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Abstract

Hybrid Clock Synchronization
in
Networked Control Systems
by

Marcello Guarro

DOCTOR OF PHILOSOPHY in Computer Engineering

University of California, Santa Cruz

Professor Ricardo G. Sanfelice, Chair

Clock synchronization over networks is a nontrivial problem that has long been an impor-
tant topic in the fields of computer science and engineering as it pertains to digital networks
and distributed systems. Recently, clock synchronization has received much attention in
the study of networked control theory due to the importance of consensus on time in dis-
tributed control and estimation settings.This dissertation addresses the need for new clock
synchronization schemes with the presentation of several hybrid based approach to clock
synchronization problem.

To motivate this work, the problem of a hybrid observer, with a clock synchroniza-
tion scheme, that receives information sporadically over a network is presented. Through
an attractivity result on the convergence properties of the observer system, sufficient con-
ditions on the convergence properties of the accompanying clock synchronization scheme
demonstrate the need for clock synchronization algorithms with performance guarantees.

In one of the solutions to the problem, a distributed hybrid algorithm that syn-
chronizes the time and rate of a set of clocks connected over a network is presented. Clock
measurements of the nodes are given at aperiodic time instants and the controller at each
node uses these measurements to achieve synchronization. Due to the continuous and im-
pulsive nature of the clocks and the network, a hybrid system model to effectively capture
the dynamics of the system and proposed hybrid algorithm is introduced. Moreover, the

hybrid algorithm allows each agent to estimate the skew of its internal clock in order to

viii



allow for synchronization to a common timer rate. Sufficient conditions guaranteeing syn-
chronization of the timers, exponentially fast are provided. Numerical results illustrate
the synchronization property induced by the proposed algorithm as well as robustness to
communication noise.

Next, an innovative hybrid systems approach to the sender-receiver synchroniza-
tion of timers is presented. Via the hybrid systems framework, the traditional sender-
receiver algorithm for clock synchronization is united with an online, adaptive strategy to
achieve synchronization of the clock rates to exponentially synchronize a pair of clocks con-
nected over a network. Following the conventions of the algorithm, clock measurements
of the nodes are given at periodic time instants, and each node uses these measurements
to achieve synchronization. For this purpose, a hybrid system model of a network with
continuous and impulsive dynamics that captures the sender-receiver algorithm as a state-
feedback controller to synchronize the network clocks is introduced. Moreover, sufficient
design conditions that ensure attractivity of the synchronization set are provided with nu-
merical examples to validate the theoretical results.

Finally, a general approach and framework to modeling clock synchronization pro-
tocols using hybrid systems is presented. Using the general framework, several existing
algorithms from the literature are modeled. The models are then simulated numerically to

demonstrate the feasibility of the proposed modeling framework.
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Chapter 1

Introduction

Clock synchronization has long been a topic of great importance to the field of com-
puter science and engineering due to the temporal demands of applications operating over
networks in a distributed computing setting. In recent years, the topic has received much
attention from the controls and cyber-physical systems community due to the increased use
of networks in sensing and control applications that operate on evolving dynamical systems.
Some of these applications include, but are certainly not limited to, distributed estimation
via remote sensing, multi-agent robotics, industrial automation, and non-collocated control.

In particular, distributed control applications, such as robotic swarms, automated
manufacturing, and distributed optimization rely on precise time synchronization among
distributed agents for their operation; see [1]. For example, in the case of distributed control
and estimation over networks, the uncertainties of packet-based network communication
requires precision timestamping of sensor and actuator messages in order to synchronize
the information to the evolution of the dynamical system being controlled or estimated.
Such a scenario is impossible without the existence of a common timescale among the
non-collocated agents in the system. In fact, the lack of a shared timescale among the net-
worked agents can result in performance degradation that can destabilize the system; see [2].
Moreover, one cannot always assume that consensus on time is a given, especially when the
network associated to the distributed system is subject to perturbations such as noise, delay,
or jitter. Hence, it is essential that these networked systems utilize clock synchronization
schemes that establish and maintain a common timescale for their algorithms.

The union of communication networks in control and sensing applications has

given way to the interdisciplinary study of Networked Control Systems (NCS) that seeks



to address the problems that lie at the intersection of control and network theory, see [3].
One of the main set of challenges that arises in the study of NCSs, are those that relate
to the sample and delay based nature of the exchanged data. To transmit information
about a continuous time system over a discrete network, information collected by sensors
are first digitally sampled and quantized, the digital measurement is then encoded into a
data packet, then the packet is placed in a buffer before being broadcast to the network.
When the measurement packet is received by a separate node on the network, such as an
observer or controller, the packet must then be arbitrated and decoded. This process of
measurement sampling, transmission, arbitration, and decoding introduces a measurable
delay that, if left unaccounted for, can adversely affect system performance in a control
system setting, see [3]. Moreover, depending on the networking protocol, the length of the
delay can be either deterministic or time-varying.

One solution to address the issue of delay is to include the delay information via
message timestamping as noted in 3] and [4]. For the information on delays to properly
be utilized, consensus on a common timescale must exist among the distributed agents in
the networked control system. To ensure consensus on a common timescale, the system is
coupled with a clock synchronization subsystem that periodically synchronizes the clocks
to ensure their relative error is within an acceptable tolerance that is sufficient for desired
system performance. However, the design of such a clock synchronization subsystem in the
context of networked control is nontrivial as it is faced with many of the same communication
constraints faced by networked control systems. These issues and constraints include but are
not limited to: delays, sporadic communication events, and network traffic, see [5] and [6].
Moreover, if the rate by which the clocks converge in a networked control system setting is
insufficient, adverse effects on the system performance may occur.

Motivated by these challenges, this work presents new solutions to the clock syn-
chronization problem based on hybrid system designs that seeks to close the performance
gaps that exist with in the current state of the art. To illustrate the motivation, we present
two examples which are introduced in Section [I.I] and Section [I.2] The first example
demonstrates how a nondeterministic delay adversely affects a networked control system
by examining the behavior of a networked observer system that is subjected to delayed
measurements from a linear time-invariant plant. We will then present a sketch of our
proposed solution to address the delayed measurements that requires the use of a clock

synchronization scheme. The second example prevents on overview of the clock synchro-
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2 =Az |---. - Network fe----=--- > Observer
y =Cz
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Figure 1.1: Block diagram of the system.

nization problem and some of the noted challenges. In Section we present examples on
the existing state of the art in clock synchronization and note their associated shortcomings

that further motivates the research of new hybrid-based solutions.

1.1 Motivational example: state estimation via networked

observer

Consider a continuous-time linear system, given by

2= Az
(1.1)
y=Mz

where z € R" is the system state and y € R? is the measured output. The matrices A
and M are constant and of appropriate dimensions. Now, consider a network-connected
observer designed to generate estimates Z of the system state z utilizing measurements y

sampled and broadcast at random times tg, k € Zr \ {0}, where
Ir:={2i+1:i€N}

Moreover, the network experiences varying transmission delays: the sampled measurements

y(tx) are available only at random times t, k € Z; \ {0}, where
T,:={2i:ieN}

See Figure for a block diagram representation of the system.
The measurement sampling and arrival events are described by a strictly increasing
unbounded sequence of instants {t;}7° , where
0<t; <TV
TN <t —t)_o <TVN VkeIg\{0} (1.2)
0<ty—tp1 <T? VkelI;\ {0}
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Figure 1.2: The evolution of the estimation error with respect to time. The vertical dashes
represent the jumps of 2 according to 2+.

with tg = 0. The scalars T} and T3V define the minimum and maximum allowable transfer
interval (MATT), respectively, while 7% is an upper bound on the transmission delay and
are such that 73V > TN > T > 0.

Then, the goal is to generate an estimate of the state Z € R™, using the measured
output from the plant in an impulsive-type Luenberger observer. The algorithm presented
by Ferrante et. al in [7] is a viable solution for the scenario where the measurement output
is aperiodic and instantaneously available. However, it is not robust to small delays when
the when the plant state grows unbounded.

To show this, consider the impulsive observer,

=Az vt ¢ {ti}g>
S(th)= 2(te)+L(y(te_1)—M2(ty))  Vi=ty, k € Ty \ {0} (1.3)
' 2(tr) Vi=ty, k € g\ {0}

where L € R™*" is a gain matrix designed according to the algorithm in [7] such that the
estimation error € := z — Z converges to zero.

Now, consider the scalar example from [7] given by the following system data:
A =1, M =1 with chosen constants 7} =75 = 1 and L = 1 — e~! designed such that the
conditions outlined in [7] are satisfied. Then, let 7% = 0.2. Simulating the observer in ,
Figure shows that the norm of the estimate error € = z — 2 for the given data diverges
due to the small delay introduced on the measurements.

Now suppose the measurements y(t;) are accompanied by a timestamp #;(tx).



Then, consider the observer from ({1.3) modified such that only instantaneous measurement
arrivals are used and those that have incurred a delay during transmission are ignored by

the observer

2= A3 vt & {1
F(th) kel (1.4)
2(ty)  VkeIg

where
é(tk)+L(y(tk,1)—M2(tk)) if ﬁt(tkfl) =t

Z(tg) if 0y (tp—1) # t

Note that for this observer scheme, a local clock at the observer synchronized with the plant

() =

clock is necessary for the algorithm to identify the delayed measurements. Even then, this
observer does not reconstruct the state for all scenarios.

In fact, consider the same system data as above, namely A =1, M =1, L = 1—e!
with constants Tj = T = 1. Then, let 7% = 0.2. Simulating the observer in , at times
t € {tp}72, the estimate is corrected and the error decreases, but when the measurements
are delayed, then the estimate provided by the observer does not converge. Figure[I.3|shows

the behavior of the norm of the estimate error € = z — 2 under such a scenario.

Figure 1.3:  The evolution of the estimation error with respect to real time with the
observer law that rejects delayed measurements. The vertical dashes represent the resets of

% according to 27 in l'

The issues outlined in the aforementioned examples motivate a hybrid observer
design, with a clock synchronization scheme, that properly uses the information received

even under the scenario of measurement delays.



As demonstrated by the preceding examples, the prime challenges to solve this

problem are given as follows:

1. Aperiodic measurement broadcast events at unknown times: the event times at which
plant measurements are sampled and broadcast to the network for the observer are
not known a priori. In addition, the time elapsed between each broadcast event time

instant is variable within a minimum and maximum allowable transfer interval.

2. Variable transmission delays: the network is treated as a non-ideal communication
medium hence, it is subject to latency delays that are also assumed to be variable.
Similar to the aperiodicity of the broadcast event times, the time-elapsed between

between measurement broadcast and arrival is not fixed nor is it known a priori.

3. De-Synchronized network clocks: due to the variability in the broadcast and arrival
times of measurements, consensus between networked agents on the system time frame
is necessary to maintain the temporal ordering of measurement sampling events. How-
ever, imperfections in the dynamics and initialization of the clocks for each agent can

lead to de-synchronization and thus a lack of consensus on event ordering.

In Chapter 3] we present our proposed solution through a formulation and analysis
of the system model using the hybrid framework in [8]. Our proposed solution considers
a modification to the impulsive observer in that utilizes information on the incurred
measurement delay. Similar to the impulsive observer in , the output measurements
from the plant are timestamped then, by assuming the existence of synchronized clocks
at the plant and observer, the observer compares the measurement timestamp to its own
clock to retrieve the information on the incurred delay. Upon arrival of the measurement
and timestamp at the observer, the current state estimate is back propagated via state
transition matrix by the delay amount, the Luenberger observer law is applied using the
back propagated estimate and measurement then, the new estimate is forward propagated
to the current time.

We present the viability of our proposed solution through a series of results: We
first show feasibility by presenting results for the ideal case where there is no incurred delay
in the transmission of the measurements and we assume the observer clocks are synchro-
nized. We then provide results with the incurred delay under the assumption that the

clocks at the plant and observer are synchronized. Our third result relaxes the assumption



on the synchronized clocks by providing an attractivity analysis for the case where the
clocks synchronize in finite time.

Our system formulation and, in particular, the attractivity analysis with the clocks
that are not initially synchronized, demonstrates the need for clock synchronization scheme

in a networked control system setting.

1.2 Introduction to the clock synchronization problem

In the previous example we highlighted the need for a clock synchronization scheme as it
applies to a networked control system setting. In this section, we outline the motivation for
a hybrid systems approach to clock synchronization. For many networked control system
settings, each agent in the system is fitted with its own internal hardware clock and an
instance of a software clock based on the dynamics of the hardware clock. Ideally, the ith
agent in the system would have a clock 7; € R>( such that 7;(¢) = ¢ where ¢ is the global or
real time. However, many hardware clocks utilize quartz-crystal or MEMS oscillators that
are susceptible to manufacturing imperfections and environmental factors and affect the
oscillator frequency, see [5] and [9]. Due to the observed variability in oscillator frequency,
one generally considers the continuous-time dynamics of the ith hardware clock node given
by

T = a; (1.5)

where a; € R defines the clock’s drift or skew due to an imperfect oscillator. Solving the
differential equation gives the following relationship to the ideal clock or real-time reference
t

7i(t) = ait + 7;(0) (1.6)

where the initial condition 7;(0) gives the offset from ¢. For a network of n agents, the
notion of clock synchronization can be defined as the state of the networked system such
that 7, = 7; for all 4,5 € {1,2,...,n}, i # j.

In an ideal setting with no delay and identical clock skews, synchronization between
two nodes A and B can be achieved by the following algorithm: Node A send its time to
Node B. Node B calculates its offset relative to A. Node B applies the offset correction to
its clock. For the case of non-identical clock skews, a pair of measurements from Node A

would allow Node B to calculate its relative skew 24 and apply a correction accordingly.
B



In a realistic setting, however, network communication between nodes are often
subjected to a variety of delays. Without loss of generality, these delays can be divided into
two types: propagation time and residence time. Propagation time represents the actual
time elapsed during message transmission between two nodes when the message is in the
network channel. The residence time defines the time elapsed between message reception
and egress of its response message, it captures all of the hardware-related delays such as
send time, access time, transmission time, reception time and receive time, see 5] and [10]
for more details. Moreover, depending on the system setting, these observed delays can
either be deterministic or stochastic in nature and are the key challenge in networked clock
synchronization. In light of this challenge, the goal of clock synchronization is to achieve

synchronization while removing or mitigating the effects of delay.

1.3 Current state of the art in clock synchronization

Many of the existing clock synchronization protocols rely on message based ex-
changes of timestamps to synchronize the clocks to a common or shared reference. The
reference based or centralized nature of these protocols requires that a common reference or
a set of references be established first in order to achieve synchronization. Therefore, many
of the existing message-based protocols implement a two-stage algorithm: the first stage
establishes the node hierarchy based on clock accuracy while the second phase synchronizes
the clocks. In the following examples, we will assume the network hierarchy is given as
an analysis of the algorithms that establish the node hierarchy is beyond the scope of this
proposal. For the clock synchronization phase, there exist three types of commonly used
message based approaches: two-way message synchronization (or sender-receiver message

synchronization), one-way message synchronization, and receiver-receiver synchronization.

1.3.1 Sender-Receiver message synchronization

The sender-receiver (or two-way) based synchronization algorithm is the most
common of the message exchange synchronization protocols due to its utilization in the
Network Time Protocol (NTP) in [11], the Precision Time Protocol (PTP) in [12] , and the
Timing-sync Protocol for Sensor Networks (TPSN) in [10].

The core algorithm upon which these protocols are based relies on the existence of

a known reference that is either injected to the system or provided by an elected agent in



the distributed system; synchronization is then achieved through a series of chronologically
ordered and time stamped two-way message exchanges between each synchronizing node
and the designated reference. With sufficient information from the exchanged messages and
underlying assumptions on the clocks and communication delays, the relative differences in
the clock rates and offset can be estimated and applied as a correction to the clock of the
synchronizing node, see [13]. However, while the difference in the output can be determined
and implemented online, the relative clock rate is estimated through offline filtering tech-
niques (see |11]) or least-squares estimation (see [5]). Moreover, these algorithms are often
not robust to changing network topology and asymmetry in transmission times, thus many

protocols (such as NTP, PTP, and TPSN) often stipulate the following assumptions:

a) the existence of an established hierarchical structure such that each node has a des-

ignated reference;
b) fixed and symmetric transmission and residence times;
c) synchronized clock skews, i.e., a; = a;. E|

Each of the aforementioned protocols, however, utilize different strategies in re-
gards to the availability of the algorithm and the layer of implementation. For instance, the
Network Time Protocol is an “always-on” implementation that runs entirely as a system
process in the software layer. This level of implementation subjects the protocol to frequent
computational delays due to the execution of system processes that have higher priority.
These delays contribute to timing inaccuracy that renders NTP unfit for networked control
systems with fast sampling periods, see [14].

Improving upon NTP to address its concerns and meet the demands of time-
sensitive distributed system, the Precision Time Protocol utilizes a hybrid implementation
of software and hardware to improve the synchronization accuracy. The protocol utilizes
timestamping of the exchanged messages at the hardware layer to minimize the computa-
tional delays associated with software timestamps on the exchanged messages.

The Timing-sync Protocol for Sensor Networks seeks to address the scalability

issues posed by the NTP and PTP protocols by allowing the algorithm to work on an in-

Protocols such as TPSN assume that the clock offset between any two nodes does not change during
synchronization which would imply that the clock skews are identical, see [10]. NTP assumes the existence
of closed-loop controllers at each clock to give a common skew such that errors due to resolution and skew
are minimized, see [11] and [6]. PTP assumes that the relative skews between two nodes is known or can be
estimated, see |12].



termittent schedule. The intermittent strategy enable its use in low-energy sensor networks
with limited computational capacity at the cost of synchronization accuracy.
The mechanics of the algorithm are given as follows: consider a designated refer-

ence agent R and a synchronizing agent S, with the following dynamics

TR = QR
(1.7)

Tg = ag
where agr = ag. At some time instances tx, k € N the nodes broadcast a message with

embedded timestamp

T = 75(t) = ai(ty) + 7:(0) (1.8)

Assuming the sequence of time instants {t;}3°, is strictly increasing and unbounded, the

two-way message synchronization algorithm is given as follows:

1. - At time ¢, Node R sends a message with an embedded timestamp
TlR = aR(tl) + 7r(0)
to node S.

2. - At time t9, Node S receives the message and records the arrival time
T3 = as(tz) + 75(0)
3. - At time t3, Node S responds to node R with embedded timestamp
T3 = as(t3) +75(0)
indicating the time of transmission.

4. - At time t4, Node R receives the message from node S and records the arrival time
T4R = apr(ts) + Tr(0)

5. - At time t5, Node R responds to node S with the timestamp T4R embedded.

6. - At time tg, Node S has collected timestamps 71, Ty, T35, and Tf.

10



Then at time tg, the relative offset 6 := 7r(0) — 75(0) is calculated as follows:

—_

(Tf ~15)~(15 1)) = 5 ((anta) +7(0)) ~(as(ts) +75(0)))

~ ((as(t2)+75(0))~(an(t)+7r(0))) )

1

— §<(GR(t4) —as(t3) +0) — (as(t2) — ar(t1) — 9))

2

Since the skews are assumed to be synchronized, let ag = ar and suppose ag = 1, then

SR (15 ~10) = 5 ((anlts—ts) 1)~ (an(ts—12)-0)

2
= % (((t4—t3)+9) - ((tZ—tl)_e))

Now, since the propagation and residence times are assumed to be fixed and symmetric, let

(1.9)

d be some positive constant, then
ty —ty =14 —t3 =15 —t5 =d
Making the appropriate substitutions in ([1.9)),

L (@115 -1 =

N
I

S IR N

5492

Figure 1.4: Diagram to illustrate the message exchange between the reference and synchro-
nizing nodes for the synchronization algorithm. R refers to the time frame of the reference
node while S refers to the time frame of the synchronizing node.

As noted, the success of two-way message based algorithms hinges on the given
assumptions which aren’t always necessarily guaranteed in every distributed system. In par-
ticular, it is not always the case that the propagation times will remain fixed and symmetric

especially in a wireless network with dynamic topology. Moreover, a dynamic topology poses

11



issues to the established hierarchical structure and would thus require the re-execution of
network discovery algorithms to reestablish hierarchical topology. The conjunction of a
dynamic topology and the execution of algorithms to establish the network hierarchy algo-

rithms can introduce additional delay to the clock synchronization.

1.3.2 One-way message synchronization

One-way message synchronization is the approach used by the Flooding Time
Synchronization Protocol (FTSP) [15]. This approach assumes the existence of a refer-
ence node to which all of the nodes in the network must synchronize. The reference node
periodically broadcasts timestamps, each node records its time of arrival and stores the
pair of timestamps. Each receiving node performs a least-squares minimization using the
stored timestamp pairs to calculate the relative clock skew and offset. To demonstrate how
the least-squares minimization is formulated, consider the same two nodes R and S with
dynamics as in and timestamps as in (5.2). For a strictly increasing and unbounded

sequence of time instants {¢;}7°, a sample of the protocol execution is given as follows

1. At time t1, the reference node R broadcasts timestamp
TlR =agr(t1) + 7r(0)
2. At time t5 Node S receives TlR and records its time of arrival

TQS = as(tz) + Ts(O)

Now, if one assumes that the propagation time is fixed, then let d = to —t; for some positive

constant d. By rearranging T, one has

t = (TR ~ 4(0)) (1.10)
aR

substituting the expression for ¢; into the equation for the propagation time, d = to —t1, to

can be expressed as follows

ty = ;(Tﬁ—m(o)) +d (1.11)
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then making the appropriate substitutions into TQS , one has

TQS = ag(tg) + Ts(O)

1

= as (- (T~ 7(0)) + d) +75(0)

a
= é(TF —7r(0) + aRd) + 75(0) (1.12)
= aiTﬁ — aiTR(O) + ard + 15(0)

aR aR
= BTF tagd +75(0) — Zrp(0)

aR aR

By letting 8 = 7(0) —75(0) be the initial relative offset and then rearranging the expression
such that 7¢(0) = 7r(0) — 6 it can then be substituted in (1.12]) to give

T8 = YSTR 4 apd + m5(0) — 0 — 23 75(0)
ar ar
as R as
= =T d—0 1——
an 1 tar + ( aR)TR(O)

Then for any subsequent timestamp pair {T,irl, Tk, T,fH can be expressed as follows

TP = FMTE +apd — 0 + €

where f5M .= Z—; and € := (1 — f5M)75(0). The idea is to then estimate the relative clock
skew f5M and offset 6 via linear regression once a sufficient number of measurement pairs
has been collected.

Note that in the estimation, the offset cannot be differentiated from the skewed
propagation delay agrd contributing an error to the offset estimation. This does not pose
an issue if the propagation delay is assumed to be small or negligible as assumed in [10].
However, if the propagation delay is variable and non-Gaussian then the least-squares es-
timation will not be able to give an accurate estimation. Moreover, if the reference node
become compromised or lost, the system must re-elect a new reference node to serve as the

system reference contributing additional delay to the synchronization.

1.3.3 Receiver-receiver synchronization

Receiver-receiver based synchronization is the scheme proposed by the authors
of [16]. Similar to the one-way messaging scheme, there exists a master node that broadcasts

a ‘ping’ message to the network. Though, instead of synchronizing to the master node, the
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receivers synchronize to a common time scale by exchanging timestamps of their ping receipt
time observations with neighboring receivers. Consider three nodes R, Si, and Sy with
dynamics as in [6.1] and timestamps as in[5.2} Then for a strictly increasing and unbounded

sequence of time instants {¢;}7°, the protocol operates as follows

1. At time ¢4, the master node R broadcasts a ping
R __
17" = ag(t1) + 7r(0)
2. At time to, Node Sy receives the ping and records its time of arrival
S1
T2 = as; (t2) + 75 (0)
3. At time 3, Node Sy receives the ping and records its time of arrival
T?:% = ag, (t3) + TS, (0)

4. At time t4, Node S; broadcasts its arrival timestamp TQS E
5. At time t5, Node Sy broadcasts its arrival timestamp T?:g 2
6. At time tg, Node Sy receives timestamp 7. 25 !
7. At time t7, Node Sp receives timestamp 7. 35 2

Following the receipt of each timestamp from a neighboring node, nodes S; and S perform
corrections to their respective clocks using the timestamp pair {TQS 1,T35 }. Let d;; denote
the propagation time between any two nodes i and j and assume it is a fixed positive
constant. Then, by observing drs, = t2 —t1, drs, = t3 —t1, and that TIR gives the transmit

time of the ping in the time reference frame of the master node, then by using the relation

1
t1 = — (1" — 7r(0))
aRr
to give
ty = 1 (T — 7r(0)) + drs
ar 1 1
1
ty = — (T — 7r(0)) +d
3 aR( it = 7r(0)) + drs,

14



the timestamps TQS ! and T?)S 2 can be expressed as follows

as as
T251 = T];TlR + aRdRsl + TS, (O) — TITR(O)

o as a;“ (1.13)
T2 = = 2TE 4+ ardps, + 75,(0) — —27(0)
R ar

If the clock skews of S7 and Ss are synchronized, i.e., agr = ag, then taking the difference

in the timestamps gives
T — T = (“5TR 4 apd _ 45
=Ty = (T + ardgs, + 75, (0) 7r(0))
aRr aRr

as as
— (—QTlR—i-aRdRSQ + 75,(0) — -2 TR(O))
ar ar

1.14
= ardrs, + 75,(0) — ardrs, — 7s,(0) (1.14)

= agdrs, — ardrs, + 75,(0) — 75,(0)

= agr(drs, — drs,) + 75,(0) — 75,(0)

Now, if the propagation delay is assumed to be identical drs, = dgg, or effectively zero

drs, = drs, = 0, as is assumed in the RBS protocol (see [16]), then
T3 — 13" = 75,(0) — 75, (0) (1.15)

yielding the clock offset of nodes S and .Ss.

If the clock skews are not initially synchronized, observe that a second set of
timestamps will allow each node to its relative skew. Suppose the master node broadcasts
a second ping T7R at time t; arriving at nodes S7 and S, at times tg and tg, respectively.
Following the exchange of timestamps TSS ! and Tég 2. the relative skew rate between nodes

S1 and S5 is calculated as follows

Tésl _T251 B (%T}R + aRdRsl + 75, (0)—%7’3(0))—(%TF + aRngl + 75, (0) — %TR(O))
T2 -T5 (52T + ardrs, + 75,(0)—2278(0)) = (22T + ardrs, + 75,(0) — =275(0))
a

L (T — 1Y)

a

T2 (T -1

as,

G52

(1.16)
Alternatively, if a timestamp rather than a ping is sent by the master node, then
both the skew and offset can be estimated by performing a least-squares linear regression.

Assume the propagation delay is identical drs, = drs, or effectively zero drs, = drs, =0,
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assume further that the master node is an ideal clock with skew agp = 1 and offset 7(0) = 0,

then equation (1.18)) gives
as as as as
T:;S'Q—Tégl = (*1 TIR + aRdRsl + TS, (0)—71 TR(O))— (72 TlR + aRd352 + 7s, (0)—72 TR(O))
apr apr aR apRr

= (asl - aSz)TlR + (7—51 (O) — TS, (O))

(1.17)
This can be generically extended to any subsequent timestamp triplet {T,ij, TE}H, T,f} as
follows
S S
Tk—?—2 - Tk:-sl-l = (a5’1 - CLSQ)CZ_‘IfL + (TS1 (O) — TS, (0)) (118)

Once a sufficient quantity of timestamp triplets the least-squares regression can be per-
formed to give the skew and offset.

Similarly to the other two message based algorithms, receiver-receiver synchro-
nization requires assumptions on the propagation delay in order to achieve synchronization
that may not necessarily exist in every scenario. It is also not robust to any losses or com-
promises to the master node and also requires a re-election of a master node resulting in

additional synchronization delays.

1.3.4 Issues with current state of the art algorithms and protocols

In the original works presented on the respective message based synchronization
schemes, the authors would provide analytical and experimental results to verify the validity
of their algorithms but would omit any analysis on their rate of convergence and robust-
ness. The survey paper [6] provides some high level analysis of current algorithms citing
qualitative advantages and disadvantages of the various message based schemes but fails
to provide any formal analytical results. The work in [13] gives results on the feasibility
of synchronization for these message based algorithms under various assumptions but does
not provide any details on convergence or robustness.

Additionally, we have outlined the following challenges associated with clock syn-

chronization:

1. Stochastic and deterministic delays: As discussed in Section [I.2] communication over
digital networks introduces a variety of delay sources that have both deterministic
and stochastic origins. The accumulation of these delays poses the greatest challenge

to synchronization since they are difficult to measure or estimate.
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2. Variable clock skews: Many of the existing algorithms assume the clock skew over the
synchronization period is relatively static. Realistically, clock skews have time-varying
characteristics due to the environmental susceptibilities of the hardware oscillators

such as swings in temperature and the corrosion of parts.

3. Network Traffic / Sporadic broadcasts: Since clock synchronization protocols are of-
ten a subsystem to larger systems communicating over the same network, it is often
subject to network traffic leading to asynchronous broadcasts of timestamps and in-

creasing the issue of delay.

4. Centralization: As has been observed in each of the message based synchronization
examples, each synchronization scheme uses a centralized algorithm. The centralized
nature of each algorithm adds additional complexity to the protocol design and poses

challenges in synchronization with a dynamic network topology.

