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Free Energies of Quantum Particles: The Coupled-Perturbed
Quantum Umbrella Sampling Method
William J. Glover, Jennifer R. Casey, and Benjamin J. Schwartz*

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States

ABSTRACT: We introduce a new simulation method called
Coupled-Perturbed Quantum Umbrella Sampling that extends
the classical umbrella sampling approach to reaction coordinates
involving quantum mechanical degrees of freedom. The central
idea in our method is to solve coupled-perturbed equations to
find the response of the quantum system’s wave function along a
reaction coordinate of interest. This allows for propagation of
the system’s dynamics under the influence of a quantum biasing
umbrella potential and provides a method to rigorously undo the
effects of the bias to compute equilibrium ensemble averages. In
this way, one can drag electrons into regions of high free energy
where they would otherwise not go, thus enabling chemistry by
fiat. We demonstrate the applicability of our method for two condensed-phase systems of interest. First, we consider the
interaction of a hydrated electron with an aqueous sodium cation, and we calculate a potential of mean force that shows that an
e−:Na+ contact pair is the thermodynamically favored product starting from either a neutral sodium atom or the separate cation
and electron species. Second, we present the first determination of a hydrated electron’s free-energy profile relative to an air/
water interface. For the particular model parameters used, we find that the hydrated electron is more thermodynamically stable in
the bulk rather than at the interface. Our analysis suggests that the primary driving force keeping the electron away from the
interface is the long-range electron−solvent polarization interaction rather than the short-range details of the chosen
pseudopotential.

1. INTRODUCTION

Much of chemistry is governed by activated processes that
involve surmounting the free energy barriers that separate
reactants from products. To make dynamical or mechanistic
predictions of such processes, one first needs to identify the
barriers and determine the probability of finding a system in
such activated regions. This can be achieved by computing the
free energy F of the system along a proposed reaction
coordinate q, which is known as the potential of mean force
(PMF):

= −F q F k T P q( ) ln ( )0 B (1)

where P(q) is the probability of finding the system at
coordinate q, kB is Boltzmann’s constant, T is the temperature,
and F0 is an additive constant that can be taken to be the free
energy minimum along the reaction coordinate.
There is a vast literature on sampling techniques designed to

efficiently compute PMFs under the assumption that classical
mechanics holds;1 however, few methods2 have been developed
to handle reaction coordinates involving quantum mechanical
degrees of freedom (such as the location of an electron during a
charge-transfer reaction). A notable exception is when the
quantum particles are treated via classical isomorphism, such as
in path integral molecular dynamics.3 However, due to issues
associated with the small mass of the electron and the
requirement of Fermi statistics, path integral descriptions of

many-electron systems are not computationally practical for
routine use.4 Instead, wave function- or density functional-
based methods are what have received wide application. When
quantum systems are described by wave functions, the ideal
situation would be to alter the wave function a priori, dragging
the quantum mechanical electrons to locations of interest and
calculating the associated free energy cost. In other words, what
we desire is a way to understand quantum systems where the
electrons are far from equilibrium by constructing a PMF based
on moving electrons to regions where they otherwise would
rarely go.
In this article, we work toward this goal by presenting a new

method for extending classical umbrella sampling to quantum
systems represented by wave functions. Our method makes use
of coupled-perturbed equations to solve for the wave-function
response to motion along a (classical) reaction coordinate, so
we name it Coupled-Perturbed Quantum Umbrella Sampling
(CP-QUMB). Our method allows one to restrain quantum
particles, such as electrons, to regions of high free energy that
would otherwise rarely be sampled under equilibrium
conditions, opening up the way to do chemistry by fiat, and
to understand how pushing electrons into different locations
changes the free energy of a quantum system. We begin our
presentation in Section 2 by discussing the theoretical
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background and development of the coupled-perturbed
quantum umbrella sampling method. We then compare the
accuracy and efficiency of our CP-QUMB method to a related
QUMB method developed previously2 in Section 3. We next
demonstrate how the CP-QUMB method can be applied to
two systems of interest: the interaction of a hydrated electron
and aqueous sodium cation in Section 4.1, and the free energy
profile of a hydrated electron relative to an air/water interface
in Section 4.2. Finally, after summarizing our results in Section
5, we present details of the gradient potential matrix elements
needed by our method in the Appendix.

2. THEORETICAL DEVELOPMENT
2.1. Umbrella Sampling along a Quantum Mechanical

Coordinate. To generate a potential of mean force along a
reaction coordinate, the most naiv̈e approach one could take is
to apply eq 1 directly and simply take the logarithm of the
number of times the system visits each point of the reaction
coordinate during equilibrium molecular dynamics. This
approach is problematic, however, because regions of high
free energy are rarely visited, giving rise to large uncertainties or
even gaps in PMFs calculated this way unless exhaustive
sampling is used.5 As a result, many ways to improve the
sampling of regions of high free energy have been developed,1

and we focus here on the method of Umbrella Sampling.1b,6 We
note that our coupled-perturbed method could easily be
extended to other enhanced sampling schemes that make use of
gradients in the reaction coordinate.
In Umbrella Sampling, one adds a biasing potential, Ubias, to

the system’s Hamiltonian that is designed to enhance sampling
in certain desired regions of configuration space. The biasing
potential typically takes the form of a harmonic confining
potential:

ζ= −U k q R
1
2

( ( ) )Nbias 2
(2)

where q is a reaction coordinate of interest that may depend on
some or all of the degrees of freedom, RN, and ζ is the biasing
target value of the reaction coordinate. For a classical system,
one can rigorously “undo” the effects of the biasing potential to
calculate equilibrium properties in the original unbiased
ensemble. In particular, for a classical system described by
Hamiltonian H, the canonical ensemble average of any
observable, A, is given by
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where Tr() denotes the trace over all degrees of freedom, β =
1/kBT, and ⟨ ⟩U indicates an ensemble average taken with
Hamiltonian H + Ubias. The second equality in eq 3 results from
multiplying and dividing by exp[βUbias], while the last equality
shows how to relate ensemble averages calculated with the
biasing potential to the (desired) unbiased values.
Unfortunately, when the reaction coordinate of interest

involves a quantum degree of freedom, the approach outlined
above can no longer be applied directly. The reason is that the

second equality of eq 3 uses exp[−βH] × exp[−βU] =
exp[−β(H + U)], which is true only for systems where H and U
commute. H and U always commute for classical systems, but
they almost never commute in cases where they are quantum
mechanical operators. This is because to confine a quantum
system to a certain region of space, the confining potential U
needs to be a function of the position operator. Because of the
noncommutation of position and momentum operators,
however, there exists no function, U(r)̂, that commutes with
the kinetic energy operator of a quantum Hamiltonian.
To circumvent this problem of the noncommutation of the

biasing potential with the quantum Hamiltonian, Borgis and
Staib (B&S) developed an approach that uses a biasing
potential that is a function of the quantum position expectation
value, re = ⟨r⟩̂.2 Since the quantum degrees of freedom have
been integrated out in the expectation value, the biasing
potential is a function only of classical degrees of freedom, and
eq 3 can be used as written. Since most electronic quantities of
interest are usually taken to be expectation values, such as the
distance of an electron from a particular molecule or interface,
applying biasing potentials directly on expectation-value
coordinates is a natural choice.
For systems involving both quantum and classical particles,

the canonical ensemble sampling indicated by eq 3 is carried
out most efficiently with molecular dynamics (MD) since the
quantum wave function (whose determination is often the most
expensive part of the calculation) can be updated with the
simultaneous propagation of all classical degrees of freedom, as
opposed to a Monte Carlo approach, which moves particles one
by one. To perform MD, we require gradients of the biasing
potential of eq 2 with respect to the classical particles’ positions,
RN. Calculating this force, however, is not trivial since the
quantum expectation value is determined parametrically from
the classical positions (via their coupling in the Schrodinger
equation). Thus, when taking the gradient of eq 2, there are
two terms that contribute to the derivative of q.

=
∂

∂
+ ∇ ·

α α α

q
R

q
R

q
r

R
d

d
d

dr
e

e (4)

where α denotes a particular classical degree of freedom. The
first term of eq 4 comes from the explicit dependence of q on
the positions of each of the classical particles and is usually
trivial to calculate. The second term encompasses the
dependence of the quantum position expectation value on
the positions of all of the classical particles, and this term is
what has prevented quantum umbrella sampling from being as
straightforward as classical umbrella sampling.
Thus, to make progress, we need to focus on this expectation

value gradient:

∑ψ ψ= ⟨ | | ⟩ =̂
α

α
α

∗r
R

r R c r
c

R
d

d
2 d /d 2 ( )

d

d
e I

e
I

j
j
I

j
j
I

(5)

where I is an index denoting the occupied quantum electronic
state, and the second equality results from an expansion of the
wave function in an orthonormal grid basis (so that the wave
function for state I has value cj

I at grid point j). Since the
position operator is diagonal in a grid basis and acts only on the
quantum degrees of freedom, the gradient with respect to the
classical positions arises solely from the response of the wave
function. B&S used a perturbation expansion to find a solution
to the wave function response:2
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∑ ψ ψ ψ ψ≈ − ⟨ | |̂ ⟩⟨ | ∂
∂

| ⟩
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E E r
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(6)

where EJ is the electronic energy of state J, and U is the
potential energy operator. We refer to this approach as sum-
over-states quantum umbrella sampling (SOS-QUMB). Equa-
tion 6 becomes exact if the sum is carried out over a complete
set of states. This type of sum was possible in the first
application of the method due to the use of a small basis size, of
order Nbasis = 100.2 More recent applications of SOS-QUMB
have used basis set sizes of order Nbasis = 1000, which
necessitates a truncated sum-over-states (NSt ≪ Nbasis) to avoid
a complete diagonalization of the Hamiltonian, whose cost
scales as (Nbasis)3.7

The use of a truncated expansion in eq 6 makes most
practical applications of SOS-QUMB approximate in nature.
Although the energy denominator and transition dipole matrix
elements should give the greatest weight to contributions from
states close to the occupied state, I, justifying a truncated sum,
no study of the convergence properties of this equation has
previously been reported. Furthermore, for systems exhibiting
substantial asymmetry, such as for ions or electrons near an
interface, the spatial and energetic distribution of the electronic
states may require a very large or fully complete set of states to
converge the sum in eq 6. For this reason, it is clearly desirable
to find an alternative formulation to solve eq 5 without
requiring the calculation of any excited states. As we show in
the next section, an analytical solution to this problem is
possible, with the final result being:

ψ= − ⟨ | ∂
∂

− | ⟩
α α α

r
R

Z
U
R

E
R

d
d

2
d

d
e I

(7)

where Z is a solution to the coupled-perturbed equations (eq
18 below). The key advantages of eq 7, which forms the heart
of CP-QUMB, are that the required matrix elements are no
more complicated than those in SOS-QUMB, and the need for
calculating electronic excited states is avoided entirely.
2.2. Development of Coupled-Perturbed Quantum

Umbrella Sampling. Our formulation of Coupled-Perturbed
Quantum Umbrella Sampling is generally applicable to any
electronic structure method, but for the purposes of
presentation, we choose to focus on the specific case of an
adiabatic mixed quantum/classical simulation (MQC) involving
a single ground-state quantum particle embedded in a classical
subsystem. We note that extension to adiabatic excited-state
free energy surfaces is trivial providing the reaction coordinate
of interest does not bring the system to conical intersections
with other electronic states. In MQC MD, the quantum and
classical degrees of freedom are coupled by pseudopotentials,8

and we assume without loss of generality that the quantum
system’s wave function is solved on a grid by diagonalizing the
Hamiltonian in this basis:

∑ =H c Ec
j

ij j j
(8)

The wave function response can then be found by taking
derivatives of eq 8 with respect to the classical degrees of
freedom:

∑ δ− =
αR

H E c
d

d
[ ( ) ] 0

j
ij ij j

(9)

