

Cox-type models (Wang, Qin, and Chiang 2001; Huang and Wang 2004; Huang, Qin,

Chiou et al. Page 2

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and Wang 2010) or accelerated mean models (Xu, Chiou, Huang, Wang, and Yan 2017).

The regression parameters are estimated without information about the frailty variable.

Both types of models are special cases of the generalized scale-change model (Xu, Chiou,

Yan, Marr, and Huang 2020). An efficient implementation of the models have been made

available in the reReg (Chiou and Huang 2023) package, which has not been widely known

to users who need them.

The package reReg (Chiou and Huang 2023) is available from the Comprehensive

R Archive Network (CRAN) at https://CRAN.R-project.org/package=reReg. The reReg
package provides a comprehensive collection of practical and easy-to-use tools for

exploratory and regression analyses of recurrent events. Features include event plots and

Nelson-Aalen estimators to visualize recurrent events and terminal events for each subject

with possibly multiple event types in the ggplot2 plotting environment (Wickham 2016).

The package also provides regression model based on the general semiparametric scale-

change model for the recurrent event process (Xu et al. 2020) that covers some of the most

commonly used forms, including the Cox-type model, the accelerated rate model, and the

accelerated mean model, as special cases. In the presence of terminal events, the package

allows users to choose to jointly model the recurrent event process with the terminal event

via a shared frailty, or to treat the terminal events as nuisances. In the former case, a general

scale-change model or a special case of it can be specified for the hazard function of the

terminal event. No parametric assumption on the latent frailty variable is needed. Standard

errors of the estimates are obtained through efficient resampling procedures, which can run

parallel on computers with multicores. These features make the reReg package appealing in

facilitating recurrent event analyses in many application fields.

The rest of the article is organized as follows. Notation used to describe the underlying

and observed recurrent event data structure is introduced in Section 2. The methodological

framework and the estimating procedure for modeling the recurrent event process are

described in Section 3. The structure of the package is presented in Section 4. Illustrations

are provided in Sections 5 and 6. Section 7 concludes with a few remarks.

2. Notation for recurrent events

Let N t be the number of recurrent events occurring over the interval 0, t and D be the

failure time of interest subjects to right censoring by C. Define the composite censoring

time Y = min D, C, τ and the failure event indicator Δ = I D ≤ min C, τ , where τ is the

maximum follow-up time. We assume the recurrent event process N ⋅ is observed

up to Y . Let X be a p-dimensional covariate vector. Consider a random sample of n
subjects, the observed data are independent and identically distributed (iid) copies of

Y i, Δi, Xi, Ni t , 0 ≤ t ≤ Y i , where the subscript i denotes the index of a subject for i = 1, …, n.

Let mi = Ni Y i be the number of recurrent events the ith subject experienced before time Y i,

then the jump times of Ni t give the observed recurrent event times ti1, …, timi when mi > 0.

Thus, the observed data can also be expressed as iid copies of Y i, Δi, Xi, mi, ti1, …, timi . The

primary interests in recurrent event data analysis often lie in making inference about the

Chiou et al. Page 3

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=reReg

recurrent event process and the failure event and understanding the corresponding covariate

effects. The built-in dataset, simDat, is a simulated example of a recurrent event data:

R> library(“reReg”)

R> subset(simDat, id %in% c(5, 7, 12))

 id t.start t.stop event status x1 x2

25 5 0.0000000 1.1695164 0 1 1 0.6570011

30 7 0.0000000 0.4690579 1 0 0 −0.2149894

31 7 0.4690579 0.8320469 0 1 0 −0.2149894

46 12 0.0000000 3.2220999 1 0 1 −0.2862713

47 12 3.2220999 13.5607302 1 0 1 −0.2862713

48 12 13.5607302 60.0000000 0 0 1 −0.2862713

The simDat data set consists of 200 hypothetical subjects, whose event times and covariate

information were generated by the simGSC() function described in Section 5.6. The data set

consists of seven variables. The id variable is used to denote the subject identification. The

t.start and t.stop variables mark the start and end of each time interval, respectively.

The event variable is the recurrent event indicator that indicates whether a recurrent event

was observed (event =1) at the end of the time interval. The status variable is the failure

event indicator Δ that indicates whether the recurrent event process was terminated by

a terminal event (status =1). Finally, the x1 variable is a binary covariate and the x2

variable is a continuous covariate.

The simDat data presents the recurrent event in person time, where the beginning of time is

zero. Thus, for the ith subject, the endpoint of the time intervals, i.e., t.stop, represents a

recurrent event time tij when event = 1 or a censoring time Y i when event = 0. For

example, in simDat, Subject 5 did not experience a recurrent event before the terminal event

at 1.17 while Subject 7 experienced a recurrent event at 0.47 before the terminal event at 0.8.

On the other hand, Subject 12 experienced two recurrent events at 3.22 and 13.56 before the

non-terminal event at 60. We demonstrate the usage of the reReg package for data sets in

forms similar to simDat in Section 5.

3. Models and inference

3.1. Nonparametric estimation of rate function

Statistical methods for recurrent event data often involve modeling the recurrent event

process via its intensity function or rate function. Define the history of the recurrent event

process at time t as H t = N s ; 0 ≤ s < t , t > 0, the intensity function for N t is

λ t ∣ H t = lim
δ 0

Pr N t + δ − N t > 0 ∣ H t
δ , t ∈ 0, τ .

On the contrary, the rate function for N t is unconditional on the history and is defined as

Chiou et al. Page 4

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

λ t = lim
δ 0

Pr N t + δ − N t > 0
δ , t ∈ 0, τ .

The intensity function completely specifies a recurrent event process while the rate function

only specifies the population average of the occurrence rate. The latter gives more direct

interpretations for explaining covariate effects under weaker assumptions and is generally

preferred in practice. The cumulative rate function, defined as

Λ t = ∫
0

t
λ u du, t ∈ 0, τ ,

is also the expected number of recurrent events occurring in 0, t .

Under independence censoring, a nonparametric estimate of Λ t known as the Nelson-Aalen

estimator is (Lawless and Nadeau 1995)

Λ t = ∑
i = 1

n ∫
0

t dNi u
∑j = 1

n I Y i ≥ u
,

(1)

which is also known as the mean cumulative function (MCF). The MCF presents the average

number of recurrent events per subject observed by time t while adjusting for the risk set.

In the case when all subjects remain at risk of recurrent events throughout the study, i.e.,

n = ∑j = 1
n I Y i ≥ t , Equation 1 reduces to the cumulative sample mean function introduced in

Chapter 1 of Cook and Lawless (2007).

When censoring is not independent of the recurrent event process, nonparametric estimators

proposed by Wang et al. (2001); Wang and Chiang (2002) that account for informative

censoring via a latent frailty variable can be considered. Let Z be a non-negative subject-

specific latent frailty variable such that N ⋅ is conditionally independent of Y given Z. The

multiplicative intensity model assumes that N t is a non-stationary Poisson process with the

intensity function Zλ0 t , where the baseline intensity function λ0 t is a continuous function.

Conditioning on Z, the independent increments assumption of the Poisson process implies

that the rate function is the intensity function. Thus, the rate function and the cumulative

rate function can be expressed as λ t = E Zλ0 t = μzλ0 t and Λ t = μzΛ0 t , respectively,

where μz = E Z and Λ0 t = ∫0
t λ0 u du. The multiplicative model structure implies that the

event occurrence rate is inflated (or deflated) by the frailty variable Z.

To estimate Λ t , Wang et al. (2001) argued that, given the observation Y i, Zi, mi , the event

times ti1, …, timi are the order statistics of independent copies of random variables with the

density function f t /F Y i , 0 ≤ t ≤ Y i, where

Chiou et al. Page 5

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f t = λ t
Λ τ = Ziλ0 t

ZiΛ0 τ = λ0 t
Λ0 τ , 0 ≤ t ≤ τ,

and F t = ∫0
t f u du = Λ0 t /Λ0 τ . Since the density function f t /F Y i is a truncated density

function of f t with right-truncation on Y i and does not depends on Z, the conditional

likelihood based on ti1, …, timi is in the form of

Lc ∝ ∏
i = 1

n
∏

k = 1

mi f tij
F Y i

.

The conditional likelihood Lc is maximized at the nonparametric maximum likelihood

estimator (NPMLE, Wang, Jewell, and Tsai 1986)

F t = ∏
s ℓ > t

1 − d ℓ
R ℓ

,

(2)

where s ℓ are the ordered and distinct values of tik, i = 1, …, n, k = 1, …, mi , d ℓ is the

number of events occurring at s ℓ , and R ℓ is the number of events satisfying tik ≤ s ℓ ≤ Y i. It

follows from E mi ∣ Y i, Zi = ZiΛ0 Y i that

E mi
F Y i

= E E mi
F Y i

∣ Y i, Zi = E ZiΛ0 Y i
F Y i

= μzΛ0 τ

(3)

If Λ0 τ = 1 is assumed for model identifiability, then Λ0 t can be estimated by Λ0n t = F Y i

and Equation 3 implies μZ = n−1∑i = 1
n mi/Λ0n Y i . The estimating procedure does not require

any distributional assumption on Z, making it more appealing than conventional parametric

approaches under informative censoring. This estimator can be plotted by applying the

generic function plot() to a ‘reReg’ object constructed as an intercept-only-model of (6)

as illustrated in Section 5.4.

3.2. A joint Cox-type model

The AG model is commonly considered when the interest is in evaluating the multiplicative

covariate effect on the rate function of the recurrent event process. The AG model specifies

the rate/intensity function of the recurrent event process N t as

λ t = λ0 t eX⊤β,

where λ0 ⋅ is an unspecified baseline rate function, and β is a p-dimensional regression

parameter. The estimate of β can be obtained through the partial likelihood approach

(Cox 1975) under the Poisson assumption, where the time increments between events are

Chiou et al. Page 6

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

conditionally independent given covariates. When the correlation among recurrent events

is not induced by the covariates, Pepe and Cai (1993) and Lin et al. (2000) relaxed the

Poisson assumption and proposed a robust sandwich variance estimator. Applying the AG

model is straightforward as these inference procedures are implemented in major software

packages. In the R environment, the AG model with the robust sandwich variance estimator

can be fitted by the coxph() function from the survival package (Therneau 2022) with the

subjects’ identification specified via the cluster option. The same procedure can also be

called conveniently with the reReg() function as illustrated in Section 5.4.