5. Scalability: Most protocols are often designed with scalability in mind however, in
some instances different performance parameters can degrade as the size of the net-
work increases. For instance, in the case of two-way message synchronization, syn-
chronization can only occur between a sender-receiver pair of nodes at any give time,
thus for a network of n nodes with a single reference and n—1 nodes, system-wide syn-
chronization will increase by a factor of n — 1. Moreover, it can contribute significant
traffic overhead to the network. Receiver-receiver based synchronization for instance

requires O(n?) message exchanges in order to achieve synchronization, see [6].
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Chapter 2

Preliminaries

2.1 Notation

In this proposal the following notation and definitions will be used. N denotes
the set of natural numbers, i.e., N = {0,1,2,..}. N5 denotes the set of natural numbers
not including 0, i.e., Nsg = {1,2,..}. R denotes the set of real numbers. R>y denotes the
set of non-negative real numbers, i.e., R>g = [0,00). R" denotes n-dimensional Euclidean
space. Given topological spaces A and B, F': A = B denotes a set-valued map from A to
B. For a matrix A € R®*™_ AT denotes the transpose of A. For a matrix A € R»*™  A*
denotes the conjugate transpose of A. Given a vector x € R", |z| denotes the Euclidean
norm. Given two vectors € R" and y € RE, (z,y) = [zT " ]T. Given a matrix A € R,
Amax(A) denotes the largest eigenvalue of A and Apin(A) denotes the smallest eigenvalue of
A. Given a matrix A € R", |A| := max{ /)| : A € eig(ATA)}. For two symmetric matrices
A€ R"and B € R", A = B means that A — B is positive definite, conversely A < B
means that A — B is negative definite. Given a closed set A C R"™ and closed set B C A,
the projection of A onto B is denoted by IIg(A). Given a function f : R” — R, the range
of f is given by rge f := {y | Iz with y € f(x)}. A vector of N ones is denoted 1x. The

matrix I, is used to denote the identity matrix of size n x n.

2.2 Preliminaries on Hybrid Systems

In this chapter we introduce some preliminaries on hybrid systems and the frame-

work by which we model them. In addition, we provide some introductory preliminaries on
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graph theory that will be used in later chapters.
A hybrid system H in R™ is composed by the following data:

e a set C' C R", called the flow set;

e a set-valued mapping F': R" = R" with C' C dom F', called the flow map;
e aset D C R" called the jump set;

e a set-valued mapping G : R® = R"™ with D C dom G, called the jump map;

Then, a hybrid system H := (C, f, D, G) is written in its compact form is given by

rel & = f(x) 2.1)

xeD zt € G(x)
where z is the system state. Solutions to hybrid systems are denoted by ¢ and are pa-
rameterized by (t,7), where ¢t € R>( defines ordinary time and j € N is a counter that
defines the number of jumps. A solution ¢ is defined by a hybrid arc on its domain dom ¢
with hybrid time domain structure [4]. The domain dom ¢ is a hybrid time domain if
dom ¢ C R>g x N and for each (T, J) € dom ¢, dom ¢N ([0,7] x {0,1,..., J}) is of the form
U0, tj41] x {4}), with 0 =t < #; <t <t;41. A function ¢ : dom ¢ — R" is a hybrid
arc if dom ¢ is a hybrid time domain and if for each j € N| the function ¢ — ¢(t, j) is locally
absolutely continuous on the interval I/ = {t : (¢,7) € dom ¢}. A solution ¢ satisfies the
system dynamics; see [4, Definition 2.6] for more details. A solution ¢ is said to be maxi-
mal if it cannot be extended by flow or a jump, and complete if its domain is unbounded.
The set of all maximal solutions to a hybrid system H is denoted by Sy and the set of all
maximal solutions to H with initial condition belonging to a set A is denoted by Sy (A). A
hybrid system is well-posed if it satisfies the hybrid basic conditions in [4, Assumption 6.5].

Definition 2.2.1. Given a hybrid system H defined on R", the closed set A C R™ is said
to be

e stable for H if for every e > 0 there exists 6 > 0 such that every maximal solution ¢

to H with |(0,0)|4 < J satisfies |p(t,5)|a < € for all (t,7) € dom ¢;

e attractive for H if there exists p > 0 such that every mazimal solution ¢ to H with

|$(0,0)| 4 < p is complete and satisfies limy4j—oo |P(t,7)|.4 = 0;
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e asymptotically stable for H if both stable and attractive for H.

e globally exponentially stable (GES) for H if there exists positive scalars k, o > 0 such
that every solution ¢ to H is such that every maximal solution ¢ to H is complete and

satisfies |4(t, j)| a4 < ke™ 49 [p(0,0)| 4 for each (t,5) € dom .

Moreover, when inputs are present for a given linear time invariant system, one has similar
notions as long as every static solution for every input satisfies the properties in Definition

For details on hybrid systems, see [§].

2.3 Preliminaries on Graph Theory

Let G = (V, &, A) be a weighted directed graph (digraph) where V = {vy,va,...,v,}
represents the set of n nodes, £ C V x V the set of edges, and A € {0,1}"*"™ represents the
adjacency matrix. An edge of G is denoted by e;; = (v;,v;). The elements of A are denoted
by a;; where a;; = 1 if ¢;; € £ and a;; = 0 otherwise. The in-degree and out-degree of a
node v; are defined by d™(v;) = >_p_, ag; and d°“(v;) = Y 7_, aik, respectively. The largest
and smallest in-degree of a digraph is given by d = max;cyd™(v;) and d = min;cyd™(v;).
The in-degree matrix is a diagonal matrix denoted D with elements given by

gy = dm@) ifi=j Vos €V
0 if i £ j
The Laplacian matrix of a digraph G, denoted by L, is defined as £ = D — A and has the
property that £1,, = 0. The set of nodes corresponding to the neighbors that share an edge
with node v; is denoted by N (v;) :=={k €V : e; € £ }. In the context of networks N (v;),

this represents the set of nodes for which an agent v; can communicate with.

Lemma 2.3.1. ((Olfati-Saber and Murray, 2004, Theorem 6),(Fax and Murray, 2004,
Propositions 1, 3, and 4)) For an undirected graph, L is symmetric and positive semidefinite
and each eigenvalue of L is real. For a directed graph, zero is a simple eigenvalue of L if

the directed graph is strongly connected.

Lemma 2.3.2. (Godsil and Royle (2013)) Consider an n x n symmetric matric A = {a;;}
satisfying > i a;, = 0 for each k € {1,2,...,n}. The following statements hold:
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e There exists an orthogonal matriz U such that UT AU = where * represents
0 %

any nonsingular matriz with appropriate dimensions and 0 represents any zero matrix

with appropriate dimensions.

e The matriz A has a zero eigenvalue with eigenvector 1, € R™.

Definition 2.3.3. A weighted digraph is said to be

e balanced if the in-degree matrix and out-degree matrix for every node is equal, i.e.,

d’(v;) = d°“(v;) for each v; € V.

e complete if every pair of distinct nodes is connected by a unique edge, i.e., a;; = 1 for

each i,k € V,i # k.

e strongly connected if and only if for any two distinct nodes there exists a path of

directed edges that connects them.
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Chapter 3

A Hybrid Observer for Linear
Systems under Delayed Sporadic

Measurements

In this chapter, we present a hybrid observer for state estimation over a network
that motivates our work on algorithms for clock synchronization. To construct the problem,
we assume a networked plant and observer whereby the network provides delayed measure-
ments of the output of the plant at time instants that are not necessarily periodic. The
measurements are accompanied by timestamps provided by a clock that synchronizes with
the clock of the observer in finite time. The proposed observer, along with the plant and
communication network, are modeled by a hybrid dynamical system that has two timers,
a logic variable, and two memory states to capture the mechanisms involved in the events
associated with sampling and arrival of information, as well as the logic in the estimation
algorithm. The hybrid model also includes a generic clock synchronization scheme to cope
with a mismatch between the clocks at the plant and the observer. Convergence properties
of the estimation error of the system are shown analytically and supported by numerical

examples.
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3.1 Problem Statement

Problem 3.1.1. Given the linear time invariant system and positive constants 0 <
T < TN < TN, design a hybrid algorithm including the hybrid observer in such that

the resulting closed-loop system H is such that 2(t, j)—z(t, j) converges to zero ast+j — co.

To solve this problem, we propose the following hybrid strategy for reconstructing

the state z:

e Measurements y broadcast at times tg, k € Z;, are accompanied by a time-stamp

O(ty) = t.

e When the subsequent measurements arrive at times t;, k£ € Z,,, the current state

estimate Z(tx) is backward propagated to Z(tx—1) via
A(tp_1) = e %k 2(t,)
where 0y, := t;, — l4(t;—1) is the incurred delay.
e With the estimate Z(¢j) retrieved, the reset law in is applied, namely,

25 = 2(tp—1) + L(y(tp—1) — M2(tp—1))
= e M5 (ty) + L(y(ty—1) — Me % 2(ty,))

where Z* is the value of the estimate obtained after the reset law is applied.

e The reset estimate 2*(tz_1) is then forward propagated to t
2 (ty) = e 2"

Combining the above steps into a model, the proposed hybrid observer law can be summa-

rized as follows:

2= A3 vt & {tr}5°
() 2(tk) + e L(y(ty—q) - Me A% 5(ty,)) Vi=ty, k € Iy (3.1)
zZ(t, )=

z(tk) Vi=ty, k € I,

Excluding the measurement output y, the proposed strategy relies on the accessibility to

information on the delay interval §; however, such information requires that both plant and
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observer have consensus on the global time. Therefore, in addition to the presented strategy
for state estimation, the proposed system incorporates a clock synchronization scheme to
ensure consensus on the global time and maintain accessibility to the information on .

The design of this hybrid algorithm requires finding a proper choice of the matrix
L. To find such an L, we consider the LMI condition presented in [7] for which an algorithm
is given to solve. The hybrid algorithm proposed in this thesis also includes provisions for
a clock synchronization algorithm the clocks determining time for both the plant and the
observer.

Next, we define the hybrid model that provides the framework and solution to
Problem The model is constructed such that the observer defined in is recast
with the dynamics of the network as a hybrid system with a set-valued jump map. Moreover,
provisions are included to facilitate the inclusion of a clock synchronization strategy to
ensure proper function of the hybrid observer. To build such a model, we treated the
observer and clock synchronization strategy as individual but interconnected subsystems.
Figure describes such a system where, H, is the plant-observer subsystem and H; is the
clock synchronization subsystem. With the chosen design of H, the system can be viewed

as the interconnection of two hybrid subsystems.

H, _Z H,
(2Ly,brp) (tp,70)

Figure 3.1: Diagram of the observer H, and clock synchronization H; subsystems and their
interconnection.

To model the aperiodic measurement sampling of the plant, a timer variable 7
is used. Between measurement sampling events the timer flows with dynamics given by
7y = —1 and when 7y = 0, the state 7y is reset to a value in the interval [T}V, T4"]. The
transmission delay is modeled by an additional timer 75 with dynamics 75 = —¢q. Here
g € {0,1} is a discrete variable used to control the dynamics of 75 such that the timer
is active only following measurement broadcast events. More precisely, ¢ = 1 denotes an
active measurement in the network and ¢ = 0 denotes the absence of such a measurement
in the network. Thus, when 7,y = 0, 75 is reset to a point in the interval [O,Td] and q is

reset to 1. When 75 = 0, indicating measurement arrival, 75 is reset to —1 and ¢ is reset
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to 0. Having the timers 7y and 75 defined in this way, with the addition of ¢, enforces the
constraints defined in for broadcast and arrival events.

Additionally, we let ¢, and /., represent memory states that define the plant
measurement data and associated timestamp, respectively. The states 7p and 7o represent
the global clocks for the respective plant and observer. The state u represents the state
variables for a clock synchronization algorithm.

Then, we define the state vector of the interconnection of the plant and the observer
system H as x := (xq,2p) € X, x &y =1 X where z, = (2,2,7n,75,¢, by, lrp) € Ay,
zp = (Tp, 70, ) € Xp With Xy :=R" x R" x [0, T3] x ({=1}U[0,79]) x {0,1} x R™ x R>
and &p := R>g x R>g x M. The closed set M defines possible values of y. The flow map

is given by
Fa a
F(z) == A(‘”” ) VoeC
Fb(xba27€y7€Tp)
where
Fo(z,) == (Az,Aé,—l,—q,0,0,0)
and

Fb(xba 27 gyv ng) = (17 17 Fs(xlh 27 €y7£Tp))
with Fg governing the continuous dynamics of p. The flow set C' is defined as C' := C, N CY
where Cy, := Cy, U Cy, and
Cop i ={z€eX:q=0,175=—-1}
Cop ={r€X:q=1,75€[0,TY}

and Cj is the flow set defined by the clock synchronization algorithm. The jump map is
given by

Ga(xaa P, TO)

G(z) = X
Gb(za fy, nga $b)

Ve € D
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where G, is defined as

Gl(ﬁa, Tp) ifz e Da1 \ Db
GQ(xa,To) ifz e Da2 \ Db
Gao(Ta, TP, T0) = q z4 if € Dy\(Dg,UDy,)

{Za,G1(zq,7p)} ifx € Doy N Dy

{a,G2(za,70)} if x € Do, N Dy

for each x € D

]
Z
[, 13"]
Gi(za,7P) = | [0,T9 V(zq,Tp) : T € Dy,
1
M=z
TP
- . -
24 eAro=trp) (4, — Me=ATo=trp) 2)
™N
Ga(xq,70) = -1 V(zq,70) : @ € Dg,
0
by
lrp

where

Dy ={x e X 7y =0,q=0}
Dy ={zeX:175=0,g=1}

In the definitions above, G, and Dy, respectively, define the jump map and jump set for the

clock synchronization algorithm. The resulting jump set is
D:=D,UDy

where

D, := D,, UD,,
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The hybrid system data above now define ‘H as follows
H=(C,F,D,Q) (3.2)

Separating the clock synchronization from the system, one has a subsystem that is comprised

only of the plant, observer, and network dynamics, denoted by

Ha = (Ca, Fay Da, Ga) (3-3)
Conversely, the hybrid subsystem denoted by

Hp = (Cy, Fy, Dy, Gp) (3.4)

models the clock dynamics and synchronization algorithm.
For several of the results that follow, we consider the hybrid system H, with
Dy = (). Observe that H, with Dy = () has data

Gl(xa,Tp) ifre l)a1
(OauFa)Da|Db:@7Ga‘Db:@) = <OaaFa7Da1 UDCL27 >

Go(xa,70) if & € Dy,

Definition 3.1.1. A solution ¢ € Sy, is a nominal mazimal solution if it belongs to the

subset of maximal solutions defined by

Sy = {qzb € Sy, rge ¢ C {0, —1}} (3.5)

where ¢r5 is the 15 component of ¢. Additionally, we say that a solution ¢ € Sy, is a

delay mazximal solution if it belongs to the subset of mazimal solutions defined by Sfj‘_[a =

Sn, \ SI

Qualitatively, one can interpret solutions belonging to S as a representation of
the scenario where the measurements are free of transmission delays. For a given ¢ € Sy,
when the timer 7y expires (i.e., 7v = 0) the state jumps according to G1. As a consequence
of , the 75 component of the respective ¢, solution is mapped to zero following the
construction of (Gi. Then, nominal maximal solutions jump from Dy, to D,,, resulting in

a subsequent jump with no flow between the two jumps.

Remark 3.1.2. Definition applies to both H, and H. Thus, we let S3™ denote the
set of nominal mazimal solutions to H and S, = Sy \S3™ denote the set of delay solutions

to H.
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With the hybrid system defined, the next two results establish existence of solu-

tions to H, and that every maximal solution to H, is complete.

Lemma 3.1.3. The hybrid system H, with Dy, = 0 satisfies the hybrid basic conditions
in [8, Assumption 6.5].

Lemma 3.1.4. The data (Cq, Fy, Do, Gq) of He with Dy = () and inputs (7p,70) is such
that

1. Go(q, 7P, 70) C Cq U Dy for all (x4, 7p,70) : ® € Dy

2. Fy(zq) CTe,(xq) for all (zq,7p,70) : x € Cy \ Dy

Lemma 3.1.5. For every initial condition £ € C, U D, there exists, at least, a nontrivial
solution ¢ to the hybrid system H, with Dy, = 0 and inputs (7p,70) such that {t : (t,j) €
dom (1p,70)} is unbounded, and in particular, every maximal solution to H, with Dy = ()

and such an input is complete.

Remark 3.1.6. For the closed-loop hybrid system H, the completeness of mazimal solutions
to the interconnection between H, and Hp depend on the hybrid system data that defines
Hp. See [8, Proposition 2.10] and [8, Proposition 6.10] for details.

In this section, results guaranteeing convergence of the estimation error € := z — 2 to zero
with the proposed algorithm are given. First, attractivity is shown for nominal solutions
through a comparison to the exponentially converging trajectories guaranteed by the ob-
server in [7]. Next, a Lyapunov-like approach is used to show convergence of delay maximal
solutions to a set of interest by comparing the observer trajectories of a delay maximal
solution against those of a corresponding nominal maximal solution. Finally, we present a
result on the convergence of the estimation error to zero for the case where the plant and
observer clocks are mismatched but synchronize in finite time due to the inclusion of a clock

synchronization algorithm such as the one in Example [3.5.2

3.2 Asymptotic attractivity for nominal solutions

In this section we show that the nominal maximal solutions to H, are such that

the estimation error converges to zero. We prove this claim by showing that for a given
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set of parameters and initial conditions, the trajectories of the component Z for H, with
synchronized clocks inputs are equivalent to those for the hybrid model presented in [7].
To this end, let us consider the hybrid system in [7] written in plant-observer coordinates,

Ty 1= (Z,Q,TN) € R? x RZO

[ Az
Fr(zy) == | A2 Vr, € C;
-1
[ z
Gr(wy) == |2+ LM(z — 2) Vz, € D,
(T, T3]

Cri={(22,7) €R" xR" x Rxg : v € [0, T3]}
Dy = {(2,5,7) €R" x R" x Rxg : 7y = 0}

We denote this system as H,., which has the compact form

t, = Fp(x,) z, € C,
Hr (3.6)
€ Gp(x,) xr € D,

The hybrid time domain for solutions ¢" to H, is given by

dom ¢ = | J ([tj,th] x {j}> (3.7)

jEN
where
TN <tjy1—t; <T) Vje{k>1:keN}

0<t; <TY

Following [7], if matrices L and P = PT = 0 are such that
I—LM) e Pe*T—LM) - P <0 Yoe TN, T (3.8)

holds for given T: 2N > TIN > 0, then the system H, has the set

Ar={(2,2,7n) € R"xR"x[0, T3] : z=2} (3.9)

globally exponentially stable. Prior to comparing the trajectories of H, and H,, note that

‘H, resembles system H, with synchronized clock inputs 7p and 7o for the case where
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¢"(0,0) ¢"(1,0)
(0,0) »\/\ #(1.0)

Figure 3.2: Plot of ¢" and ¢ solution trajectories.

T? = 0. However, the hybrid time domain of a solution ¢"™ to H, observes an additional
jump in between periods of flow as demonstrated in Figure [3.2
Observe that x, is a strict subvector of x,. Thus, for a given initial condition

¢"(0,0) for H,, we can consider the following initial condition for H,:

¢(07 O) = (qbr(oa 0)’ ¢7'5 (07 0)> ¢Q(O7 O)a Qbfy (03 0)7 ngTP (07 0))

Moreover, for given matrices A, M, and L of appropriate dimensions, constants 0 < T3V <
TV, one can pick solutions ¢” and ¢ belonging to H, and H,, respectively, such that the
solutions observe the same 7y = 0 triggered jump times, i.e., ¢y (t,54(j)) = o7, (L, ) for
all (t,j) € dom ¢".

Using the observed relationships between the two systems, in the result that fol-
lows, we claim attractivity for nominal solutions by showing that ¢. = ¢7 and ¢: = ¢.
The proof of the result is segmented into two cases; the first addresses attractivity for
solutions to H, with initial condition ¢(0,0) € C,, U Dg, or ¢(0,0) € {x € Cqy, U Dy, :
ly = Mz, l;, = 7p}, the second address attractivity for solutions with initial condition
#(0,0) € {x € Cp, UDy, : £y # Mz, # Tp}. A separate proof for the second case is
necessary to address the scenario of incorrectly initialized memory states that could lead
to an “incorrect” observer law update when a jump according to G is triggered. To this
end, we define sets W := Cq, U Do, and Wh := {x € Cq, U Dy, : £y = Mz, 4,, = 7p(0,0)}.

Then solutions ¢ to H, with ¢(0,0) € Wi U W, we refer to as conventional solutions and
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for solutions with ¢(0,0) € (Cy U Dg) \ (W1 U Ws) we refer to as non-conventional.

Proposition 3.2.1. Given hybrid systems H, in (@ and H, in with Dy = () and
input pair Tp = 1o such that {t : (t,j) € dom (1p,70)} is unbounded, suppose that there
exist P=PT = 0 such that TQN, TlN, L, and M satisfy condition (@ Then, for T¢ =0,

each solution ¢ to Hg with Dy = 0 and input pair Tp = 70 is such that

i _—
i [p(t,7)|a, =0

where

Ag = Ay x ({=13U[0,7%) x {0,1} x R™ x Rxg (3.10)

Proof. Pick solutions ¢" and ¢ with initial conditions ¢"(0,0) € C, U D, and ¢(0,0) €
{(¢T(07 0)77—67(17€y7€Tp) 6 Ca U Da : gy = MZ} SuCh that

¢TN (t’j) = ¢:N(t7’r¢(j)) V(t,j) € dom ¢

where ryr(j) := 2j is a parameterization function that maps a solution ¢" to H, onto the

hybrid time domain of ¢ to H,.

e Proof of Conventional Case

Following ¢" from ¢"(0,0), if ¢" (¢, j) € C, it flows according to F,.. If ¢"(¢,j) € D,.,
a jump according to G is triggered. In particular, the trajectory for ¢} after jumps is given
by
P5(t,5) = ¢5(t5,j-1) + LM (¢L(t5,j-1) — @5 (t;, 5-1)) (3.11)
at each (t;,7 — 1), (¢j,7) € dom ¢".
For the solution ¢ with ¢(0,0) € Wy UWs, if ¢(t, j) € C, it flows according to Fy,.
If ¢ € D,,, areset according to (G is triggered. The trajectory for ¢; after jumps according
to (g1 is given by,
¢s(tj,J) = ¢2(t5,5 — 1) (3.12)
at each (t;,7 — 1), (tj,7) € dom ¢ for all j € {2k : k € N5o} when ¢(0,0) € W; and for all
Jj€{2k+1:k e Ny} when ¢(0,0) € Wy. If or when ¢ € D,,, ¢(t;,j) maps according to

31



G2 with ¢; after jumps given by
¢2(t]7]) = ¢73(t]7]_1)
+ Aol T) =0, (tj’j_l))L(cﬁzy (tj,4-1) (3.13)
_Me*A(To(tj,jfl)*mTP(tjvjfl))d)é(tj j—1)>
at each (tj,7 — 1), (tj,7) € dom ¢ for all j € {2k +1: k € N5o} when ¢(0,0) € W; and for
all j € {2k : k € Nyg} when ¢(0,0) € Whs.

Now, since T% = 0 and ¢e.,(0,0) = 70(0,0), the delay term 7o(t,j) — de,, (t,7)
in the expression for the update law in (3.13]) is zero at each jump according to Gg or for
all (t;,7) € {(t,j) € dom ¢ : t = t;,j € T,,}. Furthermore, ¢, (0,0) = M¢.(0,0), thus
b, (tj,7) = M¢.(t,j) at each reset according to Gz or for all (¢;,5) € {(t,j) € dom ¢ : t =
tj,j € Ip}. Then, (3.13) can be expressed as

¢z (t5,7) = ¢2(tj, j-1) + LM (¢(t5, j-1) — ¢s(t;,5-1))

Noting the equivalence to the expression in (3.11), we can express ¢; along jumps as a

function of ¢ as follows:

(i re(i-1)) VjeT
bets.d) = PL(tj re(i-1)) Vi€ Iy
ity re(d))  Vi€In

Now, given identical flow dynamics in z, Z, and 7, one then has

O(t,5) = (¢"(t,14(5)), brs (L, 5), Gq(t,3), b1, (L, 5), be,, (¢, 5))

thus since solutions to H, converge exponentially to A, by [7, Theorem 1], it follows that

i v
tﬂl.gloolcb (t,5)|a, =0

moreover, given that A, C A, it can be concluded that

. _—
m(g(t, 7)]a, =0

e Proof of Non-conventional Case

For solutions with initial conditions ¢(0,0) € (CqU Dg) \ (W1 UWs), namely those
with ¢y, (0,0) # M¢-(0,0) and ¢, ,(0,0) # 7p(0,0), after a period of time T™ > ¢ + j the
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solution converges towards A,. Consider a solution ¢ with initial condition ¢(0,0) € {z €
Cay UDg, : by # Mz, L, # 7p(0,0)}. Since T¢ = 0, ¢(0,0) € D,, and the solution jumps

according to Go. In particular, at (t1,1),

$5(t1,1) = $2(0,0) + " 0OD=0ep OV L (5, (0,0)
_ Me_A(TO(QO)—WTP (070))¢2 (07 0))

with ¢, (0,0) # M¢.(0,0) and ¢, ,(0,0) # 7p(0,0), ¢(t1,1) may diverge away from A,.
The solution then flows in the interval [t1,#2] x {1} until ¢(t2,1) € D,,, when the solution
jumps according to Gi. In particular, at (t2,2), ¢e,(t2,2) = M. (t2,1) and ¢y, (t2,2) =
Tp(t2,1) which means ¢(t2,2) € Wiy UW,. Thus, we can show that for some (¢, j) € dom ¢
such that t+j > T*, ¢(t,5) € W1 UWs. Moreover, following the proof for the conventional

case, the solution converges to A,. ]

3.3 Attractivity for delay solutions with synchronized clocks

With attractivity established for the nominal case, we now present attractivity to
A, for the delay case. Consider the Lyapunov function candidate from [7] defined for every
Ty € X, as

V() = ¢ e ™ peAve (3.14)

where ¢ = z — 2 and P = PT = 0. Then, given ¢°(0,0) € C, U D,, it can be shown
that delay solutions ¢° € S%a converge to the set A,, exponentially. Moreover, it can be
shown that the Lyapunov function evaluated along a delay solution ¢° for a given initial
condition is bounded by the Lyapunov function evaluated along its nominal counterpart
¢"°™ and a bounded perturbation. To facilitate the analysis in the result that follows, let
PO = PO — @2 and qﬁg = ¢S — gbg denote the trajectories of the state error for the
respective nominal (¢"°™) and delay (¢%) solutions.

To assist with the analysis between the two solution types, given a solution to H,,

we define a reparameterization function sy, given as follows:

o If ¢(0,0) € Coy U Dy,
. J Vi€l
se(J) =
i+1 VjeT,
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o If $(0,0) € Cu, U Dy,
, J Vj € Ln
sp(J) =
i+1 Vjiely

The function s, allows to compare solutions ¢"°™ to H, and #° to Ha.

Theorem 3.3.1. Given the hybrid system Hq in with Dy = () and input pair Tp = 70
such that {t : (t,7) € dom (7p, 70} is unbounded, suppose that there exist P = PT = 0 such
that TQN, TlN, L, and M satisfy condition (@ Then, for each T¢ € [O,TlN], each solution
¢ to Hq with Dy = 0 and input pair Tp = 70 is such that

hm ‘qb(t’j)‘fla = O

t+j—o0

Furthermore, there exist positive constants o and 8 such that each ¢° € S;S{a with Dy = ()

and input pair Tp = To Ssatisfies

al@’(t, )4, < V(¢°(t,5)) < V(¢"™(t, 54(5)))

(3.15)
+ BoRO™ (8, 5)T RO, 5)

for each (t,j) € dom #°, where ¢*°™ is a nominal mazimal solution for the same initial

condition to ¢5 and @2 = @70 — PO

Proof. Given matrices A, L, and M of appropriate dimensions and positive scalars T¢ <
TN < TJ. Pick a solution ¢° with initial condition ¢°(0,0) € {z, € C,UD, : £, = Mz} and
its nominal counterpart ¢"°™ for the same initial condition and identical 7y trajectories,
ie., gro(t,j) = d)‘STN (t,5) for all (t,5) dom ¢°. Consider the Lyapunov function candidate

(4.36]). Then, let

VIR (t,55(5)) 1= V("™ (8, 56(4)))  V(t,5) € dom ¢’
VO(t,§) = V(¢°(t, 5)) V(t,j) € dom ¢’

Noting the relationship between ¢"™ and ¢°, let V9(¢, j) be expressed as a perturbation of
Vo (¢ s4(7)), i.e.

VO(t,§) = V(¢™™ (t.s4(4))) + p(t.§) V(t,j) € dom ¢°
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Since ¢"™(t, j) = ¢°(t, ) for all (t,5) € 71 when the initial condition is in C,, U D,,. The
quantity p(t, j) is given by,

. V(¢ (t, ) — V(™™ (t,54(4))) V(t,5) € T
p(t,j) =
0 V(t,j) €T

Observe that for each z, € Cq, (VV(x,), Fy(x4)) = 0, therefore p remains constant during

flows and can be expressed by its value at jumps as follows:

V(@ (tj,5)) = V(¢"™ (ts, (), 56(3)))  V(t,4) € Ta
0 V(t,j) €Th

p(t,j) =

Before expanding p, note that the reparameterization of ¢"™ onto the domain of ¢° via
54(j) following each (t;41,7) € Ti, gives the nominal solution mapped according to Ga. In

particular, one has

nom nom

2 (tsy () 59(5) = D27 (Es, (5)» S0 (1))
— (02 b, (), 50 (G-1)+HLM (62 (1,5, 56 (-1)
— G2 (b, 5):50(1) ) )
= ([=LM) ™" (L5, (5, 56(7-1))

at each (tj,s4(5 — 1)), (tj,54(j)) € dom #°. For the same jump index j, that is, following
each (tj+1,7) € T1, the delay solution ¢? is given by

OL(t5,5) = 02(t5,5-1) — 62 (t;,5-1)
at each (t;,7 — 1), (t;,5) € dom ¢° for all j € Z,,. Then, substituting the expressions into
p leads to

p(t.5) =V (¢t 7)) — V(™™ (¢5.4))
= ¢2(t5,j-1)TQ(t5, -1) 2 (15, j-1) =42 (ts, (), 56 (5-1)) T
X (I-LM)TQ(t;, 54(j-1))(I-LM)@L™ (¢, (5, 56(j-1))

where Q(t,j) := eATN(63) PeATN(L3) | Then, since O™ (t, ) = ¢°(t, 4) for all (t,5) € T1, we

make the appropriate substitutions to get
plt.3) = B2 (L, 3> 50 -1 (Qt G = 1)

~(I-LM)TQ(t, (3, 59 (G- (I-LM) ) 62 (14, ), 55(G-1))
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Thus allowing p to be bounded as follows

|0(t, 5)| < B (ts, ) S0 (-1)) TR (ts, (), 6 (5-1)) (3.16)
where

B = IGI%%N]AMX (AT ™ PeA™N) | I-(I-LM)T (I-LM)|
N IR

which exists due to continuity of the matrix exponential. Then, one has

V("™ (t,54(4))) + p(t,4) Y(t,j) € Ta

Ve(t, ) =
V(¢n0m(tv S(b(]))) V(t,j) € 7-1
In particular, one has
ald®(t, )4, S V(°(t,)) < V(6" (L, 56(5))) + p(t, 5) (3.17)
where
o= min A\pin (eATTN PeA™ )
veE[0,T3]

Now, since p(t, j) decays to zero in the limit due to and ¢"°™(t, s4(j)) converges to
the set AL™ via Proposition then by the relations in solutions ¢° also converge
to the set A,.

