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Generalized Channel Probing and Generalized
Pre-Processing for Secret Key Generation

Yingbo Hua , Fellow, IEEE

Abstract—The paper considers secret key generation (SKG)
from a channel between Alice and Bob against Eve all with multiple
antennas. A generalized channel probing (GCP) method and a gen-
eralized pre-processing (GPP) method are proposed as two major
steps before quantization, information reconciliation and privacy
amplification for SKG. The degree-of-freedom (DoF) of the secret
key capacity (SKC), relative to power or signal-to-noise ratio, based
on the data sets at Alice, Bob and Eve after the execution of GCP is
shown. The SKC-DoF is also shown to be the same as that based the
new data sets after the application of GPP except for modifications
chosen for computational efficiency. In particular, if Eve has a less
number of antennas than either Alice and/or Bob, the SKC-DoF
grows with the number of random transmissions from either Alice
and/or Bob within each channel coherence period. This SKC-DoF
property for GCP and GPP does not require the reciprocity of
the channel. A reciprocal channel simply adds a product of the
numbers of antennas at Alice and Bob towards the total SKC-DoF.
Also shown in this paper is GCP with embedded public pilots,
which results in no loss of SKC-DoF. Two prior methods for channel
probing are also reviewed, and it is shown that none of them has the
above mentioned SKC-DoF property despite previous claims. The
potential application areas of GCP and GPP include both wireless
and wireline networks.

Index Terms—Network security, secret key generation, secret
key capacity, degree of freedom, channel probing, pre-processing.

I. INTRODUCTION

FOR current and future networks such as Internet-of-Things
and Internet-of-Everything, security for authenticity, pri-

vacy, integrity, etc, can be all enhanced by the availability of
fresh secret keys between legitimate parties. Due to the mas-
sive numbers of nodes in current and future networks, reliable
and timely key distributions via central operators are often
impractical. This makes secret key generation (SKG), especially
opportunistic SKG from any available channel environment, a
problem of great importance. A secret key generated from a
wireless or wireline channel between two parties can be later
used anytime and anywhere for security purposes between them.
For a comprehensive review of SKG, see recent survey articles
such as [1], [2].
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It has become a widely accepted notion since [3] that if a
channel between Alice and Bob is reciprocal within a coherence
period, then the channel can be first probed with (public) pilots
by Alice and Bob to obtain their respective estimates of the chan-
nel response. Then, they can perform any of the well established
methods for quantization, information reconciliation and privacy
amplification to produce a secret key [1], [2]. The achievable
secret key rate in bits per second using the above approach is
known to be limited in proportion by the inverse of the channel
coherence time. For environment with long coherence time, the
above approach may not meet practical needs.

Recently, there have been attempts to increase the secret key
rate beyond that constrained by the channel coherence time.
The authors of [4] proposed that for each coherence period,
a single-antenna Alice sends a sequence of random symbols
to a single-antenna Bob, and Bob sends another sequence of
random symbols to Alice. The authors claimed that a higher
secret key rate unconstrained by the channel coherence time
can be achieved this way. The authors of [5] considered a
multi-antenna Alice and a single-antenna Bob and proposed that
Alice sends sequences of random symbols via her randomly
selected antennas sequentially to Bob, and Bob sends a (public)
pilot to the randomly selected antennas at Alice. The authors
claimed that their approach can also achieve a secret key rate
unconstrained by the channel coherence time.

In this paper, we will show that in terms of the degree of
freedom (DoF) of the secret key capacity (SKC), none of the
two approaches in [4] and [5] outperforms the standard methods
where both Alice and Bob only send to each other public pilots.
See Sections II-A1 and XI.

It is important to note that SKC can be generally expressed as
d logP + c at a high transmission power P where the constant
d ≥ 0 is the DoF of SKC (relative to P ), which is the primary
(or first-order) measure of how good a SKC is. The constant c
is the secondary (or second-order) measure of SKC, which is
useful to compare two or more SKCs when they have the same
DoF. The physical meaning of DoF can be also appreciated from
the differential entropy h(v|Z) of a “secret” n× 1 complex
Gaussian vector v with power P for each entry, conditional on
enemy’s observation Z . It can be shown that DoF (h(v|Z))
equals n if v given Z consists of independent entries or has a
full-rank covariance matrix, or equals one if v given Z consists
of fully correlated entries or equivalently has a rank-1 covariance
matrix.

More broadly, this paper presents a generalized approach for
channel probing and pre-processing before the quantization step
takes place for SKG. Unlike the major steps often stressed in
the literature such as in [1], [2], here we stress the importance
of both channel probing and pre-processing as shown in Fig. 1.
We define “channel probing” as the first step that results in the
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Fig. 1. Major steps in SKG. The dashed arrows represent public or semi-public
communications between Alice and Bob that leak certain amount of information
to Eve.

initial sets of data, i.e., X , Y and Z , available to Alice, Bob and
Eve (eavesdropper) respectively. In general, there may be no
direct correspondence between the elements in X and those in
Y , and hence the established methods for quantization may not
be readily applicable. We define “pre-processing” as the step that
uses X and Y to yield a pair of highly correlated secret vectors
at Alice and Bob that are ready to be quantized into a pair of
highly correlated bit streams. Such quantization methods include
coset based quantization [6], guard-band based quantization [7]
and continuous encryption based quantization [8], [9]. These bit
streams can be then converted by information reconciliation and
privacy amplification, using methods such as in [2], [4] and [10],
into a final secret key. Furthermore, we allow “pre-processing”
to include public communications but preferably subject to no
loss (or very limited loss) of SKC-DoF.

Specifically, in Section II, we will present a generalized chan-
nel probing (GCP) method for a multiple-input and multiple-
output (MIMO) scattering-rich wireless (or wireline discussed
later) channel between Alice and Bob against multiple-antenna
Eve where Alice, Bob and Eve have nA, nB and nE antennas
respectively. For the GCP, we let both Alice and Bob transmit
random sequences of vectors with durations mA and mB re-
spectively in each channel coherence period, which leads to the
data sets X , Y and Z at Alice, Bob and Eve for each channel
coherence period. We will show that the DoF of the SKC CS

based on {X ,Y,Z} is

DoF (CS) = min(nB , (nA − nE)
+)(mA − nA)

+ min(nA, (nB − nE)
+)(mB − nB) + nAnBδ|ρ|−1 (1)

where δ|ρ|−1 = 1 if the MIMO channel is (perfectly) reciprocal,
and δ|ρ|−1 = 0 otherwise. The precise definition of δ|ρ|−1 along
with other assumptions will be given in the discussions leading
to Theorem 1. The proof of Theorem 1 is provided in Sections
III, IV, V and VI.

Furthermore, in Section VII, we will present a generalized
pre-processing (GPP) method. AssumingnB ≤ nA, GPP allows
public communications, from Bob to Alice (and to Eve), of a
random matrix U superimposed onto Y , which consequently
allows Alice to obtain a consistent estimate Û of U. Because
of the public communications, the data sets available at Alice,
Bob and Eve after GPP are changed to the new sets X ′, Y′
and Z′. We will show that the DoF of the SKC C ′

S based on

X ′, Y′ and Z′ is also given by (1). See Theorem 2. With fully
randomized transmissions from Alice and Bob during GCP,
the computation required during GPP to exploit the channel
reciprocity is nontrivial. Additional constraints on U can be
useful to reduce the computational complexity but potentially
at a slight loss of SKC-DoF as shown in Corollaries 1 and 2.
In Section VIII, we show the Cramer-Rao lower bound for the
estimation task at Alice during GPP. In Section IX, we show the
proof of Theorem 2 and Corollaries 1 and 2.

In Section X, we consider the situation where parts of the
random transmissions from Alice and Bob during GCP are made
public. Interestingly, as shown in Theorem 3, there is still no loss
of SKC-DoF from that given by (1). The public pilots from Alice
and Bob allow them to estimate their reciprocal channel matrix,
which can naturally be used to contribute the term nAnBδ|ρ|−1

in (1). The other transmissions from Alice and Bob during
GCP can be also used rather efficiently during GPP to yield
the other terms in (1). Such a simple GPP scheme is discussed
in Section XII where Theorem 4 provides the sufficient and
necessary condition on any specific realization of the legitimate
and eavesdropping channel matrices in order for the scheme
to achieve a positive SKC-DoF, assuming that Eve has the
full knowledge of all channel matrices and there is no channel
reciprocity.

The most important contributions in this paper are Theorems
1, 2, 3 and 4. The other sections and materials in this paper
provide the necessary details to support and/or complement
those contributions. Note that despite varying complexities of
several versions of GCP and GPP shown in this paper, they can
be all used to achieve the SKC-DoF shown in (1).

Notations: Vectors and matrices are denoted by boldface
lower cases and boldface upper cases respectively. Unless de-
fined otherwise, x = vec(X) and xt = vec(XT )where vec(X)
vertically stacks all columns of the matrix X into the column
vectorx. A set of any kind of elements is denoted by calligraphic
upper case or by {·}. The set of all n×m complex matrices is
Cn×m. The mutual information between A and B conditioned
on C is I(A;B|C). The differential entropy of a random ma-
trix X conditioned on another random matrix Y is h(X|Y).
The probability density function (PDF) of a circular complex
Gaussian random vector with mean m and covariance matrix
R is CN (m,R). The expectation operator is E. The real and
imaginary parts of X are �(X) and �(X). The determinant
of matrix X is |X|. The vector from column-wise stacking
of matrix X is vec(X). The Kronecker product between X
and Y is X⊗Y. (x)+ = max(0, x). Logarithm with base 2
is log, and logarithm with base e is ln. Transpose, conjugate,
conjugate transpose and pseudoinverse are the superscripts T , ∗,
H and † respectively. The non-superscript ∗ denotes a quantity
of no importance. range(X), row(X) and null(X) denote
respectively the column span, row span and right null space
of X. Also

.
=, ∈, ⊂ and �⊂ denote “defined as,” “belongs to,”

“subset of (or same set as)” and “not subset of (or not same set
as)”. Other notations are defined in context.

II. GENERALIZED CHANNEL PROBING

Consider a MIMO flat-fading channel between node A (Alice)
and node B (Bob) with nA and nB antennas respectively. In
the broadband case, this flat-fading channel may correspond to
a subcarrier in an orthogonal frequency division multiplexing
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(OFDM) system. Let node A transmit the nA ×mA matrix XA

over mA ≥ nA time slots, and node B transmit the nB ×mB

matrix XB over another mB ≥ nB time slots. Then the signals
received by node A and node B are respectively

YA = HA,BXB +WA, ∈ CnA×mB , (2)

YB = HB,AXA +WB , ∈ CnB×mA , (3)

and the signals received by Eve (with nE antennas) are both of
the following matrices:

YE,A = GAXA +WE,A, ∈ CnE×mA , (4)

YE,B = GBXB +WE,B , ∈ CnE×mB . (5)

Here HA,B is the channel matrix from node B to node A, GA

is the channel matrix from node A to Eve, and HB,A and GB

are similarly defined. The noise terms are represented by the
W matrices. Also note that for digital radio communication, a
public pilot is generally required for carrier-frequency and/or
carrier-phase synchronization. But such a pilot can be trans-
mitted via a separate subcarrier in an OFDM system or via
an auxiliary antenna, e.g., see [11], [12]. For the antennas and
subcarrier under consideration here, we assume that no public
pilot is necessary.

After the channel probing, the data sets available at node
A, node B and Eve are respectively X = {XA,YA}, Y =
{XB ,YB}, and Z = {YE,A,YE,B}. We will be interested in
the degree of freedom (DoF) of the secret key capacity based
on {X ,Y,Z}. We will also be interested in a pre-processing
by which Alice and Bob produce a pair of highly correlated
secret vectors based on {X ,Y,Z} and further transmission via
a public channel. The pair of secret vectors should be ready for
secret key generation via established methods of quantization,
reconciliation and privacy amplification. Furthermore, we will
be interested in how much, if any, the pre-processing incurs a
loss of DoF from that based on {X ,Y,Z}.