The AG model and many of its extension require the non-informative censoring assumption,

that assumes the recurrent events and the censoring times are independent given covariates.

However, the non-informative censoring assumption could be violated when the recurrent

event process is terminated by informative dropouts or failure events. Wang et al. (2001)

extends the AG model to accommodate informative censoring via the use of a frailty

variable. Specifically, Wang et al. (2001) assumes the Cox-type model

λ t = Zλ0 t eX⊤β,

(4)

where Z is a non-negative subject-specific latent frailty variable. When covariate effects on

both the recurrent event process and the failure time are of interest, Huang and Wang (2004)

extends (4) to the joint model

λ t = Zλ0 t eX⊤β,

ℎ t = Zℎ0 t eX⊤θ, t ∈ 0, τ ,

(5)

where ℎ0 ⋅ is the baseline hazard function for the failure time, θ is a p-dimensional

regression parameter. The frailty variable, Z, has a proportional effect on both λ t and

ℎ t , thus inducing a positive association between the recurrent event process N ⋅ and

the censoring events D, C . The proportionality assumption implicates a wide range of

situations. For example, patients who survived longer tend to have fewer cardiovascular-

related hospitalizations (Rogers, Yaroshinsky, Pocock, Stokar, and Pogoda 2016). For model

identifiability, we assume Λ0 τ = ∫0
τ λ0 u du = 1 and E Z ∣ X = E Z = μZ for some constant

μZ. In contrast to many shared-frailty models that require a parametric assumption, the

distribution of Z is left unspecified throughout the estimating procedure. The joint model (5)

presents a common phenomenon where both λ t and ℎ t can be both inflated (or deflated)

by the shared subject-specific frailty Z. For example, if the recurrent events are recurrent

infections after transplant and the failure event is death, then it is reasonably to presume that

patients with higher rate of recurrent events are potentially more vulnerable and are more

likely to experience a failure event. Models 4 and 5 are available in the reReg package by

calling the reReg() function with argument model = “cox” and model = “cox|cox”,

respectively.

Chiou et al. Page 7

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The general strategy in the estimating procedure for (5) is to first estimate the regression

parameter in the rate model and the baseline cumulative rate function, then apply

the borrowing-strength method of Huang and Wang (2004) to incorporate recurrent

event information to estimate the regression parameters in the hazard model and the

baseline cumulative hazard function. In the following, we outline the estimating procedure

implemented in reReg that is used to estimate the parameters in (5). The parameter β in the

rate model (5) can be estimated by solving the following estimating equation:

1
n ∑

i = 1

n
X⊤ mi

Λ0n Y i
− eXi

⊤ψ = 0,

where X‾ i = 1, Xi , ψ = log μZ, β⊤ ⊤, Λ0n ⋅ is the NPMLE described in (2), and 1 is

a vector of 1’s. Denote the estimator of β by βn. Under (5), the relationship

E mi ∣ Xi, Y i, Zi = ZiΛ0 Y i eXi
⊤β implies the individual frailty value Zi can be estimated by

Zi = mi

Λ0n Y i eXi
⊤β n

.

The score function for θ can be derived directly from the partial likelihood under the

hazard model specified in (5). However, it cannot be evaluated because the frailty variable

Z is unobservable. The borrowing-strength method of Huang and Wang (2004) proposed

to plug in Zi for Zi in the score function. The score functions, with Zi and Zi, attain the

same convergence function and the zero-crossing of the latter serves as an estimator for

θ. Following the arguments in Huang and Wang (2004), the estimating equation used to

estimate θ is

1
n ∑

i = 1

n
Δi Xi − ∑j = 1

n XjZjeXj
⊤θI Y j ≥ Y i

∑j = 1
n ZjeXj

⊤θI Y j ≥ Y i

= 0.

Given the estimates, βn and θn, the baseline cumulative hazard function can be estimated by

H0 t; θ n, Z = ∑
i = 1

n ΔiI Y i ≤ t
∑j = 1

n ZjeXj
⊤θ nI Y i ≤ Y j

.

Detailed derivations of estimating equations as well as the asymptotic properties of the

estimators can be found in Huang and Wang (2004).

The nonparametric bootstrap method for clustered data is adopted to estimate the standard

errors of the estimators. The bootstrap samples are formed by resampling the subjects

with replacement of the same size from the original data. The above estimating procedures

are then applied to each bootstrap sample to provide one draw of the bootstrap estimate.

With a large number of replicates, the asymptotic variance matrices are estimated by the

sample variance of the bootstrap estimates. The borrowing-strength approach yields stable

Chiou et al. Page 8

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performance in most of our simulation studies, but numerical issues occasionally arise when

the majority of Zi’s are zero or when extremely large values are observed in Zi. In the latter

case, extremely large values of Zi are more likely to occur when evaluating Λ0n ⋅ at small

Y i’s where the number of events satisfying s ℓ ≤ Y i is small. We observe that such numerical

issues are more frequent in the bootstrap procedure. In an attempt to enhance numerical

stability, we provide an option for a heuristic adjustment (Wang, Ma, and Yan 2013; Chiou,

Xu, Yan, and Huang 2018) that replaces Zi with

Zi = mi + ϵ
Λ0n Y i eXi

⊤β n + ϵ
,

for a small constant ϵ < min1 ≤ i ≤ n Λ0n Y i eXi
⊤βn . A warning message will be issued if a

convergence issue is detected in reReg(). When a subset of bootstrap estimates do not

converge, the asymptotic variance matrices are estimated by the sample variance of the

converged bootstrap estimates.

3.3. A generalized joint frailty scale-change model

The Cox-type models in (4) and (5) assume that the covariates have proportionate effects on

the rate function of the recurrent event process and the hazard function of the failure event

over time. When the proportionality assumption is not met or when the Cox-type models

cannot properly characterize the covariate effects the reReg package provides a general

class of semiparametric scale-change models that includes the Cox-type models as special

cases. In the same spirit of the joint model in (5), we consider the generalized joint frailty

scale-change model of the form

λ t = Zλ0 teX⊤α eX⊤β,

ℎ t = Zℎ0 teX⊤η eX⊤θ, t ∈ 0, τ ,

(6)

where the p-dimensional regression coefficients α, η and β, θ correspond to the shape and

the size parameters, respectively. We impose the same model identifiability assumption as in

(5) and assume Λ0 τ = ∫0
τ λ0 u du = 1 and E Z ∣ X = E Z = μZ for some constant μZ, without

making a full parametric assumption on Z. We further assume λ0 t and ℎ0 t are not in the

Weibull class, i.e., λ0 t ∝ tq and ℎ0 t ∝ tr for some q and r. The Weibull class assumption is

also assumed for models that focus only on the rate model or the hazard model of the joint

model (6) (e.g., Chen and Jewell 2001; Sun and Su 2008; Xu et al. 2020).

The flexible formulation of (6) includes several popular semiparametric models as special

cases, some of which have been recognized by different authors. For example, in the absence

of the shape parameters, i.e., α = η = 0, (6) reduces to the joint frailty Cox-type model in

(5). On the other hand, in the absence of the size parameters, i.e., β = θ = 0, (6) reduces to

the joint frailty accelerated rate model. When the shape and size parameters are assumed

Chiou et al. Page 9

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

equal, i.e., α = β and η = θ, (6) reduces to the joint frailty accelerated mean model considered

in Xu et al. (2017). Setting η = θ = 0, (6) reduces to the generalized scale-change model

considered in Xu et al. (2020), which also includes different types of rate models as special

cases. The Weibull class assumption excludes the scenario when the three submodels (the

Cox-type model, the accelerated rate model, and the accelerated mean model) coincide,

which results in the identifiability between the shape and the size parameters. On the other

hand, the Weibull class assumption is not needed for the submodels because they only

involve one type of regression coefficient. A possible approach for checking the Weibull

class assumption is described in Xu et al. (2020), which is motivated by the fact that, under

the Weibull model, the proposed model reduces to the Cox-type model of Wang et al.
(2001), and log Λ0 t is linear in log t .

The joint model (6) allows two types of covariate effects: The shape parameters α and η
impose a scale-change effect that alters the time scale and the size parameters β and θ
impose a multiplicative effect that modifies the risk and hazard. In addition, the differences

of the shape and size parameters, β − α and θ − η, modify the cumulative risk and hazard,

respectively. Figure 1 illustrates the different covariate effects on the rate function where

λi t , i = 0, …, 4, are hypothetical rate functions under the different model specifications of

(6). A one-unit increase in the covariate would change λ0 t to λ1 t by modifying the time

scale by a factor of eα and then change λ1 t to λ4 t by modifying the magnitude by a factor

of eβ; or change λ0 t to λ3 t by modifying the magnitude by a factor of eβ and then change

λ3 t to λ4 t by modifying the time scale by a factor of eα. If X is a treatment indicator, then

eβ characterizes the risk ratio between the treatment group X = 1 at time t and the control

group X = 0 at time teα. When α = β, the combined changes in time scale and in magnitude

are in such a way that the resulting cumulative mean function has a time scale modification.

Similar arguments can be made when interpreting η and θ on the hazard function.

The estimating procedure for the generalized joint frailty scale-change model is motivated

by those used in Huang and Wang (2004) and Xu et al. (2020). Let a be a p-dimensional

vector and define the transformations tij
* a = tijeXi

⊤a and Y i
* a = Y ieXi

⊤a. Following the

estimating procedure proposed in Xu et al. (2020), the shape parameter, α, can be estimated

by solving the following estimating equation

S1n α = 1
n ∑

i = 1

n
∑

k = 1

mi
ϕi α Xi − ∑j = 1

n ∑l = 1
mj XjI tjl

* α ≤ tik
* α ≤ Y j

* α
∑j = 1

n ∑l = 1
mj I tjl

* α ≤ tik
* α ≤ Y j

* α
= 0,

where ϕi α , i = 1, …, n, is a weight function. Some common choices of ϕ α are 1 and

n−1∑j = 1
n ∑l = 1

mj I tjl
* α ≤ tik

* α ≤ Y j
* α corresponding to the log-rank weight and the Gehan

weight, respectively. Both the log-rank weight and the Gehan weight are implemented in

reReg().