For the case of ¢° solutions with initial condition ¢°(0,0) € C,, U D, , the result

follows from similar steps with V(¢ j) and p(t,j) given by

V(¢mom(t, s6(4))) + p(t. ) Yt 4) €T
V(o(t,56(5))) V(t,j) € T2

V6(t’j) =

where

V(#°(t,5)) = V(¢™™(t, 56(4))) V(t,j) €T
0 V(t,j) € T2

p(t,j) =

O]

Figure illustrates the evolution of the function V along the trajectories for
the two solution types. From the same initial condition, both solutions flow together.
Then the solutions separate with the nominal solution (blue) decreasing upon measurement
retrieval and the delayed solution (red) diverging due to the measurement delay. After some
hybrid time, the delayed solution retrieves the delayed measurement and converges with the

nominal solution. Example illustrates Theorem in Section [3.5
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Figure 3.3: Plot of the Lyapunov trajectories of ¢ and ¢.

3.4 Attractivity for delay solutions with clocks that synchro-

nize in finite time.

In this section, we present our results for the case where the clock inputs 7p and
To to H, are not necessarily the same initially, but eventually synchronize in finite time (see
Remark . The first result establishes attractivity to A, for H, with D, = () and input
pair (7p, 7o) satisfying conditions such that solutions to #H, are complete and the input
pair synchronize in finite time. In the result that follows, we show attractivity to a set of
interest for the full hybrid system H with conditions on the clock synchronization subsystem
Hp such that the solutions to H are complete and the clock inputs to the subsystem H,
synchronize in finite time.

For the following results we will distinguish between solutions to H, and solutions

to H by denoting ¢, € Sy, and ¢ € Sy.

Proposition 3.4.1. Given the hybrid system H, in , suppose that there exist P =
P" =0 such that T, T}, L, and M satisfy condition (@ Then, for each T € [0,T}V]

and each input pair (Tp, 7o) to Ha satisfying

B1) {t: (t,j) € dom (tp,70)} is unbounded, and
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B2) there exists T* > 0 such that
TP(taj) = TO(taj)
forallt+35>T*
each solution ¢q to Hy with input pair (tp,70) and Dy = 0 is such that

1. {t: (t,j) € dom ¢o} is unbounded, and
2. hmt-i-j—)oo ’(bd(tJj)‘Aa =0.

Proof. To prove item 1), we will disprove the impossibility of a maximal solution to H, with
input pair (7p,70) and D, = ) to flow for arbitrarily large t. To this end, suppose there
exists such a solution with input pair (7p, 7o) satisfying B1). Then, {t: (¢,j) € dom ¢,} is

bounded. The existence of such a solution implies that either

a) ¢, is not Zeno and died after finite time ¢, this further implies that either

a.l) G, (with D, = () mapped the solution ¢, to a point outside of C, U D,; or

a.2) the solution ¢, died at a point in C, \ Dy, at which F, points outward of Cy;

or
b) ¢q is Zeno with t Sty ¢ {t: (t,j) € dom ¢4} as j — oo

Case a.1) does not happen due to (7p, 70) satisfying B1) and, by Lemma [3.1.4]item 1), G,
cannot map points in D, outside of C, U D, with D, = (). Moreover, a.2) does not happen
since (p, 70) satisfies B1) and, by Lemma [3.1.4]item 2), Fi,(z,) C Tc, () for each z, such
that x € C, \ D,. Case b) does not happen since (7p, 70) satisfies B1) and after any reset
of ¢q via ¢u(tj,j) = Ga(¢a(tj,j-1),7p) then for the same t; there exists ¢; 1 such that
0< TlN <tjpi—t; < TQN—Td. Therefore, it must be the case that the solution ¢, to H,
with input pair (7p, 70) satisfying B1) is such that {t : (¢, j) € dom ¢,} is unbounded. This
contradicts our assumption that {t : (¢,j) € dom ¢,} is bounded and concludes the proof
of item 1).

To prove item 2), pick a maximal solution ¢, € Sy, with input pair (7p,70)
satisfying B1) and B2) with D, = 0. By item 1), {¢t : (¢,j) € dom ¢4} is unbounded.
Moreover, by Lemma Ga(t,j) € Cqy U D, for all (¢,j) € dom ¢,. Now observe, for
t+ j > T*, the conditions in Theorem are satisfied since condition is satisfied
and the inputs (7p, 70) satisfy B2). Therefore, by Theorem [3.3.1] item 2) holds. O
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Theorem 3.4.2. Given the hybrid system H in suppose that there exist P = PT = 0
such that TQN, TlN, L, and M satisfy condition (@ Suppose further that the subsystem

Hy in is such that
1. every maximal solution ¢ to H is complete, and

2. condition B2) in Proposition holds;

Then, for each T¢ € [0, TN, each mazimal solution ¢ to H is such that

tf}goo |p(t,5)|la =0

where A := A, x R>g x R>¢ x M.

Proof. Pick a maximal solution ¢ to H. By Lemma ¢z, (t,j) € Cy U D, for all
(t,j) € dom ¢ since ¢ does not escape in finite time. For ¢t + j > T*, the conditions in
Proposition for the hybrid subsystem H, are satisfied since is satisfied and H; ren-
ders ¢rp(t,§) = ¢ro (t,4) for all t+j > T*. Then by Proposition[3.4.1] limyy j o0 |¢(£, )| 4 =
0. O

Remark 3.4.3. Observe that this result builds on the design of the nominal system H,
for synchronized clock inputs by interconmecting it with Hy representing a finite time clock
synchronization algorithm (see Remark that satisfies the conditions in Theorem .
We note that the authors of [17] provide LMI conditions that renders a similar observer-
based networked system with variable delays, stable for a bounded clock synchronization
error. However, as the authors note in their results, the design of the observer and controller
gains to satisfy the associated LMI conditions are not straightforward. We remind the reader
that our approach uses a tractable LMI condition (3.8) (see algorithm in [7]) and a finite

time clock synchronization algorithm for which several solutions exist.

Remark 3.4.4. Concerning the existence of finite time clock synchronizations implementable
in H, we point the reader to the IEEE 1588 precision time protocol design for networked
control system in [12] and firefly-based algorithms as given in [18] both of which guarantee

synchronization in finite time.
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12

Figure 3.4: The evolution of the estimation error with respect to hybrid time. The vertical
dashes represent the resets of 2 according to 2 in 1'

3.5 Examples

Example 3.5.1. Recall the system data from the motivation example in Section[5.1, A =1,
M =1, L =1—e " with constants TN =T = 1. Then, let T? = 0.2. Simulating the
system Hqo with synchronized clock inputs 7p and 1o, the estimate converges even in the
presence of measurements delays as shown in Figure[3.]} Recall that this was not the case

in the example presented in the introduction. E|

0 1
Example 3.5.2. Consider an oscillatory autonomous system given by A = and
-1 0

matric M = [1 0} with timer bounds T% = TN = 0.2, T = 1. Using the design algorithm

outlined in [7] for the given parameters, the gain matriz is given by L = [1.0097 0.6015]T-
Starting with the case of synchronized clocks, i.e. $(0,0) € Cy U Dy such that
¢75(0,0) = ¢-,(0,0), Figure depicts the error in each state component for ¢"°™ and ¢°
and shows the norm of the error for the two solutions, in addition the bound in 18
plotted to demonstrate the asymptotic attractivity of ¢°.
Observe that the two trajectories flow together from the initial condition, at the

first jump the error on the estimate for ¢"°™ decreases due to the measurement arrival at

!Code at github.com/HybridSystemsLab/HybridObsScalarPlant
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Figure 3.5: Plot of the error on the state components (left) and of V(x) evaluated along the
trajectories of "™ and ¢° (right) for synchronized clocks from Example Furthermore,
a plot of the bound from 1) plotted in black.

broadcast while ¢° continues flowing. At the next jump the error for ¢° decreases due to the
arrival of the delay measurement and then resumes flowing with ¢"°™.

For the case where the clock nodes are not synchronized i.e. $(0,0) € C; U Dy
such that ¢-,(0,0) # ¢-,(0,0), consider a simulation of the full system H where Hy is a
model representation of the IEEE 1588 protocol, see [19] for details on the model. Figure
presents the error norm trajectories and displays the error in the components for both
A"™ gnd ¢,

In both figures, the trajectories flow together from the initial condition, at the first
jump the estimation error for ¢"™ decreases while ¢° continues flowing. In the sequence
of jumps that follow, the error on the estimate of ¢"°™ converges to zero. The error on
the estimate of ¢° however, increases until the clocks are synchronized as marked by the
dashed line denoted ‘sync’. In the jumps that follow from the synchronization point, the

error estimate of ¢° converges toward zero.

Example 3.5.3. To demonstrate the flexibility of the system to account for a scenario
of drifting clocks, consider the same system from the previous example but with a drifting
observer clock i.e. 70 = 14~ where v = 0.001. In Figure the error norm of the two
trajectories for the simulation is given. Note the periodic synchronization of the plant and

observer clocks prevents the drift in the observer clock from adversely affecting the norm of
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the trajectories of ¢"™ and ¢° (right) for the case of initially mismatched clocks 7p and

TO-

the error on the estimate for the delay solutionﬂ

3.6 Summary

In this chapter, we modeled an NCS with aperiodic sampling and network delays
in a state estimation setting, using the hybrid systems framework in [8]. We proposed a
modified state estimation algorithm for such a setting and a method to include a clock
synchronization scheme. Results were given to show the model’s equivalence to an NCS
with aperiodic sampling and no network delay. Results were also provided regarding its
asymptotic attractivity to a set of interest in the presence of network delays and initially
mismatched clocks that eventually synchronize. Numerical results validating the theoretical

findings were also given.

2Code at github.com/HybridSystemsLab/HybridObsPlanarPlant
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Chapter 4

HyNTP: A Hybrid Consensus
Algorithm for Clock

Synchronization

This chapter presents HyNTP, a distributed hybrid algorithm that synchronizes
the time and rate of a set of clocks connected over a network. Clock measurements of the
nodes are given at aperiodic time instants and the controller at each node uses these mea-
surements to achieve synchronization. Due to the continuous and impulsive nature of the
clocks and the network, a hybrid system model to effectively capture the dynamics of the
system and the proposed hybrid algorithm is introduced. Moreover, the hybrid algorithm
allows each agent to estimate the skew of its internal clock in order to allow for synchroniza-
tion to a common timer rate. We provide sufficient conditions guaranteeing synchronization
of the timers, exponentially fast. Numerical results illustrate the synchronization property
induced by the proposed algorithm as well as its performance against comparable algorithms

from the literature.

4.1 Problem Statement

Consider a group of n sensor nodes connected over a network represented by a

digraph G = (V, &, A). Two clocks are attached to each node i of G: an (uncontrollable)
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internal clock 7 € R>¢ whose dynamics are given by
7= ay (4.1)
and an adjustable clock 7; € R>¢ with dynamics

Ti=ai + u; (4.2)

where u; € R is a control input. In both of these models, the (unknown) constant a;
represents the unknown drift of the internal clock. At times t; for j € N5g (we assume
to = 0), node i receives measurements 7 from its neighbors, namely, for each k € N (7).
The resulting sequence of time instants {tj}j'; is assumed to be strictly increasing and
unbounded. Moreover, for such a sequence, the time elapsed between each time instant
when the clock measurements are exchanged satisfies

Ty <tjy1—t; <Ty VjeNy

(4.3)
0<t1 <

where 0 < T7 < 75, with T} defining a minimum time between consecutive measurements

and Ty defines the maximum allowable transfer interval (MATT).

Remark 4.1.1. The models for the clocks are based on the hardware and software relation-
ship of the real-time system that implements them. That is, the internal clock 7" is treated
as a type of hardware oscillator while the adjustable clock 7; is treated as a virtual clock,
implemented in software (as part of the proposed algorithm), that evolves according to the
dynamics of the hardware oscillator. Any virtual clock implemented in node i inherits the
drift parameter a; of the internal clock, which cannot be controlled. More importantly, this
drift parameter is not known due to the fact that universal time information is not available

to any node. The input u; is unconstrained as allowed by hardware platforms.

Under such a setup, our goal is to design a distributed hybrid controller that,
without knowledge of the drift parameter and of the communication times in advance,
assigns the input u; to drive each clock 7; to synchronization with every other clock 7, with
7, evolving at a common prespecified constant rate of change ¢* > 0 for each k € V. This

problem is formally stated as follows:

Problem 4.1.1. Given a network of n agents with dynamics as in and repre-
sented by a directed graph G and o* > 0, design a distributed hybrid controller that achieves
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the following two properties when information between agents is exchanged at times t; sat-
1sfying :
i) Global clock synchronization: for each initial condition, the components T, T, ..., Tn

of each complete solution to the system satisfy
lim |7;(t) — 7%(t)| =0 Vi,keV,i#k
t—o0
it) Common clock rate: for each initial condition, the components T1,7Ta,...,Tn of each
complete solution to the system satisfy

lim |7(t) —o*| =0 VieV
t—o00

4.2 Distributed Hybrid Controller for

Time Synchronization

We define the hybrid model that provides the framework and a solution to Problem
[6.0.1] First, since we are interested in the ability of the rate of each clock to synchronize to
a constant rate ¢*, we propose the following change of coordinates: for each ¢ € V, define
e; := 7; —r, where r € R>¢ is an auxiliary variable such that 7 = ¢*. The state r is only

used for analysis. Then, the dynamics for e; are given by
bi=T—0" VieV (4.4)
By making the appropriate substitutions, one has
& =a;+u; —o" VieV (4.5)

To model the network dynamics for aperiodic communication events at t;’s satisfying (6.5)),

we consider a timer variable 7 with hybrid dynamics
T =-1 T E [O,TQ], 7’Jr S [Tl,TQ] T=0 (46)

This model is such that when 7 = 0, a communication event is triggered, and 7 is reset to

a point in the interval [T, Tb] in order to preserve the bounds given in (6.5)); see [20].

Remark 4.2.1. Observe that the timer T solely models the communication events between
the nodes. Moreover, the nodes are independent of any information on the timer state thus,

we do not assume any synchronization between the clock states of the nodes T; and T.
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The proposed hybrid algorithm assigns a value to u; so as to solve Problem [6.0.1],
which in the e; coordinates requires e; to converge to zero for each ¢ € V. In fact, the algo-
rithm implements two feedback laws: a distributed feedback law and a local feedback law.
The distributed feedback law utilizes a control variable n; € R that is impulsively updated
at communication event times using both local and exchanged measurement information
7. Specifically, it takes the form

n= > KF(7)
keN (i)

where KF(7,7) := —vi(e; — ex) with 73 > 0. Between communication event times, 7;
evolves continuously. The local feedback strategy utilizes a continuous-time linear adaptive
estimator with states 7; € R and a; € R to estimate the drift a; of the internal clock. The
estimate of the drift is then injected as feedback to compensate for the effect of a; on the
evolution of 7;. Furthermore, the local feedback strategy injects ¢* to attain the desired
clock rate for 7;.

Inspired by the protocol in [21, Protocol 4.1], the dynamics of the i-th hybrid

controller are given by

U = hin; — pi(Fi — 7)), 0= hing

. . T E [OuTQ]
ai =—pi(fi—1), fi=a; — (i —77)
uf =y Y (FT)—aito”, & = a (4.7)
kEN (i)
T=0
771+ =~ Z (7:7/ - %k)a 7A—z+ =T
keN (i)

where h; € R, 7; > 0 are controller parameters for the distributed hybrid consensus con-
troller and p; > 0 is a parameter for the local parameter estimator. The state 7 is included
in the model to facilitate a model reduction used in the results that follow. Note that u;
is treated (with some abuse of notation) as an auxiliary state of the controller. This state
is kept constant in between events and is reset to the new value of 7; — a; + ¢* at jumps.
Observe that the distributed controller only uses local and communicated information from
the neighboring nodes at communication event times ¢;, which, as explained above ,
are times at which 7 is zero.

With the timer variable and hybrid controller defined in , we construct the

hybrid closed-loop system #H obtained from the interconnection between the distributed

47



hybrid controller and the local adaptive estimator given in error coordinates. The state of

the closed-loop system is

r=(e,u,n,7,a4,7,7) ER" x R" x R" x Ry x R" x R, x [0, T3] =: X (4.8)
where e = (e1,e2,...,e,), u = (U, u2,...up), N = (M1, M2,... M), 75 = (77,75, ...,TN),
7= (11,72,...,7n), a = (a1,a2,...,an), and @ = (ai, as,...,a,). The dynamics and data

(C, f,D,Q) of H are given by

é a+u—o*l, et e

U hn — p(7 — 1) u't —yLe —a+o*1,

U hn nt —yLe

i*| = a = flx)z el || = T* = G(x) x€D
a —p(7T —7%) at a

# a— (-7 #* #

T -1 T+ [T}, T3]

(4.9)
where C := X and D := {z € X : 7 = 0}. Note that X C R™ where m = Tn.

With the hybrid system H defined, the next two results establish existence of
solutions to H and that every maximal solution to H is complete. In particular, we show
that, through the satisfaction of some basic conditions on the hybrid system data, which
is shown first, the system H is well-posed and that each maximal solution to the system is
defined for arbitrarily large ¢t + j. The next two lemmas hold for any choice of parameters

T1, T, o™, h, 7, u, and strongly connected digraph G.

Lemma 4.2.2. The hybrid system H satisfies the following conditions, defined in [4), As-

sumption 6.5] as the hybrid basic conditions.
(A1) C and D are closed subsets of R™.
(A2) f: X — X is continuous and locally bounded relative to C' and C' C dom f;

(A3) G : R™ = R™ is outer semicontinuous and locally bounded relative to D, and D C
dom G.

See the appendix for proof.
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Lemma 4.2.3. For every { € CUD(= X), every mazimal solution ¢ to H with ¢(0,0) = &

is complete.

See the appendix for proof.
With the hybrid closed-loop system #H in (4.9)), the set to asymptotically stabilize
so as to solve Problem [6.0.1] is

A={z € X e, =ep,m = 0,8; = a;, 7 = 77, u; = n; — a; + 0% Vi, k € V} (4.10)

(2

Note that e; = e, and n; = 0 for all ¢, k € V imply synchronization of the clocks, meanwhile
a; = a; and 7;° = 7; for all 4,k € V ensure no error in the estimation of the clock skew
and that the internal and estimated clocks are synchronized, respectively. The inclusion of
u; = —a; + o* in A ensures that, for each i € V, e; remains constant (at zero) so that e;
does not leave the set A. This property is captured in the following result using the notion

of forward invariance of a set.

Remark 4.2.4. Given that each maximal solution ¢ to H is complete, with the state variable
T acting as a timer for H, for every initial condition ¢(0,0) € C'U D we can characterize
the domain of each solution ¢ to H as follows:
dom ¢ = | J[tj,t501] x {4} (4.11)
JEN
with to = 0 and tj41 —t; as in . Furthermore, the structure of the above hybrid time

domain implies that for each (t,j) € dom ¢ we have

t<To(j+1) (4.12)

Lemma 4.2.5. Given a strongly connected digraph G, the set A in is forward in-
variant for the hybrid system H, i.e., each mazximal solution ¢ to H with ¢(0,0) € A is
complete and satisfies ¢(t,j) € A for each (t,j) € dom ¢ (see [2, Chapter 10]).

See the appendix for proof.

With the definitions of the closed-loop system H in and the set of interest A
in to asymptotically stabilize in order to solve Problem we introduce our main
result showing global exponential stability of A to . This result is established through an
analysis of an auxiliary system H, presented in and its global exponential stability
for the auxiliary set A, in , the details of which can be found in Section m
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Theorem 4.2.6. Given a strongly connected digraph G, if the parameters To > 17 > 0,
>0, heR, and v > 0, the positive definite matrices Py, P», and Ps are such that

Py Ay, + Aj Py <0 (4.13)
PsAy, + Aj P53 <0 (4.14)
A;;exp(A};u)Pl(—:'Xp(AfQIJ)AQ2 —P <0 Yve[I,T] (4.15)
‘ exp (2213) (1 - @)’ <1 (4.16)
a9 (6]
hold, where Ay,, Ag, are given in and
R1:max{%a %*52}, K2 = min{l, ro}
ﬁ1:2yg[13¥2]| exp (A}FZ v)Pyexp (Ay, V)’
Ko € (O, —er[r%inT ]{/\mm(A;exp (AJI2 v)Piexp (Af,v)A,, —Pl)}) (4.17)
aQ:yéﬁl&i]{ exp (2h), Amaz ((€xp (A}'; V)P exp (Ap,v)),

/\maw (PQ)a )\maa; (P3)}

with € > 0, and B1 > 0 and B2 > 0 such that, in light of , PyAy + A—fl;’PQ < —b11s,
and P3Ay, + A};Pg < —Balym—1) then, the set A in is globally exponentially stable
for the hybrid system H in (@)

To validate our theoretical stability result in Theorem |4.2.6] consider five agents
with dynamics as in (6.3) and (4.2]) over a strongly connected digraph with the following

adjacency matrix

01 1 01
101 00
Ga=11 0 0 1 0
0 01 01
1 01 10

Given T7 = 0.01, 175 = 0.1, and ¢* = 1, then it can be found that the parameters h = —1.3,
w =3, v = 0.125, suitable matrices P, Ps, P3 (see [22] for details), and e = 1.607 satisfy
conditions and in Theorem with K, = 9.78, k1 = 31.44, ko = 1, and
oo = 18.923. Figureshows the trajectories of e; — ey, €4, for components i € {1,2,3,4,5}
of a solution ¢ for the case where o = ¢* with initial conditions ¢.(0,0) = (1,—1,2,—2,0),

¢n(0,0) = (0,—-3,1,—4,—1), and clock rates a; in the range (0.85,1.15). The bottom plot
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(4.18)

in Figure depicts the Lyapunov trajectory V evaluated along the solution ¢ with the

upper bound given in (4.50)) projected onto the regular time domain. Observe that the

exponential bound provided in (4.50) jumps along the solution, validating our theoretical

results on the exponential stability of the systemﬂ

!Code at github.com/HybridSystemsLab/HybridClockSync
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4.3 Key Properties of the Nominal Closed-Loop System

4.3.1 Reduced Model — First Pass

In this section, we recast the hybrid system #H into a reduced model obtained by
setting u = n — a + 0*1,. This reduced model enables assessing asymptotic stability of
A. Tt is given in error coordinates for the parameter estimation of the internal clock rate
and also the error of the internal clock state. We let ¢, = a — G denote the estimation
error of the internal clock rate and e, = 7 — 7" represent the estimation error of the
internal clock state. The state of the reduced model is given by z. := (e,n,e4,67,7) €
R™ x R™ x R™ x R™ x [0, Ty] =: X, with dynamics defined by the data

1N+ €a e
hn -vLe
fe(ze) = LES Vo, € Cey Ge(ze) = €a Va. € De (4.19)
—&r —€q Er
-1 | [T1, 2] |

where C; := X and D, := {z. € X. : 7 = 0}. This system is denoted H. = (C, fe, D¢, G:).
Note that the construction u = — a + o*1,,, which holds along all solutions after the first
jump, leads to é = n 4+ &,.

To relate the properties of the reduced model to those of the hybrid system H,
we establish a result showing an equivalency between the solutions of H in and H,
defined above. The result shows that after the first jump, each solution ¢ to H is equivalent
to a solution ¢° to H. when the trajectories of the timer variable 7 for both solutions are

equal. To facilitate such a result, we define the function M : X — A& given by
M(ZL‘) = (eﬂ%afdaf*T*ﬂ') (4.20)

where x = (e,u,n,7*,a,7,7), as defined in 1’ and the function M : X. x R xRYy — &
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given by

n—(a—eq)+0*1L,

M(z.,7,7%) = F—er (4.21)
a—eq

er+7F

Lemma 4.3.1. Let To > 17 > 0, digraph G, and hybrid systems H and H. be given

as in and , respectively. For each ¢ € Sy and eaciﬂ ¢ € Sy. such that
#(0,0) = M((ﬁs(O,O),(b.f(O,O)@T* (0,0)) and timer components ¢,(t,j) = ¢=(t,j) for all
(t,7) € dom ¢, it follows that dom ¢ = dom ¢° and

$(t,7) = M(¢°(t,§), ¢2(t,5), 6o+ (t,§)) V(¢ 5) € dom ¢ (4.22)

See the appendix for proof.
With the reduced model H. in place, we consider the following set to asymptoti-

cally stabilize for H,:
Ac:={x. € X, : e,=ek,n;=0Vi, k € V, £,=0,2,=0} (4.23)

This set is equivalent to A in the sense that the point-to-set distance metrics |z|4 and |z|4,

are equivalent when the map M is applied, as demonstrated in the results that follow.

Lemma 4.3.2. Given sets A and A as in (4.10) and (4.25), respectively, for each x =

(e,u,n,7*,a,7,7), xz, T, and 7 such that x € X, (2,7, 7*) € X, andu =n—a+ o*1,
then
|4 = |2e| 4. (4.24)
and
M (e, 7,77) |4 = |4 (4.25)
*Note that for a given solution ¢°(t,j) to He, the solution components are given by

O (t,5) = (e(t,5), d5 (L, 5), 65, (8, 4), D2 (t,5), #5(t,5))
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With the stabilization set defined for H., we have the following result that shows
that if the set A. is globally exponentially stable for H. then the set A is also globally
exponentially stable for H.

Lemma 4.3.3. Given Ty > T > 0 and a strongly connected digraph G, the set A in
is GES for the hybrid system H if A. in 1s GES for the hybrid system H..

See the appendix for proof.

4.3.2 Reduced Model — Second Pass

Global exponential stability of A, for H, is established by performing a Lyapunov
analysis on a version of H. obtained after an appropriate change of coordinates, one where
the flow and jump dynamics are linearized. The model is obtained by exploiting an impor-
tant property of the eigenvalues of the Laplacian matrix for strongly connected digraphs.

To this end, let G be a strongly connected digraph. By Lemma and Lemma
one has that zero is a simple eigenvalue of the Laplacian matrix £ with an associated

eigenvector vy = ﬁl ~. Furthermore, there exists a nonsingular matrix

T = [v1, TH] (4.26)

where 71 € RV*N™1 ig a matrix whose columns are the remaining eigenvectors of L, i.e.,

0 0 _
[va,...,vn], such that T 1LT = Al where L is the graph Laplacian of G and L is a

0
diagonal matrix with the nonnegative eigenvalues of £ as the diagonal elements given by

(A2, Az, ..oy AN), see [12], [23], and [24] for more details.

To perform the said change of coordinates, we use T to first perform the following
transformations: € =7 e, 7 = T ', & = T 'e, and & = T 'e,. Then, we define vec-
tors z = (21, z2) and w = (w1, ws), where z1 := (€1,71), Z2 := (€2, .., EN, 72, - - -, IN), W1 =
(€ay:€r), and W2 = (Eag,- -, EansErgs - - - &1, ). Finally, we define x. := (21, 22, W1, W2, T) €

R? x R2(n—1) » RZ x R2(n—1) » [0, Ty] =: X as the state of the new version of H., which is
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denoted H. and has data given by

_Aflzl_ -Bfluil_ [ Ay Z1 |
Ar, 7o By, wo Ay, 70
)= |Agm | +] 0 | Y€l Gelxe)=| w | Yx.€D.  (4.27)
A, 0 Wy
-1 ] | o0 [T, T

for each y. in 55 := A, and in 55 = {xe € X : 7 = 0}, respectively, with

1 0 Iy 0 u

0
Ap = : Ay = . Ap—=
o on 270 nr, N I
0 ul 10 I, 0
Ap= Homl By = . By=1|" (4.28)
-1, -I, 0 0 0 0
10 I, 0
Ag1: s A92: m_
0 0 —~L 0

and m = N — 1. Then, ﬁg = (6’8, f;, ﬁa, CN?E) denotes the new version of H.. The set A, to

stabilize in the new coordinates for this hybrid system is given by
Az = {xe € X : 21=(€%0), 25=0, w1 =0, W2 =0, e* € R} (4.29)

In the following two results, we first demonstrate the relationship between the sets
A, for 7?[5 and A, for H. so as to solve Problem Then, similar to Lemma we
show that global exponential stability of A, for ??[5 implies global exponential stability of
A, for H.. See the appendix for proofs.

Lemma 4.3.4. Let Ty > T; > 0, digraph G, and hybrid systems H. and He be given as in
44.ZQ) and 44.271), respectively. For each solutions ¢ € Sy there exists a solution b€ Sgs
such that ¢(t,7) = Tp(t, j) for each (t, ) € dom ¢ if and only if for each solutions ¢ € Sa.
there exists a solution ¢ € Sy such that (/B(t,j) =T71(t, ) for each (t,7) € dom ®, where
I' = diag(7,7,7,7T,1).

