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Endogenous and Exogenous Cell-Based Pathways for Recovery 
from ARDS

Jeffrey E. Gotts, MD and Michael A. Matthay, MD
Departments of Medicine and Anesthesia, Cardiovascular Research Institute, San Francisco, CA

Synopsis

Regenerative medicine has entered a rapid phase of discovery, and much has been learned in 

recent years about the lung’s response to injury. In this review, we first summarize the cellular and 

molecular mechanisms that damage the alveolar-capillary barrier, producing ARDS. We then turn 

our attention to the latest understanding of endogenous repair processes, highlighting the diversity 

of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, we 

review the past, present and future of exogenous cell-based therapies for ARDS.
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ARDS: Disruption of the Alveolar-Capillary Barrier

Acute Respiratory Distress Syndrome (ARDS) develops when the normal capacity of the 

alveoli to remain dry and participate in gas exchange is overwhelmed by a cascade of insults 

to the delicate alveolar-capillary barrier resulting in airspace fluid accumulation. In health, 

pulmonary capillary endothelial cells form a relatively tight membrane resistant to the 

paracellular movement of proteinacious fluid and inflammatory cells. This barrier depends 

on adherens junctions held together by VE-cadherin, as shown by studies specifically 

targeting this molecule with a metalloprotease.1 Endothelial adherens junctions can be 

disrupted by TNF-α, VEGF and other cytokines from activated leukocytes,2 as well as 

thrombin, complement activation, and toll-like receptor 4 signaling.3 In addition, lung 

endothelial cells can be damaged or killed by bacterial products,4 activated platelets,5,6 and 

neutrophils.7

Increased permeability of lung endothelium is necessary but not sufficient for the 

development of pulmonary edema. Clearance of extravasated fluid from the interstitial space 
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by lymphatics is normally rapid.8 Similar to the lung endothelium, alveolar epithelial cells 

are joined together by tight junctions, but this barrier can be disrupted by toxic mediators 

from activated neutrophils9 or macrophages,10 pathogens including influenza,11 and 

excessive mechanical stretch.12 In addition, the alveolar epithelium is normally capable of 

actively transporting fluid from the alveolar lumen to the interstitial space as a final defense 

against alveolar flooding. The rate of alveolar fluid clearance can be increased by mild 

insults13 but has been shown to be reduced by high tidal volume mechanical ventilation, 

inflammatory cytokines, and infection.14 Not surprisingly, pathologic15 and clinical 

studies16 of patients with ARDS have revealed evidence of combined endothelial and 

epithelial dysfunction, including impaired alveolar fluid clearance. Furthermore, damage to 

alveolar type II cells along with extravasated plasma proteins and cellular debris disrupts the 

normal secretion and function of pulmonary surfactant.17

Endogenous Cell-Based Pathways for Recovery

General mechanisms of recovery

Returning the alveolus to a functional state is the obvious imperative for survival and 

recovery from ARDS. Repair and/or replacement of most damaged alveoli must occur in 

patients given the relatively mild pulmonary physiologic abnormalities measured in long-

term survivors.18 The processes by which this occur remain largely unknown, but some key 

insights have been generated over the last several decades. Broadly speaking, there must be 

resolution of edema fluid, removal of inflammatory cells and debris, and repair of the 

structural integrity and function of the alveolar epithelium and lung endothelium.

As recovery begins, aided by the resolution of the triggering event and prevention of further 

mechanical injury with lung-protective ventilation, there is a shift away from pro-

inflammatory signaling. Interleukin-10 (IL-10), secreted by CD4 T cells, macrophages, and 

dendritic cells, is present even early during acute inflammation and acts primarily on 

macrophages to reduce pro-inflammatory mediator secretion and antigen presentation while 

enhancing scavenger function and production of other anti-inflammatory molecules, such as 

IL-1 receptor antagonist (IL-1ra).19 Thus, IL-10 is thought to be critical in balancing 

pathogen clearance and tissue homeostasis. Its importance in this regard is highlighted by 

the existence of pathogen mimics such as Epstein-Barr virus encoded BCRF1.19 A subset of 