With αn as the estimator of α, the baseline cumulative rate function can be estimated by

Chiou et al. Page 10

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Λ0n t; αn = exp − ∑
i = 1

n
∑

k = 1

mi I tik
* αn ≥ t

∑j = 1
n ∑l = 1

mj I tjl
* αn ≤ tik

* αn ≤ Y j
* αn

.

Let X‾ i = 1, Xi , ψ = log μZ, γ⊤ ⊤, and γ = β − α. Given αn and Λ0n ⋅ , γ can be estimated by

solving the following estimating equation for ψ:

S2n ψ = 1
n ∑

i = 1

n
Xi

⊤ mi

Λ0n Y i
* αn

− eXi
⊤ψ = 0.

Then β can be estimated by βn = αn + γn, where ψn = log μZ, γn
⊤ ⊤ is the root of S2n ψ = 0. The

estimating function, S2n ψ , is monotone and continuously differentiable with respect to ψ,

and its root can be easily obtained. The detailed derivation of the estimating procedure and

the asymptotic properties for α, β, and Λ0 ⋅ can be found in Xu et al. (2020).

With the estimated parameters from the rate model, the aforementioned borrowing-strength

procedure can be extended to estimate the parameters in the hazard model. Conditioning on

Xi, Y i
* α , Zi , the expected value of mi under (6) is

E mi ∣ Xi, Y i
* α , Zi = ZiΛ0 Y i

* α eXi
⊤ β − α ,

which implies the individual frailty value Zi can be estimated by

Zi = mi

Λ0n Y i
* αn eXi

⊤ β n − αn
.

The following estimating equations used to estimate η and θ in the hazard model are

generalized from these proposed in Chen and Jewell (2001) to accommodate informative

censoring through Z:

S3n η, θ = ∑
i = 1

n
Δiφi η, θ Xi − ∑j = 1

n ZjXjeXj
⊤ θ − η I Y j

* η ≥ Y i
* η

∑j = 1
n ZjeXj

⊤ θ − η I Y j
* η ≥ Y i

* η
= 0,

S4n η, θ = ∑
i = 1

n
Δiφi η, θ XiY i

* η − ∑j = 1
n ZjXjY i

* η eXj
⊤ θ − η I Y j

* η ≥ Y i
* η

∑j = 1
n ZjeXj

⊤ θ − η I Y j
* η ≥ Y i

* η
= 0,

where φi η, θ , i = 1, …, n, is a weight function that plays a similar role as ϕ α in S1n α .

The weight function φi η, θ = 1 and φi η, θ = ∑j = 1
n ZjeXj

⊤ θ − η I Y j
* η ≥ Y i

* η correspond to

the log-rank weight and the Gehan weight, respectively. Given the estimates, ηn and θn,

Chiou et al. Page 11

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that satisfy S3n ηn, θn = 0 and S4n ηn, θn = 0, the baseline cumulative hazard function can be

estimated with

H0 t; ηn, θ n = ∑
i = 1

n ΔiI Y i
* ηn ≤ t

∑j = 1
n ZjeXj

⊤ θ n − ηn I Y i
* ηn ≤ Y j

* ηn

.

Several equation solvers are available in the package to find the root of the estimating

equations. The default solver is the derivative-free Barzilai-Borwein spectral method

(Barzilai and Borwein 1988). This method is an iterative procedure that updates the solution

guided by a scalar spectral steplength and a linear search direction. We found that choosing

good initial values for η, θ improves the convergence performance when solving for

S3n η, θ = 0 and S4n η, θ = 0, while it is less sensitive to the choice of the initial value when

solving for S1n α = 0 and S2n ψ = 0. The heuristic adjustment for Zi is

Zi = mi + ϵ
Λ0n Y i

* αn eXi
⊤ β n − αn + ϵ

for some small constant ϵ < min1 ≤ i ≤ n Λ0n Y i
* αn eXi

⊤ βn − αn .

In addition to the nonparametric bootstrap approach, an efficient resampling-based sandwich

estimator proposed in Xu et al. (2020) is implemented to estimate the asymptotic variance

for α and β in (6). The estimating equation to obtain the regression parameters in the

special cases of (6) can be constructed by modifying the above estimating equations. For

example, the estimating equation used in estimating β in (4) and the rate model in (5) can be

constructed by setting α = 0 in S2n ψ = 0. When the rate model is an accelerated rate model

β = 0 , the estimating procedure only consists of solving S1n α = 0. On the other hand, when

the rate model is an accelerated mean model α = β , the estimating equation is in the form of

S2n α = 0, i.e.,

1
n ∑

i = 1

n
Xi

⊤ mi

Λ0n Y i
* αn

− μZ = 0,

where μZ is the sample mean of miΛ0n
−1 Y i

* αn for i = 1, …, n. Similarly, the estimating

equation for the different form of the hazard model can be constructed by modifying

S3n η, θ with the corresponding relationship between η and θ. For example, when the hazard

function is in the Cox-type form as in (5), the estimating equation used to estimate θ can be

constructed by S3n 0, θ . On the other hand, when the hazard function is an accelerated rate

model θ = 0 or an accelerated failure time model η = θ , the estimating equations can be

constructed by using S3n η, 0 or S3n η, η , respectively. The estimation of the individual frailty

and the baseline functions in the special cases of (6) can be modified similarly. Since the

estimation of the regression parameters in the hazard model only depends the parameters in

the rate model through the estimate of the individual frailty, the above estimating procedure

Chiou et al. Page 12

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

can be adopted to scenarios where the rate model and the hazard model do not have the same

form.

The structure of (6) facilitates model selection among the submodels via hypothesis

testing of model parameters. For example, as described in Xu et al. (2020), the Cox-type

proportional assumption in the rate model can be tested through H0:α = 0 versus H1:α ≠ 0

under (6). In this case, the test statistic can be constructed with T cox = αn
⊤Σ αn

−1αn
⊤, where

Σ αn
−1 is the estimated covariance matrix of n1/2 αn − α . Xu et al. (2020) has shown that

T cox converges weakly to a Chi-square distribution with p degrees of freedom. Similarly,

test statistics T am = γn
⊤Σ γn

−1γn and T ar = βn
⊤Σ βn

−1βn can be used to test the null hypotheses

H0: γ = 0 and H0:β = 0, respectively.

4. Package structure

The reReg package provides useful functions for data exploration, nonparametric

estimation, regression analysis, and recurrent event data simulation. Most functions in the

reReg package are built around recurrent event objects, which are created by the Recur()

function imported from the reda package. The recurrent event object plays a similar role

as the survival object created by the Surv() function in the survival package as both are

used as a response variable in a model formula for the respective packages. However, the

recurrent event object is designed to track the study subjects’ recurrent times, in addition to

failure time and censoring status.

The main function for regression modeling in recurrent event analysis is reReg(). The

implementation of reReg() is based on a series of recently developed methods that

accommodate informative censoring via a unspecified frailty variable and allows users to

either treat the terminal time as a nuisance or incorporate it in a joint model framework.

Once a regression model is fitted with reReg(), the S3 methods, including coef(),

vcov(), and summary() can be applied to a ‘reReg’ object to easily extract relevant

regression results. The S3 plot method can be applied to obtain the baseline cumulative

rate/hazard function and the predicted cumulative rate/hazard functions function. The plot

method utilizes the ggplot2 plotting environment (Wickham 2016) for visualization to allow

extensive flexibility and customization. When an intercept-only model is specified with

reReg(), the proposed method provides nonparametric estimation based on the NPMLE

of Wang et al. (2001). Furthermore, the reReg() function includes some of the common

recurrent event models such as the AG model as alternative options.

Besides fitting regression models, simple descriptive statistics and event plot of the recurrent

event process can be obtained by directly apply the S3 methods summary() and plot()

to the recurrent event object, created by Recur(). For a more sophisticated event plot,

the recurrent event object can then be passed to the plotEvents() function in a model

formula. For convenience, and as a counterpart to the NPMLE of Wang et al. (2001) in the

absence of informative censoring, the function mcf() is imported from the reda package

to compute the MCF estimates. The reReg package allows users to simulate recurrent event

data from the generalized frailty joint scale-change model in (6) via the simGSC() function.

Chiou et al. Page 13

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The simGSC() function provides a great flexibility in the specification of the baseline

rate/function functions, regression parameters, covariate information, censoring distribution,

and frailty distribution. Table 1 summarizes the functions mentioned above as well as their

compatible S3 methods. These functions are then illustrated with simulated data in Section 5

and are applied to real data in Section 6.

5. Illustrations

5.1. Creating a recurrent event object

The Recur() function imported from the reda package (Wang et al. 2022) creates recurrent

event objects needed for reReg. The arguments of Recur() are

reda::Recur(time, id, event, terminal, origin,

 check = c(“hard”, “soft”, “none”), …)

The event times are specified via the time argument as a vector that represents the time of

recurrent events and censoring, or as a list of time intervals that contains the starting time

and the ending time of the interval. In the latter, the intervals are assumed to be open on

the left and closed on the right, where the right end points are the time of recurrent events

and censoring. When the events are recorded in patient times, where each patient enters the

study at time zero as in the simDat data, the time argument can be specified with time

= t.stop or with time = t.start %to% t.stop. The infix operator %to%, or its alias

%2%, is used to create a list of two elements containing the endpoints of the time intervals.

When the patients have different starting time, the different starting time can be specified

via the origin argument. Alongside the event times, optional arguments including id,

event, and terminal, are used to represent the subject’s identification, the recurrent event

indicator, and the failure event indicator, respectively. In addition to numeric values, Date

and difftime are also allowed. Finally, the check argument specifies how to perform

validation checks.

The following code creates a ‘Recur’ object from the simDat data.