It is clear that channel probing does not require any coding and
can be done with a high spectral efficiency within each channel
coherence period. Differing from transmission of a secret from
one node to another over the MIMO channel, a secret key based
on {X ,Y,Z} can be generated by Alice and Bob via public
communications over any other (public or private) channel after
they have established X and Y respectively from the probed
MIMO channel.

For DoF analysis, we assume the following. All entries in
XA and XB are independent and identically distributed (i.i.d.)
with the PDF CN (0, P ). All entries in WA, WB , WE,A and
WE,B are i.i.d. CN (0, 1). All entries in GA and GB are i.i.d.
CN (0, σ2

g) where σ2
g remains comparable to one when P → ∞.

All entries in each of HA,B and HB,A are i.i.d. CN (0, 1).
vec(HA,B) and vec(HT

B,A) are jointly Gaussian with the corre-
lation matrix ρInAnB

. If |ρ| = 1, the channel between nodes A
and B is said to be (perfectly) reciprocal. If |ρ| < 1, the channel
is said to be not reciprocal. Unless already mentioned otherwise,
the above matrices are independent of each other.

Note that P is proportional to the transmission power. For
DoF analysis, we will assume a large P or P → ∞.

Lemma 1: Given the above described model of {X ,Y,Z},
the secret key capacity CS in bits per independent realization of
{X ,Y,Z} is bounded as follows:

CL ≤ CS ≤ CU (6)

with CL = I(X ;Y)−min(I(X ;Z), I(Y;Z)), and CU =
min(I(X ;Y), I(X ;Y|Z)).

Proof: This lemma follows from an argument of the master
definition of mutual information shown in [19] and Theorem
4.1 in [17] for discrete and memoryless {X ,Y,Z}, the latter of
which is also available in [18]. �

We will also write CL = max(CA, CB) with CA = I(X ;Y)
− I(X ;Z) and CB = I(X ;Y)− I(Y;Z), or equivalently
CA = h(X|Z)− h(X|Y) and CB = h(Y|Z)− h(Y|X ). And
CU ≤ CZ with CZ = I(X ;Y|Z) = h(X|Z)− h(X|Y,Z).

It should be noted that finding an easy-to-compute or even
easy-to-simulate expression of CL with no loss of DoF (or CU

with no increase of DoF) for the current problem for an arbitrary
{nA, nB , nE} seems an unsolved challenge. A key reason is
the products of Gaussian distributed matrices in (2)–(5). In this
paper, our focus is on the DoF of CL and CU subject to given
scheme of channel probing and/or pre-processing.

Theorem 1: If nA ≥ nB , then DoF (CB) = DoF (CL) =
DoF (CS) = DoF (CU ) = DoF (CZ). And for all (nA, nB),

DoF (CS) = aA,B + aB,A + bA,B + bB,A

− 2nAnB + nAnBδ|ρ|−1 (7)

where aA,B = min(nB , (nA − nE)
+)mA, bA,B = min(nB ,

(nB + nE − nA)
+)nA, δ|ρ|−1 = 0 if |ρ| < 1, and δ|ρ|−1 = 1 if

|ρ| = 1. Note that (7) is equivalent to (1) as shown by (133).
Proof: The proof is given in Sections III, IV, V and VI. �

A. Discussion of DoF (CS)

1) For nE ≥ max(nA, nB): In this case, (7) reduces to

DoF (CS) = nAnBδ|ρ|−1 (8)

which is zero if |ρ| < 1, or nAnB if |ρ| = 1. In [4], the case of
nA = nB = 1was considered. The above result shows that their
channel probing scheme with mA ≥ 1 and/or mB ≥ 1 has the
same DoF (which is one) as using mA = mB = 1.

2) For nB ≤ Ne < nA: In this case, (7) reduces to

DoF (CS) = min(nB , (nA − nE)
+)mA

+ (nB + nE − nA)
+nA − nAnB + nAnBδ|ρ|−1 (9)

which increases as mA (≥ nA) increases, but is invariant to
mB (≥ nB). Also in this case, the channel reciprocity is not
necessary for a positive or even large DoF. The above result is
useful for such situation where a base station with a large number
of antennas needs to establish a secret key with a mobile node
with a small number of antennas.

In [5], a channel probing scheme was proposed for a multi-
antenna Alice and a single-antenna Bob. In their scheme, Al-
ice transmits random symbols via randomly selected antennas
sequentially. We show in Section XI that the DoF of SKC of
their scheme subject to the reciprocal channel condition between
Alice and Bob is only nA for each independent subcarrier and
independent coherence period even if Eve has a smaller number
of antennas than Alice (i.e., for all nE ≥ 1).

The special case (9) also has a connection with the result
shown in [14] where the authors considered a notion called
secret-key diversity multiplexing tradeoff (DMT). Based on
the data sets resulting from transmissions from Alice to Bob
(and to Eve) and a secret-key-rate outage probability at high
SNR, they showed that the DMT is equivalent to that of a
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MIMO channel withnA − nE transmit antennas andnB receive
antennas. This implies that the maximum multiplexity gain of
their SKG scheme is min(nB , (nA − nE)

+), which coincides
with the coefficient of mA in (9). In Section XII, we will discuss
a related case where Alice transmits random symbols via the
MIMO channel and Bob uses a public channel to send secret
information superimposed onto the signals received from Alice.

3) For nE < min(nA, nB): In this case, (7) reduces to

DoF (CS) = min(nB , (nA − nE)
+)mA

+min(nA, (nB − nE)
+)mB + nAnBδ|ρ|−1

(10)

which increases as either mA or mB increases. The first term
corresponds to the transmission from node A to node B while
the second term to the transmission from node B to node A.

4) Comparison to Wiretap Channel Model: Theorem 1 is
based on what is called source model for physical layer se-
curity [17]. In [13], a MIMO wiretap-channel (WTC) model
is considered where secret information is directly transmitted
over the channel without additional public communications.
Using the notations defined in this paper, the main conclusion
from [13] is that the DoF of the secrecy capacity CS,WTC for
direct transmission over the nA × nB MIMO channel against
Eve with nE antennas in bits per channel coherent period of
total T sampling intervals is

DoF (CS,WTC)=(min(nA, nB)−nE)
+(T−min(nA, nB))

(11)
provided T ≥ 2min(nA, nB).

We see that DoF (CS,WTC) does not benefit from a possible
reciprocity of the channel, andDoF (CS,WTC) vanishes as soon
as nE ≥ min(nA, nB). None of these is the case for DoF (CS).
As shown in (9), for nB ≤ nE < nA, DoF (CS) increases with
mA. For the case of nE < min(nA, nB), we can let nA ≥ nB

and T = mA +mB , then we see

DoF (CS)−DoF (CS,WTC)

= (min[nB , (nA − nE)]− (nB − nE))mA

+ (nB − nE)nB + nAnBδ|ρ|−1. (12)

The above is strictly positive and also increases withmA subject
to nA > nB . This observation should have important practical
implications in regard to “direct transmission of a secret key
or information over the channel” versus “generation of a secret
key from the channel assisted by public communications over
another channel”.

5) Using Public Pilots and Random Symbols: It will be
shown in Section X that if nA columns of XA and nB columns
of XB are publicly known, there is no loss of DoF of CS from
that given by (7). The term nAnBδ|ρ|−1 in (7) can be achieved
via reciprocal channel estimation based on the public pilots, and
the other terms in (7) are due to the random symbols in XA and
XB .

6) Optimal mA and mB: It is important to note that mA +
mB is in theory upper bounded by the productT of the coherence
time and the coherence bandwidth of the MIMO channel. If
nA > nB and we want to exploit the channel reciprocity, then
the optimal mA and mB that maximize DoF (CS) are mA =
T −mB and mB = nB . If there is no channel reciprocity, then
the optimal mA and mB are mA = T and mB = 0. In Section

XII, we will discuss the special case of GCP and GPP with
mA > nA and mB = 0.

III. ANALYSIS OF h(X|Y)

In this section, we will present all the necessary details to
obtain the DoF of h(X|Y). One of the important results that are
also useful for later sections is (27).

We know

h(X|Y) = h(XA,YA|XB ,YB)

= h(XA|XB ,YB) + h(YA|XA,XB ,YB)

= h(XA|YB) + h(YA|XA,XB ,YB) (13)

where for the last equality we have applied that XB is indepen-
dent of {XA,YB}. Now we write

h(XA|YB) = h(XA) + h(YB |XA)− h(YB). (14)

Since xA = vec(XA) has the PDF CN (0, (P + 1)InAmA
),

we have h(XA) = log((πe)nAmA |(P + 1)InAmA
|) = nAmA

log(πe(P + 1)) and hence

DoF (h(XA)) = nAmA. (15)

To consider h(YB |XA) in (14), let yB = vec(YB). Also
define other similar notations of vectors accordingly. Then
it follows from (3) that yB = (XT

A ⊗ InB
)hB,A +wB and

equivalently yB = (ImA
⊗HB,A)xA +wB . Given XA, yB

has the PDF CN (0,RyB |xA
) with RyB |xA

= XT
AX

∗
A ⊗ InB

+
InBmA

. Then

h(YB |XA) = E{log((πe)nBmA |RyB |xA
|)}

= nBE{log((πe)mA |XT
AX

∗
A + ImA

|)}. (16)

Since rank(XA) = nA due to nA ≤ mA, we have

DoF (h(YB |XA)) = nAnB . (17)

A. Analysis of h(YB)

For h(YB) in (14), we consider the two cases “nB ≤ nA”
and “nB > nA” separately.

1) h(YB) for nB ≤ nA: For nB ≤ nA, we consider the
following lower and upper bounds on h(YB): h(YB |HB,A) ≤
h(YB) ≤ h(Y′

B) where y′
B is so defined that it has the PDF

CN (0,RyB
) with

RyB
= E{yBy

H
B } = E{RyB |xA

} = (nAP + 1)InBmA
.
(18)

It follows that h(Y′
B) = log((πe)nBmA |RyB

|) and hence

DoF (h(Y′
B)) = nBmA. (19)

Given HB,A, yB has the PDF CN (0,RyB |HB,A
) with

RyB |HB,A
= P (ImA

⊗HB,AH
H
B,A) + InBmA

. Hence, h(YB

|HB,A) = E{log((πe)nBmA |RyB |HB,A
|)} and then

DoF (h(YB |HB,A)) = nBmA. (20)

Since (19) and (20) (the upper and lower bounds on
DoF (h(YB))) coincide, we have

DoF (h(YB)) = nBmA. (21)
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2) h(YB) for nB > nA: For nB > nA, we let YT
B =

[YT
B,1,Y

T
B,2] where YB,1 consists of the first nA rows of YB

and YB,2 consists of the last nB − nA rows of YB . It follows
that YB,1 = HB,A,1XA +WB,1 and YB,2 = HB,A,2XA +
WB,2 where the additional notations are defined in an obvious
way. It then follows that h(YB) = h(YB,1) + h(YB,2|YB,1).
Similar to (21), we have

DoF (h(YB,1)) = nAmA. (22)

To consider h(YB,2|YB,1), we first write h(YB,2|YB,1) ≈
h(YB,2|HB,A,1XA) ≥ h(YB,2|HB,A,1XA, HB,A,1) =
h(YB,2|XA) where the approximation holds at high power
without affecting the DoF. Since yB,2 = (XT

A ⊗ InB−nA
)

hB,A,2 +wB,2, yB,2 given XA has the PDF CN (0,RyB,2|xA
)

with RyB,2|xA
= (XT

AX
∗
A ⊗ InB−nA

) + I(nB−nA)mA
. Hence,

h(YB,2|XA) = E{log((πe)(nB−nA)mA |RyB,2|xA
|)}. Since

rank(XA) = nA, we have

DoF (h(YB,2|YB,1))≥DoF (h(YB,2|XA))=nA(nB − nA).
(23)