See the appendix for proof.

Lemma 4.3.5. Given 0 < Ty < T, and a strongly connected digraph G, £ € A, if and only
if xe =T e A, where T7! = diag(T 1, 71,74, 7711) and T is given in .
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Moreover, for each x. € X. and each x. € X
IXel i, < 07 2] A, (4.30)

and

|zela. < UlIx| 4. (4.31)
See the appendix for proof.

Lemma 4.3.6. Given 0 < T < T5 and a strongly connected digraph G, the set A. is GES
for the hybrid system 7-LE if and only if A. is GES for the hybrid system H..

See the appendix for proof.

4.3.3 Parameter Estimator

Exponential stability of the set A. for H. hinges upon the convergence of the
estimate @ to a. We present a result establishing convergence of @ to a by considering a model
reduction of H.. To this end, consider the state Xe, = (01,102, 7) € RZxR2=1) x [0, Tp] =:

X,. Its dynamics are given by the system ﬁ57, = (5’57,, fg,,, 557,, (~}57,) with data

_Af37111
f5r (X@r') = Af4w2 vXé‘r S Ce’;‘r = Xé‘rv

GE’I‘ (Xg'r) = U_)Q VXET € DE’I‘ = {XETGXET : T:O}
[T1, T3]

For this system, the set to exponentially stabilize is given by
A, = {0} x {0} x [0, T3] (4.32)

In the next result, we show global exponential stability of the set fler for ﬁsr

through the satisfaction of matrix inequalities. See the appendix for proof.

Proposition 4.3.7. If there exists a positive scalar p and positive definite symmetric ma-

trices Py, P3 such that, with Ay, and Ay, as in ,
Py Ay, + Aj Py <0 (4.33)
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PsAp, + Aj,P3 <0 (4.34)

hold, then the set ./LT, is globally exponentially stable for the hybrid system ﬁg,,. Further-

more, every solution ¢ to Hc, satisfies

0005, < /22 exp (5124 5)) 900,01 5., (435)

w1 w2

for each (t,j) € dom b, with ag, = min{ Apin(P2), Amin(P3)}, ap, = max{Ama(P2),
Amaz(P3)}, B> 0, and 5 = min{1 — 7,771 }.

See the appendix for proof.

4.3.4 Proof of Theorem [4.2.6

Consider the following Lyapunov function candidate for H.

Vxe) = Vilxe) + Va(xe) + Ve, (Xe) Vxe € A: (4.36)

where

Vi(xe) = exp (2h7)i;
Va(xe) = Z;— €Xp (A}FQT)Pl €exXp (Asz)EQ
V2, (xe) = @y Py + g Pyt

Note that there exist two positive scalars «, ao such that

ailxel SVxe) Saelxel}  ¥x-€C-UD: (4.37)

With P; positive definite and noting the nonsingularity of exp (Ay,7) for every 7, we have

) = Ven[%)i’r%z]{ exp (2hv), Apmin ( exp (A)T2 v)Prexp (Ay, 1,))’

)\min(PQ)a )\mzn(PS)}
and as as in 1) For each y. € C., one has
(VV(xe), fo(xe)) = 223 (exp (A}, 7)Prexp (Ap,T)) By,
I(PQA]% + AJEPQ)’LTM (4.38)
11_)2 (PgAf4 + A}ZPg)ng



Now, by noting (]4.13[) and (]4.14[), with 81 > 0 and 32 > 0 such that P, Ay, —|—AJI3P2 < —pB,
and P3Ay, + A};.Pg < —f>1 then one has

(VV(xe), f-(xe)) < k1lZ2||@a| — Bi|w1]* — Bo|wa|? (4.39)

where

K1 = 2 max ’ exp (A};V)Pl exp (AfQV)HBfQ]
I/E[O,TQ]

Applying Young’s inequality to x1|Za||wa|, E|we obtain

3 K1~ K€, _ _ _
(VV(xe), fe(xe)) < §|Z2’2 + 7|w2|2—51\w1|2—52’w2’2 (4.40)
4.40
K K1€
< SHalP-Bifwn 2+ (5F - 8y iaf?

where € > 0, we then upper bound the inequality by picking the largest coefficient, i.e,
K1 = max {%, (% — Bg) }, leading to

(VV(xe), f-(xe)) < Fa (2] + 1| + |wa2|?)

(4.41)

Now, for the analysis across jumps, note that for all y. € D, 7 = 0. At jumps, 7 is mapped
to some point v € [T1,Ty]. Then, at jumps, for each g € G. one has
V(9)-V(xe) = -1 — 2 P12
+(Agy22) " exp (Af,v) Prexp (Ap,v)(Ag, 22)
_9
= 7]
! (4.42)
+22T (A;2 exp (AJI2 V)P exp (Ay, V)Ag2—P1)52
< |7 Pkl 22
< —ra(|m|* + |22[%)
where Ro = max{1, k2} and, by continuity of condition (4.15)), k2 > 0 such that

Ko€ (O, —ver[r%}{lTﬂ)\mm(A; exp (A]T2 v)Pyexp (Ap,v)A,, —Pl))

3In particular, we are utilizing the relation ab < ‘;—z + % where a,b € R and ¢ > 0.
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for where we have
V(g) = V(xe) < ~Ra(lim|” +[2[?) (4.43)

Utilizing the upper bound as from the definition of V' in 1} for all x. € D,, one has
V(xe) < az(|mf* + |22 + of?) (4.44)
Dividing by ag and rearranging terms, one has

1
(I +122/) < _OZV(X‘E) + Jw]? (4.45)

Then, by inserting (4.45)) into (4.43)),

Vig) - Vixe) < -malfl? + [21)
Vig) = Vixe) < R — —Vixe) + 1P
a2

Ro (4.46)
V(g) < _CTQV(XE) + /?62|U_1‘2 +V(xe)

R}Z _ _ 12
< _ =
Vig) < (1= 2 )Vxe) + ol
Now, by noting that (VV(x.), f(xe)) < %V(Xa) and by 1' pick a solution ¢ to H.

with initial condition ¢(0,0) € C. U D.. Let the jumps of ¢ occur at times (tj,5) € {7 :
' (¢,7) € dom ¢}. For each (t,7) € [0,t1] x {0} one has

V(t,0) < exp (@ t1>V(0, 0) (4.47)
Q2
At (t1,1) .
V(t,1) < (1 - Z—Z)V(tl,o) + Roli(ty, 0)2

IN

(1—22) exp (Z; t1)V(0, 0) + Re|w(t1,0)[?
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Then, for each (¢,7) € [t1,t2] x {1}
K
V(t,1) < exp <Q—;(t2 - tl))V(tl, 1)
K
< exp (;;(tg —11 ) (1 — CTQ) exXp (/211 tl)V(0,0)

+ Fali(tr, )

< exp (Z;(tg — tl)) (1—;) exp (Z; t1>V(O,O)
+ exp (7@2 . t1)>f£2 w(ty,0)[2

Vit,2) < (1- ’_”)V(tz, 1) + ol (ts, 1)
< (1 - 7) exp (Z—; tg) (1 - a—2>V(O 0)
exp (S2(t — 1) ) Ralin(tr, O)P+Ral (2, 1)
< exp (% t2> (1 . 22) V(0,0)
+ R [exp (%(m - tl)) @ (t1, 0)|2 + |i(ts, 1))

A general form of the bound is given by

V(t,j) < exp (% tj) (1—Z)jV(O, 0)
(4.48)

+ HQ(ZGXP< (thy1- tk))|w(tk7k—1)\2>

Noting that t;11 —t; <715 and % > 0, the latter term can be further bounded as

ﬁz(Zexp (trr=t)) [ty k-1

_ K1 L
< Faexp(—~ T2)$UD(, ) cdom D (t: 5)[*
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Moreover, since t; < T5(j + 1) and % > 0, we can also put a stricter bound on the first

term in as follows:
exp(zz tj) (1Z)jV(0, 0)
< exp(% Ty(j+1)) (1—2—2)%(0, 0)
< exp(Z—; TQ) (exp (% TQ) (1—’52))%(0, 0)
Thus

Vit.j) < exp (Z;TZ?—ﬁ( o (%B) (1- %»JV(O’O) (4.49)
+ Ko exp (072 Tz) Sup(t7j)ed0m$|w(t7 PI?

Then, from the result of Proposition [£.3.7 we have

Balt. )] < \[ 32 exp (~52—) 30,01,

with ag, = min{Anin(P2), Amin(P3)} and ag, = max{ e (P2), Amaz(P3)}. Now, to im-

prove readability, we have omitted including the use of the notation V(¢(t, 7)) when eval-
uating V along the trajectory for the solution qNS opting instead for the use of the state
components of x. directly. In particular, we remind the reader that the notation w(t, j)

corresponds to the w component of a solution, i.e., ¢z (t,j). Thus, we have

V(t,§) < exp (% 1) (exp (% 1) (1-"2)) v (0.0

(€5
+ Rg exp (ET)%exp (— 78 (t+j))2|¢*(0 0)% (4.50)
2 o 2 o 204@2 w\Y Ae,

Y(t, ) € dom ¢

Now, combining the inequality with {i and noting V(¢(0,0)) < asa|é(0, O)Ii{ one has

o(t.)1%, < a7 (aelo0,0)% ) e (P 1) (exp (2 12) (1-22))

+ Faexp (Z; 1) 22 exp _zﬂ (t+ j))zr%(o, 0%, (4.51)

aﬂ,l 2 Wo

Y(t,j) € dom ¢
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Then, taking the square root on both sides, one has

l6(t.5)| 4, < Z—i!qﬁ(O,O)\AE exp (;.;Tg)(exp (ﬂm (1_3»3*

209 209
_ F1 g o )2 (4.52)
N —T) 2 (— ' ) 2(0,0)[2
+ /R exp (2a2 ) \/%1 exp (~5,—(t+5)) 100 (0,0

Y(t,j) € dom ¢

By the given conditions, the set A, is globally exponentially stable and attractive for 7—~[5.
Now, by utilizing Lemmas - we can establish global exponential stability to the
set A. for H., in turn we can then make use of Lemmas - to then show that the
set A is globally exponentially stable and attractive for H in .

4.4 Robustness to Communication Noise, Clock Drift Per-

turbations, and Error on o

Under a realistic scenario, it is often the case that the system is subjected to
various noise disturbances. Environmental factors can affect the internal clock dynamics
and introduce noise to the communication medium in the form of communication delay.
In this section we present results on input-to-state stability (ISS) of the system when it
is affected by such sources of noise. We will first present an ISS result on the parameter
estimation sub-system when it is subjected to noise on the internal clock output, we will
then present an ISS result that considers communication noise, last but not least, we will
present an ISS result on noise introduced to the desired clock rate reference o*. We will
henceforth refer to the following notion of ISS for Hybrid Systems in the presentation of

these results, defined as follows:

Definition 4.4.1. (Input-to-state stability) A hybrid system H with input m is input-to-
state stable with respect to a set A C R™ if there exist 5 € KL and k € K such that each
solution pair (¢, m) to H satisfies |d(t, j)|a < max{B(|¢(0,0)|4,t + j), c(|m|ec)} for each
(t,j) € dom ¢.

4.4.1 Robustness to Communication Noise

We consider the case when the measurements of the timer 7; is affected by noise

me;, € R, 2 € V. As a result, the output of each agent is given by 7; + me,. In the presence
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of this noise, the update law to 771-+ in the hybrid controller in (4.7) becomes

n==r Y (Wi— k)

keN (3)
= Y F-) -y Y (me, —me,)
keN (i) keN (i)

Performing the same change of coordinates, as in the proof of Theorem we show that
H. is ISS to communication noise me = (Me,, Meys - - ., me,) € R™. Recalling the change
of coordinates € = T 'e and 7 = T~ 7, let me = T 'me. The update law 771, is given by
7t = (0,—vLeé — yvLm,) with 7; unaffected by the communication noise.

Using the update law for # under the effect of m., we define the perturbed hybrid
system H,, with state vector y,, := (21, Z2, w1, we, T) € Xz, where, again z; = (€1,71), Z2 =
(2y.. . EN, T2y, TIN), W1 = (Eays&r, ), and Wo = (Eqgy .-y EqapsErys - - -5 Em, ). Moreover, let

mz, = (0,m.). The data (C’m, fm, Dy, ém) for the new system ﬁm is given by

]?m(Xm) = ]?;(Xm) VXm € 5’m
_ . _
BngQ
Gm(vams) = Gs(Xm) - 0 VXm € D
0
- 0 -
- - - T
where Cy, := X, Dy, = {xm € X : 7 =0}, and By = [0 ~L

Theorem 4.4.2. Given a strongly connected digraph G, if the parameters To > T1 > 0,
uw>0,heR, v >0, and positive definite symmetric matrices Py, Ps, and Ps are such that
(f4.15|) and (f4.16l) hold, the hybrid system ﬁm with input me is 1SS with respect to .Zg m
/.29).

Proof. Consider the same Lyapunov function candidate V(xm) = Vi(xm) + Va(xm) +
Vz, (xm) from the proof of Theorem During flows, there is no contribution from
the perturbation thus the derivative of V' is unchanged from the proof of Theorem [4.2.6

Thus, one has
<VV(Xm)7 f(Xm)) < QZJ(GXP A};TPGXP Asz)BfQQDQ

+w] (PLAy, + AJ, P
+ ﬂ);(PzAh + A}I;PQ)IDQ
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then by following the same notions of the proof in Theorem [4.2.6], one has

(VY (s ) < 5122l = Bl + (555 = B2 ) 0o

< Ri(|2l® + |01 * + |@2]?)

=

where kK1 = max {%, (% — Bg)} and € > 0. At jumps, triggered when 7 = 0, one has, for

each Xm € D \ Az and g € Gi(xm)
V(9)-V(xm) < ~7li+(Ag, 22— Bymz,) T Q(Ag, 22— Bymz,)
— igplig

< -7+ (Ag, Z) | exp A};TPl exp Ay, 7(Ay,%2)

(4.53)
—2(Bgmsz, )T exp A}ZTPl exp A, 7(Ag,%2)
+ (BngQ)T exp A};TPl exp Af, 7(Bgmsz,)
—2;13122
From and the proof in Theorem there exists a scalar k9 such that
Z; (A;2 exp A};vPl exp Ap,vAg, — P1)Zy < —HQZJZQ
leading to
V(9)=V (xm) < =0} — K2Z; %
— 2(Byms,) " exp A};TPl exp Af,7(Ag,72) (4.54)

+ (Bgmgz)—r exp A}Z TPy exp Ay, 7(Bgmsz,)

Let Q = exp A};T.Pl exp Ay, 7, then applying Young’s inequality on the third term such
that T T . L 17 T T T
mZQBg QAg, 7 < 2762 (mZQBg QAQz) (ngBg QAQQ)

€2 _T1_
+ =25 Z
2 272

1

< —
2€9
€2 _T1_

+ 522 z2

A

(By QAy,) (B QAy,) |, e,

22
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where €5 > 0, we then have

V(9)-V (xm) < =i} — k2Z5 2
(BT 0An) (] e,
+ %ZJ 22) + Mz, By QBymz, (4.55)
< -2 — (ka+ %2)5;22+(13;Q3g|
5 (B) QA4) (B] QAy,) )L
by noting |Ag, |, |Bg| < YAmaz(L) let
oy — ()\mw (Z))Qvggﬁ]{/\mw ( exp A}; v P exp AfQU) }

then we let e = k9 and

_ Ko\ _T_
V(g) = V(xm) < =07 — (k2 + 32) 2 2

1 T
+ (YK, — 2—@7453,12)771;277152
now let R, = (’7257712 — ﬁf‘/{?ﬁ?) then at jumps one has
V(g) = V(xm) < =Ra(|]* + 122*) + Fomy 710z, | (4.56)

where ko = max {1, 3%} Now, recall from () in the proof of Theorem m
1
—(Im* +1z*) < _OTQV(XE) +|wf® (4.57)
by then plugging (4.45) in to (B.32|) one has

3!62 1 _12 - _ 2
— < — = —— _ _
V(o) =V m) < 57 (oo V) + 1) + Ry |

3&2 3/<62 _ ~ _
< —EV(Xs) + 7’11)\2 + Fomy [z, |
then at jumps one has
3K 3K 5 N
V(g) < (1= 52 )V (xe) + 52|02 + oy iz,
20[2 2

Noting (VV(xe), f(xe)) < EV(xe), one can then pick a solution with initial conditions
$(0,0) € Cy, U D,, and find the trajectory of V (¢, ) is bounded as follows

3/%2

V(t,j) < exp (R T}) (exp (R T3) (1 - E))]V(o, 0)

3/%2 _ _ .
+ N exp (”T2)Sup(t,j)edom¢’w(ta.7)|2

~ R _ 2
+ Rin, €Xp (TQT2>SUP(t,j)Ed0m¢|m22‘
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4.4.2 Robustness to Perturbations on Internal Clock Drift

In this section, we consider a disturbance m.» € R, ¢ € V added to the output of
the internal clock. Let yf* =7+ myr, 1 €V, define the perturbed internal clock output.

Then the dynamics of the original estimation system in (4.9)) under this disturbance becomes

T = ai—(fi—yl ), @i = -p(fi—yl ) T€[0,Th]
(4.58)
7=, af = a; T=0

. B R . I
In error coordinates €4, = a; — a;, €5, = 7; — 7, , this leads to

éTi == _87'1' - 5ai + mTi*7 8?11 = /’LgTi - /’[/mTi* T EC [07 TQ]
+ _ + _ —
£ = Em, €a; = Ea; T=0

Similar to the result presented in Proposition [4.3.7] for the estimation sub-system we will

consider the same reduction ’ﬁgr that now captures the perturbation. Recall the coor-

dinate transformations &, = 7 !¢, and & = T ', for the respective internal clock
and parameter estimation errors. Moreover, recall w = (w1, ws) where w; = (&4,,&7)
and Wy = (Zay,---18ay,Ery--+s8r,). Let mys = T 'mq and ¢ = (q1,G2) where i =
(Mrr, M) and G2 = (Mrg, ..., Mex, My, ..., Mrx). Now, consider the reduced coordinates

Xm, = (W1, W2, 7) € R" x R™ x [0, T3] =: A-. The data of this reduced system is given by
Hpm, = (C:, f=, D., G.) where

[Ap, B, @1t

Frr Otmr) == | Ap, o | + | Bup@ | VXmr € Cor
i —1 0
o

émr(er) = Wo YXmr € f)mr
|11, %]

where Cy,, := Xz, Dy, == {Xm € X : 7 =0}, and

w0 ul 0
Bm1 - 9 Bm2 -
0 1 0 I
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Theorem 4.4.3. If there exists a positive scalar u and positive definite symmetric matrices
Ps, P such that and hold, the hybrid system Hyny with input My is 1SS with
respect to ./ZET.

Proof. Since the matrices Ay, and Ay, are Hurwitz and the states w; and w2 do not jump,
we can estimation system as a continuous time system and write the solution explicitly for
the states w; and ws.
Py (1, ]) = eXp(Af3 (t - O))(bu_}l (0,0)
t (4.59)
+ eXp(Af3 (t - 3))Bm1ql(s)d3
0

and
¢1D2 (tv.j) = eXp(Af4 (t - 0))¢'LT)2 (Oa 0)

+ /0 exp(Ay, (t = 5)) By G2(s)ds

then by bounding | exp(Ay, (t—0))|<p1exp —A1(t — 0) and | exp(Ay, (t—0))|<p2 exp —A2(t — 0)

(4.60)

one has
(G (1, )] < p1 exp —Ai(t — 0)| (0,0)
t
+ /0 prexp =i (t — 5)| B |01 ()]s (4.61)
B, _
< prexp—A(t — 0)[éa (0,0)] + PPl G 1o
0<s<t
and
(Gans (£, )] < p2exp —Aalt — 0)| b (0, 0)
t
+ [ prexp=alt = )|yl (4.62)

B _
< prexp —Malt — 0)[6an (0,0)] + P2Pm2l G 1654
A2 0<s<t

4.4.3 Robustness to Error on o

In this section, we consider a disturbance on ¢* to capture the scenario where o*

is not precisely known, i.e., o; # o*. Let ¢,, = 0; — 0" represent the error between the
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injected and the ideal clock rate. Treating e, as a perturbation to the system ., one has

[ N+ ¢a ] _50_
hn 0
Te = UES +10 Vz. € C:
—Er — €q 0
L _1 . L 0 m

€ (e, —~vLe, Eq, Er, [Tl,Tg]) V. € D,

To show how the perturbation affects 7—76, let &, = T ey, then let m, = (Mg, My,) Where
Moy = €y, aNd Moy = (Eogs - -0 )-

We define this perturbed hybrid system 7—~£ma with state vector xm,
(z1, Z2, w1, W, T) € Xe. Its dynamics are given by the new system M, =
(Conys frnws Doy G, ) with data fr, (Xm,) for each xm, € Cpm, = X and G, (Xm,)
for each X, € D, := {Xm, € X- : 7 = 0} where

[Af, 21 + By, | Mg,
Af2 29 + sz Wo Mg,
Fono (Xm,) = Ag by +1 0
Ay By 0
L 71 . L O .
~ T
Gy (Xmy) = |[Ag )T, [ALZ]T, @, W], [Tl,TQ]]

Theorem 4.4.4. Given a strongly connected digraph G, if the parameters Ty > T1 > 0,
uw>0,heR, v >0, and positive definite symmetric matrices Py, Ps, and Ps are such
that (f4.15|) and (f4.161) hold, the hybrid system 7-[mo with input m is 1SS with respect to ./L

given in .

The proof of this result largely follows the same approach used in the proof of
Theorem namely, a Lyapunov analysis using the function candidate V in (4.36)).

Since the disturbance is present during flows, we show that the derivative of V' can be

upper bounded resulting in a bounded disturbance in V' when evaluated along a given

solution to H,n, ; see [22] for more details.

Proof. Consider the same Lyapunov function candidate from the proof of Theorem [4.2.6
expressed for xm,,

V(Xmy) = Vi(Xmy) + Va(Xm,) + Ver(Xm,)
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The contribution from the perturbation only affects the system during flows. For each

Xm, € CN’mU the change in V is given by

(VV(xXm,), fmo (Xm,)) < 22;— eXp A};Tpl eXp Asz(Bf2w2 + M)
+w] (PLAy, + AJ, P
+ w;(PgAf4 + A};PQ)’J}Q

From conditions (4.13) and (4.14), let PyAy, + Af Py < —f1I and P3Ay, + A} Py < —fal
then one has

(VV (Ximo )s o (Ximy ) < 1|22 0] + |B H@Hmog\
(4.63)

— Bilwy|* — Bo|wa|®
then applying Young’s equality to the first and second terms one has

K1€, _
iy 2|2+7‘ of* +

-2
<5 |22

v

(VV (Xmo)s frme (Xme)) < 2,0‘Bf2’
KD i — s

+2|Bf2||mg2| gl el

K1 K1 ) ~ 2
<
(26 + 2p|By,| 22|

+ (55— B2 waf? - Bl

KR1p 2
- 2’Bf2| ’m@’

Since |By,| =1 then

(VV (Xma ), Fng (Xma ) < R(|122) + @1 + |@2]?)

K
+ ;p os]? (4.64)

< V( )+ 7|m02|2

where & = max {’;—é + '2%, ("“e ,32)} and €, p > 0. Since the perturbation does not affect
the system at jumps then, recall from the proof of Theorem that, across jumps for

each xm, € Dma and g € G~'m0 one has
V(g) — Vixm,) < 771+z2 (AT exp Af2vP1 exp Af,vAg, — Pl)
leading to the following bound

Vig) < (1= 2)V(x) + Aol
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from (4.46]). Then a general bound for the Lyapunov trajectory is given by

V(t.j) < exp (R T3) (exp (RT3) (1 - @))jV(o, 0)

a2

+ R exp (RT2)Sup(; jyedome @ (t, 1)
t
R1p ~ _
+ 522 [ exp (5t = ) s
0

O

4.4.4 Noise on the communication and clock rate reference ¢* with ape-

riodic communication events

Example 4.4.5. In this example we demonstrate the system H robustness to noise on the
communication channel and the clock rate reference o*. Consider the same system presented
in the example following Theorem [{.2.6, Figure [{.4 shows ISS for the trajectories of the
errors e; — ey for the components i € {1,2,3,4,5} of a solution ¢ for the case where the
system is subjected to communication noise me,(t,j) € (0,1) and noise on the clock rate
reference mqx(t, j) € (0.85,1.15) for all (t,j) € dom¢, respectively. Moreover, after the
respective transient period for each case, the norm of the relative error |e; — ey| for each
solution converges to an average value of 0.0229 when subjected to noise myx and 0.0549

for noise m, .

€; — €

c(“"{"l“o""}’("‘f<
|
|
o
|
}
|
al
|
o

€; — €
b ho e s

0 5 10 15

t (sec)
Figure 4.2: (top) The trajectories of the errors e; — ey, for the components i € {1,2,3,4,5}
of a solution ¢ for the case where the system is subjected to communication noise m., (top)
and noise on the clock rate reference mq+ (bottom).
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4.5 Comparisons

In this section we compare our algorithm to several contemporary consensus-based
clock synchronization algorithms from the literature through a numerical example. In par-
ticular, we consider a four agent setting and simulate each algorithm presented in [25]
(PI-Consensus), [26] (RandSync), and [1] (Average TimeSync) to our hybrid algorithm
HyNTP as in . We have restricted our comparison to these algorithms due to their
shared assumptions on the underlying communication graph being strongly connected. Our
first example considers the nominal case of zero noise and a fixed communication event pe-
riod. The next example also considers the nominal case but with aperiodic communication
events. We then present an example where the systems are subjected to communication
noise with aperiodic communication. Our final example considers the case of noise on the

clock rate while also being subjected to aperiodic communication events.

4.5.1 Nominal case with fixed communication event period

Consider N = 4 agents with clock dynamics as in (6.3) and (4.2) over a strongly

connected graph with the following adjacency matrix

1
0
Ga= (4.65)
1
0

S = O =

0
1
0
1

—_ O = O

and a dwell time between communication events T' = 0.15. The initial conditions for the
clock rates a; and clock values 7; for each ¢ € V has been randomly chosen within the
intervals (0.5,1.5) and (0, 200), respectively.

For the HyNTP algorithm, we let 77 = T =T = 0.15, and ¢* = 1, then it can be
found that the parameters h = —2, u = 3, v = 0.06 and ¢ = 1.607 with suitable matrices Py,
P,, and P; satisfy conditions (4.15) and (4.16]) in Theorem [4.2.6| with &1 = 6.86, k1 = 22.98,
Ko =1, and as = 16.93.

Figure shows the trajectories of e; — ey, g4, for components i € {1,2,3,4,5} of

a solution ¢ for the case where o = o*
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Figure 4.3: The evolution of the trajectories of the adjustable clocks 7; for each clock syn-
chronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.
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Figure 4.4:  The evolution of the trajectories of the adjustable clock rates a; for each

clock synchronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-
Consensus, and RandSync.
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4.5.2 Nominal case with aperiodic communication events

Consider the same N = 4 agents with clock dynamics as in (6.3]) and (4.2]) over a

strongly connected graph with the following adjacency matrix

1
0
Ga =
1
0

S = O =

0
1
0
1

—_ O = O

and aperiodic communication events such that successive communications events are lower

and upper bounded by 77 = 0.1 and T> = 0.5, respectively. The initial conditions for the
clock rates a; and clock values 7; for each i € V has been randomly chosen within the
intervals (0.5,1.5) and (0,200), respectively.

For the HyNTP algorithm, setting ¢* = 1, it can be found that the parameters
h=-2 u4=9 v =0.06 and ¢ = 4.752 with suitable matrices P;, P>, and P5 satisfy
conditions and in Theorem with &1 = 2.02, k1 = 19.22, Ry = 1, and
ay = 44.03.

Figure shows the trajectories of e; — ey, €4, for components i € {1,2,3,4,5} of

a solution ¢ for the case where o = o*.

Figure 4.5: The evolution of the trajectories of the adjustable clocks 7; for each clock syn-
chronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-Consensus,
and RandSync.
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Figure 4.6: The evolution of the trajectories of the adjustable clock rates a; for each
clock synchronization algorithm. From top to bottom, HyNTP, Average TimeSync, PI-
Consensus, and RandSync.

4.5.3 Communication noise with aperiodic communication events

Consider the same N = 4 agents with clock dynamics as in and over a
strongly connected graph with the adjacency matrix given in and aperiodic commu-
nication events such that successive communications events are lower and upper bounded
by 17 = 0.1 and T5 = 0.5, respectively. The initial conditions for the clock rates a; and clock
values 7; for each i € V has been randomly chosen within the intervals (0.5, 1.5) and (0, 200),
respectively. Moreover, consider the case where the system is subjected to a communication
noise m,(t,7) € (0,1) on the clock measurements.

For the HyNTP algorithm, setting ¢* = 1, it can be found that the parameters
h=-2 =9 v =0.06 and ¢ = 4.752 with suitable matrices P;, P>, and Pj5 satisfy

conditions (4.15) and (4.16]) in Theorem with R = 2.02, k1 = 19.22, ke = 1, and
ag = 44.03.

4.6 Summary

In this chapter, we modeled a network of clocks with aperiodic communication
that utilizes a distributed hybrid controller to achieve synchronization, using the hybrid
systems framework. Results were given to guarantee and show synchronization of the timers,

exponentially fast. Numerical results validating the exponentially fast convergence of the
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Figure 4.7: The evolution of the trajectories of the adjustable clocks 7; for each clock syn-
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timers were also given. Numerical results were also provided to demonstrate performance

against a similar class of clock synchronization algorithms.
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Chapter 5

An Adaptive Hybrid Control
Algorithm for Sender-Receiver

Clock Synchronization

In this chapter, we present a hybrid systems approach to sender-receiver synchro-
nization with an, online, adaptive method to synchronize the clock rates. We show that
our algorithm exponentially synchronizes a pair of clocks connected over a network while
preserving the messaging protocols and network dynamics of traditional sender-receiver
algorithms.

