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Abstract

Hybrid Clock Synchronization

in

Networked Control Systems

by

Marcello Guarro

DOCTOR OF PHILOSOPHY in Computer Engineering

University of California, Santa Cruz

Professor Ricardo G. Sanfelice, Chair

Clock synchronization over networks is a nontrivial problem that has long been an impor-

tant topic in the fields of computer science and engineering as it pertains to digital networks

and distributed systems. Recently, clock synchronization has received much attention in

the study of networked control theory due to the importance of consensus on time in dis-

tributed control and estimation settings.This dissertation addresses the need for new clock

synchronization schemes with the presentation of several hybrid based approach to clock

synchronization problem.

To motivate this work, the problem of a hybrid observer, with a clock synchroniza-

tion scheme, that receives information sporadically over a network is presented. Through

an attractivity result on the convergence properties of the observer system, sufficient con-

ditions on the convergence properties of the accompanying clock synchronization scheme

demonstrate the need for clock synchronization algorithms with performance guarantees.

In one of the solutions to the problem, a distributed hybrid algorithm that syn-

chronizes the time and rate of a set of clocks connected over a network is presented. Clock

measurements of the nodes are given at aperiodic time instants and the controller at each

node uses these measurements to achieve synchronization. Due to the continuous and im-

pulsive nature of the clocks and the network, a hybrid system model to effectively capture

the dynamics of the system and proposed hybrid algorithm is introduced. Moreover, the

hybrid algorithm allows each agent to estimate the skew of its internal clock in order to

viii



allow for synchronization to a common timer rate. Sufficient conditions guaranteeing syn-

chronization of the timers, exponentially fast are provided. Numerical results illustrate

the synchronization property induced by the proposed algorithm as well as robustness to

communication noise.

Next, an innovative hybrid systems approach to the sender-receiver synchroniza-

tion of timers is presented. Via the hybrid systems framework, the traditional sender-

receiver algorithm for clock synchronization is united with an online, adaptive strategy to

achieve synchronization of the clock rates to exponentially synchronize a pair of clocks con-

nected over a network. Following the conventions of the algorithm, clock measurements

of the nodes are given at periodic time instants, and each node uses these measurements

to achieve synchronization. For this purpose, a hybrid system model of a network with

continuous and impulsive dynamics that captures the sender-receiver algorithm as a state-

feedback controller to synchronize the network clocks is introduced. Moreover, sufficient

design conditions that ensure attractivity of the synchronization set are provided with nu-

merical examples to validate the theoretical results.

Finally, a general approach and framework to modeling clock synchronization pro-

tocols using hybrid systems is presented. Using the general framework, several existing

algorithms from the literature are modeled. The models are then simulated numerically to

demonstrate the feasibility of the proposed modeling framework.
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Chapter 1

Introduction

Clock synchronization has long been a topic of great importance to the field of com-

puter science and engineering due to the temporal demands of applications operating over

networks in a distributed computing setting. In recent years, the topic has received much

attention from the controls and cyber-physical systems community due to the increased use

of networks in sensing and control applications that operate on evolving dynamical systems.

Some of these applications include, but are certainly not limited to, distributed estimation

via remote sensing, multi-agent robotics, industrial automation, and non-collocated control.

In particular, distributed control applications, such as robotic swarms, automated

manufacturing, and distributed optimization rely on precise time synchronization among

distributed agents for their operation; see [1]. For example, in the case of distributed control

and estimation over networks, the uncertainties of packet-based network communication

requires precision timestamping of sensor and actuator messages in order to synchronize

the information to the evolution of the dynamical system being controlled or estimated.

Such a scenario is impossible without the existence of a common timescale among the

non-collocated agents in the system. In fact, the lack of a shared timescale among the net-

worked agents can result in performance degradation that can destabilize the system; see [2].

Moreover, one cannot always assume that consensus on time is a given, especially when the

network associated to the distributed system is subject to perturbations such as noise, delay,

or jitter. Hence, it is essential that these networked systems utilize clock synchronization

schemes that establish and maintain a common timescale for their algorithms.

The union of communication networks in control and sensing applications has

given way to the interdisciplinary study of Networked Control Systems (NCS) that seeks

1



to address the problems that lie at the intersection of control and network theory, see [3].

One of the main set of challenges that arises in the study of NCSs, are those that relate

to the sample and delay based nature of the exchanged data. To transmit information

about a continuous time system over a discrete network, information collected by sensors

are first digitally sampled and quantized, the digital measurement is then encoded into a

data packet, then the packet is placed in a buffer before being broadcast to the network.

When the measurement packet is received by a separate node on the network, such as an

observer or controller, the packet must then be arbitrated and decoded. This process of

measurement sampling, transmission, arbitration, and decoding introduces a measurable

delay that, if left unaccounted for, can adversely affect system performance in a control

system setting, see [3]. Moreover, depending on the networking protocol, the length of the

delay can be either deterministic or time-varying.

One solution to address the issue of delay is to include the delay information via

message timestamping as noted in [3] and [4]. For the information on delays to properly

be utilized, consensus on a common timescale must exist among the distributed agents in

the networked control system. To ensure consensus on a common timescale, the system is

coupled with a clock synchronization subsystem that periodically synchronizes the clocks

to ensure their relative error is within an acceptable tolerance that is sufficient for desired

system performance. However, the design of such a clock synchronization subsystem in the

context of networked control is nontrivial as it is faced with many of the same communication

constraints faced by networked control systems. These issues and constraints include but are

not limited to: delays, sporadic communication events, and network traffic, see [5] and [6].

Moreover, if the rate by which the clocks converge in a networked control system setting is

insufficient, adverse effects on the system performance may occur.

Motivated by these challenges, this work presents new solutions to the clock syn-

chronization problem based on hybrid system designs that seeks to close the performance

gaps that exist with in the current state of the art. To illustrate the motivation, we present

two examples which are introduced in Section 1.1 and Section 1.2. The first example

demonstrates how a nondeterministic delay adversely affects a networked control system

by examining the behavior of a networked observer system that is subjected to delayed

measurements from a linear time-invariant plant. We will then present a sketch of our

proposed solution to address the delayed measurements that requires the use of a clock

synchronization scheme. The second example prevents on overview of the clock synchro-

2



Plant

ż = Az

y = Cz

Network Observer
y(tk) y(tk+1)

Dedicated Clock Synchronization Channel

Figure 1.1: Block diagram of the system.

nization problem and some of the noted challenges. In Section 1.3 we present examples on

the existing state of the art in clock synchronization and note their associated shortcomings

that further motivates the research of new hybrid-based solutions.

1.1 Motivational example: state estimation via networked

observer

Consider a continuous-time linear system, given by

ż = Az

y = Mz
(1.1)

where z ∈ Rn is the system state and y ∈ RR is the measured output. The matrices A

and M are constant and of appropriate dimensions. Now, consider a network-connected

observer designed to generate estimates ẑ of the system state z utilizing measurements y

sampled and broadcast at random times tk, k ∈ IR \ {0}, where

IR := {2i+ 1 : i ∈ N}

Moreover, the network experiences varying transmission delays: the sampled measurements

y(tk) are available only at random times tk, k ∈ Id \ {0}, where

Id := {2i : i ∈ N}

See Figure 1.1 for a block diagram representation of the system.

The measurement sampling and arrival events are described by a strictly increasing

unbounded sequence of instants {tk}∞k=0 where

0 ≤ t1 ≤ TN2

TN1 ≤ tk − tk−2 ≤ TN2 ∀k ∈ IR \ {0}

0 ≤ tk − tk−1 ≤ T d ∀k ∈ Id \ {0}

(1.2)

3



Figure 1.2: The evolution of the estimation error with respect to time. The vertical dashes
represent the jumps of ẑ according to ẑ+.

with t0 = 0. The scalars TN1 and TN2 define the minimum and maximum allowable transfer

interval (MATI), respectively, while T d is an upper bound on the transmission delay and

are such that TN2 ≥ TN1 ≥ T d > 0.

Then, the goal is to generate an estimate of the state ẑ ∈ Rn, using the measured

output from the plant in an impulsive-type Luenberger observer. The algorithm presented

by Ferrante et. al in [7] is a viable solution for the scenario where the measurement output

is aperiodic and instantaneously available. However, it is not robust to small delays when

the when the plant state grows unbounded.

To show this, consider the impulsive observer,
˙̂z=Aẑ ∀t /∈ {tk}+∞0

ẑ(t+k )=

ẑ(tk)+L(y(tk−1)−Mẑ(tk)) ∀t=tk, k ∈ Id \ {0}

ẑ(tk) ∀t=tk, k ∈ IR \ {0}

(1.3)

where L ∈ Rm×n is a gain matrix designed according to the algorithm in [7] such that the

estimation error ε := z − ẑ converges to zero.

Now, consider the scalar example from [7] given by the following system data:

A = 1, M = 1 with chosen constants T1 = T2 = 1 and L = 1− e−1 designed such that the

conditions outlined in [7] are satisfied. Then, let T d = 0.2. Simulating the observer in (1.3),

Figure 1.2 shows that the norm of the estimate error ε = z − ẑ for the given data diverges

due to the small delay introduced on the measurements.

Now suppose the measurements y(tk) are accompanied by a timestamp `t(tk).

4



Then, consider the observer from (1.3) modified such that only instantaneous measurement

arrivals are used and those that have incurred a delay during transmission are ignored by

the observer 
˙̂z = Aẑ ∀t /∈ {tk}∞0

ẑ(t+k ) =

ẑ
′(t+k ) ∀k ∈ Id

ẑ(tk) ∀k ∈ IR

(1.4)

where

ẑ′(t+k ) =

ẑ(tk)+L(y(tk−1)−Mẑ(tk)) if `t(tk−1) = tk

ẑ(tk) if `t(tk−1) 6= tk

Note that for this observer scheme, a local clock at the observer synchronized with the plant

clock is necessary for the algorithm to identify the delayed measurements. Even then, this

observer does not reconstruct the state for all scenarios.

In fact, consider the same system data as above, namely A = 1, M = 1, L = 1−e−1

with constants T1 = T2 = 1. Then, let T d = 0.2. Simulating the observer in (1.4), at times

t ∈ {tk}∞k=0 the estimate is corrected and the error decreases, but when the measurements

are delayed, then the estimate provided by the observer does not converge. Figure 1.3 shows

the behavior of the norm of the estimate error ε = z − ẑ under such a scenario.

Figure 1.3: The evolution of the estimation error with respect to real time with the
observer law that rejects delayed measurements. The vertical dashes represent the resets of
ẑ according to ẑ+ in (1.4).

The issues outlined in the aforementioned examples motivate a hybrid observer

design, with a clock synchronization scheme, that properly uses the information received

even under the scenario of measurement delays.
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As demonstrated by the preceding examples, the prime challenges to solve this

problem are given as follows:

1. Aperiodic measurement broadcast events at unknown times: the event times at which

plant measurements are sampled and broadcast to the network for the observer are

not known a priori. In addition, the time elapsed between each broadcast event time

instant is variable within a minimum and maximum allowable transfer interval.

2. Variable transmission delays: the network is treated as a non-ideal communication

medium hence, it is subject to latency delays that are also assumed to be variable.

Similar to the aperiodicity of the broadcast event times, the time-elapsed between

between measurement broadcast and arrival is not fixed nor is it known a priori.

3. De-Synchronized network clocks: due to the variability in the broadcast and arrival

times of measurements, consensus between networked agents on the system time frame

is necessary to maintain the temporal ordering of measurement sampling events. How-

ever, imperfections in the dynamics and initialization of the clocks for each agent can

lead to de-synchronization and thus a lack of consensus on event ordering.

In Chapter 3, we present our proposed solution through a formulation and analysis

of the system model using the hybrid framework in [8]. Our proposed solution considers

a modification to the impulsive observer in (1.3) that utilizes information on the incurred

measurement delay. Similar to the impulsive observer in (1.4), the output measurements

from the plant are timestamped then, by assuming the existence of synchronized clocks

at the plant and observer, the observer compares the measurement timestamp to its own

clock to retrieve the information on the incurred delay. Upon arrival of the measurement

and timestamp at the observer, the current state estimate is back propagated via state

transition matrix by the delay amount, the Luenberger observer law is applied using the

back propagated estimate and measurement then, the new estimate is forward propagated

to the current time.

We present the viability of our proposed solution through a series of results: We

first show feasibility by presenting results for the ideal case where there is no incurred delay

in the transmission of the measurements and we assume the observer clocks are synchro-

nized. We then provide results with the incurred delay under the assumption that the

clocks at the plant and observer are synchronized. Our third result relaxes the assumption
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on the synchronized clocks by providing an attractivity analysis for the case where the

clocks synchronize in finite time.

Our system formulation and, in particular, the attractivity analysis with the clocks

that are not initially synchronized, demonstrates the need for clock synchronization scheme

in a networked control system setting.

1.2 Introduction to the clock synchronization problem

In the previous example we highlighted the need for a clock synchronization scheme as it

applies to a networked control system setting. In this section, we outline the motivation for

a hybrid systems approach to clock synchronization. For many networked control system

settings, each agent in the system is fitted with its own internal hardware clock and an

instance of a software clock based on the dynamics of the hardware clock. Ideally, the ith

agent in the system would have a clock τi ∈ R≥0 such that τi(t) = t where t is the global or

real time. However, many hardware clocks utilize quartz-crystal or MEMS oscillators that

are susceptible to manufacturing imperfections and environmental factors and affect the

oscillator frequency, see [5] and [9]. Due to the observed variability in oscillator frequency,

one generally considers the continuous-time dynamics of the ith hardware clock node given

by

τ̇i = ai (1.5)

where ai ∈ R defines the clock’s drift or skew due to an imperfect oscillator. Solving the

differential equation gives the following relationship to the ideal clock or real-time reference

t

τi(t) = ait+ τi(0) (1.6)

where the initial condition τi(0) gives the offset from t. For a network of n agents, the

notion of clock synchronization can be defined as the state of the networked system such

that τi = τj for all i, j ∈ {1, 2, . . . , n}, i 6= j.

In an ideal setting with no delay and identical clock skews, synchronization between

two nodes A and B can be achieved by the following algorithm: Node A send its time to

Node B. Node B calculates its offset relative to A. Node B applies the offset correction to

its clock. For the case of non-identical clock skews, a pair of measurements from Node A

would allow Node B to calculate its relative skew aA
aB

and apply a correction accordingly.
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In a realistic setting, however, network communication between nodes are often

subjected to a variety of delays. Without loss of generality, these delays can be divided into

two types: propagation time and residence time. Propagation time represents the actual

time elapsed during message transmission between two nodes when the message is in the

network channel. The residence time defines the time elapsed between message reception

and egress of its response message, it captures all of the hardware-related delays such as

send time, access time, transmission time, reception time and receive time, see [5] and [10]

for more details. Moreover, depending on the system setting, these observed delays can

either be deterministic or stochastic in nature and are the key challenge in networked clock

synchronization. In light of this challenge, the goal of clock synchronization is to achieve

synchronization while removing or mitigating the effects of delay.

1.3 Current state of the art in clock synchronization

Many of the existing clock synchronization protocols rely on message based ex-

changes of timestamps to synchronize the clocks to a common or shared reference. The

reference based or centralized nature of these protocols requires that a common reference or

a set of references be established first in order to achieve synchronization. Therefore, many

of the existing message-based protocols implement a two-stage algorithm: the first stage

establishes the node hierarchy based on clock accuracy while the second phase synchronizes

the clocks. In the following examples, we will assume the network hierarchy is given as

an analysis of the algorithms that establish the node hierarchy is beyond the scope of this

proposal. For the clock synchronization phase, there exist three types of commonly used

message based approaches: two-way message synchronization (or sender-receiver message

synchronization), one-way message synchronization, and receiver-receiver synchronization.

1.3.1 Sender-Receiver message synchronization

The sender-receiver (or two-way) based synchronization algorithm is the most

common of the message exchange synchronization protocols due to its utilization in the

Network Time Protocol (NTP) in [11], the Precision Time Protocol (PTP) in [12] , and the

Timing-sync Protocol for Sensor Networks (TPSN) in [10].

The core algorithm upon which these protocols are based relies on the existence of

a known reference that is either injected to the system or provided by an elected agent in
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the distributed system; synchronization is then achieved through a series of chronologically

ordered and time stamped two-way message exchanges between each synchronizing node

and the designated reference. With sufficient information from the exchanged messages and

underlying assumptions on the clocks and communication delays, the relative differences in

the clock rates and offset can be estimated and applied as a correction to the clock of the

synchronizing node, see [13]. However, while the difference in the output can be determined

and implemented online, the relative clock rate is estimated through offline filtering tech-

niques (see [11]) or least-squares estimation (see [5]). Moreover, these algorithms are often

not robust to changing network topology and asymmetry in transmission times, thus many

protocols (such as NTP, PTP, and TPSN) often stipulate the following assumptions:

a) the existence of an established hierarchical structure such that each node has a des-

ignated reference;

b) fixed and symmetric transmission and residence times;

c) synchronized clock skews, i.e., ai = aj .
1

Each of the aforementioned protocols, however, utilize different strategies in re-

gards to the availability of the algorithm and the layer of implementation. For instance, the

Network Time Protocol is an “always-on” implementation that runs entirely as a system

process in the software layer. This level of implementation subjects the protocol to frequent

computational delays due to the execution of system processes that have higher priority.

These delays contribute to timing inaccuracy that renders NTP unfit for networked control

systems with fast sampling periods, see [14].

Improving upon NTP to address its concerns and meet the demands of time-

sensitive distributed system, the Precision Time Protocol utilizes a hybrid implementation

of software and hardware to improve the synchronization accuracy. The protocol utilizes

timestamping of the exchanged messages at the hardware layer to minimize the computa-

tional delays associated with software timestamps on the exchanged messages.

The Timing-sync Protocol for Sensor Networks seeks to address the scalability

issues posed by the NTP and PTP protocols by allowing the algorithm to work on an in-

1Protocols such as TPSN assume that the clock offset between any two nodes does not change during
synchronization which would imply that the clock skews are identical, see [10]. NTP assumes the existence
of closed-loop controllers at each clock to give a common skew such that errors due to resolution and skew
are minimized, see [11] and [6]. PTP assumes that the relative skews between two nodes is known or can be
estimated, see [12].
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termittent schedule. The intermittent strategy enable its use in low-energy sensor networks

with limited computational capacity at the cost of synchronization accuracy.

The mechanics of the algorithm are given as follows: consider a designated refer-

ence agent R and a synchronizing agent S, with the following dynamics

τ̇R = aR

τ̇S = aS
(1.7)

where aR = aS . At some time instances tk, k ∈ N the nodes broadcast a message with

embedded timestamp

T ik := τi(tk) = ai(tk) + τi(0) (1.8)

Assuming the sequence of time instants {tk}∞k=1 is strictly increasing and unbounded, the

two-way message synchronization algorithm is given as follows:

1. - At time t1, Node R sends a message with an embedded timestamp

TR1 = aR(t1) + τR(0)

to node S.

2. - At time t2, Node S receives the message and records the arrival time

TS2 = aS(t2) + τS(0)

3. - At time t3, Node S responds to node R with embedded timestamp

TS3 = aS(t3) + τS(0)

indicating the time of transmission.

4. - At time t4, Node R receives the message from node S and records the arrival time

TR4 = aR(t4) + τR(0)

5. - At time t5, Node R responds to node S with the timestamp TR4 embedded.

6. - At time t6, Node S has collected timestamps TR1 , TS2 , TS3 , and TR4 .
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Then at time t6, the relative offset θ := τR(0)− τS(0) is calculated as follows:

1

2

(
(TR4 −TS3 )−(TS2 −TR1 )

)
=

1

2

((
(aR(t4)+τR(0))−(aS(t3)+τS(0))

)
−
(
(aS(t2)+τS(0))−(aR(t1)+τR(0))

))
=

1

2

((
aR(t4)− aS(t3) + θ

)
−
(
aS(t2)− aR(t1)− θ

))
Since the skews are assumed to be synchronized, let aS = aR and suppose aR = 1, then

1

2

(
(TR4 −TS3 )−(TS2 −TR1 )

)
=

1

2

((
aR(t4−t3)+θ

)
−
(
aR(t2−t1)−θ

))
=

1

2

((
(t4−t3)+θ

)
−
(
(t2−t1)−θ

)) (1.9)

Now, since the propagation and residence times are assumed to be fixed and symmetric, let

d be some positive constant, then

t2 − t1 = t4 − t3 = t6 − t5 = d

Making the appropriate substitutions in (1.9),

1

2

(
(TR4 −TS3 )−(TS2 −TR1 )

)
=

1

2

((
d+ θ

)
−
(
d− θ

))
=

1

2

(
θ + θ

)
= θ

Figure 1.4: Diagram to illustrate the message exchange between the reference and synchro-
nizing nodes for the synchronization algorithm. R refers to the time frame of the reference
node while S refers to the time frame of the synchronizing node.

As noted, the success of two-way message based algorithms hinges on the given

assumptions which aren’t always necessarily guaranteed in every distributed system. In par-

ticular, it is not always the case that the propagation times will remain fixed and symmetric

especially in a wireless network with dynamic topology. Moreover, a dynamic topology poses

11



issues to the established hierarchical structure and would thus require the re-execution of

network discovery algorithms to reestablish hierarchical topology. The conjunction of a

dynamic topology and the execution of algorithms to establish the network hierarchy algo-

rithms can introduce additional delay to the clock synchronization.

1.3.2 One-way message synchronization

One-way message synchronization is the approach used by the Flooding Time

Synchronization Protocol (FTSP) [15]. This approach assumes the existence of a refer-

ence node to which all of the nodes in the network must synchronize. The reference node

periodically broadcasts timestamps, each node records its time of arrival and stores the

pair of timestamps. Each receiving node performs a least-squares minimization using the

stored timestamp pairs to calculate the relative clock skew and offset. To demonstrate how

the least-squares minimization is formulated, consider the same two nodes R and S with

dynamics as in (6.1) and timestamps as in (5.2). For a strictly increasing and unbounded

sequence of time instants {tk}∞k=1, a sample of the protocol execution is given as follows

1. At time t1, the reference node R broadcasts timestamp

TR1 = aR(t1) + τR(0)

2. At time t2 Node S receives TR1 and records its time of arrival

TS2 = aS(t2) + τS(0)

Now, if one assumes that the propagation time is fixed, then let d = t2−t1 for some positive

constant d. By rearranging TR1 , one has

t1 =
1

aR
(TR1 − τR(0)) (1.10)

substituting the expression for t1 into the equation for the propagation time, d = t2− t1, t2

can be expressed as follows

t2 =
1

aR

(
TR1 − τR(0)

)
+ d (1.11)
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then making the appropriate substitutions into TS2 , one has

TS2 = aS(t2) + τS(0)

= aS

( 1

aR
(TR1 − τR(0)) + d

)
+ τS(0)

=
aS
aR

(
TR1 − τR(0) + aRd

)
+ τS(0)

=
aS
aR
TR1 −

aS
aR
τR(0) + aRd+ τS(0)

=
aS
aR
TR1 + aRd+ τS(0)− aS

aR
τR(0)

(1.12)

By letting θ = τR(0)−τS(0) be the initial relative offset and then rearranging the expression

such that τS(0) = τR(0)− θ it can then be substituted in (1.12) to give

TS2 =
aS
aR
TR1 + aRd+ τR(0)− θ − aS

aR
τR(0)

=
aS
aR
TR1 + aRd− θ +

(
1− aS

aR

)
τR(0)

Then for any subsequent timestamp pair {TSk+1, T
R
k }, TSk+1 can be expressed as follows

TSk+1 = fSMTRk + aRd− θ + ε

where fSM := aS
aR

and ε :=
(
1− fSM

)
τR(0). The idea is to then estimate the relative clock

skew fSM and offset θ via linear regression once a sufficient number of measurement pairs

has been collected.

Note that in the estimation, the offset cannot be differentiated from the skewed

propagation delay aRd contributing an error to the offset estimation. This does not pose

an issue if the propagation delay is assumed to be small or negligible as assumed in [10].

However, if the propagation delay is variable and non-Gaussian then the least-squares es-

timation will not be able to give an accurate estimation. Moreover, if the reference node

become compromised or lost, the system must re-elect a new reference node to serve as the

system reference contributing additional delay to the synchronization.

1.3.3 Receiver-receiver synchronization

Receiver-receiver based synchronization is the scheme proposed by the authors

of [16]. Similar to the one-way messaging scheme, there exists a master node that broadcasts

a ‘ping’ message to the network. Though, instead of synchronizing to the master node, the
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receivers synchronize to a common time scale by exchanging timestamps of their ping receipt

time observations with neighboring receivers. Consider three nodes R, S1, and S2 with

dynamics as in 6.1 and timestamps as in 5.2. Then for a strictly increasing and unbounded

sequence of time instants {tk}∞k=1, the protocol operates as follows

1. At time t1, the master node R broadcasts a ping

TR1 = aR(t1) + τR(0)

2. At time t2, Node S1 receives the ping and records its time of arrival

TS1
2 = aS1(t2) + τS1(0)

3. At time t3, Node S2 receives the ping and records its time of arrival

TS2
3 = aS2(t3) + τS2(0)

4. At time t4, Node S1 broadcasts its arrival timestamp TS1
2

5. At time t5, Node S2 broadcasts its arrival timestamp TS2
3

6. At time t6, Node S2 receives timestamp TS1
2

7. At time t7, Node S1 receives timestamp TS2
3

Following the receipt of each timestamp from a neighboring node, nodes S1 and S2 perform

corrections to their respective clocks using the timestamp pair {TS1
2 , TS2

3 }. Let dij denote

the propagation time between any two nodes i and j and assume it is a fixed positive

constant. Then, by observing dRS1 = t2− t1, dRS2 = t3− t1, and that TR1 gives the transmit

time of the ping in the time reference frame of the master node, then by using the relation

t1 =
1

aR
(TR1 − τR(0))

to give

t2 =
1

aR

(
TR1 − τR(0)

)
+ dRS1

t3 =
1

aR

(
TR1 − τR(0)

)
+ dRS2
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the timestamps TS1
2 and TS2

3 can be expressed as follows

TS1
2 =

aS1

aR
TR1 + aRdRS1 + τS1(0)− aS1

aR
τR(0)

TS2
3 =

aS2

aR
TR1 + aRdRS2 + τS2(0)− aS2

aR
τR(0)

(1.13)

If the clock skews of S1 and S2 are synchronized, i.e., aR = aS , then taking the difference

in the timestamps gives

TS2
3 − T

S1
2 =

(aS1

aR
TR1 + aRdRS1 + τS1(0)− aS1

aR
τR(0)

)
−
(aS2

aR
TR1 + aRdRS2 + τS2(0)− aS2

aR
τR(0)

)
= aRdRS1 + τS1(0)− aRdRS2 − τS2(0)

= aRdRS1 − aRdRS2 + τS1(0)− τS2(0)

= aR(dRS1 − dRS2) + τS1(0)− τS2(0)

(1.14)

Now, if the propagation delay is assumed to be identical dRS1 = dRS2 or effectively zero

dRS1 = dRS2 = 0, as is assumed in the RBS protocol (see [16]), then

TS2
3 − T

S1
2 = τS1(0)− τS2(0) (1.15)

yielding the clock offset of nodes S1 and S2.

If the clock skews are not initially synchronized, observe that a second set of

timestamps will allow each node to its relative skew. Suppose the master node broadcasts

a second ping TR7 at time t7 arriving at nodes S1 and S2 at times t8 and t9, respectively.

Following the exchange of timestamps TS1
8 and TS2

9 , the relative skew rate between nodes

S1 and S2 is calculated as follows

TS1
8 −T

S1
2

TS2
9 −T

S2
3

=

(aS1
aR
TR7 + aRdRS1 + τS1(0)−aS1

aR
τR(0)

)
−
(aS1
aR
TR1 + aRdRS1 + τS1(0)− aS1

aR
τR(0)

)(aS2
aR
TR7 + aRdRS2 + τS2(0)−aS2

aR
τR(0)

)
−
(aS2
aR
TR1 + aRdRS2 + τS2(0)− aS2

aR
τR(0)

)
=

aS1
aR

(TR7 − TR1 )
aS2
aR

(TR7 − TR1 )

=
aS1

aS2

(1.16)

Alternatively, if a timestamp rather than a ping is sent by the master node, then

both the skew and offset can be estimated by performing a least-squares linear regression.

Assume the propagation delay is identical dRS1 = dRS2 or effectively zero dRS1 = dRS2 = 0,
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assume further that the master node is an ideal clock with skew aR = 1 and offset τR(0) = 0,

then equation (1.18) gives

TS2
3 −T

S1
2 =

(aS1

aR
TR1 + aRdRS1 + τS1(0)−aS1

aR
τR(0)

)
−
(aS2

aR
TR1 + aRdRS2 + τS2(0)−aS2

aR
τR(0)

)
= (aS1 − aS2)TR1 +

(
τS1(0)− τS2(0)

)
(1.17)

This can be generically extended to any subsequent timestamp triplet {TS2
k+2, T

S1
k+1, T

R
k } as

follows

TS2
k+2 − T

S1
k+1 = (aS1 − aS2)TRk +

(
τS1(0)− τS2(0)

)
(1.18)

Once a sufficient quantity of timestamp triplets the least-squares regression can be per-

formed to give the skew and offset.

Similarly to the other two message based algorithms, receiver-receiver synchro-

nization requires assumptions on the propagation delay in order to achieve synchronization

that may not necessarily exist in every scenario. It is also not robust to any losses or com-

promises to the master node and also requires a re-election of a master node resulting in

additional synchronization delays.

1.3.4 Issues with current state of the art algorithms and protocols

In the original works presented on the respective message based synchronization

schemes, the authors would provide analytical and experimental results to verify the validity

of their algorithms but would omit any analysis on their rate of convergence and robust-

ness. The survey paper [6] provides some high level analysis of current algorithms citing

qualitative advantages and disadvantages of the various message based schemes but fails

to provide any formal analytical results. The work in [13] gives results on the feasibility

of synchronization for these message based algorithms under various assumptions but does

not provide any details on convergence or robustness.

Additionally, we have outlined the following challenges associated with clock syn-

chronization:

1. Stochastic and deterministic delays: As discussed in Section 1.2, communication over

digital networks introduces a variety of delay sources that have both deterministic

and stochastic origins. The accumulation of these delays poses the greatest challenge

to synchronization since they are difficult to measure or estimate.
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2. Variable clock skews: Many of the existing algorithms assume the clock skew over the

synchronization period is relatively static. Realistically, clock skews have time-varying

characteristics due to the environmental susceptibilities of the hardware oscillators

such as swings in temperature and the corrosion of parts.

3. Network Traffic / Sporadic broadcasts: Since clock synchronization protocols are of-

ten a subsystem to larger systems communicating over the same network, it is often

subject to network traffic leading to asynchronous broadcasts of timestamps and in-

creasing the issue of delay.

4. Centralization: As has been observed in each of the message based synchronization

examples, each synchronization scheme uses a centralized algorithm. The centralized

nature of each algorithm adds additional complexity to the protocol design and poses

challenges in synchronization with a dynamic network topology.

5. Scalability: Most protocols are often designed with scalability in mind however, in

some instances different performance parameters can degrade as the size of the net-

work increases. For instance, in the case of two-way message synchronization, syn-

chronization can only occur between a sender-receiver pair of nodes at any give time,

thus for a network of n nodes with a single reference and n−1 nodes, system-wide syn-

chronization will increase by a factor of n− 1. Moreover, it can contribute significant

traffic overhead to the network. Receiver-receiver based synchronization for instance

requires O(n2) message exchanges in order to achieve synchronization, see [6].
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Chapter 2

Preliminaries

2.1 Notation

In this proposal the following notation and definitions will be used. N denotes

the set of natural numbers, i.e., N = {0, 1, 2, ..}. N>0 denotes the set of natural numbers

not including 0, i.e., N>0 = {1, 2, ..}. R denotes the set of real numbers. R≥0 denotes the

set of non-negative real numbers, i.e., R≥0 = [0,∞). Rn denotes n-dimensional Euclidean

space. Given topological spaces A and B, F : A ⇒ B denotes a set-valued map from A to

B. For a matrix A ∈ Rn×m, AT denotes the transpose of A. For a matrix A ∈ Rn×m, A∗

denotes the conjugate transpose of A. Given a vector x ∈ Rn, |x| denotes the Euclidean

norm. Given two vectors x ∈ Rn and y ∈ RR, (x, y) = [xT yT ]T. Given a matrix A ∈ Rn,

λmax(A) denotes the largest eigenvalue of A and λmin(A) denotes the smallest eigenvalue of

A. Given a matrix A ∈ Rn, |A| := max{
√
|λ| : λ ∈ eig(ATA)}. For two symmetric matrices

A ∈ Rn and B ∈ Rn, A � B means that A − B is positive definite, conversely A ≺ B

means that A − B is negative definite. Given a closed set A ⊂ Rn and closed set B ⊂ A,

the projection of A onto B is denoted by ΠB(A). Given a function f : Rn → RR, the range

of f is given by rge f := {y | ∃ x with y ∈ f(x)}. A vector of N ones is denoted 1N . The

matrix In is used to denote the identity matrix of size n× n.

2.2 Preliminaries on Hybrid Systems

In this chapter we introduce some preliminaries on hybrid systems and the frame-

work by which we model them. In addition, we provide some introductory preliminaries on
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graph theory that will be used in later chapters.

A hybrid system H in Rn is composed by the following data:

• a set C ⊂ Rn, called the flow set;

• a set-valued mapping F : Rn ⇒ Rn with C ⊂ dom F , called the flow map;

• a set D ⊂ Rn, called the jump set;

• a set-valued mapping G : Rn ⇒ Rn with D ⊂ dom G, called the jump map;

Then, a hybrid system H := (C, f,D,G) is written in its compact form is given by

H :

x ∈ C ẋ = f(x)

x ∈ D x+ ∈ G(x)
(2.1)

where x is the system state. Solutions to hybrid systems are denoted by φ and are pa-

rameterized by (t, j), where t ∈ R≥0 defines ordinary time and j ∈ N is a counter that

defines the number of jumps. A solution φ is defined by a hybrid arc on its domain dom φ

with hybrid time domain structure [4]. The domain dom φ is a hybrid time domain if

dom φ ⊂ R≥0×N and for each (T, J) ∈ dom φ, dom φ∩ ([0, T ]×{0, 1, ..., J}) is of the form⋃J
j=0([tj , tj+1]×{j}), with 0 = t0 ≤ t1 ≤ t2 ≤ tJ+1. A function φ : dom φ→ Rn is a hybrid

arc if dom φ is a hybrid time domain and if for each j ∈ N, the function t 7→ φ(t, j) is locally

absolutely continuous on the interval Ij = {t : (t, j) ∈ dom φ}. A solution φ satisfies the

system dynamics; see [4, Definition 2.6] for more details. A solution φ is said to be maxi-

mal if it cannot be extended by flow or a jump, and complete if its domain is unbounded.

The set of all maximal solutions to a hybrid system H is denoted by SH and the set of all

maximal solutions to H with initial condition belonging to a set A is denoted by SH(A). A

hybrid system is well-posed if it satisfies the hybrid basic conditions in [4, Assumption 6.5].