Now let us write the QR decomposition of HB,A,1XA as
HB,A,1XA = R1Q1 where Q1 is a nA ×mA row-wise or-
thonormal matrix. Since the row span of HB,A,2XA be-
longs to the row span of XA or equivalently of Q1, it fol-
lows that there exists (nB − nA)nA matrix R2 such that
HB,A,2XA = R2Q1. Since Q1 is a function of HB,A,1XA, we
have h(YB,2|YB,1) ≈ h(YB,2|HB,A,1XA) ≤ h(YB,2|Q1).
SinceyB,A,2 = (QT

1 ⊗ InB−nA
)r2 +wB,A,2, we haveh(YB,2

|Q1)≤E{log((πe)(nB−nA)nA |RyB,A,2|Q1
|)} where RyB,A,2|Q1

= (QT
1 ⊗ InB−nA

)Rr2(Q
∗
1 ⊗ InB−nA

) + I(nB−nA)nA
. It is

obvious that DoF (h(YB,2|Q1)) ≤ (nB − nA)nA and hence

DoF (h(YB,2|YB,1)) ≤ (nB − nA)nA. (24)

Since the upper bound in (24) agrees with the lower bound in
(23), we have

DoF (h(YB,2|YB,1)) = (nB − nA)nA. (25)

Combining (25) with (22), we have

DoF (h(YB)) = nAmA + (nB − nA)nA. (26)

3) h(YB) for Any nA and nB: Combining the above results
(21) and (26) for the cases of nB ≤ nA and nB > nA respec-
tively, we have

DoF (h(YB)) = min(nA, nB)mA + (nB − nA)
+nA. (27)

Clearly, DoF (h(YA)) when needed is also given by the above
but with “A” and “B” exchanged.

We can also translate (27) into a general lemma:
Lemma 2: If Y = HX+W where H is an l × n matrix

consisting of i.i.d. CN (0, 1) elements, X is an n×m matrix
consisting of i.i.d. CN (0, P ) elements, and W is an l ×m
matrix consisting of i.i.d. CN (0, 1) elements, then relative to
P , for m ≥ n,

DoF (h(Y)) = min(l, n)m+ (l − n)+n. (28)

B. Analysis of h(XA|YB) and h(YA|XA,XB ,YB)

It follows from (14), (15), (17) and (27) that

DoF (h(XA|YB))

= nAnB + nAmA −min(nA, nB)mA − (nB − nA)
+nA

= min(nA, nB)nA + (nA − nB)
+mA. (29)

Now we consider h(YA|XA,XB ,YB) in (13), which
can be written at a high power as h(YA|XA,XB ,YB)
≈ h(YA|XB ,HB,A). Recall yA = (XT

B ⊗ InA
)hA,B +wA.

Given {XB ,HB,A}, yA has the PDF CN (mhA,B |hB,A
,

RΔhA,B |hB,A
) with mhA,B |hB,A

= E{hA,B |hB,A} and
RΔhA,B |hB,A

= (1− |ρ|2)(XT
BX

∗
B ⊗ InA

) + InAmB
. Hence

h(YA|XB ,HB,A) = E{log((πe)nAmB |RΔhA,B |hB,A
|)}.

Since rank(XB) = nB , we now have

DoF (h(YA|XA,XB ,YB)) = DoF (h(YA|XB ,HB,A))

= nAnB(1− δ|ρ|−1). (30)

C. Result

It follows from (13), (29) and (30) that

DoF (h(X|Y)) = min(nA, nB)nA + (nA − nB)
+mA

+ nAnB(1− δ|ρ|−1). (31)

Note that DoF (h(Y|X )) follows by symmetry from that of
DoF (h(X|Y)) by exchanging “A” and “B”.

IV. ANALYSIS OF h(X|Z)

In this section, we will derive the DoF of h(X|Z). We can
write

h(X|Z) = h(XA|Z) + h(YA|XA,Z)

= h(XA|YE,A,YE,B) + h(YA|XA,YE,A,YE,B)

= h(XA|YE,A) + h(YA|YE,B) (32)

where in the last equation we have applied that YE,B is inde-
pendent of {XA,YE,A}, and {XA,YE,A} is independent of
{YA,YE,B}.

A. Analysis of h(XA|YE,A)

To consider h(XA|YE,A) in (32), we write

h(XA|YE,A) = h(YE,A|XA) + h(XA)− h(YE,A). (33)

Note that yE,A = (XT
A ⊗ InE

)gA +wE,A. So, yE,A given
XA has the PDF CN (0,RyE,A|xA

) with RyE,A|xA
=

σ2
g(X

T
AX

∗
A ⊗ InE

) + InEmA
. Hence h(YE,A|XA) = E{log

((πe)nEmA |RyE,A|xA
|)}. Since rank(XA) = nA, we have

DoF (h(YE,A|XA)) = nEnA. (34)

Following a similar analysis as that for DoF (h(YB)) in (27),
we have

DoF (h(YE,A)) = min(nA, nE)mA + (nE − nA)
+nA.

(35)
It follows from (33), (15), (34) and (35) that

DoF (h(XA|YE,A))

= nAmA + nEnA −min(nA, nE)mA − (nE − nA)
+nA

= (nA − nE)
+mA +min(nA, nE)nA. (36)
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B. Analysis of h(YA|YE,B)

To consider h(YA|YE,B) in (32), we write

h(YA|YE,B) = h(YA,YE,B)− h(YE,B). (37)

Following a similar analysis as that for DoF (h(YB)) in (27),
we have

DoF (h(YE,B)) = min(nB , nE)mB + (nE − nB)
+nB ,

(38)

DoF (h(YA,YE,B)) = min(nB , nA + nE)mB

+ (nA + nE − nB)
+nB . (39)

Note that {YA,YE,B} can be written as[
YA

YE,B

]
=

[
HA,B

GB

]
XB +

[
WA

WE,B

]
(40)

where the left side can be viewed as the signals received by
nA + nE antennas over mB time slots in response to the signal
matrix XB transmitted by node B. The fact that σ2

g may be not
equal to one has little effect on the analysis. Taking the difference
between (37) and (39) yields

DoF (h(YA|YE,B)) = min(nA, (nB − nE)
+)mB

+min(nA, (nA + nE − nB)
+)nB .

(41)

C. Result

It follows from (32), (36) and (41) that

DoF (h(X|Z)) = (nA − nE)
+mA +min(nA, nE)nA

+min(nA, (nB − nE)
+)mB

+min(nA, (nA + nE − nB)
+)nB . (42)

Note that DoF (h(Y|Z)) follows by symmetry from that of
DoF (h(X|Z)) by exchanging “A” and “B”.

V. ANALYSIS OF h(X|Y,Z)

In this section, we will derive the DoF of
h(X|Y,Z). Using the components in X , Y and Z ,
we can write h(X|Y,Z) = h(XA|Y,Z) + h(YA|XA,
Y,Z) = h(XA|XB ,YB ,YE,A,YE,B) + h(YA|XA,XB ,
YB ,YE,A,YE,B) and hence

h(X|Y,Z) = h(XA|YB ,YE,A) + h(YA|XA,XB ,YB)
(43)

where we have used the fact that {XB ,YE,B} is indepen-
dent of {XA,YB ,YE,A} and the fact that given {XA,XB},
{YE,A,YE,B} is independent of {YA,YB}. The DoF of the
second term in (43) is already shown in (30). Next we only need
to focus on the first term.

A. Analysis of h(XA|YB ,YE,A)

We can write

h(XA|YB ,YE,A) = h(YB ,YE,A|XA)

+ h(XA)− h(YB ,YE,A). (44)

Similar to (34) and (39) respectively, we have

DoF (h(YB ,YE,A|XA)) = (nB + nE)nA, (45)

DoF (h(YB ,YE,A)) = min(nA, nB + nE)mA

+ (nB + nE − nA)
+nA. (46)

It follows from (15),(44), (45) and (46) that

DoF (h(XA|YB ,YE,A))

= (nA − nB − nE)
+mA +min(nA, nB + nE)nA. (47)

B. Result

It follows from (43), (30) and (47) that

DoF (h(X|Y,Z)) = nAnB(1− δ|ρ|−1)

+ (nA − nB − nE)
+mA +min(nA, nB + nE)nA. (48)

VI. DEGREE OF FREEDOM OF CS

Given (31), (42) and (48), both of the followings are readily
available:

DoF (CA) = DoF (h(X|Z))−DoF (h(X|Y)), (49)

DoF (CZ) = DoF (h(X|Z))−DoF (h(X|Y,Z)). (50)

We also have DoF (CB) = DoF (h(Y|Z))−DoF (h(Y|X )),
which is the same as DoF (CA) after exchanging “A” and “B”.

A gap between the upper and lower bounds of DoF (CS) is

DoF (CZ)−DoF (CA)

= DoF (h(X|Y))−DoF (h(X|Y,Z))

= min(nA, nB)nA + (nA − nB)
+mA

− (nA − nB − nE)
+mA −min(nA, nB + nE)nA

= min(nE , (nA − nB)
+)(mA − nA) (51)

where the 2nd equality follows from (31) and (48), and the 3rd
equality follows from the fact that both (nA − nB)

+ − (nA −
nB − nE)

+ and min(nA, nB + nE)−min(nA, nB) equal to
min(nE , (nA − nB)

+).
We see that if nA ≤ nB , DoF (CZ)−DoF (CA) = 0. Note

that CZ is invariant to the exchange of “A” and “B”.
Hence, if nB ≤ nA, DoF (CZ)−DoF (CB) = 0. Therefore,
DoF (CZ) = max(DoF (CA), DoF (CB)) for all (nA, nB),
and hence DoF (CS) = DoF (CZ) for all (nA, nB).

Also note that CA is the secrecy capacity based on a one-
way public transmission scheme from node A to node B after
{X ,Y,Z} is given, and CB is that from node B to node A.
See page 120 of [17]. So, if nA ≥ nB , then a one-way public
transmission scheme from node B to node A can achieve the
DoF of CS , which is the inspiration for the GPP proposed later
in Section VII.

Using (42) and (48) in (50) does not directly result in a form
that is obviously invariant to the exchange of “A” and “B”.
To obtain an explicit expression of DoF (CZ) that is obviously
invariant to the exchange, let us recall

CZ = I(X ;Y|Z)

= h(X|Z)− h(X|Y,Z)

= h(XA|YE,A,YE,B) + h(YA|XA,YE,A,YE,B)
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− h(XA|XB ,YB ,YE,A,YE,B)

− h(YA|XA,XB ,YB ,YE,A,YE,B)

= h(XA|YE,A) + h(YA|YE,B)− h(XA|YB ,YE,A)

− h(YA|XA,XB ,YB)

= h(YE,A|XA) + h(XA)− h(YE,A) + h(YA,YE,B)

− h(YE,B)− h(YB ,YE,A|XA)− h(XA) + h(YB ,YE,A)

− h(YA|XA,XB ,YB)

= [h(YA,YE,B) + h(YB ,YE,A)]− [h(YE,A) + h(YE,B)]

− [h(YB ,YE,A|XA)− h(YE,A|XA)]

− h(YA|XA,XB ,YB). (52)

Then, applying (39), (46), (35), (38), (45), (34) and (30) to the
corresponding seven terms in (52), we have

DoF (CZ) = DoF (CS)

= min(nB , nA + nE)mB + (nA + nE − nB)
+nB

+min(nA, nB + nE)mA + (nB + nE − nA)
+nA

−min(nA, nE)mA − (nE − nA)
+nA −min(nB , nE)mB

− (nE − nB)
+nB − nAnB − nAnB(1− δ|ρ|−1). (53)

The above expression is clearly invariant to the exchange of “A”
and “B”. Furthermore, (53) can be simplified to (7).

