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Abstract 

We test the hypothesis that superficial knowledge 
interdependence is more effective in fostering individual 
learning from collaboration than the true knowledge 
interdependence often realized by jigsaw-type collaboration 
arrangements. Based on research on group information-
processing, we argue for the benefits of distributing only 
contextual information, but not core principles between 
learners, establishing superficial knowledge interdependence. 
In a computer-supported collaborative learning environment, 
78 university students learned about stochastic urn models. 
Knowledge interdependence was established by 
systematically distributing learning materials within student 
triads, so that students either became experts for an urn 
model, establishing true knowledge interdependence, or for 
one of the embedding cover stories, establishing superficial 
knowledge interdependence. Afterwards, all triads worked on 
the same collaborative tasks, and were exposed to all models. 
Results show successful learning across conditions, but 
superior knowledge transfer in triads collaborating under 
superficial knowledge interdependence. Benefits were highest 
for low prior knowledge learners. 

Keywords: computer-supported collaborative learning; 
learning through comparison; knowledge interdependence; 
knowledge transfer 

Introduction 

In this paper, we explore different ways of distributing 

information between collaborative learners, with the goal of 

promoting the interactive construction of mathematical 

principles during learning from collaborative comparison of 

worked examples. In doing so, we address the more 

fundamental question of what characterizes optimal 

knowledge interdependence in collaborative learning, as 

assessed by measures of individual learning and transfer. 

Collaborative learning has the potential of engaging 

students in forms of interactive knowledge construction that 

yield learning outcomes beyond those within the reach of an 

individual learner (Chi, 2009). However, this requires a 

certain amount of knowledge interdependence between 

students, that is, the individual students should hold a 

certain amount of unshared (unique) knowledge, ideas, and 

perspectives. The deliberate creation of knowledge 

interdependence is an important factor in many instructional 

methods for fostering collaborative learning, with the jigsaw 

collaboration script as their prototype. In a jigsaw 

collaboration script, each learner becomes an expert for a 

specific domain before collaborating with other learners 

who have studied a different domain. To ensure fruitful 

collaboration, the distribution of expertise within groups 

typically ensures that “none of the group members has 

enough information or knowledge to solve the task alone” 

(Dillenbourg & Jermann, 2007, p. 292), establishing true 

knowledge interdependence. 

In fact, differences in prior knowledge and perspectives 

can lead to fruitful knowledge co-construction, in which 

ideas are critically evaluated, knowledge is elaborated and 

restructured, and more abstract representations are derived 

(Andriessen, Baker, & Suthers, 2003; Schwartz, 1995). 

When learners integrate and transform their complementary 

knowledge resources, new knowledge can be created that no 

individual learner would have been capable of constructing 

(Deiglmayr & Spada, 2011). On the other hand, research on 

group information processing shows that much of students` 

unshared knowledge remains unshared in real group 

discussions. For example, Buchs, Butera, and Mugny (2004) 

showed that students studying with a jigsaw collaboration 

script learned substantially less about their partner’s domain 

of expertise than about their own, even though they were 

instructed to teach one another during a face-to-face 

learning phase. Deiglmayr and Spada (2011) showed that 

students had severe difficulties integrating interdependent 

information that was distributed between them. 

Educators face the challenge of creating knowledge 

interdependence in a way that ensures that learners’ 

discussions, and the cognitive activities involved, are 

focused on the most relevant learning content. Establishing 

true knowledge interdependence, as in classical jigsaw-type 

collaboration scripts, may not always be the optimal way to 

achieve this goal. Rather, we argue that superficial 

knowledge interdependence is often the better solution. 

Superficial knowledge interdependence denotes that core 

structures, such as domain principles and important 

concepts, remain shared between learners, while only 

contextual information, such as illustrative examples or 

application contexts, is distributed between learners. The 

fact that all relevant structural information is given to all 

students from the beginning maximizes the chance that each 

learner becomes familiar with the relevant principles via 

constructive learning processes, while the distributed 
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context information still creates sufficient interdependence 

for fostering truly interactive knowledge construction (Chi, 

2009). In this paper, we test this “shared structure, 

distributed context”-hypothesis in a schema-abstraction 

learning setting (learning by collaborative comparison), with 

a learning domain that allows for a straightforward 

distinction between structure and context (word problems 

instantiating mathematical principles within different 

application contexts). 