R> (reObj <- with(simDat, Recur(t.start %2% t.stop, id, event, status)))

[1] 1: (0.0000, 0.1817], (0.1817, 0.8400], …, (2.5367, 2.8402*]

[2] 2: (0.0000, 1.0852], (1.0852, 7.5907], …, (37.5591, 60.0000+]

[3] 3: (0.0000, 0.8123], (0.8123, 4.0266], …, (9.3434, 10.2991+]

[4] 4: (0.0000, 0.3582], (0.3582, 1.4426], …, (39.2478, 60.0000+]

[5] 5: (0.0000, 1.1695*]

 [reached getOption(“max.print”) -- omitted 195 entries]

The ‘Recur’ object is an S4 class object and the show() method for the ‘Recur’ object

presents recurrent events in intervals. The endpoint of the last interval within each subject

indicates the failure time and its censoring status; * and + indicate whether the recurrent

Chiou et al. Page 14

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

process is censored by a terminal event or non-terminal event, respectively. For concise

print, the maximum number of intervals printed per subject is limited to three controlled

by options (“reda.Recur.maxPrint”). For example, in simDat, subjects 1 to 4

experienced more than three events, of which only the first two and the last intervals are

displayed. The generic method function summary() can be applied to a ‘Recur’ object to

produce simple descriptive statistics.

R> summary(reObj)

Call:

Recur (time = t.start %2% t.stop, id = id, event = event, terminal = status)

Sample size: 200

Number of recurrent event observed: 674

Average number of recurrent event per subject: 3.37

Proportion of subjects with a terminal event: 0.59

Median follow-up time: 4.735

Median time-to-terminal event: 6.975

5.2. Creating event plots

An easy way to glance at recurrent event data is by plotting the event plots, which can be

created by several approaches in the reReg package. One way to create a unstratified event

plot is to apply the generic function plot() function to ‘Recur’ objects. The plot method

for ‘Recur’ objects internally calls the plotEvent() function to create event plots, which

is created in the ggplot2 plotting environment (Wickham 2016) to allow extensive flexibility

and customization. The synopsis of the plotEvents() function is:

plotEvents(formula, data, result = c(“increasing”, “decreasing”, “asis”),

calendarTime = FALSE, control = list(), …)

The required argument for the plotEvent() function is formula, which contains a

‘Recur’ object and categorical covariates separated by ~, where the categorical covariates

are used to stratify the event plots. Plotting the ‘Recur’ object by plot() is only available

in reReg and is equivalent to calling the plotEvent() function with an intercept-only-

model. The data argument is an optional data frame contains the variables occurring in

the formula. The result argument is an optional character string indicating whether to

arrange the subjects by their follow-up times in an ascending order (default), descending

order, or plot as-is. The calendarTime argument is a logical value indicating whether

to create the event plot in calendar time or patient time. When plotting in calendar time,

the result argument sorts the subjects by the chronological order of terminal events. The

plotEvent() function also includes convenient graphical parameters for plot annotation

that can be specified in the control argument. The full list of these parameters with their

default values are displayed below.

Chiou et al. Page 15

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reReg::plotEvents.control(xlab = NULL, ylab = NULL, main = NULL,

terminal.name = NULL, recurrent.name = NULL, recurrent.type = NULL,

legend.position = NULL, base_size = 12, cex = NULL, alpha = 0.7, width

= NULL, bar.color = NULL, recurrent.color = NULL, recurrent.shape = NULL,

recurrent.stroke = NULL, terminal.color = NULL, terminal.shape = NULL,

terminal.stroke = NULL, not.terminal.color = NULL, not.terminal.shape = NULL)

The parameters xlab, ylab, and main are adopted from the base R graphics package for

modifying labels to the x-axis, the y-axis, and the main title, respectively. The parameters

terminal.name and recurrent.name are character labels displayed in the legend. The

parameter recurrent.type specifies the recurrent event types to be displayed in the

legend when more than one recurrent event types is specified in the ‘Recur’ object.

The parameters legend.position and base_size are adopted from the ggplot2 theme

to control the location of the legend box and the base font size in pts, respectively.

The remaining parameters control the event plot appearance, including the size (cex)

and transparency (alpha) of the symbols, the width (width) and color (bar.color)

of the event bars, and the color, shape, and stroke of the recurrent event, terminal

event, and non-terminal event symbols (recurrent.color, recurrent. shape,

recurrent.stroke, etc.).

The following code demonstrates the plot method for the ‘Recur’ object, with the

resulting unstratified event plot displayed in Figure 2a.

R>plot(reObj)

The above plot method is an alias for the following call with the plotEvents() function.

R> plotEvents(Recur(t.start %to% t.stop, id, event, status) ~ 1,

+ data = simDat)

In the event plot, the gray horizontal lines represent each subjects’ follow-up times, olive

circles and red triangles mark the recurrent and terminal events, respectively. With the

default setting, the event plot is arranged so that subjects with longer follow-up times are

presented on the top. Stratifying the event plot could provide new insights into the different

covariate effects. For example, an event plot stratified by the binary variable x1 is presented

in Figure 2b, which is created by specifying a formula with the ‘Recur’ object as the

response variable and x1 as a covariate in the plotEvents() function.

R> plotEvents(Recur(t.start %to% t.stop, id, event, status) ~ x1,

+ data = simDat)

Chiou et al. Page 16

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this case, subjects with x1 = 1 seems more likely to experience recurrent events and the

terminal event sooner. The plotEvents() function can accommodate multiple recurrent

types specified via the event argument in the ‘Recur’ object. To illustrate this feature, we

perturb the event indicator so that the value of event indicates the index of the different

recurrent event. The following command is used to create the stratified event plot with

different recurrent event types presented in Figure 2c.

R> simDat$event2 <- with(simDat, ifelse(t.stop > 10 & event > 0, 2, event))

R> plotEvents(Recur(t.start %to% t.stop, id, event2, status) ~ x1,

+ data = simDat)

The different types of recurrent events are marked in different colors in Figure 2c.

The plotEvents() function can also create event plots in calendar time by setting

calendarTime = TRUE. For illustration, we create a new simulated data based on simDat

with time intervals shift proportionally to x2. We further convert the time intervals to a

‘Date’ class. The construction of the new data and the stratified event plot in Figure 2d is

included in the following.

R> simDat2 <- simDat

R> simDat2$t.start <- as.Date(simDat2$t.start + simDat2$x2 * 5,

+ origin = “20–01-01”)

R> simDat2$t.stop <- as.Date(simDat2$t.stop + simDat2$x2 * 5,

+ origin = “20–01-01”)

R> plotEvents(Recur(t.start %to% t.stop, id, event, status) ~ x1,

+ data = simDat2, calendarTime = TRUE)

In this case, subjects with later censoring times are presented on the top and the date string

are printed on the axis label of the event plot.

5.3. Plotting mean cumulative functions

The MCF is useful in describing and comparing the average number of events of an

individual and between groups. Thus, it provides additional insights into the longitudinal

patterns of the recurrent process. To create the NPMLE of Wang et al. (1986) under the

informative censoring assumption, one can fit an intercept-only model with reReg(), then

applying the generic function plot() to the ‘reReg’ object. The following code illustrates

this feature with output displayed in Figure 3a.

R> mcf1 <- reReg(Recur(t.start %to% t.stop, id, event, status) ~ 1,

+ data = simDat, B = 200)

R> plot(mcf1)

Chiou et al. Page 17

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The 95% confidence interval is computed based on the non-parametric bootstrap approach

with 200 bootstrap replicates as specified by the argument B = 200. Separate MCFs can be

created and plotted for each level of a factor variable using the subset option in reReg().

The basebind() function can then be applied to combine the MCFs into one plot to allow

easy visual comparison. The synopsis for basebind() is shown below.

basebind (…, legend.title, legend.labels, control = list())

The argument “…” represents a list of ‘ggplot’ objects created by plotting ‘reReg’

objects. The arguments legend.title and legend.labels are optional character strings

to control the legend title and legend labels in the combined plot, respectively. When fitting

regression models with reReg(), the baseline() function can be applied to combine the

estimates of baseline functions across groups. The following code is used to create Figure

3b, where the NPMLEs for x1 = 0 and x1 = 1 are presented. The corresponding 95%

confidence intervals are computed with 200 bootstrap replicates.

R> mcf2 <- reReg(Recur(t.start %to% t.stop, id, event, status) ~ 1,

+ subset = x1 == 0, data = simDat, B = 200)

R> mcf3 <- update(mcf2, subset = x1 == 1)

R> g1 <- plot(mcf2)

R> g2 <- plot(mcf3)

R> basebind(g1, g2, legend.title = “X1”, legend.labels = 0:1)

Under the independent censoring assumption, the reReg package imports the mcf()

function from the reda package to compute the MCFs. The usage of the mcf() function

is similar to that of the plotEvent() function, as they both allows the recurrent event

process to be specified in a model formula. When the overall sample MCF is of interest, the

Nelson-Aalen estimate in (1) can be created by applying the generic function plot() to the

‘Recur’ object with an additional argument mcf = TRUE. This then internally calls the

mcf() function with an intercept-only-model.

The following command plots the Nelson-Aalen estimate in Figure 3c, where the 95%

confidence interval is enabled by additionally setting mcf.conf.int = TRUE.

R> plot(reObj, mcf = TRUE, mcf.conf.int = TRUE)

To create the cumulative sample mean function, one needs to additionally specify the

argument mcf.adjustRiskset = FALSE. The stratified MCF can be visualized by first

specifying the model formula with mcf(), then applying the generic function plot(). The

following code is used to produce Figure 3d, which displays the Nelson-Aalen estimates for

x1 = 0 and x1 = 1.

Chiou et al. Page 18

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> mcf0 <- mcf(Recur(t.start %to% t.stop, id, event, status) ~ x1,

+ data = simDat)

R> plot(mcf0, conf.int = TRUE)

5.4. Fitting regression models

The main function for fitting semiparametric regression models in the reReg package is the

reReg() function. When covariates are specified in the reReg() function, the reReg()

function fits (6) using the following arguments

reReg(formula, data, subset, model = “cox”, B = 0, se = c(“boot”, “sand”),

control = list())

As in the plotEvents() function, the arguments formula and data are used to specify

the model formula and the optional data frame, respectively. The argument model is a

character string used to specified the model type. The possible model types are cox,

ar, am, and gsc, corresponding to the Cox-type model, the accelerated rate model, the

accelerated mean model, and the generalized scale-change model, respectively. When the

interest is the covariate effects on the risk of recurrent events and the terminal event is

treated as nuisances, model = “cox” and model = “gsc” give the Cox-type model (4)

and the generalized scale-change rate model considered in Wang et al. (2001) and Xu et al.
(2020), respectively. When the recurrent event process and the terminal events are modeled

jointly, the types of rate function and hazard function can be specified simultaneously in

model separated by “I”. The possible model types for the hazard function are cox, ar,

am, and gsc. For examples, the joint frailty Cox-type model of Huang and Wang (2004)

and the joint frailty accelerated mean model of Xu et al. (2017) can be called by model =

“cox|cox” and model = “am|am”, respectively. Depending on the application, users can

specify different model types for the rate function and the hazard function. For example,

model = “cox|ar” postulate a Cox-type proportional model for the recurrent event rate

function and an accelerated rate model for the terminal event hazard function, or α = θ = 0 in

(6).

