
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Information Attracts Attention: A Probabilistic Account of the Cross-Race Advantage in Visual 
Search

Permalink
https://escholarship.org/uc/item/52v909x5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 29(29)

ISSN
1069-7977

Authors
Lingyun, Zhang
Tong, Matthew H.
Cottrell, Garrison W.

Publication Date
2007
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52v909x5
https://escholarship.org
http://www.cdlib.org/


Information Attracts Attention: A Probabilistic Account of the Cross-Race
Advantage in Visual Search
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Department of Computer Science and Engineering
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9500 Gilman Drive
La Jolla, CA 92037 USA

Abstract

People are better at recognizing faces from their own race
than from different races (Shapiro & Penrod, 1986; Bothwell,
Brigham, & Malpass, 1989), an effect commonly known as the
other-race effect. The causes of this effect have been attributed
to the fact that people have more experience with faces from
their own race during development (Feingold, 1914; Chance,
Turner, & Goldstein, 1982; Shepard, 1981; Valentine, Chiroro,
& Dixon, 1995). However, in visual search tasks, cross-race
(CR) faces are found faster than same-race (SR) faces (Levin,
1996, 2000). This advantage of CR faces in visual search
tasks seems at first to be inconsistent with the advantage of
the SR face in recognition tasks. To account for this discrep-
ancy, Levin proposed that there is a race feature, which is ac-
tive only for CR faces. By explicitly assuming this feature,
the face search data fits into a visual search paradigm in which
the search asymmetry can be explained. In this paper, we will
present an alternate explanation of the CR face advantage in vi-
sual search which is consistent with the SR face advantage in
recognition without making additional assumptions. The prob-
abilistic visual search model we developed predicts that CR
faces should be found faster than SR faces, given that people
have more experience with SR faces. This model was devel-
oped based on an intuitive assumption of the goal of the visual
system, yet, with no extra assumptions, it fully accounts for
the CR advantage based on the same mechanism believed to
be responsible for the SR advantage in recognition.

Keywords: visual search; other race effect; search asymmetry;
saliency; self-information

Introduction
People are better at recognizing faces from their own race
than from different races (Shapiro & Penrod, 1986; Bothwell
et al., 1989). This is known as the other-race effect, cross
race effect or own race bias. Most researchers agree that this
phenomenon is caused by the learning history; the fact that
people have more experience with their own race faces dur-
ing development results in more accurate recognition. As mi-
norities usually do not have an other race effect for the major-
ity, it might be more appropriate called an unfamiliar facial
structure effect. It was reported that while six year old chil-
dren did not show a significant other-race effect, older partic-
ipants show a degree of the effect positively correlated with
age (Chance et al., 1982). Feingold suggested that the degree
of the other-race effect a person shows is dependent on how
much contact he has with people from other races (Feingold,
1914). Later studies argued that contact for individuation is
more important than mere contact (Shepard, 1981; Valentine
et al., 1995). This leads to the hypothesis of optimal feature
selection. The key idea is that an optimal feature set is se-

lected for identifying individuals that a person comes in con-
tact with. As people are generally more exposed to faces from
their own race, the features developed are tuned accordingly
and are thus less optimal for faces from other races. This
hypothesis has been computationally modelled using princi-
pal component analysis, which successfully accounts for the
other-race effect. (O’Toole, Deffenbacher, Abdi, & Bartlett,
1991; O’Toole, Deffenbacher, Valentin, & Abdi, 1994).

On the other hand, Levin found that people who show the
other-race effect are faster in searching for a cross-race (CR)
face among same-race (SR) faces than searching for an SR
faces among CR faces (Levin, 1996, 2000). Figure 1 shows
an example stimulus from his experiment. In this stimulus,
there is one African face (the bottom one) and seven images
of a Caucasian face. The faces were preprocessed to have
identical shading, hair, ears and jaw lines. The only differ-
ence between faces from different races are thus the internal
features (e.g. eyes, mouth, and nose). The subjects’ task is
to detect whether the target face, i.e. the African face in this
stimulus, is present or not. For a Caucasian subject, this re-
quires looking for a CR face in SR faces.

Figure 1: A sample stimulus in the visual search task. The
target in this stimulus is an African face (the bottom one).
The rest, i.e. the distractors, are Caucasian faces.

Levin’s finding, referred to as the advantage of CR faces in
visual search, seems to be in conflict with the decreased accu-
racy of CR faces in recognition; it is counterintuitive that ex-
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tensive experience with SR faces will lead to a faster search of
CR faces. The optimal feature selection hypothesis does not
seem to provide a straightforward explanation either, since
intuitively a good feature set should aid in search. Yet, since
subjects who do not show the other race effect also do not
show the search asymmetry, these two phenomena must be
tightly related (Levin, 2000).