Learning by collaborative comparison 

Comparing and contrasting worked examples has proven an 

efficient way of fostering learning and transfer (for recent 

reviews see Alfieri, Nokes, & Schunn, in press, and Rittle-

Johnson & Star, 2012). According to this approach at least 

two carefully constructed worked examples, which are 

instantiation of the to-be-learned principle or schema, are 

presented simultaneously in space and time. Learners are 

prompted to compare and contrast the examples in order to 

identify commonalities and differences (e.g., Gentner, 

Loewenstein & Thompson, 2003; Schalk, Saalbach, & 

Stern, 2011). These activities require learners to map and 

structurally align aspects of the worked examples, which 

“leads to learning via abstraction, rerepresentation, 

inference-projection, and difference-detection” (Gentner, 

2010, p. 753). These are higher-order learning processes in 

which learners need to focus on deep, structural information 

rather than on contextual features, and to elaborate the to-

be-learnt principles. In our collaborative comparison script, 

students begin with slightly different sets of examples from 

which they have to generate joint explanations of principles. 

This presumably fosters principle-based comparisons and 

elaboration via processes of grounding (Andriessen et al., 

2003; Schwartz, 1995) and knowledge co-construction (Chi, 

2009). Because the to-be-learnt principles (structural 

information) are embedded within different cover stories 

(contextual information), collaborative comparison as an 

instructional method allows to design well-controlled tests 

of the “shared structure, distributed context”-hypothesis.  

The domain: Learning to reason with probability 

The relevant principles that students could learn in our 

experiment were urn models. These models serve to 

describe the probability of a series of random events (i.e., 

multilevel random experiments) in basic probability theory 

and allow for differentiating precisely between structure 

(urn models and the principles underlying them) and context 

(application contexts in the form of story problems).  

A sound understanding of basic probability theory is a 

fundamental precondition for acquiring the ability to solve 

problems in statistics and, as such, is required in many 

professions and academic disciplines. High quality teaching 

seems to be particularly important as reasoning about 

probabilities does not come naturally to most people, and 

biases and misconceptions are abundant (Kahneman, Slovic, 

& Tversky, 1982). Basic principles of probability theory and 

stochastics are introduced quite early in high school 

mathematics. In Switzerland, for example, the principles 

governing multilevel random events (the learning domain 

from which our learning materials were taken) is introduced 

as early as in eighth grade. Typical problems are, for 

example, finding the probability of getting twelve points 

when throwing two dice, or finding the likelihood of 

guessing the right combination of numbers in a lotto game. 

The ultimate goal is that mathematical/statistical knowledge 

acquired in school will be applied outside the classroom and 

in students’ later work; that is, that transfer occurs (Singley 

& Anderson, 1989). However, transfer does not come about 

naturally even for these basic probability theory principles, 

and even university students have difficulties with basic 

stochastic concepts (Gal, 2002).  

The present research 

In our experiment, university students had the chance to 

refresh and deepen their knowledge about basic probability 

theory, specifically, their knowledge about multilevel 

random events. The most important conceptual knowledge 

learners need to acquire when learning about multilevel 

random events is the ability to differentiate between four 

different urn models, in which random events are modeled 

as balls being drawn from an urn.  

We combined learning through collaboration with 

learning triggered by comparing and contrasting worked 

examples in a collaborative comparison script. The script 

was modeled after a prototypal jigsaw script with an 

individual and a collaborative learning phase, implemented 

within a computer supported collaborative learning (CSCL) 

environment. Learning materials consisted of worked 

examples, which embedded the to-be-learned urn models in 

different cover stories. We varied whether, prior to 

collaboration, students became experts for one urn model 

(MODEL experts: true knowledge interdependence) or for 

one cover story (STORY experts: superficial knowledge 

interdependence). This setting allowed us to test our 

hypothesis that superficial knowledge interdependence 

would be more effective than true knowledge 

interdependence in fostering students` learning. 