CD4 T-cells termed regulatory T cells (Tregs), major secretors of IL-10 in a variety of 

disease states,20 are present in the airspaces of patients with ARDS, and are critical in the 

resolution of endotoxin-induced acute lung injury in mice, in part through increasing the 

anti-inflammatory molecule TGF-β.21

IL-10, IL-1ra, and TGF- β notwithstanding, it had generally been thought that resolution of 

inflammatory injury occurs primarily due to the passive decline of dozens of pro-

inflammatory mediators. More recently, however, a number of investigators have defined a 

new paradigm of active resolution of inflammation. A complex class of highly potent fatty-

acid derivatives including lipoxins, resolvins, protectins, and maresins are now known to be 

generated during resolution. These lipid mediators bind to specific immune and resident cell 

receptors with high affinity and inhibit granulocyte recruitment and tissue activation, induce 

phagocytosis of apoptotic cells and bacteria, and aid in clearance of mucosal leukocytes.22 
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Apoptotic neutrophils and other cells are removed mostly by macrophages in a phagocytic 

process termed efferocytosis.23 Interestingly, the act of ingesting apoptotic cells is itself a 

stimulus to further anti-inflammatory signaling, helping to propel a feed-forward process of 

resolution.24

Endogenous lung progenitors

As the airspaces begin to clear, the damaged alveolar epithelium must replace lost cells and 

reform tight junctions. How this occurs is an active and controversial area of investigation, 

but has particular relevance to understanding the potential for stem and progenitor cell 

therapies in ARDS. As we move from proximal to distal in the lung, settled fact yields 

progressively to confusion and uncertainty, and so what follows is merely the current state 

of the evidence (see Table 1).

Based primarily on studies in mice, there is now general agreement that in the large airways 

basal cells self-renew and produce both ciliated and secretory cell types following epithelial 

damage incurred by various insults, including acid and naphthalene.25,26 In the smaller 

intralobar airways, Clara cells, secretory cells that express secretoglobin 1a1 (Scgb1a1, or 

CCSP) can self-renew and also produce ciliated cells.27 The subset of Scgb1a1+ cells at the 

bronchiolalveolar duct junction (BADJ) that also express surfactant protein C (SPC) has 

been termed bronchioalveolar stem cells (BASCs). In 2005, Kim et al.28 reported that 

BASCs proliferated in situ following injury with naphthalene (kills Clara cells) or 

bleomycin (kills alveolar epithelial cells, AECs) and showed multipotency in clonal assays 

in vitro. Subsequently Rawlins and colleagues performed lineage tracing of cells expressing 

Scgb1a1 and reported no contribution to the alveolar epithelium following hyperoxia (which 

damages terminal bronchioles and alveoli).29 Interestingly, following bleomycin injury, cells 

expressing Scgb1a1 due indeed produce alveolar epithelial cells as reported by multiple 

investigators.30,31 This demonstrates, perhaps not surprisingly, that the injury model itself is 

crucial in identifying which progenitor populations become active and how repair occurs.

To add to the complexity, there are at least two other cell types that can reportedly produce 

alveolar epithelial cells:

• Integrin α6β4-expressing alveolar cells (not expressing other known epithelial 

markers) generate airway and alveolar epithelia in vitro32 and impressively produce 

alveolar-like structures abutting vascular elements in lung “organoids” when 

implanted into the kidney capsule of adult mice.33

• Kajstura and colleagues34 reported that c-kit expressing cells derived from adult 

human lungs and injected into a 2 mm2 region of mouse lung destroyed by cryo-

injury produced airways, alveoli, and blood vessels bearing human lineage tracer; 

these results await confirmation.

Several other reports add to the theme of progenitor response being dependent upon injury-

type. Barkausksas et al.35 found with lineage tracing that SPC-expressing type II AECs self-

renew and produce types I and II AECs slowly during adult life but rapidly following 

specific ablation of type II AECs with diphtheria toxin. That type II AECs could repopulate 

alveoli had been suspected since the 1970s36 but these results provided the best evidence to 
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date. Similarly, Desai and collleagues37 recently reported that type II AECs repopulate 

alveoli slowly during healthy adulthood but rapidly after hyperoxia-mediated alveolar 

injury.