Our proposed solution provides a Lyapunov-based convergence analysis to a set in
which the clocks are synchronized with sufficient conditions ensuring their synchronization.

In particular, the main contributions include:

e In Section[5.3] a hybrid system model of the sender-receiver synchronization algorithm
using the framework proposed in [4] is presented. The proposed model captures the
continuous dynamics of the clock states and the hybrid dynamics of the networking
protocol by which the timing messages are exchanged for a pair of system nodes to

achieve synchronization.

e In Section [5.3.3] we show, through the satisfaction of some basic conditions on the
system model, that the algorithm is finite-time attractive to a forward invariant set

of interest that represents the correct initialization of the algorithm.
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Figure 5.1: General architecture of the system under consideration.

e In Section [5.4] we provide sufficient conditions on the algorithm parameters to show
asymptotic attractivity of the hybrid system to a set of interest representing synchro-
nization of the clocks from the initialization set. Furthermore, we characterize the
bound for solution trajectories to the systems in terms of parameters that can be

used for algorithm design.

e In Section [5.5] we present a multi-agent extension of the proposed model to cover
the case of synchronizing the nodes on an n-node network. The feasibility of this

multi-agent model is validated with a numerical example of the simulated system.

Unlike the existing algorithms of NTP, PTP, and TPSN, we emphasize to the
reader that previous analyses on sender-receiver synchronization have only provided re-
sults to their feasibility and that the literature lacks formal results that characterize its

performance in a dynamical system setting.

5.1 Motivation for An Adaptive Clock Synchronization Al-
gorithm

5.1.1 Preliminaries on the Sender-Receiver Algorithm

In a network of n nodes, consider nodes i and k in a sender-receiver hierarchy
where Node 7 is a designated reference or parent agent of a synchronizing child agent Node
k, see Figure Each node has an attached internal clock 7;, 7, € R whose dynamics are
given by

no (5.1)
Tk = ak
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where a;,a; € R denote the respective clock ratesH At times t; for j € N (with ¢p = 0),

nodes 7 and k exchange timing measurements with embedded timestamps

Tj = 7(t;) (5:2)
Tf = T(t5)

which, integrating (5.1]), are equal to
Ti(tj) = a;t; + 7:(0)

Ti(tj) = agt; + 71(0)

respectively. Furthermore, 7;(0) and 74(0) represent the clock offset from the initial reference
time ¢ = 0. The goal is to then synchronize the internal clock of Node k to that of Node ¢
using the exchanged timing measurements given in .

Before introducing the mechanics of the sender-receiver algorithm, we refer the
reader to a visual model of the algorithm in Figure [5.2| as a reference. By assuming the
sequence of time instants {t; 521 Is strictly increasing and unbounded, the sender-receiver
synchronization algorithm as described in the literature (see 5], [27], and [28]) is given as

follows:
P1) At time t;, Node ¢ broadcasts a synchronization message with its local time
J
T; = a;t; + 7;(0)

to Node k.

(P2) At time t;41, Node k receives the synchronization message and records its local time

of arrival, Tfﬂ, given in local time at
TF1 = artj1 + 7%(0)
(P3) At time t;42, Node k sends a response message with timestamp

Tyk+2 = aytjt2 + 7%(0)

! In this paper, we use the term clock rate to explicitly denote the slope of the given linear affine model
of a clock. Other terms for this notion include clock drift or clock skew.
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(P4) At time t;43, Node i receives the response message from Node k and records its time
of arrival

Tf+3 = a;tjy3 + 73(0)

(P5) At time t;44, Node i sends a response receipt message with timestamp

T}4 = aitjra + 7:(0)

(P6) At time t;,5, Node k receives the response message from Node i and records its time
of arrival

Ty s = artjts + 7(0)

and then updates its clock to synchronize with the clock of Node ¢ using the collected

. , )
T T and TJ?JF4.

. 7 k
timestamps 17, T jt20 Liys

JASE

Moreover, as done in the literature (see [27] and [29]), it is assumed that the time elapsed
between each time instant is governed by
bt = d Vje{2i+1:i€N},j>0 (5.3)
¢ Vje{2i:ieN} ;>0
where 0 < ¢ < d. The constant ¢ defines the delay associated with the residence or response
time associated with message turnaround while d defines the propagation delay associated
with message transmission. Figure [5.2) gives a visual representation of the exchange of
timestamps between Nodes ¢ and k against reference time ¢t. Note that the propagation
delay from Node ¢ to Node k£ and vice versa is assumed to symmetric. Moreover, it is also
assumed that the delay due to residence time is the same across all nodesf]
With the available timestamps, at times ¢;45, we can calculate the relative offset

0 := 7;(0) — 7(0) as follows, by first rearranging the terms in the timestamps given in

2Most pairwise synchronization protocols such as the Network Time Protocol (NTP), Precision Time
Protocol (PTP, IEEE 1588), and the Timing-sync Protocol for Sensor Networks (TPSN) assume that the
propagation delay in the message transmission from parent to child and child to parent is symmetric. If
the propagation delay between the two nodes is asymmetric it introduces an error to the calculated offset
correction that cannot be accounted for, see [13].
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Figure 5.2: Diagram illustrating the message exchange between Nodes i and k for the

synchronization algorithm.

(P6)| one has
7(0) = TJZ it
7%(0) = Tgk+1 — agljt1
7(0) = T]k+2 — agljt2
7i(0) = Tjy3 — aitjy3
7(0) = T]+4 aitjya
7(0) = Tl 5 — antjis

then we have the following expressions for the offset

6 =7i(0) — 7(0) = T! — ajt; — TF 1 + aytjs

J J

6= 7i(0) = m(0) = T3 — aitjs — Tjyo + antjia

J

0= TZ'(O) — Tk(O) = Ti+4 — aitj+4 — Tk+5 + aktj+5

J J

rearranging terms one has

) . B
T; — Tj+1 = a;tj —agljp1+0

% k ~
Tjy3 = Tjo = aitjps — agljzz +0
i ko ~
jaa — Tiys = aitjra — agljys +0
Now, if the clock drifts are synchronized, i.e., ar = a;, we have

T) = Tfy = aity —tj1) +6
. . .
T3 — Tiyo = ailtjrs — tj42) +0

. . )
Gra — Tihs = ai(tjpa — tjps) +0

(5.5)

then by noting the bounds on the time elapsed between time instants ¢;, as given in (6.5)),

one has

tiy1 —tj=tjy3 —tjpa =tjps —tjpa=d Vje{2i+1:1€N}Lj >0
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then by making the appropriate substitutions in (5.5 we have

Vs =Ty =ad+6 (5.7)

4 " ~
Tjpq —Tjys = —aid + 0
Since the clock rates a; = ar and the quantity of the propagation delay d are currently
unknowns to the system, we are left with a linear system of equations to solve for the offset,
i.e.,

o= 5 (T = Th) + (T ~ Tho)) (58)

To demonstrate how this solves the synchronization problem, consider the error

between the clocks of nodes ¢ and £ at ¢;5,

eik(tjts) = Ti(tj+5) — Tw(tjvs)

at time t;45 node k applies the offset correction K3 = 0 as follows

eik(tj+s) = Ti(tjt+s) — (Ti(tj+s) — Ks)
= (az’tj+5+7'z'(0)) - (aktj+5+7'k(0)*(7'1‘(0)*%(0)))
= aitjys — atjys
=0

Thus, the clocks at nodes i and k synchronize for the case where the clock rates a; and ay,

are already assumed to be synchronized.

5.1.2 The Key Issue: Clock synchronization in the presence of mis-

matched clock rates.

With the mechanics of the sender-receiver algorithm defined, we will now outline
the motivation of this paper by demonstrating the issues that arise with the algorithm and
how our proposed solution addresses them.

Now, consider the following system data a; = 1, ap = 0.8 with ¢ = d = 0.5 and the
given sender-receiver algorithm with only the offset correction K being applied. Simulating
the algorithm, Figure [5.3]shows the plots of the behavior in the error of clocks and the clock
rates. As depicted in the figure, the algorithm continually applies the offset correction but

due to the mismatch in the clock rates, the error in the clocks fails to converge to zero. This
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Figure 5.3: The evolution of the error in the clocks and error in the clock rates of Nodes ¢
and k& when the algorithm only applies the offset correction Kj.

is further evidence analytically when noting that if the clock rates are not synchronized in
equation , the formula for the offset calculation in ([5.8) will yield an error on the true
offset o.

To mitigate the effects of the error, protocols such as NTP and IEEE 1588 utilize
a variety of bespoke methods to minimize the error in clock rates including but not limited
to, control of variable frequency hardware oscillators, pulse addition and deletion of the
counted pulses at the hardware oscillator, and an error register to track the deviation of
the error, see [11] and [28]. These methods, while suitable for industrial-grade equipment,
are often expensive solutions for low-cost applications such as sensor networks. In fact,
protocols such as TPSN, designed specifically for low-cost sensor networks, do not provide

provisions to correct for the clock rate error, see [10].

5.1.3 Problem Formulation and Proposed Algorithm

The problem to solve consists of synchronizing the internal clock of Node k to
that of Node i. More precisely, the goal is to design a hybrid algorithm that is based on
exchanging timestamps and guarantees that the clock variable 7, and the clock rate aj of
Node k are driven to synchronization with 7; and a; of the reference Node %, respectively.
Moreover, our goal is to provide tractable design conditions that ensure attractivity of a set

of interest. This problem is formally stated as follows:

Problem 5.1.1. Given two nodes in a sender-receiver hierarchy with clocks having dynam-
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ics as in with timestamps T;, T]k and parameters ¢ and d, design a hybrid algorithm

such that each trajectory t — (7;(t), 7i(t)) satisfies the clock synchronization property

lim |7;(t) — 72.(t)| = 0

t—

and the rate synchronization property

lim |7;(t) — 7, (t)] = 0

t—

Given the inability of the sender-receiver algorithm to synchronize the clocks, we
propose a modification to the algorithm that incorporates an adaptive strategy to synchro-
nize the clock rates. Consider the control law for the synchronization of the clock rate for
Node k

Ko= T}y = T) = Tl — Thy) (5.9)

with p > 0 being a controllable parameter. Making the necessary substitutions one has
K, = p((aitj+4 + 75(0)) — (ait; + 7:(0))
— (atjs + 1(0))—(antjr1 + Tk(O))>
= p(ai(2c + 2d) — ag(2c + 2d))
= p(2c+ 2d)(a; — ax)

(5.10)

The correction K, can then be applied to the clock dynamics of Node k at times t;,5 as

follows:

az =ap+ K, = ap + p(2¢c+ 2d) (ai - ak) (5.11)

Observe that this strategy operates under the existing assumptions of the sender-receiver
algorithm (symmetric propagation delays and residence times) and does not rely on any
additional information that is not already available via the exchanged timing messages.
Moreover, since it exploits the integrator dynamics of the system, the computation costs
to calculate K, are minimal. In this next example, we demonstrate the proposed strategy
under the same scenario of mismatched skews between Nodes ¢ and k.

To illustrate, the capabilities of the algorithm outlined above, consider the same
system data as in Section [5.1] namely, a; = 1, ap = 0.8 with ¢ = d = 0.5 and the given
sender-receiver algorithm now with both the offset correction K5 and clock rate correction

K, being applied. In Figure two sets of error plots are presented for two different
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Figure 5.4: The evolution of the error in the clocks and clock rates of Nodes ¢ and k
when the algorithm applies both offset correction K and clock rate correction K,. Plot
(a) demonstrates the case when p is chosen arbitrarily while plot (b) depicts the scenario
where p is optimally chosen.

simulations. Figure gives plots of the errors for the case where the p is chosen
using information on ¢ and d following our forthcoming design conditions while Figure
5.4(b)| provide the error plots for the case where p is chosen arbitrarily. In the case of the
ideal p, the error in the clocks and clock rate converge to zero whereas in the case of the
arbitrarily chosen p, the error fails to converge. This suggests that a sufficient condition to

appropriately design g is necessary to ensure convergence of the error.

5.2 Preliminaries on Hybrid Systems

A hybrid system H in R" is composed by the following data: a set C C R™, called
the flow set; a set-valued mapping F' : R = R™ with C' C dom F, called the flow map; a
set D C R™, called the jump set; a set-valued mapping G : R” = R” with D C dom G,
called the jump map. Then, a hybrid system H := (C, F, D,G) is written in the compact

form

& € F(x) xel (5.12)

zt € G(x) zeD

where z is the system state. Solutions to hybrid systems are parameterized by (¢, j), where
t € R>( defines ordinary time and j € N is a counter that defines the number of jumps.

The evolution of ¢ is described by a hybrid arc on a hybrid time domain [4]. A hybrid time
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domain is given by dom ¢ C R>oxN if, for each (T, J) € dom ¢, dom ¢N([0,T]x{0,1,...,J})
is of the form U‘;-]:(]([tj7tj+1] x {j}), with 0 = to < t; < to < tj11. A solution ¢ is said
to be mazimal if it cannot be extended by flow or a jump, and complete if its domain is
unbounded. For a hybrid system that is well-posed, the closed set A C R™ is said to be:
attractive for H if there exists p > 0 such that every solution ¢ to H with |¢(0,0)|4 < u is

complete and satisfies limy1j o0 [¢(2, j)|4 = 0.

5.3 A Hybrid Algorithm for Sender-Receiver Clock Synchro-

nization

In this section we present our hybrid model that captures the network dynamics
for the message exchange and our proposed algorithm that ensures synchronization of the
clocks. Using the sender-receiver mechanism for exchanging the timing messages, our algo-
rithm combines the offset correction law in with the proposed online, adaptive clock
rate correction law given in .

5.3.1 Modeling

Given the mix of continuous and discrete dynamics of the system, i.e., the con-
tinuous evolution of the clocks and the discrete events of the computation and network
transmission, a hybrid modeling approach is a natural fit to perform the needed analy-
sis and design goals to solve Problem [6.0.1] Thus, with our problem defined formally, we
present a hybrid model that captures the proposed algorithm given in Section [5.1.3] To
model the hardware and communication dynamics of the system, namely, the residence and
transit times elapsed between the timing messages, we consider a global timer 7 € [0, d]

with dynamics
7=-1 T € [0,d]
(5.13)
rte{cd} 7=0
In this model, the timer 7 is reset to either ¢ or d when 7 = 0 in order to preserve the
bounds given in (6.5). We remind the reader that the constant ¢ denotes the residence
delay and d denotes the transmission or propagation delay. To determine the appropriate

choice for the new value of 7, namely, 77, we define a discrete variable ¢ € {0,1} =: Q to

indicate the residence or transmission state of the system, namely, whether the system is
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servicing a message at one of the two nodes or whether the system is waiting for the arrival

of a message at either of the two nodes, respectively. The state vectors
i

_ % A i i i T 6
m = [m177n'27m37m47m51m6] €eR

and

k k k k k k k1T 6
m :[m17n1’27m37m4am57n16] eR

represent memory buffers to store the received and transmitted timestamps respectively, for
Node i and Node k. In addition, a second discrete variable p € {0,1,2,3,4,5} =: P is used
to track at which stage of the message exchange, defined in the algorithm is at.
Then, by incorporating the clocks 7;, 7. and the clock rates a;, a; as state variables to the

model as in Section the state x of the hybrid system model, denoted H, is given by
x = (T4, Tk, G4, Ak, T, m', mF, p, q) €X

where
X =RxRxRxRx[0,d xR xR x P xQ
With the dynamics of the clocks as given in ([5.1) and those of the timer 7 in (5.13)), the
flow map is defined as
F(x) := (a;,ax,0,0,—1,0,0,0,0) VaxeC (5.14)
the flow set C is defined as
C:=C1UCy (5.15)

where

Cr={xeX:q=0,7€]0,}

and

Cy:={xeX:q=1,7€]0,d]}

To model the communication and arrival events of the message exchange and the proposed

mechanisms correcting the clock rate and offset, we define the jump map G : R” — R" as
G(z) :=Gi(z) if z € D; (5.16)

where each mapping G; used to define G corresponds to the message exchange events

(P1)H(P6)| as follows
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e (G1: Node i broadcasts a synchronization message to Node k timestamped with 7; as
in This event is triggered by the jump set D, namely, when the timer 7 = 0 and
the discrete variable p describing the protocol state is zero. At this event, the timer
T is reset to d, to initiate the message transmission delay. Similarly, the state ¢ is
reset to 1 to indicate the message transmission state of the system with p augmented
by one to trigger the next protocol state. Finally, m} is set to 7; to record the time
of message broadcast, relative to the clock of Node i. The subsequent memory states

ms, ... mg are reset to mj,...myg, respectively.

e (G2: Node k receives the synchronization message and timestamps its arrival with 7
as in|(P2)l This event is triggered by the jump set Do, namely, when the timer 7 = 0
and the discrete variable p describing the protocol state is one. At this event, the
timer 7 is reset to ¢, to initiate the residence delay. Similarly, the state q is reset to
0 to indicate the residence state of the system. Finally, m’f is set to 73 to record the
time of message broadcast, relative to the clock of Node ¢. The subsequent memory

states mg, .. .mlg are reset to mﬁ, .. .mg, respectively.

e (G3: Node k broadcasts a response message timestamped with 75 as in This
event is triggered by the jump set D3, namely, when the timer 7 = 0 and the discrete
variable p describing the protocol state is two. At this event, the timer 7 is reset
to d, to initiate the message transmission delay. Similarly, the state ¢ is reset to 1
to indicate the message transmission state of the system. Finally, m{ is set to 7; to
record the time of message broadcast, relative to the clock of Node 7. The subsequent

memory states mj, ... mg are reset to mj, ... mg, respectively.

e (G4: Node i receives the response message and timestamps its arrival with 7, as in
This event is triggered by the jump set Dy, namely, when the timer 7 = 0 and
the discrete variable p describing the protocol state is three. At this event, the timer
T is reset to ¢, to initiate the residence delay. Similarly, the state ¢ is reset to 0 to
indicate the residence state of the system. Finally, m¥ is set to 7 to record the time
of message broadcast, relative to the clock of Node 7. The subsequent memory states

mg, e mlg are reset to mli, .. .m%, respectively.

e G5: Node i broadcasts a response receipt message timestamped with 7; as in |[(P5)|

This event is triggered by the jump set Ds, namely, when the timer 7 = 0 and the

89



discrete variable p describing the protocol state is four. At this event, the timer 7 is
reset to d, to initiate the message transmission delay. Similarly, the state g is reset to
1 to indicate the message transmission state of the system. Finally, m{ is set to 7; to
record the time of message broadcast, relative to the clock of Node ¢. The subsequent

memory states ms,...mg are reset to mfj,...mg, respectively.

Gg: Node k uses the timestamped messages to update its clock rate and offset via
Ks(x) in and K,(x) in , respectively as in This event is triggered by
the jump set Dg, namely, when the timer 7 = 0 and the discrete variable p describing
the protocol state is five. At this event, the timer 7 is reset to ¢, to initiate the
residence delay. Similarly, the state ¢ is reset to 0 to indicate the residence state of
the system. Finally, m’f is set to 7 to record the time of message broadcast, relative to
k k i

the clock of Node i. The subsequent memory states msg, ... mg are reset to m’i, ..My,

respectively.
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More precisely, the maps G1, Go, Gs, G4, G5, Gg, updating x = (75, Tk, @i, ag, T, m?, mk,p, q),

are defined byp]

Gs(x) :==

Gs(z) :=

with

and

(Tia Tk) (Tla Tk’)
(Gz,ak) (azaak)
d c
. k ) GQ(.CU) - . .
(Tiam{) 7m%)7m ) (mZaTkamia 7777%)
p+1 p+1
1 0
(7_17 Tk) (7—27 Tk)
(ai, ax) (ai, ar)
d c
, X NE Gy(z) := . - (5.17)
(m', 7, my, ..., ms) (1i,m{,...,mg, m")
p+1 p+1
1 0
(7, k) (i, T — K5(m?))
(as, ar) (ai, ar + Kq(m', 7))
d c
i i kY| Ge(2) = i i i
(ri,m},...,mi, m") (m', 7, mi,...,mi)
p+1 0
1 0
i L i i i
Ka(m', 7)) = p((mi — mi) — (1 — m})) (5.19)

with g > 0. The offset correction implemented by the feedback law Kz in (5.18) is an
adapted version of the offset correction algorithm given in (5.8]) suitable for the hybrid

system model where the memory states m* and m* contain the stored timestamps T]Z and

Tf , respectively. Note that the feedback laws Kz and K, depend on the correct assignment

of the timestamps to the memory states. In the forthcoming Lemmas [5.3.3] and [5.3.4] we

show finite time attractivity of a set containing the correct assignment of the memory states

3Note that [z",y"]" = (z,y).
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for the appropriate feedback. To trigger the jumps corresponding to the particular protocol

events we define the jump set as

D :=DyUDyUD3UD4sU DsU Dg

where
Dy :={zeX :7=0,p=0}, Dy ={zeX:7=0,p=1}
Dy ={xeX:7=0,p=2}, Dy ={zeX:7=0,p=3}
Ds:={zxeX:7=0,p=4}, D¢ ={zreX:7=0,p=05}

With the data defined, we let H = (C, F, D,G) denote the hybrid system for the pairwise

broadcast synchronization algorithm between Node ¢ and Node k.

5.3.2 Error Model

To show that the proposed algorithm solves Problem we recast the problem
as a set stabilization problem. Namely, we show that solutions ¢ to H, with data (C, F, D, G)
given in , converge to a set of interest wherein the clock states 7;, 7 and clock rates
a;,ar, respectively, coincide. To this end, we consider an augmented model of H in error
coordinates to capture such a property. Let ¢ := (e,,&,) € R%, where ¢, := 7; — 73, defines

the clock error and ¢, := a; — ai defines the clock rate error of Nodes ¢ and k. Then, define
z. = (5,2) €EX. =R x X

which is the stateﬁ that collects the clock errors, clock rate errors, and the state of the

system H. The continuous evolution of x. is governed by

ie = Fe(z) := (Age, F(z)) . € C: (5.20)

0 1
where A; = and f is defined in ([5.14). The flow set C; is defined as
0 0

C.i=C., UCk, (5.21)

where

Cei={2-€X.:q=0,7€[0,c]}

4 The full state vector z to H is retained to facilitate the implementation of the synchronization algorithm
for H..
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and

Cey i ={2-€X.:q=1,7€10,d]}

The discrete changes of z. are determined by the discrete changes of € and x, the latter of

which is given in (5.16). Through the computation of e™ = (¢}, e}) using the jump maps

T a

in (5.17)), the resulting evolution is modeled by the jump map G. : X — X. given by

Ge(ze) := Ge,(ze) if ze € Dy, (5.22)
where
€ € €
G€1 Te )= ) Gag Te)i= R G53 Te)i=
) Gi(2)) e | Ga(x)| (<) Gs(@)

] [ ] [ K5(m')
G54(x5):: ) ) G€5($€):: y y Geg(we):i= o |:_Ka mZ7Tk):|

|Ga()| Gs(2)| Go(z

Observe that the feedback laws K5 and K, are employed when € is updated by G, similarly
to when G is employed H. These discrete dynamics apply when « is in D, := D, U D, U
D., UD., UD., UD,,, where

D, :={z. € X.:7=0,p =0},

>

ey ={zc€eX.:T=0,p=1}

>

Da3::{x£€Xa5T:O7p:2}) €4 ::{xEEXE:T:()?p:?’}

D., ={z. € X.:7=0,p=4},

.l

s ={re€X.:7=0,p=>5}

This hybrid system is denoted
He = (Ce, F., De, Ge) (5.23)
The set to render attractive so as to solve Problem is given by
A i ={z. € X, : e =0} (5.24)

where € = 0 implies synchronization of both the clock offset and the clock rate, since, when

e =0 and ¢, = 0, then 7 is synchronized to ;.

5.3.3 Basic Properties of .

Having the hybrid system . defined, the next two results establish existence of

solutions to H. and that every maximal solution to H. is complete. In particular, we show
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that, through the satisfaction of some basic conditions on the hybrid system data, which is
shown first, the system . is well-posed and that each maximal solution to the system is

defined for arbitrarily large t + j.

Lemma 5.3.1. The hybrid system H. = (Ce, F;, D¢, G¢) satisfies the following conditions,

defined in (4, Assumption 6.5] as the hybrid basic conditions; namely,
(A1) C. and D are closed subsets of R™;
(A2) F. :R™ — R™ is continuous;

(A3) Gz : R™ =2 R™ is outer semicontinuous and locally bounded relative to D., and

D, C dom G..

See the appendix for proof.

Lemma 5.3.2. For every £ € C. U D.(= X.), there exists at least one nontrivial solution

¢ to He such that ¢(0,0) = &. Moreover, every maximal solution to H. is complete.

See the appendix for proof.

The effectiveness of the update laws K; and K,, given in and , in
correcting the clock and clock rate of Node k, depend on the assigned values of m* and mF*
at the time K5 and K,, i.e., when jumps according to G, occur. Improper initialization
of the memory states may result in updates of the offset and clock rate of Node k that
increase the error in the clocks and clock rates relative to Node i. Therefore, to facilitate
the analysis of H. in rendering the set A. asymptotically attractive, we restrict the values
of m* and m”* to a set smaller than X where they remain in forward (hybrid) time. More

precisely, we restrict the state x. to the set

M= M UMyUMzUMyUuMsU Mg (5.25)
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where
My = {z. € X : p=0,¢=0}
My = {z. € X. 1 p=1,q=1, mj—p;(z.,0) = 0}
Ms = {z. € X. : p=2,q=0, mF—py(z.,0) = 0, m5-p;(z.,d) = 0}
My = {z. € X : p=3,q=1, mj~pi(2:,0) = 0, mf—pi (2, ¢) = 0, mf—pi(xc, c+d) = 0}
Ms = {z. € X. : p=4,q=0,m}-p;(zc,0) = 0, ms—py (2, d) = 0, mi—py,(zc, c+d) = 0,
m-p;(xe, c+2d)=0}
Me = {z. € X : p=5,q=1,m{-p;(xc,0) = 0, my—pi(z=, c) = 0, my—pg (e, c+d) =0,
mi-pr(xe, 2¢+d) = 0, mi—p; (., 2c+2d) = 0}
and
pi(e, B) :==7i —ai((1 —q)c+qd — 7) — a;fs
pr(te, B) =k — ar((1 = q)c +qd — 7) — ar 3

(5.26)

for g > 0.

Lemma 5.3.3. The set M is forward invariant for the hybrid system H..

See the appendix for proof.

Lemma 5.3.4. Let constants d > ¢ > 0 be given. For each maximal solution ¢ to H., there

exists T* > 0 such that ¢(t,j) € M for any (t,j) € dom ¢ witht +j5 > T*.

See the appendix for proof.
In our main result, which is presented in the next section, we show asymptotic
attractivity of the synchronization set A, via a Lyapunov analysis on solutions from the

initialization set M.

5.4 Main Results

In this section, we present our main result showing asymptotic attractivity of the
synchronization set A. in (5.24]) for H.. To show this, we present a Lyapunov analysis
along solutions to H starting from the set M. We remind the reader that M is the set

that denotes valid initialization values of the memory state vectors m’ and m* for which
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the update laws K; and K, give values to correct the clock rate and offset. To this end,

consider the Lyapunov function candidate
V(ze) = el exp (A;T’(T, D, q))Pexp (AfT’(T,p, q))e (5.27)

where P = PT > 0, Ay is as given in (5.20), 7(7,p,q) := Th(q) + d(5 — p) and h(q) :=
1+ ¢ 1(1 - q)(d— c) are defined for each . € C. U D.. Note that there exist two positive

scalars, a; and as, such that
arlecy, < V(o) < aslecfy, Voo € C.UD. (5.28)
The function V satisfies the following infinitesimal properties.