For inference, the variance estimates are obtained from the nonparametric bootstrap

approach with the argument se = “boot”. When fitting the generalized scale-change rate

model of Xu et al. (2020), an efficient resampling-based sandwich estimator is also available

via se = “sand”. The number of bootstrap or resampling is controlled by the argument B.

When B = 0 (default), the variance estimation procedure will not be performed and only

the point estimates will be returned, which can be useful when the variance estimation is

time consuming. The argument control is a list specifying changes to the algorithm control

parameters. The full list of control parameters is:

reReg.control(eqType = c(“logrank”, “gehan”, “gehan_s”), solver =

c(“BB::dfsane”, “BB::BBsolve”, “BB::BBoptim”, “optim”), tol = 1e-07, init

Chiou et al. Page 19

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

= list(alpha = 0, beta = 0, eta = 0, theta = 0), boot.parallel = FALSE,

boot.parCl = NULL, maxit1 = 100, maxit2 = 10, trace = FALSE, numAdj = 1e-07)

The argument eqType is a character string used to specify the type estimating equation is

used in the estimating procedure. The available options are the log-rank-type (“logrank”),

the Gehan-type (“gehan”), or the induced smoothing Gehan-type (“gehan_s”) estimating

equation is used in the estimating procedure. The default value is “logrank” corresponding

to setting ϕi α = 1 in S1n α and φi η, θ = 1 in S3n η, θ and S4n η, θ . The argument solver

is a character string used to specify the equation solver used in solving the estimating

equations. The default equation solver (“BB::dfsane”) uses the derivative-free Barzilai-

Borwein spectral approach for solving nonlinear equations implemented in dfsane()

from the package BB (Varadhan and Gilbert 2009). Setting solver = “BB::BBsolve”

calls the wrapper function BBsolve() in the BB package to locate a root with different

Barzilai-Borwein steplengths, non-monotonicity parameters, and initialization approaches.

Based on our observation, the “BB::BBsolve” algorithm generally exhibited more reliable

convergence but the solver = “BB::dfsane” algorithm provides a better balance

between convergence and speed. Alternative options are solver = “BB::BBoptim” and

solver = “optim” that attempt to identify roots by minimizing the ℓ2-norm of the

estimating functions. The options solver = “BB::BBoptim” and solver = “optim”

call the BBoptim() function from the package BB and the base function optim(),

respectively. The argument tol is the absolute tolerance used in the convergence criteria,

while the arguments arguments maxit1 and maxit2 control the maximum numbers of

iterations in the risk model and the hazard model, respectively. The argument numAdj

specifies the ϵ used in the heuristic adjustment. The argument init is a list of initial values

used in the root-finding algorithms. The list members alpha, beta, eta, and theta

correspond to the parameters α, β, η, and θ in (6), respectively. The default values for these

initial values are zeros.

In an attempt to overcome the computational burden in bootstrap variance estimation,

parallel computing techniques based on methods in the parallel package will be applied

when boot.parallel = TRUE. The number of central processing unit (CPU) cores

used in the parallel computing is controlled by the argument boot.parCl, whose default

value is half of the total number of CPU cores available on the current host identified by

parallel::detectCores() %/% 2.

To illustrate the usage of the reReg() function, we first fit Cox-type rate model (4) to the

simDat data with the variance estimate obtained from the nonparametric bootstrap approach

with 200 bootstrap replicates in the following.

R> fm <- Recur(t.stop, id, event, status) ~ x1 + x2

R> set.seed(0)

R> system.time(fit1 <- reReg(fm, data = simDat, model = “cox”, B = 200))

 user system elapsed

 0.972 0.008 0.982

Chiou et al. Page 20

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this example, the implemented method finished in a reasonable computing time, which

is based on a Linux machine with Core i7-6700@3.40 GHz processor and without parallel

computing in the variance estimation. The summary of the model is presented below.

R> summary(fit1)

Call:

reReg(formula = fm, data = simDat, model = “cox”, B = 200)

Recurrent event process:

 Estimate StdErr z.value p.value

x1 −1.00483 0.16380 −6.1344 8.547e-10 ***

x2 −0.97517 0.13305 −7.3292 2.316e-13 ***

The summary suggests statistically significant negative effects of both covariates on the rate

function of the recurrent event process. This indicates that subjects with larger x1 and x2

values are likely to experience less frequently throughout the follow-up. In this case, we

assumed the primary interest is the covariate effects on the risk of recurrent events and

treat the terminal events as nuisances. When it is of interest to analyze the recurrent events

and the terminal events simultaneously, we fit the joint Cox-type model (5) and present the

summary as below:

R> set.seed(0)

R> system.time(fit2 <- reReg(fm, data = simDat, model = “cox|cox”, B = 200))

 user system elapsed

 1.276 0.032 1.315

R> summary(fit2)

Call :

reReg (formula = fm, data = simDat, model=“cox|cox”, B = 200)

Recurrent event process:

 Estimate StdErr z.value p.value

x1 −1.00483 0.16380 −6.1344 8.547e-10 ***

x2 −0.97517 0.13305 −7.3292 2.316e-13 ***

Terminal event:

 Estimate StdErr z.value p.value

x1 1.05295 0.28842 3.6507 0.0002615 ***

x2 0.85086 0.26647 3.1931 0.0014073 **

The top panel of the summary is identical to that from fitting the Cox-type rate model (4)

because the rate models in (4) and (5) are identical and the parameters therein are obtained

from the same estimating equation. This reiterates the implemented estimation procedure

is in a two-step fashion. When the terminal events are modeled as in fit2, reReg()

additionally compute the parameters in the hazard model with the results presented in the

lower panel of the summary. The summary exhibits statistically significant positive covariate

Chiou et al. Page 21

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

effects on the hazard function, indicating that subjects with larger x1 and x2 values are in

higher risk of terminal events.

The estimates of the baseline cumulative functions, e.g., Λ0 ⋅ and H0 ⋅ , can be plotted by

applying the generic function plot() to the ‘reReg’ object. The following shows the S3

method for plotting a ‘reReg’ object.

plot(x, baseline = c(“both”, “rate”, “hazard”), smooth = FALSE, newdata =

NULL, frailty = NULL, showName = FALSE, control = list(), …)

When a joint model is specified in reReg(), the baseline argument provides options to

display only the baseline cumulative rate function with baseline = “rate”, only the

baseline cumulative hazard function with baseline = “hazard”, or both the baseline

cumulative rate function and the baseline cumulative hazard function with baseline =

“both” (default). Even though the identifiability assumption, Λ0 τ = 1, is used in the

estimating procedure, we scaled Λ0n ⋅ by μZ so the values represent the expected number of

recurrent events. The smooth argument is a logical variable specifying whether the baseline

cumulative functions will be smoothed by the monotonic increasing P-spline (Pya and Wood

2015) implemented in the scam package (Pya 2022).

The plot() method also allows user to plot the predicted cumulative functions given

covariates. As in many prediction models, the plot method allows users to specify the

covariates in a data frame via the argument newdata. When newdata is not specified (or is

NULL), newdata is set to zeros and the baseline cumulative functions are produced. When

newdata has more than one rows, each unique row will be treated as an observation and

the corresponding predicted cumulative functions will be plotted. The frailty argument

specifies the frailty value to be used in constructing the predicted cumulative functions; μZ

is used when frailty is NULL. The showName is a logical variable indicating whether to

label the objects’ name at the end of the curves. The objects’ names are determined by the

row names of the newdata. The control is an optional list containing graphical parameters

including xlab, ylab, main, etc. As the plot method for Recur objects, a ‘ggplot’ object

is returned to allow easy customization.

The baseline cumulative rate function and the baseline cumulative hazard function of the

joint frailty Cox model is plotted below and presented in Figure 4a.

R> plot(fit2)

To illustrate the feature in predicting cumulative functions given covariates, we consider two

hypothetical subjects, one with x1 = 0 and the other with x1 = 1. Holding the value of

x2 at the average, the predicted cumulative functions are presented in Figures 4b using the

following codes

Chiou et al. Page 22

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> newdata <- expand.grid(x1 = 0:1, x2 = mean(simDat$x2))

R> plot(fit2, newdata = newdata, showName = TRUE)

In practice, the generalized scale-change model is appealing when the actual form of the rate

function is unknown. The following command fits the generalized scale-change model of Xu

et al. (2020) by specifying model = “gsc”. The resampling-based sandwich estimator with

200 bootstrap replicates is used to obtain the standard error estimation at the default settings.

R> set.seed(0)

R> system.time(

+ fit3 <- reReg(fm, data = simDat, model = “gsc”, se = “sand”, B = 200))

 user system elapsed

 1.408 0.016 1.424

R> summary(fit3, test = TRUE)

Call:

reReg(formula = fm, data = simDat, model = “gsc”, B = 200, se = “sand”)

Recurrent event process (shape):

 Estimate StdErr z.value p.value

x1 −0.022521 0.373706 −0.0603 0.9519

x2 −0.114796 0.287355 −0.3995 0.6895

Recurrent event process (size):

 Estimate StdErr z.value p.value

x1 −1.01380 0.26309 −3.8534 0.0001165 ***

x2 −1.04078 0.23562 −4.4172 9.997e−06 ***

Hypothesis tests:

Ho: shape = 0 (Cox-type model):

 X-squared = 0.1653, df = 2, p-value = 0.9207

Ho: size = 0 (Accelerated rate model):

 X-squared = 29.7184, df = 2, p-value = 0

Ho: shape = size (Accelerated mean model):

 X-squared = 43.5266, df = 2, p-value = 0

The summary statistics for the shape parameters and the size parameters are presented in

different panels. When the additional option of test = TRUE is specified in summary()

as in the above example, the hypothesis testing approach for submodel selection proposed

in Xu et al. (2020) is performed. The null hypotheses are H0:α = 0, H0:α = β, and H0:β = 0,

corresponding to the Cox-type model, the accelerated rate model, and the accelerated mean

model, respectively. The above results indicates a strong evidence that the rate function has a

Cox structure.