Definition 2.2.1. Given a hybrid system H defined on Rn, the closed set A ⊂ Rn is said

to be

• stable for H if for every ε > 0 there exists δ > 0 such that every maximal solution φ

to H with |φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈ dom φ;

• attractive for H if there exists µ > 0 such that every maximal solution φ to H with

|φ(0, 0)|A ≤ µ is complete and satisfies limt+j→∞ |φ(t, j)|A = 0;
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• asymptotically stable for H if both stable and attractive for H.

• globally exponentially stable (GES) for H if there exists positive scalars κ, α > 0 such

that every solution φ to H is such that every maximal solution φ to H is complete and

satisfies |φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A for each (t, j) ∈ dom φ.

Moreover, when inputs are present for a given linear time invariant system, one has similar

notions as long as every static solution for every input satisfies the properties in Definition

2.2.1. For details on hybrid systems, see [8].

2.3 Preliminaries on Graph Theory

Let G = (V, E , A) be a weighted directed graph (digraph) where V = {v1, v2, . . . , vn}
represents the set of n nodes, E ⊂ V × V the set of edges, and A ∈ {0, 1}n×n represents the

adjacency matrix. An edge of G is denoted by eij = (vi, vj). The elements of A are denoted

by aij where aij = 1 if eij ∈ E and aij = 0 otherwise. The in-degree and out-degree of a

node vi are defined by din(vi) =
∑n

k=1 aki and dout(vi) =
∑n

k=1 aik, respectively. The largest

and smallest in-degree of a digraph is given by d̄ = maxi∈Vd
in(vi) and d = mini∈Vd

in(vi).

The in-degree matrix is a diagonal matrix denoted D with elements given by

dij =

d
in(i) if i = j

0 if i 6= j
∀vi ∈ V

The Laplacian matrix of a digraph G, denoted by L, is defined as L = D − A and has the

property that L1n = 0. The set of nodes corresponding to the neighbors that share an edge

with node vi is denoted by N (vi) := {k ∈ V : eki ∈ E }. In the context of networks N (vi),

this represents the set of nodes for which an agent vi can communicate with.

Lemma 2.3.1. ((Olfati-Saber and Murray, 2004, Theorem 6),(Fax and Murray, 2004,

Propositions 1, 3, and 4)) For an undirected graph, L is symmetric and positive semidefinite

and each eigenvalue of L is real. For a directed graph, zero is a simple eigenvalue of L if

the directed graph is strongly connected.

Lemma 2.3.2. (Godsil and Royle (2013)) Consider an n×n symmetric matrix A = {aik}
satisfying

∑n
i=1 aik = 0 for each k ∈ {1, 2, . . . , n}. The following statements hold:
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• There exists an orthogonal matrix U such that U>AU =

0 0

0 ?

 where ? represents

any nonsingular matrix with appropriate dimensions and 0 represents any zero matrix

with appropriate dimensions.

• The matrix A has a zero eigenvalue with eigenvector 1n ∈ Rn.

Definition 2.3.3. A weighted digraph is said to be

• balanced if the in-degree matrix and out-degree matrix for every node is equal, i.e.,

din(vi) = dout(vi) for each vi ∈ V.

• complete if every pair of distinct nodes is connected by a unique edge, i.e., aik = 1 for

each i, k ∈ V, i 6= k.

• strongly connected if and only if for any two distinct nodes there exists a path of

directed edges that connects them.
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Chapter 3

A Hybrid Observer for Linear

Systems under Delayed Sporadic

Measurements

In this chapter, we present a hybrid observer for state estimation over a network

that motivates our work on algorithms for clock synchronization. To construct the problem,

we assume a networked plant and observer whereby the network provides delayed measure-

ments of the output of the plant at time instants that are not necessarily periodic. The

measurements are accompanied by timestamps provided by a clock that synchronizes with

the clock of the observer in finite time. The proposed observer, along with the plant and

communication network, are modeled by a hybrid dynamical system that has two timers,

a logic variable, and two memory states to capture the mechanisms involved in the events

associated with sampling and arrival of information, as well as the logic in the estimation

algorithm. The hybrid model also includes a generic clock synchronization scheme to cope

with a mismatch between the clocks at the plant and the observer. Convergence properties

of the estimation error of the system are shown analytically and supported by numerical

examples.
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3.1 Problem Statement

Problem 3.1.1. Given the linear time invariant system (1.1) and positive constants 0 <

T d ≤ TN1 ≤ TN2 , design a hybrid algorithm including the hybrid observer in (3.1) such that

the resulting closed-loop system H is such that ẑ(t, j)−z(t, j) converges to zero as t+j →∞.

To solve this problem, we propose the following hybrid strategy for reconstructing

the state z:

• Measurements y broadcast at times tk, k ∈ Id, are accompanied by a time-stamp

`t(tk) = tk.

• When the subsequent measurements arrive at times tk, k ∈ Im, the current state

estimate ẑ(tk) is backward propagated to ẑ(tk−1) via

ẑ(tk−1) = e−Aδk ẑ(tk)

where δk := tk − `t(tk−1) is the incurred delay.

• With the estimate ẑ(tk) retrieved, the reset law in (1.3) is applied, namely,

ẑ∗ = ẑ(tk−1) + L
(
y(tk−1)−Mẑ(tk−1)

)
= e−Aδk ẑ(tk) + L

(
y(tk−1)−Me−Aδk ẑ(tk)

)
where ẑ∗ is the value of the estimate obtained after the reset law is applied.

• The reset estimate ẑ∗(t+k−1) is then forward propagated to tk

ẑ∗(tk) = eAδk ẑ∗

Combining the above steps into a model, the proposed hybrid observer law can be summa-

rized as follows:
˙̂z = Aẑ ∀t /∈ {tk}∞0

ẑ(t+k )=

ẑ(tk) + eAδkL
(
y(tk−1)−Me−Aδk ẑ(tk)

)
∀t=tk, k ∈ Id

ẑ(tk) ∀t=tk, k ∈ Im

(3.1)

Excluding the measurement output y, the proposed strategy relies on the accessibility to

information on the delay interval δk however, such information requires that both plant and
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observer have consensus on the global time. Therefore, in addition to the presented strategy

for state estimation, the proposed system incorporates a clock synchronization scheme to

ensure consensus on the global time and maintain accessibility to the information on δk.

The design of this hybrid algorithm requires finding a proper choice of the matrix

L. To find such an L, we consider the LMI condition presented in [7] for which an algorithm

is given to solve. The hybrid algorithm proposed in this thesis also includes provisions for

a clock synchronization algorithm the clocks determining time for both the plant and the

observer.

Next, we define the hybrid model that provides the framework and solution to

Problem 3.1.1. The model is constructed such that the observer defined in (3.1) is recast

with the dynamics of the network as a hybrid system with a set-valued jump map. Moreover,

provisions are included to facilitate the inclusion of a clock synchronization strategy to

ensure proper function of the hybrid observer. To build such a model, we treated the

observer and clock synchronization strategy as individual but interconnected subsystems.

Figure 3.1 describes such a system where, Ha is the plant-observer subsystem and Hb is the

clock synchronization subsystem. With the chosen design of H, the system can be viewed

as the interconnection of two hybrid subsystems.

Ha Hb
ẑ

(ẑ,`y,`τP ) (τP , τO)

Figure 3.1: Diagram of the observer Ha and clock synchronization Hb subsystems and their
interconnection.

To model the aperiodic measurement sampling of the plant, a timer variable τN

is used. Between measurement sampling events the timer flows with dynamics given by

τ̇N = −1 and when τN = 0, the state τN is reset to a value in the interval [TN1 , TN2 ]. The

transmission delay is modeled by an additional timer τδ with dynamics τ̇δ = −q. Here

q ∈ {0, 1} is a discrete variable used to control the dynamics of τδ such that the timer

is active only following measurement broadcast events. More precisely, q = 1 denotes an

active measurement in the network and q = 0 denotes the absence of such a measurement

in the network. Thus, when τN = 0, τδ is reset to a point in the interval [0, T d] and q is

reset to 1. When τδ = 0, indicating measurement arrival, τδ is reset to −1 and q is reset
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to 0. Having the timers τN and τδ defined in this way, with the addition of q, enforces the

constraints defined in (1.2) for broadcast and arrival events.

Additionally, we let `y and `τP represent memory states that define the plant

measurement data and associated timestamp, respectively. The states τP and τO represent

the global clocks for the respective plant and observer. The state µ represents the state

variables for a clock synchronization algorithm.

Then, we define the state vector of the interconnection of the plant and the observer

system H as x := (xa, xb) ∈ Xa × Xb =: X where xa := (z, ẑ, τN , τδ, q, `y, `τP ) ∈ Xa,
xb := (τP , τO, µ) ∈ Xb with Xa := Rn×Rn× [0, TN2 ]×

(
{−1} ∪ [0, T d]

)
×{0, 1}×Rm×R≥0

and Xb := R≥0 × R≥0 ×M. The closed set M defines possible values of µ. The flow map

is given by

F (x) :=

 Fa(xa)

Fb(xb, ẑ, `y, `τP )

 ∀x ∈ C
where

Fa(xa) :=
(
Az,Aẑ, −1, −q, 0, 0, 0

)
and

Fb(xb, ẑ, `y, `τP ) :=
(
1, 1, Fs(xb, ẑ, `y, `τP )

)
with Fs governing the continuous dynamics of µ. The flow set C is defined as C := Ca ∩Cb
where Ca := Ca1 ∪ Ca2 and

Ca1 := {x ∈ X : q = 0, τδ = −1}

Ca2 := {x ∈ X : q = 1, τδ ∈ [0, T d]}

and Cb is the flow set defined by the clock synchronization algorithm. The jump map is

given by

G(x) :=

 Ga(xa, τP , τO)

Gb(ẑ, `y, `τP , xb)

 ∀x ∈ D
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where Ga is defined as

Ga(xa, τP , τO) :=



G1(xa, τP ) if x ∈ Da1 \Db

G2(xa, τO) if x ∈ Da2 \Db

xa if x ∈ Db\(Da1∪Da2)

{xa, G1(xa, τP )} if x ∈ Da1 ∩Db

{xa, G2(xa, τO)} if x ∈ Da2 ∩Db

for each x ∈ D

G1(xa, τP ) =



z

ẑ

[TN1 , TN2 ]

[0, T d]

1

Mz

τP


∀(xa, τP ) : x ∈ Da1

G2(xa, τO) =



z

ẑ + eA(τO−`τP )L
(
`y −Me−A(τO−`τP )ẑ

)
τN

−1

0

`y

`τP


∀(xa, τO) : x ∈ Da2

where

Da1 := {x ∈ X : τN = 0, q = 0}

Da2 := {x ∈ X : τδ = 0, q = 1}

In the definitions above, Gb and Db, respectively, define the jump map and jump set for the

clock synchronization algorithm. The resulting jump set is

D := Da ∪Db

where

Da := Da1 ∪Da2
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The hybrid system data above now define H as follows

H = (C,F,D,G) (3.2)

Separating the clock synchronization from the system, one has a subsystem that is comprised

only of the plant, observer, and network dynamics, denoted by

Ha = (Ca, Fa, Da, Ga) (3.3)

Conversely, the hybrid subsystem denoted by

Hb = (Cb, Fb, Db, Gb) (3.4)

models the clock dynamics and synchronization algorithm.

For several of the results that follow, we consider the hybrid system Ha with

Db = ∅. Observe that Ha with Db = ∅ has data

(
Ca, Fa, Da

∣∣
Db=∅

, Ga
∣∣
Db=∅

)
=

(
Ca, Fa, Da1 ∪Da2 ,

G1(xa, τP ) if x ∈ Da1

G2(xa, τO) if x ∈ Da2

)

Definition 3.1.1. A solution φ ∈ SHa is a nominal maximal solution if it belongs to the

subset of maximal solutions defined by

Snom
Ha :=

{
φ ∈ SHa : rge φτδ ⊂ {0,−1}

}
(3.5)

where φτδ is the τδ component of φ. Additionally, we say that a solution φ ∈ SHa is a

delay maximal solution if it belongs to the subset of maximal solutions defined by SδHa :=

SHa \ Snom
Ha .

Qualitatively, one can interpret solutions belonging to Snom
Ha as a representation of

the scenario where the measurements are free of transmission delays. For a given φ ∈ SHa ,

when the timer τN expires (i.e., τN = 0) the state jumps according to G1. As a consequence

of (3.5), the τδ component of the respective φτδ solution is mapped to zero following the

construction of G1. Then, nominal maximal solutions jump from Da1 to Da2 , resulting in

a subsequent jump with no flow between the two jumps.

Remark 3.1.2. Definition 3.1.1 applies to both Ha and H. Thus, we let Snom
H denote the

set of nominal maximal solutions to H and SδH = SH\Snom
H denote the set of delay solutions

to H.
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With the hybrid system defined, the next two results establish existence of solu-

tions to Ha and that every maximal solution to Ha is complete.

Lemma 3.1.3. The hybrid system Ha with Db = ∅ satisfies the hybrid basic conditions

in [8, Assumption 6.5].

Lemma 3.1.4. The data (Ca, Fa, Da, Ga) of Ha with Db = ∅ and inputs (τP , τO) is such

that

1. Ga(xa, τP , τO) ⊂ Ca ∪Da for all (xa, τP , τO) : x ∈ Da

2. Fa(xa) ⊂ TCa(xa) for all (xa, τP , τO) : x ∈ Ca \Da

Lemma 3.1.5. For every initial condition ξ ∈ Ca ∪Da there exists, at least, a nontrivial

solution φ to the hybrid system Ha with Db = ∅ and inputs (τP , τO) such that {t : (t, j) ∈
dom (τP , τO)} is unbounded, and in particular, every maximal solution to Ha with Db = ∅
and such an input is complete.

Remark 3.1.6. For the closed-loop hybrid system H, the completeness of maximal solutions

to the interconnection between Ha and Hb depend on the hybrid system data that defines

Hb. See [8, Proposition 2.10] and [8, Proposition 6.10] for details.

In this section, results guaranteeing convergence of the estimation error ε := z − ẑ to zero

with the proposed algorithm are given. First, attractivity is shown for nominal solutions

through a comparison to the exponentially converging trajectories guaranteed by the ob-

server in [7]. Next, a Lyapunov-like approach is used to show convergence of delay maximal

solutions to a set of interest by comparing the observer trajectories of a delay maximal

solution against those of a corresponding nominal maximal solution. Finally, we present a

result on the convergence of the estimation error to zero for the case where the plant and

observer clocks are mismatched but synchronize in finite time due to the inclusion of a clock

synchronization algorithm such as the one in Example 3.5.2.

3.2 Asymptotic attractivity for nominal solutions

In this section we show that the nominal maximal solutions to Ha are such that

the estimation error converges to zero. We prove this claim by showing that for a given
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set of parameters and initial conditions, the trajectories of the component ẑ for Ha with

synchronized clocks inputs are equivalent to those for the hybrid model presented in [7].

To this end, let us consider the hybrid system in [7] written in plant-observer coordinates,

xr := (z, ẑ, τN ) ∈ R2n × R≥0

Fr(xr) :=


Az

Aẑ

−1

 ∀xr ∈ Cr

Gr(xr) :=


z

ẑ + LM(z − ẑ)
[TN1 , TN2 ]

 ∀xr ∈ Dr

Cr := {(z, ẑ, τ) ∈ Rn × Rn × R≥0 : τN ∈ [0, TN2 ]}

Dr := {(z, ẑ, τ) ∈ Rn × Rn × R≥0 : τN = 0}

We denote this system as Hr, which has the compact form

Hr

ẋr = Fr(xr) xr ∈ Cr

x+
r ∈ Gr(xr) xr ∈ Dr

(3.6)

The hybrid time domain for solutions φr to Hr is given by

dom φr =
⋃
j∈N

(
[tj , tj+1]× {j}

)
(3.7)

where

TN1 ≤ tj+1 − tj ≤ TN2 ∀j ∈ {k ≥ 1 : k ∈ N}

0 ≤ t1 ≤ TN2

Following [7], if matrices L and P = PT � 0 are such that

(I− LM)TeA
TvPeAv(I− LM)− P ≺ 0 ∀v ∈ [TN1 , TN2 ] (3.8)

holds for given TN2 ≥ TN1 ≥ 0, then the system Hr has the set

Ar:=
{

(z, ẑ, τN ) ∈ Rn×Rn×[0, TN2 ] : z=ẑ
}

(3.9)

globally exponentially stable. Prior to comparing the trajectories of Hr and Ha, note that

Hr resembles system Ha with synchronized clock inputs τP and τO for the case where
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Figure 3.2: Plot of φr and φ solution trajectories.

T d = 0. However, the hybrid time domain of a solution φnom to Ha observes an additional

jump in between periods of flow as demonstrated in Figure 3.2.

Observe that xr is a strict subvector of xa. Thus, for a given initial condition

φr(0, 0) for Hr, we can consider the following initial condition for Ha:

φ(0, 0) =
(
φr(0, 0), φτδ(0, 0), φq(0, 0), φ`y(0, 0), φ`τP (0, 0)

)
Moreover, for given matrices A, M , and L of appropriate dimensions, constants 0 < TN1 ≤
TN2 , one can pick solutions φr and φ belonging to Hr and Ha, respectively, such that the

solutions observe the same τN = 0 triggered jump times, i.e., φτN (t, sφ(j)) = φrτN (t, j) for

all (t, j) ∈ dom φr.

Using the observed relationships between the two systems, in the result that fol-

lows, we claim attractivity for nominal solutions by showing that φz ≡ φrz and φẑ ≡ φrẑ.

The proof of the result is segmented into two cases; the first addresses attractivity for

solutions to Ha with initial condition φ(0, 0) ∈ Ca1 ∪ Da1 or φ(0, 0) ∈ {x ∈ Ca2 ∪ Da2 :

`y = Mz, `τP = τP }, the second address attractivity for solutions with initial condition

φ(0, 0) ∈ {x ∈ Ca2 ∪ Da2 : `y 6= Mz, `τP 6= τP }. A separate proof for the second case is

necessary to address the scenario of incorrectly initialized memory states that could lead

to an “incorrect” observer law update when a jump according to G2 is triggered. To this

end, we define sets W1 := Ca1 ∪Da1 and W2 := {x ∈ Ca2 ∪Da2 : `y = Mz, `τP = τP (0, 0)}.
Then solutions φ to Ha with φ(0, 0) ∈ W1 ∪W2 we refer to as conventional solutions and
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for solutions with φ(0, 0) ∈ (Ca ∪Da) \ (W1 ∪W2) we refer to as non-conventional.

Proposition 3.2.1. Given hybrid systems Hr in (3.6) and Ha in (3.3) with Db = ∅ and

input pair τP ≡ τO such that {t : (t, j) ∈ dom (τP , τO)} is unbounded, suppose that there

exist P = P> � 0 such that TN2 , TN1 , L, and M satisfy condition (3.8). Then, for T d = 0,

each solution φ to Ha with Db = ∅ and input pair τP ≡ τO is such that

lim
t+j→∞

|φ(t, j)|Aa = 0

where

Aa := Ar ×
(
{−1} ∪ [0, T d]

)
× {0, 1} × Rm × R≥0 (3.10)

Proof. Pick solutions φr and φ with initial conditions φr(0, 0) ∈ Cr ∪ Dr and φ(0, 0) ∈
{(φr(0, 0), τδ, q, `y, `τP ) ∈ Ca ∪Da : `y = Mz} such that

φτN (t, j) = φrτN (t, rφ(j)) ∀(t, j) ∈ dom φ

where rφr(j) := 2j is a parameterization function that maps a solution φr to Hr onto the

hybrid time domain of φ to Ha.

• Proof of Conventional Case

Following φr from φr(0, 0), if φr(t, j) ∈ Cr it flows according to Fr. If φr(t, j) ∈ Dr,

a jump according to Gr is triggered. In particular, the trajectory for φrẑ after jumps is given

by

φrẑ(tj , j) = φrẑ(tj , j−1) + LM
(
φrz(tj , j−1)− φrẑ(tj , j−1)

)
(3.11)

at each (tj , j − 1), (tj , j) ∈ dom φr.

For the solution φ with φ(0, 0) ∈ W1 ∪W2, if φ(t, j) ∈ Ca it flows according to Fa.

If φ ∈ Da1 , a reset according to G1 is triggered. The trajectory for φẑ after jumps according

to G1 is given by,

φẑ(tj , j) = φẑ(tj , j − 1) (3.12)

at each (tj , j − 1), (tj , j) ∈ dom φ for all j ∈ {2k : k ∈ N>0} when φ(0, 0) ∈ W1 and for all

j ∈ {2k + 1 : k ∈ N>0} when φ(0, 0) ∈ W2. If or when φ ∈ Da2 , φ(tj , j) maps according to
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G2 with φẑ after jumps given by

φẑ(tj , j) = φẑ(tj , j−1)

+ e
A(τO(tj ,j−1)−φ`τP (tj ,j−1))

L
(
φ`y(tj , j−1)

−Me
−A(τO(tj ,j−1)−φ`τP (tj ,j−1))

φẑ(tj , j−1)
) (3.13)

at each (tj , j − 1), (tj , j) ∈ dom φ for all j ∈ {2k + 1 : k ∈ N>0} when φ(0, 0) ∈ W1 and for

all j ∈ {2k : k ∈ N>0} when φ(0, 0) ∈ W2.

Now, since T d = 0 and φ`τP (0, 0) = τO(0, 0), the delay term τO(t, j) − φ`τP (t, j)

in the expression for the update law in (3.13) is zero at each jump according to G2 or for

all (tj , j) ∈ {(t, j) ∈ dom φ : t = tj , j ∈ Im}. Furthermore, φ`y(0, 0) = Mφz(0, 0), thus

φ`y(tj , j) = Mφz(t, j) at each reset according to G2 or for all (tj , j) ∈ {(t, j) ∈ dom φ : t =

tj , j ∈ Im}. Then, (3.13) can be expressed as

φẑ
(
tj , j

)
= φẑ(tj , j−1) + LM

(
φz(tj , j−1)− φẑ(tj , j−1)

)
Noting the equivalence to the expression in (3.11), we can express φẑ along jumps as a

function of φrẑ as follows:

φẑ(tj , j) =

φ
r
ẑ(tj , rφ(j−1)) ∀j ∈ Id

φrẑ(tj , rφ(j)) ∀j ∈ Im

Now, given identical flow dynamics in z, ẑ, and τN , one then has

φ(t, j) =
(
φr(t, rφ(j)), φτδ(t, j), φq(t, j), φ`y(t, j), φ`τP (t, j)

)
thus since solutions to Hr converge exponentially to Ar by [7, Theorem 1], it follows that

lim
t+j→∞

|φr(t, j)|Ar = 0

moreover, given that Ar ⊂ Aa it can be concluded that

lim
t+j→∞

|φ(t, j)|Aa = 0

• Proof of Non-conventional Case

For solutions with initial conditions φ(0, 0) ∈ (Ca∪Da)\ (W1∪W2), namely those

with φ`y(0, 0) 6= Mφz(0, 0) and φ`τP (0, 0) 6= τP (0, 0), after a period of time T ∗ ≥ t + j the
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solution converges towards Aa. Consider a solution φ with initial condition φ(0, 0) ∈ {x ∈
Ca2 ∪Da2 : `y 6= Mz, `τP 6= τP (0, 0)}. Since T d = 0, φ(0, 0) ∈ Da2 and the solution jumps

according to G2. In particular, at (t1, 1),

φẑ(t1, 1) = φẑ(0, 0) + e
A(τO(0,0)−φ`τP (0,0))

L
(
φ`y(0, 0)

−Me
−A(τO(0,0)−φ`τP (0,0))

φẑ(0, 0)
)

with φ`y(0, 0) 6= Mφz(0, 0) and φ`τP (0, 0) 6= τP (0, 0), φ(t1, 1) may diverge away from Aa.
The solution then flows in the interval [t1, t2]× {1} until φ(t2, 1) ∈ Da1 , when the solution

jumps according to G1. In particular, at (t2, 2), φ`y(t2, 2) = Mφz(t2, 1) and φ`τP (t2, 2) =

τP (t2, 1) which means φ(t2, 2) ∈ W1 ∪W2. Thus, we can show that for some (t, j) ∈ dom φ

such that t+ j ≥ T ∗, φ(t, j) ∈ W1 ∪W2. Moreover, following the proof for the conventional

case, the solution converges to Aa.

3.3 Attractivity for delay solutions with synchronized clocks

With attractivity established for the nominal case, we now present attractivity to

Aa for the delay case. Consider the Lyapunov function candidate from [7] defined for every

xa ∈ Xa as

V (xa) = εTeA
TτNPeAτN ε (3.14)

where ε = z − ẑ and P = PT � 0. Then, given φδ(0, 0) ∈ Ca ∪ Da, it can be shown

that delay solutions φδ ∈ SδHa converge to the set Aa, exponentially. Moreover, it can be

shown that the Lyapunov function evaluated along a delay solution φδ for a given initial

condition is bounded by the Lyapunov function evaluated along its nominal counterpart

φnom and a bounded perturbation. To facilitate the analysis in the result that follows, let

φnom
ε = φnom

z − φnom
ẑ and φδε = φδz − φδẑ denote the trajectories of the state error for the

respective nominal (φnom) and delay (φδ) solutions.

To assist with the analysis between the two solution types, given a solution to Ha,
we define a reparameterization function sφ, given as follows:

• If φ(0, 0) ∈ Ca1 ∪Da1

sφ(j) :=

j ∀j ∈ Id

j + 1 ∀j ∈ Im
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• If φ(0, 0) ∈ Ca2 ∪Da2

sφ(j) :=

j ∀j ∈ Im

j + 1 ∀j ∈ Id

The function sφ allows to compare solutions φnom to Ha and φδ to Ha.

Theorem 3.3.1. Given the hybrid system Ha in (3.3) with Db = ∅ and input pair τP ≡ τO
such that {t : (t, j) ∈ dom (τP , τO} is unbounded, suppose that there exist P = P> � 0 such

that TN2 , TN1 , L, and M satisfy condition (3.8). Then, for each T d ∈ [0, TN1 ], each solution

φ to Ha with Db = ∅ and input pair τP ≡ τO is such that

lim
t+j→∞

|φ(t, j)|Aa = 0

Furthermore, there exist positive constants α and β such that each φδ ∈ SδHa with Db = ∅
and input pair τP ≡ τO satisfies

α|φδ(t, j)|Aa ≤ V
(
φδ(t, j)

)
≤ V

(
φnom(t, sφ(j))

)
+ βφnom

ε (t, j)Tφnom
ε (t, j)

(3.15)

for each (t, j) ∈ dom φδ, where φnom is a nominal maximal solution for the same initial

condition to φδ and φnom
ε = φnom

z − φnom
ẑ .

Proof. Given matrices A, L, and M of appropriate dimensions and positive scalars T d ≤
TN1 ≤ TN2 . Pick a solution φδ with initial condition φδ(0, 0) ∈ {xa ∈ Ca∪Da : `y = Mz} and

its nominal counterpart φnom for the same initial condition and identical τN trajectories,

i.e., φnom
τN

(t, j) = φδτN (t, j) for all (t, j) dom φδ. Consider the Lyapunov function candidate

(4.36). Then, let

V nom(t, sφ(j)) := V (φnom(t, sφ(j))) ∀(t, j) ∈ dom φδ

V δ(t, j) := V (φδ(t, j)) ∀(t, j) ∈ dom φδ

Noting the relationship between φnom and φδ, let V δ(t, j) be expressed as a perturbation of

V nom(t, sφ(j)), i.e.

V δ(t, j) = V (φnom(t, sφ(j))) + ρ(t, j) ∀(t, j) ∈ dom φδ
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Since φnom(t, j) = φδ(t, j) for all (t, j) ∈ T1 when the initial condition is in Ca1 ∪Da1 . The

quantity ρ(t, j) is given by,

ρ(t, j) =

V (φδ(t, j))− V (φnom(t, sφ(j))) ∀(t, j) ∈ T2

0 ∀(t, j) ∈ T1

Observe that for each xa ∈ Ca, 〈∇V (xa), Fa(xa)〉 = 0, therefore ρ remains constant during

flows and can be expressed by its value at jumps as follows:

ρ(t, j) =

V (φδ(tj , j))− V (φnom(tsφ(j), sφ(j))) ∀(t, j) ∈ T2

0 ∀(t, j) ∈ T1

Before expanding ρ, note that the reparameterization of φnom onto the domain of φδ via

sφ(j) following each (tj+1, j) ∈ T1, gives the nominal solution mapped according to G2. In

particular, one has

φnom
ε (tsφ(j), sφ(j)) = φnom

z (tsφ(j), sφ(j−1))

−
(
φnom
ẑ (tsφ(j), sφ(j−1))+LM

(
φnom
z (tsφ(j), sφ(j−1))

− φnom
ẑ (tsφ(j), sφ(j−1))

))
= (I−LM)φnom

ε (tsφ(j), sφ(j−1))

at each (tj , sφ(j − 1)), (tj , sφ(j)) ∈ dom φδ. For the same jump index j, that is, following

each (tj+1, j) ∈ T1, the delay solution φδε is given by

φδε(tj , j) = φδz(tj , j−1)− φδẑ(tj , j−1)

at each (tj , j − 1), (tj , j) ∈ dom φδ for all j ∈ Im. Then, substituting the expressions into

ρ leads to

ρ(t, j) = V
(
φδ(tj , j)

)
− V

(
φnom(tj , j)

)
= φδε(tj , j−1)TQ(tj , j−1)φδε(tj , j−1)−φnom

ε (tsφ(j), sφ(j−1))T

× (I−LM)TQ(tj , sφ(j−1))(I−LM)φnom
ε (tsφ(j), sφ(j−1))

where Q(t, j) := eA
TτN (t,j)PeAτN (t,j). Then, since φnom(t, j) = φδ(t, j) for all (t, j) ∈ T1, we

make the appropriate substitutions to get

ρ(t, j) = φnom
ε (tsφ(j), sφ(j−1))T

(
Q(tj , j − 1)

−(I−LM)TQ(tsφ(j), sφ(j−1))(I−LM)
)
φnom
ε (tsφ(j), sφ(j−1))
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Thus allowing ρ to be bounded as follows

|ρ(t, j)| ≤ βφnom
ε (tsφ(j), sφ(j−1))Tφnom

ε (tsφ(j), sφ(j−1)) (3.16)

where

β := max
τN∈[0,TN2 ]

λmax

(
eA

TτNPeAτN
)
|I−(I−LM)T(I−LM)|

which exists due to continuity of the matrix exponential. Then, one has

V δ(t, j) =

V
(
φnom(t, sφ(j))

)
+ ρ(t, j) ∀(t, j) ∈ T2

V
(
φnom(t, sφ(j))

)
∀(t, j) ∈ T1

In particular, one has

α|φδ(t, j)|Aa ≤ V
(
φδ(t, j)

)
≤ V

(
φnom(t, sφ(j))

)
+ ρ(t, j) (3.17)

where

α := min
v∈[0,T2]

λmin
(
eA

TτNPeAτN
)

Now, since ρ(t, j) decays to zero in the limit due to (3.16) and φnom(t, sφ(j)) converges to

the set Anom
a via Proposition 3.2.1, then by the relations in (3.17) solutions φδ also converge

to the set Aa.
For the case of φδ solutions with initial condition φδ(0, 0) ∈ Ca2 ∪Da2 , the result

follows from similar steps with V δ(t, j) and ρ(t, j) given by

V δ(t, j) =

V
(
φnom(t, sφ(j))

)
+ ρ(t, j) ∀(t, j) ∈ T1

V
(
φ(t, sφ(j))

)
∀(t, j) ∈ T2

where

ρ(t, j) =

V (φδ(t, j))− V (φnom(t, sφ(j))) ∀(t, j) ∈ T1

0 ∀(t, j) ∈ T2

Figure 3.3 illustrates the evolution of the function V along the trajectories for

the two solution types. From the same initial condition, both solutions flow together.

Then the solutions separate with the nominal solution (blue) decreasing upon measurement

retrieval and the delayed solution (red) diverging due to the measurement delay. After some

hybrid time, the delayed solution retrieves the delayed measurement and converges with the

nominal solution. Example 3.5.2 illustrates Theorem 3.3.1 in Section 3.5.
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Figure 3.3: Plot of the Lyapunov trajectories of φr and φ.

3.4 Attractivity for delay solutions with clocks that synchro-

nize in finite time.

In this section, we present our results for the case where the clock inputs τP and

τO to Ha are not necessarily the same initially, but eventually synchronize in finite time (see

Remark 3.4.4). The first result establishes attractivity to Aa for Ha with Db = ∅ and input

pair (τP , τO) satisfying conditions such that solutions to Ha are complete and the input

pair synchronize in finite time. In the result that follows, we show attractivity to a set of

interest for the full hybrid system H with conditions on the clock synchronization subsystem

Hb such that the solutions to H are complete and the clock inputs to the subsystem Ha
synchronize in finite time.

For the following results we will distinguish between solutions to Ha and solutions

to H by denoting φa ∈ SHa and φ ∈ SH.

Proposition 3.4.1. Given the hybrid system Ha in (3.3), suppose that there exist P =

P> � 0 such that TN2 , TN1 , L, and M satisfy condition (3.8). Then, for each T d ∈ [0, TN1 ]

and each input pair (τP , τO) to Ha satisfying

B1) {t : (t, j) ∈ dom (τP , τO)} is unbounded, and
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B2) there exists T ∗ ≥ 0 such that

τP (t, j) = τO(t, j)

for all t+ j ≥ T ∗

each solution φa to Ha with input pair (τP , τO) and Db = ∅ is such that

1. {t : (t, j) ∈ dom φa} is unbounded, and

2. limt+j→∞ |φa(t, j)|Aa = 0.

Proof. To prove item 1), we will disprove the impossibility of a maximal solution to Ha with

input pair (τP , τO) and Db = ∅ to flow for arbitrarily large t. To this end, suppose there

exists such a solution with input pair (τP , τO) satisfying B1). Then, {t : (t, j) ∈ dom φa} is

bounded. The existence of such a solution implies that either

a) φa is not Zeno and died after finite time t, this further implies that either

a.1) Ga (with Db = ∅ mapped the solution φa to a point outside of Ca ∪Da; or

a.2) the solution φa died at a point in Ca \Da, at which Fa points outward of Ca;

or

b) φa is Zeno with t↗ tZ /∈ {t : (t, j) ∈ dom φa} as j →∞

Case a.1) does not happen due to (τP , τO) satisfying B1) and, by Lemma 3.1.4 item 1), Ga

cannot map points in Da outside of Ca ∪Da with Db = ∅. Moreover, a.2) does not happen

since (τP , τO) satisfies B1) and, by Lemma 3.1.4 item 2), Fa(xa) ⊂ TCa(x) for each xa such

that x ∈ Ca \Da. Case b) does not happen since (τP , τO) satisfies B1) and after any reset

of φa via φa(tj , j) = G2(φa(tj , j−1), τP ) then for the same tj there exists tj+1 such that

0 < TN1 ≤ tj+1−tj ≤ TN2 −T d. Therefore, it must be the case that the solution φa to Ha
with input pair (τP , τO) satisfying B1) is such that {t : (t, j) ∈ dom φa} is unbounded. This

contradicts our assumption that {t : (t, j) ∈ dom φa} is bounded and concludes the proof

of item 1).