VII. GENERALIZED PRE-PROCESSING

Now we present a generalized pre-processing (GPP) method
for SKG based on the observations by Alice, Bob and Eve shown
in (2)–(5) where there is no public pilot. We will assume nA ≥
nB .

First let us recall a property of the mutual information
I(X ;Y):

I(X ;Y) = h(X )− h(X|Y)

= h(XA) + h(YA)− h(XA|YB)− h(YA|XA,XB ,YB)

= h(YA) + h(YB)− h(YB |XA)− h(YA|XA,XB ,YB).
(54)

Applying (27), (17) and (30) to the above, one can verify that

DoF (I(X ;Y)

=

{
nB(mA +mB − nB), HA,B = HT

B,A,

nB(mA +mB − nA − nB), HA,B �= HT
B,A.

(55)

Note that a pre-processing method aims to generate a pair of
secret vectors at Alice and Bob that are ready to be quantized
into a pair of bit streams which can be then further processed
by reconciliation and privacy amplification. Any leakage to Eve
during channel probing, pre-processing and any other steps will
need to (and can) be taken care of during privacy amplification.
Furthermore, it is desirable that the pair of secret vectors gener-
ated by preprocessing on the raw data {X ,Y} preserves the DoF
of I(X ;Y) given by (55). It is also desirable that any leakage to
Eve during pre-processing does not reduce the DoF of the secret
key capacity from that given by (7).

We will next primarily consider the reciprocal channel case
where HA,B = HT

B,A = H. For the non-reciprocal channel

case whereHA,B �= HT
B,A, a discussion is given later in Section

VII-C.
Our proposed GPP for the reciprocal channel case is as

follows. Bob first generates a complex-valued random matrix
U = [U0,U1,U2] where the submatrices have the dimensions
nB × nB , nB × (mA − nB) and nB × (mB − nB) respec-
tively. Notice that the total number of complex elements in U
equals DoF (I(X ;Y)). We will further assume that the entries
in U are i.i.d. CN (0, P ′) where P ′ is comparable to P or simply
P ′ = P . Then the DoF of h(U) equals DoF (I(X ;Y)) in (55)
for the reciprocal channel case. And if Alice can obtain a consis-
tent estimate Û of U, then Alice and Bob have a pair of secret
vectors, i.e., vec(Û) and vec(U), whose mutual information has
the same DoF as I(X ;Y).

Then, in order for Alice to be able to estimateU, Bob performs
an “incoming signal assisted transmission (iSAT),” i.e., he sends
out X′

B = XB + [U0,U2] and Y′
B = YB + [U0,U1] via any

reliable public channel to Alice. Here we assume that both Alice
and Eve receive X′

B and Y′
B with a negligible noise compared

to WA and WB .
Theorem 2: Let X ′ = {X ,X′

B ,Y
′
B}, Y′ = {Y,U} and

Z′ = {Z,X′
B ,Y

′
B}. Then, for nA ≥ nB , the secret key capac-

ity C ′
S based on {X ′,Y′,Z′} has the same DoF as CS based on

{X ,Y,Z}, i.e.,

DoF (C ′
S) = DoF (CS). (56)

Proof: The proof is given in Section IX. �
This theorem says that the leakage to Eve due to {X′

B ,Y
′
B}

does not change the DoF of the secret key capacity from that
given by (7). The GPP is inspired by a conceptual approach
shown in Section 4.2.1 in [17] where Bob transmits publicly
the modulo sum of a uniform random variable U and a discrete
Y (both belong to a common finite set). By doing so, the lower
boundCB onCS is achieved. But an application of that approach
for {X ,Y,Z} given in this paper would require (among major
issues) a proper coding scheme, which is not yet available.

A. Estimation of U by Alice

To show how Alice can estimate U, notice the key equations
that Alice now has:

YA = H(X′
B − [U0,U2]) +WA, (57)

Y′
B = HTXA + [U0,U1] +WB , (58)

where the unknowns are H and U = [U0,U1,U2]. Also notice
that (57) is nonlinear. To show more insights into (57) and (58),
we let YA = [YA,α,YA,β ] with YA,α consisting of the first
nB columns of YA and YA,β consisting of all other columns
of YA. We will use the subscripts α and β to indicate the same
partitions for all relevant matrices. Then we know

YA,α = H[X′
B,α −U0] +WA,α, (59)

YA,β = H[X′
B,β −U2] +WA,β , (60)

Y′
B,α = HTXA,α +U0 +WB,α, (61)

Y′
B,β = HTXA,β +U1 +WB,β . (62)

If Ĥ is given, then the least-square (LS) estimates of U0, U1

and U2 are as follows:

Û0 = (ĤHĤ+ InB
)−1(−ĤHΔYA,α +ΔY′

B,α), (63)
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Û1 = Y′
B,β − ĤTXA,β , (64)

Û2 = − (ĤHĤ)−1ĤHΔYA,β , (65)

with ΔYA,α=YA,α − ĤX′
B,α, ΔY′

B,α=Y′
B,α − ĤTXA,α

and ΔYA,β = YA,β − ĤX′
B,β . Note that (63) is the LS so-

lution of U0 to (59) and (61), or equivalently,

Û0 = argmin
U0

J0 (66)

with

J0 =

∥∥∥∥
[
ΔYA,α

ΔY′
B,α

]
−
[
−Ĥ
InB

]
U0

∥∥∥∥
2

F

. (67)

Here ‖M‖2F .
= Tr(MMH) for any matrix M. We will also

write J0 = ‖Y0 −H0U0‖2F with Y0 and H0 defined in an
obvious way.

If Û0 is a consistent estimate ofU0, then a consistent estimate
of H follows from (59), i.e.,

Ĥ = YA,α[X
′
B,α − Û0]

−1 (68)

which then leads to consistent estimates of U1 and U2 via (64)
and (65).

To find a consistent estimate Û0, we can use (68) in (61),
which yields

(X′
B,α − Û0)

T (Y′
B,α − Û0) = YT

A,αXA,α. (69)

This is an nB × nB quadratic matrix equation of the nB × nB

unknown matrix Û0, which in general have multiple (but no
more than 2n

2
B ) solutions. One of the solutions in the absence

of noise is the desired solution U0.
Every solution to (69) can be written as Û0 = U0 −

ΔÛ0. Then (69) implies (XB,α +ΔÛ0)
T (YB,α +ΔÛ0) =

YT
A,αXA,α. Clearly, every nonzero ΔÛ0 in the absence of

noise is independent of U0. For example, if nB = 1, then
ΔÛ0 = −XB,α −YB,α. Furthermore, one can verify that the
corresponding estimates ofU1 andU2 from (64) and (65) can be
also written as Û1 = U1 −ΔÛ1 and Û2 = U2 −ΔÛ2 where
ΔÛ1 and ΔÛ2 in the absence of noise are also independent
of U. Therefore, among all solutions to (69) in the absence of
noise, the desired solution has the minimum variance. Provided
that the number nU = nB(mA +mB − nB) of entries in U is
large, the desired solution to (69) can be detected by choosing the
one corresponding to the smallest 1

PnU
‖Û‖2F which approaches

to one for large nU .
Alternatively, the desired solution to (69) can be detected

if there is an additional constraint on U0. For example, Bob
informs Alice, via public channel, of C and d such that

Tr(CTU0) = d. (70)

Corollary 1: For the reciprocal channel case, i.e., |ρ| = 1, if
there is the public constraint (70), then there is a loss of one DoF
in the secret key capacity from that given by (7) with δ|ρ|−1 = 1.

Proof: See Section IX. �
With a good initial Û0, there is a good initial Ĥ from (68).

Also note that for any given Ĥ, the optimal estimate of U0

subject to (70) has a closed form as shown next. The Lagrangian

function of this problem is

L0 = J0 + μr�(Tr(CTU0)− d) + μi�(Tr(CTU0)− d)
(71)

where μr and μi are two real-valued multipliers. One can ver-
ify that ∂L0

∂U0

.
= ∂L0

∂�(U0)
+ j ∂L0

∂�(U0)
= −2HH

0 (Y0 −H0U0) +

μC∗ with μ = μr + jμi. Then the solution of U0 to ∂L0

∂U0
= 0

is

Û0 = (HH
0 H0)

−1
(
HH

0 Y0 − μ

2
C∗

)
. (72)

Applying (70), we have

μ

2
=

Tr(CT (HH
0 H0)

−1Y0 − d)

Tr(CT (HH
0 H0)−1C∗)

. (73)

Note that (72)–(73) is the LS estimate of U0 subject to a fixed
Ĥ and (70), and this estimate reduces to (63) if (70) is absent or
equivalently μ = 0.

1) Maximum Likelihood Estimation: To find the maximum
likelihood (ML) estimates of all unknowns (i.e., H, U0, U1 and
U2), we need to find the unknowns that minimize the following
cost function:

J = ‖YA −H(X′
B − [U0,U2])‖2F

+ ‖Y′
B −HTXA − [U0,U1]‖2F . (74)

We already know that if Ĥ is the ML estimate (or equivalently
the LS estimate) of H, then the ML estimates of U0, U1 and
U2 are available in closed forms as shown before.

To find the ML estimate ofH subject to a good initial estimate
Ĥ(0), we can use the gradient method as follows:

Ĥ(k+1) = Ĥ(k) − η
∂J

∂H

∣∣∣∣
k

(75)

where k denotes the k-th iteration, and η is a step size. Further-
more, one can verify from (74) that

∂J

∂H
= − 2(YA −H(X′

B − [U0,U2]))(X
′
B − [U0,U2])

H

− 2[(Y′
B −HTXA − [U0,U1])X

H
A ]T (76)

where H, U0, U1 and U2 need to be replaced by their best
estimates at every iteration.

Upon convergence of the gradient algorithm, the final estimate
Û of U at Alice should be highly correlated with U originally
generated by Bob. As the power P increases, 1

P ‖Û−U‖2F
decreases to zero. The variances of the entries in Û at large P
can be measured by the Cramer-Rao lower bound as discussed
in Section VIII.

B. Discussion

1) Extracting a Common Vector by Reciprocal Multiplica-
tion: Since Alice knows XA and YA = HA,BXB +WA or
equivalently yA = vec(YA) = (XT

B ⊗ InA
)hA,B +wA, she

can compute

zA
.
= (ImB

⊗XT
A)yA = (XT

B ⊗XT
A)hA,B

+ (ImB
⊗XT

A)wA. (77)
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Similarly, Bob knows XB and YB = HB,AXA +WB

or equivalently yB,t = vec(YT
B) = (InB

⊗XT
A)hA,B +wB,t,

and he can compute

zB
.
= (XT

B ⊗ ImA
)yB,t = (XT

B ⊗XT
A)hA,B

+ (XT
B ⊗ ImA

)wB,t. (78)

The multiplications performed on yA and yB,t respectively in
(77) and (78) can be referred to as reciprocal multiplications. It
is clear that at high power, both zA and zB are dominated by the
common vector v

.
= (XT

B ⊗XT
A)hA,B . Therefore, it follows

that DoF (h(zA|zB)) = 0 and hence

DoF (I(zA; zB)) = DoF (h(zA)) = DoF (h(v)). (79)

It is easy to verify that E{vvH} = PnBImB
⊗ PnAImA

=
nAnBP

2ImAmB
, which implies that the entries in v are all

pair-wise uncorrelated. But the entries in v are non-Gaussian,
and in general they are not statistically independent of each other.

Since zA and zB are functions of X and Y respectively, we
have I(zA; zB) ≤ I(X ;Y) and from (79) and (55) that

DoF (h(v)) ≤ nB(mA +mB − nB). (80)

Since v has the dimension mAmB × 1 and mAmB ≥
nB(mA +mB − nB) (due tomA ≥ nA ≥ nB andmB ≥ nB),
there is generally statistical dependence among the entries in v.