Method 

Participants 

Participants were 87 students of universities in Zurich 

(Switzerland), majoring in a wide range of subjects 

(students of mathematics or statistics were excluded). All 

participants spoke German or Swiss German as a native 

language. They were paid for participation. Participants 

were randomly assigned to triads and conditions. We 

excluded three triads from analysis because at least one of 

their members did not pass the threshold of four out of six 

correct answers in a basic prior knowledge test. This test 

assessed basic skills necessary for learning about multilevel 

random events (e.g. finding the likelihood of single random 

events in story problems; adding and multiplying fractions), 

or because they did not follow instructions. These exclusion 
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criteria left a total of 78 participants (42 female, 33 male) in 

26 triads. Their age ranged from 18 to 36 years (M = 24.4, 

SD = 4.0). 

Materials 

Four urn models from probability theory (specifically, 

multilevel random events) were the core learning content of 

our learning environment. These four models result from 

combinations of two principles: relevance of order (the 

order in which balls are drawn from an urn is relevant vs. 

irrelevant) and replacement (the balls are drawn with 

replacement vs. without replacement). We will refer to these 

four models as Model 1 (order relevant, without 

replacement), Model 2 (order relevant, with replacement), 

Model 3 (order irrelevant, without replacement), and Model 

4 (order irrelevant, with replacement). Story problems 

exemplified the four urn models by embedding them in 

simple cover stories (see Table 1 for examples). We used 

three different story problems, adapted with modifications 

from Berthold and Renkl (2009). In the remainder of this 

paper, these stories will be referred to as Story 1 (random 

events = the distribution of bicycle helmets among 

participants in a biking course), Story 2 (random events = 

ranking results in a competition among equally capable ski-

jumpers), and Story 3 (random events = the drawing of 

unlabeled gas bottles from cupboards in a chemist`s lab). In 

the learning materials, we used nine story problems that 

result from crossing Models 1-3 with Stories 1-3. They were 

presented in the form of worked examples, that is, together 

with an arithmetic solution approach and a final numerical 

solution (as in Table 1). The three problems resulting from 

crossing Model 4 with Stories 1-3 were used as transfer 

tasks in the post test. All materials were presented within a 

computer-based learning environment. 

Measures and Scoring 

Pretest In addition to the six basic knowledge questions 

used for screening participants (see Participants), the pretest 

contained four story problems assessing learners’ prior 

knowledge about Models 1-4. The cover stories differed 

from those used in the learning phase. For each problem, 

one point could be obtained for generating an equation that 

corresponded to the model underlying the story problem. 

 

Posttest The posttest had three sections. Within each 

section, the order of tasks was randomized. For each task, 

one point could be obtained for generating an equation that 

corresponded to the correct model. In the first section, three 

familiar tasks represented Models 1-3, each embedded in 

one of the Stories 1-3 that students already knew from the 

learning environment, but with new numerical values. In the 

second section, six direct application tasks embedded 

Models 1-3 in novel cover stories (two tasks for each 

model). The third section comprised the three tasks that 

result from crossing Model 4 with Stories 1-3. These Model 

4 transfer tasks were included to measure transfer of the 

principles underlying Models 1-3: Since the four urn models 

result from crossing the principles relevance of order 

(relevant / irrelevant) and replacement (with / without), the 

fourth model can be derived from the other three. Students 

were told that the transfer tasks constituted a new type of 

model, but that they would be able to solve them by 

combining what they had learned during the learning phase. 

Procedure 

Students came to our lab in groups of up to 18 participants. 

After a brief introduction, they were randomly assigned to 

computer work stations. Each student sat in his or her own 

cubicle, so that there was no face-to-face contact possible 

between learners. Students did not know with whom they 

Table 1: Three worked examples from the learning materials (translated from the original language, German) 

exemplifying the three models and the three cover stories used in the learning phases 

 

Model 1, Story 1 Model 2, Story 2 Model 3, Story 3 

You and your friend participate in a 

two day mountain bike course. Each 

day, the instructor brings five bicycle 

helmets in five different colors which 

are randomly distributed among the 

course participants in the morning, and 

collected again in the evening. On both 

days, you are the first to receive a 

helmet, and your friend is the second. 