Lemma 5.4.1. Let the hybrid system H. be given as in . For each point z. € C,,
one has

0 it z. € C,,
<VV(1‘5), Fe(xe» < (5.29)
+V(z:) if . € C,

where

a2 = Amax (exp (vh(v) +d(5 — a))A}r)Pexp ((vh(v) +d(5 - a))Af)> (5.30)

veEQ, 0P
p11€ P11 }
= |a|maxq§ —, — 5.31
7= fajmax{ B, 5+ 22 (5.31)
= 2(cc_d); € >0, 8 =p116d — p12, and p11 and p12 come from P = prope o,
P21 P22

Proof. Before calculating (VV (z:), F-(z.)), observe that the full expression of V is given

96



- 1T
€ P11 P12 €
Viz:)=| | exp(Afr(r,p,q)) exp (Asr(r,p,q)) |~
€a D21 P22 €a
- — T -
_|er 1 0| [p11 piz| |1 r(m,pq)| |&r
€a| |r(mpyq) 1| |p21 p22| |0 1 €a
- -— T — -
_|ertear(mpa)| P pi2| |Er +ear(T,pq)
€a b21 P22 €a
— - T —
o Er +€a7'(7—,p, Q) P11 (57' —{—5ar(7,p, q)) + D12€q
€a b21 (57 + €a7“(7',p, Q)) + D22€q

= (er +ear(7,p,9)) (P11 (er + ar(7, 2, @) + P122a) + €a(p21(er + ar(7, P, q)) + P2224a)

2
=p11(er +€ar(1,0,0))” + Pr12¢a(er + €ar (7,0, q)) + P21€a(er + ar (7,0, q)) + P22e?;

(5.32)
then since pi1o = po1
V(ze) = pii(er + ear(1,0,9))° + 201920 (67 + £a7(7, 0, ) ) + P22e? (5.33)
In calculating (VV (z.), Fz(z¢)), one has
_ga_
0
<vv(x€)a Fe(xe)) = [vsfv(xs) VgaV($5) VTV(l'E) va(xs) qu(me) -1
0
- 0 -
=V, V(ze)ea — VV(xe)
(5.34)
where
Ve V(ze) =2p11(er +ear(7,0,9)) + 2p12€4
e, V(ze) ( ( ) (5.35)

VTV(xE) - 2p11€avTT(Ta D, q) (ET + SGT(T, D, q)) + 2p12€ZVTT(77p7 Q)
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Substituting (5.35]) into ([5.34]), we obtain

(VV(ze), Fe(ze)) = (2]011 (er +ear(1,p,9)) + 2p12€a> Eq
—2p116.V+7 (7,0, @) (er + €ar(7, 1, 4)) — 2p1265 V77 (7, D, q)
=2p11ca(er +€ar (1, D, ) + 2p12¢2
— 2p1184 V7 (7, p, ) (€7 + €ar (7,0, q)) — 2p1262V 77 (T, D, q)
= 2p1ica(er +ear(7,0,9)) (1 = Vor(7,p,q)) + 2p12e2(1 — Vor(7,p, q))
= (2p11€a(&r + €ar(7,1,9)) + 2p12es) (1 — Vor(7,p,q))

= (2p11(caer +€2r(1, 0, @) + 2p1262) (1 = Vo (7, p,q))

for each z. € C.. Now, with V. r(7,p,q) = % + 1, when z. € C,, with ¢ = 1,
V.r(t,p,q) =1, thus
(VV (ze), Fe(z:)) =0

When z. € C., with ¢ =0, r(,p,q) = T(% + 1) +d(5—p) and V,r(7,p,q) = % -+ 1 one
then has

T(d_ “y 1) +d(5 —p)> +2p1253) (C_ d)

& C

= (2pnzasr + 20012 T(d;C> +r+d5-p)) +2p12€§>(c;d)
(C;d)2p115a5T+ (C;d)2pue§<7(dzc> +T+d(5—p))
# (ot
- (2(cc d))pnga& N (2(cc d>)pu€2(¢(dcc) b dG)
(e

P12€,

(VV (), Fe(xe)) = (210118,1& + 2p1ie

g
g

2(c—d)

C )

Let o = then since, 0 < ¢ < d we have that a <0

d—c
(VV(22), Fe(a2)) = —lalpuizeer — lalpul(7(=—5) +7+d(5 —p)) — [alpio<?

Then, recognizing that 7 € [0, ¢] when x, € C;, then we have that 7 < ¢, which due to the
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fact that p1; > 0 and p € P ={0,1,2,3,4,5} leading to

d—c

(VV(xe), Fe(z:)) < —|alprigaer + |alp1i (C< ) +c+d(5 —p)) 3 — \04|plge5?1

Cc

< —lalprigaer + |alp1a ((d —¢)+c+db— p))sg — ]a\plgeg

< —|alprigaer + |alpi1d(6 — p)e2 — |a|pioe?

for each z. € C,,. We can upper bound the quantity 6 — p by noting that p € P =
{0,1,2,3,4,5}. Thus, we have that 6 — p < 6 for each p € P, leading to

(VV (20), Fe(z2)) < —|alpiicaer + || (p116d — P12)€Z
Now, with 8 = p116d — p12. Then, we obtain
(VV(x2), Fo(z2)) < |a|piileal|er| + || B2 Vz. € C, (5.36)
Then, through an application of Young’s inequality one has

1
(VV (2), Fo(we)) < lalpi (522 + 522) + [a] 33

2¢ 27
lap11 laprie 2
S 782 + |Oé|ﬁ52 + Té‘T
|Oé|pn€ 2 P11\ o
< grel bl (5450 )<k

<7y(ef +ei)
< weTs
for each x. € C,,. Then, from the definition of V in ([5.27)

(VV(ze), Fe(ze)) < ’Y’%’Q
< lv(xs)
a2

for each z. € C,, where € > 0, ay and ~ are positive constants given in ((5.30)) and (5.31]),
respectively. O

Lemma 5.4.2. Let the hybrid system H in with constants d > ¢ > 0 be given. If

there exist a constant p > 0 and a positive definite symmetric matriz P such that
Aj exp (6dAJ )Pexp (6dAs)Ag — P < 0 (5.37)
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0
where Ay = n and Ay is as given in (5.20) with v = %(36-{-4(1) and yo = 2c+2d

0 l-pvy
then, for each x. € M N D,

V(G@(.%’a)) - V(xs) <0

for each £ € {1,2,3,4,5}, andlﬂ
V(Gﬁ(ﬂfg)) — V(:rg) < —oc'e

where
o e <0, ~Amin(Ag exp ((6)A])Pexp ((6d)A) A ~ P)) (5.38)

Proof. For every g € G.(x¢), the state 7 is reset to a point in the set {c, d}. Moreover, for
each . € D., 7 = 0. Hence, when z. € D,, N M;j, we have that 7 =0, ¢ =0, and p = 0,
leading to

V(Gey(22)) = V(z) =" exp (A}(d + d(5—1)))PeXp (Af(d + d(5—1)))€
—c"exp (A7 (0+d(5—0)))Pexp (Ap(0 + d(5-0)))e
=" exp (A (5d))Pexp (Af(5d))e — e exp (A} (5d))Pexp (As(5d))e
=0
When z. € D,, N Ma, we have that 7 =0, ¢ = 1, and p = 1, leading to
V(Ge,y(x2))-V(ze) =" exp (A}(c(l + ¢ (d-c)) + d(5-2))) Pexp (Af(c(1 + ¢ (d-c)) + d(5-2)))e
—c"exp (Af (0+d(5-1))) Pexp (Af(0 + d(5-1)))e
=c'exp (A}—(d +3d))Pexp (Ay(d +3d))e — e exp (A}—(Zld))Pexp (Ay(4d))e
=0

When z. € D., N M3, we have that 7 =0, ¢ = 0, and p = 2, leading to

V(Gey(xe)) = V(ze) = e exp (Af (d + d(5-3))) Pexp (Ap(d + d(5-3)))e
—c'exp (A} (04 d(5-2))) Pexp (As(0 + d(5-2)))e
=¢' exp (A}(Sd))PeXp (Af(3d))e — e' exp (A}r(?)d))PeXp (Af(3d))e
=0

®Observe that e = Agye is the matrix representation of the jump map G for which ¢ is reset to when
Te € Mg N De.
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When z. € D, N My, we have that 7 =0, ¢ = 1, and p = 3, leading to

V(Gey(@2)) =V (@2) = €7 exp (AJ (e(L + ¢ (d-c)) + d(5-4))) Pexp (As(e(1 + ¢ (d-0)) + d(5-4)))=
— " exp (A7 (0+d(5-3))) Pexp (Af(0 + d(5-3)))e
=c'exp (A}r(d +d))Pexp (Ag(d+d))e —e' exp (A}F(Qd))Pexp (Ay(2d))e
=0

When z. € D., N M5, we have that 7 =0, ¢ = 0, and p = 4, leading to

V(Ges(22)) — V(ze) = el exp (A}r(d + d(5—5)))Pexp (Af(d + d(5—5)))5
—clexp (A (0+d(5-4))) Pexp (As(0+ d(5-4)))e
= exp (A;(d))Pexp (Af(d))e — el exp (A;(d))Pexp (Af(d))e
=0

When z. € D,y N Mg, we have that 7 =0, ¢ = 1, and p = 5. For resets according to G,
one has

V(Geg(ae)) — V(ze) =
[ Ka(m')
e+

_Ka(miy Tk

)” exp (A (c(1+c™ (d-0))+d(5-0))) P exp (A (c(1+¢" (d-c))+d(5-0)) [€+[ o ”

_Ka(miy Tk)

— " exp (A (0 +d(0))) P(Af (0 + d(0)))e

- [5—1— [_ Ks(m") )]] exp (A}(Gd))PeXp (As(6d)) [g+ [ Ks(m') ]]

Ka(miﬂ'k —Ka(mi,Tk)

-
—e Pe

Now, with z. € D., N Mg, which implies that p = 5, ¢ = 1, and 7 = 0, one has that for

jumps with resets according to G, (x.), the feedback laws K; and K, applied to 7 and a,
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respectively, give
K5(m') = - (mj — my — mj + my)
=5 (((Tk —ag(2c+ 2d)) — (1, — a;(2¢ + 3d))>

— ((Ti —ai(c+d)) — (1, — ap(c+ 2d)))>

— %(2@ — 1) + ai(3c+ 4d) — a(3c + 4d)>

= (7~ 7i) (01— ) (B + )
= —€r + MEa
Ko(m', 1) = p((mi — mg) — (1 — my))
= M((TZ- —a;(d) — (1, — a;(2¢ + 3d)))
— (7k — (T — ax(2¢ + 2d))))
— u((ai(2e + 3d) + ai(d)) — (an(2e + 2d)))
— n(ai — ag)(2c + 2d)
= [172q

where v, = 3544 and 45 = 2(c + d). Using the expressions for K5(m') and K,(m’, 1), it
Ks(m!
e+ ol , )
_Ka(mza Tk)

—e'Pe

follows that
K o ( mZ)

-
, exp (6dA})Pexp (6dA
Ka(m’,m)” (6dA7) P exp (6dAy)

V(Ges(xe))-V(22) = [54—

— e Pe

. !57 —&r +V1€a Er —E&r + Vi€a

+
exp (6dAJT)PeXp (GdAf)
€a — UY2Eq

€a — UY2€Eq

=&

@)

.
0 0
n exp (6dAJ)Pexp (6dAy) e Tpe
f f
0 I-pye I-py2

= ETA;— exp (GdA;)Pexp (6dAf)Ag5 —e'Pe
=l (AgT exp (GdAJT)PeXp (6dAf)Ag — P)E
for each z. € Do, N M. Then, by continuity of condition (5.37)), there exists ¢ as in (5.38))

such that
V(Gey) — V(ze) < —oe'e
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for each z. € D, N M. O

Remark 5.4.3. Observe that condition may be difficult to satisfy numerically as it
may not be convexr in p and P. The authors in [20] utilize a polytopic embedding strategy
to arrive at a linear matriz inequality in which one needs to find some matrices X; such
that the exponential matrix is an element in the convex hull of the X; matrices. Such an

algorithm can be adapted to our setting.

Theorem 5.4.4. Let the hybrid system H. in with constants d > ¢ > 0 be given. If
there exist a constant u > 0 and a positive definite symmetric matrix P such that
holds with v1 = #j and v = 2(c+d), and o as in such that

nep <1 (5.39)

with n = |1 — a%‘ and p = exp (%) holds, where cg and v are as given in (5.31]) and

5.31)), respectively, then A. is globally attractive for H.. Moreover, every mazimal solution

¢ to He with ¢(0,0) € (C- U De) N M, satisfies

ot < /S exp (25) 600,00, ¥(t.7) € dom o (5.40)

where
ar= dmin (e (h(0) +d(5 = ) AT) Pexp (vh(v) +d(5 = 0)4y))

and, consequently, limy, ;o0 |$(t, )| 4. = 0.

Proof. Pick a maximal solution with initial condition ¢.(0,0) € (C"E U DE) N M. Recall the
function V' in (5.28)), from the proof of Lemma we have that

V(Geg(ze)) = V(ze) < —oe'e Vz. € D, N M (5.41)

and from the definition of V' in (5.28)), there exists a positive scalar ag as in (5.30) such
that

V(we) < aslee .
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rearranging terms one then has

1
—|z|%, < —afzvm)

Then, by making the appropriate substitutions in 1) since e 'e = |l‘5|?45 one has

V(Gey(2)) = V() < —O%vm)

V(Geyl) < L= |V(a)

From Lemma we have that for each z. € C,,

0 if z. € C,
(VV(ze), Fe(ze)) <

Vi) iz el

and from Lemma [5.4.2] we have that for each z. € D. N M,

V(z.) if ¢ €{1,2,3,4,5}

V(Ge,(ze)) <

(1 - a%)V(xs) if 0=6

Pick a solution ¢ to H. with ¢.(0,0) € C. N M;. Then for each (¢,5) € [0,¢1] x {0}

~
€ ta S —(t1 — e\M
V(@:(1,0)) < exp (-(0 —0))V (6:(0,0))
At (t1,1), following a reset according to G, one has
V(=(t1,1)) < V(9:(t1,0))
Then, since ¢q4(t1,1) =1 for each (¢, j) € [t1,t2] x {1}, we obtain
V(¢E(t? 1)) < V(ng(tl, 1))
At (t2,2), following a reset according to G, one has
V(¢e(t27 2)) < V((lse(t% 1))
Then since ¢g4(t2,2) = 0 for each (¢,7) € [t2,t3] X {2}, we obtain
i
V(6:(t,2)) < exp (=t — 12) )V (=(t2,2))

2

At (t3,3), following a reset according to G, one has
V(¢€(t37 3)) < V(¢E(t37 3))
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Then since ¢g4(t3,3) = 1 for each (¢,j) € [t3,t4] X {3}, we obtain

V(¢6(t7 3)) S V(¢e(t3a 2))

At (t4,4) following a reset according to G, one has

V(¢s(t47 4)) < V(¢5(t4, 3))

Then since ¢4(t4,4) = 0 for each (t,7) € [ta,t5] x {4}, we obtain

V(6e(t,4)) < exp ([ (t5 = t0))V (0212, )

At (t5,5), following a reset according to G, one has

V(:(ts5,5)) < V(¢e(ts, 4))

then since ¢,4(t5,5) =1 for each (t,7) € [t5,t6] X {5}, we obtain

V(6<(t,5)) < V(¢e(ts,5))

At (tg,6), following a reset according to G, one has

V(6:(16.6)) < |1 = |V (6:(t6.5))

Making the appropriate substitutions one has

V (¢<(t6,6)) ’1 — *‘ exp ( i (ts — t4)> exp (O%(t?) - t2)> exp (O%(tl - 0))V(¢>e(0>0))

leading to a general bound of the form

V(e(t, ) < |1-—

13 ( H exp< (fogesn —tzk))>V(¢a(0,0)) (5.44)

However, by noting the bounds in (6.5) one has that ¢;;1 —t; < ¢(j + 1) for each j € {2 :
i € N}, j > 0, then assuming v > 0, the bound in ([5.44]) reduces to

V(de(t. 1)) <

( H exp( 2k+1))))V(¢>€(0,0))

V (6u(t,) 2 (e (X)) 'y (or0,0)

a2
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Using the relation (%] = % + 1 we then have

g

V(6(t9) < 1 - —

| (e (g))%exp@;)v(@(o,o»

Then noting that %] <

J
6

(0 (22)) e ()00

Then given the definition of V' in ([5.28)) we have that

g
V(t, <}1_7
(t,7) < .

J

How(32)) e (E)voo0)  6)

2 < V(. <‘1—i e
lecll, < V(ge(t9) < [1- 2 o

Finally, by leveraging V (¢4(0,0)) < asg|¢(0, O)|?4€, we arrive at ((5.40)). O

5.5 About the Multi-Agent Case

In this section, we present an extension to the proposed algorithm model to capture
the scenario of synchronizing multiple networked agents. For such a setting, we consider
the leader-follower scenario where there exists a single designated reference node to which
all the connected nodes synchronize. To this end, let 7r € R define the clock of the
designated reference node and 7s := (7s,,Tsy,---,7s,_,) € R"! define the clocks of the
synchronizing child nodes. Moreover, we let agp € R and a := (a1, a9,...,a,_1) € R*!
define the skews of the reference clock and synchronizing clocks, respectively. Given the
leader-follower architecture to synchronize the nodes, the algorithm in H is modified such
that the algorithm modeled by H is executed for each synchronizing node. In particular, the
algorithm executes the synchronization process given by for the reference node
Tr and the i-th child node 75,. Upon completion, the algorithm then executes the same
synchronization steps for the reference node and the ¢ + 1-th child node. This
procedure is repeated recurrently and cyclically for each pair reference-child node in the

network. To enable the modeling of such an algorithm, we define:

e A discrete variable £ € {1,2,...,n—1} =: S that indexes the node to be synchronized.
The variable remains constant during flows, namely, § = 0, and resets to either s + 1
upon the completion of the synchronization algorithm for s € {1,2,...,n — 2} or is

reset to 1 when s =n — 1.
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e For each ¢ € S, a timer variable 7, € [0,3c + 3d] to track the execution of the
synchronization algorithm for the respective ¢-th child node, with dynamics
To=—1 7 € [0, 3¢ + 3d]
7 =3c+3d T =0
for each ¢ € S. The value 3¢+ 3d reflects the duration of the synchronization algorithm

executed between the reference and the synchronizing node capturing the total time

elapsed during message transmission and residence delay.

The state of this multi-agent system is given by

R7 msafapa Q) € ‘)?

Z:=(TRr,Ts,aRr,a,7,T,m
where 7 := (71, 7T2,...,Tn—1) and

X =RxR" I xRxR"x[0,dx[0,3c+3d]" ' xRS xRS xS x P xQ

Then by noting the dynamics of the clocks as given in (5.1)) and those of the timer 73, above,

the continuous dynamics of Z is given by the flow map

F(2) = (ar,a,0,0p-1x1, ~1, =1 (n_1yx1, O6x1, 06x1,0,0,0) Vi€ C =X

To model the discrete dynamics of the communication and arrival events of the exchanged
timing messages, in addition to the subsequent corrections on the clock rate and offset, we

consider the jump map G(z) := {G¥(Z) : & € D',i € S} where

G'(z) = Gi(z) ifze D
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and
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TR
Ts

ar

TR
Ts

aR
TH
|:T', m{,
1
p+1

TR
TS

aRr
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9
4
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|:T7'l1 3

TR
.
T = [01‘71» K;(m™), Onflfz}
ar
-
a+ [Ozel, K.(m", 7s,), Onflfi:|
c
.
ey Tanl}
T
|:mR |:T7la mﬁ) T mfl)%:”
{+1
0
0

ey TH, 3¢+ 3d, THitos

To handle the condition where / = n — 1 such that the protocol cycles back to synchronizing the

first node, we have the following jump map for Gg_l,

Go ()

TR

.

7'_[01'717 K;(m™), 07%14}
ar

T
a+ I:Oifla Ka(mR7T’i)7 O’nflfi:|

C
]
[Tﬂv . TH._.» 3c+3d
)
[ mit ]
1
0

To trigger the jump map corresponding to the particular protocol event, we define the jump set as

D:=D'UD2U---UD'U---UD" ! where D' := D} U D} U DU Di U Di U D and
Di={feX:7=0,p=0,0=i},
Diy:={iecX:7=0,p=2/(=1i},
ﬁé::{i‘ef:Tzo,pzél,E:i},

This hybrid system is denoted

H = (C,F,D,G)
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Di={iecX:7=0,p=3,{=1i}
Diy:={ieX:7=0,17, =0,p=>50=1i}
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Error Model

. . 2(n—1) TR — T;
With an abuse of notation, let € := (g1,...,6,—1) € R , where ¢; = for
ar — a;
each i € S. Then, define

T = (e,2) € X = R0 y

For each z. € C~’E = )?E, the flow map is given by
F.(%.) = (Ape, F(7))

where

Ap

where Ay =

0 1
0 0]'

The discrete dynamics of the protocol are modeled through the jump map ég(i") =
{Gi(%): %. € Di,i € S} where

Gt () if #. € D \(D!,UD! UDi UD} UD: )
G'Q( o) if Z. € D! \( UDz UDz uD? UD;G)
~. G3( 5) 1f£C5 EDZ \( UDZ UDZ UDZ UD 6)
Gi(Te)=q
Gi L (@) if . € Dz \( UDZ UDZ L,IDZ uD! L)
Gi (i) if 2. € D! \(Di,uUD! UD! UD! UD: )
Gi L(@e)if . € Di \(Dl UDl UDl UDl uDi .)
where i
g e
GL, ()= lm |0 GL(Ee)= [M , Gi, (%)= [~. i ] ;
G1()) G (T) G3(2)
€ ] € ) [51, ,E ,...,6n_1]T
G§:4(556): ~ ’GZ;E,(i‘E): ~ aGizﬁ(fzS): ~
Gi(7)] Gy(2) L(7)
where

110



Di:=D. uUD! UD. UD! UD. UD! and

]521 ::{:EEE/'FE:T:O,p:O,Ezi}, ]5;2 ={Z.€eX.:7=0,p=1,0=1i}
1523 ::{53562&:7’:0,]):2%:1’}, 524 ::{:EEE)PE:Tzo,p:?),E:i}
525 = {5:56/'?5:7':0,1):4,6:2'}, 526 = {3356/11:7':0,7'7.[1.:0,p:5,€:i}

This hybrid system is denoted

H. = (C.,F., D.,G.) (5.47)
and the set to render attractive for the multi-agent model is given by
Ao i={F.€X.:e;=0Vie S} (5.48)

With the system defined in this manner, one can extend the results of the two-
agent model to the multi-agent setting to certify attractivity of 7:25 to ja. To demonstrate
the feasibility of the model, a numerical example illustrating the convergence properties of

H. is included in the following section where a three-agent system is simulated.

5.6 Numerical Results

5.6.1 Two-agent system
Nominal Setting

In this first example, we present a numerical simulation of the two-agent system
for the nominal setting that validates our theoretical results, namely we show that with the

conditions in ([5.37)) satisfied, the trajectories of the simulation converge to the desired set.

Example 5.6.1. Consider Nodes i and k with dynamics as in with data a; = 1,

ap = 1.8 and ¢ = 0.1, d = 0.2 to the system H. Setting u = 0.833, condition
6.2594 —0.5219

is satisfied with P = . Simulating the system, Figure|6.1| shows the
—0.5219 11.4302

trajectories of the error in the clocks and error in the clock rates of Nodes i and k for a
solution ¢ to the system such that $(0,0) € (CUD)NM. Figure also shows the plot of
V' evaluated along the solution. Notice, that V' converges to zero asymptotically following
several periodic executions of the algorithm. Observe that the behavior of clock error is more

stable than the conventional sender-receiver algorithm simulated in Figure . ﬁ

5Code at github.com/HybridSystemsLab/HybridSenRecClockSync
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(a) (b)
Figure 5.5: Figure [6.1(a)| gives the evolution of the error in the clocks and clock rates of
Nodes i and k. Figure |6.1(b)| gives V evaluated along the solution.

Variable propagation delay due to communication noise

In the next example, we simulate the case of noise in the communication channel
that contributes to a variable propagation delay d. Noise in the communication channel

makes the propagation delay between nodes ¢ and k£ no longer symmetric.

Example 5.6.2. Consider the same clock dynamics from the previous example, i.e., a; =
1.1, ap = 0.75, with u = 0.3571 and condition satisfied for ¢ = 0.2, d = 0.5, and
5435 1.041

P = . Now, with [dy, ds] defining the allowed values of d with di = 0.49
1.041 16.0982

and dy = 0.51, we generate variable propagation delay by replacing the dynamics of T in
by

7=-1 T € [0, do]

e Udeldy o) (1 —@)d +ge 7=0
Figure shows a simulation of the trajectories of the error in the clocks and error in the
clock rates of Nodes i and k. Observe that absolute error in the clocks converges to zero
even in the presence of the perturbation after several periodic executions of the algorithm.
The error in clock rates is also able to converge sufficiently close to zero but suffers from

some observed variability due to the noise. [1]

"Code at github.com/HybridSystemsLab/HybridSenRecClockSync
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(a) (b)
Figure 5.6: Figure [6.1(a)| gives the evolution of the error in the clocks and clock rates

of Nodes i and ksubject to noise on the communication channel. Figure [6.1(b)| gives V
evaluated along the solution.

Time-varying clock rates

In the next example, we consider the common scenario of time-varying clock skews
at both nodes ¢ and k. This noise is injected at the clock dynamics 7; and 7. The system

is then simulated with the remaining dynamics left unchanged.

Example 5.6.3. For ¢ = 0.2 and d = 0.5, consider nodes ¢ and k with clock dynamics
T, = a; + myg
T = ap + myg

where a; = 1.1, ax = 0.75, and m, € (—0.3,0.3) is a Gaussian injected noise on the clock
5.435  1.041

1.041 16.0982
Simulating the system, Figure[5.7 shows the trajectories of the error in the clocks and error

dynamics. Letting p = 0.3571, condition (5.37) is satisfied with P =

in the clock rates of Nodes i and k. Again, the system is able to converge after a couple
of executions of the algorithm. The error on the clocks observes the most variability due to

simulated noisel

5.6.2 Multi-agent model

In this section we present numerical results for the multi-agent model to validate
our theoretical results and draw comparisons with other multi-agent clock synchronization

models from the literature.
8Code at github.com/HybridSystemsLab/HybridSenRecClockSync
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|7 — 7]

25 30 35 40 5 50

la; — agl

(a) (b)

Figure 5.7: Figure [6.1(a)| gives the evolution of the error in the clocks and clock rates of
Nodes i and k subject to noise m, on the clock dynamics. Figure |6.1(b)| gives V' evaluated

along the solution.

Example 5.6.4. Consider a network of three nodes { R, 1,2} where R denotes the reference

or parent node while nodes 1,2 denote the synchronizing child nodes. The data of this system

is given by ar,ai,az € [0.5,1.5] and ¢ = 0.1, d = 0.2 with p = 0.833. Simulating the multi-
agent system ﬁ, Fz'gure shows the trajectories of the error in the clocks and error in
the clock rates of Nodes 1 and 2 with respect to Node R. Note that the errors with respect

to each clock converge after several executions of the algorithm on the respective clocks at

Nodes 1 and 2. Pl

|7/ — 71
;

;

lag — a1

|TR — T2

T

lag — as|

t [sec|

Figure 5.8: The evolution of the error in the clocks and clock rates of Nodes 1 and 2 with

respect to Node R.

9Code at github.com/HybridSystemsLab/HybridSenRecMultiClockSync
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5.7 Summary

In this chapter, we introduced a sender-receiver clock synchronization algorithm
with sufficient design conditions ensuring synchronization. Results were given to show
asymptotic attractivity of a set of interest reflecting the desired synchronized setting. Nu-
merical results validating the attractivity of the system to the set of interest were also given.
An additional model to capture the multi-agent setting was presented with a numerical ex-

ample to demonstrate its feasibility.
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Chapter 6

A General Framework for Hybrid

Clock Synchronization

In this section, we motivate a hybrid systems approach to clock synchronization. For many
networked control system settings, each agent in the system is fitted with its own internal
hardware clock and an instance of a software clock based on the dynamics of the hardware
clock. Ideally, the ith agent in the system would have a clock 7; € R>¢ such that 7;(t) = ¢
where t is the global or real time. Due to the observed variability in oscillator frequency,
one generally considers the continuous-time dynamics of the ith hardware clock node given
by

Ti = (6.1)

where a; € R defines clock drift or skew due to an imperfect oscillator. Solving the differen-
tial equation gives the following relationship to the ideal clock or real-time reference
t:

7i(t) = ait + 7;(0) V>0 (6.2)

where the initial condition 7;(0) gives the offset from ¢ = 0. For a network of n agents,
with 7 = (71,72, ..., 7,) the notion of clock synchronization corresponds to the state of the

networked system asymptotically satisfying 7, = 7; for all i,j € {1,2,...,n}, i # j, i.e.,

lim 7(t) — 75(t) =0 Vi,je{l,2,...,n},i #j

t—o00

In an ideal setting with no delay and identical clock skews, synchronization between

two agents 1 and 2 can be achieved by the following algorithm: Agent 1 send its time to
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Agent 2. Agent 2 calculates its offset relative to 1. Agent 2 applies the offset correction to
its clock. For the case of different clock skews, a pair of measurements from Agent 1 would
allow Agent 2 to calculate its relative skew Z—; and apply a correction accordingly.

In a realistic setting, however, network communication between agents is often
subjected to a variety of delays. Without loss of generality, these delays can be divided into
two types: propagation time and residence time. Propagation time represents the actual
time elapsed during message transmission between two nodes when the message is in the
network channel. The residence time defines the time elapsed between message reception
and egress of its response message. It captures all of the hardware-related delays such as
send time, access time, transmission time, reception time, and receive time, see [5] and [10]
for more details. Moreover, depending on the system setting, these observed delays can
either be deterministic or stochastic in nature and are the key challenge in networked clock
synchronization. In light of this challenge, the goal of clock synchronization is to achieve

synchronization while removing or mitigating the effects of delay.

6.0.1 Problem Statement and Proposed Solutions

Consider a group of n agents connected over a network represented by a digraph
G = V,& A). Two clocks are attached to each node ¢ of G: an (uncontrollable) internal

clock 7; € R>g whose dynamics are given by
T, s — Qg (6.3)

and an adjustable (via software) clock 7; € R>o with dynamics given by

i = fr(ai, ui) (6.4)
where a; € R is the drift of the internal clock (unknown) and u; € R is a control parameter to
control the drift. At times t; for j € N (with t§ = 0), agents exchange information depending

on the communication architecture and protocols used. When symmetric communication

protocols are used, at each such t;, agent 1
e broadcasts a measurement 7; to its neighbors N, and

e receives measurements 75 from each of its neighbors k € N,
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On the other hand, when asymmetric communication protocols are used, at each such t;-,

agent 1
e broadcasts a measurement 7; to its neighbors N;.

The resulting sequence of time instants {t;};’;l for each node ¢ is assumed to be strictly
increasing and unbounded. Moreover, for such a sequence, the time elapsed between each
time instant when the clock measurements are exchanged is governed by
Ty <t —t;<Ty VjeN\{0}
- (6.5)
0<t]<Ty
where T4 > T? > 0 with T} defining the minimum time between consecutive measurements

and T4 defines the maximum allowable transfer interval (MATTI) for each node i.

Remark 6.0.1. The models for the clocks are based on the hardware and software relation-
ship of the real-time system that implements them. That is, the internal clock 7" is treated
as a type of hardware oscillator while the adjustable clock 7; is treated as a virtual clock,
implemented in software (as part of the proposed algorithm), that evolves according to the
dynamics of the hardware oscillator. Any virtual clock implemented in node i inherits the
drift parameter a; of the internal clock, which cannot be controlled. More importantly, this
drift parameter is not known due to the fact that universal time information is not available
to any node. Due to this, fz in would involve a; in defining the rate of change of the

software clock 7;.