For example, consider the case of nA = nB = 1 and mA =
mB = 2. Then we can write XA = [a1, a2], XB = [b1, b2] and
HA,B = [h]. Hence

v = [v1, v2, v3, v4]
T = [b1a1h, b1a2h, b2a1h, b2a2h]

T . (81)

One can verify that v4 is uniquely determined by v1, v2 and v3,
i.e., v4 = v2v3

v1
. At the same time, we see that E{vvH} = P 2I4,

i.e., the 4 entries in v are pair-wise uncorrelated.
2) A Special Case: For nA = nB = 1 and mA = mB = m,

we let XT
A = a, XT

B = b, YT
A = yA, YT

B = yB . For this case,
the authors of [4] proposed the following strategy where Alice
and Bob compute respectively z′A

.
= a� yA and z′B

.
= b� yB

where � denotes the element-wise product. At high power, z′A
and z′B share the common vector v′ = (a� b)h which has the
dimension m. In this case, it follows that

DoF (I(z′A; z
′
B)) = m (82)

which is however smaller than the corresponding
DoF (I(X ;Y)) = 2m− 1 for m > 1.

C. The Case of |ρ| < 1 or HA,B �= HT
B,A

For this non-reciprocal channel case, we see from (55) that
the DoF of I(X ;Y) is reduced by nAnB . In this case, we can let
U0 and the first nA − nB columns ofU1 be public, and then the
remaining entries in U have the DoF equal to DoF (I(X ;Y))
given by (55) for the non-reciprocal channel case.

One can verify that with X , X′
B and Y′

B , Alice can obtain
consistent estimates of all non-public entries in U. Specifically,
Alice can compute an initial consistent estimate of HA,B based
on (59) as follows: ĤA,B = YA,α(X

′
B,α −U0)

−1. With any

ĤA,B , the ML estimate of U2 is the LS solution of (60), i.e.,

Û2 = X′
B,β − (ĤH

A,BĤA,B)
−1ĤH

A,BYA,β . (83)

The ML estimate of HA,B (and hence U2) can be found by a
gradient search of the LS solution of (59) and (60) with H =

HA,B , i.e., ĤA,B,k+1 = ĤA,B,k − η ∂J1

∂HA,B

∣∣∣
k

where J1 is the

first term in (74), and ∂J1

∂HA,B
is the first term in (76) with H =

HA,B . For ML estimation of HB,A and the unknowns in U1,
let Y′

B,γ and XA,γ be each the first nA columns of Y′
B and XA

respectively, Uγ be the first nA columns of [U0,U1], and Uτ ,
Y′

B,τ and XA,τ be each the last mA − nA columns of U1, Y′
B

and XA respectively. Then the ML estimates of HB,A and Uτ

are given by the LS solution to (61) and (62) with HT = HB,A,
i.e.,

[ĤB,A, Ûτ ] = [T1,Y
′
B,τ ]

[
XAX

H
A XA,τ

XH
A,τ ImA−nA

]−1

(84)

with T1 = (Y′
B,γ −Uγ)X

H
A,γ +Y′

B,τX
H
A,τ .

Note that unlike the case where a reciprocal channel is fully
exploited, the complexity of the above method is much lower.
Furthermore, if we know that nA > nE ≥ nB , then the optimal
choice of mB in terms of SKC-DoF can be chosen to be nB

as discussed in Section II-A2. In this case, U2 is empty, and
the estimation of HA,B is no longer needed. In other words, if
mB = nB , Alice only needs the optimal estimate of the nB ×
(mA − nA) matrix Uτ as given in (84), which can be further
written (using block matrix inversion) as

Ûτ = T1T2 +Y′
B,τT3 (85)

with T2 = −(XA,γX
H
A,γ)

−1XA,τ and T3 = ImA−nA
+

XH
A,τ (XA,γX

H
A,γ)

−1XA,τ . (The MMSE estimate of Uτ could
also be used by Alice, which is however not to be discussed.)
Alice and Bob can then use the pair of secret vectors vec(Ûτ )
and vec(Uτ ), respectively, to generate the final secret key.

Corollary 2: For the non-reciprocal channel case, i.e., |ρ| <
1, ifU0 and the first (or any)nA − nB columns ofU1 are public,
then there is no loss of DoF in the secret key capacity from that
given by (7) with δ|ρ|−1 = 0.

Proof: See Section IX. �

VIII. CRAMER-RAO LOWER BOUND

In this section, we show the Cramer-Rao lower bound (CRLB)
for the covariance matrix of the estimates of all unknowns by
Alice during GPP. Since CRLB is for unbiased estimates, it is
generally a lower bound achievable by the covariance matrix of
the maximum likelihood estimates when SNR is high.

Since the noise matrices WA and WB consist of i.i.d.
CN (0, 1) elements, the joint PDF of YA and Y′

B is

f(YA,Y
′
B) = K0 exp(−J) (86)

where K0 is a constant and J is given in (74). It follows that for
any parameter θ, we have ∂ lnf

∂θ = −∂J
∂θ . One can verify from

(74) that ∂J
∂H = −2WAX

H
B − 2X∗

A,αW
T
B,α − 2X∗

A,βW
T
B,β ,

∂J
∂U0

= 2HHWA,α − 2WB,α, ∂J
∂U1

= −2WB,β and ∂J
∂U2

=

2HHWA,β .
The above equations imply that the Fisher information matrix

of the normalized unknowns H, 1√
P
U0, 1√

P
U1 and 1√

P
U2 has
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the following structure:

F =

⎡
⎢⎢⎣

Fh,h

√
PFh,u0

√
PFh,u1

√
PFh,u2√

PFT
h,u0

PFu0,u0
0 0√

PFT
h,u1

0 PFu1,u1
0√

PFT
h,u2

0 0 PFu2,u2

⎤
⎥⎥⎦ (87)

where all nonzero entries are proportional to P . For each pair of
complex vectors x and y, Fx,y has the following form:

Fx,y =

[
F�(x),�(y) F�(x),�(y)
F�(x),�(y) F�(x),�(y)

]

=

⎡
⎣E

{
∂J

∂�(x)
∂J

∂�(y)T
}

E

{
∂J

∂�(x)
∂J

∂�(y)T
}

E

{
∂J

∂�(x)
∂J

∂�(y)T
}

E

{
∂J

∂�(x)
∂J

∂�(y)T
}
⎤
⎦ (88)

where the expectations are over the noise. Note that ∂J
∂�(x) =

1
2 (

∂J
∂x + (∂J∂x )

∗) and ∂J
∂�(x) =

1
2 (−j ∂J

∂x + j(∂J∂x )
∗). Also note

that for w with the PDF CN (0, I), we have E{wwT } = 0 and
E{wwH} = I. Further details of the nonzero entries in (87) are
given next.

One can verify that F�(h),�(h) = F�(h),�(h) = 2�(X∗
B

XT
B ⊗ InA

) + 2�(InB
⊗X∗

AX
T
A), F�(h),�(h) = FT

�(h),�(h) =
−2�(X∗

BX
T
B ⊗ InA

)− 2�(InB
⊗X∗

AX
T
A), F�(u0),�(u0) =

F�(u0),�(u0) = 2�(InB
⊗HTH∗) + 2In2

B
, F�(u0),�(u0) =

FT
�(u0),�(u0)

=2�(InB
⊗HTH∗), F�(u1),�(u1)=F�(u1),�(u1)

=2InB(mA−nB), F�(u1),�(u1)=FT
�(u1),�(u1)

=0, F�(u2),�(u2)

= F�(u2),�(u2) = 2�(ImB−nB
⊗HTH∗) and F�(u2),�(u2) =

FT
�(u2),�(u2)

= 2�(ImB−nB
⊗HTH∗).

To derive the cross-correlations between ∂J
∂h , ∂J

∂u0
, ∂J

∂u1
and

∂J
∂u2

, it is helpful to use A = X∗
B ⊗ InA

, B = InB
⊗X∗

A, C =

InB
⊗HH and D = ImB−nB

⊗HH . Also use Aα = X∗
B,α ⊗

InA
, Aβ = X∗

B,β ⊗ InA
, Bα = InB

⊗X∗
A,α and Bβ = InB

⊗
X∗

A,β .
Then, one can verify that F�(h),�(u0) = −2�{AE{wA

wH
A,α}CH}+ 2�{BαE{wB,α,tw

H
B,α}}. Here E{wAw

H
A,α}

equals the first nAnB columns of InAmB
, and hence

AE{wAw
H
A,α} = Aα. Let PB,α and PB,β be the permutations

such that wB,α,t = PB,αwB,α and wB,β,t = PB,βwB,β .
Then, F�(h),�(u0) = −2�{X∗

B,α ⊗H}+ 2�{(InB
⊗X∗

A,α)

PB,α}. Similarly, one can verify that F�(h),�(u0) =
F�(h),�(u0), F�(h),�(u0) = −F�(h),�(u0) and F�(h),�(u0) =
2�{X∗

B,α ⊗H} − 2�{(InB
⊗X∗

A,α)PB,α}. Furthermore,
withBβ = InB

⊗X∗
A,β , we haveF�(h),�(u1) = F�(h),�(u1) =

2�(Bβ)PB,β and F�(h),�(u1) = −F�(h),�(u1) = −2�(Bβ)

PB,β . And with Aβ = X∗
B,β ⊗ InA

and D = ImB−nB
⊗HH ,

we have F�(h),�(u2) = F�(h),�(u2) = −2�(AβD
H) and

F�(h),�(u2) = −F�(h),�(u2) = 2�(AβD
H).

The Cramer-Rao lower bound (CRLB) on the covariance
matrix of the maximum likelihood estimate of the real-valued
unknown vector θ, i.e., the column-wise stack of �(h), �(h),
1√
P
�(u0), 1√

P
�(u0), 1√

P
�(u1), 1√

P
�(u1), 1√

P
�(u2) and

1√
P
�(u2)) is given by the inverse matrix F−1. If any param-

eters in θ become known, the corresponding Fisher information
matrix is still given by F but with the corresponding columns
and rows removed.

If H is given, the CRLBs for 1√
P
u0, 1√

P
u1 and 1√

P
u2

are respectively 1
P F−1

u0,u0
, 1

P F−1
u1,u1

and 1
P F−1

u2,u2
. The cor-

responding lower bounds on the (per-complex-element) es-
timation variances of 1√

P
u0, 1√

P
u1 and 1√

P
u2 are re-

spectively 1
Pn2

B
Tr(F−1

u0,u0
), 1

PnB(mA−nB)Tr(F
−1
u1,u1

) and
1

PnB(mB−nB)Tr(F
−1
u2,u2

). Note that these bounds are indepen-

dent ofXA andXB . Furthermore, 1
P F−1

u1,u1
= 1

2P I2nB(mA−nB)

which is uniform and invariant to any unknowns. This property
for u1 (whose dimension increases with mA) should be quite
useful in practice.

IX. SECRET KEY CAPACITY AFTER PRE-PROCESSING

In this section, we provide the proof of Theorem 2 and Corol-
laries shown in Section VII. For the proposed pre-processing
method, additional data are communicated publicly. The data
sets available at Alice, Bob and Eve are now changed from
X , Y and Z to X ′, Y′ and Z′, respectively, where X ′ =
{X ,X′

B ,Y
′
B}, Y′ = {Y,U} and Z′ = {Z,X′

B ,Y
′
B}. Also

remember the assumption nA ≥ nB .
Now the secret key capacity of the new model is denoted

by C ′
S which satisfies max(C ′

A, C
′
B) ≤ C ′

S ≤ C ′
Z where C ′

A =
h(X ′|Z′)− h(X ′|Y′), C ′

B = h(Y′|Z′)− h(Y′|X ′) and C ′
Z =

h(Y′|Z′)− h(Y′|X ′,Z′). We will show next in Section IX-A
that DoF (h(Y′|X ′)) = 0 and hence DoF (h(Y′|X ′,Z′)) = 0,
and therefore

DoF (C ′
S) = DoF (C ′

Z) = DoF (C ′
B) = DoF (h(Y′|Z′)),

(89)
which will further be shown to be (103) in Section IX-B. We
will also show in Section IX-C that

DoF (C ′
S) = DoF (CS) (90)

where the right side is given by (53) with nA ≥ nB and |ρ| = 1,
which leads to Theorem 2.