To accommodate this new observation, Levin proposed the
addition of a race feature which captures whether a face was
in or out of one’s racial group. This race feature is posi-
tive for CR faces. Treisman showed that visual search for
a feature-positive target among feature-negative distractors is
faster than the converse (Treisman & Gormican, 1988). With
the assumption that CR faces are feature-positive for race, the
visual search for CR face among SR should be faster.

In computational models, the feature-positive advantage is
often achieved using a front-end parallel feature processing
system, as in (Wolfe, 1994, 2001b; Itti, Koch, & Niebur,
1998; Itti & Koch, 2000). As the feature-positive item elic-
its a stronger response from the feature detector, it attracts
more attention than the feature-negative item. Thus, not every
single feature has the quality of causing search asymmetry.
Only certain basic features that are processed in parallel in the
low level visual system are eligible (see section II of (Wolfe,
1998) for a review of basic features). The so called race fea-
ture, seems to be too abstract and high level to be processed
in parallel by the low-level visual system. It is therefore not
as straightforward as it seems to generalize the search asym-
metry Treisman and Gormican found in their experiments to
the cross-race advantage in facial visual search.

Furthermore, the CR recognition deficit vanishes or is
greatly reduced with certain kinds of repeated exposure
(Levin, 2000); for example, white basketball fans who
must frequently differentiate between black basketball play-
ers show no deficit (Li, Dunning, & Malpass, 1998). What
happens to the race feature as experience with CR faces alters
the CR deficit? Without incorporating the effects of experi-
ence, it seems that the race feature explanation is incomplete.

In this paper, we present a probabilistic visual search model
based on a simple assumption of the visual system’s goal. We
show that the CR advantage in visual search is a natural pre-
diction of our model, given that people experience more SR
faces during the development. It is not due to an advantage or
disadvantage in processing of CR face, but a natural result of
the fact that CR faces occur with low probability during de-
velopment. This model, coupled with the compatible hypoth-
esis of optimal feature selection, is thus capable of explaining
both the CR recognition deficit and the the CR search advan-
tage. Features are selected to be optimal for recognition (giv-
ing CR faces a disadvantage) and the fact that CR faces are
outliers in the feature space leads to them being faster to find
(see (Haque & Cottrell, 2005) for an alternate formulation of
this claim).

Probabilistic Search
In this section we introduce our probabilistic visual search
model. First we will define bottom-up saliency, i.e. how
strongly a visual feature attracts attention. We will show that
the visual system should direct attention more to visual fea-
tures that occur with low probability. Then we will discuss
how attention is directed in classical visual search paradigms.
Our model assumes that attention is directed probabilistically
according to the saliency distribution in the visual field. With
some simplifying assumptions, the expected search time can
be derived in closed form. The search time is positively corre-
lated with the relative saliency of the distractors to the target.

Saliency is Information

Our definition of saliency is derived from a single assump-
tion: a goal of the visual system is to find potential targets
that are important for the organism’s survival, e.g. food and
predators. Under this assumption the visual system should
direct its attention to locations where visual features suggest
a high probability of such targets. To achieve this, the vi-
sual system must actively estimate the probability of an inter-
esting object being at a particular location given the scene’s
visual features. We denote the occurrence of an interesting
object at a pointz in the visual field with the binary variable
Cz, the perceptual representation of a point’s visual features
employed by the visual system withFz, and the location of a
point withLz. The proposed theory makes no claims as to the
nature ofFz or to how high- or low-level these representations
may be. The probability of interest isp(Cz = 1|Fz = f ,L = l).
In this paper, we will concentrate on how visual features af-
fect attention and thus assume location invariance, dropping
L from the equation and resulting inp(Cz = 1|Fz = f ) being
the probablity to be estimated. This probability can then be
calculated using Bayes’ rule:

p(Cz = 1|F = f ) =
p(F = f |Cz = 1) · p(Cz = 1)

p(Fz = f )
(1)

The visual system compares relative probabilities over vi-
sual features to decide where to direct attention. The prior
p(Cz = 1) can therefore be dropped from the formula because
it is independent of features. This leaves us with:

p(Cz = 1|Fz = f ) ∝
p(Fz = f |Cz = 1)

p(Fz = f )
. (2)

Note that estimating logp(Cz = 1|Fz = f ) is as good as es-
timating the probability itself because the logarithm is mono-
tonically increasing. Therefore the ordering will be kept.