In contrast to these relatively mild, mostly alveolar-specific injuries, Kumar et al.38 reported 

that H1N1 influenza in mice induced massive areas of lung destruction followed by the 

appearance of p63+, keratin-5+ (Krt5) pods of cells that appeared to migrate from airways 

into injured lung parenchyma and potentially give rise to new alveoli, though the ultimate 

fate of these cells has not yet been determined convincingly by lineage tracing. This 

phenomenon had not been reported following the comparatively milder injury models in 

common use and demonstrates that lung progenitor populations may respond in a graded 

fashion to injury.

Coordination of endogenous progenitor responses

With such flexibility in the response of lung epithelial progenitors, two recent reports 

deserve special attention because they illustrate potentially important regulatory 

mechanisms. In 2011, Ding and colleagues39 performed pneumonectomies (PTX) on adult 

mice, and reproduced the finding that the intact lobes of the lung undergo rapid expansion 

with apparent formation of new alveoli.40 By flow analysis, proliferating epithelial cells 3 

days post-PTX were similar phenotypically to BASCs. Interestingly, disrupting VEGF 

signaling only within pulmonary endothelium blocked the epithelial progenitor response. In 

a series of elegant experiments, the authors showed that VEGF signaling in lung 

endothelium triggers the production of matrix metalloproteinase 14, which in turn releases 

EGF-receptor ligands that drive epithelial progenitor proliferation and alveologenesis.

Lee et al.41 cocultured single BASCs with primary lung or liver endothelial cells and found 

that only lung endothelia supported BASC multilineage differentiation into airway and 

alveolar epithelial cells. Thrombospondin 1 (Tsp1), an inhibitor of angiogenesis expressed 

developmentally during alveolization,42 was found to be central to this supportive role as 

mice deficient in this molecule had impaired epithelialization of airways (following 

naphthalene) and of alveoli (following bleomycin). Remarkably, alveolar repair in Tsp1 

knockout mice could be rescued by the conditioned media of primary lung endothelial cells. 

Taken together, these results suggest an important role of the lung vasculature in guiding the 

expansion and differentiation of epithelial progenitors, similar to what is thought to occur in 

lung development43 as well as in other adult tissues harboring multipotent progenitors, 

including the brain44 and bone marrow.45 Given the intricate structural and functional 

relationships between alveoli and lung capillaries required for effective gas exchange, this 

interaction during repair is not surprising. Clearly, further insights into how these vascular 

and epithelial processes are coordinated will be important in optimizing endogenous lung 

repair and in developing exogenous repair strategies.

Enhancement of epithelial and endothelial barrier function

Once reconstituted as a tight membrane, the alveolar epithelial barrier can resume effective 

active edema fluid transport and clearance as well as surfactant secretion. Although little is 

known about endogenous mechanisms controlling epithelial barrier tightening, several key 
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signaling pathways are now known to regulate endothelial barrier function. Garcia and 

colleagues have discovered an important role for the sphingolipid sphingosine-1-phosphate 

(S1P) in rapidly enhancing lung endothelial barrier function by altering the cytoskeleton to 

increase cell overlap, and inducing adherens and tight junction assembly.46 S1P or its 

synthetic analogs have shown therapeutic efficacy in murine47 and canine48 models of 

endotoxin-induced acute lung injury, ischemia-reperfusion,49 radiation-induced lung 

injury,50 and influenza.51 Angiopoeitin-1 is produced by a variety of cells and acts on 

endothelial Tie2 receptors to promote barrier integrity.52 Adrenomedullin binds calcitonin 

receptor-like receptor on lung endothelial cells and promotes intercellular adherence.53 

Administration of adrenomedullin improves endothelial barrier function in rodent models of 

ventilator-induced54 and endotoxin mediated lung injury.55 Finally, London and 

colleagues56 reported that Slit acts on lung endothelial Robo4 receptors to reduce vascular 

leakage in response to intratracheal endotoxin and H5N1 influenza, likely by promoting VE-

cadherin expression.

Exogenous cell-based pathways for recovery

As many of the mechanisms of lung injury have been worked out over the last several 

decades, researchers have tested a variety of targeted pharmacologic interventions in 

patients with ARDS, including anti-oxidants, beta-agonists, surfactant, and IL-10.57 

However, the results have been uniformly disappointing, probably in part because ARDS is 

heterogeneous and is characterized by multiple injurious cascades operating simultaneously. 