What is the probability for you to get 

the red helmet on the first day and the 

yellow helmet on the second day? 

The four ski jumpers Adam, Beat, 

Christoph, and Daniel test a newly 

build ski-jumping hill today. The four 

ski jumpers have all performed equally 

well on previous competitions, thus, it 

only depends on random factors (e.g., 

wind regime) which of them will jump 

the greatest distance. There are two 

rounds of jumps. What is the 

probability that Adam will be on the 

first rank and Daniel on the second 

rank after the first round of jumps? 

A chemist stores noble gases in two 

safes. There are the same three noble 

gases (argon, krypton, and xenon), in 

three identical single bottles, in both 

safes. Unfortunately, her colleague 

forgot to label the bottles. For her 

experiments, the chemist needs two 

different gases. The chemist takes one 

bottle out of each safe. What is the 

probability for her to obtain one bottle 

of argon and one of xenon? 

Approach Solution Approach Solution Approach Solution 
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were collaborating, and were logged into the system with an 

anonymous, gender-neutral nickname. After arriving at their 

workstations, students filled in a questionnaire on 

demographic variables and worked on the pretest 

individually. Afterwards, and before starting the learning 

phase, students received an introducing to the chat tool, and 

the three students who had been assigned to the same triad 

engaged in a brief warming-up chat session. The learning 

phase was segmented into an individual learning phase 

followed by a collaborative learning phase. Table 2 gives an 

overview of the worked examples presented in both phases, 

along with the self-explanation prompts provided 

(abbreviated for the individual learning phase). 

 

The experimental variation was established in the individual 

learning phase, in which each learner studied three worked 

examples that were presented side-by-side on one screen. 

Learners were prompted to compare the examples and to list 

the most important similarities and the most important 

differences. Each member of a triad was assigned a different 

set of examples, so that, among them, the three learners 

studied all nine examples that result from crossing Models 

1-3 with Stories 1-3. In the MODEL-experts condition, each 

triad member became an expert for a different urn model 

(true knowledge interdependence), whereas in the STORY-

experts condition, each triad member became an expert for a 

different cover story (superficial knowledge 

interdependence).  

In the collaborative learning phase, materials and 

instructions were identical for all triads, regardless of 

experimental condition. Three sets of worked examples, 

corresponding to Models 1-3, were presented on three 

consecutive screens (see Table 2). Thus, each and every 

learner was exposed to all nine worked examples during the 

collaborative learning phase. The triads compared and 

contrasted the worked examples and generated collaborative 

self-explanations. For each set of worked examples they 

were prompted to focus on one specific feature of the urn 

model being exemplified (see Table 2 for details). Triads 

used the chat tool in order to discuss their answer. Once 

group members had agreed on a joint solution, they went on 

to the next screen. After the collaborative learning phase, 

students worked on the posttest individually. All in all, the 

experiment took about 100 minutes. 

Results 

There were no relevant differences between experimental 

conditions in participants` age, final high school math grade, 

or performance on the basic knowledge test used for 

participant screening (all ts < |1.5|; all ps > .15). Further, 

conditions did not differ significantly in the proportion of 

females/males (χ
2
(df = 1) = .83; p = .36). Conditions also did 

not differ in the distribution of students who solved 0, 1, 2, 

3 or 4 of the pretest Models 1-4 tasks correctly (χ
2
(df = 3) = 

.42; p = .94) indicating similar levels of prior knowledge 

(see Table 3 for mean proportions correct). 

 

Table 3: Mean proportions correct (and standard 

deviations) of pre- and post-test scores (total N = 78) 

 

 MODEL 

Experts 

STORY 

Experts 

whole 

sample 

pretest: 

 Models 1-4 total 

 Models 1-3 only 

 Model 4 only 

 

.55 (.24) 

.68 (.25) 

.18 (.39) 

 

.54 (.26) 

.66 (.25) 

.21 (.41) 

 

.55 (.25) 

.67 (.25) 

.19 (.39) 

posttest:    

 Models 1-3 familiar .76 (.26) .79 (.24) .78 (.25) 

 Models 1-3application .75 (.23) .76 (.19) .75 (.21) 

 Models 1-3 combined .75 (.22) .77 (.19) .76 (.20) 

 Model 4 transfer .46 (.44) .62 (.35) .54 (.40) 

 

Before analyzing the post-test scores, we calculated intra-

class correlations for the members of each triad in order to 

test for a possible hierarchical data structure. In no case was 

the ICC above .05 (all Fs < 1.1; all ps > .40), indicating only 

unsystematic agreement in post-test scores between triad 

members and, thus, a non-hierarchical data structure. 