Under such a setup, our goal is to design a distributed hybrid controller that drives
each clock 7; to synchronization with every other clock 7;. This problem is formally stated

as follows:

Problem 6.0.1. Given a network of n agents with dynamics as in and repre-
sented by a directed graph G, design a distributed hybrid controller that achieves the following

synchronization property:
i) Clock synchronization: limy_,o |7i(t) — T1(t)| = 0 for all i,k € V, i # k

In order to solve Problem [6.0.1 we introduce a hybrid modeling framework that
allows for modeling of the network and clock dynamics accompanied by user-defined provi-

sions for a clock synchronization algorithm. In particular, the framework defines sufficient
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conditions imposed on the defined algorithm such that asymptotic stability of the system to

a synchronization set capturing lim;_, |7;(t) —7%(t)| = 0 for all i, k € V, i # k is guaranteed.

6.1 Hybrid Modeling Framework

Given a set of n nodes connected over a directed graph G and the respective

models for the internal and virtual clocks given in (6.3) and virtual (6.4)), respectively, we

consider internal clocks 7 := (71, 72,...,7,) € RL,, adjustable clocks 7 := (71,72, ..., Tn) €
R, internal clock rates a := (a1,a2,...,a,) € R%, and clock correction rates v :=
(v1,v2,...,1,) € R™

In order to accommodate the various algorithms, we define an auxiliary state
u = (ug,u2,...,u,) € R" with dynamics @ = f,(z). Moreover, we include controller states
w = (wy,ws,...,wy) € R™ whose dimension m is dependent on the dimension of the
controller state(s) of the particular algorithm. To this end, we can then define the state of

the complete system as follows:
x = (1,7, u,v,w,7) € R x R4y x R" x R* x R™ x T =: X

where T := [0, T3] x [0,T2] x ... x [0, T3]

To model the network dynamics for the aperiodic communication events between
each node i and its set of neighbors, we consider timers 7 := (71,72,...,7n) € RY, such
that each timer 7; has hybrid dynamics

T = —a'i | 7; € [0, T3] 66)
#rer, 3] =0
This model is such that when 7; = 0, a communication event between node ¢ and its neigh-
bors is triggered, and 7; is reset to a point in [Tf, TQ’] in order to preserve the bound given
in . Note that 7 is treated as an additional software clock that inherits the dynam-
ics of the hardware clock as described in Remark Then, given the clock dynamics
in , , and the continuous dynamics in , the flow dynamics of the symmetric
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communication system are given by

fa(a,u)
fulz,u)

fs(z) == ) VeeC:=4& (6.7)

fuw(w)

-a

where f; := (fz,, f4y,..., f+,) and f; is modeled as the software clock given in (6.4). The
functions f, : X Xx R — R and f,, : R™ — R™ are to be defined for each algorithm. The

choice of hv with h € R enables additional control of the clock correction during flows
as required by certain algorithms such as HyNTP. The flow dynamics of the asymmetric

communication system are given by

fz(a,u)
fulz,u)

fa(z) := N VeeC:=X (6.8)

fuw(w)

-a

where f; := diag(a)Du is modeled as the software clock given in but whose con-
trol parameter u; depends on the in-degree communication matrix D. In particular,
D = diag(I® 1;1 yee s I® 1}%) with d¢, being the in-degree of the ith agent. The functions
fu: AXR— ]R”r:md fw : R™ — R™ are again to be defined for each algorithm. The choice
of hv with h € R again enables additional control of the clock correction during flows as

required by certain algorithms. The discrete dynamics take the following general form for

both the symmetric and asymmetric algorithms:

G(z) :={Gi(z): x € D;s,i € V} (6.9)
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where

(6.10)

_(7:17 R 7~—i—17 [Tlla TQl]a %i—i-l? e %n)_
is allowed at each x € D := (J;oy, D; with D; := {z € X : 7; = 0} where g; : X — RZ,,
Gu: X > R* g, : X - R", g, : X = R™ are functions to be defined depending on the

particular algorithm to be modeled. With the data defined, we let
Hs == (C7f87D7G) (611)

denote the hybrid system for the modeling framework under symmetric communication

protocols and

Ho = (C, fa, D, G) (6.12)

denote the hybrid system for the modeling framework under asymmetric communication
protocols.

Given that the functional maps fs, f,, and G are comprised of functions that
are to be defined by the dynamics of the respective algorithms, we impose continuity and
boundedness assumptions on fy, fuw, 97, Gu, g, and g, in order to satisfy continuity and

boundedness conditions on the system data for Hs and H,.

Assumption 6.1.1. The functions f, : X X R® = X and f, : R™ — R™ are continuous

and locally bounded relative to C.

Assumption 6.1.2. The functions gz : X — RS, gy : X = R", g, : X = R", gy : X —

R™ are outer continuous and bounded relative to D.

Lemma 6.1.3. Suppose Assumption and Assumption [6.1.2. Then, hybrid systems
Hs and H, satisfy the following conditions, defined in [4, Assumption 6.5] as the hybrid

basic conditions.

(A1) C and D are closed sets of R™.
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(A2) fo :R™ — R™ and fs: R™ — R™ are continuous and, hence, locally bounded relative

to C and C' C dom f.

(A3) G : R™ = R™ is outer semicontinuous and locally bounded relative to D, and D C
dom G.

Proof. By inspection of the hybrid system data defining Hg given in (5.12)), the following is

observed:

e The set C is a closed subset of R™ since, C' = X and X is the Cartesian product of

closed sets. Similar arguments show that D is closed since it can be written as

D =R3; x Ry x R" x R™ x R™ x {0} x 0, T3] x ... x [0,T%]
URZy x Ry x R" x R™ x R™ x [0, T3] x {0} x ... x [0,7%]

URZy x RZ; x R™ x R™ x R™ x [0, T3] x [0, T3] x ... x {0}
Thus, (A1) holds.

e Given Assumption we have that f, : X —» X and fs; : X — X are continuous
on C. Moreover, since dom f, = X = C and dom fs = X = C, C C dom f, and
C C dom fs hold. Thus, (A2) holds.

e To show that the set-valued map G defined in satisfies (A3), note that the graph
of GG is given by

gph(G) = {(z,y) : v € D,y € G(x)}
=D x (R%) xRZy xR" xR" x R™ x T)

is closed. Thus, via [4, Lemma 5.10], G is outer semicontinuous and locally bounded

at each © € D. Moreover, by definition, we have that dom G = D. Hence, (A3) holds.

Observe that similar arguments can be made on the data of #H, such that (A1), (A2), and
(A3) hold. O

With the defined model, we consider the following set and provide conditions

guaranteeing that it is rendered stable for H, and H, solving Problem [6.0.1}
A= {xe)(:ﬁ:%k V’i,k’EV} (6.13)
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for which synchronization of the clocks is implied. In the following section, we outline a
procedure to facilitate the set stabilization analysis. We show that through a change of
coordinates, a Lyapunov-based set stabilization analysis can be performed that shows the
system H solves Problem [6.0.1]

In the next section, we introduce several clock synchronization protocols that rely
on bidirectional communication of connected nodes at communication events. We refer to
such synchronization algorithms as symmetric due to this observed bidirectional flow of

information.
6.1.1 Symmetric Communication Protocols

RandSync

The RandSync protocol proposed by the authors in [26] is a randomized consensus
protocol that drives the error in the clocks 7; € R>( for each 7 € V to synchronization using
a second-order controller variable v; € R for each ¢ € V. The algorithm is described as
follows, at times {té palb
1. Agent k sends its time reading to neighboring agents k € N (i);

2. Agent k receives time readings from the neighboring agents k € N (7);

3. Agent k uses the received time readings ﬁ(t;) by updating their clock 7 and control

parameter vy as follows

F(th ) = 7(tF) + S penis) @i (85) (Fu(th) — 7:(t5))

vi(th1) = vilth) + o Xpen an(th) (Fu(th) — 7i(t]))

VkeN(@)  (6.14)

where o > 0 is a gain parameter and a; (t;) > 0 are the elements of a weighted adja-
cency matrix A such that > a; (t;) < 1. The given updates of 7; and v;, respectively,

ki
drive the clock state and the clock rate of each agent to their respective average values.

123



Composing the protocol as a hybrid system, we have

T3 = A;U;
w; = hu; T; € [O,TQ]
DZ‘ = hiVZ'
. . N ) 6.15
TZ-+ =17+ Z (Ti — Tk) ( )
keN (3)
Uj_ :I/,L—f—Oé Z<T’L_7A—k) 7-7,:O
keN (i)
I/;_ =v;,+a Z (T — Tk)
keN (i)

where the resets %Z-“L and I/;'_ follow from . However, since ﬁ = a;U;, U; assumes
the role of adjusting the clock rate thus, v; becomes an auxiliary control parameter.

To adequately capture the hybrid dynamics of the RandSync protocol into the
framework defined by Hs, the functions f, and f,, contained in the flow map fs are defined
as follows:

fu(u) = hu
fu(x) =0

The functions g:, g, g, and g, employed in the jump map G are defined as follows:

(6.16)

(6.17)

Jw(w) =w
where L is the graph Laplacian given by £ = D — A with entries

Zzzl,k;ﬁi ag ifi=j

gij: Viey

—aik ifi#j
Note that w is unused for this protocol and its evolution is kept constant.

PI-Consensus

Similarly, the authors in [25], propose a discrete proportional integral controller

to achieve clock synchronization. At times t%, each node ¢ exchanges timing measurements
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7; € R>o with its neighbors A (7). Using the exchanged measurements, node ¢ updates its

clock 7; and controller parameter v; € reals as follows

7A'i(t3-+1) = fl(t;) + Vz(t;) — Zke/\f(i) afij(%k(t;') - 7A’z(t;))

viltian) = vilt) + @ Epen @ (7ult)) — 7(55))

Vk € N (i) (6.18)

where a € (0,1) and a;; # 0 are the elements of an adjacency matrix A.

Composing the protocol as a hybrid system with sporadic communication via the

time 7 in , we have

T = A;U;
’llz' = hzul 7:z € [0’T2]
f/i = hiVi

%Z‘Jr :721""1/1'— Z (%i_%k) (619)
keEN(3)
ul =vita Z (73 — k) 7 =0
keN (3)
v =vi+a Z (75 — k)
keN (i)

where the resets ﬁr and 1/;r follow from 1) However, since ﬁ = a;u;, U; assumes
the role of adjusting the clock rate thus, v; becomes an auxiliary control parameter.
To adequately capture the hybrid dynamics of the PI-Consensus protocol into the

framework defined by Hg, the functions f, and f,, contained in the flow map fs are defined

as follows:
fulu) = hu
wl (6.20)
fw(x) =0
The functions g;, g, g, and g, employed in the jump map G are defined as follows:
9:(7) =7+ (v — L7)
gu(V,7) =v+alt
1) (6.21)
g, 7)=v+alt
Juw(w) =w
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where, again, £ is the graph Laplacian given by £ = D — A with entries

Zzzl,k;ﬁi ag ifi=j

gij: Viey

—Qik ifi#j
Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

6.1.2 HyNTP

An additional algorithm that makes use of symmetric communication is our dis-
tributed algorithm first proposed in [30] but modified for the decentralized scenario and
adapted to the clock dynamics proposed in and . This hybrid algorithm combines
a distributed discrete controller with a local continuous estimator to estimate the clock
skews. At times t;, each node i exchanges timing measurements with its neighbors N (7).
Then, using the exchanged measurements and local estimate of the clock skew the controller

applies a control input as follows:

7= auy
w; = hivi — pi(T — 7i)
v, = hiy; 7 € 10, T3]
a; = —p(F — i)
T o=a; — (T, — 1) )
- (6.22)
ul =y > (i) — it ot
keN (i)
v o= Z (i — ) 7 =0
keN (i)
o = a
o=

where h,c* € R and u,y > 0 are controller parameters. The parameter ¢*, in particular,

is a controllable clock rate that is injected with the control input. Note that v; is treated
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as an auxiliary state of the controller. Moreover, the state u; is kept constant in between
events and is reset to the new value of v; — a; + o™ at jumps. Furthermore, note that the
distributed controller only uses local and communicated information from the neighboring
nodes at communication event times ¢;.

To accommodate the HyNTP protocol, we define additional states 7 :=
(T1,72,...,Tn) € R™ and a := (a1, as,...,a,) € R™ that respectively represent the esti-
mator clock and clock rate. Then we define error coordinates e := 7 —7 and €, ;= a — a

such that the auxiliary variable is defined as
w = (gq,67) € R" x R"
and define the dynamics of w as follows:

€a = —HET
(6.23)

Er = —€r+ &,
Then, to compose the HyNTP protocol in the framework given by H, the functions
fu and f,, employed in the low map f, are defined as follows:

fulv,u,e7) = hv — pes

—&r + &4

fw(w,7) =

The functions g;, gy, gv, and g,, employed in the jump map G are defined as follows:

)
- = (diag(a)) " (-4LF + 4 + 0
gu<a777€a) = (d g( )) ( VET + 0+ 1n) (6.25)
)
)

In the next section, we introduce several clock synchronization protocols that
utilize on one-way communication protocols between connected nodes at communication
events. We refer to such synchronization algorithms as asymmetric due to the observed

single directional flow of information.
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6.1.3 Asymmetric Communication Protocols
RandSync-Broadcast Algorithm

The RandSync protocol proposed by the authors in [26] is a randomized consensus
protocol that drives the error in the clocks 7; € R>q for each ¢ € V to synchronization using
a second-order controller variable v; € R for each ¢ € V. The algorithm is described as
follows: at times {¢7}3%,,

1. Agent 7 sends its time reading ﬁ(t;) to neighboring agents k € N (i);

2. Agent k receives the time readings from Agent i;

3. Agent k uses the received time readings ﬂ(t;) by updating their clock 75 and control

parameter v, as follows

F(th, ) = 7 (t%) 4 aun(85) (7 () — 7 (%
k() = T (th) + @ (th) (7 (65) — 7(tF)) Vk € N (i) (6.26)
vi(th 1) = v(th) + aap () (7.(t5) — 7 (t5))

where o > 0 is a gain parameter and aik(té?) = %k(tf) € (0,1) for k € N(i)°“* and

zero otherwise.

Composing the protocol as a hybrid system, we have

Ti = Qi
I)i = hil/z‘

(6.27)
ﬁj; =T + ari (T — k)
u, = ap(vg + apiq(fi — 7)) ¢ 7i =0
Vi = vk + agiq(F; — 7x)

Then, to compose the RandSync-Broadcast protocol in the framework given by

Hga, the functions f, and f,, employed in the flow map f, are defined as follows:

fulu) = hu
fw(w,7) =0

(6.28)
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the functions g:, gu, gv, and g, employed in the jump map G are defined as follows:

g:(7) = (I 4 qy)7

gu(a, 7, €a) = diag(a) (I + qT's)v (6.29)
gu(%) = (I+ qu)y
gw<m) =w

where I'; = lnvlT — I gives the adjacency matrix at 7; = 0 and v; is the ith canonical vector.
Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

Average TimeSync

The authors in [1] propose the Average TimeSync protocol that utilizes consensus-
based controllers to individually synchronize both the clock drifts and clock offsets. The
mechanics of the algorithm are given as follows. At times t;-, node ¢ broadcasts its time
ﬂ(té) to its neighbors N (). Upon receipt of the timestamp by nodes k € N (i), each node

updates its clocks and clock rates as follows:

et 1) = v ()T (h) + o (L)

Vk(t§-+1) = Pka(t§~> +(1- pv)nika .
gt VkeNG)  (6.30)
n Tk(t;-)—’rk(t;-_l)

i (1) = Py () + (1 —

O(thyy) = 0(th) + (1 — po) (7i(ti ) — Fa(tiyy))
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where p, € (0,1), p, € (0,1), and p, € (0,1). Composing the protocol as a hybrid system,

we have

we define controller sub-states 0 =
0:= (l1,0s,. ..
ZZ' = (521, é, ce

and

N

T = auy
u; = hju;

v = h 7 € [0,Ty]
Nk =0

o =0

(1) = v ()T (t}) + 0k ()

ug(ty41) = pork(ts) + (1= po)misvy

(1) = povi(th) 4+ (1 — po)mirvi =0

i(t) — m(t)_ ;)
() — (5 _y)

0n(t541) = 0n(t5) + (1 = po) (7i(t541) — T(ts1)) |

ity 1) = pytiea(£5) + (1 = py)

(6.31)

Then, composing the Average TimeSync protocol into the hybrid framework H,
M) € R™,

9+(7)

gu(av 7, 5a)

9u(7)

Ju ()

(01,09, ..
) € R, m = (M1, Mo, ..., My) € R"™ where i =
L) € R™ and my; := (m}, mb,...,m%) € R" then we let

2

w=(0,n,¢,m) € R" x R™ x R™ x R"

fu(u) =0
fw(w,7) =0

= Tydiag(gy (1, v))7 + Ti (7 + 6+ (1 = po)T7)
= (I +(1- pv)Fk)diag(nk)l/k
6+ (1 — po)li7
Ti(pyn + (1 = py) (ding(r — m)) ™ diag(r — 0))
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[y ey Mgy e M Y Ty M gy Mgy e T

,6n) € an n = (771,772,...
(771'1,771'27---

)77171) S Rn)
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where I'; = 1,v, — I gives the adjacency matrix at 7; = 0 and v; is the ith canonical vector.
Note that w is unused for this protocol and its evolution is kept constant across both flows

and jumps.

6.2 Numerical Results

In this section, we present numerical results to simulate our modeling framework

and validate its feasibility for both symmetric and asymmetric communication scenarios.

6.2.1 Symmetric Communication: HyNTP Case Study

To validate the model H; for symmetric communication, consider five agents with
dynamics as in (6.3) and (6.4) over a strongly connected digraph with the following adja-

cency matrix

Ga =

= O = = O
o O O O =
_ o o =

1
1
0
1
1

= o = O O

0

Given T7 = 0.01, 75 = 0.1, and ¢* = 1, then it can be found that the parameters h = —0.4,
uw =1~ = 3.5, p = 1.3 synchronize the clocks. Figure shows the trajectories of
7; for components i € {1,2,3,4,5} of a solution ¢ for the case where ¢* = 1 with initial
conditions ¢;(0,0) = (1,—1,2,—2,0) and clock rates a; in the range (0.85,1.15). The plot
in Figure depicts a trajectory for a Lyapunov function candidate V' evaluated along

the solution ¢ projected onto the regular time domain.
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Figure 6.1: Figure [6.1(a)| gives the evolution of the error in the clocks and clock rates of
6.1(b)

Nodes i and k. Figure gives V (z) evaluated along the solution.

6.2.2 Asymmetric Communication: RandSync Case Study

In this section, we present numerical results to simulate our modeling framework
H, for asymmetric communication protocols using the RandSync algorithm system. Con-
sider five agents with dynamics as in (6.3) and (6.4)) over a strongly connected digraph with

the following adjacency matrix

01 101
101 00
Ga=11 0 0 1 0
0 01 01
1 01 10

Given T7 = 0.01, 75 = 0.1 then it can be found that the parameters h =0, o = 0.1, ¢ = 0.9

synchronize the clocks.
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Nodes ¢ and k. Figure gives V (z) evaluated along the solution.

Figure 6.2: Figure [6.1(a)| gives the evolution of the error in the clocks and clock rates of
6.1(b)
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Chapter 7

Conclusion

In this thesis, several clock synchronization schemes utilizing a hybrid systems ap-
proach were presented. These algorithms gave performance guarantees on the convergence of
the clocks and the clock rates via an analysis using the hybrid systems framework. The need
for clock synchronization schemes with performance guarantees was demonstrated through
the problem of a networked observer, with accompanying clock synchronization subsystem,
that estimates the state of a plant via sporadic measurement broadcasts. The result of the
problem gave sufficient conditions on the performance required by the accompanying clock
synchronization subsystem. In particular, the sufficient condition on the convergence rate of
the plant and observer clocks formulated the clock synchronization problem that concerns
this research.

The problem was solved through the presentation of several hybrid-based clock
synchronization algorithms that included the introduction of HyNTP, a distributed hybrid
algorithm that synchronizes the time and rate of a set of clocks connected over a network.
Results were given to guarantee and show synchronization of the timers, exponentially fast.
Numerical results validating the exponentially fast convergence of the timers were also given.
Numerical results were also provided to demonstrate performance against a similar class of
clock synchronization algorithms.

A sender-receiver clock synchronization algorithm with sufficient design conditions
ensuring synchronization was also presented to address the problem. For this algorithm,
results were given to show asymptotic attractivity of a set of interest reflecting the desired
synchronized setting. Numerical results validating the attractivity of the system to the set

of interest were also given. An additional model to capture the multi-agent setting was
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also presented with a numerical example to demonstrate its feasibility. Future work will
consider stability of the system and robustness properties to specific perturbations.
Finally, a general framework to study the clock synchronization problem using a
hybrid systems approach was introduced. In particular, the data for a hybrid system model
that captures the dynamics of hardware and software timers, the communication network,
and the controller dynamics to synchronize the clocks and clock rates was defined. The
flexibility of the model was demonstrated against a class of clock synchronization algorithms
from the literature and numerical simulated to demonstrate its feasibility. Future work will
consider stability of the framework model to a synchronization set of interest with sufficient

conditions on the system parameters.
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Appendix A

Appendix A - Proofs of Lemmas
for Hybrid Observer

A.1 Proof of Lemma [3.1.3

Proof. The following hold:
e (Al) in [8, Assumption 6.5] holds since C,, and D, are closed sets.

e (A2) in [8 Assumption 6.5] holds since F} is outer semicontinuous and bounded relative

to Cy.

e (A3) in [8, Assumption 6.5] holds since G| D, —p 1S an outer semicontinuous construction
using continuous functions G and Gs. In fact, the set of points where the mappings G
and G9 are applied are mutually exclusive due to Dy, NDg, = (). Then, Ga} Dy=0 * X, =

X, is outer semicontinuous and locally bounded relative to D, and D, C dom G,.

Thus, H, with D, = () satisfies the hybrid basic conditions. O

A.2 Proof of Lemma

Proof. To prove item 1), pick z € D,
o If x € D, since Dy =0 Go(xq, 7P, 70) = G1(2a, TP) C Doy C Co,

o If z € D,,, since Dy =0 Go(xo, 7P, 70) = G2(24,70) C Doy, C Cyy
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Therefore, item 1) holds.
To prove item 2), pick = € Cy \ D,. The tangent cone T¢, (x,) is given by

RHXRHXRZOXRZOX{O}XRmXRZQ ifoEXal

R" x R" x R x R>g x {0} x R™ x Rx if x, € X2

RnXRnXRz()XRZQX{O}XRmXRZO ifxae)(j’

Te,(za) =
R™ x R" x R>g X R>g x {1} x R™ x Ryq  if 2, € X
R™ x R" x R>g X R>g x {1} x R™ x R>o  if x4 € &
R™ x R x R>g x R x {1} x R™ x R>q if v, € X9
where
Xl ={z, € X, :q=0,7y =0,75 = -1}
Xag ={r,€Xy:q=0,7y = (07T2]V)77_5 = -1}
X i={r,€X i q=0,7y =T0 75 = —1}
Xf ={zx, € Xy:q=1,75 =0}
XD i={z,€ X q=1,75=T%
XS ={z, e X, :q=1,75 = (0,T%)}
By inspection F,(z,) C T¢, (24). Therefore item 2) holds. O

A.3 Proof of Lemma [3.1.5

Proof. To prove completeness of solutions we consider the extension of [8, Proposition 6.10]
for the case of Hybrid Systems with inputs as presented in [33]. Given that H, satisfies
the hybrid basic conditions, consider an arbitrary z, € C, U D, and recall the tangent
cone T¢, (z,) from the result of Lemma Since Fj, is independent of the inputs, by
inspection, F,(x,) NTe,(z4) # 0 holds for every (x4, 7p, 7o) such that x € C, \ D,. Then,
case (c) in [8, Proposition 6.10] can be ruled out since by item 1) Lemma [3.1.4] with Dy, = 0,
Go(D,) C Cy U D,. Case (b) in [8, Proposition 6.10] can be excluded since by inspection
F, is Lipschitz continuous on C,. Thus, each ¢ to H, with D, = () and inputs (7p,70)
such that {t : (¢,7) € dom ¢} is unbounded must satisfy case (a) in [8, Proposition 6.10].
Observe that the notions in [8, Proposition 6.10] O
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Appendix B

Appendix B - Proofs of Lemmas
and select Propositions for Hybrid

Consensus Clock Synchronization

B.1 Proof of Lemma [4.2.2

Proof. By inspection of the hybrid system data defining A given in (4.9)) and below it, the

following is observed:

e The set C is a closed subset of R™ since, C' = X and X is the Cartesian product of

closed sets. Similar arguments show that D is closed since it can be written as
D =R"xR" x R" x RY; x R" x RY; x {0}
Thus, (A1) holds.

o f: X — X is linear affine in the state and thus continuous on C. Moreover, since

dom f =X =C, C C dom f holds. Thus, (A2) holds.

e To show that the set-valued map G defined in (4.9) satisfies (A3), note that the graph
of GG is given by

gph(G) = {(2,y) : x € D,y € G(x)}
=D x (R" x R" x R" x R%; x R" x R%; x [T1,T%))
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is closed. Thus, via [4, Lemma 5.10], G is outer semicontinuous and locally bounded

at each x € D. Moreover, by definition, we have that dom G = D. Hence, (A3) holds.

O]

B.2 Proof of Lemma [4.2.3

Proof. For each £ € C, the tangent cone T¢ (&), as defined in [4, Definition 5.12], is given
by
R™xR"xR" xR, xR" xR xR if £ € X!
To(§)= { R"xR"xR"xRZ xR"xRL xR if £ € A2
RT"xR"xR" xR ( xR"xRE(xR<g if £ € X3
where X! :={z e X :7=0}, X2:={z € X :7€(0,T2)},and X3 := {z € X : 7 = Tp}. By
inspection, from the definition of f in f(x)NTe(z) # 0 holds for every € C\ D. Then,
since ‘H satisfies the hybrid basic conditions, as shown in Lemma by [4, Proposition
6.10] there exists a nontrivial solution ¢ to H with ¢(0,0) = £. Moreover, every ¢ € Sy

satisfies one of the following conditions:
a) ¢ is complete;

b) dom ¢ is bounded and the interval I/, where J = sup;dom ¢, has nonempty
interior and t — ¢(t, J) is a maximal solution to & € F(x), in fact lim;_7p |o(t, J)| =

00, where T' = sup,dom ¢;
c) ¢(T,J) ¢ CUD, where (T, J) = sup dom ¢.

Now, since G(D) € C U D = X due to the definition of G, case ¢) does not occur. Ad-
ditionally, one can eliminate case b) since f is globally Lipschitz continuous on C' due to

being linear affine in the state. Hence, only a) holds. O

B.3 Proof of Lemma [4.2.5

Proof. Pick an initial condition £ € A. Let ¢ be a maximal solution to H with ¢(0,0) = §E|

! Note that for a given solution ¢(t,7) to H, the solution components are given by ¢(t,j) =
(¢€(t7j)7()bu(tmj)?()b”](thj)?¢7'*(t7j)7¢ﬁ(t7j)7¢+(t7j)7¢7(t7j))
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e Consider the case where ¢(0,0) € A\ D. The initial conditions of the components
of ¢ satisfy ¢e;(0,0) = ¢,,(0,0) = 0 for the clock errors e;, ¢7(0,0) = ¢,+(0,0)
for the estimated clocks 7;, ¢4,(0,0) = ¢q,(0,0) for the clock rates a; and ¢,,(0,0) =
¢n;(0,0) — ¢4, (0,0) 40 for the control input for each ¢ € V. With f being linear affine
and, thus, globally Lipschitz continuous on C, the constrained differential equation
& = f(z) x € C has unique solutions. Let [0,¢;] x {0} C dom ¢ with ¢; > 0, which
exists since ¢(0,0) € A\ D. Observe that, from the definition of f, the solution
components of the states u, 77, and e during this interval remain constant. This is
evident since ¢y, = h¢y(0,0) — 11(¢7(0,0) — ¢-+(0,0)) = 0 with ¢,(0,0) = 0, ¢, =
h¢,(0,0) = 0, and ¢;(0,0) = ¢,+(0,0); hence, ¢ = ¢4(0,0) + ¢4(0,0) — o*1,, = 0.
From the definition of f in we have that the components of the solution ¢
satisfy de,(t,7) = de, (. 7), dn(t,J) =0, ¢a,(t,J) = ba,(t, 1), d7(¢,J) = ¢+ (¢, ), and
Gu;(t,7) = O, (8, ) — ba, (t, j) +0* for each (t, 5) € [0,t1] x {0}. Therefore, the solution
¢ does not leave the set A during the interval [0,¢;] x {0} when ¢(0,0) € A\ D.

e Consider the case where ¢(0,0) € AN D. Since flow is not possible from ¢(0,0) as
¢-(0,0) =0, ({0} x {0}) U ({0} x {1}) C dom ¢ as the solution ¢ jumps initially. By
inspection, the jump map G in only affects the states n, u, and 7, whereas the
value of the other state components remains unchanged. Since the quantity —vLe in
the jump map is zero at ¢(0,0), we have that ¢,(0,1) = —vL¢.(0,0) = 0. Moreover,

since @ is constant across jumps, ¢5(0,1) = ¢4(0,0), then,

(bu(oﬂ 1) = _f)/ﬁ(be(oa 0) - ¢d(07 0) + U*ln
= ¢17(07 1) - ¢&(Oa 1) + U*ln

Lastly, we have that the timer 7 resets to a point in the interval [77, 75|, namely,

¢-(0,1) € [T1,T3]. Then, the full solution ¢ at (0,1) satisfies

¢e(0,1)

¢n(0,1) — ¢4(0,1) + 01,
¢n(0,1)

¢(0,1) € ¢7+(0,1)

$a(0,1)

$7(0,1)

[Th, T3]
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Hence, from the definition of A, ¢(0,1) € A.