To prove item 2), pick a maximal solution φa ∈ SHa with input pair (τP , τO)

satisfying B1) and B2) with Db = ∅. By item 1), {t : (t, j) ∈ dom φa} is unbounded.

Moreover, by Lemma 3.1.4, φa(t, j) ∈ Ca ∪ Da for all (t, j) ∈ dom φa. Now observe, for

t + j ≥ T ∗, the conditions in Theorem 3.3.1 are satisfied since condition (3.8) is satisfied

and the inputs (τP , τO) satisfy B2). Therefore, by Theorem 3.3.1, item 2) holds.
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Theorem 3.4.2. Given the hybrid system H in 3.2, suppose that there exist P = P> � 0

such that TN2 , TN1 , L, and M satisfy condition (3.8). Suppose further that the subsystem

Hb in (3.4) is such that

1. every maximal solution φ to H is complete, and

2. condition B2) in Proposition 3.4.1 holds;

Then, for each T d ∈ [0, TN1 ], each maximal solution φ to H is such that

lim
t+j→∞

|φ(t, j)|A = 0

where A := Aa × R≥0 × R≥0 ×M.

Proof. Pick a maximal solution φ to H. By Lemma 3.1.4, φxa(t, j) ∈ Ca ∪ Da for all

(t, j) ∈ dom φ since φ does not escape in finite time. For t + j ≥ T ∗, the conditions in

Proposition 3.4.1 for the hybrid subsystemHa are satisfied since (3.8) is satisfied andHb ren-

ders φτP (t, j) = φτO(t, j) for all t+j ≥ T ∗. Then by Proposition 3.4.1, limt+j→∞ |φ(t, j)|A =

0.

Remark 3.4.3. Observe that this result builds on the design of the nominal system Ha
for synchronized clock inputs by interconnecting it with Hb representing a finite time clock

synchronization algorithm (see Remark 3.4.4) that satisfies the conditions in Theorem 3.4.2.

We note that the authors of [17] provide LMI conditions that renders a similar observer-

based networked system with variable delays, stable for a bounded clock synchronization

error. However, as the authors note in their results, the design of the observer and controller

gains to satisfy the associated LMI conditions are not straightforward. We remind the reader

that our approach uses a tractable LMI condition (3.8) (see algorithm in [7]) and a finite

time clock synchronization algorithm for which several solutions exist.

Remark 3.4.4. Concerning the existence of finite time clock synchronizations implementable

in H, we point the reader to the IEEE 1588 precision time protocol design for networked

control system in [12] and firefly-based algorithms as given in [18] both of which guarantee

synchronization in finite time.
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Figure 3.4: The evolution of the estimation error with respect to hybrid time. The vertical
dashes represent the resets of ẑ according to ẑ+ in (3.1).

3.5 Examples

Example 3.5.1. Recall the system data from the motivation example in Section 5.1, A = 1,

M = 1, L = 1 − e−1 with constants TN1 = TN2 = 1. Then, let T d = 0.2. Simulating the

system Ha with synchronized clock inputs τP and τO, the estimate converges even in the

presence of measurements delays as shown in Figure 3.4. Recall that this was not the case

in the example presented in the introduction. 1

Example 3.5.2. Consider an oscillatory autonomous system given by A =

 0 1

−1 0

 and

matrix M =
[
1 0

]
with timer bounds T d = TN1 = 0.2, TN2 = 1. Using the design algorithm

outlined in [7] for the given parameters, the gain matrix is given by L =
[
1.0097 0.6015

]T
.

Starting with the case of synchronized clocks, i.e. φ(0, 0) ∈ C1 ∪ D1 such that

φτP (0, 0) = φτO(0, 0), Figure 3.5 depicts the error in each state component for φnom and φδ

and shows the norm of the error for the two solutions, in addition the bound in (5.45) is

plotted to demonstrate the asymptotic attractivity of φδ.

Observe that the two trajectories flow together from the initial condition, at the

first jump the error on the estimate for φnom decreases due to the measurement arrival at

1Code at github.com/HybridSystemsLab/HybridObsScalarPlant
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Figure 3.5: Plot of the error on the state components (left) and of V (x) evaluated along the
trajectories of φnom and φδ (right) for synchronized clocks from Example 3.5.2. Furthermore,
a plot of the bound from (5.45) plotted in black.

broadcast while φδ continues flowing. At the next jump the error for φδ decreases due to the

arrival of the delay measurement and then resumes flowing with φnom.

For the case where the clock nodes are not synchronized i.e. φ(0, 0) ∈ C1 ∪ D1

such that φτP (0, 0) 6= φτO(0, 0), consider a simulation of the full system H where Hb is a

model representation of the IEEE 1588 protocol, see [19] for details on the model. Figure

3.6 presents the error norm trajectories and displays the error in the components for both

φnom and φδ.

In both figures, the trajectories flow together from the initial condition, at the first

jump the estimation error for φnom decreases while φδ continues flowing. In the sequence

of jumps that follow, the error on the estimate of φnom converges to zero. The error on

the estimate of φδ however, increases until the clocks are synchronized as marked by the

dashed line denoted ‘sync’. In the jumps that follow from the synchronization point, the

error estimate of φδ converges toward zero.

Example 3.5.3. To demonstrate the flexibility of the system to account for a scenario

of drifting clocks, consider the same system from the previous example but with a drifting

observer clock i.e. τ̇O = 1 + γ where γ = 0.001. In Figure 3.7, the error norm of the two

trajectories for the simulation is given. Note the periodic synchronization of the plant and

observer clocks prevents the drift in the observer clock from adversely affecting the norm of
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Figure 3.6: Plot of the error on the state components (left) and of V (x) evaluated along
the trajectories of φnom and φδ (right) for the case of initially mismatched clocks τP and
τO.

the error on the estimate for the delay solution.2

3.6 Summary

In this chapter, we modeled an NCS with aperiodic sampling and network delays

in a state estimation setting, using the hybrid systems framework in [8]. We proposed a

modified state estimation algorithm for such a setting and a method to include a clock

synchronization scheme. Results were given to show the model’s equivalence to an NCS

with aperiodic sampling and no network delay. Results were also provided regarding its

asymptotic attractivity to a set of interest in the presence of network delays and initially

mismatched clocks that eventually synchronize. Numerical results validating the theoretical

findings were also given.

2Code at github.com/HybridSystemsLab/HybridObsPlanarPlant
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Figure 3.7: Plot of he error norm for φnom and φδ with drifting τO clock.
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Chapter 4

HyNTP: A Hybrid Consensus

Algorithm for Clock

Synchronization

This chapter presents HyNTP, a distributed hybrid algorithm that synchronizes

the time and rate of a set of clocks connected over a network. Clock measurements of the

nodes are given at aperiodic time instants and the controller at each node uses these mea-

surements to achieve synchronization. Due to the continuous and impulsive nature of the

clocks and the network, a hybrid system model to effectively capture the dynamics of the

system and the proposed hybrid algorithm is introduced. Moreover, the hybrid algorithm

allows each agent to estimate the skew of its internal clock in order to allow for synchroniza-

tion to a common timer rate. We provide sufficient conditions guaranteeing synchronization

of the timers, exponentially fast. Numerical results illustrate the synchronization property

induced by the proposed algorithm as well as its performance against comparable algorithms

from the literature.

4.1 Problem Statement

Consider a group of n sensor nodes connected over a network represented by a

digraph G = (V, E , A). Two clocks are attached to each node i of G: an (uncontrollable)
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internal clock τ∗i ∈ R≥0 whose dynamics are given by

τ̇∗i = ai (4.1)

and an adjustable clock τ̃i ∈ R≥0 with dynamics

˙̃τi = ai + ui (4.2)

where ui ∈ R is a control input. In both of these models, the (unknown) constant ai

represents the unknown drift of the internal clock. At times tj for j ∈ N>0 (we assume

t0 = 0), node i receives measurements τ̃k from its neighbors, namely, for each k ∈ N (i).

The resulting sequence of time instants {tj}∞j=1 is assumed to be strictly increasing and

unbounded. Moreover, for such a sequence, the time elapsed between each time instant

when the clock measurements are exchanged satisfies

T1 ≤ tj+1 − tj ≤ T2 ∀j ∈ N>0

0 ≤ t1 ≤ T2

(4.3)

where 0 < T1 ≤ T2, with T1 defining a minimum time between consecutive measurements

and T2 defines the maximum allowable transfer interval (MATI).

Remark 4.1.1. The models for the clocks are based on the hardware and software relation-

ship of the real-time system that implements them. That is, the internal clock τ∗i is treated

as a type of hardware oscillator while the adjustable clock τ̃i is treated as a virtual clock,

implemented in software (as part of the proposed algorithm), that evolves according to the

dynamics of the hardware oscillator. Any virtual clock implemented in node i inherits the

drift parameter ai of the internal clock, which cannot be controlled. More importantly, this

drift parameter is not known due to the fact that universal time information is not available

to any node. The input ui is unconstrained as allowed by hardware platforms.

Under such a setup, our goal is to design a distributed hybrid controller that,

without knowledge of the drift parameter and of the communication times in advance,

assigns the input ui to drive each clock τ̃i to synchronization with every other clock τ̃k, with

τ̃k evolving at a common prespecified constant rate of change σ∗ > 0 for each k ∈ V. This

problem is formally stated as follows:

Problem 4.1.1. Given a network of n agents with dynamics as in (6.3) and (4.2) repre-

sented by a directed graph G and σ∗ > 0, design a distributed hybrid controller that achieves
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the following two properties when information between agents is exchanged at times tj sat-

isfying (6.5):

i) Global clock synchronization: for each initial condition, the components τ̃1, τ̃2, . . . , τ̃n

of each complete solution to the system satisfy

lim
t→∞
|τ̃i(t)− τ̃k(t)| = 0 ∀i, k ∈ V, i 6= k

ii) Common clock rate: for each initial condition, the components τ̃1, τ̃2, . . . , τ̃n of each

complete solution to the system satisfy

lim
t→∞
| ˙̃τi(t)− σ∗| = 0 ∀i ∈ V

4.2 Distributed Hybrid Controller for

Time Synchronization

We define the hybrid model that provides the framework and a solution to Problem

6.0.1. First, since we are interested in the ability of the rate of each clock to synchronize to

a constant rate σ∗, we propose the following change of coordinates: for each i ∈ V, define

ei := τ̃i − r, where r ∈ R≥0 is an auxiliary variable such that ṙ = σ∗. The state r is only

used for analysis. Then, the dynamics for ei are given by

ėi = ˙̃τi − σ∗ ∀i ∈ V (4.4)

By making the appropriate substitutions, one has

ėi = ai + ui − σ∗ ∀i ∈ V (4.5)

To model the network dynamics for aperiodic communication events at tj ’s satisfying (6.5),

we consider a timer variable τ with hybrid dynamics

τ̇ = −1 τ ∈ [0, T2], τ+ ∈ [T1, T2] τ = 0 (4.6)

This model is such that when τ = 0, a communication event is triggered, and τ is reset to

a point in the interval [T1, T2] in order to preserve the bounds given in (6.5); see [20].

Remark 4.2.1. Observe that the timer τ solely models the communication events between

the nodes. Moreover, the nodes are independent of any information on the timer state thus,

we do not assume any synchronization between the clock states of the nodes τ̃i and τ .
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The proposed hybrid algorithm assigns a value to ui so as to solve Problem 6.0.1,

which in the ei coordinates requires ei to converge to zero for each i ∈ V. In fact, the algo-

rithm implements two feedback laws: a distributed feedback law and a local feedback law.

The distributed feedback law utilizes a control variable ηi ∈ R that is impulsively updated

at communication event times using both local and exchanged measurement information

τ̃k. Specifically, it takes the form

η+
i =

∑
k∈N (i)

Kk
i (τ̃i, τ̃k)

where Kk
i (τ̃i, τ̃k) := −γi(ei − ek) with γi > 0. Between communication event times, ηi

evolves continuously. The local feedback strategy utilizes a continuous-time linear adaptive

estimator with states τ̂i ∈ R and âi ∈ R to estimate the drift ai of the internal clock. The

estimate of the drift is then injected as feedback to compensate for the effect of ai on the

evolution of τ̃i. Furthermore, the local feedback strategy injects σ∗ to attain the desired

clock rate for τ̃i.

Inspired by the protocol in [21, Protocol 4.1], the dynamics of the i-th hybrid

controller are given by

u̇i = hiηi − µi(τ̂i − τ∗i ), η̇i = hiηi

˙̂ai = −µi(τ̂i − τ∗i ), ˙̂τi = âi − (τ̂i − τ∗i )

 τ ∈ [0, T2]

u+
i = −γi

∑
k∈N (i)

(τ̃i−τ̃k)−âi+σ∗, â+
i = âi

η+
i = −γi

∑
k∈N (i)

(τ̃i − τ̃k), τ̂+
i = τ̂i

 τ = 0

(4.7)

where hi ∈ R, γi > 0 are controller parameters for the distributed hybrid consensus con-

troller and µi > 0 is a parameter for the local parameter estimator. The state η is included

in the model to facilitate a model reduction used in the results that follow. Note that ui

is treated (with some abuse of notation) as an auxiliary state of the controller. This state

is kept constant in between events and is reset to the new value of ηi − âi + σ∗ at jumps.

Observe that the distributed controller only uses local and communicated information from

the neighboring nodes at communication event times tj , which, as explained above (6.3),

are times at which τ is zero.

With the timer variable and hybrid controller defined in (4.7), we construct the

hybrid closed-loop system H obtained from the interconnection between the distributed
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hybrid controller and the local adaptive estimator given in error coordinates. The state of

the closed-loop system is

x = (e, u, η, τ∗, â, τ̂ , τ) ∈ Rn × Rn × Rn × Rn≥0 × Rn × Rn≥0 × [0, T2] =: X (4.8)

where e = (e1, e2, . . . , en), u = (u1, u2, . . . un), η = (η1, η2, . . . , ηn), τ∗ = (τ∗1 , τ
∗
2 , . . . , τ

∗
N ),

τ̂ = (τ̂1, τ̂2, . . . , τ̂N ), a = (a1, a2, . . . , aN ), and â = (â1, â2, . . . , ân). The dynamics and data

(C, f,D,G) of H are given by

ė

u̇

η̇

τ̇∗

˙̂a

˙̂τ

τ̇


=



a+ u− σ∗1n
hη − µ(τ̂ − τ∗)

hη

a

−µ(τ̂ − τ∗)
â− (τ̂ − τ∗)

−1


=: f(x) x ∈ C,



e+

u+

η+

τ∗+

â+

τ̂+

τ+


=



e

−γLe− â+ σ∗1n

−γLe
τ∗

â

τ̂

[T1, T2]


=: G(x) x ∈ D

(4.9)

where C := X and D := {x ∈ X : τ = 0}. Note that X ⊂ Rm where m = 7n.

With the hybrid system H defined, the next two results establish existence of

solutions to H and that every maximal solution to H is complete. In particular, we show

that, through the satisfaction of some basic conditions on the hybrid system data, which

is shown first, the system H is well-posed and that each maximal solution to the system is

defined for arbitrarily large t+ j. The next two lemmas hold for any choice of parameters

T1, T2, σ∗, h, γ, µ, and strongly connected digraph G.

Lemma 4.2.2. The hybrid system H satisfies the following conditions, defined in [4, As-

sumption 6.5] as the hybrid basic conditions.

(A1) C and D are closed subsets of Rm.

(A2) f : X → X is continuous and locally bounded relative to C and C ⊂ dom f ;

(A3) G : Rm ⇒ Rm is outer semicontinuous and locally bounded relative to D, and D ⊂
dom G.

See the appendix for proof.
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Lemma 4.2.3. For every ξ ∈ C ∪D(= X ), every maximal solution φ to H with φ(0, 0) = ξ

is complete.

See the appendix for proof.

With the hybrid closed-loop system H in (4.9), the set to asymptotically stabilize

so as to solve Problem 6.0.1 is

A:={x ∈ X : ei = ek, ηi = 0, âi = ai, τ̂i = τ∗i , ui = ηi − âi + σ∗ ∀i, k ∈ V} (4.10)

Note that ei = ek and ηi = 0 for all i, k ∈ V imply synchronization of the clocks, meanwhile

âi = ai and τ∗i = τ̂i for all i, k ∈ V ensure no error in the estimation of the clock skew

and that the internal and estimated clocks are synchronized, respectively. The inclusion of

ui = −âi + σ∗ in A ensures that, for each i ∈ V, ei remains constant (at zero) so that ei

does not leave the set A. This property is captured in the following result using the notion

of forward invariance of a set.

Remark 4.2.4. Given that each maximal solution φ to H is complete, with the state variable

τ acting as a timer for H, for every initial condition φ(0, 0) ∈ C ∪D we can characterize

the domain of each solution φ to H as follows:

dom φ =
⋃
j∈N

[tj , tj+1]× {j} (4.11)

with t0 = 0 and tj+1 − tj as in (6.5). Furthermore, the structure of the above hybrid time

domain implies that for each (t, j) ∈ dom φ we have

t ≤ T2(j + 1) (4.12)

Lemma 4.2.5. Given a strongly connected digraph G, the set A in (4.10) is forward in-

variant for the hybrid system H, i.e., each maximal solution φ to H with φ(0, 0) ∈ A is

complete and satisfies φ(t, j) ∈ A for each (t, j) ∈ dom φ (see [?, Chapter 10]).

See the appendix for proof.

With the definitions of the closed-loop system H in (4.9) and the set of interest A
in (4.10) to asymptotically stabilize in order to solve Problem 6.0.1, we introduce our main

result showing global exponential stability of A to H. This result is established through an

analysis of an auxiliary system H̃ε presented in (4.27) and its global exponential stability

for the auxiliary set Ãε in (4.29), the details of which can be found in Section 4.3.4.
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Theorem 4.2.6. Given a strongly connected digraph G, if the parameters T2 ≥ T1 > 0,

µ > 0, h ∈ R, and γ > 0, the positive definite matrices P1, P2, and P3 are such that

P2Af3 +A>f3P2 ≺ 0 (4.13)

P3Af4 +A>f4P3 ≺ 0 (4.14)

A>g2exp(A>f2ν)P1exp(Af2ν)Ag2−P1 ≺ 0 ∀ν ∈ [T1, T2] (4.15)∣∣∣ exp
( κ̄1

α2
T2

)(
1− κ̄2

α2

)∣∣∣ < 1 (4.16)

hold, where Af2, Ag2 are given in (4.28) and

κ̄1= max
{κ1

2ε
,
κ1ε

2
−β2

}
, κ̄2 = min{1, κ2}

κ1=2 max
ν∈[0,T2]

∣∣ exp (A>f2ν)P1 exp (Af2ν)
∣∣

κ2∈
(
0, − min
ν∈[T1,T2]

{
λmin(A>g2exp (A>f2ν)P1exp (Af2ν)Ag2−P1)

})
α2= max

ν∈[0,T2]

{
exp (2hν), λmax

(
exp (A>f2ν)P1 exp (Af2ν)

)
,

λmax(P2), λmax(P3)
}

(4.17)

with ε > 0, and β1 > 0 and β2 > 0 such that, in light of (4.13), P2Af3 + A>f3P2 ≤ −β1I2,

and P3Af4 + A>f4P3 ≤ −β2I2(n−1) then, the set A in (4.10) is globally exponentially stable

for the hybrid system H in (4.9).

To validate our theoretical stability result in Theorem 4.2.6, consider five agents

with dynamics as in (6.3) and (4.2) over a strongly connected digraph with the following

adjacency matrix

GA =



0 1 1 0 1

1 0 1 0 0

1 0 0 1 0

0 0 1 0 1

1 0 1 1 0


Given T1 = 0.01, T2 = 0.1, and σ∗ = 1, then it can be found that the parameters h = −1.3,

µ = 3, γ = 0.125, suitable matrices P1, P2, P3 (see [22] for details), and ε = 1.607 satisfy

conditions (4.15) and (4.16) in Theorem 4.2.6 with κ̄1 = 9.78, κ1 = 31.44, κ̄2 = 1, and

α2 = 18.923. Figure 4.1 shows the trajectories of ei−ek, εai for components i ∈ {1, 2, 3, 4, 5}
of a solution φ for the case where σ = σ∗ with initial conditions φe(0, 0) = (1,−1, 2,−2, 0),

φη(0, 0) = (0,−3, 1,−4,−1), and clock rates ai in the range (0.85, 1.15). The bottom plot
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P1=



33.61 0 0 0 4.20 0 0 0

0 28.61 0 0 0 5.73 0 0

0 0 25.35 0 0 0 4.75 0

0 0 0 28.61 0 0 0 5.73

4.20 0 0 0 7.02 0 0 0

0 5.73 0 0 0 11.13 0 0

0 0 4.75 0 0 0 14.96 0

0 0 0 5.73 0 0 0 11.13]


P2=

[
5.26 −2.24

−2.24 7.54

]

P3=



6.47 0 0 0 −2.36 0 0 0

0 6.47 0 0 0 −2.36 0 0

0 0 6.47 0 0 0 −2.36 0

0 0 0 6.47 0 0 0 −2.36

−2.35 0 0 0 7.90 0 0 0

0 −2.35 0 0 0 7.90 0 0

0 0 −2.35 0 0 0 7.90 0

0 0 0 −2.35 0 0 0 7.90



(4.18)

in Figure 4.1 depicts the Lyapunov trajectory V evaluated along the solution φ with the

upper bound given in (4.50) projected onto the regular time domain. Observe that the

exponential bound provided in (4.50) jumps along the solution, validating our theoretical

results on the exponential stability of the system.1

1Code at github.com/HybridSystemsLab/HybridClockSync
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Figure 4.1: The trajectories of the solution φ for state component errors ei−ek, εai , and τ .
Plot of V evaluated along the solution φ projected onto the regular time domain. (bottom)
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4.3 Key Properties of the Nominal Closed-Loop System

4.3.1 Reduced Model – First Pass

In this section, we recast the hybrid system H into a reduced model obtained by

setting u = η − â + σ∗1n. This reduced model enables assessing asymptotic stability of

A. It is given in error coordinates for the parameter estimation of the internal clock rate

and also the error of the internal clock state. We let εa = a − â denote the estimation

error of the internal clock rate and ετ = τ̂ − τ∗ represent the estimation error of the

internal clock state. The state of the reduced model is given by xε := (e, η, εa, ετ , τ) ∈
Rn × Rn × Rn × Rn × [0, T2] =: Xε with dynamics defined by the data

fε(xε) :=



η + εa

hη

µετ

−ετ − εa
−1


∀xε ∈ Cε, Gε(xε) :=



e

−γLe
εa

ετ

[T1, T2]


∀xε ∈ Dε (4.19)

where Cε := Xε and Dε := {xε ∈ Xε : τ = 0}. This system is denoted Hε = (Cε, fε, Dε, Gε).

Note that the construction u = η − â+ σ∗1n, which holds along all solutions after the first

jump, leads to ė = η + εa.

To relate the properties of the reduced model to those of the hybrid system H,

we establish a result showing an equivalency between the solutions of H in (4.9) and Hε
defined above. The result shows that after the first jump, each solution φ to H is equivalent

to a solution φε to Hε when the trajectories of the timer variable τ for both solutions are

equal. To facilitate such a result, we define the function M : X → Xε given by

M(x) := (e, η, a− â, τ̂ − τ∗, τ) (4.20)

where x = (e, u, η, τ∗, â, τ̂ , τ), as defined in (4.8), and the function M̃ : Xε×Rn≥0×Rn≥0 → X

53



given by

M̃(xε, τ̂ , τ
∗) :=



e

η − (a− εa) + σ∗1n

η

τ̂ − ετ
a− εa
ετ + τ∗

τ


(4.21)

Lemma 4.3.1. Let T2 ≥ T1 > 0, digraph G, and hybrid systems H and Hε be given

as in (4.9) and (4.19), respectively. For each φ ∈ SH and each2 φε ∈ SHε such that

φ(0, 0) = M̃
(
φε(0, 0), φτ̂ (0, 0), φτ∗(0, 0)

)
and timer components φτ (t, j) = φετ (t, j) for all

(t, j) ∈ dom φ, it follows that dom φ = dom φε and

φ(t, j) = M̃
(
φε(t, j), φτ̂ (t, j), φτ∗(t, j)

)
∀(t, j) ∈ dom φ (4.22)

See the appendix for proof.

With the reduced model Hε in place, we consider the following set to asymptoti-

cally stabilize for Hε:

Aε:={xε ∈ Xε : ei=ek, ηi=0 ∀i, k ∈ V, εa=0, ετ=0} (4.23)

This set is equivalent to A in the sense that the point-to-set distance metrics |x|A and |x|Aε
are equivalent when the map M̃ is applied, as demonstrated in the results that follow.

Lemma 4.3.2. Given sets A and Aε as in (4.10) and (4.23), respectively, for each x =

(e, u, η, τ∗, â, τ̂ , τ), xε, τ̂ , and τ∗ such that x ∈ X , (xε, τ̂ , τ
∗) ∈ X , and u = η − â + σ∗1n

then

|x|A = |xε|Aε (4.24)

and

|M̃(xε, τ̂ , τ
∗)|A = |x|A (4.25)

2Note that for a given solution φε(t, j) to Hε, the solution components are given by

φε(t, j) =
(
φεe(t, j), φ

ε
η(t, j), φεεa(t, j), φεετ (t, j), φετ (t, j)

)

54



With the stabilization set defined for Hε, we have the following result that shows

that if the set Aε is globally exponentially stable for Hε then the set A is also globally

exponentially stable for H.

Lemma 4.3.3. Given T2 ≥ T1 > 0 and a strongly connected digraph G, the set A in (4.10)

is GES for the hybrid system H if Aε in (4.23) is GES for the hybrid system Hε.

See the appendix for proof.

4.3.2 Reduced Model – Second Pass

Global exponential stability of Aε for Hε is established by performing a Lyapunov

analysis on a version of Hε obtained after an appropriate change of coordinates, one where

the flow and jump dynamics are linearized. The model is obtained by exploiting an impor-

tant property of the eigenvalues of the Laplacian matrix for strongly connected digraphs.

To this end, let G be a strongly connected digraph. By Lemma 2.3.1 and Lemma

2.3.2, one has that zero is a simple eigenvalue of the Laplacian matrix L with an associated

eigenvector v1 = 1√
N

1N . Furthermore, there exists a nonsingular matrix

T = [v1, T1] (4.26)

where T1 ∈ RN×N−1 is a matrix whose columns are the remaining eigenvectors of L, i.e.,

[v2, . . . , vN ], such that T −1LT =

0 0

0 L̄

, where L is the graph Laplacian of G and L̄ is a

diagonal matrix with the nonnegative eigenvalues of L as the diagonal elements given by

(λ2, λ3, . . . , λN ), see [12], [23], and [24] for more details.

To perform the said change of coordinates, we use T to first perform the following

transformations: ē = T −1e, η̄ = T −1η, ε̄a = T −1εa and ε̄τ = T −1ετ . Then, we define vec-

tors z̄ = (z̄1, z̄2) and w̄ = (w̄1, w̄2), where z̄1 := (ē1, η̄1), z̄2 := (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 =

(ε̄a1 , ε̄τ1), and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Finally, we define χε := (z̄1, z̄2, w̄1, w̄2, τ) ∈
R2 × R2(n−1) × R2 × R2(n−1) × [0, T2] =: Xε as the state of the new version of Hε, which is
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denoted H̃ε and has data given by

f̃ε(χε):=



Af1 z̄1

Af2 z̄2

Af3w̄1

Af4w̄2

−1


+



Bf1w̄1

Bf2w̄2

0

0

0


∀χε ∈ C̃ε, G̃ε(χε):=



Ag1 z̄1

Ag2 z̄2

w̄1

w̄2

[T1, T2]


∀χε ∈ D̃ε (4.27)

for each χε in C̃ε := Xε and in D̃ε := {χε ∈ Xε : τ = 0}, respectively, with

Af1=

0 1

0 h

 , Af2=

0 Im

0 hIm

 , Af3=

 0 µ

−1 −1


Af4=

 0 µIm

−Im −Im

 , Bf1=

1 0

0 0

 , Bf2=

Im 0

0 0


Ag1=

1 0

0 0

 , Ag2=

 Im 0

−γL̄ 0


(4.28)

and m = N − 1. Then, H̃ε = (C̃ε, f̃ε, D̃ε, G̃ε) denotes the new version of Hε. The set Aε to

stabilize in the new coordinates for this hybrid system is given by

Ãε := {χε ∈ Xε : z̄1=(e∗, 0), z̄2=0, w̄1=0, w̄2=0, e∗∈ R} (4.29)

In the following two results, we first demonstrate the relationship between the sets

Ãε for H̃ε and Aε for Hε so as to solve Problem 6.0.1. Then, similar to Lemma 4.3.3, we

show that global exponential stability of Ãε for H̃ε implies global exponential stability of

Aε for Hε. See the appendix for proofs.

Lemma 4.3.4. Let T2 ≥ T1 > 0, digraph G, and hybrid systems Hε and H̃ε be given as in

(4.19) and (4.27), respectively. For each solutions φ ∈ SHε there exists a solution φ̃ ∈ SH̃ε
such that φ(t, j) = Γφ̃(t, j) for each (t, j) ∈ dom φ if and only if for each solutions φ̃ ∈ SH̃ε
there exists a solution φ ∈ SHε such that φ̃(t, j) = Γ−1φ(t, j) for each (t, j) ∈ dom φ̃, where

Γ = diag(T , T , T , T , 1).

See the appendix for proof.

Lemma 4.3.5. Given 0 < T1 ≤ T2 and a strongly connected digraph G, ξ ∈ Aε if and only

if χε := Γ−1ξ ∈ Ãε, where Γ−1 = diag(T −1, T −1, T −1, T −1, 1) and T is given in (4.26).
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Moreover, for each xε ∈ Xε and each χε ∈ Xε

|χε|Ãε ≤ |Γ
−1||xε|Aε (4.30)

and

|xε|Aε ≤ |Γ||χε|Ãε (4.31)

See the appendix for proof.

Lemma 4.3.6. Given 0 < T1 ≤ T2 and a strongly connected digraph G, the set Ãε is GES

for the hybrid system H̃ε if and only if Aε is GES for the hybrid system Hε.

See the appendix for proof.

4.3.3 Parameter Estimator

Exponential stability of the set Ãε for H̃ε hinges upon the convergence of the

estimate â to a. We present a result establishing convergence of â to a by considering a model

reduction of H̃ε. To this end, consider the state χεr := (w̄1, w̄2, τ) ∈ R2×R2(n−1)× [0, T2] =:

Xεr . Its dynamics are given by the system H̃εr = (C̃εr , f̃εr , D̃εr , G̃εr) with data

f̃εr(χεr) :=


Af3w̄1

Af4w̄2

−1

 ∀χεr ∈ C̃εr := Xεr ,

G̃εr(χεr) :=


w̄1

w̄2

[T1, T2]

 ∀χεr ∈ D̃εr := {χεr∈Xεr : τ=0}

For this system, the set to exponentially stabilize is given by

Ãεr := {0} × {0} × [0, T2] (4.32)

In the next result, we show global exponential stability of the set Ãεr for H̃εr
through the satisfaction of matrix inequalities. See the appendix for proof.

Proposition 4.3.7. If there exists a positive scalar µ and positive definite symmetric ma-

trices P2, P3 such that, with Af3 and Af4 as in (4.28),

P2Af3 +A>f3P2 ≺ 0 (4.33)
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P3Af4 +A>f4P3 ≺ 0 (4.34)

hold, then the set Ãεr is globally exponentially stable for the hybrid system H̃εr . Further-

more, every solution φ̃ to H̃εr satisfies

|φ̃(t, j)|Ãεr ≤
√
αw̄2

αw̄1

exp
(
− γ̄β̃

2αw̄2

(t+ j)
)
|φ̃(0, 0)|Ãεr (4.35)

for each (t, j) ∈ dom φ̃, with αw̄1 = min{λmin(P2), λmin(P3)}, αw̄2 = max{λmax(P2),

λmax(P3)}, β̃ > 0, and γ̄ = min{1− γ, γT1}.

See the appendix for proof.