Mortality has declined as lung protective ventilation and fluid management strategies have 

been implemented,58 and additional clinical benefits from paralysis59 and prone 

positioning60 may improve outcomes further. Nevertheless, there remains a compelling need 

to develop therapies that directly target the complex pathophysiology of ARDS. Exogenous 

cell-based therapies may hold special promise in this regard, as recent research has shown 

they are capable of affecting multiple pathways of lung injury and repair.

Endothelial progenitor cells (EPCs)

Given the derangement of endothelial barrier function known to characterize ARDS, these 

cells have intuitive appeal as a potential therapy. EPCs were originally described in the late 

1990s as circulating CD34+ cells that differentiated into endothelial cells in vitro and 

localized to sites of angiogenesis in adult animals.61 In 2005, Yamada et al.62 found that 

circulating EPCs were increased in patients with bacterial pneumonia, and that lower EPC 

counts were associated with persistent lung fibrosis following pneumonia resolution. 

Burnham and colleagues63 then isolated EPCs in patients with ARDS, finding that the 

number of EPC colonies predicted improved survival. In 2008, Lam et al.64 reported that 

administering autologous EPCs to rabbits 30 minutes following oleic acid injury improved 

endothelial barrier function and reduced lung edema, hemorrhage, and inflammation. Mao 

and colleagues65 treated rats with autologous EPCs or saline 30 minutes after intravenous 

endotoxin, finding that EPC-treated rats had improved survival, reduced lung edema, and 

increased IL-10. Interestingly, there was evidence of modest engraftment into the injured 

lung endothelium up to 14 days later. Such engraftment may be model-specific, however, as 

these cells do not appear to contribute to lung endothelial expansion after 
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pneumonectomy.66 Autologous EPCs are now the subject of clinical trials in cirrhosis 

(NCT01333228), ischemic stroke (NCT01468064), and critical limb ischemia 

(NCT01595776). However, given that EPCs circulate at low levels, autologous 

transplantation is unlikely to be an option in the acute phase of ARDS, and the safety of 

allogeneic EPC transplantation remains unknown.

Mesenchymal stem/stromal cells (MSCs)

In contrast to EPCs, MSCs are relatively immunopriveleged and known to be well-tolerated 

after allogeneic transplantation.67 These cells were first described in the 1960s as plastic-

adherent, spindlelike cells, that can be isolated from bone marrow, fat, umbilical cord blood, 

placenta, and connective tissues.68 Although defined in part by the capacity to differentiate 

into osteoblasts, chondroblasts, and adipocytes, the overwhelming balance of evidence is 

that they rarely integrate and survive long-term in adult tissues after allogeneic 

transplantation.69 They have been studied extensively in models of acute inflammation in 

many different organ systems, and have been found to have remarkable therapeutic effects 

across a range of murine models of acute lung injury, including bleomycin,70 

intratracheal71–73 or intraperitoneal74 endotoxin, cecal ligation and puncture,75,76 

pseudomonal abdominal sepsis,77 and E-coli pneumonia.78 Recently, human bone marrow 

derived MSCs were shown to reduce inflammation and improve alveolar fluid clearance in 

ex vivo human lungs injured with live E-coli.79 At least some of their therapeutic properties 

can be recapitulated by the microvesicles they actively secrete in culture.80–82

MSCs are thought to work by multiple mechanisms in these models (Fig. 2), including (a) 

reducing alveolar-capillary barrier permeability,72,75,76,83 in part by secretion of 

angiopoietin-1,84 (b) increasing alveolar fluid clearance, at least in part by secretion of 

keratinocyte growth factor,79,85 (c) shifting cytokines and resident macrophages from pro- to 

anti-inflammatory,86 (d) improving bacterial clearance by enhancing phagocytosis and 

secreting antibacterial peptides,77,78,83 and remarkably (e) transferring mitochondria to 

alveolar epithelial cells, rescuing ATP generation.73

Another intriguing possible mechanism has come to light recently. When postnatal rodents 

are exposed to high oxygen concentrations, they develop pulmonary hypertension due to a 

dramatic simplification of lung architecture, modeling human bronchopulmonary dysplasia 