Since H, E, and c are known (following a solution of the
eigenvalue problem), finding the wave function response
amounts to inverting eq 9. This equation, however, is singular,
so to proceed one must modify its eigenvalue away from zero
without changing the response coefficients. Following Osamura
et al.,9 this is achieved by adding the normalization condition of
the wave function:

∑ ∑δ δ− − − | | =
αR

H E c c
d

d
{ [ (1 )] } 0

j
ij ij ij

k
k j

2

(10)

Collecting terms in eq 10 produces the Coupled-Perturbed
Response equations:
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Equation 11 makes clear that the response of the wave
function coefficients on the left-hand side comes from the
coupling between quantum and classical particles through the
gradients of the potential on the right-hand side.
Although eq 11 could be solved for every Rα, there are 3N

(where N is the number of atoms) such perturbations, making
this approach computationally too expensive. Instead, we use
the Z-vector method of Handy and Schaefer and solve an
analog of eq 11 for a single perturbation.10 We start by writing
eq 11 in matrix form:

∂ ̲
∂

= − ̲
α

αD
c

R
M

(12)

where

δ= − + *D H E c c2ij ij ij i j (13)
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j

(14)

Introducing a Lagrangian for the position operator:

=L c ri i i (15)

it is clear from eq 5 that the gradient of the position operator is
a simple inner product:

= ̲ · ∂ ̲
∂α α

r
R

L
c

R
d

d
2e

(16)

So inverting eq 12 and plugging into eq 16 gives

= − ̲ · ̲
α

α−r
R

L D M
d

d
2e 1

(17)

The Z-vector approach then corresponds to solving a single
Coupled-Perturbed equation

̲ = ̲DZ L (18)

for each of the three Cartesian directions of eq 17. With these
solutions, the gradients of the position expectation value can be
recovered by inserting eq 18 into eq 17:

= − ̲ · ̲
α

αr
R

Z M
d

d
2e

(19)

which is the matrix form of eq 7.
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In practice, we solve eq 18 iteratively using the Conjugate
Gradient algorithm,11 as implemented in PETSc 3.4.4,12 which
requires only matrix-vector products and thus eliminates the
need to store the complete Hamiltonian matrix. This procedure
thus gives us the forces we need to restrain the expectation
value of a quantum object with respect to the classical
coordinates, and allows us to use eq 3 to directly determine the
free energetic cost associated with this restraint. In this way, we
can do chemistry by fiat, and construct PMFs for quantum
mechanical particles by forcing the system to have a desired
expectation value of its quantum wave function. A step-by-step
approach to propagating CP-QUMB dynamics is as follows:

1) From a set of classical particle coordinates, update the
Hamiltonian matrix elements and solve the Time-
Independent Schrödinger Equation (eq 8) for the
electron’s energy and wave-function coefficients.

2) Find the electronic forces on the classical particles from
the Hellmann−Feynman theorem (eq 21).

3) Construct the left- and right-hand sides of the Coupled-
Perturbed equations (eq 18) from the position operator
matrix elements, the Hamiltonian matrix elements, the
energy eigenvalue, and the wave-function coefficients.
Solve this iteratively for a Z vector for each component
of the quantum position operator.

4) Find the nuclear gradients of the quantum position
expectation value according to eq 19 and eq 14 using the
wave-function coefficients from step 1, energy gradients
from step 2, and Z vectors from step 3. From these
expectation-value gradients, find the gradients of the
umbrella potential (eq 2) via the chain rule.

5) Propagate the classical positions and velocities one time
step using the sum of their pair-potential forces, the
electronic forces from step 2, and the umbrella forces
from step 4.

6) Return to step 1 for the next MD time step.

3. COMPARING QUANTUM UMBRELLA SAMPLING
METHODS
3.1. Computational Efficiency. Now that we have a

formalism in place that allows for quantum umbrella sampling
with exact forces on the classical particles to restrain the
quantum expectation value, the next thing we investigate is how
practical this formalism is to implement. The computational
cost of our CP-QUMB method over regular MQC dynamics
arises from two aspects. First, one must solve the coupled-
perturbed equations for the wave-function response. As detailed
above, this involves solving three linear equations (one for each
Cartesian component of the quantum position operator),13

which given the large size and sparsity of the Hamiltonian is
best performed with an iterative solver such as the method of
Conjugate Gradients.11 Second, according to eq 7, one must
evaluate up to 9N additional matrix elements of the gradient
potential energy operator between the Z-vector solutions to the
coupled-perturbed equations and the occupied state of interest.
This is on top of the 3N gradient potential matrix elements
needed for Hellman−Feynman forces between the quantum
and classical particles (which need to be evaluated with or
without QUMB). As we show below, however, evaluating these
gradient potential matrix elements does not consume a
significant portion of the computational cost per time step. In
the Appendix we give details on how these gradient potential
matrix elements readily can be evaluated in a Fourier grid basis.

Although there is a lot to calculate to successfully perform
CP-QUMB, it is still quite a bit less computationally expensive
than SOS-QUMB, which is an approximate method and for
which the cost grows with the number of states used in the
sum-over-states. This is because SOS-QUMB requires the
calculation of excited-state wave functions, which makes the
iterative diagonalization of the Hamiltonian more costly than
solving the coupled-perturbed equations in CP-QUMB.
Moreover, according to eq 6, the number of additional gradient
potential matrix elements that must be calculated when using
SOS-QUMB is 3N × NSt, which can quickly become the
slowest part of the calculation for the typical number of states
needed to reasonably converge this method.
To explore the computational cost of the QUMB methods in

more detail, we evaluated CPU timings for one of the umbrella
sampling simulations of Section 4.2, which involves a hydrated
electron restrained so that its center of mass lies ∼4 Å above an
air/water interface, a height that corresponds to an electron
“floating” on the water surface. In Figure 1a we show a typical
molecular dynamics snapshot of such a floating electron, where
it is clear the electron is localized to within a solvation shell of
four water molecules, despite being partially exposed to the
vacuum. We performed timings on one core of a dual quad-
core Intel Xeon X5560 2.8-GHz computer, averaging over 50
water configurations. To remove any bias, we used the same
water configurations for each method and refactored our code
to keep implementation details between the methods as similar
as possible.
The timing results from this exercise are collected in Table 1,