4.3.4 Proof of Theorem 4.2.6

Consider the following Lyapunov function candidate for H̃ε

V (χε) := V1(χε) + V2(χε) + Vεr(χε) ∀χε ∈ Xε (4.36)

where

V1(χε) = exp (2hτ)η̄2
1

V2(χε) = z̄>2 exp (A>f2τ)P1 exp (Af2τ)z̄2

Vεr(χε) = w̄>1 P2w̄1 + w̄>2 P3w̄2

Note that there exist two positive scalars α1, α2 such that

α1|χε|2Ãε ≤ V (χε) ≤ α2|χε|2Ãε ∀χε ∈ C̃ε ∪ D̃ε (4.37)

With P1 positive definite and noting the nonsingularity of exp (Af2τ) for every τ , we have

α1 = min
ν∈[0,T2]

{
exp (2hν), λmin

(
exp (A>f2ν)P1 exp (Af2ν)

)
,

λmin(P2), λmin(P3)
}

and α2 as in (4.17). For each χε ∈ C̃ε, one has

〈∇V (χε), f̃ε(χε)〉 = 2z̄>2
(

exp (A>f2τ)P1 exp (Af2τ)
)
Bf2w̄2

+ w̄>1 (P2Af3 +A>f3P2)w̄1

+ w̄>2 (P3Af4 +A>f4P3)w̄2

(4.38)
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Now, by noting (4.13) and (4.14), with β1 > 0 and β2 > 0 such that P2Af3 +A>f3P2 ≤ −β1I,

and P3Af4 +A>f4P3 ≤ −β2I then one has

〈∇V (χε), f̃ε(χε)〉 ≤ κ1|z̄2||w̄2| − β1|w̄1|2 − β2|w̄2|2 (4.39)

where

κ1 = 2 max
ν∈[0,T2]

∣∣ exp (A>f2ν)P1 exp (Af2ν)
∣∣|Bf2 |

Applying Young’s inequality to κ1|z̄2||w̄2|, 3 we obtain

〈∇V (χε), f̃ε(χε)〉 ≤
κ1

2ε
|z̄2|2 +

κ1ε

2
|w̄2|2−β1|w̄1|2−β2|w̄2|2

≤ κ1

2ε
|z̄2|2−β1|w̄1|2 +

(κ1ε

2
− β2

)
|w̄2|2

(4.40)

where ε > 0, we then upper bound the inequality by picking the largest coefficient, i.e,

κ̄1 = max
{
κ1
2ε ,
(
κ1ε
2 − β2

)}
, leading to

〈∇V (χε), f̃ε(χε)〉 ≤ κ̄1

(
|z̄2|2 + |w̄1|2 + |w̄2|2

)
≤ κ̄1

(
|χε|2Ãε

)
≤ κ̄1

( 1

α2
V (χε)

)
≤ κ̄1

α2
V (χε)

(4.41)

Now, for the analysis across jumps, note that for all χε ∈ D̃ε, τ = 0. At jumps, τ is mapped

to some point ν ∈ [T1, T2]. Then, at jumps, for each g ∈ G̃ε one has

V (g)−V (χε) = −η̄2
1 − z̄>2 P1z̄2

+(Ag2 z̄2)> exp (A>f2ν)P1 exp (Af2ν)(Ag2 z̄2)

= −η̄2
1

+z̄>2
(
A>g2 exp (A>f2ν)P1 exp (Af2ν)Ag2−P1

)
z̄2

≤ −|η̄1|2−κ2|z̄2|2

≤ −κ̄2

(
|η̄1|2 + |z̄2|2

)
(4.42)

where κ̄2 = max{1, κ2} and, by continuity of condition (4.15), κ2 > 0 such that

κ2∈
(

0, − min
v∈[T1,T2]

λmin(A>g2 exp (A>f2v)P1 exp (Af2v)Ag2−P1)
)

3In particular, we are utilizing the relation ab ≤ a2

2ε
+ εb2

2
where a, b ∈ R and ε > 0.
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for where we have

V (g)− V (χε) ≤ −κ̄2

(
|η̄1|2 + |z̄2|2

)
(4.43)

Utilizing the upper bound α2 from the definition of V in (4.37), for all χε ∈ D̃ε, one has

V (χε) ≤ α2

(
|η̄1|2 + |z̄2|2 + |w̄|2

)
(4.44)

Dividing by α2 and rearranging terms, one has

−(|η̄1|2 + |z̄2|2) ≤ − 1

α2
V (χε) + |w̄|2 (4.45)

Then, by inserting (4.45) into (4.43),

V (g)− V (χε) ≤ −κ̄2

(
|η̄1|2 + |z̄2|2

)
V (g)− V (χε) ≤ κ̄2

(
− 1

α2
V (χε) + |w̄|2

)
V (g) ≤ − κ̄2

α2
V (χε) + κ̄2|w̄|2 + V (χε)

V (g) ≤
(

1− κ̄2

α2

)
V (χε) + κ̄2|w̄|2

(4.46)

Now, by noting that 〈∇V (χε), f̃(χε)〉 ≤ κ̄1
α2
V (χε) and by (4.46), pick a solution φ̃ to H̃ε

with initial condition φ̃(0, 0) ∈ C̃ε ∪ D̃ε. Let the jumps of φ̃ occur at times (tj , j) ∈ {j′ :

∃t′ : (t′, j′) ∈ dom φ}. For each (t, j) ∈ [0, t1]× {0} one has

V (t, 0) ≤ exp
( κ̄1

α2
t1

)
V (0, 0) (4.47)

At (t1, 1)

V (t1, 1) ≤
(

1− κ̄2

α2

)
V (t1, 0) + κ̄2|w̄(t1, 0)|2

≤
(

1− κ̄2

α2

)
exp

( κ̄1

α2
t1

)
V (0, 0) + κ̄2|w̄(t1, 0)|2
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Then, for each (t, j) ∈ [t1, t2]× {1}

V (t, 1) ≤ exp
( κ̄1

α2
(t2 − t1)

)
V (t1, 1)

≤ exp
( κ̄1

α2
(t2 − t1)

)[(
1− κ̄2

α2

)
exp

(
κ̄1 t1

)
V (0, 0)

+ κ̄2|w̄(t1, 0)|2
]

≤ exp
( κ̄1

α2
(t2 − t1)

)(
1− κ̄2

α̃1

)
exp

( κ̄1

α2
t1

)
V (0, 0)

+ exp
( κ̄
α2

(t2 − t1)
)
κ̄2|w̄(t1, 0)|2

= exp
( κ̄1

α2
t2

)(
1− κ̄2

α2

)
V (0, 0)

+ exp
( κ̄1

α2
(t2 − t1)

)
κ̄2|w̄(t1, 0)|2

At (t2, 2)

V (t2, 2) ≤
(

1− κ̄2

α2

)
V (t2, 1) + κ̄2|w̄(t2, 1)|2

≤
(

1− κ̄2

α2

)
exp

( κ̄1

α2
t2

)(
1− κ̄2

α2

)
V (0, 0)

+ exp
( κ̄1

α2
(t2 − t1)

)
κ̄2|w̄(t1, 0)|2+κ̄2|w̄(t2, 1)|2

≤ exp
( κ̄1

α2
t2

)(
1− κ̄2

α2

)2
V (0, 0)

+ κ̄2

[
exp

( κ̄1

α2
(t2 − t1)

)
|w̄(t1, 0)|2 + |w̄(t2, 1)|2

]
A general form of the bound is given by

V (t, j) ≤ exp
( κ̄1

α2
tj

)(
1− κ̄2

α̃1

)j
V (0, 0)

+ κ̄2

( j∑
k=1

exp
( κ̄1

α2
(tk+1−tk)

)
|w̄(tk, k−1)|2

) (4.48)

Noting that tj+1 − tj ≤ T2 and κ̄1
α2
> 0, the latter term can be further bounded as

κ̄2

( j∑
k=1

exp
( κ̄1

α2
(tk+1−tk)

)
|w̄(tk, k−1)|2

)
≤ κ̄2exp

( κ̄1

α2
T2

)
sup(t,j)∈domφ̃|w̄(t, j)|2

61



Moreover, since tj ≤ T2(j + 1) and κ̄1
α2

> 0, we can also put a stricter bound on the first

term in (4.48) as follows:

exp
( κ̄1

α2
tj

)(
1− κ̄2

α2

)j
V (0, 0)

≤ exp
( κ̄1

α2
T2(j+1)

)(
1− κ̄2

α2

)j
V (0, 0)

≤ exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
V (0, 0)

Thus

V (t, j) ≤ exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
V (0, 0)

+ κ̄2 exp
( κ̄1

α2
T2

)
sup(t,j)∈domφ̃|w̄(t, j)|2

(4.49)

Then, from the result of Proposition 4.3.7, we have

|φ̃w̄(t, j)| ≤
√
αw̄2

αw̄1

exp
(
− β̃

2αw̄2

t
)
|φ̃w̄(0, 0)|Ãεr

with αw̄1 = min{λmin(P2), λmin(P3)} and αw̄2 = max{λmax(P2), λmax(P3)}. Now, to im-

prove readability, we have omitted including the use of the notation V (φ̃(t, j)) when eval-

uating V along the trajectory for the solution φ̃ opting instead for the use of the state

components of χε directly. In particular, we remind the reader that the notation w̄(t, j)

corresponds to the w̄ component of a solution, i.e., φw̄(t, j). Thus, we have

V (t, j) ≤ exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
V (0, 0)

+ κ̄2 exp
( κ̄1

α2
T2

)αw̄2

αw̄1

exp
(
− γ̄β̃

2αw̄2

(t+ j)
)2
|φw̄(0, 0)|2Ãεr

∀(t, j) ∈ dom φ̃

(4.50)

Now, combining the inequality with (4.37) and noting V (φ(0, 0)) ≤ α2|φ(0, 0)|2Ãε one has

|φ(t, j)|2Ãε ≤ α
−1
1

(
α2|φ(0, 0)|2Ãε

)
exp

( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− κ̄2

α2

))j
+ κ̄2 exp

( κ̄1

α2
T2

)αw̄2

αw̄1

exp
( −γ̄β̃

2αw̄2

(t+ j)
)2
|φw̄(0, 0)|2Ãεr

∀(t, j) ∈ dom φ

(4.51)
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Then, taking the square root on both sides, one has

|φ(t, j)|Ãε ≤
√
α2

α1
|φ(0, 0)|Ãε exp

( κ̄1

2α2
T2

)(
exp

( κ̄1

2α2
T2

)(
1− κ̄2

2α2

))j
+
√
κ̄2 exp

( κ̄1

2α2
T2

)√αw̄2

αw̄1

exp
(
− γ̄β̃

2αw̄2

(t+ j)
)2
|φw̄(0, 0)|2Ãεr

∀(t, j) ∈ dom φ

(4.52)

By the given conditions, the set Ãε is globally exponentially stable and attractive for H̃ε.
Now, by utilizing Lemmas 4.3.4 - 4.3.6, we can establish global exponential stability to the

set Aε for Hε, in turn we can then make use of Lemmas 4.3.1 - 4.3.3 to then show that the

set A is globally exponentially stable and attractive for H in (4.9).

4.4 Robustness to Communication Noise, Clock Drift Per-

turbations, and Error on σ

Under a realistic scenario, it is often the case that the system is subjected to

various noise disturbances. Environmental factors can affect the internal clock dynamics

and introduce noise to the communication medium in the form of communication delay.

In this section we present results on input-to-state stability (ISS) of the system when it

is affected by such sources of noise. We will first present an ISS result on the parameter

estimation sub-system when it is subjected to noise on the internal clock output, we will

then present an ISS result that considers communication noise, last but not least, we will

present an ISS result on noise introduced to the desired clock rate reference σ∗. We will

henceforth refer to the following notion of ISS for Hybrid Systems in the presentation of

these results, defined as follows:

Definition 4.4.1. (Input-to-state stability) A hybrid system H with input m is input-to-

state stable with respect to a set A ⊂ Rn if there exist β ∈ KL and κ ∈ K such that each

solution pair (φ,m) to H satisfies |φ(t, j)|A ≤ max{β(|φ(0, 0)|A, t + j), κ(|m|∞)} for each

(t, j) ∈ dom φ.

4.4.1 Robustness to Communication Noise

We consider the case when the measurements of the timer τ̃i is affected by noise

mei ∈ R, i ∈ V. As a result, the output of each agent is given by τ̃i +mei . In the presence
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of this noise, the update law to η+
i in the hybrid controller in (4.7) becomes

η+
i = −γ

∑
k∈N (i)

(yi − yk)

= −γ
∑

k∈N (i)

(τ̃i − τ̃k)− γ
∑

k∈N (i)

(mei −mek)

Performing the same change of coordinates, as in the proof of Theorem 4.2.6, we show that

H̃ε is ISS to communication noise me := (me1 ,me2 , . . . ,men) ∈ Rn. Recalling the change

of coordinates ē = T −1e and η̄ = T −1η, let m̄e = T −1me. The update law η̄+, is given by

η̄+ = (0,−γL̄ē− γL̄m̄e) with η̄1 unaffected by the communication noise.

Using the update law for η̄ under the effect of m̄e, we define the perturbed hybrid

system H̃m with state vector χm := (z̄1, z̄2, w̄1, w̄2, τ) ∈ Xε, where, again z̄1 = (ē1, η̄1), z̄2 =

(ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1 , ε̄τ1), and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Moreover, let

m̄z̄2 = (0, m̄e). The data (C̃m, f̃m, D̃m, G̃m) for the new system H̃m is given by

f̃m(χm) := f̃ε(χm) ∀χm ∈ C̃m

G̃m(χm, m̄ε) := G̃ε(χm)−



0

Bgm̄z̄2

0

0

0


∀χm ∈ D̃m

where C̃m := Xε, D̃m := {χm ∈ Xm : τ = 0}, and Bg =
[
0 γL̄

]>
.

Theorem 4.4.2. Given a strongly connected digraph G, if the parameters T2 ≥ T1 > 0,

µ > 0, h ∈ R, γ > 0, and positive definite symmetric matrices P1, P2, and P3 are such that

(4.15) and (4.16) hold, the hybrid system H̃m with input m̄e is ISS with respect to Ãε in

(4.29).

Proof. Consider the same Lyapunov function candidate V (χm) = V1(χm) + V2(χm) +

Vεr(χm) from the proof of Theorem 4.2.6. During flows, there is no contribution from

the perturbation thus the derivative of V is unchanged from the proof of Theorem 4.2.6.

Thus, one has

〈∇V (χm), f̃(χm)〉 ≤ 2z̄>2
(

expA>f2τP expAf2τ
)
Bf2w̄2

+ w̄>1 (P1Af3 +A>f3P1)w̄1

+ w̄>2 (P2Af4 +A>f4P2)w̄2
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then by following the same notions of the proof in Theorem 4.2.6, one has

〈∇V (χm), f̃(χm)〉 ≤ κ1

2ε
|z̄2|2 − β1|w̄1|2 +

(κ1ε

2
− β2

)
|w̄2|2

≤ κ̄1

(
|z̄2|2 + |w̄1|2 + |w̄2|2

)
≤ κ̄1V (x)

where κ̄1 = max
{
κ1
2ε ,
(
κ1ε
2 − β2

)}
and ε > 0. At jumps, triggered when τ = 0, one has, for

each χm ∈ D̃m \ Ãε and g ∈ G̃m(χm)

V (g)−V (χm) ≤ −η̄2
1+(Ag2 z̄2−Bgm̄z̄2)>Q(Ag2 z̄2−Bgm̄z̄2)

− z̄>2 P1z̄2

≤ −η̄2
1 + (Ag2 z̄2)> expA>f2τP1 expAf2τ(Ag2 z̄2)

−2(Bgm̄z̄2)> expA>f2τP1 expAf2τ(Ag2 z̄2)

+ (Bgm̄z̄2)> expA>f2τP1 expAf2τ(Bgm̄z̄2)

−z̄>2 P1z̄2

(4.53)

From 4.15 and the proof in Theorem 4.2.6, there exists a scalar κ2 such that

z̄>2 (A>g2 expA>f2vP1 expAf2vAg2 − P1)z̄2 ≤ −κ2z̄
>
2 z̄2

leading to

V (g)−V (χm) ≤ −η̄2
1 − κ2z̄

>
2 z̄2

− 2(Bgm̄z̄2)> expA>f2τP1 expAf2τ(Ag2 z̄2)

+ (Bgm̄z̄2)> expA>f2τP1 expAf2τ(Bgm̄z̄2)

(4.54)

Let Q = expA>f2τP1 expAf2τ , then applying Young’s inequality on the third term such

that

m̄>z̄2B
>
g QAg2 z̄2 ≤

1

2ε2

(
m̄>z̄2B

>
g QAg2

)>(
m̄>z̄2B

>
g QAg2

)
+
ε2
2
z̄>2 z̄2

≤ 1

2ε2

∣∣∣(B>g QAg2)(B>g QAg2)>∣∣∣m̄>z̄2m̄z̄2

+
ε2
2
z̄>2 z̄2
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where ε2 > 0, we then have

V (g)−V (χm) ≤ −η̄2
1 − κ2z̄

>
2 z̄2

−
( 1

2ε2

∣∣(B>g QAg2)(B>g QAg2)>∣∣m̄>z̄2m̄z̄2

+
ε2
2
z̄>2 z̄2

)
+ m̄z̄2B

>
g QBgm̄z̄2

≤ −η̄2
1 −

(
κ2 +

ε2
2

)
z̄>2 z̄2+

(
|B>g QBg|

− 1

2ε2
|(B>g QAg2)(B>g QAg2)>|

)
m̄>z̄2m̄z̄2

(4.55)

by noting |Ag2 |, |Bg| ≤ γλmax(L̄) let

κm̄2 =
(
λmax(L̄)

)2
max
v∈[0,T2]

{
λmax

(
expA>f2vP1 expAf2v

)}
then we let ε2 = κ2 and

V (g)− V (χm) ≤ −η̄2
1 −

(
κ2 +

κ2

2

)
z̄>2 z̄2

+
(
γ2κm̄2 −

1

2κ2
γ4κ2

m̄2

)
m̄>z̄2m̄z̄2

now let κ̃m̄2 =
(
γ2κm̄2 − 1

2κ2
γ4κ2

m̄2

)
then at jumps one has

V (g)− V (χm) ≤ −κ̄2(|η̄1|2 + |z̄2|2) + κ̃m̄2 |m̄z̄2 |2 (4.56)

where κ̄2 = max
{

1, 3κ2
2

}
. Now, recall from (4.45) in the proof of Theorem 4.2.6,

−(|η̄1|2 + |z̄2|2) ≤ − 1

α2
V (χε) + |w̄|2 (4.57)

by then plugging (4.45) in to (B.32) one has

V (g)− V (χm) ≤ 3κ2

2

(
− 1

α2
V (χε) + |w̄|2

)
+ κ̃m̄2 |m̄z̄2 |2

≤ −3κ2

2α2
V (χε) +

3κ2

2
|w̄|2 + κ̃m̄2 |m̄z̄2 |2

then at jumps one has

V (g) ≤
(

1− 3κ2

2α2

)
V (χε) +

3κ2

2
|w̄|2 + κ̃m̄2 |m̄z̄2 |2

Noting 〈∇V (χε), f̃(χε)〉 ≤ κ̄V (χε), one can then pick a solution with initial conditions

φ(0, 0) ∈ C̃m ∪ D̃m and find the trajectory of V (t, j) is bounded as follows

V (t, j) ≤ exp
(
κ̄T2

)(
exp

(
κ̄T2

)(
1− 3κ2

2α2

))j
V (0, 0)

+
3κ2

2
exp

(
κ̄T2

)
sup(t,j)∈domφ|w̄(t, j)|2

+ κ̃m̄2 exp
( κ

2ε2
T2

)
sup(t,j)∈domφ|m̄z̄2 |2
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4.4.2 Robustness to Perturbations on Internal Clock Drift

In this section, we consider a disturbance mτ∗i
∈ R, i ∈ V added to the output of

the internal clock. Let yτ
∗
i := τ∗i +mτ∗i

, i ∈ V, define the perturbed internal clock output.

Then the dynamics of the original estimation system in (4.9) under this disturbance becomes

˙̂τi = âi−(τ̂i−yτ
∗
i ), ˙̂ai = −µ(τ̂i−yτ

∗
i ) τ ∈ [0, T2]

τ̂+
i = τ̂i, â+

i = âi τ = 0
(4.58)

In error coordinates εâi = ai − âi, ετi = τ̂i − τ∗i , this leads to

ε̇τi = −ετi − εai +mτ∗i
, ε̇âi = µετi − µmτ∗i

τ ∈ [0, T2]

ε+
τi = ετi , ε+

ai = εai τ = 0

Similar to the result presented in Proposition 4.3.7, for the estimation sub-system we will

consider the same reduction H̃εr that now captures the perturbation. Recall the coor-

dinate transformations ε̄a = T −1εa and ε̄τ = T −1ετ for the respective internal clock

and parameter estimation errors. Moreover, recall w̄ = (w̄1, w̄2) where w̄1 = (ε̄a1 , ε̄τ1)

and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Let m̄τ∗ = T −1mτ∗ and q̄ = (q̄1, q̄2) where q̄1 =

(m̄τ∗1
, m̄τ∗1

) and q̄2 = (m̄τ∗2
, . . . , m̄τ∗n , m̄τ∗2

, . . . , m̄τ∗n). Now, consider the reduced coordinates

χmr := (w̄1, w̄2, τ) ∈ Rn × Rn × [0, T2] =: Xε. The data of this reduced system is given by

H̃mr = (C̃ε, f̃ε, D̃ε, G̃ε) where

f̃mr(χmr) :=


Af3w̄1

Af4w̄2

−1

+


Bm1 q̄1

Bm2 q̄2

0

 ∀χmr ∈ C̃mr

G̃mr(χmr) :=


w̄1

w̄2

[T1, T2]

 ∀χmr ∈ D̃mr

where C̃mr := Xε, D̃mr := {χm ∈ Xε : τ = 0}, and

Bm1 =

µ 0

0 1

 , Bm2 =

µI 0

0 I


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Theorem 4.4.3. If there exists a positive scalar µ and positive definite symmetric matrices

P2, P3 such that (4.13) and (4.14) hold, the hybrid system H̃mr with input m̄τ∗ is ISS with

respect to Ãεr .

Proof. Since the matrices Af3 and Af4 are Hurwitz and the states w̄1 and w̄2 do not jump,

we can estimation system as a continuous time system and write the solution explicitly for

the states w̄1 and w̄2.

φw̄1(t, j) = exp(Af3(t− 0))φw̄1(0, 0)

+

∫ t

0
exp(Af3(t− s))Bm1 q̄1(s)ds

(4.59)

and

φw̄2(t, j) = exp(Af4(t− 0))φw̄2(0, 0)

+

∫ t

0
exp(Af4(t− s))Bm2 q̄2(s)ds

(4.60)

then by bounding | exp(Af3(t−0))|≤ρ1 exp−λ1(t− 0) and | exp(Af4(t−0))|≤ρ2 exp−λ2(t− 0)

one has

|φw̄1(t, j)| ≤ ρ1 exp−λ1(t− 0)|φw̄1(0, 0)|

+

∫ t

0
ρ1 exp−λ1(t− s)|Bm1 ||q̄1(s)|ds

≤ ρ1 exp−λ1(t− 0)|φw̄1(0, 0)|+ ρ1|Bm1 |
λ1

sup
0≤s≤t

|q̄2(s)|

(4.61)

and

|φw̄2(t, j)| ≤ ρ2 exp−λ2(t− 0)|φw̄2(0, 0)|

+

∫ t

0
ρ2 exp−λ2(t− s)|Bm2 ||q̄2(s)|ds

≤ ρ2 exp−λ2(t− 0)|φw̄2(0, 0)|+ ρ2|Bm2 |
λ2

sup
0≤s≤t

|q̄2(s)|

(4.62)

4.4.3 Robustness to Error on σ

In this section, we consider a disturbance on σ∗ to capture the scenario where σ∗

is not precisely known, i.e., σi 6= σ∗. Let εσi = σi − σ∗ represent the error between the
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injected and the ideal clock rate. Treating εσ as a perturbation to the system Hε, one has

ẋε =



η + εa

hη

µετ

−ετ − εa
−1


+



εσ

0

0

0

0


∀xε ∈ Cε

x+
ε ∈

(
e,−γLe, εa, ετ , [T1, T2]

)
∀xε ∈ Dε

To show how the perturbation affects H̃ε, let ε̄σ = T −1εσ, then let m̄σ = (m̄σ1 , m̄σ2) where

m̄σ1 = ε̄σ1 and m̄σ2 = (ε̄σ2 , . . . , ε̄σn).

We define this perturbed hybrid system H̃mσ with state vector χmσ :=

(z̄1, z̄2, w̄1, w̄2, τ) ∈ Xε. Its dynamics are given by the new system H̃mσ =

(C̃mσ , f̃mσ , D̃mσ , G̃mσ) with data f̃mσ(χmσ) for each χmσ ∈ C̃mσ := Xε and G̃mσ(χmσ)

for each χmσ ∈ D̃mσ := {χmσ ∈ Xε : τ = 0} where

f̃mσ (χmσ ) :=



Af1 z̄1 +Bf1w̄1

Af2 z̄2 +Bf2w̄2

Af3w̄1

Af4w̄2

−1


+



m̄σ1

m̄σ2

0

0

0


G̃mσ (χmσ ) :=

[
[Ag1 z̄1]>, [A>g2 z̄2]>, w̄>1 , w̄>2 , [T1, T2]

]>

Theorem 4.4.4. Given a strongly connected digraph G, if the parameters T2 ≥ T1 > 0,

µ > 0, h ∈ R, γ > 0, and positive definite symmetric matrices P1, P2, and P3 are such

that (4.15) and (4.16) hold, the hybrid system H̃mσ with input m̄σ is ISS with respect to Ãε
given in (4.29).

The proof of this result largely follows the same approach used in the proof of

Theorem 4.4.2, namely, a Lyapunov analysis using the function candidate V in (4.36).

Since the disturbance is present during flows, we show that the derivative of V can be

upper bounded resulting in a bounded disturbance in V when evaluated along a given

solution to H̃mσ ; see [22] for more details.

Proof. Consider the same Lyapunov function candidate from the proof of Theorem 4.2.6

expressed for χmσ

V (χmσ) = V1(χmσ) + V2(χmσ) + Vεr(χmσ)
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The contribution from the perturbation only affects the system during flows. For each

χmσ ∈ C̃mσ the change in V is given by

〈∇V (χmσ), f̃mσ(χmσ)〉 ≤ 2z̄>2 expA>f2τP1 expAf2τ(Bf2w̄2 + m̄σ2)

+ w̄>1 (P1Af3 +A>f3P1)w̄1

+ w̄>2 (P2Af4 +A>f4P2)w̄2

From conditions (4.13) and (4.14), let P2Af3 + A>f3P2 < −β1I and P3Af4 + A>f4P3 < −β2I

then one has

〈∇V (χmσ), f̃mσ(χmσ)〉 ≤ κ1|z̄2||w̄2|+
κ1

|Bf2 |
|z̄2||m̄σ2 |

− β1|w̄1|2 − β2|w̄2|2
(4.63)

then applying Young’s equality to the first and second terms one has

〈∇V (χmσ), f̃mσ(χmσ)〉 ≤ κ1

2ε
|z̄2|2 +

κ1ε

2
|w̄2|2 +

κ1

2ρ|Bf2 |
|z̄2|2

+
κ1ρ

2|Bf2 |
|m̄σ2 |2 − β1|w̄1|2 − β2|w̄2|2

≤
(κ1

2ε
+

κ1

2ρ|Bf2 |

)
|z̄2|2

+
(κ1ε

2
− β2

)
|w̄2|2 − β1|w̄1|2

+
κ1ρ

2|Bf2 |
|m̄σ2 |2

Since |Bf2 | = 1 then

〈∇V (χmσ), f̃mσ(χmσ)〉 ≤ κ̃
(
|z̄2|2 + |w̄1|2 + |w̄2|2

)
+
κ1ρ

2
|m̄σ2 |2

≤ κ̃V (χε) +
κ1ρ

2
|m̄σ2 |2

(4.64)

where κ̃ = max
{
κ1
2ε + κ1

2ρ ,
(
κ1ε
2 − β2

)}
and ε, ρ > 0. Since the perturbation does not affect

the system at jumps then, recall from the proof of Theorem 4.2.6 that, across jumps for

each χmσ ∈ D̃mσ and g ∈ G̃mσ one has

V (g)− V (χmσ) ≤ −η̄2
1+z̄>2

(
A>g2 expA>f2vP1 expAf2vAg2−P1

)
z̄2

leading to the following bound

V (g) ≤
(

1− κ̄2

α2

)
V (χε) + κ̄2|w̄|2
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from (4.46). Then a general bound for the Lyapunov trajectory is given by

V (t, j) ≤ exp
(
κ̃T2

)(
exp

(
κ̃T2

)(
1− κ̄2

α2

))j
V (0, 0)

+ κ̄2 exp
(
κ̄T2

)
sup(t,j)∈domφ|w̄(t, j)|2

+
κ1ρ

2

∫ t

0
exp

(
κ̃(t− τ)

)
|m̄σ2 |2

4.4.4 Noise on the communication and clock rate reference σ∗ with ape-

riodic communication events

Example 4.4.5. In this example we demonstrate the system H robustness to noise on the

communication channel and the clock rate reference σ∗. Consider the same system presented

in the example following Theorem 4.2.6. Figure 4.2 shows ISS for the trajectories of the

errors ei − ek for the components i ∈ {1, 2, 3, 4, 5} of a solution φ for the case where the

system is subjected to communication noise mei(t, j) ∈ (0, 1) and noise on the clock rate

reference mσ∗i
(t, j) ∈ (0.85, 1.15) for all (t, j) ∈ domφ, respectively. Moreover, after the

respective transient period for each case, the norm of the relative error |ei − ek| for each

solution converges to an average value of 0.0229 when subjected to noise mσ∗i
and 0.0549

for noise mei.

Figure 4.2: (top) The trajectories of the errors ei− ek for the components i ∈ {1, 2, 3, 4, 5}
of a solution φ for the case where the system is subjected to communication noise mei (top)
and noise on the clock rate reference mσ∗i

(bottom).
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4.5 Comparisons

In this section we compare our algorithm to several contemporary consensus-based

clock synchronization algorithms from the literature through a numerical example. In par-

ticular, we consider a four agent setting and simulate each algorithm presented in [25]

(PI-Consensus), [26] (RandSync), and [1] (Average TimeSync) to our hybrid algorithm

HyNTP as in (4.9). We have restricted our comparison to these algorithms due to their

shared assumptions on the underlying communication graph being strongly connected. Our

first example considers the nominal case of zero noise and a fixed communication event pe-

riod. The next example also considers the nominal case but with aperiodic communication

events. We then present an example where the systems are subjected to communication

noise with aperiodic communication. Our final example considers the case of noise on the

clock rate while also being subjected to aperiodic communication events.

4.5.1 Nominal case with fixed communication event period

Consider N = 4 agents with clock dynamics as in (6.3) and (4.2) over a strongly

connected graph with the following adjacency matrix

GA =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 (4.65)

and a dwell time between communication events T = 0.15. The initial conditions for the

clock rates ai and clock values τi for each i ∈ V has been randomly chosen within the

intervals (0.5, 1.5) and (0, 200), respectively.

For the HyNTP algorithm, we let T1 = T2 = T = 0.15, and σ∗ = 1, then it can be

found that the parameters h = −2, µ = 3, γ = 0.06 and ε = 1.607 with suitable matrices P1,

P2, and P3 satisfy conditions (4.15) and (4.16) in Theorem 4.2.6 with κ̄1 = 6.86, κ1 = 22.98,

κ̄2 = 1, and α2 = 16.93.

Figure 4.3 shows the trajectories of ei− ek, εai for components i ∈ {1, 2, 3, 4, 5} of

a solution φ for the case where σ = σ∗
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Figure 4.3: The evolution of the trajectories of the adjustable clocks τ̄i for each clock syn-
chronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.

Figure 4.4: The evolution of the trajectories of the adjustable clock rates āi for each
clock synchronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-
Consensus, and RandSync.
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4.5.2 Nominal case with aperiodic communication events

Consider the same N = 4 agents with clock dynamics as in (6.3) and (4.2) over a

strongly connected graph with the following adjacency matrix

GA =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


and aperiodic communication events such that successive communications events are lower

and upper bounded by T1 = 0.1 and T2 = 0.5, respectively. The initial conditions for the

clock rates ai and clock values τi for each i ∈ V has been randomly chosen within the

intervals (0.5, 1.5) and (0, 200), respectively.

For the HyNTP algorithm, setting σ∗ = 1, it can be found that the parameters

h = −2, µ = 9, γ = 0.06 and ε = 4.752 with suitable matrices P1, P2, and P3 satisfy

conditions (4.15) and (4.16) in Theorem 4.2.6 with κ̄1 = 2.02, κ1 = 19.22, κ̄2 = 1, and

α2 = 44.03.

Figure 4.1 shows the trajectories of ei− ek, εai for components i ∈ {1, 2, 3, 4, 5} of

a solution φ for the case where σ = σ∗.

Figure 4.5: The evolution of the trajectories of the adjustable clocks τ̄i for each clock syn-
chronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.
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Figure 4.6: The evolution of the trajectories of the adjustable clock rates āi for each
clock synchronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-
Consensus, and RandSync.

4.5.3 Communication noise with aperiodic communication events

Consider the same N = 4 agents with clock dynamics as in (6.3) and (4.2) over a

strongly connected graph with the adjacency matrix given in (4.65) and aperiodic commu-

nication events such that successive communications events are lower and upper bounded

by T1 = 0.1 and T2 = 0.5, respectively. The initial conditions for the clock rates ai and clock

values τi for each i ∈ V has been randomly chosen within the intervals (0.5, 1.5) and (0, 200),

respectively. Moreover, consider the case where the system is subjected to a communication

noise mτi(t, j) ∈ (0, 1) on the clock measurements.

For the HyNTP algorithm, setting σ∗ = 1, it can be found that the parameters

h = −2, µ = 9, γ = 0.06 and ε = 4.752 with suitable matrices P1, P2, and P3 satisfy

conditions (4.15) and (4.16) in Theorem 4.2.6 with κ̄1 = 2.02, κ1 = 19.22, κ̄2 = 1, and

α2 = 44.03.

4.6 Summary

In this chapter, we modeled a network of clocks with aperiodic communication

that utilizes a distributed hybrid controller to achieve synchronization, using the hybrid

systems framework. Results were given to guarantee and show synchronization of the timers,

exponentially fast. Numerical results validating the exponentially fast convergence of the
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Figure 4.7: The evolution of the trajectories of the adjustable clocks τ̄i for each clock syn-
chronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.

Figure 4.8: The evolution of the trajectories of the adjustable clock rates āi for each
clock synchronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-
Consensus, and RandSync.
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timers were also given. Numerical results were also provided to demonstrate performance

against a similar class of clock synchronization algorithms.
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Chapter 5

An Adaptive Hybrid Control

Algorithm for Sender-Receiver

Clock Synchronization

In this chapter, we present a hybrid systems approach to sender-receiver synchro-

nization with an, online, adaptive method to synchronize the clock rates. We show that

our algorithm exponentially synchronizes a pair of clocks connected over a network while

preserving the messaging protocols and network dynamics of traditional sender-receiver

algorithms.

Our proposed solution provides a Lyapunov-based convergence analysis to a set in

which the clocks are synchronized with sufficient conditions ensuring their synchronization.

In particular, the main contributions include:

• In Section 5.3, a hybrid system model of the sender-receiver synchronization algorithm

using the framework proposed in [4] is presented. The proposed model captures the

continuous dynamics of the clock states and the hybrid dynamics of the networking

protocol by which the timing messages are exchanged for a pair of system nodes to

achieve synchronization.

• In Section 5.3.3, we show, through the satisfaction of some basic conditions on the

system model, that the algorithm is finite-time attractive to a forward invariant set

of interest that represents the correct initialization of the algorithm.
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Node i

Network

Node kNode 1 Node n. . . . . .

Figure 5.1: General architecture of the system under consideration.

• In Section 5.4, we provide sufficient conditions on the algorithm parameters to show

asymptotic attractivity of the hybrid system to a set of interest representing synchro-

nization of the clocks from the initialization set. Furthermore, we characterize the

bound for solution trajectories to the systems in terms of parameters that can be

used for algorithm design.

• In Section 5.5, we present a multi-agent extension of the proposed model to cover

the case of synchronizing the nodes on an n-node network. The feasibility of this

multi-agent model is validated with a numerical example of the simulated system.

Unlike the existing algorithms of NTP, PTP, and TPSN, we emphasize to the

reader that previous analyses on sender-receiver synchronization have only provided re-

sults to their feasibility and that the literature lacks formal results that characterize its

performance in a dynamical system setting.

5.1 Motivation for An Adaptive Clock Synchronization Al-

gorithm

5.1.1 Preliminaries on the Sender-Receiver Algorithm

In a network of n nodes, consider nodes i and k in a sender-receiver hierarchy

where Node i is a designated reference or parent agent of a synchronizing child agent Node

k, see Figure 5.1. Each node has an attached internal clock τi, τk ∈ R whose dynamics are

given by

τ̇i = ai

τ̇k = ak
(5.1)
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where ai,ak ∈ R denote the respective clock rates.1 At times tj for j ∈ N (with t0 = 0),

nodes i and k exchange timing measurements with embedded timestamps

T ij := τi(tj)

T kj := τk(tj)
(5.2)

which, integrating (5.1), are equal to

τi(tj) = aitj + τi(0)

τk(tj) = aktj + τk(0)

respectively. Furthermore, τi(0) and τk(0) represent the clock offset from the initial reference

time t = 0. The goal is to then synchronize the internal clock of Node k to that of Node i

using the exchanged timing measurements given in (5.2).

Before introducing the mechanics of the sender-receiver algorithm, we refer the

reader to a visual model of the algorithm in Figure 5.2 as a reference. By assuming the

sequence of time instants {tj}∞j=1 is strictly increasing and unbounded, the sender-receiver

synchronization algorithm as described in the literature (see [5], [27], and [28]) is given as

follows:

(P1) At time tj , Node i broadcasts a synchronization message with its local time

T ij = aitj + τi(0)

to Node k.