(BPD). In 2009, MSCs were shown to largely normalize lung capillary and alveolar growth 

when given by airway or blood in mouse and rat BPD models, but without any evidence of 

significant engraftment.87,88 Interestingly, Tropea and colleagues30 reported in 2012 that 

MSCs increased BASCs in the BPD model by a paracrine mechanism. This work suggests 

that MSCs, like lung endothelium, may help orchestrate epithelial progenitor responses to 

injury. Indeed, in other experimental systems, MSCs have been shown to interact with 

endothelial cells to establish a hematopoietic microenvironment after heterotopic 

transplantation,89 to increase the proliferation and survival of hippocampal neural 

progenitors,90 and to increase c-kit+ cardiac stem cells in a porcine model of myocardial 

infarction.91

With this in mind, there is considerable optimism following the recently completed Korean 

phase 1 clinical trial of MSCs in neonates at high risk of BPD.92 In this dose-escalation 
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study, 9 patients with mean gestational age of 25 weeks (mean birth weight 790 g) received 

either 1×107 or 2×107 allogeneic umbilical cord blood-derived MSCs/kg by airway at an 

average of 10 days after birth. There were no adverse events, and although the study was not 

designed to test efficacy, BPD severity appeared lower in treated patients than in a matched 

comparison group. A two year follow-up study of these patients is planned (NCT01632475).

Given the encouraging preclinical results from MSCs in rodent, sheep (Asmussen et al., in 

revision at Thorax) and ex vivo perfused human lung models of acute lung injury, an 

NHLBI-supported phase 1/2 (NCT01775774/NCT02097641) clinical trial of bone-marrow 

derived allogeneic MSCs in patients with moderate to severe ARDS is now underway. 

START (STem cells for ARDS Treatment) targets a total enrollment of 69 patients, 9 in 

phase 1, and 60 in phase 2. In phase 1, three cohorts of patients received 1, 5, or 10 × 106 

cells/kg intravenously, and there were no significant adverse events at the highest dose. In 

phase 2, patients will be randomized 2:1 to receive 10 × 106 MSCs/kg or plasmalyte control. 

The primary endpoint of Phase 2 will be safety, but secondary endpoints will include the 

lung injury score, PaO2/FiO2, oxygenation index, SOFA score at day 3, ventilator-free days, 

60 day mortality, plasma biomarkers of lung epithelial injury, endothelial injury, and 

inflammation, and protein in a mini-bronchoalveolar lavage at 48 hours.

Barriers to developing cell-based therapies in patients with ARDS

As with all trials in critical care, the complex nature of the patients and the importance of 

logistical speed pose formidable hurdles in the design and implementation of exogenous 

cell-based therapies for ARDS. Beyond these difficulties, additional challenges, many 

summarized in a recent report from an NIH-NHLBI workshop,93 include:

• Ensuring consistent cell therapy product. This involves strict screening of donors 

and Good Manufacturing Practice for sterility, use of animal derived products, and 

passage number.

• Quality control. Standard testing for cultured cell products includes screening for 

bloodborne pathogens, post-thaw cell viability, bacterial endotoxin, and 

cytogenetics.

• Assessing potency. Ideally a rapid, simple, reliable assay that can be run at multiple 

sites and correlates well with observed therapeutic effects. This is a challenging but 

critical barrier to up-scaling any new promising cell-based therapy for widespread 

use (as for phase 3 trials and beyond); an effective potency assay is essential in 

fine-tuning donor selection, manufacturing processes, and final preparation of the 

product.

• Developing pre-clinical (animal) data that adequately mirror the phase 1 safety 

studies required by the FDA. This might require a shift in mindset for basic science 

investigators, as it requires careful attention to logistics including cell storage, 

shipment, packaging, freezing and thawing procedures (including method of 

cryoprotection), dilution, washing, and method and speed of administration. In 

addition, supportive animal studies must follow Good Laboratory Practice (GLP) 

guidelines.
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• Determining the optimal dosage, route, and timing of cell delivery. Intratracheal 

administration bypasses the vasculature and theoretically offers more direct access 

to injured lung tissue,92 though may pose additional hazards to gas exchange in the 

acute and often dynamic respiratory failure that characterizes ARDS.