where we see that CP-QUMB is faster than SOS-QUMB with
only five states and introduces only a small computational
overhead relative to MQC dynamics without QUMB (first
row). The cost of solving for the coupled-perturbed wave-
function responses of eq 18 is comparable to the iterative
diagonalization of the Hamiltonian and introduces roughly
three times as many matrix-vector products as the diagonaliza-
tion. Although the time spent evaluating gradient potential
energy matrix elements is roughly 4 times larger in CP-QUMB
compared to trajectories without QUMB, this part of the
calculation is a small fraction of the total CPU time, most of
which for this particular system is taken up evaluating the
electron−water potential energy matrix elements, a cost
common to all methods. Finally, as expected, the cost of
SOS-QUMB scales roughly linearly with the number of states
in the sum-on-states, which for this particular umbrella window
necessitated NSt = 25 to converge to the point of accurate
determination of the PMF. Thus, for this problem, the CP-
QUMB method is over a factor of 2 faster than the approximate
SOS-QUMB method.

3.2. Accuracy of CP-QUMB and SOS-QUMB. Now that
we know that CP-QUMB is generally faster than SOS-QUMB,
we next explore the accuracy of the two methods. In particular,
we examine the convergence properties of the sum-over-states
in SOS-QUMB since recent applications of this method have
been forced to use a truncated sum,7 but no convergence
studies have been published. To this aim, we ran CP-QUMB
and SOS-QUMB dynamics for the same system considered in
the previous section: a hydrated electron restrained to float on a
water surface. One way to detect errors in QUMB methods is
to monitor the total energy conservation during molecular
dynamics: errors in the gradient of the quantum position
operator expectation value will propagate into errors in the
umbrella sampling forces, resulting in energy nonconservation.
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In Figure 2a we plot a portion of the total energy
conservation for CP-QUMB (black curve), where we see
excellent energy conservation, with no noticeable drift, and root
mean square (RMS) fluctuations of 0.015 eV, comparable to
what is obtained for mixed quantum/classical dynamics for this
system in the absence of QUMB. This level of energy

conservation is maintained for the entire >100-ps simulation,
giving us confidence in the accuracy of CP-QUMB. Also
plotted in Figure 2a are total energy traces for SOS-QUMB
with three different levels of truncation in the sum-over-states.
Including only five states (red curve) gives very poor energy
conservation, with an unacceptably large drift of >0.6 eV in the
course of 10 ps. Increasing the number of states to 10 (blue
curve) improves the drift somewhat, but only when NSt = 25
(green curve) is energy conservation comparable to CP-
QUMB, and even then the RMS fluctuations are still somewhat
larger at 0.018 eV. We note NSt = 25 is what was used by
Boutin and co-workers in their studies of electron:cation
contact pairs,7 so we expect the results of ref 7 to be reasonably
accurate, even though the computational cost was ∼3 times
larger than what it would have been with CP-QUMB.
The observation of total energy drifts in the SOS-QUMB

method implies that the truncation of the sum-over-states
introduces a systematic error in the umbrella force. This
translates to an incorrect sampling of the umbrella coordinate
and thus leads to errors in the calculated potential of mean
force. To explore these sampling errors, we calculated a
(partial) PMF from a single umbrella sampling window that
restrains a hydrated electron to lie ∼4 Å above the air/water
interface for each of the methods (the full PMF calculated via
CP-QUMB is presented in Section 4.2, below); the results are
displayed in Figure 2b. As expected, SOS-QUMB with only five
states (red curve, circles) exhibits a substantial error, over-
estimating the free-energy difference between 3.0 and 4.0 Å
above the interface by ∼3 kBT relative to the exact CP-QUMB
method. This is because for this number of states, the
approximate umbrella sampling forces underestimate their
correct values and are therefore unable to properly restrain the
hydrated electron’s expectation value. When the number of
states used in SOS-QUMB is increased to 10 (blue curve,
crosses), the error goes the other way, and now the free energy
difference is underestimated by ∼2 kBT relative to CP-QUMB.
This nonmonotonic convergence of SOS-QUMB therefore
makes it difficult to know a posteriori what should be the correct
number of states to use. For this particular system, we find it
takes NSt = 25 in SOS-QUMB to converge the PMF into
agreement with CP-QUMB (not shown in Figure 2b for
clarity), but, as discussed in the previous section, increasing NSt

in SOS-QUMB costs nearly 3 times as much as CP-QUMB.

Figure 1. Molecular dynamics snapshots of the hydrated electron near
an air/water interface obtained from the Coupled-Perturbed Quantum
Umbrella Sampling method. In all panels, the translucent blue surface
represents the location of the air/water interface (Gibbs dividing
surface), while the dark and light gray contour surfaces enclose 50%
and 95% of the excess electron’s charge density, respectively. (a, b) An
electron with its expectation value position restrained 4 Å above and 1
Å below the air/water interface, respectively. (c) An electron located 9
Å below the interface, where essentially bulk solvation is observed. For
clarity, in (c) we represent the water molecules by licorice bonds.

Table 1. Computational Cost of Quantum Umbrella
Sampling Methodsa

method
tot.
time

grad.
timeb

diag.
timec

CG
timed

av #
mat-vece

no QUMBf 2.10 0.12 0.11 70
CP-QUMB 2.69 0.53 0.11 0.17 256
SOS NSt = 5 2.73 0.58 0.30 278
SOS NSt = 10 3.58 1.29 0.55 486
SOS NSt = 25 5.81 3.23 1.01 731

aCPU times in seconds per time step for QUMB simulations of a
hydrated electron restrained so that its average position lies 4 Å above
an air/water interface; the times reported are averaged over 50 water
configurations. bCPU time to evaluate all matrix elements involving
the gradient potential energy operator, i.e., eq 21. cCPU time to
iteratively diagonalize the electronic Hamiltonian. dCPU time to
iteratively solve the Z-vector of eq 18 with the Conjugate Gradient
method. eTotal number of matrix-vector multiplies per time step, from
both the iterative diagonalization and conjugate gradient routines.
fCPU times for pure MQC MD, with all QUMB routines disabled.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500661t | J. Chem. Theory Comput. 2014, 10, 4661−46714665



Since the convergence of the sum-over-states will depend on
the particular system and the nature of its excited states, taken
alone, there is no simple way to guarantee that even NSt = 25
will suffice to converge a QUMB calculation with the SOS-
QUMB method. For these reasons, we strongly prefer the use
of CP-QUMB over SOS-QUMB.