logp(Cz = 1|Fz = f ) = log
p(Fz = f |Cz = 1)

p(Fz = f )
+const. (3)

= − logp(Fz = f )+ logp(Fz = f |Cz = 1)+const. (4)

The first term− logp(Fz = f ) is dependent only on the
visual feature of pointz but not on what the target class is.
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In information theory,− logp(Fz = f ) is known as theself-
informationof random variableFz when it takes the valuef .
Self-information increases when the probability of a feature
decreases. The second term logp(Fz = f |Cz = 1) is depen-
dent on the target class and is known aslog-likelihood. It
biases features that are consistent with the target with higher
saliency, facilitating the search. The sum of these two terms
is also known aspointwise mutual information.

When the organism is not actively searching for any partic-
ular target (free viewing), the target class is unknown. But to
best survive, if any potential target such as prey or predators
appear in the visual field, attention should be directed to it. In
this case, the animal should not assume the potential target is
more likely to bear one feature value than another (the target
is as likely to be green as blue). This is equivalent to assum-
ing a uniform distribution on the likelihood term. Hence only
the first term of self-information is relevant.

We propose that the first term− logp(Fz = f ), or the self-
information contained by the visual features, is the bottom up
saliency ofz in the visual field. The visual system actively
calculates it over the visual field regardless of whether there
is a particular target or not. Features with small probability
have high saliency and are more attractive to attention.

A Probabilistic Scan Procedure in Visual Search
We make the assumption that attention is directedstochasti-
cally. The probability of attending to a particular location,
feature, or object is equal to its saliency, modified by an acti-
vation functiong, and normalized, i.e.pz = g(sz)

Σz′g(s′z)
, wherepz

is the probability of attending to pointz andsz is the salience
of point z. Wheng is an exponential function, this reduces
to a soft max function. The probability map is virtual in that
it does not need to be normalized explicitly, which would re-
quire global communication. Neither the mechanism through
which stochastic behavior arises nor the specific activation
function are crucial to our conclusions, so they remain un-
specified. We follow the intuition that salient features are
more likely to be attended, so the activation function should
be monotonically non-decreasing. Less salient features may
also be attended but with lower probability. The relative ad-
vantage of high salience depends on the steepness of the ac-
tivation function. For example, an exponentially increasing
activation function will tend to suppress locations except for
the most salient ones.

We can apply this to the visual search paradigm and derive
search time quantitatively. We use five assumptions to sim-
plify our analysis (several adapted from (Wolfe, 1994)). They
provide a closed form solution for our qualitative analysis, but
can be relaxed without changing our qualitative conclusions.

• Subjects scan items in discrete time steps. In each step,
exactly one item is attended. An item is abstracted to be a
pointz as used in the earlier saliency inference.

• Inhibition of return is strict, i.e. attended items shall not be
attended again.

• Saliency does not change over time. I.e. the saliency map
is not updated by eye movements and shifts of attention.

• The saliency of objects outside the subject’s display is zero,
i.e. external objects do not compete for attention.

• The saliency of all distractors is the same.

• The subjects scan until they find the target.

Let starg denote the saliency of the target andsdist denote
that of a distractor. When there aren distractors, the target is
attended on the first time step with probability

g(starg)
g(starg)+n·g(sdist)

. (5)

A distractor is attended with probability

n·g(sdist)
g(starg)+n·g(sdist)

. (6)

Now we can infer our model’s behavior. We denote the
distractor strengthas

x =
g(sdist)
g(starg)

(7)

This can be thought of as the relative salience of the distrac-
tors vs. the target. For a classical feature target search, the
target is highly salient compared to the distractors, so the dis-
tractor strengthx is very small. For classical conjunction tar-
get search, the distractors are as salient as the target and the
distractor strengthx is approximately 1. We can divide out
the salience of the target and rewrite the probability in equa-
tion 5 in terms of the distractor strengthx. LettingDt denote
the detection of the target on scan stept, we have:

P(D1) =
g(starg)

g(starg)+n·g(sdist)
(8)

=
1

1+n·g(sdist)/g(starg)
(9)

=
1

1+n·x
(10)

Intuitively, larger x implies that the distractors are more
salient and the target is less likely to be found in one fixa-
tion. Similarly, a greater number of distractors reduces the
probability that the target will be found on the first scan.