Therefore, we calculated all further analyses on the level of 

individual learners (N = 78). Given that our data is made up 

by series of 0 vs. 1 (correct vs. incorrect) responses, we 

calculated generalized logit regression models (using 

SPSS`s GENLIN procedure, with a logit link function) 

rather than t-tests or ANOVAs (Jaeger, 2008). However, for 

ease of comparison, Table 3 gives the scores that students in 

Table 2: Learning materials (worked examples) for both 

experimental conditions. Worked examples are denoted by 

their combination of Model (M1-3) and Story (S1-3). 

 

 Individual learning phase 

 MODEL-experts  STORY-experts 

Learner  

 

M1S1-M1S2-M1S3 

Commonalities? 

Differences? 

M1S1-M2S1-M3S1 

Commonalities? 

Differences? 

Learner  

 

M2S1-M2S2-M2S3 

Commonalities? 

Differences? 

M1S2-M2S2-M3S2 

Commonalities? 

Differences? 

Learner 

 
 

M3S1-M3S2-M3S3 

Commonalities? 

Differences? 

M1S3-M2S3-M3S3 

Commonalities? 

Differences? 

 

 Collaborative learning phase 

Triad 

 

Screen 1: M1S1-M1S2-M1S3 

Why are the fractions multiplied rather than 

added up? 

Triad 

 

Screen 2: M2S1-M2S2-M2S3 

Why is the fractions’ denominator decreasing? 

Triad 

 

Screen 3: M3S1-M3S2-M3S3 

Why does the solution require both addition 

and multiplication? 
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the two experimental conditions obtained as mean 

proportions correct. Students in both conditions achieved 

very similar scores on the Models 1-3 familiar and the 

Models 1-3 direct application tasks. The differences 

between these two post-test sections (as within-subjects 

factor), experimental condition (as between-subjects factor), 

and their interaction were all statistically non-significant in 

a generalized logistic regression (all Wald-χ
2

(df = 1) < 2.6; all 

ps > .11). We therefore formed a combined posttest score 

(Table 3: Models 1-3 combined). 

We first looked at students` posttest performance on tasks 

representing Models 1-3, that is, the learning content we 

directly taught. Table 3 shows that students in both 

conditions showed an overall gain in their performance from 

pre- to posttest. We calculated a generalized logistic 

regression with solution rate as the dependent variable, time 

(pretest: Models 1-3 vs. posttest: Models 1-3 combined) as 

within-subjects factor, and experimental condition as 

between-subjects factors. Only the effect of time was 

significant (Wald-χ
2
(df = 1) = 6.5; p = .01). These findings 

indicate that both conditions were effective in improving the 

recognition and application of the three urn models that 

were directly taught.  

On the Model 4 transfer tasks, however, students` posttest 

performance was notably higher in the STORY-experts 

condition (Table 3). Figure 1 shows that the absolute 

solution rate shows a U-shaped distribution in the MODEL-

experts conditions, while the mode of the distribution in the 

STORY-experts condition is at the highest end of the 

distribution. This difference in distribution of scores 

between conditions is statistically significant (χ
2

(df = 3) = 

8.55; p = .04). 