4. APPLICATIONS OF CP-QUMB
In this section, we apply CP-QUMB to two realistic MQC
systems. To this end, we calculate potentials of mean force for
moving electrons off sodium atoms in liquid water and for
moving hydrated electrons close to the air/water interface.
4.1. Hydrated Electron−Aqueous Cation Contact Pair.

As a first application of the CP-QUMB method, we consider
the interaction of a hydrated electron with a cationic species in

water, specifically Na+. We chose this as our initial test system
for CP-QUMB because Boutin and co-workers have previously
studied electron−Na+ interactions quite extensively with SOS-
QUMB with NSt = 25, as discussed above.7 These researchers
found that the hydrated electron forms a contact pair with
aqueous Na+: there is a minimum in the potential of mean force
at around 2 Å separation, and the contact pair is stable to
dissociation by ∼3 kBT.

7a Boutin and co-workers did not
explore the region of the PMF where the electron completely
overlaps the cation (i.e., becomes a neutral atom), however, so
the question as to whether the neutral alkali atoms are (quasi)-
stable in liquid water, or if they spontaneously form
electron:cation contact pairs is still open.
In addition to serving as a test of our method, this system is

chemically interesting for at least two reasons. First, the
structure of the hydrated electron has received considerable
attention recently.8e,f,15 Most theoretical studies treat the excess
electron as an isolated species, but experimentally, counter-
cations are usually present, and the influence of these cations
on the properties of hydrated electrons has not been fully
elucidated. Second, in charge-transfer-to-solvent (CTTS)
reactions, photoexcitation of an atomic anion generates a
neutral atom and a solvated electron.16 The neutral atom left
behind following CTTS was originally considered an inert
partner,17 but more recent work has revealed that the neutral
atom can undergo a subsequent solvent-induced ionization,
producing a solvated e¯:cation contact pair.18 Thus, exploring
the aqueous e¯−Na+ PMF can further our understanding of
CTTS reactions, the nature of solvated atoms, and the nature of
the hydrated electron, all of which are topics of current interest.
Our simulation protocol for calculating an e¯−Na+ PMF in

water was chosen to follow closely the previous SOS-QUMB
simulations of Boutin and co-workers.7a In particular, we
performed umbrella sampling along the electron center of
mass−sodium cation distance with 24 windows centered at
distances ranging from 0 to 6 Å, separated by 0.25 Å. The force
constant of the harmonic restraining potential was set to 1.4
eV/Å2 to give sufficient overlap in the electron−sodium
distance fluctuations between neighboring windows. After a
period of equilibration, adiabatic MQC MD was propagated on
the electronic ground-state surface for at least 30 ps in each
window. We used the SPC/Flex potential19 to describe 499
classical water molecules and a single sodium cation with
Lennard-Jones parameters taken from Aaquist.20 The Turi−
Borgis (TB) pseudopotential was used to represent the
electron-water interactions,8b while the electron−sodium
pseudopotential was taken from our previous work.18a The
quantum hydrated electron’s wave function was represented on
a Fourier grid with 203 points spanning 2/3 of the box length,
and the grid was periodically recentered on the electron in a
manner described elsewhere.18a The wave functions were found
by diagonalizing the quantum Hamiltonian using the Davidson
algorithm21 as implemented in SLEPc 3.4.4.22 Velocities were
rescaled according to a global Langevin thermostat23 to sample
the canonical ensemble at a temperature of 298 K, and the box
size of 24.64 Å was chosen to ensure a density of 1.0 g/cm3.
Finally the PMFs from each umbrella sampling window were
unbiased and stitched together using the Multistate Bennett
Acceptance Ratio method.24

Figure 3 displays the PMF for the e¯−Na+ distance in water
computed using CP-QUMB (solid black curve). The results
show a well-defined minimum at r ≈ 2 Å, corresponding to an
e¯:Na+ contact pair stabilized by ∼3 kBT relative to dissociation,

Figure 2. Convergence properties of SOS-QUMB with the number of
electronic states and comparison to CP-QUMB for a hydrated electron
restrained to have its expectation value lie 4 Å above the air/water
interface, i.e., a “floating” electron. (a) Total energy conservation,
relative to the first time step, during quantum umbrella sampling
simulations. (b) Partial PMFs of the hydrated electron as a function of
its quantum expectation value position relative to the air/water
interface, calculated from the simulations of panel (a). SOS-QUMB
with NSt = 25 (not shown) agrees with CP-QUMB to within ±1 kBT.
Error bars in this panel and in all subsequent figures represent 95%
confidence intervals after subsampling the molecular dynamics data to
remove correlations.14
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in excellent agreement with the previous work of Boutin and
co-workers using SOS-QUMB.7a,25 To explore the convergence
properties of SOS-QUMB for this particular system, we
calculated a partial PMF using the SOS-QUMB from the
window centered at r = 0 Å using five electronic states in the
sum-over-states. This PMF is plotted as the dashed red curve in
Figure 3. Surprisingly, we see excellent agreement between this
highly truncated SOS-QUMB calculation and the exact CP-
QUMB to within ±0.5 kBT. It just so happens that for this
particular system, the convergence of SOS-QUMB with the
number of states is rapid. This favorable convergence arises
because of the electronic structure of the sodium atom, which
has transition dipole matrix elements in the SOS that are
dominated by just a few 3s−3p transitions.
Going beyond the previous work on this system,7 we also

extended the aqueous e¯−Na+ PMF all the way to the origin (r
= 0 Å). Figure 3 shows that at the origin, the PMF is at a local
maximum. This means that a neutral sodium atom in water has
a strong thermodynamic driving force to form an e¯:Na+

contact pair, which explains our previous observations of such
contact pairs in simulations of the CTTS reaction of Na¯(aq).