In this section, we will also highlight key modifications
needed to prove Corollaries 1 and 2.

A. Proof of DoF (h(Y′|X ′)) = 0

We know

h(Y′|X ′) = h(XB ,YB ,U|X ′)

= h(XB |X ′) + h(YB |XB ,X ′)

+ h(U|XB ,YB ,X ′). (91)

It is shown next that each of the three terms in (91) has zero DoF.
Note that for Corollaries 1 and 2, there are public con-

straints on U. Those constraints do not change the property
DoF (h(Y′|X ′)) = 0. In fact, those constraints make Y′ some-
what “more determined” by X ′.

1) Proof of DoF (h(XB |X ′)) = 0: Here

h(XB |X ′) = h(XB |XA,YA,X
′
B ,Y

′
B)

= h(YA,X
′
B ,Y

′
B |XA,XB) + h(XB |XA)

− h(YA,X
′
B ,Y

′
B |XA)

= h(YA|XB)+h(X′
B |YA,XB)+h(Y′

B |XA,YA,X
′
B ,XB)

+ h(XB)− h(X′
B)− h(YA|X′

B)− h(Y′
B |XA,X

′
B ,YA)

(92)
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where we have dropped the condition on XA in several
terms when it is independent of all other matrices of interest.
It is clear that DoF (h(XB)) = DoF (h(X′

B)) = nBmB ,
DoF (h(YA|XB)) = nAnB and DoF (h(X′

B |YA,XB)) =
DoF (h(X′

B |XB)) = nBmB . Also DoF (h(YA|X′
B)) =

DoF (h(YA)) = nBmB + (nA − nB)nB , which follows
from a similar analysis as for (27). The other two terms
h(Y′

B |XA,YA,X
′
B ,XB) and h(Y′

B |XA,X
′
B ,YA) in (92)

are discussed below.
We know DoF (h(Y′

B |XA,YA,X
′
B ,XB)) = DoF (h(Y′

B|XA,U0,HA,B)) where we have applied that {YA,XB} de-
termines HA,B at a high power P , {X′

B ,XB} determines
[U0,U2], and, given {XA,U0,HA,B}, Y′

B is independent of
{YA,X

′
B ,XB}. Furthermore

h(Y′
B |XA,U0,HA,B) = h(Y′

B,α|XA,U0,HA,B)

+ h(Y′
B,β |XA,Y

′
B,α,U0,HA,B)

= h(YB,α|XA,HA,B) + h(Y′
B,β |XA,HA,B). (93)

We also know that DoF (h(YB,α|XA,HA,B)) = 0 and
DoF (h(Y′

B,β |XA,HA,B) = DoF (h(U1))= nB(mA−nB).
Therefore,

DoF (h(Y′
B |XA,YA,X

′
B ,XB)) = nB(mA − nB). (94)

Now we consider

h(Y′
B |XA,X

′
B ,YA) = h(Y′

B,α|XA,X
′
B ,YA)

+ h(Y′
B,β |Y′

B,α,XA,X
′
B ,YA). (95)

where we recall Y′
B,α = HB,AXA,α +U0 +WB,α,

Y′
B,β = HB,AXA,β +U1 +WB,β , X′

B = XB + [U0,U2]
and YA = HA,BXB +WA. Since U1 is independent of
{Y′

B,α,XA,X
′
B ,YA}, and {XB,α,YA,α} determines HA,B

at high power, we haveDoF (h(Y′
B,β |Y′

B,α,XA,X
′
B ,YA)) ≥

DoF (h(Y′
B,β |XB,α,Y

′
B,α,XA,X

′
B ,YA)) = DoF (h(U1 +

WB,β)) = nB(mA − nB). Since Y′
B,β has the dimension nB

×(mA − nB), DoF (h(Y′
B,β |∗) ≤ nB(mA − nB). Therefore,

DoF (h(Y′
B,β |Y′

B,α,XA,X
′
B ,YA)) = nB(mA − nB).

(96)
Since Y′

B,α has the dimension nB × nB , DoF (h

(Y′
B,α|∗)) ≤ n2

B . We show next that

DoF (h(Y′
B,α|XA,X

′
B ,YA)) = n2

B . (97)

To prove (97), we consider h(Y′
B,α|XA,X

′
B ,YA) ≥

h(Y′
B,α|XA,α,X

′
B,α,YA,α). It is now sufficient to prove

DoF (h(Y′
B,α|XA,α,X

′
B,α,YA,α)) = n2

B . There is a little
complexity due to the product HA,BXB of two random
matrices in YA. But we can get around this problem by
applying the chain rule of differential entropy to the total n2

B
(complex) elements in Y′

B,α and show that each of the n2
B

terms has its DoF equal to one. It suffices to show that at a
high power none of the elements in Y′

B,α can be consistently
estimated from all other elements in Y′

B,α along with the
knowledge of {XA,α,X

′
B,α,YA,α}. Indeed, any n2

B − 1

elements in Y′
B,α along with the n2

B + 2nAnB elements in
{XA,α,X

′
B,α,YA,α} constitute 2n2

B + 2nAnB − 1 known
equations. The corresponding unknowns are thenAnB elements
in XA,α, the n2

B elements in XB,α, the n2
B elements in U0

and the nAnB elements in HA,B . We see that there is an extra
degree of freedom in the unknowns. Hence, no element of Y′

B,α

can be consistently estimated from all other elements in Y′
B,α

along with {XA,α,X
′
B,α,YA,α}. Therefore, (97) holds.

Using (97) and (96) in (95) yields

DoF (h(Y′
B |XA,X

′
B ,YA)) = nBmA. (98)

Then applying (98), (94) and other results below (92) into (92),
we have

DoF (h(XB |X ′)) = 0. (99)

Since X ′ includes X′
B = XB + [U∗

0,U2], (99) suggests that,
with X ′, Alice’s ambiguity about {U0,U2} does not increase
as power increases. This coincides with the fact that Alice can
obtain a consistent estimate of {U0,U2} and henceU1 as power
increases.

2) Proof of DoF (h(YB |XB ,X ′)) = 0: Here

h(YB |XB ,X ′) = h(YB |XB ,XA,YA,X
′
B ,Y

′
B)

≈ h(YB |XA,HA,B) (100)

and therefore DoF (h(YB |XB ,X ′)) = 0.
3) Proof of DoF (h(U|XB ,YB ,X ′)) = 0: Here

h(U|XB ,YB ,X ′) = h(U|XB ,YB ,XA,YA,X
′
B ,Y

′
B)

= h(U|U0,U1,U2) (101)

and hence DoF (h(U|XB ,YB ,X ′)) = 0.

B. Analysis of h(Y′|Z′)

Since {X′
B ,Y

′
B} is part of each of Y′ and Z′, we have

h(Y′|Z′) = h(XB ,X
′
B ,YB ,Y

′
B |Z′) = h(XB ,YB |Z′)

= h(XB |Z′) + h(YB |XB ,Z′). (102)

We show next in Sections IX-B1 and IX-B2 that

DoF (h(Y′|Z′))

= nEnB + nBmB −min(nB , nE)mB − (nE − nB)
+nB

+min(nB + nE , nA)mA + (nB + nE − nA)
+nA − n2

B

−min(nA, nE)mA − (nE − nA)
+nA − p, (103)

which can be simplified to

DoF (h(Y′|Z′))

= (nB − nE)
+(mB − nB) + min(nB , (nA − nE)

+)mA

+min(nB , (nB + nE − nA)
+)nA − p. (104)

Here p = 0 for Theorem 2 where there is no additional constraint
on U; p = 1 for Corollary 1 where there is a complex scalar
constraint on U0; and p = p0 + p1 = nAnB with p0 = n2

B and
p1 = nB(nA − nB) for Corollary 2 whereU0 and the firstnA −
nB columns ofU1 are public, or equivalently,XB,α and the first
nA columns of YB are public.

1) Analysis of h(XB |Z′): We know

h(XB |Z′) = h(XB |Z,X′
B ,Y

′
B)

= h(X′
B |Z,XB ,Y

′
B) + h(XB |Z,Y′

B)

− h(X′
B |Z,Y′

B). (105)
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Here h(X′
B |Z,XB ,Y

′
B) = h(U0,U2|YE,A,Y

′
B) after drop-

ping the conditioning components {XB ,YE,B} that are inde-
pendent of {U0,U2,YE,A,Y

′
B}. For Corollaries 1 and 2, this

equality also holds but subject to the scalar constraint on U0 for
Corollary 1 or U0 being public for Corollary 2.

So, the first term in (105) is

h(X′
B |Z,XB ,Y

′
B) = h(U0,U2|YE,A,Y

′
B)

= h(U0|YE,A,Y
′
B) + h(U2)

= h(YE,A,Y
′
B |U0) + h(U0)− h(YE,A,Y

′
B)

+ h(U2). (106)

We now show that DoF (h(YE,A,Y
′
B |U0)) = DoF (h

(YE,A,Y
′
B)). First, we can write h(YE,A,Y

′
B |U0) =

h(YE,A)+h(Y′
B |YE,A,U0)=h(YE,A)+h(YB,α|YE,A) +

h(YB,β +U1|YE,A) and h(YE,A,Y
′
B) = h(YE,A)+h(Y′

B

|YE,A). We know that n2
B = DoF (h(YB,α|XA,α,YE,A)) ≤

DoF (h(YB,α|YE,A))≤DoF (h(YB,α))≤n2
B , DoF (h(YB,β

+U1|YE,A))=DoF (h(U1))=nB(mA−nB), DoF (h(Y′
B|YE,A))=DoF (h(U0,U1))=nBmA. Hence, DoF (h(YE,A,

Y′
B |U0)) = DoF (h(YE,A,Y

′
B)). One can verify that this

equality also holds for Corollaries 1 and 2.
Then, (106) implies

DoF (h(X′
B |Z,XB ,Y

′
B)) = DoF (h(U0)) +DoF (h(U2))

= nBmB − p′. (107)

Here p′ = 0 for Theorem 2, p′ = 1 for Corollary 1, and p′ = p0
for Corollary 2.