• Careful consideration should be given to employing large animal models given that 

such studies may (a) provide important additional information on efficacy, (b) 

permit monitoring of salient physiological safety endpoints, especially during and 

immediately after cell administration.

• Filing an Investigational New Drug application (IND). For this challenging 

process, it is helpful to elicit initial feedback from the FDA94 during the planning 

stages of the animal experiments, and to obtain institutional support for the writing 

and submission of this highly technical document.

Remaining questions and research priorities

Regenerative medicine has entered an era of intense discovery, as evidenced by exponential 

growth in clinical trials targeting a wide range of human diseases with cellular therapies; this 

promise holds true for those of us engaged in developing better therapies for ARDS. 

However, key questions remain, and many obstacles may yet prevent effective cell-based 

therapies from becoming a reality.

Understanding the endogenous response

The importance of the type of injury in determining the endogenous progenitor cell response 

(highlighted in detail above) cannot be overstated. Going forward, it will be increasingly 

important to utilize clinically relevant models of lung injury, including bacterial and viral 

pneumonia, which together account for the majority of cases of ARDS.95 These models are 

challenged by a tendency to be variable in the severity of lung injury, to cause severe 

systemic illness, and to produce a robust immune response with a complex cellular infiltrate, 

all of which complicate the kinds of lineage tracing studies that are now the accepted 

scientific standard.

Looking forward, we must advance the level of evidence of endogenous repair from a 

simple qualitative demonstration of expression of mature epithelial markers to a richer 

anatomical and temporal understanding of how newly formed epithelial-lined structures 

interface with lung capillaries and become (or fail to become) functional alveolar units. It 

may well be that simultaneous mechanisms are at work, including the diffuse growth of 

uninjured lung (as occurs following pneumonectomy39) and the more dramatic progenitor 

migratory events reported after influenza.38 Insights generated from this research have 

obvious relevance for ARDS but also hold promise for improving our understanding of 

endogenous repair processes in diseases as diverse as COPD and interstitial lung disease.

Safety of exogenous cell-based therapies

The perils of developing new classes of therapies for patients are well-known from gene 

therapy trials in the 1990s.96 Potential complications of allogeneic cell therapy include 

infections (due to contaminated product, immunomodulation, or even zoonoses, as prions 
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can theoretically be carried by cell culture reagents), worsened inflammation from immune 

rejection of transplanted cells, and for intravenous administration, embolic load on the right 

ventricle (since most cells deposit at least temporarily in the lung97). A recent review98 

reported that MSC therapy in children and adults with left heart failure, myocardial 

infarction, spinal cord injury, stroke, hematologic malignancies, and Crohn’s disease 

appears to be safe with only transient fever being occasionally noted. Given the concern for 

possible embolic insult to a pulmonary vasculature and right heart already stressed from the 

acute hypoxemia of ARDS, it is reassuring that a recent placebocontrolled RCT of MSCs in 

moderate to severe COPD99 showed no acute changes in hemodynamics or oxygenation, 

and no measurable difference in diffusing capacity, ambulatory oxygenation saturation, or 

echocardiographic estimate of right-sided pressures through two-years of follow-up. The 

recent phase 1 data from MSC administration by airway to neonates at risk for BPD92 and 

intravenously to patients with moderate to severe ARDS (NCT01775774) are similarly 

reassuring.

Neoplasia is another significant safety concern. In the MSC literature, there is some 

evidence that murine bone marrow-derived MSCs have genetic instability even at low 

passage number, with reports of tumor formation following intravenous administration in 

models of myocardial infarction and diabetic neuropathy.100 Fortunately, this appears to be 

unique to murine MSCs, as human MSCs cultured for prolonged periods do not appear to 

transform.101 A review of over 500 large animals treated with MSCs for therapy of 

myocardial infarction failed to reveal any evidence of malignancy out to 3 months.102 