18a

For the case of sodium atoms in liquid tetrahydrofuran (THF),
we previously found that the driving force to form an e¯:Na+

contact pair from a newly created Na atom was a favorable
complexation of the partially exposed Na+ ion by the oxygen
atoms of a few first-solvation-shell THF molecules.18c We
believe that a similar mechanism is operative in aqueous
solutions, and indeed, Coudert et al. have shown that the
sodium cation of aqueous e¯:Na+ contact pairs is solvated on
average by the O atoms of two nearby water molecules.7b

4.2. Hydrated Electrons at the Air/Water Interface.
Having demonstrated the application of our method on the test
case of a hydrated electron:sodium cation contact pair, we next
apply CP-QUMB to a system that has not previously been
explored with umbrella sampling: a hydrated electron near the
air/water interface. This is a system of importance both in

terms of a wider understanding of surface ionic adsorption,5,26

which has consequences for atmospheric aerosol photo-
chemistry and in providing insight into hydrated electron
interactions with aqueous/biological interfaces. Recently, there
has been considerable debate as to whether or not hydrated
electrons reside near the water surface as the heavy halide ions
do.27 Part of the reason the heavy halides prefer the interface is
that polarization of such anions by dielectric interfaces
contributes to their surface enhancement relative to the
bulk.26a In this sense, the hydrated electron, which is one of
the most polarizable solutes,28 might be expected to have a
particularly large surface enhancement. Experimental evidence
for surface-bound hydrated electrons, however, is inconclusi-
ve.27b−e,g Although one photoelectron spectroscopy study
identified spectral features assigned to a quasi-stable surface-
bound electron with a distinct ionization potential of 1.6 eV
(compared to the bulk value of 3.3 eV),27b subsequent studies
under similar experimental conditions were unable to
reproduce the features associated with surface-bound electro-
ns.27e,g

Theoretically, the interfacial stability of hydrated electrons
has received only limited attention. Rodriguez and Laria were
first to simulate the properties of hydrated electrons at the air/
water interface, but they did not explore its stability relative to
the bulk.29 Madaraśz, Rossky, and Turi (MRT) studied the
localization and stabilization of electrons introduced at the air/
water interface. These authors found that under ambient
conditions the electron diffuses into the bulk on a ∼10-ps time
scale while the reverse process was absent, suggesting that the
bulk is preferred.27a More recently, Uhlig, Marsalek, and
Jungwirth (UMJ) studied the localization dynamics and
properties of a hydrated electron at the air/water interface
with ab initio QM/MM simulations.27f They found that an
initially created interfacial electron persisted for at least 10 ps,
but the high computational expense of their method precluded
longer simulation runs, so quasi-stability of the interfacial
electron could not be ruled out. To date, there has been no
attempt to calculate a potential of mean force for the electron
relative to the air/water interface that could address directly the
question of the relative stability of bulk versus interfacial
solvation and provide insight into the energetic contributions
favoring one solvation motif over the other.5,26b

To use CP-QUMB to generate a PMF for a hydrated
electron relative to the air/water interface, we chose to use
identical potential interactions as MRT to facilitate a direct
comparison to their previous dynamical studies,27a including
use of the Turi−Borgis (TB) electron-water pseudopotential.8b
Thus, we constructed a simulation slab geometry of 499 waters
in a vacuum with an L = 24.64 Å simulation cell length in the x
and y directions and a length 5 times that in the z direction. We
then ran 32 umbrella sampling window simulations with a
spring constant of 0.4 eV/Å2 to restrain the z-component of the
electron’s position to be centered between 0.0 to 16.0 Å relative
to the center of mass of all the water molecules in the z-
direction. The Gibbs dividing surface (GDS, corresponding to
the height at which the average water density falls to half of the
bulk value) was located at z = 12.3 Å, and the 90% and 10%
water density range fell between 11.0 < z < 14.1 Å. For the
highest umbrella window (∼4 Å above the GDS), the radius of
the electron in the z-direction was found to be 1.9 Å; this
window therefore corresponds to an electron “floating” on the
water surface, as seen in Figure 1a. To accommodate the
increasing size of the hydrated electron as it approached and

Figure 3. Potential of mean force between a hydrated electron and
sodium cation in liquid water calculated with the coupled-perturbed
quantum umbrella sampling method (solid black curve) and, for the
section of the PMF near r = 0, with the sum-on-states quantum
umbrella sampling method (dashed red curve) with NSt = 5. The SOS-
QUMB PMF was displaced vertically by −1 kBT for clarity. The
minimum in the PMF at 2 Å corresponds to an e¯:Na+ contact pair,
and formation of an aqueous neutral sodium atom is clearly unstable.
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traversed the interface, we had to adapt the spatial extent of the
Fourier grid used to represent the electron. For umbrella
windows centered between 13 ≤ z ≤ 16 Å, we found a Fourier
grid of 223 points spanning the length L was necessary (as
previously observed,27a,f the electron’s ground-state wave
function did not extend significantly into the vacuum). For 9
< z < 13 Å, we used an 183 point grid spanning 9/11 L, and for z
≤ 9 Å, a 143 grid spanning 7/11 L was sufficient to describe the
effectively bulk hydrated electron. At least 100 ps of data were
accumulated in each umbrella sampling window after an initial
period of equilibration.
Figure 4a shows the CP-QUMB potential of mean force of

the hydrated electron relative to the air/water interface (as

defined by the GDS). For the chosen TB potential,8b the
hydrated electron is solvated preferentially in bulk water away
from the interface. This is consistent with the nonequilibrium
simulations by MRT, who using this same model found that
interfacial solvated electrons moved into the bulk on a ∼10-ps
time scale.27a Furthermore, the PMF for dragging an electron
above the water surface is strongly repulsive, such that
“floating” surface states of the hydrated electron are highly
unstable by ∼8 kBT relative to the bulk. The MD snapshot
shown in Figure 1a hints at the origin of this behavior: rather
than simply floating on the surface of water, the hydrated
electron in this environment prefers to drag a number of water
molecules with it to above the GDS, which carries a large free
energy cost due to the high surface tension of water.