The second term in (105) is h(XB |Z,Y′
B) = h(XB

|YE,A,YE,B ,Y
′
B)=h(XB |YE,B)=h(YE,B |XB)+h(XB)

− h(YE,B). Like (17), DoF (h(YE,B |XB)) = nEnB . Like
(27), DoF (h(YE,B)) = min(nB , nE)mB + (nE − nB)

+nB .
Also note that DoF (h(XB)) = nBmB − p′. Hence,

DoF (h(XB |Z,Y′
B)) = DoF (h(XB |YE,B))

= nEnB + nBmB −min(nB , nE)mB − (nE − nB)
+nB

− p′. (108)

The third term in (105) satisfies h(X′
B) ≥ h(X′

B |Z,Y′
B) ≥

h(X′
B |Z,XB ,Y

′
B) = h(U0,U2) where both the lower and

upper bounds have the same DoF nBmB − p′, and hence

DoF (h(X′
B |Z,Y′

B)) = nBmB − p′. (109)

Therefore, using (109), (108) and (107) in (105) results in

DoF (h(XB |Z′)) = DoF (h(XB |YE,B))

= nEnB + nBmB −min(nB , nE)mB − (nE − nB)
+nB

− p′. (110)

2) Analysis of h(YB |XB ,Z′): We know

h(YB |XB ,Z′) = h(YB |XB ,YE,A,YE,B ,X
′
B ,Y

′
B)

= h(YB |U0,U2,YE,A,Y
′
B)

= h(YB |U0,U2) + h(YE,A,Y
′
B |U0,U2,YB)

− h(YE,A,Y
′
B |U0,U2). (111)

Here, without the constraints in Corollaries 1 and 2,
DoF (h(YB |U0,U2)) = DoF (h(YB)) = nBmA due to (27)

with nA ≥ nB . But with the possible constraints in Corollaries
1 and 2, we have

DoF (h(YB |U0,U2)) = nBmA − p. (112)

The second term in (111) is

h(YE,A,Y
′
B |U0,U2,YB) = h(YE,A,U0,U1|U0,U2,YB)

= h(YE,A,U1|YB) = h(U1) + h(YE,A|YB)

= h(U1) + h(YE,A,YB)− h(YB). (113)

The impact of the public constraints in Corollaries 1 and 2 on the
DoF of h(YE,A,YB) and h(YB) in h(YE,A,YB)− h(YB)
cancels each other. But DoF (h(U1)) = nB(mA − nB)− p′′
wherep′′ = 0 for Theorem 2 and Corollary 1 andp′′ = nB(nA −
nB) for Corollary 2. Also using (27) and (46), it follows that

DoF (h(YE,A,Y
′
B |U0,U2,YB))

= min(nB + nE , nA)mA + (nB + nE − nA)
+nA − n2

B

− p′′. (114)

The third term in (111) is

h(YE,A,Y
′
B |U0,U2) = h(YE,A) + h(Y′

B |YE,A,U0)

= h(YE,A) + h(Y′
B,α|YE,A,U0)

+ h(Y′
B,β |Y′

B,α,YE,A,U0)

= h(YE,A) + h(YB,α|YE,A) + h(Y′
B,β |Y′

B,α,YE,A).

(115)

HereDoF (h(YE,A)) is given by (35). Without the constraints in
Corollaries 1 and 2, we know n2

B ≥ DoF (h(YB,α|YE,A)) ≥
DoF (h(YB,α|XA,α,YE,A)) = n2

B and nB(mA − nB) ≥
DoF (h(Y′

B,β |Y′
B,α,YE,A)) ≥ DoF (h(Y′

B,β |HB,A,XA,

Y′
B,α,YE,A)) = DoF (h(U1)) = nB(mA − nB). But with

the possible constraints in Corollaries 1 and 2, we have
DoF (h(YB,α|YE,A)) = n2

B − p′ and DoF (h(Y′
B,β |Y′

B,α,

YE,A)) = nB(mA − nB)− p′′. Therefore,

DoF (h(YE,A,Y
′
B |U0,U2))

= min(nA, nE)mA + (nE − nA)
+nA + nBmA − p (116)

where p = p′ + p′′.
It follows from (111) with (112), (114) and (116) that

DoF (h(YB |XB ,Z′))

= min(nB + nE , nA)mA + (nB + nE − nA)
+nA − n2

B

−min(nA, nE)mA − (nE − nA)
+nA − p′′. (117)

Finally, by adding (110) and (117), we have (103).

C. Gap Between DoF (CS) and DoF (C ′
S)

To compare DoF (CS) shown in (53) and DoF (C ′
S)

shown in (103), one can verify that either if |ρ| = 1 and
there is no additional constraint on U as in Theorem 2,
or if |ρ| < 1 and there are additional constraints on U as
in Corollary 2, then DoF (CS)−DoF (C ′

S) = (nA + nE −
nB)

+nB − nAnB − nEnB + n2
B = 0 for allnE ≥ 0 subject to

nA ≥ nB≥1. But for Corollary 1, DoF (CS)−DoF (C ′
S)=1.
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X. USING PUBLIC PILOTS AND RANDOM SYMBOLS

In this section we consider the situation where the first nA

columns of XA and the first nB columns of XB are nonsingular
and publicly known. Equivalently, we haveXA = [XA,a,XA,b]
andXB = [XB,a,XB,b]whereXA,a andXB,a are nonsingular
constant matrices but XA,b and XB,b are random matrices
consisting of i.i.d. CN (0, P ) entries. We still assume that the
power of each entry of XA and XB is P (unless mentioned
otherwise later regarding (146)). We will show the following
theorem:

Theorem 3: By embedding nonsingular public pilots in the
transmissions from Alice and Bob during GCP, there is no loss
of DoF of secret key capacity from that shown in (7) of Theorem
1.

Proof: The proof consists of the following Sections X-A1,
X-A2, X-A3 and X-A4.

1) Analysis of h(X|Y): Notice that (13) and (14) still hold.
But unlike (15), we now have

DoF (h(XA)) = nA(mA − nA). (118)

It also follows from (16) where the expectation should be now
treated as over the random parts of XA that

DoF (h(YB |XA)) = nAnB . (119)

But unlike (27), DoF (h(YB)) is shown next. Let YB =
[YB,a,YB,b] where YB,a is the first nA columns of YB , and
YB,b is the lastmA − nA columns ofYB . Correspondingly, we
have YB,a = HB,AXA,a +WB,a and YB,b = HB,AXA,b +
WB,b. It follows that, noticing rank(HB,A) = min(nA, nB),

DoF (h(YB)) = DoF (h(YB,a)) +DoF (h(YB,b|YB,a))

= nAnB +min(nA, nB)(mA − nA) (120)

which differs from (27). Therefore, it follows from (14), (118),
(119) and (120) that

DoF (h(XA|YB)) = (nA −min(nA, nB))(mA − nA)
(121)

which differs from (29). The analysis of (30) is still valid here.
So, it follows from (13), (121) and (30) that

DoF (h(X|Y)) = (nA −min(nA, nB))(mA − nA)

+ nAnB(1− δ|ρ|−1) (122)

which differs from (31).
2) Analysis of h(X|Z): For the first term in (32), which is

similar to (121), we have

DoF (h(XA|YE,A)) = (nA −min(nA, nE))(mA − nA)
(123)

which differs from (36). For the second term in (32), we now
refer to (37). Similar to (120), we have

DoF (h(YE,B)) = nEnB +min(nB , nE)(mB − nB)
(124)

which differs from (38), and

DoF (h(YA,YE,B)) = (nA + nE)nB

+min(nB , nA + nE)(mB − nB) (125)

which differs from (39). Therefore, (37) implies

DoF (h(YA|YE,B)) = nAnB

+min(nA, (nB − nE)
+)(mB − nB) (126)

which differs from (41). Finally, (32), (123) and (126) imply

DoF (h(X|Z)) = (nA −min(nA, nE))(mA − nA) + nAnB

+min(nA, (nB − nE)
+)(mB − nB)

(127)

which differs from (42).
3) Analysis of h(X|Y,Z): We now refer to the first term in

(43). Similar to (123), we have

DoF (h(XA|YB ,YE,A))

= (nA −min(nA, nE + nB))(mA − nA) (128)

which differs from (47). The DoF of the second term in (43) is
given by (30). Therefore, we have

DoF (h(X|Y,Z)) = nAnB(1− δ|ρ|−1)

+ (nA −min(nA, nE + nB))(mA − nA) (129)

which differs from (48).
4) DoF of CS: It follows from (122), (127) and (129) that

DoF (CA) = DoF (X|Z)−DoF (X|Y)

= (min(nA, nB)−min(nA, nE))(mA − nA)

+ min(nA, (nB − nE)
+)(mB − nB) + nAnBδ|ρ|−1,

(130)

DoF (CZ) = DoF (X|Z)−DoF (X|Y,Z)

= (min(nA, nE + nB)−min(nA, nE))(mA − nA)

+ min(nA, (nB − nE)
+)(mB − nB) + nAnBδ|ρ|−1.

(131)

We see that if nA ≤ nB , thenDoF (CZ) = DoF (CA). Further-
more, (131) can be rewritten as

DoF (CZ) = min(nB , (nA − nE)
+)(mA − nA)

+ min(nA, (nB − nE)
+)(mB − nB) + nAnBδ|ρ|−1

(132)

which is invariant to the exchange of “A” and “B”. So we have
DoF (CS) = DoF (CZ) = max(DoF (CA), DoF (CB)).

Referring to Theorem 1 or (7), one can verify that

bA,B−nAnB=

{
0, nE ≥ nA,

−nA(nA − nE), nE < nA ≤ nB + nE ,
−nAnB , nA > nB + nE

= − nA min(nB , (nA − nE)
+) (133)

and similarly bB,A − nAnB = −nB min(nA, (nB − nE)
+).

Then it follows that (132) is identical to (7). �

XI. ANALYSIS OF [5]

In [5], Alice has nA > 1 antennas and Bob has one. For
each channel coherent period, there are multiple channel prob-
ing sessions. In the k-th session, Alice selects the ik-th an-
tenna randomly and sends a sequence of random symbols√
Pak,l with 1 ≤ l ≤ mA to Bob over a subcarrier, and Bob

in return sends a public pilot
√
P to the ik-th antenna of

Alice. Here 1 ≤ k ≤ K with K ≥ nA. The signals received
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by Bob, Alice and Eve during the k-th session can be writ-
ten as yB,k,l =

√
Phikak,l + wB,k,l, yA,k =

√
Phik + wA,k,

yE,A,k,l =
√
PgA,ikak,l +wE,A,k,l and yE,B,k =

√
PgB +

wE,B,k. Here gA,ik is the channel vector from the ik-th antenna
of Alice to Eve, and gB is the channel vector from Bob to
Eve. The meanings of other notations are obvious. We will
assume that all random symbols {ak,l}, the complex scalars
of all channel gains and all complex noise elements are i.i.d.
CN (0, 1).

The data sets available at Alice, Bob and Eve (for
each subcarrier and each coherent period) are respec-
tively X ′′ = {ak,l, yA,k, ∀(k, l)}, Y′′ = {yB,k,l, ∀(k, l)}, and
Z′′ = {yE,A,k,l,yE,B,k, ∀(k, l)}. It is easy to verify that
DoF (h(Y′′|X ′′)) = 0 and hence DoF (h(Y′′|X ,′′ Z′′)) = 0.
Then the secret key capacity C ′′

S based on the above model
satisfies

DoF (C ′′
S) = DoF (h(Y′′|Z′′)). (134)

We know

h(Y′′|Z′′) = h(yB,k,l, ∀(k, l)|yE,A,k,l,yE,B,k, ∀(k, l))
= h(yB,k,l, ∀(k, l)|yE,A,k,l, ∀(k, l)). (135)

Let A = {α1, . . . , αnA
} consist of (any) nA elements from

{ak,l, ∀(k, l)} that are transmitted from nA distinct antennas of
Alice (i.e., antenna 1 to antenna nA), and Ā consist of all other
elements from {ak,l, ∀(k, l)}. Here we assume that K is large
enough so that every antenna of Alice has been chosen at least
once. Also let B consist of the entries from {yB,k,l, ∀(k, l)}
corresponding to A, and B̄ consist of all other entries from
{yB,k,l, ∀(k, l)}. It follows that

h(Y′′|Z′′)=h(B|yE,A,k,l, ∀(k, l)) + h(B̄|B,yE,A,k,l, ∀(k, l)).
(136)

Note that at high power P , B ≈ {√Pα1h1, . . . ,
√
PαnA

hnA
}

where {h1, . . . , hnA
} are independent of yE,A,k,l, ∀(k, l).