We are now ready to derive the expected number of steps to
find the target. LetEn,x denote the expected number of steps
whenn distractors are present with distractor strengthx. The
target will be found on the first step with some probability,
P(D1). If the target is not found on the first step, the as-
sumption of strict inhibition of return dictates that we repeat
the procedure but withn− 1 distractors. Thus the expected
number of steps forn distractors can be found by considering
these two cases.
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En,x = P(D1) ·1+(1−P(D1)) · (1+En−1,x) (11)

= 1+
n·x

1+n·x
·En−1,x (12)

The target will always be found on the first scan step when
there are no distractors, i.e.:

E0,x = 1 (13)

Equations 12 and 13 can also be equivalently described as:

En,x = 1+
x

1+x
·n (14)

This formula says that the expected number of scan steps
increases linearly with the number of items, with a slope of

x
1+x. When the distractor strength is small, the slope ap-
proaches zero and the target “pops out” and is usually found
in the first step regardless of the number of distractors. As
the distractor strengthx increases, the slope increases and a
greater response time is required.

Search Asymmetry
Search asymmetry refers to the phenomenon that the response
time slope typically changes when the role of the target and
distractor are switched (see (Wolfe, 2001a) for a review). For
example, a bar tilted 15 degrees will “pop out” among ver-
tical bars, but a sole vertical bar among tilted bars seems to
produce a serial search, where the search time goes up lin-
early with the number of distractors. In our model, the search
slope is determined by the distractor strengthx, which is in
turn a function ofsdist and starg. If the roles of the target
and distractors switch, then (ignoring for the time being any
changes to contrast features)sdist andstarg swap,x becomes
its reciprocal, and the search time slope changes.

Recall that the salience of a feature is proportional to1
p(F) .

If item A is more unusual than itemB, A has a higher salience
thanB. HenceA makes a stronger distractor for targetB (x >
1) thanB does forA ( x < 1). Searching for anA in a field of
Bs will be more efficient than searching for aB amongAs. In
other words, the less encountered item is easier to find.

This observation easily explains many classical search
asymmetries, and we show two examples here:

• The absence of a feature does not pop out. Figure 2 shows
an example that a “Q” stands out in “O”s but not vice versa
(Treisman & Souther, 1985). It is intuitive that a feature is
typically less encountered than its absence. Thus searching
for a missing feature is more difficult than searching for the
presence of that feature.

• “Prototypes” do not pop out. Prototypes are specific fea-
tures that are more commonly encountered. For example,
the color red, straight lines, and stationary objects are pro-
totypical while magenta, curves, and moving objects are
not. In each case, the atypical object pops out in a field of

Figure 2: “Lack of feature” fails to pop out. To find the “Q”
in “O”s (left) is easier than to find the “O” in “Q”s (right).

prototypical objects, but not the reverse. Figure 3 shows
an example that a titled line stands out in vertical lines but
not vice versa (Treisman & Gormican, 1988). Since proto-
types are by definition common, our model readily predicts
this asymmetry.

Figure 3: “Prototypes” do not pop out. Finding the tilted
(atypical) bar among vertical (prototypical) ones (left) is eas-
ier than the reverse (right).

In the face search senario, this dictates that looking for
cross-race faces among self-race faces should be faster than
the reverse because CR faces are less frequently encountered.
This explains the advantage of the CR faces in visual search
directly. It is notable that our model has a straightforward
account for the asymmetry in the face search without any pa-
rameters or task specific assumptions.

We can provide a quantitative fit of our model to the re-
sponse time data. The human data presented here are from
Figure 9 in (Levin, 1996) and Figure 3 in (Levin, 2000) which
examines the response time in face search for white partici-
pants. This fit verifies two claims of our model. First, a linear
model matches the data well. Secondly, the values assigned
to the distractor strength, x, behave as expected, with a dis-
tractor strength lower than 1 when searching for the CR face.

Here we concentrate on the situation when the target is
present. Our model predicts that in target trials the expected
time to locate the target isEn,x = 1+ x

1+x ·n, with n represent-
ing the number of distractors andx the distractor strength.
Let tu denote the unit processing time, i.e. the time in mil-
liseconds to scan each object. Lett0 represent an additional
constant time cost, accounting for other factors such as the
time needed for pressing the response button. The response

752



time in milliseconds under our model is:

RTmodel = En,x · tu + t0 (15)

=
x

1+x
· tu ·n+ tu + t0 (16)

Let xblack represent the distractor strength when the target
is black. Then the distractor strength when the target is white
is xwhite = 1

xblack
. Note that xwhite

1+xwhite
= 1

1+xblack
. Assume that

search for black and white targets share the same unit pro-
cess time (tu) and have their own constant cost (t0,black and
t0,white). We set different constant costs for these two con-
ditions because when there are no distractors, it boils down
to a classification problem and experiments have shown that
White subjects classify Black faces faster than White faces
(Valentine & Endo, 1992). Now the model predicts the search
time:

RTmodel
black =

xblack

1+xblack
· tu ·n+ tu + t0,black (17)

RTmodel
white =

xwhite

1+xwhite
· tu ·n+ tu + t0,white (18)

=
1

1+xblack
· tu ·n+ tu + t0,white (19)

wherexblack, tu, t0,black andt0,white are free parameters. Our
model gives a linear fit to the data. Given a linear model:

RTdata
black = ablack·n+bblack (20)

RTdata
white = awhite·n+bwhite (21)

whereablack, awhite, bblack andbwhite are the slopes and the
y-intersections of the best linear fit to the human response
time in searching for the black face and white face respec-
tively, the corresponding model parameters are related as fol-
lows:

xblack =
ablack

awhite
(22)

tu = awhite· (1+xblack) (23)

t0,black = bblack− tu (24)

t0,white = bwhite− tu (25)

Figure 4 shows the fitting results, and the corresponding
parameters are shown in Table 1. Note that the distractor
strength in black searchxblack is less than 1, which means
that the black face (target) is more salient than the white faces
(distractor) to white subjects.

Discussion
The face search asymmetry is of special interest to us for two
reasons. First, the race effect in visual search is an interest-
ing phenomena in the domain of face processing. Second, in
visual search, the direction of this search asymmetry is de-
pendent on prior experience. This asymmetry is therefore a

Figure 4: Our model is fit to the reaction times of searching
for white and black face targets for white participants. Hu-
man data is from (Levin, 1996) and (Levin, 2000). The fit
parameters are given in table 1.

Table 1: The fitted parameters.
data@1996 data@2000

ablack 53.00 61.77
bblack 584.67 721.62
awhite 76.88 93.35
bwhite 657.29 801.08

distractor strengthxblack 0.69 0.66
distractor strengthxwhite 1.45 1.51
unit scan timetu (ms) 129.88 155.12

constant costt0,black (ms) 454.79 566.5
constant costt0,white (ms) 527.42 645.96

useful set of human data with which to test visual search the-
ories and models.

Our probabilistic model predicts that less commonly occur-
ring visual features are more likely to attract attention. This
gives rare items an advantage in visual search, which leads
to a search asymmetry; it is faster to find a rare target among
common distractors than vice versa. This accounts for many
classical search asymmetries and we showed two examples:
1) it is easier to find a feature positive target among feature
negative distractors than the reverse 2) it is easier to find a
non-prototypical target in prototype distractors. This model
also explains the search asymmetry that it is faster to find the
CR face among SR faces than the reverse; this occurs for the
simple reason that people experience SR faces much more
than CR faces. Comparing this model to Levin’s hypothe-
sis, which introduces a race feature, reveals that our model
is more principled in that it makes no specific assumptions
for a particular experiment. Our model also explains how the
CR search advantage and CR recognition deficit would van-
ish given exposure of the right sort to CR faces. Because
no face specific assumptions are needed, this suggests that
faces are not special in the visual search domain, but follow
the same principles as simple stimuli used in classical visual
search paradigms.

It is important to note that although our model dictates that
rare items have advantages in visual search, we did not spec-
ify at which level the CR faces are pre-attentively perceived
(as described byF) to be rare in the face search, resulting in
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the attraction of attention. Could it be at the face level? This
is the highest possible level; here, the race of the faces are per-
ceived first and attention is then attracted to the CR face. Or
could it be at the internal feature level, the intermediate level?
Did the subjects notice the eyes and the mouth are special in
the CR faces? Potentially, the perceptual representation could
be lower still, such as with the frequency domain, which can
be processed in parallel in low-level visual systems. Do CR
faces reside in a different area in the frequency space, result-
ing in attention being attracted to these outliers? We think that
the current data is insufficient to fully answer this question,
although some other search asymmetries related to familiar-
ity seem to suggest that low level features can not account for
everything (Wang, Cavanagh, & Green, 1994; Shen & Rein-
gold, 2001).

At the same time, our model is the only visual search model
that relates the search speed to the visual system’s experi-
ence. Thus we believe this set of human data where the search
asymmetry is dependent on the race, or rather, subjects’ expe-
rience with race, favors our model over others; our model ac-
counts for the asymmetry straightforwardly, while other mod-
els need extra assumptions (such as an additional race feature)
to accommodate the data.
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