(P2) At time tj+1, Node k receives the synchronization message and records its local time

of arrival, T kj+1, given in local time at

T kj+1 = aktj+1 + τk(0)

(P3) At time tj+2, Node k sends a response message with timestamp

T kj+2 = aktj+2 + τk(0)

1 In this paper, we use the term clock rate to explicitly denote the slope of the given linear affine model
of a clock. Other terms for this notion include clock drift or clock skew.
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(P4) At time tj+3, Node i receives the response message from Node k and records its time

of arrival

T ij+3 = aitj+3 + τi(0)

(P5) At time tj+4, Node i sends a response receipt message with timestamp

T ij+4 = aitj+4 + τi(0)

(P6) At time tj+5, Node k receives the response message from Node i and records its time

of arrival

T kj+5 = aktj+5 + τk(0)

and then updates its clock to synchronize with the clock of Node i using the collected

timestamps T ij , T
k
j+1, T kj+2, T ij+3, and T ij+4.

Moreover, as done in the literature (see [27] and [29]), it is assumed that the time elapsed

between each time instant is governed by

tj+1 − tj =

d ∀j ∈ {2i+ 1 : i ∈ N}, j > 0

c ∀j ∈ {2i : i ∈ N}, j > 0
(5.3)

where 0 < c ≤ d. The constant c defines the delay associated with the residence or response

time associated with message turnaround while d defines the propagation delay associated

with message transmission. Figure 5.2 gives a visual representation of the exchange of

timestamps between Nodes i and k against reference time t. Note that the propagation

delay from Node i to Node k and vice versa is assumed to symmetric. Moreover, it is also

assumed that the delay due to residence time is the same across all nodes.2

With the available timestamps, at times tj+5, we can calculate the relative offset

õ := τi(0) − τk(0) as follows, by first rearranging the terms in the timestamps given in

2Most pairwise synchronization protocols such as the Network Time Protocol (NTP), Precision Time
Protocol (PTP, IEEE 1588), and the Timing-sync Protocol for Sensor Networks (TPSN) assume that the
propagation delay in the message transmission from parent to child and child to parent is symmetric. If
the propagation delay between the two nodes is asymmetric it introduces an error to the calculated offset
correction that cannot be accounted for, see [13].
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Figure 5.2: Diagram illustrating the message exchange between Nodes i and k for the
synchronization algorithm.

(P1)-(P6) one has

τi(0) = T ij − aitj

τk(0) = T kj+1 − aktj+1

τk(0) = T kj+2 − aktj+2

τi(0) = T ij+3 − aitj+3

τi(0) = T ij+4 − aitj+4

τk(0) = T kj+5 − aktj+5

then we have the following expressions for the offset

õ = τi(0)− τk(0) = T ij − aitj − T kj+1 + aktj+1

õ = τi(0)− τk(0) = T ij+3 − aitj+3 − T kj+2 + aktj+2

õ = τi(0)− τk(0) = T ij+4 − aitj+4 − T kj+5 + aktj+5

rearranging terms one has

T ij − T kj+1 = aitj − aktj+1 + õ

T ij+3 − T kj+2 = aitj+3 − aktj+2 + õ

T ij+4 − T kj+5 = aitj+4 − aktj+5 + õ

(5.4)

Now, if the clock drifts are synchronized, i.e., ak = ai, we have

T ij − T kj+1 = ai(tj − tj+1) + õ

T ij+3 − T kj+2 = ai(tj+3 − tj+2) + õ

T ij+4 − T kj+5 = ai(tj+4 − tj+5) + õ

(5.5)

then by noting the bounds on the time elapsed between time instants tj , as given in (6.5),

one has

tj+1 − tj = tj+3 − tj+2 = tj+5 − tj+4 = d ∀j ∈ {2i+ 1 : i ∈ N}, j > 0 (5.6)
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then by making the appropriate substitutions in (5.5) we have

T ij − T kj+1 = −aid+ õ

T ij+3 − T kj+2 = aid+ õ

T ij+4 − T kj+5 = −aid+ õ

(5.7)

Since the clock rates ai = ak and the quantity of the propagation delay d are currently

unknowns to the system, we are left with a linear system of equations to solve for the offset,

i.e.,

õ =
1

2

(
(T ij − T kj+1) + (T ij+3 − T kj+2)

)
(5.8)

To demonstrate how this solves the synchronization problem, consider the error

between the clocks of nodes i and k at tj+5,

eik(tj+5) = τi(tj+5)− τk(tj+5)

at time tj+5 node k applies the offset correction Kõ = õ as follows

eik(tj+5) = τi(tj+5)− (τk(tj+5)−Kõ)

=
(
aitj+5+τi(0)

)
−
(
aktj+5+τk(0)−(τi(0)−τk(0))

)
= aitj+5 − aktj+5

= 0

Thus, the clocks at nodes i and k synchronize for the case where the clock rates ai and ak

are already assumed to be synchronized.

5.1.2 The Key Issue: Clock synchronization in the presence of mis-

matched clock rates.

With the mechanics of the sender-receiver algorithm defined, we will now outline

the motivation of this paper by demonstrating the issues that arise with the algorithm and

how our proposed solution addresses them.

Now, consider the following system data ai = 1, ak = 0.8 with c = d = 0.5 and the

given sender-receiver algorithm with only the offset correction Kõ being applied. Simulating

the algorithm, Figure 5.3 shows the plots of the behavior in the error of clocks and the clock

rates. As depicted in the figure, the algorithm continually applies the offset correction but

due to the mismatch in the clock rates, the error in the clocks fails to converge to zero. This
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Figure 5.3: The evolution of the error in the clocks and error in the clock rates of Nodes i
and k when the algorithm only applies the offset correction Kõ.

is further evidence analytically when noting that if the clock rates are not synchronized in

equation (5.4), the formula for the offset calculation in (5.8) will yield an error on the true

offset õ.

To mitigate the effects of the error, protocols such as NTP and IEEE 1588 utilize

a variety of bespoke methods to minimize the error in clock rates including but not limited

to, control of variable frequency hardware oscillators, pulse addition and deletion of the

counted pulses at the hardware oscillator, and an error register to track the deviation of

the error, see [11] and [28]. These methods, while suitable for industrial-grade equipment,

are often expensive solutions for low-cost applications such as sensor networks. In fact,

protocols such as TPSN, designed specifically for low-cost sensor networks, do not provide

provisions to correct for the clock rate error, see [10].

5.1.3 Problem Formulation and Proposed Algorithm

The problem to solve consists of synchronizing the internal clock of Node k to

that of Node i. More precisely, the goal is to design a hybrid algorithm that is based on

exchanging timestamps and guarantees that the clock variable τk and the clock rate ak of

Node k are driven to synchronization with τi and ai of the reference Node i, respectively.

Moreover, our goal is to provide tractable design conditions that ensure attractivity of a set

of interest. This problem is formally stated as follows:

Problem 5.1.1. Given two nodes in a sender-receiver hierarchy with clocks having dynam-
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ics as in (5.1) with timestamps T ij , T kj and parameters c and d, design a hybrid algorithm

such that each trajectory t 7→ (τi(t), τk(t)) satisfies the clock synchronization property

lim
t→∞
|τi(t)− τk(t)| = 0

and the rate synchronization property

lim
t→∞
|τ̇i(t)− τ̇k(t)| = 0

Given the inability of the sender-receiver algorithm to synchronize the clocks, we

propose a modification to the algorithm that incorporates an adaptive strategy to synchro-

nize the clock rates. Consider the control law for the synchronization of the clock rate for

Node k

Ka = µ(T ij+4 − T ij − T kj+5 − T kj+1) (5.9)

with µ > 0 being a controllable parameter. Making the necessary substitutions one has

Ka = µ
((
aitj+4 + τi(0)

)
−
(
aitj + τi(0)

)
−
(
aktj+5 + τk(0))−(aktj+1 + τk(0)

))
= µ

(
ai(2c+ 2d)− ak(2c+ 2d)

)
= µ(2c+ 2d)

(
ai − ak

)
(5.10)

The correction Ka can then be applied to the clock dynamics of Node k at times tj+5 as

follows:

a+
k = ak +Ka = ak + µ(2c+ 2d)

(
ai − ak

)
(5.11)

Observe that this strategy operates under the existing assumptions of the sender-receiver

algorithm (symmetric propagation delays and residence times) and does not rely on any

additional information that is not already available via the exchanged timing messages.

Moreover, since it exploits the integrator dynamics of the system, the computation costs

to calculate Ka are minimal. In this next example, we demonstrate the proposed strategy

under the same scenario of mismatched skews between Nodes i and k.

To illustrate, the capabilities of the algorithm outlined above, consider the same

system data as in Section 5.1, namely, ai = 1, ak = 0.8 with c = d = 0.5 and the given

sender-receiver algorithm now with both the offset correction Kõ and clock rate correction

Ka being applied. In Figure 5.4, two sets of error plots are presented for two different
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Figure 5.4: The evolution of the error in the clocks and clock rates of Nodes i and k
when the algorithm applies both offset correction Kõ and clock rate correction Ka. Plot
(a) demonstrates the case when µ is chosen arbitrarily while plot (b) depicts the scenario
where µ is optimally chosen.

simulations. Figure 5.4(a) gives plots of the errors for the case where the µ is chosen

using information on c and d following our forthcoming design conditions while Figure

5.4(b) provide the error plots for the case where µ is chosen arbitrarily. In the case of the

ideal µ, the error in the clocks and clock rate converge to zero whereas in the case of the

arbitrarily chosen µ, the error fails to converge. This suggests that a sufficient condition to

appropriately design µ is necessary to ensure convergence of the error.

5.2 Preliminaries on Hybrid Systems

A hybrid system H in Rn is composed by the following data: a set C ⊂ Rn, called

the flow set; a set-valued mapping F : Rn ⇒ Rn with C ⊂ dom F , called the flow map; a

set D ⊂ Rn, called the jump set; a set-valued mapping G : Rn ⇒ Rn with D ⊂ dom G,

called the jump map. Then, a hybrid system H := (C,F,D,G) is written in the compact

form

H

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(5.12)

where x is the system state. Solutions to hybrid systems are parameterized by (t, j), where

t ∈ R≥0 defines ordinary time and j ∈ N is a counter that defines the number of jumps.

The evolution of φ is described by a hybrid arc on a hybrid time domain [4]. A hybrid time
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domain is given by dom φ ⊂ R≥0×N if, for each (T, J) ∈ dom φ, dom φ∩([0, T ]×{0, 1, ..., J})
is of the form

⋃J
j=0([tj , tj+1] × {j}), with 0 = t0 ≤ t1 ≤ t2 ≤ tJ+1. A solution φ is said

to be maximal if it cannot be extended by flow or a jump, and complete if its domain is

unbounded. For a hybrid system that is well-posed, the closed set A ⊂ Rn is said to be:

attractive for H if there exists µ > 0 such that every solution φ to H with |φ(0, 0)|A ≤ µ is

complete and satisfies limt+j→∞ |φ(t, j)|A = 0.

5.3 A Hybrid Algorithm for Sender-Receiver Clock Synchro-

nization

In this section we present our hybrid model that captures the network dynamics

for the message exchange and our proposed algorithm that ensures synchronization of the

clocks. Using the sender-receiver mechanism for exchanging the timing messages, our algo-

rithm combines the offset correction law in (5.8) with the proposed online, adaptive clock

rate correction law given in (5.9).

5.3.1 Modeling

Given the mix of continuous and discrete dynamics of the system, i.e., the con-

tinuous evolution of the clocks and the discrete events of the computation and network

transmission, a hybrid modeling approach is a natural fit to perform the needed analy-

sis and design goals to solve Problem 6.0.1. Thus, with our problem defined formally, we

present a hybrid model that captures the proposed algorithm given in Section 5.1.3. To

model the hardware and communication dynamics of the system, namely, the residence and

transit times elapsed between the timing messages, we consider a global timer τ ∈ [0, d]

with dynamics

τ̇ = −1 τ ∈ [0, d]

τ+ ∈ {c, d} τ = 0
(5.13)

In this model, the timer τ is reset to either c or d when τ = 0 in order to preserve the

bounds given in (6.5). We remind the reader that the constant c denotes the residence

delay and d denotes the transmission or propagation delay. To determine the appropriate

choice for the new value of τ , namely, τ+, we define a discrete variable q ∈ {0, 1} =: Q to

indicate the residence or transmission state of the system, namely, whether the system is
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servicing a message at one of the two nodes or whether the system is waiting for the arrival

of a message at either of the two nodes, respectively. The state vectors

mi = [mi
1,m

i
2,m

i
3,m

i
4,m

i
5,m

i
6]> ∈ R6

and

mk = [mk
1 ,m

k
2 ,m

k
3 ,m

k
4 ,m

k
5 ,m

k
6 ]> ∈ R6

represent memory buffers to store the received and transmitted timestamps respectively, for

Node i and Node k. In addition, a second discrete variable p ∈ {0, 1, 2, 3, 4, 5} =: P is used

to track at which stage of the message exchange, defined in (P1)-(P6), the algorithm is at.

Then, by incorporating the clocks τi, τk and the clock rates ai, ak as state variables to the

model as in Section 5.1.1, the state x of the hybrid system model, denoted H, is given by

x := (τi, τk, ai, ak, τ,mi,mk, p, q) ∈ X

where

X := R× R× R× R× [0, d]× R6 × R6 × P ×Q

With the dynamics of the clocks as given in (5.1) and those of the timer τ in (5.13), the

flow map is defined as

F (x) := (ai, ak, 0, 0,−1, 0, 0, 0, 0) ∀x ∈ C (5.14)

the flow set C is defined as

C := C1 ∪ C2 (5.15)

where

C1 := {x ∈ X : q = 0, τ ∈ [0, c]}

and

C2 := {x ∈ X : q = 1, τ ∈ [0, d]}

To model the communication and arrival events of the message exchange and the proposed

mechanisms correcting the clock rate and offset, we define the jump map G : Rn → Rn as

G(x) := Gi(x) if x ∈ Di (5.16)

where each mapping Gi used to define G corresponds to the message exchange events

(P1)-(P6) as follows
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• G1: Node i broadcasts a synchronization message to Node k timestamped with τi as

in (P1). This event is triggered by the jump set D1, namely, when the timer τ = 0 and

the discrete variable p describing the protocol state is zero. At this event, the timer

τ is reset to d, to initiate the message transmission delay. Similarly, the state q is

reset to 1 to indicate the message transmission state of the system with p augmented

by one to trigger the next protocol state. Finally, mi
1 is set to τi to record the time

of message broadcast, relative to the clock of Node i. The subsequent memory states

mi
2, . . .m

i
6 are reset to mi

1, . . .m
i
5, respectively.

• G2: Node k receives the synchronization message and timestamps its arrival with τk

as in (P2). This event is triggered by the jump set D2, namely, when the timer τ = 0

and the discrete variable p describing the protocol state is one. At this event, the

timer τ is reset to c, to initiate the residence delay. Similarly, the state q is reset to

0 to indicate the residence state of the system. Finally, mk
1 is set to τk to record the

time of message broadcast, relative to the clock of Node i. The subsequent memory

states mk
2, . . .m

k
6 are reset to mi

1, . . .m
i
5, respectively.

• G3: Node k broadcasts a response message timestamped with τk as in (P3). This

event is triggered by the jump set D3, namely, when the timer τ = 0 and the discrete

variable p describing the protocol state is two. At this event, the timer τ is reset

to d, to initiate the message transmission delay. Similarly, the state q is reset to 1

to indicate the message transmission state of the system. Finally, mi
1 is set to τi to

record the time of message broadcast, relative to the clock of Node i. The subsequent

memory states mi
2, . . .m

i
6 are reset to mi

1, . . .m
i
5, respectively.

• G4: Node i receives the response message and timestamps its arrival with τk as in

(P4). This event is triggered by the jump set D4, namely, when the timer τ = 0 and

the discrete variable p describing the protocol state is three. At this event, the timer

τ is reset to c, to initiate the residence delay. Similarly, the state q is reset to 0 to

indicate the residence state of the system. Finally, mk
1 is set to τk to record the time

of message broadcast, relative to the clock of Node i. The subsequent memory states

mk
2, . . .m

k
6 are reset to mi

1, . . .m
i
5, respectively.

• G5: Node i broadcasts a response receipt message timestamped with τi as in (P5).

This event is triggered by the jump set D5, namely, when the timer τ = 0 and the
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discrete variable p describing the protocol state is four. At this event, the timer τ is

reset to d, to initiate the message transmission delay. Similarly, the state q is reset to

1 to indicate the message transmission state of the system. Finally, mi
1 is set to τi to

record the time of message broadcast, relative to the clock of Node i. The subsequent

memory states mi
2, . . .m

i
6 are reset to mi

1, . . .m
i
5, respectively.

• G6: Node k uses the timestamped messages to update its clock rate and offset via

Kõ(x) in (5.8) and Ka(x) in (5.18), respectively as in (P6). This event is triggered by

the jump set D6, namely, when the timer τ = 0 and the discrete variable p describing

the protocol state is five. At this event, the timer τ is reset to c, to initiate the

residence delay. Similarly, the state q is reset to 0 to indicate the residence state of

the system. Finally, mk
1 is set to τk to record the time of message broadcast, relative to

the clock of Node i. The subsequent memory states mk
2, . . .m

k
6 are reset to mi

1, . . .m
i
5,

respectively.
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More precisely, the maps G1, G2, G3, G4, G5, G6, updating x = (τi, τk, ai, ak, τ,mi,mk, p, q),

are defined by3

G1(x) :=



(τi, τk)

(ai, ak)

d

(τi,mi
1, . . . ,mi

5),mk)

p+ 1

1


, G2(x) :=



(τi, τk)

(ai, ak)

c

(mi, τk,mi
1, . . . ,mi

5)

p+ 1

0



G3(x) :=



(τi, τk)

(ai, ak)

d

(mi, τk,mk
1 , . . . ,mk

5 )

p+ 1

1


, G4(x) :=



(τi, τk)

(ai, ak)

c

(τi,mk
1 , . . . ,mk

5 ,mk)

p+ 1

0



G5(x) :=



(τi, τk)

(ai, ak)

d

(τi,mi
1, . . . ,mi

5,mk)

p+ 1

1


, G6(x) :=



(τi, τk −Kõ(mi))

(ai, ak +Ka(mi, τk))

c

(mi, τk,mi
1, . . . ,mi

5)

0

0



(5.17)

with

Kõ(mi) =
1

2
(mi

4 −mi
5 −mi

2 + mi
3) (5.18)

and

Ka(mi, τk) = µ
(
(mi

1 −mi
5)− (τk −mi

4)
)

(5.19)

with µ > 0. The offset correction implemented by the feedback law Kõ in (5.18) is an

adapted version of the offset correction algorithm given in (5.8) suitable for the hybrid

system model where the memory states mi and mk contain the stored timestamps T ij and

T kj , respectively. Note that the feedback laws Kõ and Ka depend on the correct assignment

of the timestamps to the memory states. In the forthcoming Lemmas 5.3.3 and 5.3.4, we

show finite time attractivity of a set containing the correct assignment of the memory states

3Note that [x>, y>]> = (x, y).

91



for the appropriate feedback. To trigger the jumps corresponding to the particular protocol

events (P1)-(P6), we define the jump set as

D := D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6

where

D1 := {x ∈ X : τ = 0, p = 0}, D2 := {x ∈ X : τ = 0, p = 1}

D3 := {x ∈ X : τ = 0, p = 2}, D4 := {x ∈ X : τ = 0, p = 3}

D5 := {x ∈ X : τ = 0, p = 4}, D6 := {x ∈ X : τ = 0, p = 5}

With the data defined, we let H = (C,F,D,G) denote the hybrid system for the pairwise

broadcast synchronization algorithm between Node i and Node k.

5.3.2 Error Model

To show that the proposed algorithm solves Problem 6.0.1, we recast the problem

as a set stabilization problem. Namely, we show that solutions φ toH, with data (C,F,D,G)

given in (5.12), converge to a set of interest wherein the clock states τi, τk and clock rates

ai,ak, respectively, coincide. To this end, we consider an augmented model of H in error

coordinates to capture such a property. Let ε := (ετ , εa) ∈ R2, where ετ := τi − τk defines

the clock error and εa := ai− ak defines the clock rate error of Nodes i and k. Then, define

xε := (ε, x) ∈ Xε := R2 ×X

which is the state4 that collects the clock errors, clock rate errors, and the state of the

system H. The continuous evolution of xε is governed by

ẋε = Fε(xε) :=
(
Afε, F (x)

)
xε ∈ Cε (5.20)

where Af =

0 1

0 0

 and f is defined in (5.14). The flow set Cε is defined as

Cε := Cε1 ∪ Cε1 (5.21)

where

Cε1 := {xε ∈ Xε : q = 0, τ ∈ [0, c]}
4 The full state vector x to H is retained to facilitate the implementation of the synchronization algorithm

for Hε.
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and

Cε2 := {xε ∈ Xε : q = 1, τ ∈ [0, d]}

The discrete changes of xε are determined by the discrete changes of ε and x, the latter of

which is given in (5.16). Through the computation of ε+ = (ε+
τ , ε

+
a ) using the jump maps

in (5.17), the resulting evolution is modeled by the jump map Gε : Xε → Xε given by

Gε(xε) := Gεi(xε) if xε ∈ Dεi (5.22)

where

Gε1(xε):=

 ε

G1(x)

 , Gε2(xε):=

 ε

G2(x)

 , Gε3(xε):=

 ε

G3(x)


Gε4(xε):=

 ε

G4(x)

 , Gε5(xε):=

 ε

G5(x)

 , Gε6(xε):=

ε+

[
Kõ(mi)

−Ka(mi, τk)

]
G6(x)


Observe that the feedback laws Kõ and Ka are employed when ε is updated by Gε6 , similarly

to when G6 is employed H. These discrete dynamics apply when x is in Dε := Dε1 ∪Dε2 ∪
Dε3 ∪Dε4 ∪Dε5 ∪Dε6 , where

Dε1 := {xε ∈ Xε : τ = 0, p = 0}, Dε2 := {xε ∈ Xε : τ = 0, p = 1}

Dε3 := {xε ∈ Xε : τ = 0, p = 2}, Dε4 := {xε ∈ Xε : τ = 0, p = 3}

Dε5 := {xε ∈ Xε : τ = 0, p = 4}, Dε6 := {xε ∈ Xε : τ = 0, p = 5}

This hybrid system is denoted

Hε = (Cε, Fε, Dε, Gε) (5.23)

The set to render attractive so as to solve Problem 6.0.1 is given by

Aε := {xε ∈ Xε : ε = 0} (5.24)

where ε = 0 implies synchronization of both the clock offset and the clock rate, since, when

ετ = 0 and εa = 0, then τk is synchronized to τi.

5.3.3 Basic Properties of Hε

Having the hybrid system Hε defined, the next two results establish existence of

solutions to Hε and that every maximal solution to Hε is complete. In particular, we show

93



that, through the satisfaction of some basic conditions on the hybrid system data, which is

shown first, the system Hε is well-posed and that each maximal solution to the system is

defined for arbitrarily large t+ j.

Lemma 5.3.1. The hybrid system Hε = (Cε, Fε, Dε, Gε) satisfies the following conditions,

defined in [4, Assumption 6.5] as the hybrid basic conditions; namely,

(A1) Cε and Dε are closed subsets of Rm;

(A2) Fε : Rm → Rm is continuous;

(A3) Gε : Rm ⇒ Rm is outer semicontinuous and locally bounded relative to Dε, and

Dε ⊂ dom Gε.

See the appendix for proof.

Lemma 5.3.2. For every ξ ∈ Cε ∪Dε(= Xε), there exists at least one nontrivial solution

φ to Hε such that φ(0, 0) = ξ. Moreover, every maximal solution to Hε is complete.

See the appendix for proof.

The effectiveness of the update laws Kõ and Ka, given in (5.18) and (5.19), in

correcting the clock and clock rate of Node k, depend on the assigned values of mi and mk

at the time Kõ and Ka, i.e., when jumps according to Gε6 occur. Improper initialization

of the memory states may result in updates of the offset and clock rate of Node k that

increase the error in the clocks and clock rates relative to Node i. Therefore, to facilitate

the analysis of Hε in rendering the set Aε asymptotically attractive, we restrict the values

of mi and mk to a set smaller than X where they remain in forward (hybrid) time. More

precisely, we restrict the state xε to the set

M :=M1 ∪M2 ∪M3 ∪M4 ∪M5 ∪M6 (5.25)
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where

M1 := {xε ∈ Xε : p=0, q=0}

M2 := {xε ∈ Xε : p=1, q=1,mi
1−ρi(xε, 0) = 0}

M3 := {xε ∈ Xε : p=2, q=0,mk
1−ρk(xε, 0) = 0,mk

2−ρi(xε, d) = 0}

M4 := {xε ∈ Xε : p=3, q=1,mk
1−ρk(xε, 0) = 0,mk

2−ρk(xε, c) = 0,mk
3−ρi(xε, c+d) = 0}

M5 := {xε ∈ Xε : p=4, q=0,mi
1−ρi(xε, 0) = 0,mi

2−ρk(xε, d) = 0,mi
3−ρk(xε, c+d) = 0,

mi
4−ρi(xε, c+2d)=0}

M6 := {xε ∈ Xε : p=5, q=1,mi
1−ρi(xε, 0) = 0,mi

2−ρi(xε, c) = 0,mi
3−ρk(xε, c+d) = 0,

mi
4−ρk(xε, 2c+d) = 0,mi

5−ρi(xε, 2c+2d) = 0}

and

ρi(xε, β) := τi − ai((1− q)c+ qd− τ)− aiβ

ρk(xε, β) := τk − ak((1− q)c+ qd− τ)− akβ
(5.26)

for β ≥ 0.

Lemma 5.3.3. The set M is forward invariant for the hybrid system Hε.

See the appendix for proof.

Lemma 5.3.4. Let constants d ≥ c > 0 be given. For each maximal solution φ to Hε, there

exists T ∗ ≥ 0 such that φ(t, j) ∈M for any (t, j) ∈ dom φ with t+ j ≥ T ∗.

See the appendix for proof.

In our main result, which is presented in the next section, we show asymptotic

attractivity of the synchronization set Aε via a Lyapunov analysis on solutions from the

initialization set M.

5.4 Main Results

In this section, we present our main result showing asymptotic attractivity of the

synchronization set Aε in (5.24) for Hε. To show this, we present a Lyapunov analysis

along solutions to H starting from the set M. We remind the reader that M is the set

that denotes valid initialization values of the memory state vectors mi and mk for which
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the update laws Kõ and Ka give values to correct the clock rate and offset. To this end,

consider the Lyapunov function candidate

V (xε) = ε> exp
(
A>f r(τ, p, q)

)
P exp

(
Afr(τ, p, q)

)
ε (5.27)

where P = P> � 0, Af is as given in (5.20), r(τ, p, q) := τh(q) + d(5 − p) and h(q) :=

1 + c−1(1− q)(d− c) are defined for each xε ∈ Cε ∪Dε. Note that there exist two positive

scalars, α1 and α2, such that

α1|xε|2Aε ≤ V (xε) ≤ α2|xε|2Aε ∀xε ∈ Cε ∪Dε (5.28)

The function V satisfies the following infinitesimal properties.

Lemma 5.4.1. Let the hybrid system Hε be given as in (5.23). For each point xε ∈ Cε,
one has

〈∇V (xε), Fε(xε)〉 ≤

0 if xε ∈ Cε2
γ
α2
V (xε) if xε ∈ Cε1

(5.29)

where

α2 = λmax
ν∈Q,σ∈P

(
exp

(
(νh(ν) + d(5− σ))A>f

)
P exp

((
νh(ν) + d(5− σ)

)
Af
))

(5.30)

γ = |α|max
{p11ε

2
, β +

p11

2ε

}
(5.31)

α = 2(c−d)
c , ε > 0, β = p116d− p12, and p11 and p12 come from P =

p11 p12

p21 p22

 � 0.

Proof. Before calculating 〈∇V (xε), Fε(xε)〉, observe that the full expression of V is given
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by

V (xε) =

ετ
εa

> exp
(
A>f r(τ, p, q)

)p11 p12

p21 p22

 exp
(
Afr(τ, p, q)

)ετ
εa


=

ετ
εa

>  1 0

r(τ, p, q) 1

p11 p12

p21 p22

1 r(τ, p, q)

0 1

ετ
εa


=

ετ + εar(τ, p, q)

εa

> p11 p12

p21 p22

ετ + εar(τ, p, q)

εa


=

ετ + εar(τ, p, q)

εa

> p11

(
ετ + εar(τ, p, q)

)
+ p12εa

p21

(
ετ + εar(τ, p, q)

)
+ p22εa


=
(
ετ + εar(τ, p, q)

)(
p11

(
ετ + εar(τ, p, q)

)
+ p12εa

)
+ εa

(
p21

(
ετ + εar(τ, p, q)

)
+ p22εa

)
= p11

(
ετ + εar(τ, p, q)

)2
+ p12εa

(
ετ + εar(τ, p, q)

)
+ p21εa

(
ετ + εar(τ, p, q)

)
+ p22ε

2
a

(5.32)

then since p12 = p21

V (xε) = p11

(
ετ + εar(τ, p, q)

)2
+ 2p12εa

(
ετ + εar(τ, p, q)

))
+ p22ε

2
a (5.33)

In calculating 〈∇V (xε), Fε(xε)〉, one has

〈∇V (xε), Fε(xε)〉 =
[
∇ετV (xε) ∇εaV (xε) ∇τV (xε) ∇pV (xε) ∇qV (xε)

]


εa

0

−1

0

0


= ∇ετV (xε)εa −∇τV (xε)

(5.34)

where

∇ετV (xε) = 2p11

(
ετ + εar(τ, p, q)

)
+ 2p12εa

∇τV (xε) = 2p11εa∇τr(τ, p, q)
(
ετ + εar(τ, p, q)

)
+ 2p12ε

2
a∇τr(τ, p, q)

(5.35)
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Substituting (5.35) into (5.34), we obtain

〈∇V (xε), Fε(xε)〉 =
(

2p11

(
ετ + εar(τ, p, q)

)
+ 2p12εa

)
εa

− 2p11εa∇τr(τ, p, q)
(
ετ + εar(τ, p, q)

)
− 2p12ε

2
a∇τr(τ, p, q)

= 2p11εa
(
ετ + εar(τ, p, q)

)
+ 2p12ε

2
a

− 2p11εa∇τr(τ, p, q)
(
ετ + εar(τ, p, q)

)
− 2p12ε

2
a∇τr(τ, p, q)

= 2p11εa
(
ετ + εar(τ, p, q)

)
(1−∇τr(τ, p, q)) + 2p12ε

2
a(1−∇τr(τ, p, q))

=
(
2p11εa

(
ετ + εar(τ, p, q)

)
+ 2p12ε

2
a

)(
1−∇τr(τ, p, q)

)
=
(
2p11

(
εaετ + ε2

ar(τ, p, q)
)

+ 2p12ε
2
a

)(
1−∇τr(τ, p, q)

)

for each xε ∈ Cε. Now, with ∇τr(τ, p, q) = (c−d)(q−1)
c + 1, when xε ∈ Cε2 with q = 1,

∇τr(τ, p, q) = 1, thus

〈∇V (xε), Fε(xε)〉 = 0

When xε ∈ Cε2 with q = 0, r(τ, p, q) = τ
(
d−c
c + 1

)
+ d(5− p) and ∇τr(τ, p, q) = d−c

c + 1 one

then has

〈∇V (xε), Fε(xε)〉 =
(

2p11εaετ + 2p11ε
2
a

(
τ
(d− c

c
+ 1
)

+ d(5− p)
)

+ 2p12ε
2
a

)(c− d
c

)
=
(

2p11εaετ + 2p11ε
2
a

(
τ
(d− c

c

)
+ τ + d(5− p)

)
+ 2p12ε

2
a

)(c− d
c

)
=
(c− d

c

)
2p11εaετ +

(c− d
c

)
2p11ε

2
a

(
τ
(d− c

c

)
+ τ + d(5− p)

)
+
(c− d

c

)
2p12ε

2
a

=
(2(c− d)

c

)
p11εaετ +

(2(c− d)

c

)
p11ε

2
a

(
τ
(d− c

c

)
+ τ + d(5− p)

)
+
(2(c− d)

c

)
p12ε

2
a

Let α = 2(c−d)
c , then since, 0 < c ≤ d we have that α ≤ 0

〈∇V (xε), Fε(xε)〉 = −|α|p11εaετ − |α|p11ε
2
a

(
τ
(d− c

c

)
+ τ + d(5− p)

)
− |α|p12ε

2
a

Then, recognizing that τ ∈ [0, c] when xε ∈ Cε2 then we have that τ ≤ c, which due to the
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fact that p11 > 0 and p ∈ P = {0, 1, 2, 3, 4, 5} leading to

〈∇V (xε), Fε(xε)〉 ≤ −|α|p11εaετ + |α|p11

(
c
(d− c

c

)
+ c+ d(5− p)

)
ε2
a − |α|p12ε

2
a

≤ −|α|p11εaετ + |α|p11

(
(d− c) + c+ d(5− p)

)
ε2
a − |α|p12ε

2
a

≤ −|α|p11εaετ + |α|p11d(6− p)ε2
a − |α|p12ε

2
a

for each xε ∈ Cε2 . We can upper bound the quantity 6 − p by noting that p ∈ P =

{0, 1, 2, 3, 4, 5}. Thus, we have that 6− p ≤ 6 for each p ∈ P, leading to

〈∇V (xε), Fε(xε)〉 ≤ −|α|p11εaετ + |α|
(
p116d− p12

)
ε2
a

Now, with β = p116d− p12. Then, we obtain

〈∇V (xε), Fε(xε)〉 ≤ |α|p11|εa||ετ |+ |α|βε2
a ∀xε ∈ Cε2 (5.36)

Then, through an application of Young’s inequality one has

〈∇V (xε), Fε(xε)〉 ≤ |α|p11

( 1

2ε
ε2
a +

ε

2
ε2
τ

)
+ |α|βε2

a

≤ |α|p11

2ε
ε2
a + |α|βε2

a +
|α|p11ε

2
ε2
τ

≤ |α|p11ε

2
ε2
τ + |α|

(
β +

p11

2ε

)
ε2
a

≤ γ
(
ε2
τ + ε2

a

)
≤ γε>ε

for each xε ∈ Cε2 . Then, from the definition of V in (5.27)

〈∇V (xε), Fε(xε)〉 ≤ γ|xε|2

≤ γ

α2
V (xε)

for each xε ∈ Cε2 where ε > 0, α2 and γ are positive constants given in (5.30) and (5.31),

respectively.