Hence

DoF (h(B|yE,A,k,l, ∀(k, l))) = nA. (137)

Also at high power, yE,A,k,l ≈
√
PgA,k,lak,l, and every en-

try of B̄ has a form approximately equal to
√
Phikak,l =√

Phikαik
ak,l

αik

. Note that
√
Phikαik is among the entries in B,

and ak,l

αik

is approximately the ratio of one element in yE,A,k,l ≈√
PgA,k,lak,l over a corresponding element in yE,A,k′,l′ ≈√
PgA,k′,l′ak′,l′ where ak′,l′ = αik . So, we have

DoF (h(B̄|B,yE,A,k,l, ∀(k, l))) = 0. (138)

Therefore, for all nE ≥ 1,

DoF (C ′′
S) = DoF (h(Y′′|Z′′)) = nA. (139)

This result says that in terms of DoF of secret key capacity, the
channel probing scheme proposed in [5] has the same perfor-
mance as the conventional scheme using public pilots from both
Alice and Bob. The random selection of antennas at Alice adds
some computational complexity for Eve but does not increase
the DoF of secret key capacity.

In the next section, we show a special form of the proposed
GCP and GPP, which has a far more superior DoF of secret
key capacity. Provided nE < nA, this special form requires no

channel reciprocity but has an increasing DoF of secret key
capacity as the number of transmissions per coherence period
increases.

XII. FURTHER DISCUSSIONS

In this section, we discuss a special case of the proposed
GCP and GPP, and reveal additional insights into Theorems 1, 2
and 3. We will also provide some remarks on potential applica-
tions of GCP and GPP.

A. GCP and GPP With mA > nA and mB = 0

We now consider the case where there is no channel reci-
procity to exploit. We also let GCP involve only the transmis-
sion from Alice to Bob, and write XA = [XA,γ ,XA,τ ] where
XA,γ has the dimension nA × nA and XA,τ has the dimension
nA × (mA − nA). (We will see thatXA,γ can be public without
affecting the DoF of a desired secrecy.) Then the signals received
by Bob and Eve can be written as

YB = [YB,γ ,YB,τ ], (140)

YE,A = [YE,A,γ ,YE,A,τ ], (141)

where YB,i = HB,AXA,i +WB,i and YE,A,i = GAXA,i +
WE,A,i with i = γ, τ . Here we choose the notations of “γ and
τ” to be consistent with the discussions in Section VII-C.

For GPP, we let Bob transmit via a public channel Y′
B =

[YB,γ ,Y
′
B,τ ]withY′

B,τ = YB,τ +Qτ andQτ being annB ×
(mA − nA) matrix of random symbols of secret information.
This is a simplified iSAT from that shown before Theorem 2.

B. Secrecy of Qτ Against Eve

To understand the (most conservative) secrecy of the above
scheme, we assume that Eve knows

Zs
.
= {HB,A,GA, ȲE,A,γ , ȲE,A,τ , ȲB,γ , Ȳ

′
B,τ}. (142)

Here ȲE,A,γ , ȲE,A,τ , ȲB,γ and Ȳ′
B,τ are the noiseless versions

of YE,A,γ , YE,A,τ , YB,γ and Y′
B,τ . Namely, ȲE,A,γ =

GAXA,γ , ȲE,A,τ = GAXA,τ , ȲB,γ = HB,AXA,γ and
Ȳ′

B,τ = HB,AXA,τ +Qτ .
We are interested in the secrecy measured by

DoF (h(Qτ |Zs)). Since XA,γ is independent of XA,τ ,
we see that ȲE,A,γ and ȲB,γ are independent of Qτ given
HB,A and GA. But the relationship between ȲE,A,τ , Ȳ′

B,τ
and Qτ is governed by

YE
.
=

[
ȲE,A,τ

Ȳ′
B,τ

]
=

[
GA 0
HB,A InB

] [
XA,τ

Qτ

]
(143)

where both XA,τ and Qτ are unknown to Eve.
Theorem 4: Let XA,τ and Qτ consist of i.i.d. CN (0, P )

elements. The necessary and sufficient condition for
DoF (h(Qτ |Zs)) = ξ(mA − nA) with a positive integer
ξ > 0 (relative to P ) is that row(HB,A) �⊂ row(GA) or
equivalently null(GA) �⊂ null(HB,A).

Proof: If row(HB,A) ⊂ row(GA), then there is a matrix T
such that HB,A = TGA and hence Qτ = Ȳ′

B,τ −TȲE,A,τ .
In this case, DoF (h(Qτ |Zs)) = 0, i.e., ξ = 0. If null(GA) ⊂
null(HB,A), ȲE,A,τ yields X̂A,τ

.
= G†

AȲE,A,τ such that
XA,τ = X̂A,τ +NGXa,τ where NH

GNG = I, range(NG) =
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null(GA) and Xa,τ is free. And in this case Ȳ′
B,τ =

HB,AX̂A,τ +Qτ and hence DoF (h(Qτ |Zs)) = 0.
If row(HB,A) �⊂ row(GA), there is a matrix TE such that

TEYE =

[
GA 0nE×na

0nE×nb

0na×nA
Ina

Tb

Hb,A 0nb×na
Inb

][
XA,τ

Qτ,a

Qτ,b

]
(144)

where na + nb = nB , the nb rows of Hb,A are a sub-
set of n′

b independent rows from HB,A, no row of Hb,A

belongs to row(GA), nb ≤ n′
b ≤ nB , and [QT

τ,a,Q
T
τ,b] =

(PQQτ )
T with PQ being a permutation matrix. Here

we see that Qτ,a +TbQτ,b is exposed but Qτ,b is still
protected. More specifically, conditional on Zs, XA,τ =

G†
AYE,T,1 +NGXA,G where YE,T,1 is the first nE rows of

TEYE , range(NG) = null(GA), NH
GNG = I and XA,G =

NH
GXA,τ . Note that XA,G is not observable from YE,T,1.

Furthermore, given the last nb rows of TEYE , each
of the mA − nA independent columns of Qτ,b has the
PDF CN (∗, PHb,ANGN

H
GHH

b,A) where rank(Hb,ANG) =
nb. Also note that the middle na rows of TEYE are in-
dependent of XA,τ and Qτ,b. Hence, DoF (h(Qτ |Zs)) =
DoF (h(Qτ,b|Zs)) = nb(mA − nA). (Note that the singularity
in h(Qτ |Zs) caused by a known entry in Qτ does not affect
DoF (h(Qτ |Zs)) relative to power P . This singularity would
disappear if the noise in Y′

B,τ is considered.) �
Next we assume that GA and HB,A consist of elements that

are realizations of i.i.d. CN (0, 1) random variables. We will use
the rank conditions that are met with probability one.

Corollary 3: With probability one,

DoF (h(Qτ |Zs)) = min(nB , (nA − nE)
+)(mA − nA)

(145)
which equals the first term in (1) or equivalently aA,B + bA,B −
nAnB in (7).

Proof: If nE ≥ nA, then row(HB,A) ⊂ row(GA) = CnA

with probability one, and hence DoF (h(Qτ |Zs)) = 0. If nA >

nE and nB ≤ nA − nE , then
[

GA

HB,A

]
is a square or wide matrix.

In this case, with probability one, no row of HB,A belongs
to row(GA) and hence DoF (h(Qτ |Zs)) = nB(mA − nA).
If nA > nE and nB > nA − nE , then with probability one,
there is a matrix TE such that (144) holds where na = nE +
nB − nA, nb = nA − nE , and Hb,A has the rank nb and con-
tains no row that belongs to row(GA), and none of nA −
nE independent null vectors of GA belongs to null(HB,A).
In this case, DoF (h(Qτ |Zs)) = DoF (h(Qτ,b|Zs)) = (nA −
nE)(mA − nA). �

C. Estimation of Qτ at Alice

Given XA,γ and YB,γ = HB,AXA,γ +WB,γ , Alice can
find an estimate of HB,A. In fact, if XA,γ is public, Bob could
also estimate HB,A and then send HB,A along with Y′

B,τ .
Theorem 4 and Corollary 3 assume that Eve knows HB,A.

With knowledge of XA,τ , Y′
B,τ and an estimate ĤB,A of

HB,A, Alice can compute

Q̂τ = Y′
B,τ − ĤB,AXA,τ ≈ Qτ +WB,τ . (146)

Fig. 2. Wireline channels where GCP and GPP could be applied
if range(HT

B,A) �⊂ range(GT
A) with HB,A = H3diag(1,H2)H1 and

GA = H2H1. Here three strongly coupled wires originated from Alice traverse
separately over a wide unsecured field while two of them are wiretapped by Eve
and two of them are eventually connected to Bob. A randomized H1 could be
artificially generated by Alice even if H2 and H3 become selection matrices
due to good insulation between wires.

where the approximation holds if the error in ĤB,A is negligible
due to an extra large power in XA,γ . We see that (146) is equiva-
lent to a standard additive white Gaussian noise (AWGN) chan-
nel with input Qτ and output Q̂τ . Bob can apply a conventional
method to encode secret information into Qτ to allow Alice to
detect the secret information reliably. This secret information
can be used as a secret key.

If the public channel used for GPP is replaced by a conven-
tional wireless channel (such as the reverse channel of HB,A

in the case of no other available channel between Alice and
Bob), the estimate and detection problem at Alice can be handled
with no major technical hurdles. The only difference would be
additional noise caused in the transmission from Bob to Alice.

D. Applications to Wireline Channels

Theorem 4 also suggests a feasibility of applying GCP and
GPP for SKG from wireline channels. We see that the crucial
condition for a desired secrecy DoF is that the row space of
the channel HB,A from Alice to Bob does not belong the row
space of the channel GA from Alice to Eve. To ensure that such
a condition is met in wireline setting (such as twisted copper
wires), one could construct a network where the observable
channels by Bob are not a subset of the observable channels
by Eve. For example, see Fig. 2.

E. Applications to mmW Channels

A large number of transmit antennas (a largenA) is feasible for
millimeter-wave (mmW) systems. But for mmW applications,
there are typically strong line-of-sight paths which could destroy
the sufficient and necessary condition required on the channel
matrices as shown in Theorem 4. Further research in this direc-
tion is required. One way to help to meet the required condition
could be the use of artificial scatterers (or “electromagnetic
camouflage”) around Bob during GCP.

F. Diversifying the Channels for GCP and GPP

Two very different channels can be used for GCP and GPP
respectively. The chance for Eve to have the full accesses to both
channels could be very small if Alice and Bob have multiple
channels between them to choose from. For example, if GCP
is based on a wireless MIMO channel and GPP is based on a
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wireline channel, it would take a very sophisticated Eve to have
a high quality access to both.

XIII. CONCLUSION

This work was in part inspired by those shown in [4] and [5]
although our analysis shows that in terms of degree of freedom
(DoF) of secret key capacity (SKC), none of the prior works
achieves what the authors intended to achieve. This paper has
presented a generalized channel probing (GCP) method and
a generalized pre-processing (GPP) method for SKG from a
MIMO channel with or without reciprocity. It is shown that
the SKC-DoF of GCP is given by (1) and GPP does not result
in any loss of SKC-DoF unless additional constraints are used
for reduced computational complexity. It is also shown that by
embedding public pilots in the transmissions during GCP, there
is still no loss of SKC-DoF while the computational complexity
of GPP is substantially reduced. It is yet unclear whether the
public pilots affect the secondary measure of SKC. For GCP with
fully randomized transmissions, the corresponding GPP needs
to solve a non-convex computational problem. It is yet unclear
whether this problem can be solved much more efficiently
than shown in this paper. While GCP and GPP in this paper
are readily applicable to half-duplex radios where the MIMO
channel between users may or may not be reciprocal, future
research should also consider the use of full-duplex radio for
SKG. For a network of collaborative full-duplex radio nodes, a
positive reciprocity-independent SKC-DoF is available even if
Eve has an unlimited number of antennas (including the case
of Eve having more antennas than both Alice and Bob), e.g.,
see [15], [16]. How to design a good (i.e., SKC-DoF preserving)
pre-processing method for the data sets collected by two or more
full-duplex radio nodes remains an open problem.
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