To further scrutinize the differential effects on transfer in 

both conditions, we took students’ prior knowledge into 

account. We tested the effects of experimental condition, 

prior knowledge (specified as a covariate), and their 

interaction, on the number of correctly solved Model 4 

transfer tasks in a generalized logistic regression model. We 

chose the combined pretest score for Models 1-4 as the most 

reliable and most informative predictor; however, analyses 

with performance on only the items for Models 1-3 yielded 

the same pattern of results; the same was true when the 15 

students who had already mastered the Model 4 task in the 

pretest were excluded from analysis. All postulated 

predictors in the model (experimental condition, prior 

knowledge, and their interaction) were shown to 

significantly predict performance on the Model 4 transfer 

tasks (for parameter estimates see Table 4; overall model 

likelihood ratio: χ
2
(df = 3) = 39.83; p < .001). The significant 

interaction indicates that learners low in prior knowledge 

profited more in the STORY-experts condition than in the 

MODEL-experts condition: Prior knowledge showed a 

significant, positive correlation with transfer performance in 

the MODEL-experts condition (Spearman`s r = .56, p < 

.001) but a smaller, statistically non-significant correlation 

in the STORY-experts condition (Spearman`s r = .25, p = 

.13). 

 

Figure 1: Distribution of learners (by experimental 

condition) who solved 0, 1, 2, or all 3 Model 4 transfer tasks 

correctly 

Discussion 

In the present study, we aimed at testing the hypothesis that 

in collaborative learning settings superficial knowledge 

interdependence is more effective in fostering individual 

learning than true knowledge interdependence. Specifically, 

we tested whether collaborative learning supported by a 

jigsaw-type collaboration script is more effective when the 

knowledge interdependence established between students 

ensures that the to-be-learnt, structural information (in our 

case, the three urn models) is shared from the beginning, 

while only contextual information (in our case, the cover 

Table 4: Summary of effects in the generalized logit model with experimental condition, prior knowledge, and their 

interaction as predictors of students’ performance on the Model 4 transfer tasks (Nsubjects_x_trials = 234) 

 
Predictor Coefficient 

(B) 

SE Coefficient (B): 

95%-CI (Wald) 

e
B
 Wald χ

2
(df = 1) p 

Intercept -.37 .46 [-1.28; .54] .69 .64 .42 

Experimental Condition  

    MODEL-experts = 0 

    STORY-experts = 1 

-2.44 .76 [-3.94; -.95] .09 10.29 < .01 

Prior Knowledge 

(Models 1-4 pretest score) 

.41 .20 [.01; .81] 1.51 4.11 .04 

Interaction: Experimental 

Condition x Prior Knowledge 

.79 .33 [.15; 1.44] 2.21 5.76 .02 
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stories) is distributed between learners (shared structure - 

distributed context hypothesis).  

 The results partially support our hypothesis: Students in 

the STORY-experts condition (superficial knowledge 

interdependence) did profit more from our CSCL learning 

environment than students in the MODEL-experts condition 

(true knowledge interdependence), but only on the transfer 

tasks. In both conditions, students gained to a similar degree 

from pre- to post-test for the three models that had been 

trained. Since students in both conditions learned with a 

highly structured learning environment and with carefully 

constructed worked examples, this finding is reassuring. 

Still, STORY-experts outperformed MODEL-experts on the 

transfer tasks, which required them to combine the 

principles behind the three trained models in order to derive 

a solution for a fourth model that had not been introduced 

within the learning environment. Learners with low prior 

knowledge profited particularly from the superficial 

knowledge interdependence realized in the STORY-experts 

condition, that is, they were more likely to obtain a high 

score on the transfer tasks in this condition. 

We assume that these effects arise because the superficial 

knowledge interdependence realized in the STORY-experts 

condition (1) ensures that each learner becomes familiar 

with all relevant principles via constructive learning 

processes already during the preparatory individual learning 

phase, while (2) the distributed context information still 

creates sufficient interdependence for fostering truly 

interactive knowledge construction (Chi, 2009). However, 

further fine grained analyses of individual learning (e.g. 

self-explanations during individual learning phase) and of 

collaborative processes (e.g., discourse analyses of chats) 

are needed to be able to precisely identify the underlying 

cognitive and interactive processes. Analyses currently 

under way include coding the quality of students` self-

explanations, as a measure of the level of expertise they 

gained during the individual learning phase, as well as 

analyses of the patterns of contributions, both qualitatively 

and quantitatively, made within story expert and model 

expert triads. Further experiments will include additional 

test and transfer tasks in order to increase the reliability of 

the pre- and post-test measures, and will be designed to 

enable direct comparisons with purely individual 

(constructive) learning conditions. 
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