Finally, autopsy material from heavily immunosuppressed patients who had previously 

received allogeneic MSCs revealed minimal long-term engraftment and no evidence of 

ectopic tissue formation.103

“Off-target” effects

Given that ARDS is frequently associated with multiorgan failure, might exogenous cell 

therapies prove to have favorable effects outside the lung, for example in acute kidney 

injury104 or sepsis?105 Ideally, trial design for cell therapy in critical illness will incorporate 

clinical and biological endpoints that can help inform both efficacy and mechanism of action 

across related organ systems and scientific disciplines. Could cell therapies that effectively 

dampen the acute inflammatory response in ARDS unexpectedly impair the endogenous 

lung repair processes highlighted above? Or might they accelerate them? These and other 

questions should become more tractable in coming years as more data from clinical trials 

become available, and as the basic science research toolkit continues to expand.
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Key Points

• ARDS occurs when protein-rich fluid accumulates in the airspaces due to a 

breakdown of the alveolar capillary barrier following endothelial and epithelial 

damage and dysfunction.

• Endogenous lung progenitor populations are mobilized differentially in various 

animal models of lung injury.

• Exogenous cell therapies for ARDS hold substantial promise for improving 

upon the endogenous response, and clinical trials are ongoing.
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Figure 1. 
Resolution of ARDS. Typical chest radiography findings in a patient with ARDS include 

patchy bilateral airspace opacities (A). During resolution, these changes improve 

significantly (B).
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Figure 2. 
Schematic of an injured alveolus and adjacent alveolar duct. Potential mechanisms of MSC 

therapeutic effects in ARDS are shown with brown arrows. Black arrows depict lineage 

relationships during cell turnover. Abbreviations: MSC, mesenchymal stem cell; PMN, 

polymorphonuclear leukocyte; ANG-1, angiopoietin-1; LL-37, cathelicidin; KGF, 

keratinocyte growth factor.
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Table 1

Summary of lung progenitor studies

Reported
stem/progenitor*

Injury model Injured cells Finding Ref

type II AECs in rats nitrogen dioxide AECs electron microscopy and 
autoradiography suggested that type II 
AECs self-renew and produce type I 
AECs

36

type II AECs bleomycin; targeted 
diphtheria toxin

type I & II AECs; type 
II AECs

SPC lineage tracing showed 
replacement of both types I and II 
AECs

35

fraction of type II AECs hyperoxia type I AECs replacement of both types I and II 
AECs via EGFR/KRAS signaling

37

BASC expressing Scgb1a1 and SPC naphthalene; bleomycin clara cells; AECs these cells at the junction of bronchioles 
and alveoli self-renewed and had 
multipotent differentiation in culture

28

BASC naphthalene; hyperoxia clara cells; terminal 
bronchioles and type I 
AECs

Scgb1a1 lineage tracing showed that 
BASCs replace airway but not alveolar 
epithelium

29

BASC bleomycin AECs Scgb1a1 lineage tracing showed that 
BASCs produce types I and II AECs

30

31

basal cells naphthalene Clara cells KRT5 lineage tracing showed basal 
cells self-renew and make new clara 
and ciliated cells in the airways

26

human c-kit expressing cells cryo-injury All epithelial cell 
types

c-kit+ cells engrafted into mouse lung 
and produce airways, alveoli, and blood 
vessels

34

P63-expressing bronchiolar cells influenza All epithelial cell 
types

massive wave of Krt-5 expressing cells 
appeared to migrate from airways and 
form new alveoli

38

*
all murine unless otherwise specified

Abbreviations: AECs, alveolar epithelial cells; BASC, bronchioalveolar stem cell; Scgb1a1, secretoglobin 1A1; SPC, surfactant protein c; KRT5, 
keratin 5; EGFR, epidermal growth factor receptor.
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Table 2

Challenges to the implementation of exogenous cell-based therapies for ARDS

Potential barrier Details

consistency of the cell product cell handling, passage number, reagents (especially animal-derived)

quality control screening for bloodborne pathogens, endotoxin limits, viability after thaw, cytogenetics

potency assay should be simple, fast, reliable, and predictive of therapeutic effects in patients

IND-enabling animal data GMP and GLP practices, standardized procedures for shipping, storing, freezing, thawing, diluting, washing, 
and administering; use of large animal models

best delivery route airway or intravenous

IND submission highly technical and labor intensive

Abbreviations: IND, investigational new drug; GMP, good manufacturing practice; GLP, good laboratory practice.
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