Lemma 5.4.2. Let the hybrid system Hε in (5.23) with constants d ≥ c > 0 be given. If

there exist a constant µ > 0 and a positive definite symmetric matrix P such that

A>g exp
(
6dA>f

)
P exp

(
6dAf

)
Ag − P ≺ 0 (5.37)
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where Ag =

0 γ1

0 1−µγ2

 and Af is as given in (5.20) with γ1 = 1
2(3c+4d) and γ2 = 2c+2d

then, for each xε ∈M∩Dε,

V
(
G`(xε)

)
− V

(
xε
)
≤ 0

for each ` ∈ {1, 2, 3, 4, 5}, and 5

V
(
G6(xε)

)
− V

(
xε
)
≤ −σε>ε

where

σ ∈
(

0, −λmin

(
A>g exp

(
(6d)A>f

)
P exp

(
(6d)Af

)
Ag − P

))
(5.38)

Proof. For every g ∈ Gε(xε), the state τ is reset to a point in the set {c, d}. Moreover, for

each xε ∈ Dε, τ = 0. Hence, when xε ∈ Dε1 ∩M1, we have that τ = 0, q = 0, and p = 0,

leading to

V (Gε1(xε))− V (xε) = ε> exp
(
A>f (d+ d(5−1))

)
P exp

(
Af (d+ d(5−1))

)
ε

− ε> exp
(
A>f (0 + d(5− 0))

)
P exp

(
Af (0 + d(5−0))

)
ε

= ε> exp
(
A>f (5d)

)
P exp

(
Af (5d)

)
ε− ε> exp

(
A>f (5d)

)
P exp

(
Af (5d)

)
ε

= 0

When xε ∈ Dε2 ∩M2, we have that τ = 0, q = 1, and p = 1, leading to

V (Gε2(xε))−V (xε) = ε> exp
(
A>f (c(1 + c−1(d−c)) + d(5−2))

)
P exp

(
Af (c(1 + c−1(d−c)) + d(5−2))

)
ε

− ε> exp
(
A>f (0 + d(5−1))

)
P exp

(
Af (0 + d(5−1))

)
ε

= ε> exp
(
A>f (d+ 3d)

)
P exp

(
Af (d+ 3d)

)
ε− ε> exp

(
A>f (4d)

)
P exp

(
Af (4d)

)
ε

= 0

When xε ∈ Dε3 ∩M3, we have that τ = 0, q = 0, and p = 2, leading to

V (Gε3(xε))− V (xε) = ε> exp
(
A>f (d+ d(5−3))

)
P exp

(
Af (d+ d(5−3))

)
ε

− ε> exp
(
A>f (0 + d(5−2))

)
P exp

(
Af (0 + d(5−2))

)
ε

= ε> exp
(
A>f (3d)

)
P exp

(
Af (3d)

)
ε− ε> exp

(
A>f (3d)

)
P exp

(
Af (3d)

)
ε

= 0

5Observe that ε+ = Agε is the matrix representation of the jump map G6 for which ε is reset to when
xε ∈M6 ∩Dε.
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When xε ∈ Dε4 ∩M4, we have that τ = 0, q = 1, and p = 3, leading to

V (Gε4(xε))−V (xε) = ε> exp
(
A>f (c(1 + c−1(d−c)) + d(5−4))

)
P exp

(
Af (c(1 + c−1(d−c)) + d(5−4))

)
ε

− ε> exp
(
A>f (0 + d(5−3))

)
P exp

(
Af (0 + d(5−3))

)
ε

= ε> exp
(
A>f (d+ d)

)
P exp

(
Af (d+ d)

)
ε− ε> exp

(
A>f (2d)

)
P exp

(
Af (2d)

)
ε

= 0

When xε ∈ Dε5 ∩M5, we have that τ = 0, q = 0, and p = 4, leading to

V (Gε5(xε))− V (xε) = ε> exp
(
A>f (d+ d(5−5))

)
P exp

(
Af (d+ d(5−5))

)
ε

− ε> exp
(
A>f (0 + d(5−4))

)
P exp

(
Af (0 + d(5−4))

)
ε

= ε> exp
(
A>f (d)

)
P exp

(
Af (d)

)
ε− ε> exp

(
A>f (d)

)
P exp

(
Af (d)

)
ε

= 0

When xε ∈ Dε6 ∩M6, we have that τ = 0, q = 1, and p = 5. For resets according to Gε6 ,

one has

V (Gε6(xε))− V (xε) =ε+

 Kõ(mi)

−Ka(mi, τk)

> exp
(
A>f (c(1+c−1(d−c))+d(5−0))

)
P exp

(
Af (c(1+c−1(d−c))+d(5−0))

)ε+

 Kõ(mi)

−Ka(mi, τk)


− ε> exp

(
A>f (0 + d(0))

)
P
(
A>f (0 + d(0))

)
ε

=

ε+

 Kõ(mi)

−Ka(mi, τk)

> exp
(
A>f (6d)

)
P exp

(
Af (6d)

)ε+

 Kõ(mi)

−Ka(mi, τk)


− ε>Pε

Now, with xε ∈ Dε6 ∩M6, which implies that p = 5, q = 1, and τ = 0, one has that for

jumps with resets according to Gε6(xε), the feedback laws Kõ and Ka applied to τk and ak,
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respectively, give

Kõ(mi) =
1

2
(mi

4 −mi
5 −mi

2 + mi
3)

=
1

2

((
(τk − ak(2c+ 2d))− (τi − ai(2c+ 3d))

)
−
(

(τi − ai(c+ d))− (τk − ak(c+ 2d))
))

=
1

2

(
2(τk − τi) + ai(3c+ 4d)− ak(3c+ 4d)

)
= (τk − τi) +

1

2
(ai − ak)(3c+ 4d)

= −ετ + γ1εa

Ka(mi, τk) = µ
(
(mi

1 −mi
5)− (τk −mi

4)
)

= µ
(
(τi − ai(d)− (τi − ai(2c+ 3d)))

− (τk − (τk − ak(2c+ 2d)))
)

= µ
(
(ai(2c+ 3d) + ai(d))− (ak(2c+ 2d))

)
= µ(ai − ak)(2c+ 2d)

= µγ2εa

where γ1 = 3c+4d
2 and γ2 = 2(c + d). Using the expressions for Kõ(mi) and Ka(mi, τk), it

follows that

V (Gε6(xε))−V (xε) =

ε+
 Kõ(mi)

−Ka(mi, τk)

> exp
(
6dA>f

)
P exp

(
6dAf

)ε+
 Kõ(mi)

−Ka(mi, τk)


− ε>Pε

=

ετ − ετ + γ1εa

εa − µγ2εa

> exp
(
6dA>f

)
P exp

(
6dAf

)ετ − ετ + γ1εa

εa − µγ2εa

− ε>Pε
= ε

0 γ1

0 1−µγ2

> exp
(
6dA>f

)
P exp

(
6dAf

)0 γ1

0 1−µγ2

 ε− ε>Pε
= ε>A>g exp

(
6dA>f

)
P exp

(
6dAf

)
Agε− ε>Pε

= ε>
(
A>g exp

(
6dA>f

)
P exp

(
6dAf

)
Ag − P

)
ε

for each xε ∈ Dε6 ∩M6. Then, by continuity of condition (5.37), there exists σ as in (5.38)

such that

V (Gε6)− V (xε) ≤ −σε>ε
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for each xε ∈ Dε6 ∩M6.

Remark 5.4.3. Observe that condition (5.37) may be difficult to satisfy numerically as it

may not be convex in µ and P . The authors in [20] utilize a polytopic embedding strategy

to arrive at a linear matrix inequality in which one needs to find some matrices Xi such

that the exponential matrix is an element in the convex hull of the Xi matrices. Such an

algorithm can be adapted to our setting.

Theorem 5.4.4. Let the hybrid system Hε in (5.23) with constants d ≥ c > 0 be given. If

there exist a constant µ > 0 and a positive definite symmetric matrix P such that (5.37)

holds with γ1 = 3c+4d
2 and γ2 = 2(c+ d), and σ as in (5.38) such that

η
1
6 ρ < 1 (5.39)

with η =
∣∣1 − σ

α2

∣∣ and ρ = exp
(
γc

2α2

)
holds, where α2 and γ are as given in (5.31) and

(5.31), respectively, then Aε is globally attractive for Hε. Moreover, every maximal solution

φε to Hε with φ(0, 0) ∈
(
Cε ∪Dε

)
∩M, satisfies

|φ(t, j)|Aε ≤
√
α2

α1
η
j
6 ρj exp

(γc
α2

)
|φ(0, 0)|Aε ∀(t, j) ∈ dom φ (5.40)

where

α1 = λmin
ν∈Q,σ∈P

(
exp

(
(νh(ν) + d(5− σ))A>f

)
P exp

((
νh(ν) + d(5− σ)

)
Af
))

and, consequently, limt+j→∞ |φ(t, j)|Aε = 0.

Proof. Pick a maximal solution with initial condition φε(0, 0) ∈
(
Cε ∪Dε

)
∩M. Recall the

function V in (5.28), from the proof of Lemma 5.4.2 we have that

V (Gε6(xε))− V (xε) ≤ −σε>ε ∀xε ∈ Dε6 ∩M (5.41)

and from the definition of V in (5.28), there exists a positive scalar α2 as in (5.30) such

that

V (xε) ≤ α2|xε|2Aε
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rearranging terms one then has

−|xε|2Aε ≤ −
1

α2
V (xε)

Then, by making the appropriate substitutions in (5.41), since ε>ε = |xε|2Aε one has

V (Gε6(xε))− V (xε) ≤ −
σ

α2
V (xε)

V (Gε6(xε)) ≤
∣∣∣1− σ

α2

∣∣∣V (xε)

From Lemma 5.4.1 we have that for each xε ∈ Cε,

〈∇V (xε), Fε(xε)〉 ≤

0 if xε ∈ Cε2
γ
α2
V (xε) if xε ∈ Cε1

(5.42)

and from Lemma 5.4.2 we have that for each xε ∈ Dε ∩M,

V (Gε`(xε)) ≤

V (xε) if ` ∈ {1, 2, 3, 4, 5}(
1− σ

α2

)
V (xε) if ` = 6

(5.43)

Pick a solution φ to Hε with φε(0, 0) ∈ Cε ∩M1. Then for each (t, j) ∈ [0, t1]× {0}

V
(
φε(t, 0)

)
≤ exp

( γ
α2

(t1 − 0)
)
V
(
φε(0, 0)

)
At (t1, 1), following a reset according to Gε1 one has

V
(
φε(t1, 1)

)
≤ V

(
φε(t1, 0)

)
Then, since φq(t1, 1) = 1 for each (t, j) ∈ [t1, t2]× {1}, we obtain

V
(
φε(t, 1)

)
≤ V

(
φε(t1, 1)

)
At (t2, 2), following a reset according to Gε2 one has

V
(
φε(t2, 2)

)
≤ V

(
φε(t2, 1)

)
Then since φq(t2, 2) = 0 for each (t, j) ∈ [t2, t3]× {2}, we obtain

V
(
φε(t, 2)

)
≤ exp

( γ
α2

(t3 − t2)
)
V
(
φε(t2, 2)

)
At (t3, 3), following a reset according to Gε3 one has

V
(
φε(t3, 3)

)
≤ V

(
φε(t3, 3)

)
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Then since φq(t3, 3) = 1 for each (t, j) ∈ [t3, t4]× {3}, we obtain

V
(
φε(t, 3)

)
≤ V

(
φε(t3, 2)

)
At (t4, 4) following a reset according to Gε4 one has

V
(
φε(t4, 4)

)
≤ V

(
φε(t4, 3)

)
Then since φq(t4, 4) = 0 for each (t, j) ∈ [t4, t5]× {4}, we obtain

V
(
φε(t, 4)

)
≤ exp

( γ
α2

(t5 − t4)
)
V
(
φε(t4, 4)

)
At (t5, 5), following a reset according to Gε5 one has

V
(
φε(t5, 5)

)
≤ V

(
φε(t5, 4)

)
then since φq(t5, 5) = 1 for each (t, j) ∈ [t5, t6]× {5}, we obtain

V
(
φε(t, 5)

)
≤ V

(
φε(t5, 5)

)
At (t6, 6), following a reset according to Gε6 one has

V
(
φε(t6, 6)

)
≤
∣∣∣1− σ

α2

∣∣∣V (φε(t6, 5)
)

Making the appropriate substitutions one has

V
(
φε(t6, 6)

)
≤
∣∣∣1− σ

α2

∣∣∣ exp
( γ
α2

(t5 − t4)
)

exp
( γ
α2

(t3 − t2)
)

exp
( γ
α2

(t1 − 0)
)
V
(
φε(0, 0)

)
leading to a general bound of the form

V
(
φε(t, j)

)
≤
∣∣∣1− σ

α2

∣∣∣b j6 c( b j−1
2
c∏

k=0

exp
( γ
α2

(t2k+1 − t2k)
))

V
(
φε(0, 0)

)
(5.44)

However, by noting the bounds in (6.5) one has that tj+1 − tj ≤ c(j + 1) for each j ∈ {2i :

i ∈ N}, j > 0, then assuming γ > 0, the bound in (5.44) reduces to

V
(
φε(t, j)

)
≤
∣∣∣1− σ

α2

∣∣∣b j6 c( b j−1
2
c∏

k=0

exp
( γ
α2

(c(2k + 1))
))

V
(
φε(0, 0)

)

V
(
φε(t, j)

)
≤
∣∣∣1− σ

α2

∣∣∣b j6 c( exp
(γc
α2

))d j2 e
V
(
φε(0, 0)

)
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Using the relation d j2e = j
2 + 1 we then have

V
(
φε(t, j)

)
≤
∣∣∣1− σ

α2

∣∣∣b j6 c( exp
(γc
α2

)) j
2

exp
(γc
α2

)
V
(
φε(0, 0)

)
Then noting that b j6c ≤

j
6

V (t, j) ≤
∣∣∣1− σ

α2

∣∣∣ j6( exp
( γc

2α2

))j
exp

(γc
α2

)
V (0, 0)

Then given the definition of V in (5.28) we have that

α1|xε|2Aε ≤ V
(
φε(t, j)

)
≤
∣∣∣1− σ

α2

∣∣∣ j6( exp
( γc

2α2

))j
exp

(γc
α2

)
V
(
φε(0, 0)

)
(5.45)

Finally, by leveraging V (φ(0, 0)) ≤ α2|φ(0, 0)|2Aε , we arrive at (5.40).

5.5 About the Multi-Agent Case

In this section, we present an extension to the proposed algorithm model to capture

the scenario of synchronizing multiple networked agents. For such a setting, we consider

the leader-follower scenario where there exists a single designated reference node to which

all the connected nodes synchronize. To this end, let τR ∈ R define the clock of the

designated reference node and τS := (τS1 , τS2 , . . . , τSn−1) ∈ Rn−1 define the clocks of the

synchronizing child nodes. Moreover, we let aR ∈ R and a := (a1, a2, . . . , an−1) ∈ Rn−1

define the skews of the reference clock and synchronizing clocks, respectively. Given the

leader-follower architecture to synchronize the nodes, the algorithm in H is modified such

that the algorithm modeled by H is executed for each synchronizing node. In particular, the

algorithm executes the synchronization process given by (P1)-(P6) for the reference node

τR and the i-th child node τSi . Upon completion, the algorithm then executes the same

synchronization steps (P1)-(P6) for the reference node and the i + 1-th child node. This

procedure is repeated recurrently and cyclically for each pair reference-child node in the

network. To enable the modeling of such an algorithm, we define:

• A discrete variable ` ∈ {1, 2, . . . , n−1} =: S that indexes the node to be synchronized.

The variable remains constant during flows, namely, ṡ = 0, and resets to either s+ 1

upon the completion of the synchronization algorithm for s ∈ {1, 2, . . . , n − 2} or is

reset to 1 when s = n− 1.
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• For each ` ∈ S, a timer variable τ̃` ∈ [0, 3c + 3d] to track the execution of the

synchronization algorithm for the respective `-th child node, with dynamics

˙̃τ` = −1 τ̃` ∈ [0, 3c+ 3d]

τ̃+
` = 3c+ 3d τ̃` = 0

for each ` ∈ S. The value 3c+3d reflects the duration of the synchronization algorithm

executed between the reference and the synchronizing node capturing the total time

elapsed during message transmission and residence delay.

The state of this multi-agent system is given by

x̃ := (τR, τS , aR, a, τ, τ̃ ,mR,mS , `, p, q) ∈ X̃

where τ̃ := (τ̃1, τ̃2, . . . , τ̃n−1) and

X̃ := R× Rn−1 × R× Rn−1 × [0, d]× [0, 3c+ 3d]n−1 × R6 × R6 × S × P ×Q

Then by noting the dynamics of the clocks as given in (5.1) and those of the timer τH above,

the continuous dynamics of x̃ is given by the flow map

F̃ (x̃) = (aR, a, 0,0n−1×1,−1,−1(n−1)×1,06×1,06×1, 0, 0, 0) ∀x̃ ∈ C̃ := X̃

To model the discrete dynamics of the communication and arrival events of the exchanged

timing messages, in addition to the subsequent corrections on the clock rate and offset, we

consider the jump map G̃(x̃) := {G̃i(x̃) : x̃ ∈ D̃i, i ∈ S} where

G̃i(x̃) = G̃ik(x̃) if x ∈ D̃`
k
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and

G̃i1(x̃) =



τR

τS

aR

a

d

τH[[
τR, mR

1 , · · · , mR
5

]
ms
]>

`

p+ 1

1



, G̃i2(x̃) =



τR

τ

aR

a

c

τH[
mR

[
τi, mR

1 , · · · , mR
5

]]>
`

p+ 1

0



,

G̃i3(x̃) =



τR

τS

aR

a

d

τH[
mR

[
τi, ms

1 , · · · , ms
5

]]>
`

p+ 1

1



, G̃i4(x̃) =



τR

τS

aR

a

c

τH[[
τR, ms

1 , · · · , ms
5

]
ms
]>

`

p+ 1

0



,

G̃i5(x̃) =



τR

τS

aR

a

d

τH[[
τR, mR

1 , · · · , mR
5

]
ms
]>

`

p+ 1

1



,
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G̃i6(x̃) =



τR

τ −
[
0i−1, Kõ(mR), 0n−1−i

]>
aR

a+
[
0i−1, Ka(mR, τSi), 0n−1−i

]>
c[

τH1
, . . . , τHi , 3c+ 3d, τHi+2

, . . . , τHn−1

]>[
mR

[
τi, mR

1 , · · ·, mR
5

]]>
`+ 1

0

0


To handle the condition where ` = n − 1 such that the protocol cycles back to synchronizing the

first node, we have the following jump map for Gn−1
6 ,

G̃n−1
6 (x̃) =



τR

τ −
[
0i−1, Kõ(mR), 0n−1−i

]>
aR

a+
[
0i−1, Ka(mR, τi), 0n−1−i

]>
c[

τH1
, . . . , τHn−2

, 3c+ 3d
]>[

mR
[
τi, mR

1 , · · ·, mR
5

]]>
1

0

0


To trigger the jump map corresponding to the particular protocol event, we define the jump set as

D̃ := D̃1 ∪ D̃2 ∪ · · · ∪ D̃i ∪ · · · ∪ D̃n−1 where D̃i := D̃i
1 ∪ D̃i

2 ∪ D̃i
3 ∪ D̃i

4 ∪ D̃i
5 ∪ D̃i

6 and

D̃i
1 := {x̃ ∈ X̃ : τ = 0, p = 0, ` = i}, D̃i

2 := {x̃ ∈ X̃ : τ = 0, p = 1, ` = i}

D̃i
3 := {x̃ ∈ X̃ : τ = 0, p = 2, ` = i}, D̃i

4 := {x̃ ∈ X̃ : τ = 0, p = 3, ` = i}

D̃i
5 := {x̃ ∈ X̃ : τ = 0, p = 4, ` = i}, D̃i

6 := {x̃ ∈ X̃ : τ = 0, τHi = 0, p = 5, ` = i}

This hybrid system is denoted

H̃ = (C̃, F̃ , D̃, G̃) (5.46)
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Error Model

With an abuse of notation, let ε := (ε1, . . . , εn−1) ∈ R2(n−1), where εi =

[
τR − τi
aR − ai

]
for

each i ∈ S. Then, define

x̃ε := (ε, x̃) ∈ X̃ε := R2(n−1) × X̃

For each x̃ε ∈ C̃ε := X̃ε, the flow map is given by

F̃ε(x̃ε) =
(
AF ε, F̃ (x̃)

)
where

AF =


Af · · · 0
...

. . .
...

0 · · · Af


where Af =

[
0 1

0 0

]
.

The discrete dynamics of the protocol are modeled through the jump map G̃ε(x̃) :=

{G̃iε(x̃) : x̃ε ∈ D̃i
ε, i ∈ S} where

G̃iε(x̃ε)=



G̃iε1(x̃ε) if x̃ε ∈ D̃i
ε1\(D̃

i
ε2∪D̃

i
ε3∪D̃

i
ε4∪D̃

i
ε5∪D̃

i
ε6)

G̃iε2(x̃ε) if x̃ε ∈ D̃i
ε2\(D̃

i
ε1∪D̃

i
ε3∪D̃

i
ε4∪D̃

i
ε5∪D̃

i
ε6)

G̃iε3(x̃ε) if x̃ε ∈ D̃i
ε3\(D̃

i
ε1∪D̃

i
ε2∪D̃

i
ε4∪D̃

i
ε5∪D̃

i
ε6)

G̃iε4(x̃ε) if x̃ε ∈ D̃i
ε4\(D̃

i
ε1∪D̃

i
ε2∪D̃

i
ε3∪D̃

i
ε5∪D̃

i
ε6)

G̃iε5(x̃ε) if x̃ε ∈ D̃i
ε5\(D̃

i
ε1∪D̃

i
ε2∪D̃

i
ε3∪D̃

i
ε4∪D̃

i
ε6)

G̃iε6(x̃ε) if x̃ε ∈ D̃i
ε6\(D̃

i
ε1∪D̃

i
ε2∪D̃

i
ε3∪D̃

i
ε4∪D̃

i
ε5)

where

G̃iε1(x̃ε)=

[
ε

G̃i1(x̃)

]
, G̃iε2(x̃ε)=

[
ε

G̃i2(x̃)

]
, G̃iε3(x̃ε)=

[
ε

G̃i3(x̃)

]
,

G̃iε4(x̃ε)=

[
ε

G̃i4(x̃)

]
, G̃iε5(x̃ε)=

[
ε

G̃i5(x̃)

]
, G̃iε6(x̃ε)=

[[
ε1, . . . , ε

+
i , . . . , εn−1

]>
G̃i6(x̃)

]
where

ε+
i =

τR − (τi −Kõ(x̃)
)

aR −
(
ai +Ka(x̃)

)


These discrete dynamics apply for x in D̃ε := D̃1
ε ∪ D̃2

ε ∪ · · · ∪ D̃i
ε ∪ · · · ∪ D̃n−1

ε , where
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D̃i
ε := D̃i

ε1 ∪ D̃
i
ε2 ∪ D̃

i
ε3 ∪ D̃

i
ε4 ∪ D̃

i
ε5 ∪ D̃

i
ε6 and

D̃i
ε1 := {x̃ε ∈ X̃ε : τ = 0, p = 0, ` = i}, D̃i

ε2 := {x̃ε ∈ X̃ε : τ = 0, p = 1, ` = i}

D̃i
ε3 := {x̃ε ∈ X̃ε : τ = 0, p = 2, ` = i}, D̃i

ε4 := {x̃ε ∈ X̃ε : τ = 0, p = 3, ` = i}

D̃i
ε5 := {x̃ε ∈ X̃ε : τ = 0, p = 4, ` = i}, D̃i

ε6 := {x̃ε ∈ X̃ε : τ = 0, τHi = 0, p = 5, ` = i}

This hybrid system is denoted

H̃ε = (C̃ε, F̃ε, D̃ε, G̃ε) (5.47)

and the set to render attractive for the multi-agent model is given by

Ãε := {x̃ε ∈ X̃ε : εi = 0 ∀i ∈ S} (5.48)

With the system defined in this manner, one can extend the results of the two-

agent model to the multi-agent setting to certify attractivity of H̃ε to Ãε. To demonstrate

the feasibility of the model, a numerical example illustrating the convergence properties of

H̃ε is included in the following section where a three-agent system is simulated.

5.6 Numerical Results

5.6.1 Two-agent system

Nominal Setting

In this first example, we present a numerical simulation of the two-agent system

for the nominal setting that validates our theoretical results, namely we show that with the

conditions in (5.37) satisfied, the trajectories of the simulation converge to the desired set.

Example 5.6.1. Consider Nodes i and k with dynamics as in (5.1) with data ai = 1,

ak = 1.8 and c = 0.1, d = 0.2 to the system H. Setting µ = 0.833, condition (5.37)

is satisfied with P =

 6.2594 −0.5219

−0.5219 11.4302

. Simulating the system, Figure 6.1 shows the

trajectories of the error in the clocks and error in the clock rates of Nodes i and k for a

solution φ to the system such that φ(0, 0) ∈ (C ∪D)∩M. Figure 6.1 also shows the plot of

V evaluated along the solution. Notice, that V converges to zero asymptotically following

several periodic executions of the algorithm. Observe that the behavior of clock error is more

stable than the conventional sender-receiver algorithm simulated in Figure 5.3. 6

6Code at github.com/HybridSystemsLab/HybridSenRecClockSync
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(a) (b)

Figure 5.5: Figure 6.1(a) gives the evolution of the error in the clocks and clock rates of
Nodes i and k. Figure 6.1(b) gives V evaluated along the solution.

Variable propagation delay due to communication noise

In the next example, we simulate the case of noise in the communication channel

that contributes to a variable propagation delay d. Noise in the communication channel

makes the propagation delay between nodes i and k no longer symmetric.

Example 5.6.2. Consider the same clock dynamics from the previous example, i.e., ai =

1.1, ak = 0.75, with µ = 0.3571 and condition (5.37) satisfied for c = 0.2, d = 0.5, and

P =

5.435 1.041

1.041 16.0982

. Now, with [d1, d2] defining the allowed values of d with d1 = 0.49

and d2 = 0.51, we generate variable propagation delay by replacing the dynamics of τ in

(5.13) by

τ̇ = −1 τ ∈ [0, d2]

τ+ ∈ ∪d∈[d1,d2](1− q)d+ qc τ = 0

Figure 5.8 shows a simulation of the trajectories of the error in the clocks and error in the

clock rates of Nodes i and k. Observe that absolute error in the clocks converges to zero

even in the presence of the perturbation after several periodic executions of the algorithm.

The error in clock rates is also able to converge sufficiently close to zero but suffers from

some observed variability due to the noise. 7

7Code at github.com/HybridSystemsLab/HybridSenRecClockSync
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Figure 5.6: Figure 6.1(a) gives the evolution of the error in the clocks and clock rates
of Nodes i and ksubject to noise on the communication channel. Figure 6.1(b) gives V
evaluated along the solution.

Time-varying clock rates

In the next example, we consider the common scenario of time-varying clock skews

at both nodes i and k. This noise is injected at the clock dynamics τ̇i and τ̇k. The system

is then simulated with the remaining dynamics left unchanged.

Example 5.6.3. For c = 0.2 and d = 0.5, consider nodes i and k with clock dynamics

τ̇i = ai +ma

τ̇k = ak +ma

where ai = 1.1, ak = 0.75, and ma ∈ (−0.3, 0.3) is a Gaussian injected noise on the clock

dynamics. Letting µ = 0.3571, condition (5.37) is satisfied with P =

5.435 1.041

1.041 16.0982

.

Simulating the system, Figure 5.7 shows the trajectories of the error in the clocks and error

in the clock rates of Nodes i and k. Again, the system is able to converge after a couple

of executions of the algorithm. The error on the clocks observes the most variability due to

simulated noise.8

5.6.2 Multi-agent model

In this section we present numerical results for the multi-agent model to validate

our theoretical results and draw comparisons with other multi-agent clock synchronization

models from the literature.
8Code at github.com/HybridSystemsLab/HybridSenRecClockSync

113



(a) (b)

Figure 5.7: Figure 6.1(a) gives the evolution of the error in the clocks and clock rates of
Nodes i and k subject to noise ma on the clock dynamics. Figure 6.1(b) gives V evaluated
along the solution.

Example 5.6.4. Consider a network of three nodes {R, 1, 2} where R denotes the reference

or parent node while nodes 1,2 denote the synchronizing child nodes. The data of this system

is given by aR, a1, a2 ∈ [0.5, 1.5] and c = 0.1, d = 0.2 with µ = 0.833. Simulating the multi-

agent system H̃, Figure 5.7(a) shows the trajectories of the error in the clocks and error in

the clock rates of Nodes 1 and 2 with respect to Node R. Note that the errors with respect

to each clock converge after several executions of the algorithm on the respective clocks at

Nodes 1 and 2. 9

Figure 5.8: The evolution of the error in the clocks and clock rates of Nodes 1 and 2 with
respect to Node R.

9Code at github.com/HybridSystemsLab/HybridSenRecMultiClockSync
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5.7 Summary

In this chapter, we introduced a sender-receiver clock synchronization algorithm

with sufficient design conditions ensuring synchronization. Results were given to show

asymptotic attractivity of a set of interest reflecting the desired synchronized setting. Nu-

merical results validating the attractivity of the system to the set of interest were also given.

An additional model to capture the multi-agent setting was presented with a numerical ex-

ample to demonstrate its feasibility.
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Chapter 6

A General Framework for Hybrid

Clock Synchronization

In this section, we motivate a hybrid systems approach to clock synchronization. For many

networked control system settings, each agent in the system is fitted with its own internal

hardware clock and an instance of a software clock based on the dynamics of the hardware

clock. Ideally, the ith agent in the system would have a clock τi ∈ R≥0 such that τi(t) = t

where t is the global or real time. Due to the observed variability in oscillator frequency,

one generally considers the continuous-time dynamics of the ith hardware clock node given

by

τ̇i = ai (6.1)

where ai ∈ R defines clock drift or skew due to an imperfect oscillator. Solving the differen-

tial equation (6.1) gives the following relationship to the ideal clock or real-time reference

t:

τi(t) = ait+ τi(0) ∀t ≥ 0 (6.2)

where the initial condition τi(0) gives the offset from t = 0. For a network of n agents,

with τ = (τ1, τ2, . . . , τn) the notion of clock synchronization corresponds to the state of the

networked system asymptotically satisfying τi = τj for all i, j ∈ {1, 2, . . . , n}, i 6= j, i.e.,

lim
t→∞

τi(t)− τj(t) = 0 ∀i, j ∈ {1, 2, . . . , n}, i 6= j

In an ideal setting with no delay and identical clock skews, synchronization between

two agents 1 and 2 can be achieved by the following algorithm: Agent 1 send its time to
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Agent 2. Agent 2 calculates its offset relative to 1. Agent 2 applies the offset correction to

its clock. For the case of different clock skews, a pair of measurements from Agent 1 would

allow Agent 2 to calculate its relative skew a1
a2

and apply a correction accordingly.

In a realistic setting, however, network communication between agents is often

subjected to a variety of delays. Without loss of generality, these delays can be divided into

two types: propagation time and residence time. Propagation time represents the actual

time elapsed during message transmission between two nodes when the message is in the

network channel. The residence time defines the time elapsed between message reception

and egress of its response message. It captures all of the hardware-related delays such as

send time, access time, transmission time, reception time, and receive time, see [5] and [10]

for more details. Moreover, depending on the system setting, these observed delays can

either be deterministic or stochastic in nature and are the key challenge in networked clock

synchronization. In light of this challenge, the goal of clock synchronization is to achieve

synchronization while removing or mitigating the effects of delay.

6.0.1 Problem Statement and Proposed Solutions

Consider a group of n agents connected over a network represented by a digraph

G = (V, E , A). Two clocks are attached to each node i of G: an (uncontrollable) internal

clock τi ∈ R≥0 whose dynamics are given by

τ̇i = ai (6.3)

and an adjustable (via software) clock τ̂i ∈ R≥0 with dynamics given by

˙̂τi = fτ̂i(ai, ui) (6.4)

where ai ∈ R is the drift of the internal clock (unknown) and ui ∈ R is a control parameter to

control the drift. At times tij for j ∈ N (with ti0 = 0), agents exchange information depending

on the communication architecture and protocols used. When symmetric communication

protocols are used, at each such tij , agent i

• broadcasts a measurement τ̂i to its neighbors Ni, and

• receives measurements τ̂k from each of its neighbors k ∈ Ni,

117



On the other hand, when asymmetric communication protocols are used, at each such tij ,

agent i

• broadcasts a measurement τ̂i to its neighbors Ni.

The resulting sequence of time instants {tij}∞j=1 for each node i is assumed to be strictly

increasing and unbounded. Moreover, for such a sequence, the time elapsed between each

time instant when the clock measurements are exchanged is governed by

T i1 ≤ tij+1 − tij ≤ T i2 ∀j ∈ N \ {0}

0 ≤ ti1 ≤ T i2
(6.5)

where T i2 ≥ T i1 > 0 with T i1 defining the minimum time between consecutive measurements

and T i2 defines the maximum allowable transfer interval (MATI) for each node i.

Remark 6.0.1. The models for the clocks are based on the hardware and software relation-

ship of the real-time system that implements them. That is, the internal clock τ∗i is treated

as a type of hardware oscillator while the adjustable clock τ̂i is treated as a virtual clock,

implemented in software (as part of the proposed algorithm), that evolves according to the

dynamics of the hardware oscillator. Any virtual clock implemented in node i inherits the

drift parameter ai of the internal clock, which cannot be controlled. More importantly, this

drift parameter is not known due to the fact that universal time information is not available

to any node. Due to this, fτ̂i in (6.4) would involve ai in defining the rate of change of the

software clock τ̂i.

Under such a setup, our goal is to design a distributed hybrid controller that drives

each clock τ̂i to synchronization with every other clock τ̂k. This problem is formally stated

as follows:

Problem 6.0.1. Given a network of n agents with dynamics as in (6.3) and (6.4) repre-

sented by a directed graph G, design a distributed hybrid controller that achieves the following

synchronization property:

i) Clock synchronization: limt→∞ |τ̂i(t)− τ̂k(t)| = 0 for all i, k ∈ V, i 6= k

In order to solve Problem 6.0.1, we introduce a hybrid modeling framework that

allows for modeling of the network and clock dynamics accompanied by user-defined provi-

sions for a clock synchronization algorithm. In particular, the framework defines sufficient
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conditions imposed on the defined algorithm such that asymptotic stability of the system to

a synchronization set capturing limt→∞ |τ̂i(t)−τ̂k(t)| = 0 for all i, k ∈ V, i 6= k is guaranteed.

6.1 Hybrid Modeling Framework

Given a set of n nodes connected over a directed graph G and the respective

models for the internal and virtual clocks given in (6.3) and virtual (6.4), respectively, we

consider internal clocks τ := (τ1, τ2, . . . , τn) ∈ Rn≥0, adjustable clocks τ̂ := (τ̂1, τ̂2, . . . , τ̂n) ∈
Rn≥0, internal clock rates a := (a1, a2, . . . , an) ∈ Rn≥0, and clock correction rates ν :=

(ν1, ν2, . . . , νn) ∈ Rn.