Since this property holds for each £ € A, we have that solutions from A cannot flow out of

A and cannot jump out of A since G(AND) C A. Hence, A is forward invariant for #. O

B.4 Proof of Lemma [4.3.2

Proof. For each z € X, the distance from x to the set A is given as
|4 = inf |x — B.1
ol = inf 2 —g| (B.1)
Evaluating the distance directly, one has

= inf |z —
2[4 ylgA!w Y|

. % A A
= lnf |(6,U, 7777— ,G,T,T)
e*EFE, o * ERZO,QTE[O,TQ]

—(e"\m—a+0"1,,0, a0, a, 7", )|

inf (e—e"u—n+a—o1,,n,
e*EFR, o« ERT;O,OLTE[O,TQ]

T — Qa0 —a, T — T T — o)
= inf |(e—e",u—n+a—0*1,,n,0,a—a,7—7",0)|
e*eckE
— inf t( oo\ T %
Inf sqr (e—e*) ' (e—e™)
+ (u—n + 4—0"1,) " (u—n + 4—0*1,,)

+n'n+(@-a) (@—a)+(F-r) (7= 7))
where E := {e* € R" : el =€} Vi,k € V}. When v =n —a+ 0c*1, we have

|x| 4 = inf sqrt((e —e)Te—e)+n'y
e*ek

For each z. € A, the distance from z. to the set A, is given as

= inf — B.2
focla. = inf [z: —3] (B.2)

141



Evaluating the distance directly, one has

|ze|a. = inf |z: —y|

yeA:
= inf e men e T
e*eEvar*GRgo,aTe[o,Tz}‘( 11> €a; €x,T)
— (€*,0,0,0, ;)|
= lnf ‘(e_e*’n’€a76777—_a7')|

e*eE o ER%WO(T S [07T2}

- eygE |(e —e*,n,eq,er,0)]

= infE (e—e*)T(e—e*)+nTn+eles+ele,
e*e

Making the appropriate substitutions for €, and ¢4, we get
2ela. = inf sart((e—e")T(e=e") +n"n + (a=0)" (a—a)
+ (7 — T*)T(f' — T*))
Now, for each (z.,7,7*) € X, the distance from the point M(xs, 7,7%) to the set A is given

by
|M(xe, 7, 7%)| 4 = inf |M(xc,7,7%) — y| (B.3)
yeA
Computing this distance, one has
|M (20,7, 7)| 4 = inf [M(ze,7,7%) -y
yeA
= inf e,n—(a—¢eq)+0"1,,m,
¢*€E, 0« €RL,0-€[0,T] [(e:m = ( a) n 7l
T—er,a—¢eq,er +75,7)

—(e"\n—a+0"1,,0,ar+,a, 7", ;)|
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Making the appropriate substitutions for e, and ¢,, we get

‘M(x&%ﬂ—*)u

= inf l(e,n—a+o*1,,n, 7% a,7,7)
e*€B,a, €RY ) ,ar€[0,T3]

—(e"\n—a+0"1,,0,ar+,a, 7", ;)|

inf |(e—e*,n—a+o"1,—n+ a—0c™1,,
e*C€E 0.+ €RL - €[0,T2]

n—0,7"—am,a—a,7—7"7— )|

= ei*réfE\(e— e*,0,17,0,a —a,7 — 77,0)]

~ inf. sqrt((e — e e—e) 4"+ (G—a)T(@—a)

Thus, we have that

|M (2, 7,7%) |4 = |z|4 = |7c] A,

B.5 Proof of Lemma [4.3.3

Proof. Suppose the set A, is GES for H.. By Definition there exist k,a > 0 such that

each maximal solution ¢° to H. satisfies

|0°(t, )4 < mexp(-a(t +5))[¢°(0,0)]4, (B.4)

for each (¢,7) € dom ¢°. Now, pick any maximal solution ¢ to H. Through an application
of Lemma there exists a corresponding solution ¢° to H. such that

(b(t:j) = M(¢a(t7j)v ¢?(t1j)7 (bT* (t7j))

for each (t,7) € dom ¢. Given that ¢° satisfies (B.4), using relationship (4.24) between
distances in Lemma we have that ¢ satisfies

|6(£,4)|4 < rexp(-a(t +7))|¢(0,0)4 (B.5)

Then, the set A is GES for H. O

143



B.6 Proof of Lemma [4.3.4]

Proof. Pick a solution ¢ € S, with ¢ = (Qggl, g?)gz, &wl,&@, 7), however, recall that z; :=
(e1,M), Z2 := (€2, .., €N, T2, -, IN ), W1 = (EqysEr, ), a0d Wo = (Eqyy .-y EapsEmyy e sEmy )
Thus, through a reordering of the solution trajectories, one has that with some of the
above notation, ¢ can be rewritten as ¢ = ((55, qgﬁ, ggga, d;gT,T). Then, recall the change of
coordinates € =T le, =T 'n, &, = T l'eq, and & = T 'e,. Since 7! is an invertible
time-invariant linear operator, applying its inverse 7 to the components of ¢, one has
(Tde(t, 4), Tda(t ), Tz (t, §), Tz, (6,5)) = (e(t, ), bt 5), beo(t,5), b=, (t,4)) for each
(t,j) € dom é. Note that the dynamics of the variable 7, responsible for governing the
flows and the jumps of both H. and 7—~l€, is identical for the two systems. Thus, the set of
solutions for the component 7 is the same between the two system. Therefore, it follows
that ¢(t,j) = T ¢(t, j) for each (¢, ) € dom ¢.

Conversely, we can pick a solution ¢ € Sy, let ¢ = (¢e, by, ¢c,, ¢, ,T) and
recall the change of coordinates € = T le, 7 = T ', &, = T 'eq, and & = T 'e,.
Since 7! is a time-invariant linear operator, applying it to the components of ¢, one has
(T 0e(t.5). T by, ), T ey (8,5), T e, (8.9)) = (De(t.5), Gt 5), b2, (t.5), Oz (£))
for each (t,j) € dom ¢. Thus, it follows that ¢(t,j) = T'é(t,j) for each (¢,7) € dom ¢. [

B.7 Proof of Lemma [4.3.5]

: : P A R =1 ! o - =/
Proof. Pick a point 2" = (€1,7],€y,...,Ex, Moy TN Eays ErsCagr -+ 8ays s+ -2 6m) €
R such that (#,7) € A. for some 7 € [0,Ty] , ie, 2 =

(e7,0,0n-1,0N_1,0,0,0N_1,0n_1) with e] € R. Given that the digraph G is strongly
connected, there exists a nonsingular matrix 7 as in (4.26)) that allows for the following
coordinate change: € = T e, 7 = T 'n, & = T ‘e, and &, = T 'e,. Now, by left
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multiplying (2/,7') by T one has

T T
GZT[E’l ey ... ég\,} Z[vl 7‘1} [e’{ 0;_1} =ejly
T T
n=Tm a .. Ay =|u 7|0 of_] =o~
aa:T[éﬁll Ey - égnr:[vl Tl] [0 O;_JTZON (B.6)
5727'[5"71 SR e"m]Tz[vl Tl} [0 OL_I}TZON

Then, since e = ef1y we have that e; = ey, for each i,k € V. Since 7/ was not subject to a
coordinate change, then the point (e,n,e4,6-,7) = (€j1n,0n,0xn,0n,7") is an element of

Ae.
Now, pick a point 2’ = (e,1,&q,6,) € R*V such that 2’ € A.. This requires that

ei =ep, i =0, eq, =0, and e;, = 0 for each i,k € V; thus, 2/ = (e*,0x,0xy,0x), where

e* € E:={e* € R": ¢} =¢} Vi,k € V}. Then, by left multiplying (2’,7) by I'"!, one has

(B.7)

giving the point (€,7,&,,&-,7) = (e],0N—_1,0x,0x,0x). Rearranging the components into
the form (21,22,11_11,’@2,7‘) where z; = (él,ﬁl), 2o = (52, o, ENL T2, . ,ﬁN), W, = (e::al,é:n),
and Wy = (E4g,---+EapnsErgs---,Em,) one has (e7,0,0n-1,0n_1,0,0,05_1,0x_1) which is

an element of A..

To relate the set distances between |z:| 4. and |x.| 4. forevery z. € X; and x. € A;
, note that by definition, one has |z.|4. = infyea.|ze — y| and x|z = inf, 1 [xe — ¥l,
respectively. Recall that y. = I'"'z. and 2. = I'y.. Computing the distance |y.]| A.» one

has
’X€|A€ = ‘F_lxstie = infye,ie ’F_lxe .l
== infe*eR’F_lxg

—(€",0,0ny-1,0n_1,0,0,0N_1,0n_1)]
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Then, by using the relation (e*,0,0y5_1, Ox_1,0,0,0x5_1,0n_1) = I"1(e*1y,0x,05,0x)
one has
D] 4 = infercpT ™ 2. — T (e"1y,05,0,0y)]
= infe*€R|F_1(xg — (e"1n,0n,0x,0y))]
< 7Y <infe*€R\x6 — (6*1N,0N70N70N)|>
< |07 (infyea |z — y)

S |1—‘_1 ‘ |x€|v4€
Conversely, computing the distance |z.| 4., one has

|Ze|a. = [TXe|a. = infyea [Txe — ¥l
- infe*ER’FXef - (6*1]\[, 0N7 ON7 ON)’
Then by using the relation (e*1x,0x,0xn,0x) = I'(e*,0,05-1,0n-1,0,0,05-1,0x5_1), One
has
ITXe|a, = infeser|Txe-T'(€",0,05-1,05-1,0,0,05_1,05_1)]
= infe*€R|F(X6_(e*a 07 ON—17 ON—17 07 07 0N—17 ON—I)) ‘
< [T (infe exxe=(e7, 0,051, 0y 1,0,0,0y 1,05 ,)])
< |1 (inf e 4. Ixe — v1)

< [Tllxel 4,

B.8 Proof of Proposition 4.3.6

Proof. First, we prove that GES of A, for 7-75 implies GES of A, for H.. Suppose the set
A, is GES for ﬁa. By Definition there exist k,a > 0 such that

|6(t.9)| 4. < mexp(-alt +))[¢(0,0)| 5. V(t,5) € dom ¢ (B.8)

holds for every solution ¢ to H.. Pick a (maximal) solution ¢ € Sz, with initial condition

<;~3(O, 0) € C.UD.. According to Lemma there exists a maximal solution ¢ to H. such
that

o(t, ) =T7'o(t, ) (B.9)
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for each (¢,j) € dom ¢, where I'"! = diag(7 L, 771, 771, 771, 1). Given that 6 satisfies

(B.8), applying and the relationship between distances in Lemmam given in (4.30))
to the right-hand side of (B.8]), we have that

[6(t4)] 4. < wexp(-a(t + 1))[(0,0)] 1. = mexp(-a(t + 1)|IT™'$(0,0)| 4

s . (B.10)
< kexp(-a(t + 7)) [¢(0,0)].4.
By rearranging the relationship given in (4.31]), we obtain
lela, = el la, < el (B.11)
’F’ IBE ./45 - ‘1—\‘ XE .Ag = XE -'45 .
Applying it to the left-hand side of (B.10]), we have
1 . s AN e
ﬁlqﬁ(t,J)lAg <16t )] 4. < wexp(=a(t + )T ¢(0,0)] 4.
Thus, we have that ¢ satisfies
6, ). < Rexp(-a(t +7))[4(0,0)[a.  V(t,j) € dom ¢ (B.12)

where & = s|[||[T"!|. Then, the set A. is GES for H..
Conversely, suppose the set A; is GES for H.. By Definition there exist
K, a > 0 such that

|0(t,5)| 4. < mexp(-a(t +7))|¢(0,0)la.  V(tj) € dom ¢ (B.13)

holds for every maximal solution ¢ to H.. Pick a maximal solution ¢ € Sy, with initial
condition ¢(0,0) € C-UD,. According to Lemma there exists a solution ¢ to H. such
that

for each (t,j) € dom ¢, where I' = diag(7,7,7,7,1). Given that ¢ satisfies (B.13]),
applying (B.14) and the relationship between distances in Lemma to the right-hand
side of (B.8)), we have that

[6(t: )4 < wexp(-a(t + 7))|¢(0,0)] 4, = wexp(-a(t + 7))TH(0,0)|a.

_ (B.15)
< rexp(-a(t +5))IT[[¢(0,0)] 5
By rearranging the relationship given in (4.30)), we obtain
1 1
ﬁb(s’jts = ﬁﬁ‘ Tel 1. < |we|a. (B.16)
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Applying it to the left-hand side of (B.15]), we have

1
r

|6(t, 5)|a. < [6(t,5)|a. < Kexp(-a(t+ 7))[T[|6(0,0)].a.
Thus, we have that ¢ satisfies

[0(t, )] 4. < K exp(-alt +1))|6(0,0)| . ¥(t,j) € dom ¢ (B.17)

where x’ = k|T"7Y|T|. Then, the set A. is GES for H.. O

B.9 Proof of Proposition [4.3.7

Proof.
Ve, (Xe,) = @] Patboy + @ Py (B.18)
It satisfies

O[(D1|Xar|iisr S V(Xar) S an‘Xa"Jisr \V/X‘E'r E OET U bar (Blg)

with o = min{)\mm(Pg), Amin(P3)} and ao = max{)\max(Pg), Amaz(Ps3)}. For each y., €

Ce,
(VVe, (xe, ), F(xe,)) < @f (P2Ag, + Af Py)iny

(B.20)
+wy (PsAy, + Aj, P3)ws

The conditions in (4.13]) imply the existence of positive numbers $; and 2 such that
PQAf3+AJT3P2 < -pBl

P3Af4+A}|;P3 < =Bl

Then )
<VV€T(XET)7 fSr(X6r)> < _51’“71‘2 - ﬂ2’w2’2

< —B(jw1|? + |wa]?)

P B.21
< _B(|X€r|?4 ) ( )
S _O[i2 ‘/57‘ (X€'r)
where 8 = min{f;, 82} > 0. For all x., € D,, and g € G, (xc,)
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Now, pick a solution ¢ to ﬁer with initial condition $(0,0) € 65,, U 155T. As a result of
(B.21) and (B.22), direct integration of (¢, j) — Vs, (¢(t, 7)) over dom ¢ gives

Ve (6(t.5)) < exp (~4) Vo, (6(0.0)) W) € dom & (B.23)

w2

Now, given the relation established in li for any solution q~5 to 7:25” we have jTp <t =

—t < —jTs. Then, for any v € (0,1) we have —yt < —yT5j. Moreover,
—t=—(1-t—t<—(1=)t—912j

< —min{l —v,7yT2}(t + j)

(B.24)

leading to 3
§le)

w2

Ve, (6(t,)) < exp (= (¢ + ) ) V2, (6(0,0)) (B.25)

for each (t,j) € dom ¢ where 7 = min{l — v,77>}. Then, by combining this inequality
with (B.19), one has

e [ Ve, (B(8.) < exp (<22t 4 ) Ve, (6(0.0)) (B.26)

w2

then leveraging V. ($(0,0)) < ag,|é(0, 0)|i1 we have

G, < 52 exn (<2 (e+0) GO0 (B.27)
then .
G5, <[22 exp (54 ) 16(0,0)| 1, (B.25)

Observe that this bound holds for each solution ¢~5 to 7—~l5T. Maximal solutions to 7'757« are
complete due to the reduction property established in Lemmas [4.3.4], [£.3.1] and £.2.5] In
particular, Lemma establishes the relation between ﬁa and H., Lemma estab-

lishes the reduction from H to H., the former for which we have established completeness

of solutions in Lemma m Therefore, the set fiar is globally exponentially stable for

He, . O

r

B.10 Proof of Proposition |4.4.2
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Proof. Consider the same Lyapunov function candidate V(xm) = Vi(xm) + Va(xm) +
Ve, (Xm) from the proof of Theorem in Section m During flows, there is no con-
tribution from the perturbation thus the derivative of V' is unchanged from the proof of

Theorem m Thus, one has that (?7?) holds with fg(xe) replaced by fm(xm), namely,

<VV(Xm)7f(Xm)> < 22;(eXp(A};T)PeXp(AfQT))szwQ
+ U_)I(PlAf?’ + AJZPl)UH
+ @;(PQAﬂL -+ A—fl;PQ)'LDQ

then by following the same notions of the proof in Theorem one has

(VV(xm), f(xm)) < %V(Xm) where B = max{%, (% - ﬁg)} and € > 0. At jumps,

triggered when 7 = 0, one has, for each x,, € Dy, \ Ac and g € G, (xm)

V(g)-V(xm) <
— 7+ (Ag, ) " eXp(A}ZT)Pl exp(Ay,7)(Ag, Z2)
—2(Byinz,) " exp(Af,7) Py exp(Ap,T)(Ag,22) (B.29)
+ (Byinz,) " exp(Af,7) P exp(Ay,T)(Bginsz,)
—Z, PyZo
From and the proof in Theorem there exists a scalar k9 such that
ZQT(AHT exp(A};v)Pl exp(Ap,v)Ag, — P1)Zy < —k2Zy 72 leading to

2
V(9)—V(Xm) < =7 — KaZy 2
— 2(Bgm52)T exp(A}—2 T)Py exp(Af,7)(Ag, 22) (B.30)
+ (Bgmfz)T eXp(A]TQT)Pl eXp(Asz)(Bgmfz)

Let Q = exp(A};T)Pl exp(Ay,7), then applying Young’s inequality on the third term such

that T
|(By QAy,) (B QAy,) |
262

m

Mz, +——25 29

T €2 _T_
Z2 2

mi, By QAg, 7 <
where €5 > 0. Then, we have

_ €2\ T _

V(9)-V (xm) <~ = (k2 + )2 22+ (1By QBy|
1 T T TN=T (B.31)
—272|(Bg QAg,) (B, QAg,) ), Mz,

By noting |Ag, |, |Bg| < YAmaz(L) let km, = ()\mam(z))z g[loa%i]{Amax(eXP(A};U)Pl eXp(AfQU))}v
ve[0,T>

we let e9 = ko and obtain

_o BK2 _T_
V(g)—V(Xm)S—nf—fZQTZmL(vQ%—
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Now, let fm, = V2 Km, — ﬁfy‘lnfﬁz then at jumps one has

V(9) = V(xm) < —Fo(|T|* + 221*) + Ry 702, | (B.32)
where k3 = max {1, ?’%} Now, recall from |) in the proof of Theorem that
1
—(Iml* + |z < ~o X+ jw? (B.33)

Then, plugging (4.45)) into (B.32)) one has

3/%2 3%2 _ ~ _
Via) < (1= 5o )V Otm) 52 ] o+ oy sy

Noting (VV (x2), f(xe)) < %V(Xa)7 one can then pick a solution with initial conditions
$(0,0) € Cp, U Dy, and find that the trajectory of V(¢(t,j)) is bounded as follows:

V(o(t, ) <
3/‘62

exp (% T2) (exp (z—; TQ) (1 - 272))]‘/(&(0, 0))

3/62 _ _ .
+ - exp (f<; Tz)Sup(t7j)€d0m¢|w(taj)|2

+ Ry, €Xp (iTg>sup - |z, |
2 26y (t,j)edomel’'z2

The result follows from an analysis of V(é(t, 7)) over dom ¢ utilizing the same approach as

in the proof of Theorem [4.2.6 O
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Appendix C

Appendix C - Proofs of Lemmas
for Hybrid Consensus Clock

Synchronization

C.1 Proof of Lemma [5.3.1]

Proof. By inspection of the hybrid system data (C¢, F;, D,, G) defining H. given in (5.23]),

the following is observed:

e The set C; is a closed subset of R" since C; is the union of the sets C,, and C;,, both
of which are the Cartesian product of closed sets. Similar arguments show that D, is

closed since it can be written as the finite union of closed sets, that is,

DE:U(RZXRXRXRXRX{O}XRGXRGX{p}xQ)
peEP

Thus, (A1) holds.

e The function F; : X, — AX; is linear affine in the state and thus continuous on C..

Thus, (A2) holds.

e To show that the set-valued map G, defined in (5.22)) satisfies (A3), observe that by

inspection, for each i € {1,2,3,4,5,6} G, is a continuous map. Moreover, for each
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i€{1,2,3,4,5,6} D, is closed and
D, ND. =0 Vik € {1,2,3,4,5,6),i £ k

which implies that there is a (uniform) finite separation between these sets. This is
due to the fact that these sets are defined for different values of the logic variables.

Hence, (A3) holds as G. is a piecewise function with each piece being continuous.

C.2 Proof of Lemma [5.3.2|

Proof. Consider an arbitrary ¢ € C. U D.. The tangent cone T¢.(§), as defined in [4,
Definition 5.12], given by

RZXxRxRXxRXxRxRsgxROxROx P xQ if€e il
To.()={R2XxRXRXxRXxRxRxRIxROxPxQ ifeéei?

REXxRXxRxRxRxRgxREXxRExPxQ ifé&ecAd

where X! :={z. € X. : 7 =0}, X2 :={z. € X. : 7 € (0,d)}, and X3 := {z. € X. : 7 = d}.
By inspection, F.(z:) N Tc.(zz) # 0 holds for every xz. € C. \ D. Then, by |4, Proposition
6.10], there exists a nontrivial solution ¢ to H. with ¢(0,0) = £. Moreover, by the same

result, every ¢ € Sy satisfies one of the following conditions:
a) ¢ is complete;

b) dom ¢ is bounded and the interval I/, where J = sup;dom ¢, has nonempty
interior and t — ¢(¢,J) is a maximal solution to @ € F(z), in fact lim;7 [¢(t, J)| =

00, where T' = sup,dom ¢;
c) ¢(T,J) ¢ CUD, where (T, J) = sup dom ¢.

Now, since G.(D,) C C.U D, case (c) does not occur. Additionally, one can eliminate case

(b) since, by inspection, F; is Lipschitz continuous on C-. O

C.3 Proof of Lemma [5.3.3
Proof. Pick an initial condition ¢(0,0) € M.
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e If (0,0) € M N(C:\ De), then the solution initially flows according to &. = F.(x).
Observe that the trajectories of m*, m¥, p, and ¢ remain constant since F. is defined
so that m' = m* = p = ¢ = 0. Moreover, note that the gradient of p; and p; with

respect to x. = (&, 7;, Tk, @i, ax, 7, m', m* p, q) satisfy

02x1 02x1
1 0
0 1
T—fB—dg+c(g—1) 0
0 T—0B—dgq+c(g—1)
szpi(xeyﬂ) = ’ vaigpk(x876) -
a; ag
O6x1 O6x1
O6x1 O6x1
0 0
i ai(c —d) | i ax(c —d)

(C.1)
Then one has pi(z., 8) = (Vp(az, B), Fa(a2)) = la; + ai(—1) = 0 and jy(a., B) =
(Vpr(ze, B), Fe(ze)) = lag + ax(—1) = 0. Therefore, when ¢ initially flows from a
point in M, it remains in M over the interval of flow. This property holds for every

solution over any of its intervals of flows that starts at a point in M.

e If ¢(0,0) € M N D,, then the solution initially jumps according to z} = G.(z.). In

particular,

— if ¢(0,0) € M1 N D.,, the solution jumps according to =1 = G¢, (z). The timer
7 resets according to 77 = d while ¢* = 1 and p™ = 1. Moreover, (mi)" is
assigned to the value of 7;, evaluating p;(z1,0), we have that for each z. € Dy,

pi(xr,0) =7 —a;(1 —q )c+qTd—77) —a;0
=T — ai((l — 1)C+d— d)
Thus, by recalling the definition of My = {z. € X. : p=1, ¢=1, mi—p;(x.,0) = 0},
we have that G, (M N D.) C My holds for each z. € D,,.

— if ¢(0,0) € M2 N D, the solution jumps according to z7 = G.,(x.). The timer

T resets according to 77 = ¢ while g7 = 0 and p* = 2. Then, by definition of
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G.,, for each z. € D,.,, one has
pr(x,0) =7 —ap((1 — ¢ e+ q"d—77) — a0
=71, —ar((1 —0)c—¢)
=T
which is equal to (mF)* and
piler d) =71 —a;(1 —q"c+q"d—71") —ad
=7—ai(1—-0)c—c)—aid
=7 —a;d
which is equal to (m5)* = mi. Therefore, by recalling the definition M3 = {z. €
X 1 p=2,q=0,mFpp(z-,0) = 0,my-p;(z.,d) = 0}, we have G.,(Mz N D.) C
Mg for each z. € De,.

if ¢(0,0) € M3 N D, the solution jumps according to 7 = G.,(z.). The timer
T resets according to 77 = d while ¢* = 1 and p™ = 3. Then, by definition of
G.,, for each z. € D.,, one has
(., 0) =1 —ar((1 — ¢ e+ qd — 1) — a0
=7 —ar((1—1)c+d—d)
_= TkJ
which is equal to (mf)™,
ozl e) =1 —ar((1 —q")e+qd —77) — agc
= Tk —ak((l — 1)C+d—d) — aiC
= T — arcC
which is equal to (m5)* = mF, and
pilzr c+d) =1 —ai(1 —q¢")c+qd— 1) —a;(c+d)
=7—ai((1—1)c+d—d)—ai(c+d)
=7 —ai(c+d)

which is equal to (m§)* = m}. Therefore, by recalling the definition My =

{zc € X :p:3,q:1,mffpk(x5,0) = 0,m§fpk(x5,c) = O,m:’)ffpi(xg,chd) = 0},
we have G,(M3N D.) C My for each z. € D.,.
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— if ¢(0,0) € M4 N D, the solution jumps according to 1 = G.,(z.). The timer
T resets according to 77 = ¢ while g7 = 0 and p* = 4. Then, by definition of

G.,, for each z. € D,.,, one has
pi(xr,0) =7 —a;(1 —q )c+qd— 1) — a;8
=7 —a;i((1-0)c—c)
=7
which is equal to (mf)™,
ot d) =7 —ap(1— ¢ )e+qd—71) — apd
=7 —ar((1 =0)c—c) — ard
=T — apd

which is equal to (m3)T = mf,

pr(xlc+d) =1 —ap((1 —q)ec+qd —77) — ag(c+d)
=7, —ar((1 —0)c—c¢) —ag(c+d)
=7k — ax(c +d)
which is equal to (mi)™ = m5,
(mi)* = mh = pia 2
=7 —a;(1—q")e+qd—77) —ai(c+ 2d)
=7 —ai((1 —0)c—c) —ai(c+2d)
=7; — a;(c+ 2d)
which is equal to (mj)* = mk. Therefore, by recalling the definition M5 =
{ze € X ¢ p=4,¢=0,mi-pi(2:,0) = 0,mj—pi(ac,d) = 0, mi—pg(az,c+d) =
0, mt—p;i(ze, c+2d)=0}, we have G¢, (M4 N D.) C M; for each x. € Dg,.

— if ¢(0,0) € M5 N Dy, the solution jumps according to 1 = G, (z.). The timer
T resets according to 77 = d while ¢* = 1 and p™ = 5. Then, by definition of

G.,, for each z. € D.,, one has
pi(xr,0) =7 —a;(1 —q")c+qd— 1) — a0
=7 —a((1-1)c+d—d)

= T’i
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which is equal to (mf)*,

pi(zf,e) =1 —ar((1 —qN)c+qd — 1) — a0
=7 —ap((1—=1)c+d—d) — agc
=T — aiC

+ — i

which is equal to (m})* = mi,

pr(ztc+d) =1 —ar((1 — g )e+qd — ) — ar(c+ d)
:Tk—ak((l—l)c—i-d—d)—ak(c—i-d)
=Tk — ak(c + d)
which is equal to (mf)™ = mi,
pr(xd, 2¢+d) =7 — ap((1 = g7 )e + qd — 77) — ay(2c + d)
=Tk — ak((l — 1)C+d— d) — ak(20+d)
=1 —ag(2c+d)
which is equal to (m})* = mg,
pi(xr,2c+2d) =7 —a;(1 — ¢ )e+qd — 77) — a;(2¢ + 2d)
=7 —a;((1-1)c+d—d)—ai2c+2d)
=T; — CLZ‘(QC + 2d)

which is equal to (m{)™ = mi. Therefore, by recalling the definition Mg

{xs c XE : p:57q:17mi’_pi(x670> = 07771%_[)1'([13676) = O7m’§,_pk(x67c+d) =
0, mi—pr (e, 2c+d) = 0, mi—p;(zc,2c+2d) = 0}, we have G, (M5 N D.) C Mg

for each z. € D.,.

if $(0,0) € Mg N D,, the solution jumps according to 7 = G.4(z.). The timer

T resets according to 77 = ¢ while ¢* = 0 and p* = 0. Therefore, by recalling

the definition M; = {z. € A, : p=0,¢=0}, we have G.,(Mg N D.) C M; for

each z. € Dg,.
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C.4 Proof of Lemma [5.3.4

Proof. Pick a solution ¢ € Sy_ with initial condition ¢(0,0) € C. U D,. Since, the flow
map F. enforces p = 0, the p component of ¢ remains constant during flows. At jumps,
namely, when ¢(t,j) € D., since for each ¢ € {1,2,3,4,5}, G., enforces that p* = p+ 1,
the evolution of p is monotonically increasing in {0,1,2,3,4,5} until p = 5, from where Gg
resets p to 0. In fact, when the solution ¢ jumps according to G, we have that p™ = 0 and
g™ = 0 resulting in a value for . after the jump that is in M;. Now, due to the monotonic
behavior of p and the completeness of solutions to H. given by Lemma [5.3.2] there exists
(t,j) € dom ¢ such that ¢(t,5) = G4 (¢(t,7)). Given such (¢,7), let T* = ¢t + j. Then,
given that Ge,(é(t,7)) C M and the forward invariance of M given by Lemma we
have that ¢(t,j) € M for each (t,j) € dom ¢ such that ¢t +j > T*. O
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