For hydrated electron solvation below the air/water interface,
interestingly the PMF shows the presence of a plateau
extending from the GDS to ∼4 Å below the surface. This
suggests that rather than floating on the water surface, the TB
model of an interfacial hydrated electron is solvated
preferentially below the surface. Examining MD snapshots,
such as the one shown in Figure 1b, reveals that in this plateau
region the hydrated electron can acquire essentially a complete
first solvation shell, similar to the findings of UMJ for their
QM/MM model of the interfacial hydrated electron.27f

Furthermore, the presence of the plateau in the PMF,
immediately below the water surface suggests that the
interfacial electron is quasi-stable, so that it might be possible
to trap the electron close to the interface if diffusion were
sufficiently slowed. Indeed, MRT found that at a simulation
temperature of T = 200 K, a hydrated electron introduced
above a supercooled water surface persisted in the interfacial
region for at least 180 ps.27a

One of the large advantages of CP-QUMB is that it not only
provides the PMF in Figure 4a but also allows for analysis of
the driving forces to bulk solvation for this (TB) model of the
hydrated electron. These driving forces can be revealed by
calculating ensemble-averaged quantities as a function of
distance from the interface, according to

δ
δ

=
⟨ − ⟩
⟨ − ⟩

A z
q z A
q z

R
R

( )
( ( ) )
( ( ) )

z N

z N
(20)

where A is the observable of interest, and qz is the reaction
coordinate corresponding to the distance of the electron from
the interface. We evaluated eq 20 by histogram-bin averaging
the quantity A (e.g., the electron’s eigenvalue) for each MD
snapshot according to the electron’s distance, z, from the
interface. Ensemble-averaged quantities were then unbiased for
each umbrella window according to eq 3. In Figure 4b we plot
the hydrated electron’s average quantum energy eigenvalue
calculated this way as a function of distance from the air/water
interface (solid blue curve). The quantum energy shows a clear
energetic stabilization of bulk solvation relative to the interface
(z = 0) of 0.77 eV = 30 kBT. The electron’s energy eigenvalue
can be related to the negative of its vertical binding energy
(VBE). Our simulations therefore predict that the interfacial
hydrated electron would have a binding energy of ∼3 eV, in
stark contrast to the controversial interpretations of exper-
imental photoelectron spectra, which assigned a VBE of 1.6 eV
to the interfacial electron.27b The somewhat small shift in VBE
from interface to bulk is consistent with the findings of UMJ,
who found that their QM/MM model of the interfacial electron
is essentially fully hydrated with bulklike properties. All of this
means that if this model of the interfacial electron is correct,
photoelectron experiments would be unable to distinguish
surface-bound electrons from their bulk counterpart.27e−g

We can further decompose the energetic contributions to
bulk stabilization by specifically examining the electron−solvent
polarization interaction (dashed red curve in Figure 4b), that is,
the energy associated with polarization of the water molecules
by the hydrated electron charge density. The data show clearly
that solvent polarization is the dominant driving force for bulk
solvation, contributing 0.43 eV = 17 kBT of energy. Perhaps of
greatest interest, from the bulk to just below the interfacial
region at z = −2 Å, the electron’s eigenvalue closely tracks the
electron−solvent polarization energy (dashed red curve),
indicating that in this region, polarization is the only part of

Figure 4. Energetic properties of a hydrated electron as a function of
distance from the air/water interface. Negative distances indicate
aqueous solvation of the electron below the average height of the
interface (Gibbs dividing surface), positive distances are when the
electron center of mass is above the interface, outside the bulk. (a)
Helmholtz free energy, i.e., the potential of mean force, calculated via
CP-QUMB. Arrows indicate where snapshots were taken for Figure 1.
(b) (left axis, solid blue curve) Electron’s average quantum energy
eigenvalue (negative vertical binding energy). (right axis, dashed red
curve) Electron−solvent polarization energy. Note that unlike panel
(a), the energy units of this panel are in eV.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500661t | J. Chem. Theory Comput. 2014, 10, 4661−46714668



the electron−water interaction that drives the electron away
from the interface.
Note that the electron−water polarization potential we used

(which was chosen to match that in MRT’s study) is rather
crude in nature, comprising a simple pairwise additive potential
of the form Upol = −f(r) α/(2r4), where f is a short-range
damping function that removes the polarization catastrophe at
the origin, and α is the isotropic polarizability of a water
molecule, centered on the oxygen atom.8b It is well-known that
such pairwise additive polarization potentials tend to over-
estimate the overall polarization energy, particularly in water,
due to the neglect of many-body dipole−induced dipole
interactions that screen the polarization.30 Within the pairwise
additive approximation, it is perhaps not surprising that bulk
solvation is favored over the interface since the polarization
potential is purely attractive, favoring electron solvation in
regions of high water density. Given the magnitude of the
electron−solvent polarization energy, it is clear that a more
careful treatment of this contribution is necessary before
quantitative predictions of interface versus bulk stability can be
made: for all the argument in the literature over the proper
choice of electron−water pseudopotential,8e,31 for this problem
of interfacial electrons, the oft-neglected many-body polar-
ization term is clearly the most important.
Overall, our CP-QUMB simulations of the hydrated

electron’s PMF relative to the air/water interface provides
valuable insight into the properties of interfacial hydrated
electrons within the constraints of commonly used electron−
water interactions. The development of CP-QUMB allows us
to make qualitative comparisons between the interfacial
properties of different models of the hydrated electron,8b,e,27a

a topic that we will address in the near future.