In order to accommodate the various algorithms, we define an auxiliary state

u := (u1, u2, . . . , un) ∈ Rn with dynamics u̇ = fu(x). Moreover, we include controller states

w := (w1, w2, . . . , wn) ∈ Rm whose dimension m is dependent on the dimension of the

controller state(s) of the particular algorithm. To this end, we can then define the state of

the complete system as follows:

x := (τ, τ̂ , u, ν, w, τ̃) ∈ Rn≥0 × Rn≥0 × Rn × Rn × Rm × T =: X

where T := [0, T 1
2 ]× [0, T 2

2 ]× . . .× [0, Tn2 ]

To model the network dynamics for the aperiodic communication events between

each node i and its set of neighbors, we consider timers τ̃ := (τ̃1, τ̃2, . . . , τ̃n) ∈ Rn≥0 such

that each timer τ̃i has hybrid dynamics

˙̃τi = −ai τ̃i ∈ [0, T i2]

τ̃+
i ∈ [T i1, T

i
2] τ̃i = 0

(6.6)

This model is such that when τ̃i = 0, a communication event between node i and its neigh-

bors is triggered, and τ̃i is reset to a point in [T i1, T
i
2] in order to preserve the bound given

in (6.5). Note that τ̃ is treated as an additional software clock that inherits the dynam-

ics of the hardware clock as described in Remark 6.0.1. Then, given the clock dynamics

in (6.3), (6.4), and the continuous dynamics in (6.6), the flow dynamics of the symmetric
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communication system are given by

fs(x) :=



a

fτ̂ (a, u)

fu(x, u)

hν

fw(w)

−a


∀x ∈ C := X (6.7)

where fτ̂ := (fτ̂1 , fτ̂2 , . . . , fτ̂n) and fτ̂i is modeled as the software clock given in (6.4). The

functions fu : X × R → R and fw : Rm → Rm are to be defined for each algorithm. The

choice of hν with h ∈ R enables additional control of the clock correction during flows

as required by certain algorithms such as HyNTP. The flow dynamics of the asymmetric

communication system are given by

fa(x) :=



a

fτ̂ (a, u)

fu(x, u)

hν

fw(w)

−a


∀x ∈ C := X (6.8)

where fτ̂ := diag(a)Du is modeled as the software clock given in (6.4) but whose con-

trol parameter ui depends on the in-degree communication matrix D. In particular,

D = diag(I⊗1>
d1in
, . . . , I⊗1>dnin

) with diin being the in-degree of the ith agent. The functions

fu : X ×R→ R and fw : Rm → Rm are again to be defined for each algorithm. The choice

of hν with h ∈ R again enables additional control of the clock correction during flows as

required by certain algorithms. The discrete dynamics take the following general form for

both the symmetric and asymmetric algorithms:

G(x) := {Gi(x) : x ∈ Di, i ∈ V} (6.9)
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where

Gi(x) :=



τ

gτ̂ (x)

gu(x)

gν(x)

gw(x)

(τ̃1, . . . , τ̃i−1, [T
i
1, T

i
2], τ̃i+1, . . . , τ̃n)


(6.10)

is allowed at each x ∈ D :=
⋃
i∈V Di with Di := {x ∈ X : τ̃i = 0} where gτ̂ : X → Rn≥0,

gu : X → Rn, gν : X → Rn, gw : X → Rm are functions to be defined depending on the

particular algorithm to be modeled. With the data defined, we let

Hs = (C, fs, D,G) (6.11)

denote the hybrid system for the modeling framework under symmetric communication

protocols and

Ha = (C, fa, D,G) (6.12)

denote the hybrid system for the modeling framework under asymmetric communication

protocols.

Given that the functional maps fs, fa, and G are comprised of functions that

are to be defined by the dynamics of the respective algorithms, we impose continuity and

boundedness assumptions on fu, fw, gτ̂ , gu, gν , and gw in order to satisfy continuity and

boundedness conditions on the system data for Hs and Ha.

Assumption 6.1.1. The functions fu : X × Rn → X and fw : Rm → Rm are continuous

and locally bounded relative to C.

Assumption 6.1.2. The functions gτ̂ : X → Rn≥0, gu : X → Rn, gν : X → Rn, gw : X →
Rm are outer continuous and bounded relative to D.

Lemma 6.1.3. Suppose Assumption 6.1.1 and Assumption 6.1.2. Then, hybrid systems

Hs and Ha satisfy the following conditions, defined in [4, Assumption 6.5] as the hybrid

basic conditions.

(A1) C and D are closed sets of Rm.

121



(A2) fa : Rm → Rm and fs : Rm → Rm are continuous and, hence, locally bounded relative

to C and C ⊂ dom f .

(A3) G : Rm ⇒ Rm is outer semicontinuous and locally bounded relative to D, and D ⊂
dom G.

Proof. By inspection of the hybrid system data defining Hs given in (5.12), the following is

observed:

• The set C is a closed subset of Rm since, C = X and X is the Cartesian product of

closed sets. Similar arguments show that D is closed since it can be written as

D = Rn≥0 × Rn≥0 × Rn × Rn × Rm × {0} × [0, T 2
2 ]× . . .× [0, Tn2 ]

∪ Rn≥0 × Rn≥0 × Rn × Rn × Rm × [0, T 1
2 ]× {0} × . . .× [0, Tn2 ]

...

∪ Rn≥0 × Rn≥0 × Rn × Rn × Rm × [0, T 1
2 ]× [0, T 2

2 ]× . . .× {0}

Thus, (A1) holds.

• Given Assumption 6.1.1, we have that fa : X → X and fs : X → X are continuous

on C. Moreover, since dom fa = X = C and dom fs = X = C, C ⊂ dom fa and

C ⊂ dom fs hold. Thus, (A2) holds.

• To show that the set-valued map G defined in (6.9) satisfies (A3), note that the graph

of G is given by

gph(G) = {(x, y) : x ∈ D, y ∈ G(x)}

= D ×
(
Rn≥0 × Rn≥0 × Rn × Rn × Rm × T

)
is closed. Thus, via [4, Lemma 5.10], G is outer semicontinuous and locally bounded

at each x ∈ D. Moreover, by definition, we have that dom G = D. Hence, (A3) holds.

Observe that similar arguments can be made on the data of Ha such that (A1), (A2), and

(A3) hold.

With the defined model, we consider the following set and provide conditions

guaranteeing that it is rendered stable for Hs and Ha solving Problem 6.0.1:

A := {x ∈ X : τ̂i = τ̂k ∀i, k ∈ V} (6.13)
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for which synchronization of the clocks is implied. In the following section, we outline a

procedure to facilitate the set stabilization analysis. We show that through a change of

coordinates, a Lyapunov-based set stabilization analysis can be performed that shows the

system H solves Problem 6.0.1.

In the next section, we introduce several clock synchronization protocols that rely

on bidirectional communication of connected nodes at communication events. We refer to

such synchronization algorithms as symmetric due to this observed bidirectional flow of

information.

6.1.1 Symmetric Communication Protocols

RandSync

The RandSync protocol proposed by the authors in [26] is a randomized consensus

protocol that drives the error in the clocks τ̂i ∈ R≥0 for each i ∈ V to synchronization using

a second-order controller variable νi ∈ R for each i ∈ V. The algorithm is described as

follows, at times {tij}∞j=1 ,

1. Agent k sends its time reading to neighboring agents k ∈ N (i);

2. Agent k receives time readings from the neighboring agents k ∈ N (i);

3. Agent k uses the received time readings τ̂i(t
i
j) by updating their clock τ̂k and control

parameter νk as followsτ̂i(t
k
j+1) = τ̂i(t

k
j ) +

∑
k∈N (i) aik(tkj )

(
τ̂k(t

k
j )− τ̂i(tkj )

)
νi(t

k
j+1) = νi(t

k
j ) + α

∑
k∈N (i) aik(tkj )

(
τ̂k(t

k
j )− τ̂i(tkj )

) ∀k ∈ N (i) (6.14)

where α > 0 is a gain parameter and aik(tij) ≥ 0 are the elements of a weighted adja-

cency matrix A such that
∑
k 6=i
aik(t

i
j) < 1. The given updates of τ̂i and νi, respectively,

drive the clock state and the clock rate of each agent to their respective average values.
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Composing the protocol as a hybrid system, we have

˙̂τi = aiui

u̇i = hiui

ν̇i = hiνi

 τ̃i ∈ [0, T2]

τ̂+
i = τ̂i +

∑
k∈N (i)

(τ̂i − τ̂k)

u+
i = νi + α

∑
k∈N (i)

(τ̂i − τ̂k)

ν+
i = νi + α

∑
k∈N (i)

(τ̂i − τ̂k)


τ̃i = 0

(6.15)

where the resets τ̂+
i and ν+

i follow from (6.18). However, since ˙̂τi = aiui, ui assumes

the role of adjusting the clock rate thus, νi becomes an auxiliary control parameter.

To adequately capture the hybrid dynamics of the RandSync protocol into the

framework defined by Hs, the functions fu and fw contained in the flow map fs are defined

as follows:

fu(u) = hu

fw(x) = 0
(6.16)

The functions gτ̂ , gu, gν , and gw employed in the jump map G are defined as follows:

gτ̂ (τ̂) = τ̂ + Lτ̂

gu(ν, τ̂) = ν + αLτ̂

gν(ν, τ̂) = ν + αLτ̂

gw(w) = w

(6.17)

where L is the graph Laplacian given by L = D −A with entries

`ij =


∑n

k=1,k 6=i aik if i = j

−aik if i 6= j
∀i ∈ V

Note that w is unused for this protocol and its evolution is kept constant.

PI-Consensus

Similarly, the authors in [25], propose a discrete proportional integral controller

to achieve clock synchronization. At times tij , each node i exchanges timing measurements
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τ̂i ∈ R≥0 with its neighbors N (i). Using the exchanged measurements, node i updates its

clock τ̂i and controller parameter νi ∈ reals as followsτ̂i(t
i
j+1) = τ̂i(t

i
j) + νi(t

i
j)−

∑
k∈N (i) aij(τ̂k(tij)− τ̂i(tij))

νi(t
i
j+1) = νi(t

i
j) + α

∑
k∈N (i) aij(τ̂k(tij)− τ̂i(tij)))

∀k ∈ N (i) (6.18)

where α ∈ (0, 1) and aik 6= 0 are the elements of an adjacency matrix A.

Composing the protocol as a hybrid system with sporadic communication via the

time τ̃ in (6.6), we have

˙̂τi = aiui

u̇i = hiui

ν̇i = hiνi

 τ̃i ∈ [0, T2]

τ̂+
i = τ̂i + νi −

∑
k∈N (i)

(τ̂i − τ̂k)

u+
i = νi + α

∑
k∈N (i)

(τ̂i − τ̂k)

ν+
i = νi + α

∑
k∈N (i)

(τ̂i − τ̂k)


τ̃i = 0

(6.19)

where the resets τ̂+
i and ν+

i follow from (6.18). However, since ˙̂τi = aiui, ui assumes

the role of adjusting the clock rate thus, νi becomes an auxiliary control parameter.

To adequately capture the hybrid dynamics of the PI-Consensus protocol into the

framework defined by Hs, the functions fu and fw contained in the flow map fs are defined

as follows:

fu(u) = hu

fw(x) = 0
(6.20)

The functions gτ̂ , gu, gν , and gw employed in the jump map G are defined as follows:

gτ̂ (τ̂) = τ̂ + (ν − Lτ̂)

gu(ν, τ̂) = ν + αLτ̂

gν(ν, τ̂) = ν + αLτ̂

gw(w) = w

(6.21)
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where, again, L is the graph Laplacian given by L = D −A with entries

`ij =


∑n

k=1,k 6=i aik if i = j

−aik if i 6= j
∀i ∈ V

Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

6.1.2 HyNTP

An additional algorithm that makes use of symmetric communication is our dis-

tributed algorithm first proposed in [30] but modified for the decentralized scenario and

adapted to the clock dynamics proposed in (6.3) and (6.4). This hybrid algorithm combines

a distributed discrete controller with a local continuous estimator to estimate the clock

skews. At times tij , each node i exchanges timing measurements with its neighbors N (i).

Then, using the exchanged measurements and local estimate of the clock skew the controller

applies a control input as follows:

˙̂τi = aiui

u̇i = hiνi − µi(τ̄i − τi)

ν̇i = hiνi

˙̂ai = −µ(τ̄i − τi)

˙̄τi = âi − (τ̄i − τi)


τ̃i ∈ [0, T2]

τ̂+
i = τ̂i

u+
i = −γ

∑
k∈N (i)

(τ̂i − τ̂k)− âi + σ∗

ν+
i = −γ

∑
k∈N (i)

(τ̂i − τ̂k)

â+
i = âi

τ̄+
i = τ̄i



τ̃i = 0

(6.22)

where h, σ∗ ∈ R and µ, γ > 0 are controller parameters. The parameter σ∗, in particular,

is a controllable clock rate that is injected with the control input. Note that νi is treated
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as an auxiliary state of the controller. Moreover, the state ui is kept constant in between

events and is reset to the new value of νi − ai + σ∗ at jumps. Furthermore, note that the

distributed controller only uses local and communicated information from the neighboring

nodes at communication event times tj .

To accommodate the HyNTP protocol, we define additional states τ̄ :=

(τ̄1, τ̄2, . . . , τ̄n) ∈ Rn and â := (â1, â2, . . . , ân) ∈ Rn that respectively represent the esti-

mator clock and clock rate. Then we define error coordinates ετ := τ̄ − τ and εa := a − â
such that the auxiliary variable is defined as

w = (εa, ετ ) ∈ Rn × Rn

and define the dynamics of w as follows:

ε̇a = −µετ

ε̇τ = −ετ + εa
(6.23)

Then, to compose the HyNTP protocol in the framework given byHs, the functions

fu and fw employed in the flow map fs are defined as follows:

fu(ν, u, ετ ) = hν − µετ

fw(w, τ) =

 −µετ
−ετ + εa

 (6.24)

The functions gτ̂ , gu, gν , and gw employed in the jump map G are defined as follows:

gτ̂ (τ̂) = τ̂

gu(a, τ̂ , εa) =
(
diag(a)

)−1(−γLτ̂ + εa + σ∗1n
)

gν(τ̂) = −γLτ̂

gw(w) = w

(6.25)

In the next section, we introduce several clock synchronization protocols that

utilize on one-way communication protocols between connected nodes at communication

events. We refer to such synchronization algorithms as asymmetric due to the observed

single directional flow of information.
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6.1.3 Asymmetric Communication Protocols

RandSync-Broadcast Algorithm

The RandSync protocol proposed by the authors in [26] is a randomized consensus

protocol that drives the error in the clocks τ̂i ∈ R≥0 for each i ∈ V to synchronization using

a second-order controller variable νi ∈ R for each i ∈ V. The algorithm is described as

follows: at times {tij}∞j=1,

1. Agent i sends its time reading τ̂i(t
i
j) to neighboring agents k ∈ N (i);

2. Agent k receives the time readings from Agent i;

3. Agent k uses the received time readings τ̂i(t
i
j) by updating their clock τ̂k and control

parameter νk as followsτ̂k(t
k
j+1) = τ̂k(t

k
j ) + aik(tkj )

(
τ̂k(t

k
j )− τ̂i(tkj )

)
νk(t

k
j+1) = νk(t

k
j ) + αaik(tkj )

(
τ̂k(t

k
j )− τ̂i(tkj )

) ∀k ∈ N (i)out (6.26)

where α > 0 is a gain parameter and aik(tkj ) = aik(tkj ) ∈ (0, 1) for k ∈ N (i)out and

zero otherwise.

Composing the protocol as a hybrid system, we have

˙̂τi = aiui

u̇i = hiui

ν̇i = hiνi

 τ̃i ∈ [0, T2]

τ̂+
ki = τ̂k + aki(τ̂i − τ̂k)

u+
ki = ak(νk + akiq(τ̂i − τ̂k))

ν+
ki = νk + akiq(τ̂i − τ̂k)

 τ̃i = 0

(6.27)

Then, to compose the RandSync-Broadcast protocol in the framework given by

Ha, the functions fu and fw employed in the flow map fa are defined as follows:

fu(u) = hu

fw(w, τ) = 0
(6.28)
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the functions gτ̂ , gu, gν , and gw employed in the jump map G are defined as follows:

gτ̂ (τ̂) = (I + qΓi)τ̂

gu(a, τ̂ , εa) = diag(a)
(
I + qΓi

)
ν

gν(τ̂) =
(
I + qΓi

)
ν

gw(x) = w

(6.29)

where Γi = 1nv
>
i −I gives the adjacency matrix at τ̃i = 0 and vi is the ith canonical vector.

Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

Average TimeSync

The authors in [1] propose the Average TimeSync protocol that utilizes consensus-

based controllers to individually synchronize both the clock drifts and clock offsets. The

mechanics of the algorithm are given as follows. At times tij , node i broadcasts its time

τ̂i(t
i
j) to its neighbors N (i). Upon receipt of the timestamp by nodes k ∈ N (i), each node

updates its clocks and clock rates as follows:



τ̂k(t
i
j+1) = νk(t

i
j)τk(t

i
j) + ôk(t

i
j)

νk(t
i
j+1) = ρvνk(t

i
j) + (1− ρv)ηikνk

ηki(t
i
j+1) = ρηηki(t

i
j) + (1− ρη)

τi(t
i
j)−τi(tij−1)

τk(tij)−τk(tij−1)

ôk(t
i
j+1) = ôk(t

i
j) + (1− ρo)

(
τ̂i(t

i
j+1)− τ̂k(tij+1)

)
∀k ∈ N (i) (6.30)
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where ρv ∈ (0, 1), ρη ∈ (0, 1), and ρo ∈ (0, 1). Composing the protocol as a hybrid system,

we have
˙̂τi = aiui

u̇i = hiui

ν̇i = hiνi

η̇ki = 0

˙̂oki = 0


τ̃i ∈ [0, T2]

τ̂k(t
i
j+1) = νk(t

i
j)τk(t

i
j) + ôk(t

i
j)

uk(t
i
j+1) = ρvνk(t

i
j) + (1− ρv)ηikνk

νk(t
i
j+1) = ρvνk(t

i
j) + (1− ρv)ηikνk

ηki(t
i
j+1) = ρηηki(t

i
j) + (1− ρη)

τi(t
i
j)− τi(tij−1)

τk(t
i
j)− τk(tij−1)

ôk(t
i
j+1) = ôk(t

i
j) + (1− ρo)

(
τ̂i(t

i
j+1)− τ̂k(tij+1)

)


τ̃i = 0

(6.31)

Then, composing the Average TimeSync protocol into the hybrid framework H,

we define controller sub-states ô := (ô1, ô2, . . . , ôn) ∈ Rn, η := (η̄1, η̄2, . . . , η̄n) ∈ Rn2
,

` := (¯̀
1, ¯̀

2, . . . , ¯̀
n) ∈ Rn2

, m := (m̄1, m̄2, . . . , m̄n) ∈ Rn2
where η̄i = (ηi1, ηi2, . . . , ηin) ∈ Rn,

¯̀
i := (`i1, `

i
2, . . . , `

i
n) ∈ Rn and m̄i := (mi

1,m
i
2, . . . ,m

i
n) ∈ Rn then we let

w = (ô, η, `,m) ∈ Rn × Rn
2 × Rn

2 × Rn
2

fu(u) = 0

fw(w, τ) = 0
(6.32)

and

gτ̂ (τ̂) = Γidiag
(
gν(η, ν)

)
τ + Γi

(
τ̂ + ô+ (1− ρo)Γiτ̂

)
gu(a, τ̂ , εa) = 0

gν(τ̂) =
(
I + (1− ρv)Γk

)
diag(ηk)νk

gw(x) =


ô+ (1− ρo)Γiτ̂

Γi

(
ρηη + (1− ρη)

(
diag(τ −m)

)−1
diag(τ − `)

)
[`11, . . . , `

1
i−1, τi, `

1
i+1, . . . `

1
n, . . . , `

n
1 , . . . , `

n
i−1, τi, `

n
i+1, . . . `

n
n]>

[m1
1, . . . ,m

1
n, . . . ,m

i
1, . . . ,mi

i−1, τi,m
i
i+1, . . .m

i
n . . .m

1
n, . . . ,m

n
n]>


(6.33)
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where Γi = 1nv
>
i −I gives the adjacency matrix at τ̃i = 0 and vi is the ith canonical vector.

Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

6.2 Numerical Results

In this section, we present numerical results to simulate our modeling framework

and validate its feasibility for both symmetric and asymmetric communication scenarios.

6.2.1 Symmetric Communication: HyNTP Case Study

To validate the model Hs for symmetric communication, consider five agents with

dynamics as in (6.3) and (6.4) over a strongly connected digraph with the following adja-

cency matrix

GA =



0 1 1 0 1

1 0 1 0 0

1 0 0 1 0

0 0 1 0 1

1 0 1 1 0


Given T1 = 0.01, T2 = 0.1, and σ∗ = 1, then it can be found that the parameters h = −0.4,

µ = 1, γ = 3.5, ρ = 1.3 synchronize the clocks. Figure 6.1(a) shows the trajectories of

τ̂i for components i ∈ {1, 2, 3, 4, 5} of a solution φ for the case where σ∗ = 1 with initial

conditions φτ̂ (0, 0) = (1,−1, 2,−2, 0) and clock rates ai in the range (0.85, 1.15). The plot

in Figure 6.1(b) depicts a trajectory for a Lyapunov function candidate V evaluated along

the solution φ projected onto the regular time domain.
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Figure 6.1: Figure 6.1(a) gives the evolution of the error in the clocks and clock rates of
Nodes i and k. Figure 6.1(b) gives V (x) evaluated along the solution.

6.2.2 Asymmetric Communication: RandSync Case Study

In this section, we present numerical results to simulate our modeling framework

Ha for asymmetric communication protocols using the RandSync algorithm system. Con-

sider five agents with dynamics as in (6.3) and (6.4) over a strongly connected digraph with

the following adjacency matrix

GA =



0 1 1 0 1

1 0 1 0 0

1 0 0 1 0

0 0 1 0 1

1 0 1 1 0


Given T1 = 0.01, T2 = 0.1 then it can be found that the parameters h = 0, α = 0.1, q = 0.9

synchronize the clocks.
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Figure 6.2: Figure 6.1(a) gives the evolution of the error in the clocks and clock rates of
Nodes i and k. Figure 6.1(b) gives V (x) evaluated along the solution.
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Chapter 7

Conclusion

In this thesis, several clock synchronization schemes utilizing a hybrid systems ap-

proach were presented. These algorithms gave performance guarantees on the convergence of

the clocks and the clock rates via an analysis using the hybrid systems framework. The need

for clock synchronization schemes with performance guarantees was demonstrated through

the problem of a networked observer, with accompanying clock synchronization subsystem,

that estimates the state of a plant via sporadic measurement broadcasts. The result of the

problem gave sufficient conditions on the performance required by the accompanying clock

synchronization subsystem. In particular, the sufficient condition on the convergence rate of

the plant and observer clocks formulated the clock synchronization problem that concerns

this research.

The problem was solved through the presentation of several hybrid-based clock

synchronization algorithms that included the introduction of HyNTP, a distributed hybrid

algorithm that synchronizes the time and rate of a set of clocks connected over a network.

Results were given to guarantee and show synchronization of the timers, exponentially fast.

Numerical results validating the exponentially fast convergence of the timers were also given.

Numerical results were also provided to demonstrate performance against a similar class of

clock synchronization algorithms.

A sender-receiver clock synchronization algorithm with sufficient design conditions

ensuring synchronization was also presented to address the problem. For this algorithm,

results were given to show asymptotic attractivity of a set of interest reflecting the desired

synchronized setting. Numerical results validating the attractivity of the system to the set

of interest were also given. An additional model to capture the multi-agent setting was
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also presented with a numerical example to demonstrate its feasibility. Future work will

consider stability of the system and robustness properties to specific perturbations.

Finally, a general framework to study the clock synchronization problem using a

hybrid systems approach was introduced. In particular, the data for a hybrid system model

that captures the dynamics of hardware and software timers, the communication network,

and the controller dynamics to synchronize the clocks and clock rates was defined. The

flexibility of the model was demonstrated against a class of clock synchronization algorithms

from the literature and numerical simulated to demonstrate its feasibility. Future work will

consider stability of the framework model to a synchronization set of interest with sufficient

conditions on the system parameters.
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Appendix A

Appendix A - Proofs of Lemmas

for Hybrid Observer

A.1 Proof of Lemma 3.1.3

Proof. The following hold:

• (A1) in [8, Assumption 6.5] holds since Ca and Da are closed sets.

• (A2) in [8, Assumption 6.5] holds since Fa is outer semicontinuous and bounded relative

to Ca.

• (A3) in [8, Assumption 6.5] holds since Ga
∣∣
Db=∅

is an outer semicontinuous construction

using continuous functionsG1 andG2. In fact, the set of points where the mappingsG1

andG2 are applied are mutually exclusive due toDa1∩Da2 = ∅. Then, Ga
∣∣
Db=∅

: Xa ⇒
Xa is outer semicontinuous and locally bounded relative to Da and Da ⊂ dom Ga.

Thus, Ha with Db = ∅ satisfies the hybrid basic conditions.

A.2 Proof of Lemma 3.1.4

Proof. To prove item 1), pick x ∈ Da

• If x ∈ Da1 , since Db = ∅ Ga(xa, τP , τO) = G1(xa, τP ) ⊂ Da2 ⊂ Ca2

• If x ∈ Da2 , since Db = ∅ Ga(xa, τP , τO) = G2(xa, τO) ⊂ Da1 ⊂ Ca1
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Therefore, item 1) holds.

To prove item 2), pick x ∈ Ca \Da. The tangent cone TCa(xa) is given by

TCa(xa) =



Rn × Rn × R≥0 × R≥0 × {0} × Rm × R≥0 if xa ∈ X 1
a

Rn × Rn × R× R≥0 × {0} × Rm × R≥0 if xa ∈ X 2
a

Rn × Rn × R≥0 × R≥0 × {0} × Rm × R≥0 if xa ∈ X 3
a

Rn × Rn × R≥0 × R≥0 × {1} × Rm × R≥0 if xa ∈ X 4
a

Rn × Rn × R≥0 × R≥0 × {1} × Rm × R≥0 if xa ∈ X 5
a

Rn × Rn × R≥0 × R× {1} × Rm × R≥0 if xa ∈ X 6
a

where

X 1
a := {xa ∈ Xa : q = 0, τN = 0, τδ = −1}

X 2
a := {xa ∈ Xa : q = 0, τN = (0, TN2 ), τδ = −1}

X 3
a := {xa ∈ Xa : q = 0, τN = TN2 , τδ = −1}

X 4
a := {xa ∈ Xa : q = 1, τδ = 0}

X 5
a := {xa ∈ Xa : q = 1, τδ = T d}

X 6
a := {xa ∈ Xa : q = 1, τδ = (0, T d)}

By inspection Fa(xa) ⊂ TCa(xa). Therefore item 2) holds.

A.3 Proof of Lemma 3.1.5

Proof. To prove completeness of solutions we consider the extension of [8, Proposition 6.10]

for the case of Hybrid Systems with inputs as presented in [33]. Given that Ha satisfies

the hybrid basic conditions, consider an arbitrary xa ∈ Ca ∪ Da and recall the tangent

cone TCa(xa) from the result of Lemma 3.1.5. Since Fa is independent of the inputs, by

inspection, Fa(xa) ∩ TCa(xa) 6= ∅ holds for every (xa, τP , τO) such that x ∈ Ca \Da. Then,

case (c) in [8, Proposition 6.10] can be ruled out since by item 1) Lemma 3.1.4 with Db = ∅,
Ga(Da) ⊂ Ca ∪Da. Case (b) in [8, Proposition 6.10] can be excluded since by inspection

Fa is Lipschitz continuous on Ca. Thus, each φ to Ha with Db = ∅ and inputs (τP , τO)

such that {t : (t, j) ∈ dom φ} is unbounded must satisfy case (a) in [8, Proposition 6.10].

Observe that the notions in [8, Proposition 6.10]
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Appendix B

Appendix B - Proofs of Lemmas

and select Propositions for Hybrid

Consensus Clock Synchronization

B.1 Proof of Lemma 4.2.2

Proof. By inspection of the hybrid system data defining H given in (4.9) and below it, the

following is observed:

• The set C is a closed subset of Rm since, C = X and X is the Cartesian product of

closed sets. Similar arguments show that D is closed since it can be written as

D = Rn × Rn × Rn × Rn≥0 × Rn × Rn≥0 × {0}

Thus, (A1) holds.

• f : X → X is linear affine in the state and thus continuous on C. Moreover, since

dom f = X = C, C ⊂ dom f holds. Thus, (A2) holds.

• To show that the set-valued map G defined in (4.9) satisfies (A3), note that the graph

of G is given by

gph(G) = {(x, y) : x ∈ D, y ∈ G(x)}

= D ×
(
Rn × Rn × Rn × Rn≥0 × Rn × Rn≥0 × [T1, T2]

)
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is closed. Thus, via [4, Lemma 5.10], G is outer semicontinuous and locally bounded

at each x ∈ D. Moreover, by definition, we have that dom G = D. Hence, (A3) holds.

B.2 Proof of Lemma 4.2.3

Proof. For each ξ ∈ C, the tangent cone TC(ξ), as defined in [4, Definition 5.12], is given

by

TC(ξ)=


Rn×Rn×Rn×Rn≥0×Rn×Rn≥0×R≥0 if ξ ∈ X 1

Rn×Rn×Rn×Rn≥0×Rn×Rn≥0×R if ξ ∈ X 2

Rn×Rn×Rn×Rn≥0×Rn×Rn≥0×R≤0 if ξ ∈ X 3

where X 1 := {x ∈ X : τ = 0}, X 2 := {x ∈ X : τ ∈ (0, T2)}, and X 3 := {x ∈ X : τ = T2}. By

inspection, from the definition of f in (4.9, f(x)∩TC(x) 6= ∅ holds for every x ∈ C\D. Then,

since H satisfies the hybrid basic conditions, as shown in Lemma 4.2.2, by [4, Proposition

6.10] there exists a nontrivial solution φ to H with φ(0, 0) = ξ. Moreover, every φ ∈ SH
satisfies one of the following conditions:

a) φ is complete;

b) dom φ is bounded and the interval IJ , where J = supjdom φ, has nonempty

interior and t 7→ φ(t, J) is a maximal solution to ẋ ∈ F (x), in fact limt→T |φ(t, J)| =
∞, where T = suptdom φ;

c) φ(T, J) /∈ C ∪D, where (T, J) = sup dom φ.

Now, since G(D) ⊂ C ∪ D = X due to the definition of G, case c) does not occur. Ad-

ditionally, one can eliminate case b) since f is globally Lipschitz continuous on C due to

being linear affine in the state. Hence, only a) holds.

B.3 Proof of Lemma 4.2.5

Proof. Pick an initial condition ξ ∈ A. Let φ be a maximal solution to H with φ(0, 0) = ξ.1

1 Note that for a given solution φ(t, j) to H, the solution components are given by φ(t, j) =(
φe(t, j), φu(t, j), φη(t, j), φτ∗(t, j), φâ(t, j), φτ̂ (t, j), φτ (t, j)

)
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• Consider the case where φ(0, 0) ∈ A \ D. The initial conditions of the components

of φ satisfy φei(0, 0) = φηi(0, 0) = 0 for the clock errors ei, φτ̂i(0, 0) = φτ∗i (0, 0)

for the estimated clocks τ̂i, φâi(0, 0) = φai(0, 0) for the clock rates âi and φui(0, 0) =

φηi(0, 0)−φâi(0, 0)+σ∗ for the control input for each i ∈ V. With f being linear affine

and, thus, globally Lipschitz continuous on C, the constrained differential equation

ẋ = f(x) x ∈ C has unique solutions. Let [0, t1] × {0} ⊂ dom φ with t1 > 0, which

exists since φ(0, 0) ∈ A \ D. Observe that, from the definition of f , the solution

components of the states u, η, and e during this interval remain constant. This is

evident since φ̇u = hφη(0, 0) − µ
(
φτ̂ (0, 0) − φτ∗(0, 0)

)
= 0 with φη(0, 0) = 0, φ̇η =

hφη(0, 0) = 0, and φτ̂ (0, 0) = φτ∗(0, 0); hence, φ̇e = φa(0, 0) + φu(0, 0) − σ∗1n = 0.

From the definition of f in (4.9) we have that the components of the solution φ

satisfy φei(t, j) = φek(t, j), φη(t, j) = 0, φâi(t, j) = φai(t, j), φτ̂i(t, j) = φτ∗i (t, j), and

φui(t, j) = φηi(t, j)−φâi(t, j)+σ∗ for each (t, j) ∈ [0, t1]×{0}. Therefore, the solution

φ does not leave the set A during the interval [0, t1]× {0} when φ(0, 0) ∈ A \D.

• Consider the case where φ(0, 0) ∈ A ∩ D. Since flow is not possible from φ(0, 0) as

φτ (0, 0) = 0, ({0} × {0}) ∪ ({0} × {1}) ⊂ dom φ as the solution φ jumps initially. By

inspection, the jump map G in (4.9) only affects the states η, u, and τ , whereas the

value of the other state components remains unchanged. Since the quantity −γLe in

the jump map is zero at φ(0, 0), we have that φη(0, 1) = −γLφe(0, 0) = 0. Moreover,

since â is constant across jumps, φâ(0, 1) = φâ(0, 0), then,

φu(0, 1) = −γLφe(0, 0)− φâ(0, 0) + σ∗1n

= φη(0, 1)− φâ(0, 1) + σ∗1n

Lastly, we have that the timer τ resets to a point in the interval [T1, T2], namely,

φτ (0, 1) ∈ [T1, T2]. Then, the full solution φ at (0, 1) satisfies

φ(0, 1) ∈



φe(0, 1)

φη(0, 1)− φâ(0, 1) + σ∗1n

φη(0, 1)

φτ∗(0, 1)

φâ(0, 1)

φτ̂ (0, 1)

[T1, T2]


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Hence, from the definition of A, φ(0, 1) ∈ A.

Since this property holds for each ξ ∈ A, we have that solutions from A cannot flow out of

A and cannot jump out of A since G(A∩D) ⊂ A. Hence, A is forward invariant for H.