5.5. Other common recurrent event models

Under the non-informative censoring assumption, the AG model with robust variance

estimation can be called via reReg() with model = “cox. LWYY”:

Chiou et al. Page 23

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> summary(reReg(fm, data = simDat, model = “cox.LWYY”))

Call:

reReg (formula = fm, data = simDat, model= “cox.LWYY”)

Fitted with the Cox model of Lin et al. (2000):

Recurrent event process:

 Estimate StdErr z.value p.value

x1 −1.13602 0.13704 −8.2900 < 2.2e−16 ***

x2 −1.07493 0.14264 −7.5361 4.841e−14 ***

This is equivalent to calling the coxph() from the survival package with the cluster

option:

R> library(“survival”)

R> summary(coxph(Surv(t.start, t.stop, event) ~ x1 + x2 + cluster(id),

+ data = simDat))$coef

 coef exp(coef) se(coef) robust se z Pr(>|z|)

x1 −1.136023 0.3210936 0.08866522 0.1370350 −8.290017 1.132320e−16

x2 −1.074935 0.3413201 0.07478383 0.1426375 −7.536128 4.841298e−14

The joint frailty scale-change model (6) also includes many models as special cases under

the non-informative censoring assumption when the frailty is degenerated, i.e., Z = 1. Some

of these special cases include the Cox-type models of Pepe and Cai (1993); Lin et al. (2000);

Ghosh and Lin (2002), accelerated rate model Chen and Wang (2000); Ghosh (2004),

accelerated means regression Ghosh and Lin (2003), and a general class of accelerated

means model Sun and Su (2008). Different estimating procedures are proposed in each

method. Of these, setting model = “cox.LWYY”, model = “cox.GL“, and model =

“am.GL“, calls the methods proposed by Lin et al. (2000), Ghosh and Lin (2002), and

Ghosh and Lin (2003), respectively.

5.6. Simulating recurrent event data

The reReg package allows users to generate simulated data from the generalized frailty joint

scale-change model (6) via function simGSC(). The arguments of simGSC() are presented

below.

simGSC(n, summary = FALSE, para, xmat, censoring, frailty, tau, origin,

Lam0, Haz0)

The only required argument is the number of observation, represented by n. The remaining

arguments are optional and will be assigned default values when not specified. The argument

summary is a logical value indicating whether descriptive statistics of the simulated data will

be printed after the data generation. The argument para is a list of regression parameters.

The list members alpha, beta, eta, and theta are p-dimensional numerical vectors

Chiou et al. Page 24

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

corresponding to regression parameters, α, β, η, and θ in (6), respectively. The xmat argument

is the n × p design matrix. The censoring and frailty arguments are n-dimensional

numerical vectors that specify the independent censoring time, C, and the frailty variable,

Z, respectively. The argument tau is the maximum follow-up time τ and the argument

origin the time origin for each subject. Finally, the arguments Lam0 and Haz0 are single

argument functions used to specify the baseline cumulative rate function, Λ0 t , and the

baseline cumulative hazard function, H0 t , respectively.

At the default setting, the simGSC() function assumes p = 2 and the regression parameters

to be α = η = 0,0 ⊤, β = − 1, − 1 ⊤, and θ = 1,1 ⊤. When the xmat and the censoring

arguments are not specified, the simGSC() function assumes Xi is a two-dimensional

vector Xi = Xi1, Xi2 , i = 1, …, n, where Xi1 is a Bernoulli variable with rate 0.5 and Xi2 is

a standard normal variable. With the default xmat, the censoring time C is generated from

an exponential distribution with mean τXi1 + Z2τ 1 − Xi1 . Thus, the censoring distribution

is covariate dependent and is informative when Z is not a constant. On the other hand,

when xmat is specified by the users, the censoring time C is generated from an independent

exponential distribution with mean τ. When the frailty argument is not specified, the

frailty variable Z is generated from a gamma distribution with a unit mean and a variance

of 0.25. The default values for tau and origin are 60 and 0, respectively. When arguments

Lam0 and Haz0 are left unspecified, the simGSC() function uses Λ0 t = 2log 1 + t and

H0 t = log 1 + t /5, respectively. This is equivalent to setting Lam0 = function (x) 2

* log(1 + x) and Haz0 = function(x) log(1 + x) / 5. In summary, the default

specifications generate the recurrent events and the terminal events from the model:

λ t = 2Z
1 + te−Xi1 − Xi2

,

ℎ t = Z
5 1 + teXi1 + Xi2

, t ∈ 0, 60 .

The simGSC() function generates simulated data from the above specification and returns a

data.frame in the same format as the built-in data set, simDat. Specifically, simDat was

generated by simGSC().

R> data(“simDat”, package = “reReg”)

R> set.seed(0)

R> dat <- simGSC(200, summary = TRUE)

Call:

simGSC(n = 200, summary = TRUE)

Summary:

Sample size: 200

Number of recurrent event observed: 674

Average number of recurrent event per subject: 3.37

Proportion of subjects with a terminal event: 0.59

Chiou et al. Page 25

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Median time-to-terminal event: 6.975

R> identical(dat, simDat)

[1] TRUE

The following example illustrates the computational performance of the implemented

method. We simulated data from simGSC() under the default settings. Each data is then

fitted with the joint Cox-type model (Huang and Wang 2004), the joint accelerated mean

model (Xu et al. 2017), and the general scale-change model (Xu et al. 2020), corresponding

to model =“cox|cox”, model = “am|am”, and model = “gsc”, respectively. The

reported computing times are without variance estimation and are averaged over 50 Monte

Carlo runs (see Table 2).

R> fm <- Recur(t.stop, id, event, status) ~ x1 + x2

R> sizes <- c(100, 200, 400, 600, 800, 1000)

R> set.seed(0)

R> times <- sapply(sizes, function(n) {

+ rowMeans(replicate(50, {

+ dat <- simGSC(n)

+ c(system.time(reReg(fm, data = dat, model = “cox|cox”, B = 0))[3],

+ system.time(reReg(fm, data = dat, model = “am|am”, B = 0))[3],

+ system.time(reReg(fm, data = dat, model = “gsc”, B = 0))[3])

+ }))

+ })

The joint Cox-type model is the fastest among the three models for all sample sizes

considered. Other than the sample size, several factors could impact the computing speed,

such as the number of recurrent events and covariates. A comprehensive illustration of the

computational performance of the implemented method under different scenarios might

worth further investigation. Nonetheless, Table 2 suggests that analyses can be made

available within seconds or minutes using the reReg package.

6. Application to colorectal cancer data

We demonstrate the usage of the reReg package to the colorectal dataset from the

frailtypack package (Rondeau et al. 2012). The dataset consists of a random selection of

150 patients with advanced colorectal cancer enrolled in a randomized phase III clinical

trial FFCD 2000–05 conducted between 2002 and 2007 (Ducreux et al. 2011). The enrolled

patients were randomized to receive either sequential or combination chemotherapy. One

of the primary interests is to compare the two treatment groups in disease progression

and overall survival. In this study, the recurrent events are identified as the appearances of

new lesions, and the terminal event is death. The structure of the colorectal dataset is

presented below.

R> data(“colorectal”, package = “frailtypack”)

R> str(colorectal, vec.len = 1.2)

Chiou et al. Page 26

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

‘data.frame’: 289 obs. of 10 variables:

$ id : int 1 2 3 …

$ time0 : num 0 0 0 …

$ time1 : num 0.71 1.28 …

$ new.lesions : int 0 0 1 …

$ treatment : Factor w/ 2 levels “S”,”C”: 1 2 1 …

$ age : Factor w/ 3 levels “<60 years”,”60–69 years”,..: 2 3 2 …

$ who.PS : Factor w/ 3 levels “0”,”1”,”2”: 1 1 2 …

$ prev.resection : Factor w/ 2 levels “No”,”Yes”: 1 1 1 …

$ state : int 1 1 0 …

$ gap.time : num 0.71 1.28 …

There are 150 sampled patients with 77 in the sequential treatment group. Key variables

needed to create a recurrent event object with Recur() are subject identification (id), start

and end of time intervals (time0, time1), recurrent event indicator (new.lesions), and

terminal event indicator (state). The recurrent event object and its summary are printed

with the following codes.

R> (colreObj <- with(colorectal,

+ Recur(time0 %to% time1, id, new.lesions, state)))

[1] 1: (0.0000, 0.7096*]

[2] 2: (0.0000, 1.2822*]

[3] 3: (0.0000, 0.5246], (0.5246, 0.9208], (0.9208, 0.9425*]

[4] 4: (0.0000, 0.6639], (0.6639, 0.7178*]

[5] 5: (0.0000, 0.1585], (0.1585, 0.3689], (0.3689, 0.4630*]

 [reached getOption(“max.print”) -- omitted 145 entries]

R> summary(colreObj)

Call:

Recur(time = time0 %to% time1, id = id, event = new.lesions, terminal =

state)

Sample size: 150

Number of recurrent event observed: 139

Average number of recurrent event per subject: 0.927

Proportion of subjects with a terminal event: 0.807

Median follow-up time: 1.199

Median time-to-terminal event: 1.351

From the descriptive statistics, the average number of new lesions recorded per patient is

0.927. Among the 150 patients, the proportion of subjects with a terminal event is 80.7%,

the median follow-up time is 1.20 years, and the median time to death is 1.35 years. The

recurrent event history of the patients in both treatment groups are displayed in Figure 5a,

where the event plot is created by the plotEvents() function in the following.

Chiou et al. Page 27

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> fm <- Recur(time0 %to% time1, id, new.lesions, state) ~ treatment

R> plotEvents(fm, data = colorectal,

+ recurrent.name = “New lesions”, terminal.name = “Death”)

Additional graphical arguments are included to improve the readability of the event plot.

