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Zero Sum Games As Distributed Cognitive Systems

Robert L.. West (rwest@hkucc.hku.hk)
Department of Psychology, University of Hong Kong, Hong Kong, PRC.

Abstract

By simulating game playing with neural networks, and by
using human subjects, it is demonstrated that the interaction
between two players in a game of Paper, Rocks and Scissors
can give rise to emergent properties that are not inherent in
the individual players.

Game theory (VonNeumann & Morgenstern, 1944)
describes how rational players should behave in a
competitive situation prescribed by rules and with payoffs
for certain results. However, to do this it is necessary to
make assumptions concerning the cognitive mechanisms
available to the players. One assumption that is frequently
made is that players have the ability to generate random
responses (i.e. to draw responses at random from a
predetermined distribution). For example, the game theory
solution for Paper, Rocks and Scissors (hence forth PRS) is
to play randomly, 1/3 paper, 1/3 rocks, and 1/3.

However, the assumption of random responses is
problematic for two reasons. The first is that people are
normally quite bad at generating random responses (see
Tune, 1964, and Wagenaar, 1972 for reviews), and the
second is that when people guess what is coming next in a
series they attempt to capitalize on sequential dependencies,
regardless if they are present or not (e.g., Anderson, 1960;
Estes, 1972; Restle, 1966; Rose & Vitz, 1966; Vitz & Todd,
1967). Given the above research, a more realistic model of
PRS play would have players trying to detect each other’s
sequential dependencies.

To model this, simple linear models (Rumelhart, Hinton,
and McClelland, 1986) were used. The networks were
designed to predict their opponent’s next move based on
previous trials, and they differed only in how many of their
opponent’s previous trials they could process. To represent
this the networks are be referred to in terms of how many
lags back they had access to (i.e. a lagl network could
remember one trial back; a lag2 network, two trials back,
etc.). PRS games were then simulated by having the
networks play against each other.

The effect of processing more lags was clear, networks
that could remember more always won in the long term.
However, as would be expected by symmetry, when the
networks were evenly matched no advantage emerged. The
next step was to find out if human PRS play was consistent
with the simulations. To do this, human subjects played PRS
against a lagl network.

The subjects were 13 volunteers from the University of
British Columbia and the University of Hong Kong. Each
subject played for approximately 20 minutes. The number of
trials varied based on each subject's playing speed. All
subjects played at least 250 trials (mean number of trials =

441). The mean of subjects’ final scores was 16.8, which
was significantly higher than zero, indicating that subjects
were able to outplay the lagl network.

PRS is an example of a zero sum, guessing game. From a
distributed cognition perspective (e.g. see Hutchins, 1994),
such games can be conceptualized as distributed systems
composed of coupled sequential dependency detection
mechanisms. The results of this study indicate that such
systems have emergent properties that benefit players who
can process more lags.
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