B.4 Proof of Lemma 4.3.2

Proof. For each x ∈ X , the distance from x to the set A is given as

|x|A = inf
y∈A
|x− y| (B.1)

Evaluating the distance directly, one has

|x|A = inf
y∈A
|x− y|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e, u, η, τ∗, â, τ̂ , τ)

− (e∗, η − â+ σ∗1n, 0, ατ∗ , a, τ
∗, ατ )|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e− e∗, u− η + â− σ∗1n, η,

τ∗ − ατ∗ , â− a, τ̂ − τ∗, τ − ατ )|

= inf
e∗∈E

|(e−e∗, u−η + â−σ∗1n, η, 0, â−a, τ̂−τ∗, 0)|

= inf
e∗∈E

sqrt
(

(e−e∗)>(e−e∗)

+ (u−η + â−σ∗1n)>(u−η + â−σ∗1n)

+ η>η + (â− a)>(â− a) + (τ̂ − τ∗)>(τ̂ − τ∗)
)

where E := {e∗ ∈ Rn : e∗i = e∗k ∀i, k ∈ V}. When u = η − â+ σ∗1n we have

|x|A = inf
e∗∈E

sqrt
(

(e− e∗)>(e− e∗) + η>η

+ (â− a)>(â− a) + (τ̂ − τ∗)>(τ̂ − τ∗)
)

For each xε ∈ Xε, the distance from xε to the set Aε is given as

|xε|Aε = inf
y∈Aε

|xε − y| (B.2)
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Evaluating the distance directly, one has

|xε|Aε = inf
y∈Aε

|xε − y|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e, η, εa, ετ , τ)

− (e∗, 0, 0, 0, ατ )|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e− e∗, η, εa, ετ , τ − ατ )|

= inf
e∗∈E

|(e− e∗, η, εa, ετ , 0)|

= inf
e∗∈E

√
(e− e∗)>(e− e∗) + η>η + ε>a εa + ε>τ ετ

Making the appropriate substitutions for ετ and εa, we get

|xε|Aε = inf
e∗∈E

sqrt
(

(e−e∗)>(e−e∗) + η>η + (â−a)>(â−a)

+ (τ̂ − τ∗)>(τ̂ − τ∗)
)

Now, for each (xε, τ̂ , τ
∗) ∈ X , the distance from the point M̃(xε, τ̂ , τ

∗) to the set A is given

by

|M̃(xε, τ̂ , τ
∗)|A = inf

y∈A
|M̃(xε, τ̂ , τ

∗)− y| (B.3)

Computing this distance, one has

|M̃(xε, τ̂ , τ
∗)|A = inf

y∈A
|M̃(xε, τ̂ , τ

∗)− y|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e, η − (a− εa) + σ∗1n, η,

τ̂ − ετ , a− εa, ετ + τ∗, τ)

− (e∗, η − â+ σ∗1n, 0, ατ∗ , a, τ
∗, ατ )|
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Making the appropriate substitutions for ετ and εa, we get

|M̃(xε, τ̂ , τ
∗)|A

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e, η − â+ σ∗1n, η, τ
∗, â, τ̂ , τ)

− (e∗, η − â+ σ∗1n, 0, ατ∗ , a, τ
∗, ατ )|

= inf
e∗∈E,ατ∗∈Rn≥0,ατ∈[0,T2]

|(e−e∗, η−â+ σ∗1n−η + â−σ∗1n,

η − 0, τ∗ − ατ∗ , â− a, τ̂ − τ∗, τ − ατ )|

= inf
e∗∈E

|(e− e∗, 0, η, 0, â− a, τ̂ − τ∗, 0)|

= inf
e∗∈E

sqrt
(

(e− e∗)>(e− e∗) + η>η + (â− a)>(â− a)

+ (τ̂ − τ∗)>(τ̂ − τ∗)
)

Thus, we have that

|M̃(xε, τ̂ , τ
∗)|A = |x|A = |xε|Aε

B.5 Proof of Lemma 4.3.3

Proof. Suppose the set Aε is GES for Hε. By Definition 2.2.1 there exist κ, α > 0 such that

each maximal solution φε to Hε satisfies

|φε(t, j)|Aε ≤ κ exp(−α(t+ j))|φε(0, 0)|Aε (B.4)

for each (t, j) ∈ dom φε. Now, pick any maximal solution φ to H. Through an application

of Lemma 4.3.1, there exists a corresponding solution φε to Hε such that

φ(t, j) = M̃
(
φε(t, j), φτ̂ (t, j), φτ∗(t, j)

)
for each (t, j) ∈ dom φ. Given that φε satisfies (B.4), using relationship (4.24) between

distances in Lemma 4.3.2 we have that φ satisfies

|φ(t, j)|A ≤ κ exp(−α(t+ j))|φ(0, 0)|A (B.5)

Then, the set A is GES for H.
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B.6 Proof of Lemma 4.3.4

Proof. Pick a solution φ̃ ∈ SH̃ε with φ̃ = (φ̃z̄1 , φ̃z̄2 , φ̃w̄1 , φ̃w̄2 , τ), however, recall that z̄1 :=

(ē1, η̄1), z̄2 := (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1 , ε̄τ1), and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn).

Thus, through a reordering of the solution trajectories, one has that with some of the

above notation, φ̃ can be rewritten as φ̃ = (φ̃ē, φ̃η̄, φ̃ε̄a , φ̃ε̄τ , τ). Then, recall the change of

coordinates ē = T −1e, η̄ = T −1η, ε̄a = T −1εa, and ε̄τ = T −1ετ . Since T −1 is an invertible

time-invariant linear operator, applying its inverse T to the components of φ̃, one has(
T φ̃ē(t, j), T φ̃η̄(t, j), T φ̃ε̄a(t, j), T φ̃ε̄τ (t, j)

)
=
(
φe(t, j), φη(t, j), φεa(t, j), φετ (t, j)

)
for each

(t, j) ∈ dom φ̃. Note that the dynamics of the variable τ , responsible for governing the

flows and the jumps of both Hε and H̃ε, is identical for the two systems. Thus, the set of

solutions for the component τ is the same between the two system. Therefore, it follows

that φ̃(t, j) = Γ−1φ(t, j) for each (t, j) ∈ dom φ̃.

Conversely, we can pick a solution φ ∈ SHε , let φ = (φe, φη, φεa , φετ , τ) and

recall the change of coordinates ē = T −1e, η̄ = T −1η, ε̄a = T −1εa, and ε̄τ = T −1ετ .

Since T −1 is a time-invariant linear operator, applying it to the components of φ, one has(
T −1φe(t, j), T −1φη(t, j), T −1φεa(t, j), T −1φετ (t, j)

)
=
(
φ̃ē(t, j), φ̃η̄(t, j), φ̃ε̄a(t, j), φ̃ε̄τ (t, j)

)
for each (t, j) ∈ dom φ. Thus, it follows that φ(t, j) = Γφ̃(t, j) for each (t, j) ∈ dom φ.

B.7 Proof of Lemma 4.3.5

Proof. Pick a point z̃′ = (ē′1, η̄
′
1, ē
′
2, . . . , ē

′
N , η̄

′
2, . . . , η̄

′
N , ε̄

′
a1 , ε̄

′
τ1 , ε̄

′
a2 , . . . , ε̄

′
an , ε̄

′
τ2 , . . . , ε̄

′
τn) ∈

R4N such that (z̃′, τ ′) ∈ Ãε for some τ ′ ∈ [0, T2] , i.e., z̃′ =

(e∗1, 0,0N−1,0N−1, 0, 0,0N−1,0N−1) with e∗1 ∈ R. Given that the digraph G is strongly

connected, there exists a nonsingular matrix T as in (4.26) that allows for the following

coordinate change: ē = T −1e, η̄ = T −1η, ε̄a = T −1εa, and ε̄τ = T −1ετ . Now, by left
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multiplying (z̃′, τ ′) by Γ one has

e=T
[
ē′1 ē′2 . . . ē′N

]>
=
[
v1 T1

] [
e∗1 0>

N−1

]>
=e∗11N

η = T
[
η̄′1 η̄′2 . . . η̄′N

]>
=
[
v1 T1

] [
0 0>

N−1

]>
= 0N

εa = T
[
ε̄′a1 ε̄′a2 . . . ε̄′an

]>
=
[
v1 T1

] [
0 0>

N−1

]>
= 0N

ετ = T
[
ε̄′τ1 ε̄′τ2 . . . ε̄′τn

]>
=
[
v1 T1

] [
0 0>

N−1

]>
= 0N

τ = 1τ ′ = τ ′

(B.6)

Then, since e = e∗11N we have that ei = ek for each i, k ∈ V. Since τ ′ was not subject to a

coordinate change, then the point (e, η, εa, ετ , τ) = (e∗11N ,0N ,0N ,0N , τ
′) is an element of

Aε.
Now, pick a point z′ = (e, η, εa, ετ ) ∈ R4N such that z′ ∈ Aε. This requires that

ei = ek, ηi = 0, εai = 0, and ετi = 0 for each i, k ∈ V; thus, z′ = (e∗,0N ,0N ,0N ), where

e∗ ∈ E := {e∗ ∈ Rn : e∗i = e∗k ∀i, k ∈ V}. Then, by left multiplying (z′, τ ′) by Γ−1, one has

ē = T −1[e∗] =
[
e∗1 0>N−1

]>
η̄ = T −10N =

[
0 0>N−1

]>
ε̄a = T −10N =

[
0 0>N−1

]>
ε̄τ = T −10N =

[
0 0>N−1

]>
τ = 1τ = τ

(B.7)

giving the point (ē, η̄, ε̄a, ε̄τ , τ) = (e∗1,0N−1,0N ,0N ,0N ). Rearranging the components into

the form (z̄1, z̄2, w̄1, w̄2, τ) where z̄1 = (ē1, η̄1), z̄2 = (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1 , ε̄τ1),

and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn) one has (e∗1, 0,0N−1,0N−1, 0, 0,0N−1,0N−1) which is

an element of Ãε.
To relate the set distances between |xε|Aε and |χε|Ãε for every xε ∈ Xε and χε ∈ Xε

, note that by definition, one has |xε|Aε = infy∈Aε |xε − y| and |χε|Ãε = infy∈Ãε |χε − y|,
respectively. Recall that χε = Γ−1xε and xε = Γχε. Computing the distance |χε|Ãε , one

has

|χε|Ãε = |Γ−1xε|Ãε = infy∈Ãε |Γ
−1xε − y|

= infe∗∈R|Γ−1xε

− (e∗, 0,0N−1,0N−1, 0, 0,0N−1,0N−1)|
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Then, by using the relation (e∗, 0,0N−1, 0N−1, 0, 0,0N−1,0N−1) = Γ−1(e∗1N ,0N ,0N ,0N )

one has

|Γ−1xε|Ãε = infe∗∈R|Γ−1xε − Γ−1(e∗1N ,0N ,0N ,0N )|

= infe∗∈R
∣∣Γ−1

(
xε − (e∗1N ,0N ,0N ,0N )

)∣∣
≤ |Γ−1|

(
infe∗∈R|xε − (e∗1N ,0N ,0N ,0N )|

)
≤ |Γ−1|

(
infy∈Aε |xε − y|

)
≤ |Γ−1||xε|Aε

Conversely, computing the distance |xε|Aε , one has

|xε|Aε = |Γχε|Aε = infy∈Aε |Γχε − y|

= infe∗∈R|Γχε − (e∗1N ,0N ,0N ,0N )|

Then by using the relation (e∗1N ,0N ,0N ,0N ) = Γ(e∗, 0,0N−1,0N−1, 0, 0,0N−1,0N−1), one

has

|Γχε|Aε = infe∗∈R|Γχε−Γ(e∗, 0,0N−1,0N−1, 0, 0,0N−1,0N−1)|

= infe∗∈R
∣∣Γ(χε−(e∗, 0,0N−1,0N−1, 0, 0,0N−1,0N−1)

)∣∣
≤ |Γ|

(
infe∗∈R|χε−(e∗, 0,0N−1,0N−1, 0, 0,0N−1,0N−1)|

)
≤ |Γ|

(
infy∈Ãε |χε − y|

)
≤ |Γ||χε|Ãε

B.8 Proof of Proposition 4.3.6

Proof. First, we prove that GES of Ãε for H̃ε implies GES of Aε for Hε. Suppose the set

Ãε is GES for H̃ε. By Definition 2.2.1, there exist κ, α > 0 such that

|φ̃(t, j)|Ãε ≤ κ exp(−α(t+ j))|φ̃(0, 0)|Ãε ∀(t, j) ∈ dom φ̃ (B.8)

holds for every solution φ̃ to H̃ε. Pick a (maximal) solution φ̃ ∈ SH̃ε with initial condition

φ̃(0, 0) ∈ C̃ε ∪ D̃ε. According to Lemma 4.3.4, there exists a maximal solution φ to Hε such

that

φ̃(t, j) = Γ−1φ(t, j) (B.9)
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for each (t, j) ∈ dom φ̃, where Γ−1 = diag(T −1, T −1, T −1, T −1, 1). Given that φ̃ satisfies

(B.8), applying (B.9) and the relationship between distances in Lemma 4.3.5 given in (4.30)

to the right-hand side of (B.8), we have that

|φ̃(t, j)|Ãε ≤ κ exp(−α(t+ j))|φ̃(0, 0)|Ãε = κ exp(−α(t+ j))|Γ−1φ(0, 0)|Ãε
≤ κ exp(−α(t+ j))|Γ−1||φ(0, 0)|Aε

(B.10)

By rearranging the relationship given in (4.31), we obtain

1

|Γ|
|xε|Aε =

1

|Γ|
|Γχε|Aε ≤ |χε|Ãε (B.11)

Applying it to the left-hand side of (B.10), we have

1

|Γ|
|φ(t, j)|Aε ≤ |φ̃(t, j)|Ãε ≤ κ exp(−α(t+ j))|Γ−1||φ(0, 0)|Aε

Thus, we have that φ satisfies

|φ(t, j)|Aε ≤ κ̃ exp(−α(t+ j))|φ(0, 0)|Aε ∀(t, j) ∈ dom φ (B.12)

where κ̃ = κ|Γ||Γ−1|. Then, the set Aε is GES for Hε.
Conversely, suppose the set Aε is GES for Hε. By Definition 2.2.1, there exist

κ, α > 0 such that

|φ(t, j)|Aε ≤ κ exp(−α(t+ j))|φ(0, 0)|Aε ∀(t, j) ∈ dom φ (B.13)

holds for every maximal solution φ to Hε. Pick a maximal solution φ ∈ SHε with initial

condition φ(0, 0) ∈ Cε∪Dε. According to Lemma 4.3.4, there exists a solution φ̃ to H̃ε such

that

φ(t, j) = Γφ̃(t, j) (B.14)

for each (t, j) ∈ dom φ, where Γ = diag(T , T , T , T , 1). Given that φ satisfies (B.13),

applying (B.14) and the relationship between distances in Lemma 4.3.5 to the right-hand

side of (B.8), we have that

|φ(t, j)|Aε ≤ κ exp(−α(t+ j))|φ(0, 0)|Aε = κ exp(−α(t+ j))|Γφ̃(0, 0)|Aε

≤ κ exp(−α(t+ j))|Γ||φ̃(0, 0)|Ãε
(B.15)

By rearranging the relationship given in (4.30), we obtain

1

|Γ−1|
|χε|Ãε =

1

|Γ−1|
|Γ−1xε|Ãε ≤ |xε|Aε (B.16)
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Applying it to the left-hand side of (B.15), we have

1

|Γ−1|
|φ̃(t, j)|Aε ≤ |φ(t, j)|Aε ≤ κ exp(−α(t+ j))|Γ||φ̃(0, 0)|Aε

Thus, we have that φ̃ satisfies

|φ̃(t, j)|Ãε ≤ κ
′ exp(−α(t+ j))|φ̃(0, 0)|Ãε ∀(t, j) ∈ dom φ̃ (B.17)

where κ′ = κ|Γ−1||Γ|. Then, the set Ãε is GES for H̃ε.

B.9 Proof of Proposition 4.3.7

Proof.

Vεr(χεr) = w̄>1 P2w̄1 + w̄>2 P3w̄2 (B.18)

It satisfies

αω̄1 |χεr |2Ãεr ≤ V (χεr) ≤ αω̄2 |χεr |2Ãεr ∀χεr ∈ C̃εr ∪ D̃εr (B.19)

with α1 = min
{
λmin(P2), λmin(P3)} and α2 = max

{
λmax(P2), λmax(P3)}. For each χεr ∈

C̃εr

〈∇Vεr(χεr), f̃(χεr)〉 ≤ w̄>1 (P2Af3 +A>f3P2)w̄1

+ w̄>2 (P3Af4 +A>f4P3)w̄2

(B.20)

The conditions in (4.13) imply the existence of positive numbers β1 and β2 such that

P2Af3+A>f3P2 ≤ −β1I

P3Af4+A>f4P3 ≤ −β2I

Then

〈∇Vεr(χεr), f̃εr(χεr)〉 ≤ −β1|w̄1|2 − β2|w̄2|2

≤ −β̃
(
|w̄1|2 + |w̄2|2

)
≤ −β̃

(
|χεr |2Ãεr

)
≤ − β̃

αω̄2

Vεr(χεr)

(B.21)

where β̃ = min{β1, β2} > 0. For all χεr ∈ D̃εr and g ∈ G̃εr(χεr)

Vεr(g)− Vεr(χεr) = 0 (B.22)
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Now, pick a solution φ̃ to H̃εr with initial condition φ̃(0, 0) ∈ C̃εr ∪ D̃εr . As a result of

(B.21) and (B.22), direct integration of (t, j) 7→ Vεr(φ̃(t, j)) over dom φ̃ gives

Vεr(φ̃(t, j)) ≤ exp
(
− β̃

αω̄2

t
)
Vεr(φ̃(0, 0)) ∀(t, j) ∈ dom φ̃ (B.23)

Now, given the relation established in (4.12), for any solution φ̃ to H̃εr , we have jT2 ≤ t⇒
−t ≤ −jT2. Then, for any γ ∈ (0, 1) we have −γt ≤ −γT2j. Moreover,

−t = −(1− γ)t− γt ≤ −(1− γ)t− γT2j

≤ −min{1− γ, γT2}(t+ j)
(B.24)

leading to

Vεr(φ̃(t, j)) ≤ exp
(
− γ̄β̃
αω̄2

(t+ j)
)
Vεr(φ̃(0, 0)) (B.25)

for each (t, j) ∈ dom φ̃ where γ̄ = min{1 − γ, γT2}. Then, by combining this inequality

with (B.19), one has

αω̄1 |χεr |2Ãεr≤Vεr(φ̃(t, j)) ≤ exp
(
− γ̄β̃
αω̄2

(t+ j)
)
Vεr(φ̃(0, 0)) (B.26)

then leveraging Vεr(φ̃(0, 0)) ≤ αω̄2 |φ̃(0, 0)|2Ãεr we have

|φ̃(t, j)|2Ãεr ≤
αω̄2

αω̄1

exp
(
− γ̄β̃
αω̄2

(t+ j)
)
|φ̃(0, 0)|2Ãεr

(B.27)

then

|φ̃(t, j)|Ãεr ≤
√
αω̄2

αω̄1

exp
(
− γ̄β̃

2αω̄2

(t+ j)
)
|φ̃(0, 0)|Ãεr (B.28)

Observe that this bound holds for each solution φ̃ to H̃εr . Maximal solutions to H̃εr are

complete due to the reduction property established in Lemmas 4.3.4, 4.3.1, and 4.2.5. In

particular, Lemma 4.3.4 establishes the relation between H̃ε and Hε, Lemma 4.3.1 estab-

lishes the reduction from H to Hε, the former for which we have established completeness

of solutions in Lemma 4.2.5. Therefore, the set Ãεr is globally exponentially stable for

H̃εr .

B.10 Proof of Proposition 4.4.2

:
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Proof. Consider the same Lyapunov function candidate V (χm) = V1(χm) + V2(χm) +

Vεr(χm) from the proof of Theorem 4.2.6 in Section 4.3.4. During flows, there is no con-

tribution from the perturbation thus the derivative of V is unchanged from the proof of

Theorem 4.2.6. Thus, one has that (??) holds with f̃ε(χε) replaced by f̃m(χm), namely,

〈∇V (χm), f̃(χm)〉 ≤ 2z̄>2
(

exp(A>f2τ)P exp(Af2τ)
)
Bf2w̄2

+ w̄>1 (P1Af3 +A>f3P1)w̄1

+ w̄>2 (P2Af4 +A>f4P2)w̄2

then by following the same notions of the proof in Theorem 4.2.6, one has

〈∇V (χm), f̃(χm)〉 ≤ κ̄1
α2
V (χm) where κ̄1 = max

{
κ1
2ε ,
(
κ1ε
2 − β2

)}
and ε > 0. At jumps,

triggered when τ = 0, one has, for each χm ∈ D̃m \ Ãε and g ∈ G̃m(χm)

V (g)−V (χm) ≤

− η̄2
1 + (Ag2 z̄2)> exp(A>f2τ)P1 exp(Af2τ)(Ag2 z̄2)

−2(Bgm̄z̄2)> exp(A>f2τ)P1 exp(Af2τ)(Ag2 z̄2)

+ (Bgm̄z̄2)> exp(A>f2τ)P1 exp(Af2τ)(Bgm̄z̄2)

−z̄>2 P1z̄2

(B.29)

From (4.15) and the proof in Theorem 4.2.6, there exists a scalar κ2 such that

z̄>2 (A>g2 exp(A>f2v)P1 exp(Af2v)Ag2 − P1)z̄2 ≤ −κ2z̄
>
2 z̄2 leading to

V (g)−V (χm) ≤ −η̄2
1 − κ2z̄

>
2 z̄2

− 2(Bgm̄z̄2)> exp(A>f2τ)P1 exp(Af2τ)(Ag2 z̄2)

+ (Bgm̄z̄2)> exp(A>f2τ)P1 exp(Af2τ)(Bgm̄z̄2)

(B.30)

Let Q = exp(A>f2τ)P1 exp(Af2τ), then applying Young’s inequality on the third term such

that

m̄>z̄2B
>
g QAg2 z̄2 ≤

∣∣(B>g QAg2)(B>g QAg2)>∣∣
2ε2

m̄>z̄2m̄z̄2+
ε2
2
z̄>2 z̄2

where ε2 > 0. Then, we have

V (g)−V (χm) ≤ −η̄2
1 −

(
κ2 +

ε2
2

)
z̄>2 z̄2+

(
|B>g QBg|

− 1

2ε2
|(B>g QAg2)(B>g QAg2)>|

)
m̄>z̄2m̄z̄2

(B.31)

By noting |Ag2 |, |Bg| ≤ γλmax(L̄) let κm̄2 =
(
λmax(L̄)

)2
max
v∈[0,T2]

{
λmax

(
exp(A>f2v)P1 exp(Af2v)

)}
,

we let ε2 = κ2 and obtain

V (g)−V (χm)≤−η̄2
1−

3κ2

2
z̄>2 z̄2+

(
γ2κm̄2−

γ4κ2
m̄2

2κ2

)
m̄>z̄2m̄z̄2
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Now, let κ̃m̄2 = γ2κm̄2 − 1
2κ2

γ4κ2
m̄2

then at jumps one has

V (g)− V (χm) ≤ −κ̄2(|η̄1|2 + |z̄2|2) + κ̃m̄2 |m̄z̄2 |2 (B.32)

where κ̄2 = max
{

1, 3κ2
2

}
. Now, recall from (4.45) in the proof of Theorem 4.2.6 that

−(|η̄1|2 + |z̄2|2) ≤ − 1

α2
V (χε) + |w̄|2 (B.33)

Then, plugging (4.45) into (B.32) one has

V (g) ≤
(

1− 3κ2

2α2

)
V (χm) +

3κ2

2
|w̄|2 + κ̃m̄2

|m̄z̄2 |2

Noting 〈∇V (χε), f̃(χε)〉 ≤ κ̄1
α2
V (χε), one can then pick a solution with initial conditions

φ̃(0, 0) ∈ C̃m ∪ D̃m and find that the trajectory of V (φ̃(t, j)) is bounded as follows:

V (φ̃(t, j)) ≤

exp
( κ̄1

α2
T2

)(
exp

( κ̄1

α2
T2

)(
1− 3κ2

2α2

))j
V (φ̃(0, 0))

+
3κ2

2
exp

(
κ̄ T2

)
sup(t,j)∈domφ|w̄(t, j)|2

+ κ̃m̄2 exp
( κ

2ε2
T2

)
sup(t,j)∈domφ|m̄z̄2 |2

The result follows from an analysis of V (φ̃(t, j)) over dom φ̃ utilizing the same approach as

in the proof of Theorem 4.2.6.
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Appendix C

Appendix C - Proofs of Lemmas

for Hybrid Consensus Clock

Synchronization

C.1 Proof of Lemma 5.3.1

Proof. By inspection of the hybrid system data (Cε, Fε, Dε, Gε) defining Hε given in (5.23),

the following is observed:

• The set Cε is a closed subset of Rm since Cε is the union of the sets Cε1 and Cε2 , both

of which are the Cartesian product of closed sets. Similar arguments show that Dε is

closed since it can be written as the finite union of closed sets, that is,

Dε =
⋃
p∈P

(
R2 × R× R× R× R× {0} × R6 × R6 × {p} × Q

)
Thus, (A1) holds.

• The function Fε : Xε → Xε is linear affine in the state and thus continuous on Cε.

Thus, (A2) holds.

• To show that the set-valued map Gε defined in (5.22) satisfies (A3), observe that by

inspection, for each i ∈ {1, 2, 3, 4, 5, 6} Gεi is a continuous map. Moreover, for each
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i ∈ {1, 2, 3, 4, 5, 6} Dεi is closed and

Dεi ∩Dεk = ∅ ∀i, k ∈ {1, 2, 3, 4, 5, 6}, i 6= k

which implies that there is a (uniform) finite separation between these sets. This is

due to the fact that these sets are defined for different values of the logic variables.

Hence, (A3) holds as Gε is a piecewise function with each piece being continuous.

C.2 Proof of Lemma 5.3.2

Proof. Consider an arbitrary ξ ∈ Cε ∪ Dε. The tangent cone TCε(ξ), as defined in [4,

Definition 5.12], given by

TCε(ξ)=


R2 × R× R× R× R× R≥0 × R6 × R6 × P ×Q if ξ ∈ X 1

ε

R2 × R× R× R× R× R× R6 × R6 × P ×Q if ξ ∈ X 2
ε

R2 × R× R× R× R× R≤0 × R6 × R6 × P ×Q if ξ ∈ X 3
ε

where X 1
ε := {xε ∈ Xε : τ = 0}, X 2

ε := {xε ∈ Xε : τ ∈ (0, d)}, and X 3
ε := {xε ∈ Xε : τ = d}.

By inspection, Fε(xε) ∩ TCε(xε) 6= ∅ holds for every xε ∈ Cε \D. Then, by [4, Proposition

6.10], there exists a nontrivial solution φ to Hε with φ(0, 0) = ξ. Moreover, by the same

result, every φ ∈ SHε satisfies one of the following conditions:

a) φ is complete;

b) dom φ is bounded and the interval IJ , where J = supjdom φ, has nonempty

interior and t 7→ φ(t, J) is a maximal solution to ẋ ∈ F (x), in fact limt→T |φ(t, J)| =
∞, where T = suptdom φ;

c) φ(T, J) /∈ C ∪D, where (T, J) = sup dom φ.

Now, since Gε(Dε) ⊂ Cε ∪Dε case (c) does not occur. Additionally, one can eliminate case

(b) since, by inspection, Fε is Lipschitz continuous on Cε.

C.3 Proof of Lemma 5.3.3

Proof. Pick an initial condition φ(0, 0) ∈M.
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• If φ(0, 0) ∈ M∩ (Cε \Dε), then the solution initially flows according to ẋε = Fε(x).

Observe that the trajectories of mi, mk, p, and q remain constant since Fε is defined

so that ṁi = ṁk = ṗ = q̇ = 0. Moreover, note that the gradient of ρi and ρk with

respect to xε = (ε, τi, τk, ai, ak, τ,mi,mk, p, q) satisfy

∇xερi(xε, β) =



02×1

1

0

τ − β − dq + c(q − 1)

0

ai

06×1

06×1

0

ai(c− d)



, ∇xερk(xε, β) =



02×1

0

1

0

τ − β − dq + c(q − 1)

ak

06×1

06×1

0

ak(c− d)


(C.1)

Then one has ρ̇i(xε, β) = 〈∇ρi(xε, β), Fε(xε)〉 = 1ai + ai(−1) = 0 and ρ̇k(xε, β) =

〈∇ρk(xε, β), Fε(xε)〉 = 1ak + ak(−1) = 0. Therefore, when φ initially flows from a

point in M, it remains in M over the interval of flow. This property holds for every

solution over any of its intervals of flows that starts at a point in M.

• If φ(0, 0) ∈ M ∩Dε, then the solution initially jumps according to x+
ε = Gε(xε). In

particular,

– if φ(0, 0) ∈M1 ∩Dε1 , the solution jumps according to x+
ε = Gε1(xε). The timer

τ resets according to τ+ = d while q+ = 1 and p+ = 1. Moreover, (mi
1)+ is

assigned to the value of τi, evaluating ρi(x
+
ε , 0), we have that for each xε ∈ Dε1

ρi(x
+
ε , 0) = τi − ai((1− q+)c+ q+d− τ+)− ai0

= τi − ai((1− 1)c+ d− d)

= τi

Thus, by recalling the definition ofM2 = {xε ∈ Xε : p=1, q=1,mi
1−ρi(xε, 0) = 0},

we have that Gε1(M1 ∩Dε) ⊂M2 holds for each xε ∈ Dε1 .

– if φ(0, 0) ∈ M2 ∩Dε, the solution jumps according to x+
ε = Gε2(xε). The timer

τ resets according to τ+ = c while q+ = 0 and p+ = 2. Then, by definition of
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Gε2 , for each xε ∈ Dε2 , one has

ρk(x
+
ε , 0) = τk − ak((1− q+)c+ q+d− τ+)− ak0

= τk − ak((1− 0)c− c)

= τk

which is equal to (mk
1 )+ and

ρi(x
+
ε , d) = τi − ai((1− q+)c+ q+d− τ+)− aid

= τi − ai((1− 0)c− c)− aid

= τi − aid

which is equal to (mk
2 )+ = mi

1. Therefore, by recalling the definitionM3 = {xε ∈
Xε : p=2, q=0,mk

1−ρk(xε, 0) = 0,mk
2−ρi(xε, d) = 0}, we have Gε2(M2 ∩ Dε) ⊂

M3 for each xε ∈ Dε2 .

– if φ(0, 0) ∈ M3 ∩Dε, the solution jumps according to x+
ε = Gε3(xε). The timer

τ resets according to τ+ = d while q+ = 1 and p+ = 3. Then, by definition of

Gε3 , for each xε ∈ Dε3 , one has

ρk(x
+
ε , 0) = τk − ak((1− q+)c+ qd− τ+)− ak0

= τk − ak((1− 1)c+ d− d)

= τk

which is equal to (mk
1 )+,

ρk(x
+
ε , c) = τk − ak((1− q+)c+ qd− τ+)− akc

= τk − ak((1− 1)c+ d− d)− akc

= τk − akc

which is equal to (mk
2 )+ = mk

1 , and

ρi(x
+
ε , c+ d) = τi − ai((1− q+)c+ qd− τ+)− ai(c+ d)

= τi − ai((1− 1)c+ d− d)− ai(c+ d)

= τi − ai(c+ d)

which is equal to (mk
3 )+ = mk

2 . Therefore, by recalling the definition M4 =

{xε ∈ Xε : p=3, q=1,mk
1−ρk(xε, 0) = 0,mk

2−ρk(xε, c) = 0,mk
3−ρi(xε, c+d) = 0},

we have Gε3(M3 ∩Dε) ⊂M4 for each xε ∈ Dε3 .
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– if φ(0, 0) ∈ M4 ∩Dε, the solution jumps according to x+
ε = Gε4(xε). The timer

τ resets according to τ+ = c while q+ = 0 and p+ = 4. Then, by definition of

Gε4 , for each xε ∈ Dε4 , one has

ρi(x
+
ε , 0) = τi − ai((1− q+)c+ qd− τ+)− aiβ

= τi − ai((1− 0)c− c)

= τi

which is equal to (mk
1 )+,

ρk(x
+
ε , d) = τk − ak((1− q+)c+ qd− τ+)− akd

= τk − ak((1− 0)c− c)− akd

= τk − akd

which is equal to (mi
2)+ = mk

1 ,

ρk(x
+
ε , c+ d) = τk − ak((1− q+)c+ qd− τ+)− ak(c+ d)

= τk − ak((1− 0)c− c)− ak(c+ d)

= τk − ak(c+ d)

which is equal to (mi
3)+ = mk

2 ,

(mi
4)+ = mk

3 = ρi(x
+
ε , c+ 2d)

= τi − ai((1− q+)c+ qd− τ+)− ai(c+ 2d)

= τi − ai((1− 0)c− c)− ai(c+ 2d)

= τi − ai(c+ 2d)

which is equal to (mi
4)+ = mk

3 . Therefore, by recalling the definition M5 =

{xε ∈ Xε : p=4, q=0,mi
1−ρi(xε, 0) = 0,mi

2−ρk(xε, d) = 0,mi
3−ρk(xε, c+d) =

0,mi
4−ρi(xε, c+2d)=0}, we have Gε4(M4 ∩Dε) ⊂M5 for each xε ∈ Dε4 .

– if φ(0, 0) ∈ M5 ∩Dε, the solution jumps according to x+
ε = Gε5(xε). The timer

τ resets according to τ+ = d while q+ = 1 and p+ = 5. Then, by definition of

Gε5 , for each xε ∈ Dε5 , one has

ρi(x
+
ε , 0) = τi − ai((1− q+)c+ qd− τ+)− ai0

= τi − ai((1− 1)c+ d− d)

= τi
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which is equal to (mk
1 )+,

ρi(x
+
ε , c) = τk − ak((1− q+)c+ qd− τ+)− ak0

= τk − ak((1− 1)c+ d− d)− akc

= τk − akc

which is equal to (mi
2)+ = mi

1,

ρk(x
+
ε , c+ d) = τk − ak((1− q+)c+ qd− τ+)− ak(c+ d)

= τk − ak((1− 1)c+ d− d)− ak(c+ d)

= τk − ak(c+ d)

which is equal to (mi
3)+ = mi

2,

ρk(x
+
ε , 2c+ d) = τk − ak((1− q+)c+ qd− τ+)− ak(2c+ d)

= τk − ak((1− 1)c+ d− d)− ak(2c+ d)

= τk − ak(2c+ d)

which is equal to (mi
4)+ = mi

3,

ρi(x
+
ε , 2c+ 2d) = τi − ai((1− q+)c+ qd− τ+)− ai(2c+ 2d)

= τi − ai((1− 1)c+ d− d)− ai(2c+ 2d)

= τi − ai(2c+ 2d)

which is equal to (mi
5)+ = mi

4. Therefore, by recalling the definition M6 =

{xε ∈ Xε : p=5, q=1,mi
1−ρi(xε, 0) = 0,mi

2−ρi(xε, c) = 0,mi
3−ρk(xε, c+d) =

0,mi
4−ρk(xε, 2c+d) = 0,mi

5−ρi(xε, 2c+2d) = 0}, we have Gε5(M5 ∩ Dε) ⊂ M6

for each xε ∈ Dε5 .

– if φ(0, 0) ∈ M6 ∩Dε, the solution jumps according to x+
ε = Gε6(xε). The timer

τ resets according to τ+ = c while q+ = 0 and p+ = 0. Therefore, by recalling

the definition M1 = {xε ∈ Xε : p=0, q=0}, we have Gε5(M6 ∩ Dε) ⊂ M1 for

each xε ∈ Dε6 .
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C.4 Proof of Lemma 5.3.4

Proof. Pick a solution φ ∈ SHε with initial condition φ(0, 0) ∈ Cε ∪ Dε. Since, the flow

map Fε enforces ṗ = 0, the p component of φ remains constant during flows. At jumps,

namely, when φ(t, j) ∈ Dε, since for each ` ∈ {1, 2, 3, 4, 5}, Gε` enforces that p+ = p + 1,

the evolution of p is monotonically increasing in {0, 1, 2, 3, 4, 5} until p = 5, from where G6

resets p to 0. In fact, when the solution φ jumps according to Gε6 , we have that p+ = 0 and

q+ = 0 resulting in a value for xε after the jump that is inM1. Now, due to the monotonic

behavior of p and the completeness of solutions to Hε given by Lemma 5.3.2, there exists

(t, j) ∈ dom φ such that φ(t, j) = Gε6(φ(t, j)). Given such (t, j), let T ∗ = t + j. Then,

given that Gε6(φ(t, j)) ⊂ M1 and the forward invariance of M given by Lemma 5.3.3, we

have that φ(t, j) ∈M for each (t, j) ∈ dom φ such that t+ j ≥ T ∗.
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