Overall, patients in the sequential treatment group seem to have more new lesions early,

while the number of deaths appears to spread out. On the other hand, the MCF estimates

presented in Figure 5b suggest that the MCF estimates for the two treatment groups are not

significantly different, as indicated by the overlapping 95% confidence intervals.

R> plot(mcf(fm, data = colorectal), conf.int = T)

To evaluate the treatment effect in regression models, we first fit the joint Cox-type model

(5) using the sequential treatment group as the reference group. In addition to the treatment

effect, we also include baseline covariates including age (age), World Health Organization

(WHO) performance status (who.PS), and previous resection indicator (prev.resection).

The age variable is categorized into three groups; < 60 years, 60–69 years, and > 69 years.

The WHO performance status is used to quantify patients’ ability to carry out daily tasks.

The available WHO performance status scores are 0, 1, and 2, where fully active patients

who can carry out all activities without restriction have a score of 0. The following results

show that, though not statistically significant, patients in the combination treatment group

were more likely to experience fewer new lesions β̂ = − 0.240, p = 0.436 and had a lower

risk of death θ̂ = − 0.088, p = 0.810 than those in the sequential treatment group.

R> set.seed(0)

R> fm <- update(fm, ~ .+ age + who.PS + prev.resection)

R> fitCox <- reReg(fm, data = colorectal, model = “cox|cox”, B = 200)

R> summary(fitCox)

Call:

reReg(formula = fm, data = colorectal, model = “cox|cox”, B = 200)

Recurrent event process:

 Estimate StdErr z.value p.value

treatmentC −0.240316 0.308706 −0.7785 0.4363

age60–69 years −0.368456 0.347377 −1.0607 0.2888

age>69 years −0.277112 0.383778 −0.7221 0.4703

who.PS1 −0.323627 0.349054 −0.9272 0.3538

who.PS2 0.084318 0.353789 0.2383 0.8116

prev.resectionYes −0.240201 0.282869 −0.8492 0.3958

Terminal event:

 Estimate StdErr z.value p.value

treatmentC −0.087141 0.366157 −0.2380 0.8119

Chiou et al. Page 28

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

age60–69 years −0.259770 0.351031 −0.7400 0.4593

age>69 years −0.346661 0.434668 −0.7975 0.4251

who.PS1 −0.322803 0.433917 −0.7439 0.4569

who.PS2 0.523742 0.404880 1.2936 0.1958

prev.resectionYes −0.453941 0.362956 −1.2507 0.2111

We next fit a generalized scale-change model in the following to gain more insights into

the treatment effects on the recurrent event progress. The results suggest that patients in the

combination treatment group tended to have a decelerated time to new lesions by a factor of

1/exp(−0.969) = 2.635, p = 0.009. This implies patients in the combination treatment group

were more likely to experience new lesions later. The hypothesis testing results suggest an

accelerated rate model or an accelerated mean model on the recurrent event process.

R> set.seed(0)

R> fitGSC <- reReg(fm, data = colorectal, model = “gsc”, se = “sand”,

+ B = 200)

R> summary(fitGSC, test = TRUE)

Call:

reReg(formula = fm, data = colorectal, model = “gsc”, B = 200, se = “sand”)

Recurrent event process (shape):

 Estimate StdErr z.value p.value

treatmentC −0.9687721 0.3682715 −2.6306 0.008524 **

age60–69 years 0.0041879 0.3333505 0.0126 0.989976

age>69 years −0.2704151 0.2640631 −1.0241 0.305809

who.PS1 −0.2765749 0.2834604 −0.9757 0.329209

who.PS2 −0.1967113 0.3369671 −0.5838 0.559375

prev.resectionYes −0.5218806 0.5238343 −0.9963 0.319119

Recurrent event process (size):

 Estimate StdErr z.value p.value

treatmentC 0.148253 0.515998 0.2873 0.7739

age60–69 years −0.484778 0.488547 −0.9923 0.3211

age>69 years −0.239504 0.351567 −0.6812 0.4957

who.PS1 −0.363964 0.578832 −0.6288 0.5295

who.PS2 0.080312 0.393328 0.2042 0.8382

prev.resectionYes 0.033565 0.521850 0.0643 0.9487

Hypothesis tests:

Ho: shape = 0 (Cox-type model):

 X-squared = 17.3385, df = 6, p-value = 0.0081

Ho: size = 0 (Accelerated rate model):

 X-squared = 3.6693, df = 6, p-value = 0.7213

Ho: shape = size (Accelerated mean model):

 X-squared = 4.3678, df = 6, p-value = 0.627

Chiou et al. Page 29

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7. Discussion

The reReg package provides a comprehensive toolkit for analyzing recurrent event data. It

allows easy access to create event plots and MCF plots for exploratory data analysis and

a generalized joint frailty scale-change model for regression analysis. The implemented

methods accommodate informative censoring via the use of a subject-specific frailty

variable. In contrast to existing frailty models, the implemented estimation procedure does

not require distributional information on the frailty variable. Using the borrowing-strength

approach in the estimating procedure, our model allows users to specify any combination

of the submodels between the recurrent event process and the terminal events when they

are fitted jointly. Since the reReg package’s debut on CRAN, it has been applied in many

medical studies (e.g., Richter et al. 2020; Ejoku, Odhiambo, and Chaba 2020; Deo et al.
2021).

Future work will be devoted to improving computational efficiency. In particular, we plan

to generalize the efficient resampling-based sandwich estimator to all the sub-models.

In addition, we plan to apply the induced smoothing method (e.g., Brown and Wang

2007; Chiou, Kang, and Yan 2015) to facilitate numerical reliability. Including different

types of recurrent event models such as the additive rate model and the semiparametric

transformation model would be of interest too. When longitudinal outcomes at recurrent

events are available, we plan to expand the current version of the package to adopt time-

dependent covariates (e.g., Huang et al. 2010). Another interesting extension is to use

multiple frailty variables to allow different frailty effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was partially supported by National Science Foundation SES-1846747 and Institute of Education
Sciences R305D200015 for Xu, and National Institute of Health R01CA193888 for Huang.

References

Amorim LDAF, Cai J (2015). “Modelling Recurrent Events: A Tutorial for Analysis in Epidemiology.”
International Journal of Epidemiology, 44(1), 324–333. doi:10.1093/ije/dyu222. [PubMed:
25501468]

Andersen PK, Gill RD (1982). “Cox’s Regression Model for Counting Processes: A Large Sample
Study.” The Annals of Statistics, 10, 1100–1120. doi:10.1214/aos/1176345976.

Barzilai J, Borwein JM (1988). “Two-Point Step Size Gradient Methods.” IMA Journal of Numerical
Analysis, 8(1), 141–148. doi:10.1093/imanum/8.1.141.

Brown BM, Wang YG (2007). “Induced Smoothing for Rank Regression with Censored Survival
Times.” Statistics in Medicine, 26(4), 828–836. doi:10.1002/sim.2576. [PubMed: 16646005]

Charles-Nelson A, Katsahian S, Schramm C (2019). “How to Analyze and Interpret Recurrent Events
Data in the Presence of a Terminal Event: An Application on Readmission After Colorectal Cancer
Surgery.” Statistics in Medicine, 38(18), 3476–3502. doi:10.1002/sim.8168. [PubMed: 31016792]

Chen YQ, Jewell NP (2001). “On a General Class of Semiparametric Hazards Regression Models.”
Biometrika, 88(3), 687–702. doi:10.1093/biomet/88.3.687.

Chiou et al. Page 30

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen YQ, Wang MC (2000). “Estimating a Treatment Effect with the Accelerated Hazards Models.”
Controlled Clinical Trials, 21(4), 369–380. doi:10.1016/s0197-2456(00)00063-5. [PubMed:
10913811]

Chiou SH, Huang CY (2023). reReg: Recurrent Event Regression. R package version 1.4.5, URL
https://CRAN.R-project.org/package=reReg.

Chiou SH, Kang S, Yan J (2015). “Rank-Based Estimating Equations with General Weight for
Accelerated Failure Time Models: An Induced Smoothing Approach.” Statistics in Medicine, 34(9),
1495–1510. doi:10.1002/sim.6415. [PubMed: 25640630]

Chiou SH, Xu G, Yan J, Huang CY (2018). “Semiparametric Estimation of the Accelerated Mean
Model with Panel Count Data under Informative Examination Times.” Biometrics, 74(3), 944–
953. doi:10.1111/biom.12840. [PubMed: 29286532]

Claggett B, Pocock S, Wei LJ, Pfeffer MA, McMurray JJV, Solomon SD (2018). “Comparison of
Time-to-First Event and Recurrent-Event Methods in Randomized Clinical Trials.” Circulation,
138(6), 570–577. doi:10.1161/circulationaha.117.033065. [PubMed: 29588314]

Clement D (2022). condGEE: Parameter Estimation in Conditional GEE for Recurrent Event Gap
Times. R package version 0.2.0, URL https://CRAN.R-project.org/package=condGEE.

Clement DY, Strawderman RL (2009). “Conditional GEE for Recurrent Event Gap Times.”
Biostatistics, 10(3), 451–467. doi:10.1093/biostatistics/kxp004. [PubMed: 19297655]

Cook RJ, Lawless J (2007). The Statistical Analysis of Recurrent Events. 2nd edition. John Wiley &
Sons.

Cook RJ, Lawless JF, Nadeau C (1996). “Robust Tests for Treatment Comparisons Based on Recurrent
Event Responses.” Biometrics, 52(2), 557–571. doi:10.2307/2532895. [PubMed: 8672703]

Cox DR (1975). “Partial Likelihood.” Biometrika, 62(2), 269–276. doi:10.1093/biomet/62.2.269.

Deo SV, Sundaram V, Sahadevan J, Selvaganesan P, Mohan SM, Rubelowsky J, Josephson R, Elgudin
Y, Kilic A, Cmolik B (2021). “Outcomes of Coronary Artery Bypass Grafting in Patients with
Heart Failure with a Midrange Ejection Fraction.” The Journal of Thoracic and Cardiovascular
Surgery. doi:10.1016/j.jtcvs.2021.01.035. In press.