5. CONCLUSIONS
In this article, we introduced a new simulation method called
Coupled-Perturbed Quantum Umbrella Sampling that extends
the method of classical umbrella sampling to reaction
coordinates involving the expectation values of quantum
mechanical degrees of freedom. Using our method, one can
restrain quantum degrees of freedom, for example, moving
electrons into desired configurations to understand free energy
barriers, differences, and nonequilibrium behavior. In this way,
CP-QUMB not only allows for the construction of potentials of
mean force for quantum coordinates, but also provides for
chemistry by fiat, since it allows quantum systems to be placed
into configurations where they might otherwise never go under
equilibrium conditions. Finally, we were able to show that our
CP-QUMB method is both more accurate and computationally
cheaper than the previous Sum-Over-States formulation of
Quantum Umbrella Sampling,2 and we were able to
demonstrate sampling of quantum reaction coordinates at
tens of kBT in free energy.
We applied our new method to explore the potential of mean

force for two condensed phase mixed quantum/classical
systems of interest. First, we found that a neutral sodium
atom in water is highly unstable and has a barrierless free
energy profile to dissociation into an e¯:Na+ contact pair and
that the equilibrium structure of the pair was in good
agreement with that previously determined by Spezia et al.7a

The features of the PMF we calculated also explain the
experimental observation of spontaneous electron:cation
contact pair formation following the charge-transfer-to-solvent
reaction of atomic anions.18a,b,d

In the second case, we used CP-QUMB to study hydrated
electrons near the air/water interface and found that bulk
solvation of the electron is thermodynamically favored over
interfacial solvation, at least for the TB model of the hydrated
electron.8b This is consistent with previous calculations that TB
hydrated electrons initiated at the interface diffuse into the bulk
on a ∼10-ps time scale. Furthermore, we found that the main
component of the electron−water interaction potential
responsible for driving electrons into the bulk is the
electron−solvent polarization interaction. Our results clearly
show that any quantitative assessment of the bulk versus surface
stability of the hydrated electron will require an improved
description of electron−solvent polarization.
For both the e¯:Na+ and interfacial electron systems, we

found that the quantum position expectation value served as a
useful reaction coordinate. This is because quantum fluctua-
tions of the hydrated electron were largely unchanged upon
dragging it away from a sodium cation or away from an air/
water interface: the electron remained a localized ball of charge.
In contrast, electron transfer (ET) reactions represent a system
where quantum fluctuations are expected to be important.3b,32

In particular, at the ET transition state, the electron is
delocalized over both donor and acceptor sites, giving rise to
a substantial increase in quantum fluctuations relative to either
the reactant or product species. Our CP-QUMB formalism
could be directly applied to other quantum expectation values,
such as the second moment, ⟨r2⟩, which is a measure of the
quantum fluctuations. Thus, extending quantum umbrella
sampling to multiple quantum expectation value coordinates
could address the role of quantum fluctuations in a reaction
coordinate, such as that during ET.
Finally, we note that while we have presented CP-QUMB in

the framework of a grid-based one-electron electronic structure,
there is no fundamental reason that it cannot be extended to
many-electron ab initio electronic structure calculations. Indeed,
analytical derivatives of the necessary matrix elements in CP-
QUMB recently have been published at the configuration
interaction with singles (CIS) level of theory for atom-centered
Gaussian basis functions.33 Thus, combining ab initio electronic
structure with quantum umbrella sampling opens up the
exciting possibility of performing chemistry by fiat.

■ APPENDIX

A.1. Matrix Elements Involving the Coulomb Potential
Both the SOS-QUMB (eq 6) and CP-QUMB (eq 7) methods
require matrix elements of the derivative of the potential
operator. In mixed/quantum classical schemes, the potential
operator is typically represented by pseudopotentials that
couple the quantum and classical particles,8b−e which in a grid
basis have derivatives that are readily evaluated:

∑ψ ψ⟨ |∇ | ⟩ = ∇ ⃗∗
α α
U c c U r( ) ( )J

R
I

j
j
J

j
I

R j
(21)

In the SOS-QUMB method, the bra corresponds to an
electronic eigenstate, while in CP-QUMB it corresponds to a Z-
vector solution of eq 18; that is, cj

J = Zj. To handle electrostatic
interactions, we employ the standard Ewald method and split
the Coulomb operator part of the pseudopotential into a short-
range (SR) term that decays rapidly in real space and a long-
range (LR) term that converges rapidly in reciprocal space.8a,34

The SR term is best evaluated in real space according to eq 21,
with
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where qα is the partial charge of classical site α, and κ is the
Ewald splitting parameter that controls how fast the SR term
decays in real space. The LR term, on the other hand, is best
evaluated in reciprocal space:
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where V is the cell volume, and k is a reciprocal lattice vector.
The classical and quantum reciprocal-space charge densities are
given by

ρ ̃ ⃗ =α α
·⃗ ⃗αk q e( ) ik RCl

(24)

∑ρ ̃ ⃗ = − * ·⃗ ⃗k c c e( ) ( )JI
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Since the wavefunction coefficients, c, are stored on a regular
real-space grid, the quantum reciprocal-space charge densities
from eq 25 could be found by fast Fourier transform (FFT).
However, in the systems of interest here, the quantum
subsystem is localized to a region much smaller than the total
system size. Furthermore, for reasonable values of κ, we found
that the largest reciprocal lattice vector, k, required to converge
eq 23 was smaller than the largest wavevector spanned by the
quantum grid. Use of an FFT in eq 25 would therefore require
a costly extrapolation of the wavefunctions to a grid
commensurate with the full system size, even though many of
the reciprocal wavefunction coefficients are subsequently
discarded in eq 23. We therefore chose to evaluate eq 25 as a
discrete Fourier transform, including only the reciprocal lattice
vectors required to converge the LR force, the cost of which
scales as NcNk

1/3, where Nc is the number of wave function
coefficients, and Nk is the number of reciprocal lattice vectors.
FFTs scale as Nc log(Nc), so their use may become favorable
for large Nc and Nk ≈ Nc.
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