Ducreux M, Malka D, Mendiboure J, Etienne PL, Texereau P, Auby D, Rougier P, Gasmi M,
Castaing M, Abbas M, Pierre M, Gargot D, Azzedine A, Lombard-Bohas C, Geoffroy P, Denis
B, Pignon JP, Bedenne L, Bouché O (2011). “Sequential Versus Combination Chemotherapy for
the Treatment of Advanced Colorectal Cancer (FFCD 2000–05): An Open-Label, Randomised,
Phase 3 Trial.” The Lancet Oncology, 12(11), 1032–1044. doi: 10.1016/s1470-2045(11)70199-1.
[PubMed: 21903473]

Efron B (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and
Applied Mathematics. doi:10.1137/1.9781611970319.

Ejoku J, Odhiambo C, Chaba L (2020). “Analysis of Recurrent Events with Associated
Informative Censoring: Application to HIV Data.” International Journal, 9, 21. doi:
10.6000/1929-6029.2020.09.03.

Fine JP, Yan J, Kosorok MR (2004). “Temporal Process Regression.” Biometrika, 91(3), 683–703.
doi:10.1093/biomet/91.3.683.

Fu H, Luo J, Qu Y (2016). “Hypoglycemic Events Analysis via Recurrent Time-to-
Event (HEART) Models.” Journal of Biopharmaceutical Statistics, 26(2), 280–298.
doi:10.1080/10543406.2014.992524. [PubMed: 25437847]

Ghosh D (2004). “Accelerated Rates Regression Models for Recurrent Failure Time Data.” Lifetime
Data Analysis, 10(3), 247–261. doi:10.1023/b:lida.0000036391.87081.e3. [PubMed: 15456106]

Ghosh D, Lin DY (2002). “Marginal Regression Models for Recurrent and Terminal Events.” Statistica
Sinica, 12(3), 663–688. doi:10.1111/j.1541-0420.2008.01126.x.

Ghosh D, Lin DY (2003). “Semiparametric Analysis of Recurrent Events Data in the Presence
of Dependent Censoring.” Biometrics, 59(4), 877–885. doi:10.1111/j.0006-341x.2003.00102.x.
[PubMed: 14969466]

Harrell FE Jr (2022). rms: Regression Modeling Strategies. R package version 6.3–0, URL https://
CRAN.R-project.org/package=rms.

Chiou et al. Page 31

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=reReg
https://CRAN.R-project.org/package=condGEE
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms

Huang CY, Qin J, Wang MC (2010). “Semiparametric Analysis for Recurrent Event Data with
Time-Dependent Covariates and Informative Censoring.” Biometrics, 66(1), 39–49. doi:10.1111/
j.1541-0420.2009.01266.x. [PubMed: 19459839]

Huang CY, Wang MC (2004). “Joint Modeling and Estimation for Recurrent Event Processes
and Failure Time Data.” Journal of the American Statistical Association, 99(468), 1153–1165.
doi:10.1198/016214504000001033. [PubMed: 24068850]

Lawless JF, Nadeau C (1995). “Some Simple Robust Methods for the Analysis of Recurrent Events.”
Technometrics, 37(2), 158–168. doi:10.1080/00401706.1995.10484300.

Lin DY, Wei LJ, Yang I, Ying Z (2000). “Semiparametric Regression for the Mean and Rate
Functions of Recurrent Events.” Journal of the Royal Statistical Society B, 62(4), 711–730.
doi:10.1111/1467-9868.00259.

Ma C, Qu Y, Fu H (2021). “Analysis of Recurrent Hypoglycemic Events.” Journal of
Biopharmaceutical Statistics, 31(1), 5–13. doi:10.1080/10543406.2020.1765370. [PubMed:
32419590]

Pepe MS, Cai J (1993). “Some Graphical Displays and Marginal Regression Analyses for Recurrent
Failure Times and Time Dependent Covariates.” Journal of the American Statistical Association,
88(423), 811–820. doi:10.1080/01621459.1993.10476346.

Pya N (2022). scam: Shape Constrained Additive Models. R package version 1.2–13, URL https://
CRAN.R-project.org/package=scam.

Pya N, Wood SN (2015). “Shape Constrained Additive Models.” Statistics and Computing, 25(3),
543–559. doi:10.1007/s11222-013-9448-7.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Richter A, Sierocinski E, Singer S, Bülow R, Hackmann C, Chenot JF, Schmidt CO (2020). “The
Effects of Incidental Findings from Whole-Body MRI on the Frequency of Biopsies and Detected
Malignancies or Benign Conditions in a General Population Cohort Study.” European Journal of
Epidemiology, 35(10), 925–935. doi:10.1007/s10654-020-00679-4. [PubMed: 32860149]

Rogers JK, Yaroshinsky A, Pocock SJ, Stokar D, Pogoda J (2016). “Analysis of Recurrent Events With
an Associated Informative Dropout Time: Application of the Joint Frailty Model.” Statistics in
Medicine, 35(13), 2195–2205. doi:10.1002/sim.6853. [PubMed: 26751714]

Rondeau V, Mazroui Y, González JR (2012). “frailtypack: An R Package for the Analysis
of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or
Parametrical Estimation.” Journal of Statistical Software, 47(4), 1–28. doi:10.18637/jss.v047.i04.

Sun L, Su B (2008). “A Class of Accelerated Means Regression Models for Recurrent Event Data.”
Lifetime Data Analysis, 14(3), 357–375. doi:10.1007/s10985-008-9087-z. [PubMed: 18516715]

Therneau TM (2022). survival: Survival Analysis. R package version 3.4–0, URL https://CRAN.R-
project.org/package=survival.

Varadhan R, Gilbert P (2009). “BB: An R Package for Solving a Large System of Nonlinear Equations
and for Optimizing a High-Dimensional Nonlinear Objective Function.” Journal of Statistical
Software, 32(4), 1–26. doi:10.18637/jss.v032.i04.

Wang MC, Chiang CT (2002). “Non-Parametric Methods for Recurrent Event Data with Informative
and Non-Informative Censorings.” Statistics in Medicine, 21(3), 445–456. doi:10.1002/sim.1029.
[PubMed: 11813230]

Wang MC, Jewell NP, Tsai WY (1986). “Asymptotic Properties of the Product Limit Estimate under
Random Truncation.” The Annals of Statistics, 14, 1597–1605. doi:10.1214/aos/1176350180.

Wang MC, Qin J, Chiang CT (2001). “Analyzing Recurrent Event Data with Informative
Censoring.” Journal of the American Statistical Association, 96(455), 1057–1065.
doi:10.1198/016214501753209031.

Wang W, Fu H, Chiou SH, Yan J (2022). reda: Recurrent Event Data Analysis. R package version
0.5.4, URL https://CRAN.R-project.org/package=reda.

Wang X, Ma S, Yan J (2013). “Augmented Estimating Equations for Semiparametric Panel Count
Regression with Informative Observation Times and Censoring Time.” Statistica Sinica, 23, 359–
381. doi:10.5705/ss.2010.297.

Chiou et al. Page 32

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=scam
https://CRAN.R-project.org/package=scam
https://www.R-project.org/
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=reda

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-0-387-98141-3.

Xu G, Chiou SH, Huang CY, Wang MC, Yan J (2017). “Joint Scale-Change Models for Recurrent
Events and Failure Time.” Journal of the American Statistical Association, 112(518), 794–805.
doi:10.1080/01621459.2016.1173557. [PubMed: 28943684]

Xu G, Chiou SH, Yan J, Marr K, Huang CY (2020). “Generalized Scale-Change Models for Recurrent
Event Processes under Informative Censoring.” Statistica Sinica, 30, 1773–1795. doi:10.5705/
ss.202018.0224. [PubMed: 34385810]

Yan J (2022). tpr: Temporal Process Regression. R package version 0.3–3, URL https://CRAN.R-
project.org/package=tpr.

Chiou et al. Page 33

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=tpr
https://CRAN.R-project.org/package=tpr

Figure 1:
Illustration of the covariate effects on the rate function in (6) when α < 0, β < 0, and X > 0.

An accelerated rate model modifies the time-scale of λ0 t to λ1 t . An accelerated mean

model modifies λ0 t to λ2 t in a way that the cumulative mean function of λ2 t is a

time-scale change of that of λ0 t . A Cox-type model modifies the scale of λ0 t to λ3 t . The

proposed model modifies the time-scale and the magnitude of λ0 t simultaneously to λ4 t ,

either through λ0 t λ1 t λ4 t or through λ0 t λ3 t λ4 t .

Chiou et al. Page 34

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Event plots produced by plot() and plotEvent().

Chiou et al. Page 35

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
MCF plots produced by plot().

Chiou et al. Page 36

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Plots of baseline functions produced by plot() and plotRate().

Chiou et al. Page 37

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Event plot and MCF plot stratified by treatment type.

Chiou et al. Page 38

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chiou et al. Page 39

Table 1:

An overview of the main functions in reReg.

Functions Purpose Compatible generic functions

Functions fromreReg

reReg() Fits regression models under the informative censoring assumption coef(), plot(), summary(),
vcov()

plotEvents() Creates event plots based on model formula

simGSC() Generates recurrent event data summary()

Functions used inreRegimported fromreda

Recur() Creates recurrent event objects plot(), summary()

%2% Specifies time segments in Recur

mcf() Creates mean cumulative functions under non-informative censoring plot()

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chiou et al. Page 40

Table 2:

Average runtime (in seconds) under different sample sizes.

n = 100 n = 200 n = 400 n = 600 n = 800 n = 1000

model = “cox|cox” 0.015 0.018 0.027 0.038 0.052 0.070

model = “am|am” 0.101 0.189 0.381 0.511 0.769 1.112

model = “gsc” 0.053 0.083 0.134 0.207 0.254 0.320

J Stat Softw. Author manuscript; available in PMC 2024 April 05.

	Abstract
	Introduction
	Notation for recurrent events
	Models and inference
	Nonparametric estimation of rate function
	A joint Cox-type model
	A generalized joint frailty scale-change model

	Package structure
	Illustrations
	Creating a recurrent event object
	Creating event plots
	Plotting mean cumulative functions
	Fitting regression models
	Other common recurrent event models
	Simulating recurrent event data

	Application to colorectal cancer data
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:
	Table 2:

