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Investigations Into The Possible Role Of Endogenous Cochlear

Opioids On Lateral Efferent Olivocochlear Modulation Of

Auditory Nerve Activity. In The Chinchilla.

Tony L. Sahley

Abstract: Axons of olivocochlear cell bodies in the

pontine lateral superior olivary region belonging to the

"lateral efferent system" synapse directly upon the

peripheral processes of spiral ganglion neurons that

innervate inner hair cells in the cochlear organ of Corti.

Medial periolivary nuclei send "medial efferent system"

projections directly to the bases and circumnuclear regions

of outer hair cells of the organ of Corti. The lateral

efferent system termination on Type I ganglion cell afferent

fibers suggests that these centrifugal projections modulate

the sensitivities and spontaneous discharges of primary

auditory system inputs. Both anatomical and developmental

evidence suggest that lateral efferent synapses are

inhibitory. Furthermore, products of the proenkephalin and

prodynorphin opioid peptide families are found within

lateral efferent terminals. Enkephalins primarily activate

d-opioid receptors, and their central nervous system effects

are usually inhibitory. Dynorphins are K-opioid receptor

agonists, and their effects are inhibitory as well.

In this study, the effects Of intravenously

administered opioid agonists on click-evoked, round window

recorded N1 and N2 components of auditory nerve compound
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action potential and cochlear microphonic (mass receptor

potential) responses were investigated in the chinchilla.

Parenteral administration of pu-opioid receptor ligands like

naloxone and fentanyl failed to alter these cochlear

generated neural and receptor potential responses. The

racemic benzomorphan (+)-pentazocine (16mg/kg) and its

levorotatory isomer (-)-pentazocine (8mg/kg) caused

significant positive amplitude changes in CAP N1 and N2

response components relative to baseline values at near

threshold stimulus intensities. Following pentazocine,

absolute response thresholds were improved by 5 to 7dB SPL.

CAP response latencies and CM amplitudes were unaffected. By

contrast, the non-opioid, dextrorotatory isomer (+)-

pentazocine (8mg/kg) was without effect on all dependent

measures, and its infusion did not affect neural response

thresholds. These neural effects of (-)-pentazocine may have

been partially blocked by the potent K-receptor antagonist

nor-binaltorphimine, applied to the cochlear round window.

These data support the conclusion that K-opioid

receptors are involved in the mediation of opioid efferent

effects in the inner ear. Functional implications of these

findings are discussed.
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(upper trace) an iv injection of 16mg/kg (+)-
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response waves I-IV, recorded at near-threshold.
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Figure 5: Effects (8mg/kg; iv) of the K-opioid ligand (-) -
pentazocine (n=5), and the non-opioid ar-receptor
ligand (+)-pentazocine (n=5), on the amplitude of
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percent change of the mean (group) values obtained
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Figure 6: Scatterplot of relative postbaseline threshold
shifts (dB SPL) from near-threshold values
obtained during baseline, in three of the five iv
(-)-pentazocine-treated (8mg/kg) animals from
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Figure 7: (A) Effects in a representative animal (#1) of an
8mg/kg iv injection of (-)-pentazocine on the
amplitudes of the CAP (N1 and N2) response
recorded at a near-threshold (24 dB SPL) stimulus
intensity. The lower CAP was recorded during the
baseline period. The upper CAP was recorded 15
minutes postbaseline iv infusion Of (-)-
pentazocine. (B) Effects Of (-)-pentazocine
(8mg/kg; iv) on the amplitudes of the CAP
responses recorded near-threshold (7.7 dB SPL) in a
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(#8) of 8mg/kg (-)-pentazocine on the amplitudes
of the CAP responses recorded at near-threshold
(18. 1dB SPL) during baseline and 45 minutes
postbaseline iv infusion of (-)-pentazocine. (D)
Effects in the same animal (#7) shown in (B) on
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(#8) shown in (C) on the amplitudes of the CAP N1
and N2 potentials, recorded +5dB SL, and (F) +10dB
SL. All potentials shown are displayed negative
Ulp.

Figure 8: Effects in five animals of iv (-)-pentazocine
(8mg/kg) on the amplitudes of the CAP (N1) and CM
potentials, recorded at the four indicated
stimulus intensities. Each plotted point
represents the percent change of the mean values
obtained at each of six 30 minute periods from the
grand baseline mean. Pentazocine was administered
at the +90 minute period shown.

Figure 9: Effects of the K-opioid receptor ligands U-50488H
(6mg/kg and 20mg/kg; iv) and U-69593 (1mg/kg; iv)
on CAP N1 (A) and N2 (B) amplitudes recorded in
response to near-threshold intensities. Shown in
(C), are the effects of postbaseline administered
naloxone (0.1mg/kg to 2mg/kg) in combination with
(+)-pentazocine (16mg/kg) or U-50488H (10mg/kg to
20mg/kg) on CAP (N1) amplitudes recorded in
response to near-threshold intensities. in a small
sample of iv injected animals. Each plotted point
represents the percent change of the mean (group)
values obtained at each of six 30 minute periods,
from the grand baseline mean. Drug injection was
initiated just after the 90 minute benchmark.

Figure 10: Effects of RW treatment of nor-BNI (1-2mm 6 1pul;
n=7) vs artificial perilymph alone (1pul; n=6)
administered during the last 30 minute baseline
period, On the (-)-pentazocine-induced



postbaseline iv changes in CAP N1 (A) and N2 (B)
amplitudes, recorded at the three indicated
stimulus intensities. Each plotted point
represents the percent change of the mean (group)
values obtained at each of six 30 minute periods.
Pentazocine was administered at the +90 minute
period shown.

Figure 11: Effects of RW treatment with nor-BNI (1-2mm 6
1pul) administered during the last 30 minute
baseline period, followed either by (-)-
pentazocine (8mg/kg) Or Ringer’s (1pul/5g),
postbaseline, on CAP N1 (A) and N2 (B) amplitudes
recorded at the three indicated stimulus
intensities. Each plotted point represents the
percent change of the mean (group) values obtained
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Figure 12: (A) Effects in six animals of RW treatment during
the last 30 minute baseline period with artificial
perilymph (1pul) followed by iv (-)-pentazocine
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values obtained at each of six 30 minute periods.
Pentazocine was administered at the +90 minute
period shown.
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CHAPTER 1

The Efferent Olivocochlear System

General Overview: The olivocochlear (OC) system

consists of axons arising from neurons within the brainstem

superior olivary region, and supplies bilateral efferent

innervation to the cochlea. These descending OC efferent

fibers can be separated into two anatomically and presumably

functionally distinct divisions, designated as the "lateral"

and "medial" efferent systems (e.g. Liberman and Brown,

1985; 1986; Spangler and Warr, 1991; Warr, 1975; 1978; 1980,
1988; Warr, Guinan and White, 1986). Lateral efferent

neurons project preferentially to the radial Type I afferent

dendrites (peripheral processes) within the inner hair cell

(IHC) region, bilaterally, but with predominantly uncrossed

fibers. Medial OC neurons project preferentially to basal

and circumnuclear regions of the outer hair cells (OHCs),

also bilaterally, but with predominantly crossed fibers

(Spangler and Warr, 1991; Warr, 1978; 1980; 1988; Warr et

al., 1986).

The anatomy notwithstanding, virtually nothing is known

regarding the function of lateral efferent OC neurons.

Several functional roles have been postulated for the medial

efferent OC neurons, however (Cody and Johnstone, 1982b;

Dewson, 1967; Nieder and Nieder 1970a; 1970b : Liberman,

1988a; Tolbert, Morest and Yurgelun-Todd, 1982).

Considerable physiological evidence indicates that the



medial efferent system may compensate for the compressive

effects of noise (e.g. Costalupes, Young and Gibson, 1984;

Gibson, Young and Costalupes, 1985; Winslow, 1988; Winslow

and Sachs, 1984; 1985; 1987) by reducing the noise-driven

response rates of single auditory fibers (Dewson, 1967;

Nieder and Nieder 1970a; 1970b). This then, restores the

range of discharge rates available for encoding intensity

changes in a stimulus. Indeed, medial efferent activation

produces a four-fold increase in Type I auditory fiber rate

level response (dynamic) range, allowing for the encoding of

intensity changes in noise backgrounds at relatively lower

signal/noise ratios (Winslow, 1988; Winslow and Sachs, 1984;

1985; 1987).

Acetylcholine (ACh) is an important neurotransmitter

for both the lateral and medial divisions of the descending

efferent OC system (e.g. Altschuler and Fex, 1986; Bledsoe,

1986; Bledsoe, Bobbin and Puel, 1988; Eybalin and

Altschuler, 1990; Eybalin and Pujol, 1987), and cholinergic

receptors have been detected on mammalian once (Plinkert and

Zenner, 1989; Zenner, Reuter, Plinkert, Zimmermann and

Gitter, 1989). Recent evidence indicates that these

receptors may be of the muscarinic M3 variety (Guiramand,

Mayat, Bartolami, Lenoir, Rumigny, Pujol and Recasens,

1990a; Guiramand, Mayat, Bartolami, Lenoir, Pujol and

Recasens, 1990b), though there is also evidence in support

of nicotinic OHC receptors (Canlon, Cartaud and Changeux,



1990; Plinkert and Zenner, 1991; Plinkert, Zenner and

Heilbronn, 1991).

There is substantial evidence that products of

proenkephalin and prodynorphin synthesis occur endogenously

within brainstem efferent OC cell bodies, and within

efferent fiber bundles and terminals innervating the cochlea

(Altschuler and Fex, 1986; Altschuler, Reeks, Fex and

Hoffman, 1988; Eybalin and Altschuler, 1990; Fex and

Altschuler, 1981; 1985; 1986; Eybalin and Altschuler, 1990).

Indeed, proenkephalin and prodynorphin gene products coexist

within the same lateral efferent cell bodies (Abou-Madi,

Pontarotti, Tramu, Cupo and Eybalin, 1987; Altschuler et

al., 1988). There is additional evidence of multiple opioid

receptor interaction within the cochlea (Eybalin, Pujol and

Bockaert, 1987). Such evidence supports the co-localization

and/or coexistence of multiple opioid receptors within the

terminals of lateral efferent fibers and/or postsynaptic

target sites within the cochlea. Taken together with the

evidence that products from both opioid peptide families

also coexist with choline acetyltransferase (Ch.AT) within

the same lateral efferent perikarya (Abou-Madi et al., 1987;

Altschuler, Fex, Parakkal and Eckenstein, 1984a), a

potentially complex neuromodulatory role within the cochlea

is suggested for endogenous neuroactive opioid substances

and ACh. What follows is a condensed review of the anatomy,

physiology, and neurochemistry of the mammalian lateral and

medial efferent systems.



Superior Olivary Complex Anatomy

The superior olivary complex (SOC) consists of a number

of small nuclear masses located within the pontine

tegmentum. In the cat, about twelve distinct nuclei have

been identified (e.g. Warr, 1972). The three principal

nuclei associated with the ascending auditory pathway are

the lateral superior olive (LSO), the medial or accessory

superior olive (MSO), and the medial nucleus of the

trapezoid body (MNTB) (Stotler, 1953). Both the MSO and LSO

receive second or third order auditory input from lower

brainstem regions (see: Helfert, Snead and Altschuler, 1991)

and both structures are well developed in the guinea pig,

dog, monkey and cat (Harrison and Howe, 1974a). In the cat

as in most species where it is well developed, the thin

crescent-shaped MSO consists of large radially oriented

bipolar and multipolar neurons (Harrison and Feldman, 1970;

Scheibel and Scheibel, 1974; Stotler, 1953).

The LSO is occupied by spindle-shaped fusiform neurons

and by a smaller number of round or star-shaped cells

arranged in irregular layers (Boudreau and Tsuchitani, 1970;

Cant, 1984; Goldberg and Brown, 1968; Harrison and Feldman,

1970; Scheibel and Scheibel, 1974; Tsuchitani, 1978). The

response properties of LSO units are known and have been

investigated (e.g. Tsuchitani, 1977). The layers of cells

within the LSO create a convex-concave "S" configuration

(Boudreau and Tsuchitani, 1970; Cant, 1984; Scheibel and

Scheibel, 1974). The concavities created by the S-shaped



cellular arrangement form a ventromedially directed medial

hilus, and a dorsomedially directed dorsolateral hilus

(Stotler, 1953). The dorsolateral hilus in particular is a

region into which many afferent fibers enter, and from which

many lateral efferent fibers exit (Elverland, 1978 ; Osen,

Mugnaini, Dahl and Christiansen, 1984; Scheibel and

Scheibel, 1974; Spangler, Warr and Henkel, 1985). The MNTB,

the third major division of the superior olivary complex, is

discussed below as one source of the descending medial

efferent OC system of fibers. The response properties of

MNTB units are known and have been investigated (Boudreau

and Tsuchitani, 1968; 1970; Brugge and Geisler, 1978; Caird

and Klinke, 1983; Goldberg and Brown, 1968; 1969; Guinan et

al., 1972b; Tsuchitani, 1977). The response properties of

the MSO are also known and have been investigated (Cant and

Casseday, 1986; Goldberg and Brown, 1968; 1969; Guinan et

al., 1972b; Warr, 1966). The primary nuclei of the SOC are

schematically depicted below in Illustration 1.

Efferent Olivocochlear (OC) System Anatomy

Introduction: The descending OC system consists of cell

bodies and axons that provide centrifugal (efferent)

innervation to the cochlea. The early work of Rasmussen

(1942; 1946; 1953; 1955) established what has since been

confirmed as a projection of axons originating bilaterally

in the region of the superior olivary nuclei of the

brainstem. The descending fibers travel via crossed or un



I11ustration 1

Highly schematized frontal view illustrating the major
auditory nuclei of the brainstem superior Olivary complex.
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crossed midline brainstem pathways and terminate at two

separate and distinct target regions within the organ of

Corti. The early observations made by Rasmussen have been

extended by others in a variety of preparations employing

various histologic methods such as lesion/degeneration or

ACh histochemistry combined with light or electron

microscopy. Those species investigated to date have included

mice (Nakai, 1972; Osen et al., 1984) chinchillas (Iurato,

Smith, Eldredge, Henderson, Carr, Ueno, Cameron and Richter,

1978; Osen et al., 1984) guinea pigs (Hilding and Wersall,

1962; Kimura and Wersall, 1962; Smith, 1975; Wright, 1975;

Wright and Preston, 1973; 1975), rats (Osen et al., 1984)

rabbits (Borg, 1973) cats (Arnesen and Osen, 1984; Liberman,

1980b; Morest, 1968; Osen et al., 1984; Osen and Roth, 1969;

Spoendlin, 1969; 1972; Spoendlin and Gacek, 1963) monkeys

(Bodian, 1983; Ishii, Murakami and Gacek, 1967) and humans

(Gacek, 1961; Nadol, 1983a; 1983b). The use of horseradish

peroxidase (HRP) axonal transport labeling methods (LaVail

and LaVail, 1972; 1974) for tracing neural pathways has

confirmed earlier observations, and has led to an even

clearer understanding of the origin and termination of

descending efferent OC neurons.

Substantial evidence has accumulated supporting the

existence of two separate descending efferent OC fiber

systems. There are "lateral" and "medial" efferent systems

of descending fibers. The two systems differ in a number of

morphologically and presumably functionally distinct ways



(Spoendlin, 1988; Warr, 1988). The lateral and medial

efferent olivary cell bodies have also been positively

identified by retrograde transport investigations using HRP

in the cat (Adams, 1983; Spangler and Henkel, 1982; Warr,

1975; 1978; 1980; Warr, White and Nyffeler, 1982; Warr et

al., 1986), rat (White, 1984; White and Warr, 1983), guinea

pig (Strutz, 1981; Strutz and Bielenberg, 1984; Strutz and

Spatz, 1980; Thompson, Cortez and Igarashi, 1984),

chinchilla (Bianchi and Salvi, 1990) and primate

(Strominger, Silver, Truscott and Goldstein, 1981; Thompson

et al., 1984). With the added results from investigations

employing anterograde axonal transport of tritiated amino

acids (Brown, 1985a ; 1985b; 1987b; Guinan et al., 1983;

1984; Liberman, 1982; Liberman and Brown, 1985; 1986;

Robertson, 1984; Warr, 1978; 1980; Warr and Guinan, 1979;

Warr et al., 1986), and fluorescent tracers (Robertson, Cole

and Harvey, 1987), it is now well established that the

medial group of descending efferent OC axons project to the

basal and circumnuclear regions of the cochlear outer hair

cells. The lateral efferent fiber division, on the other

hand, projects to dendrites of Type I ganglion cells,

innervating the inner hair cells (IHCs) in the mammalian

cochlea (e.g. Warr, 1988).

Organization of Efferent OC Nuclei: A conglomerate of

smaller cell groups identified as either "periolivary

nuclei", or as "nuclei of the trapezoid body" surround the

larger principal SOC nuclei (e.g. Aitkin, Irvine and



Webster, 1984; Boudreau and Tsuchitani, 1970; Caird and

Klinke, 1983; Elverland, 1978; Goldberg and Brown, 1968;

Harrison and Feldman, 1970; Harrison and Howe, 1974b;

Morest, 1968; 1983; Stotler, 1953; Tsuchitani, 1977; 1978;

Warr, 1969; 1972; 1975; 1978; 1980; 1982). *These small-cell

clusters are the locus of origin of the two morphologically

distinct efferent axon bundles which differ with respect to:

a) the size of their perikarya of origin (Adams, 1983; Osen

et al., 1984; Spoendlin, 1988; Strutz and Bielenberg, 1984;

Warr, 1972; 1975; 1978; 1980; Warr and Guinan, 1979; White,

1983; White and Warr, 1983); b) their specific loci of

origin (Osen et al., 1984; Strutz and Spatz, 1980; Warr,

1972; 1975; 1978; 1980; Warr and Guinan, 1979) ; c) their

postsynaptic targets within the cochlea (Guinan et al.,

1983; Warr, 1978; 1980; Warr and Guinan, 1979); d) their

preferred side of projection (Guinan et al., 1983; 1984;

Warr, 1978; 1980); and (e) their pattern of development

(Ginzberg and Morest, 1983; 1984; Pujol, 1985; Pujol,

Carlier and Devigne, 1978; 1979; Pujol, Carlier and Lenoir,

1980; Whitehead, 1986).

The Lateral And Medial Efferent Systems

Lateral Efferent System: The lateral group of efferent

OC nuclei lie in close proximity to (i.e. on the margins),

or directly within the LSO as in rodent species such as

rats, mice, guinea pigs, and chinchillas (Altschuler,

Parakkal and Fex, 1983; Bianchi and Salvi, 1990; Osen et
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al., 1984; Osen and Roth, 1969 ; Robertson et al., 1987;

White and Warr, 1983). In the cat and in some (i. e. Strutz,

1981; Strutz and Bielenberg, 1984; Strutz and Spatz, 1980),

but not all reports in the guinea pig (i.e. Altschuler et

al., 1983; Bianchi and Salvi, 1990; Robertson et al., 1987),

lateral efferent cell bodies are predominantly concentrated

within: the dorsolateral hilus (H), within the dorsal and

dorsolateral periolivary nuclei (DPO and DLPO), and within

the lateral nucleus of the trapezoid body (LNTB) (see: Osen

et al., 1984; Osen and Roth, 1969; Spangler and Warr, 1991;

Warr, 1975; 1978; 1980; Warr et al., 1986) *. The lateral

efferent OC nuclei together with the principal auditory

nuclei of the SOC are schematically depicted below in

Illustration 2.

The location of the LSO hilus was discussed earlier. As

depicted in Illustration 2, the DPO nucleus is located

dorsal and slightly medial to the LSO, while the DLPO

nucleus is located dorsal and just lateral to the S-segment.

These two small nuclei are separated by fibers entering and

leaving the dorsal hilus. In the cat, the LNTB is bounded

ventromedially by the VNTB, and consists of a dense plexus

of cell bodies, dendrites and afferent collaterals that lie

in close proximity to the ventral border of the LSO. The

boundaries between the LNTB and the non-olivocochlear ven

* The dorsolateral periolivary nucleus (DLPO) has also been
referred to as the anterolateral periolivary nucleus. The
lateral nucleus of the trapezoid body (LNTB) is sometimes
referred to as the posterior periolivary nucleus, or as the
lateral preolivary nucleus.
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I11ustration 2

Highly schematized frontal view i 11ustrating the
distribution of lateral efferent Olivocochlear nuclei
(vertical 1 y hatched) of the brainstem superior olivary
complex. The 1ateral efferent nuclei DPO, DLPO, Hilus (H),
and LNTB are shown together with the primary Olivary nuclei
(LSO, MSO and MNTB) on the right. Only the principal olivary
nuclei are shoun on the 1eft.
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trolateral periolivary nuclei (VLPO) are poorly defined

(e.g. Adams, 1983; Boudreau and Tsuchitani, 1970; Elverland,

1978; Goldberg and Brown, 1968; Guinan et al., 1972b;

Harrison and Howe, 1974b; Osen et al., 1984; Tsuchitani,

1977; Warr, 1975; 1978; Warr et al., 1986).

Medial Efferent System: Medial efferent OC perikarya

are generally larger than lateral efferent cell bodies and

are multipolar or radiate in shape (Adams, 1983; Morest,

1968; Osen et al., 1984; Osen and Roth, 1969; Warr, 1972;

1975; 1978; 1980; White, 1984; White and Warr, 1983). In the

cat, guinea pig and chinchilla, medial OC fibers originate

from the cell bodies located: a) within the dorsomedial and

ventromedial periolivary nuclei of the MSO (DMPO and VMPO);

and b) from within the medial and ventral nuclei (MNTB and

VNTB, respectively) of the trapezoid body (Osen et al.,

1984; Osen and Roth, 1969; Strutz, 1981; Strutz and Spatz,

1980; Thompson et al., 1984; Warr, 1972; 1975; 1978; 1980;

Warr et al., 1986). Both the medial and the lateral efferent

OC nuclei together with the primary auditory nuclei of the

SOC are schematically shown in Illustration 3.

The MNTB is a major component of the ascending auditory

pathway, having major projections to the LSO (e.g. Gacek,

1972; Morest, 1968; Stotler, 1953). The MNTB therefore plays

a dual role in the auditory system since it also contributes

descending efferent fiber bundles as part of the medial

efferent OC system (e.g. Warr, 1975; 1968). The MNTB lies

ventromedial to the MSO, within and slightly dorsal to the
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I11ustration 3

Highly schematized frontal view i 11ustrating the medial
efferent olivocochlear nuclei MNTB, DMPO, VMPO, and VNTB
(double vertical hatched) together with the principal nuclei
(LSO, MSO and MNTB) of the brainstem superior olivary
complex depicted at the 1eft. As in I11ustration 2, the
1ateral efferent nuclei DPO, DLPO, Hilus (H) and LNTB
(single vertical hatched) are shoun together with the
principal olivary nuclei at the right.
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fiber bundles of the trapezoid body (Goldberg and Brown,

1968; Harrison and Howe, 1974b; Morest, 1968; Osen et al.,

1984; Stotler, 1953). Within the MNTB, the large scattered

stellate cells (also referred to as multipolar or radiate

cells) sampling a wide range of CFs (Morest, 1968; Osen et

al., 1984; Stotler, 1953; Tsuchitani, 1978; Warr, 1982) are

important since they project many descending fibers into the

medial efferent OC system (e.g. Warr, 1975; 1988).

The DMPO ("retro-olivary nucleus" of Rasmussen, 1946)

is a major contributing source of the crossed medial OC

system (Warr, 1975). It is located just lateral to the

abducens nerve rootlets dorsal to the MNTB and dorsomedial

to the MSO. The VMPO nucleus is positioned directly ventral

to the MSO, lateral to the MNTB and dorsal to the VNTB. The

VNTB lies ventral to the MSO and VMPO and ventrolateral to

the MNTB (e.g. Guinan et al., 1972b; Harrison and Feldman,

1970; Harrison and Howe, 1974b; Morest, 1968; Warr, 1975;

Warr et al., 1986). In the rat and mouse, medial OC

perikarya are confined to the more rostral region of the

VNTB (Osen et al., 1984; white, 1984; White and Warr, 1983).

In primates, the overall distribution of medial OC neurons

is similar to the distribution observed in cats (Strominger

et al., 1981; Thompson, et al., 1984). The locations of the

medial efferent nuclei (MNTB, DMPO, VMPO, and VNTB) are

schematically depicted in the above Illustration 3.
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Terminal Distribution Of Descending

Olivocochlear (OC) Fibers

General Fiber Pathways: The course of descending

efferent OC fibers originally described by Rasmussen (1946;

1953) has been confirmed and is well documented (e.g.

Arneson and Osen, 1984; Godfrey, Park and Ross, 1984; Osen

et al., 1984; Warr et al., 1986; White and Warr, 1983). In

general, OC fibers pass dorsally from their cell bodies

through the reticular formation to the floor of the fourth

ventricle. Together with the crossed vestibular efferents,

OC axons form a compact bundle just ventral to the anterior

end of the facial nerve genu. In the cat, the region where

efferent fibers pass is about 8 to 12mm rostro-lateral to

the obex (Galambos, 1956). At that location, fibers destined

to travel ipsilaterally veer laterally, coursing through or

around the descending facial nerve root or its genu (knee).

Those fibers destined to cross the midline toward the

contralateral cochlea, turn medialward to join with

uncrossed OC and vestibular fibers. Lateral to the genu near

the dorsal border of the descending root of the trigeminal

nerve, axons from the ipsilateral vestibular efferents join

with crossed and uncrossed OC fibers, and together with the

crossed vestibular efferents course beneath the vestibular

nuclei to the dorsal aspect of the trigeminal tract (Iurato,

1974). Continuing laterally as a well-defined bundle within

the vestibular nerve root, efferent fibers pass the rostral

pole of the ventral cochlear nucleus (VCN) and send
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collateral projections into the cochlear nuclear complex

before exiting from the brainstem with the vestibular nerve

(Osen and Roth, 1969).

Efferent fibers travel with the vestibular nerve as it

exits from the brainstem, and emerge from the inferior

surface of the distal part of the saccular ganglion. They

then enter the cochlea between the basal and second turn at

the external margin of Rosenthal’s canal and the spiral

ganglion, via the vestibulocochlear anastomosis of Oort in

the fundus of the internal auditory meatus (Arnesen and

Osen, 1984; Brown, 1987b; Iurato, 1974). Traveling with

myelinated (1.5 to 6. Opim diameter) and unmyelinated (0.1 to

1. Opim in diameter) fibers of the auditory nerve, efferent

axons pass radially among the spiral ganglion cell bodies

within Rosenthal’s canal, turn, and proceed apicalward in

the cat as 0.7 to 1.5pum fibers, and in the guinea pig as 0.2

to 2. Opim fibers of the (IGSB) intraganglionic spiral bundle

(Arnesen and Osen, 1978; 1984; Brown, 1985b; 1987b; Gacek,

1972; Liberman and Brown, 1986; Robertson, 1984; Spoendlin,

1969; 1972; 1978; 1979). In the cat, efferent fibers

traveling to the basal end of the cochlea may pass from the

anastomosis of Oort to the organ of Corti without becoming

part of the IGSB (Nomura and Schuknecht, 1965).

Turning outward from the IGSB, medial efferent fibers

lose their myelin (Brown, 1985a; Liberman and Brown, 1986),

and both medial and lateral efferent fibers travel

collectively with auditory afferent dendrites within and to
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the very edge of the osseous spiral lamina. Unlike the

efferents, the radial Type I auditory afferents remain

myelinated up to this location (Spoendlin, 1967; 1978;

1988). Efferent fibers enter the organ of Corti via the

habenula perforata (foramin nervosa) alongside the exiting

auditory afferent fibers (Lim, 1986; Smith, 1967; Spoendlin,

1967; 1978). Ten to twenty thin, unmyelinated fibers pass

through each habenular opening (Spoendlin, 1967), and each

fiber is surrounded by extensions of a single Schwann cell

situated near the ventral surface of each aperture. Schwann

cells bind the separate fibers, and serve to maintain a 2004

gap between each (Liberman, 1980b; Spoendlin, 1978). Within

the organ of Corti, all fibers remain unmyelinated, although

many increase in thickness distal to the habenular region

(Liberman, 1980b; Spoendlin, 1978).

Medial Efferent Innervation of The Cochlea: Myelinated

axons (0.5 to 2.8 pum) arise from the generally larger medial

efferent cell bodies (Arnesen and Osen, 1984; Osen et al.,

1984). Much of what is known regarding the anatomy of the

descending medial and lateral efferent fiber distributions

to the cochlea, has come from investigations in the cat.

Efferent innervation to the OHCs of each cochlea in the cat

is supplied by about 450 to 535 neurons arising from each

medial OC region (Arneson and Osen, 1984; Warr et al., 1982;

1986). Approximately 72 to 74% of those fibers travel to the

contralateral cochlea. The remaining 26 to 28% course
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ipsilaterally (Guinan et al., 1983; 1984; Warr, 1975). These

above-cited percentages have been generally consistent

across different studies in the cat (Warr, 1978; 1980; Warr

and Guinan, 1979; Warr et al., 1982; 1986). In the rat,

about 240 medial OC neurons innervate each cochlea, 64% of

which are crossed (White and Warr, 1983). In the mouse, only

about 164 medial efferent neurons innervate each cochlea,

and 123 of those (or 75%) are crossed (Campbell and Henson,

1988). In the guinea pig, about 395 medial efferent neurons

innervate each cochlea, and about 296 (75%) of those are

crossed (Robertson et al., 1987).

The Upper Tunnel-Crossing Radial Efferents: Large medial

efferent fibers lose their myelin at the IGSB (Brown, 1985a;

Liberman and Brown, 1986) and pass through the habenula with

fiber diameters (in the cat) measuring O. 3 to 0.6pm. These

unmyelinated fibers proceed to travel to the tunnel of Corti

reaching the OHCs via direct or indirect routes (Ginzberg

and Morest, 1983; 1984; Iurato et al., 1978; Liberman,

1980b; Robertson, 1984; Smith, 1975; Wright, 1975; Wright

and Preston, 1973; 1975). Increasing in diameter (to 0.6 to

1.6pum in the cat; 0.2 to 1.3 pum in the guinea pig), 5 to 10pum

from the habenular opening (Liberman, 1980b; Spoendlin,

1978), some of the larger efferent fibers destined for the

OHCs spiral apically or basally within the ISB for distances

of 50 to 200pm (about 2 to 8 IHCs) or more (Brown, 1987b;

Smith, 1975; Wright, 1975) before angling 90°, and branching

into as many as 10 upper tunnel-crossing radial (TR) fibers
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(Ginzberg and Morest, 1984; Guinan et al., 1983; Liberman,

1980b; Liberman and Brown, 1985; 1986; Smith, 1975; Wright

and Preston, 1975). In the guinea pig, the larger diameter

medial efferent fibers in the apical cochlear turns

frequently travel for long distances (e.g. 100 to 600pum)

within the ISB or TSB prior to branching as upper TR fibers

(Brown, 1987b). More basally located TSB-traveling fibers

customarily project apically and basally for much shorter

distances in this species before branching as upper TR

fibers (Smith, 1975; Wright and Preston, 1975).

Many fibers exiting from the habenula also take a more

direct radial course to the tunnel of Corti without

branching (Brown, 1987b; Ginzberg and Morest, 1983; Iurato

et al., 1978 ; Robertson, 1984; Wright, 1975). These radially

traveling efferent fibers, destined for the OHCs, eventually

pass between the inner pillar cells, run across and between

the spiral traveling fibers of the TSB, and traverse the

tunnel as upper TR fibers (Bodian, 1983; Brown, 1987b;

Engstrom and Ades, 1972; Ginzberg and Morest, 1983; 1984;

Iurato et al., 1978; Spoendlin, 1967; 1969; 1972; Spoendlin

and Gacek, 1963; Wright, 1975; Wright and Preston, 1973;

1975). Possible synaptic connections between the fine (IHC)

spiral and larger (OHC) radial efferents have been observed

in the vicinity of the TSB in the cat (Liberman, 1980b) and

guinea pig (Brown, 1987b).

Course Of The Upper Tunnel Radials: Upper TR fibers cross

the tunnel of Corti midway between its floor and roof
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(Ginzberg and Morest, 1983; 1984; Spoendlin, 1967; 1969;

Spoendlin and Gacek, 1963). In comparison to the thin (0.5-

0.7pm), floor-crossing outer spiral OHC Type II afferents

(Ginzberg and Morest, 1984; Spoendlin, 1969; 1972; 1988)

entering the tunnel roughly 5 to 10pm lower (Liberman,

1980b), some upper crossing TR fiber diameters in the cat

may reach 2 to 4pm in the basal cochlear turn (Ginzberg and

Morest, 1983). Also in the cat and guinea pig, some efferent

fibers begin their crossing near the tunnel floor where they

appear to contact outer spiral afferent fibers before rising

to exit the tunnel at the mid-level of the outer pillar

cells (Brown, 1987b; Ginzberg and Morest, 1984). Indeed,

approximately 5 to 15% of radial efferents contact the Type

II outer spiral bundle afferents when first entering the

region of the OHCs (Bodian, 1983; Bodian and Gucer, 1980;

Ginzberg and Morest, 1984; Spoendlin, 1966; 1967; 1969;

1972; Spoendlin and Gacek, 1963).

Medial Efferent Innervation of OHCs: Exiting from the

tunnel, radial efferents pass through the intercellular gaps

created by the outer pillar cells, pass through the

innermost space of Nuel, and into the upper cytoplasmic

region of Deiters cells at the OHC base (Engstrom and Ades,

1972; Spoendlin, 1969). In the cat, most efferent fibers

entering the OHC region take a predominantly radial

orientation independent of their distance from the round

window (Liberman and Brown, 1986; Spoendlin, 1966). Most

radial efferent fibers (about 1pm in diameter) make contact
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with OHCs as they course through the tiny gaps created by

each cell, in each of the three rows of Deiters’ cells, and

most of these radial efferents synapse with the OHCs at

their base (e.g. Lim, 1986; Pujol and Lenoir, 1986; Smith

and Rasmussen, 1965; Spoendlin, 1966; 1988). A smaller

number terminate higher, at the circumnuclear region of the

OHC (Altschuler and Fex, 1986; Engstrom and Ades, 1972;

Iurato, 1974; Liberman and Brown, 1986; Spoendlin, 1969;

Spoendlin and Gacek, 1963; Wright and Preston, 1973).

In general, medial efferent fiber diameters are

thicker, and terminal endings are larger and more numerous

in the basal cochlear turns (Ades and Engstrom, 1975;

Engstrom and Ades, 1972; Ginzberg and Morest, 1983; Liberman

and Brown, 1986). In general, medial OC nuclei send very few

projections to the apical 20-25% of either cochlea, an area

representing frequencies below lkHz (Guinan et al., 1984;

Liberman, 1982; Warr et al., 1986). In both cat and guinea

pig, radially traveling efferent fibers often terminate

exclusively on one or two first-row OHCs (Brown, 1987b;

Liberman and Brown, 1986), while many main fiber trunks

arborize, sending spiral collateral projections into the

second and third OHC rows. Each of these collaterals may

innervate from 6 to 12 OHCs (e.g. Spoendlin, 1988) within a

restricted radius of approximately 2 to 7 hair cells.

Efferent-OHC Terminals: Medial efferent terminals are much

more abundant than the dendrites of Type II afferents, and

are always provided postsynaptically with a reticular
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network of subsurface\subsynaptic cisternae within the OHCs

(Ades and Engstrom, 1975; Engstrom and Ades, 1972; Lim,

1986; Lim, Hanamure and Ohashi, 1989; Nadol, 1983b; Pujol et

al., 1980; Smith and Rasmussen, 1965). The subsurface

cisternae consist of stacks of lamellar endoplasmic

reticulum situated just beneath the subplasma and cell

membranes of each OHC (Lim, 1986; Lim et al., 1989; Saito,

1983). A second, more basally located reticular complex of

subsynaptic cisternae can be found superimposed upon, and

connected by ducts to the laminated subsurface cisternae

that characterize the more apically oriented, non-synaptic

membrane regions of the OHC (Ades and Engstrom, 1975;

Ginzberg and Morest, 1984; Lim, 1986; Lim et al., 1989;

Pujol and Lenoir, 1986; Saito, 1983).

Lateral Efferent Innervation of The Cochlea: The

discussion now returns to the course of the lateral efferent

fibers. Lateral efferent OC perikarya give rise to

descending, unmyelinated axon fibers approximately 0.3 to

0.71/m in diameter (Arnesen and Osen, 1984; Osen et al.,

1984). In the cat, each lateral olivary region contributes

roughly 750 to 870 efferent fibers (Arneson and Osen, 1984;

Warr et al., 1982; 1986). Approximately 89 to 91% of those

fibers are destined for the ipsilateral cochlear IHC region.

The remaining 9 to 11% project to regions beneath the

contralateral IHCs (Guinan et al., 1983; 1984; Spoendlin,

1988; Warr, 1975). In the rat, and mouse an average of 240
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and 311 lateral OC neurons innervate each cochlea,

respectively (Campbell and Henson, 1988; White and Warr,

1983). While the uncrossed: crossed lateral efferent fiber

ratio in the cat is about 5:1, lateral OC fibers in the rat

and mouse are exclusively uncrossed (Campbell and Henson,

1988; Warr, 1975; 1978; 1980; Warr et al., 1982; 1986). In

the guinea pig, all but approximately a dozen out of the

much larger number (839 to 977) of lateral efferent fibers

are uncrossed (Robertson et al., 1987; Strutz and

Bielenberg, 1984).

Inner Spiral Bundle (ISB): The fine-diameter, unmyelinated

lateral OC (spiral) efferent fibers entering the organ of

Corti exhibit diameters of 0.1 to 0.6pum in the cat, and 0.17

to 0.9pum in the guinea pig. Upon entry, most (84%) travel

about 150 to 200pm (60 to 300pum in the guinea pig) to their

IHC target areas, and branch with collaterals traveling

unidirectionally in an apical or basalward direction beneath

the IHCs, as a densely packed and tangled inner spiral

bundle (Ades and Engstrom, 1975; Brown, 1985b; 1987b;

Engstrom and Ades, 1972; Ginzberg and Morest, 1983; 1984;

Iurato et al., 1978; Liberman, 1980b; Lim, 1986; Spoendlin,

1978; 1988; Wright, 1975). In the cat, the inner spiral

bundle (ISB) appears to distribute more fibers basally

(Spoendlin, 1979), and often appears as several distinct

bundles of fine spiral efferents. Also in the cat, a small

number of fine diameter ISB efferent fibers frequently

branch and spiral bidirectionally for distances of 500 to
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600pm, or the span of about 70-80 IHCs (Ginzberg and Morest,

1983; 1984). In the guinea pig, a small number (16%) of thin

bidirectional lateral efferents can take a spiral course

within the ISB for distances of >1mm (Brown, 1987b; Smith,

1975; Wright and Preston, 1973). In both the cat and guinea

pig, the fine spiral fibers may bifurcate to very thin

diameters, often passing radially between the inner pillar

cells (Liberman, 1980b). Traveling from the ISB into the

tunnel of Corti, these fine diameter efferents often resume

their spiral course for extended distances, forming the

fascicles (bundles) of the tunnel spiral bundle (TSB)

(Brown, 1987b; Ginzberg and Morest, 1983; 1984; Iurato et

al., 1978; Lim, 1986; Smith, 1975; Wright, 1975; Wright and

Preston, 1973; 1975).

Tunnel Spiral Bundle (TSB): The closely spaced efferent

fiber fascicles entering the TSB from the ISB typically form

recurring loops, encircling one or two inner pillar cells

before returning to the ISB (Brown, 1987b; Ginzberg and

Morest, 1984; Iurato et al., 1978; Wright and Preston, 1973;

1975; Smith, 1975). The TSB also consists of radial fiber

bundles that persistently loop apically and/or basally for

distances of 30 to 50 IHCs in all turns of the cochlea

(Wright and Preston, 1973). The fine diameter efferent

fibers of the TSB travel within, but never cross, the tunnel

of Corti, and run adjacent to the inner tunnel wall surface

formed by the tunnel side of inner pillar cell bodies

(Brown, 1987b; Ginzberg and Morest, 1984; Liberman, 1980b;
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Lim, 1986; Wright, 1975; Wright and Preston, 1973; 1975).

Fiber fascicles of the TSB course 21 to 23 pum above the

tunnel floor (Liberman, 1980b), loop around the inner pillar

cells, and end exclusively within the IHC region together

with fibers of the ISB (Brown, 1987b; Ginzberg and Morest,

1983; Wright, 1975; Wright and Preston, 1975).

Summary: Lateral efferent cell bodies in the brain stem

of the cat send bilateral terminal fiber projections

exclusively to the cochlear Type I dendrites, located near

the IHC base and the fibers are predominantly ipsilateral

(uncrossed). Medial efferent neurons give rise to bilateral,

and predominantly crossed fiber projections traveling to the

cochlea, that preferentially terminate upon the OHCs (e.g.

Warr, 1988). Indeed, the distribution pattern of descending

efferent input to the cochlea, mirrors the pattern of

ascending projections from the cochlea to the lateral and

medial efferent nuclei within the brainstem (see: Spangler

and Warr, 1991). That is to say, ascending auditory input is

predominantly ipsilateral to the lateral efferent cells of

origin, while medial brainstem nuclei receive bilateral, but

predominantly contralateral auditory input (see also: Adams

and Warr, 1976; Aitkin et al., 1984; Boudreau and

Tsuchitani, 1968; 1970; Brugge and Geisler, 1978; Cant and

Casseday, 1986; Cant and Morest, 1984; Goldberg and Brown,

1968; Guinan et al., 1972b; Harrison and Feldman, 1970;

Harrison and Irving, 1966; Kane, 1977; Morest, 1968;

Spangler, Warr and Henkel, 1984; Spangler et al., 1985;
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Summary
distributions
efferent OC systems

Table of anatomical

TABLE 1.

characteristics
for the separate descending media1 and lateral

in the cat. Data are taken from various

and fiber

input

sources (i.e. Guinan et al., 1983; 1984; Warr, 1978; 1980;
Warr and Guinan, 1979; Warr et al., 1982; 1986).

CHARACTERISTIC LATERAL MEDIAL

fiber O.3 to O. 711M 0.5 to 2.811M
diameter

myelinated 2 INO yeS

number of 750 to 870 | 450 to 535

descending fibers |
% ipsilateral 89 to 91% | 26 to 28% |
% contralateral 9 to 1.1% 72 to 74% |
% contribution

to a given cochlea: 58% 42%

%ipsilateral : 50 to 54% 10 to 13%
%contralateral: 4 to 8% 29 to 32%

Cochlear Type I Base & Circum
target Auditory nuclear OHC

Fibers regions

Cochleotopic
projection

ipsilateral : uniform & relatively
relatively diffuse

precise mid-range

contralateral: Converging relatively
Cochlear diffuse

skewed basally
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Stotler, 1953; Tolbert et al., 1982; Tsuchitani, 1977; 1978;

1983; Thompson and Thompson, 1987; Tolbert et al., 1982;

Warr, 1966; 1969; 1972; 1982).

There is, therefore, an approximate 2.5:1 ratio of

crossed to uncrossed medial fibers in the cat, a 3:1 ratio

in guinea pigs, a 2:1 ratio in rats, and a larger 4:1 ratio

in primates. The uncrossed/crossed ratio of lateral efferent

fibers is 5:1 in cats and is 3:2 in primates. Taken together

with the virtually absolute uncrossed to crossed lateral

efferent ratios in rodents, it is apparent that the lateral

efferent neurons which are mostly uncrossed, comprise the

largest group of cochlear efferents in all species analyzed

thus far (Bianchi and Salvi, 1990; Campbell and Henson,

1988; Robertson et al., 1987; Strominger et al., 1981;

Strutz and Bielenberg, 1984; Thompson, et al., 1984; Warr,

1975; 1978; 1980; 1982; Warr et al., 1979; 1982; 1986; White

and Warr, 1983). For the purpose of illustration, some of

the anatomical and physiological properties of the lateral

and medial efferent systems in the cat are summarized above

in Table 1.

Lateral Efferent Innervation of Type I Afferents

Overview: Beneath the IHCs, both efferent and afferent

neurons form a densely packed network of unmyelinated,

spiral and radially-oriented fibers (Ginzberg and Morest,

1983; 1984; Iurato, 1974; Liberman, 1980a; 1980b; 1982;

Liberman and Oliver, 1984; Spoendlin, 1978; 1979). Traveling

through this network of fibers are the Type I radial (IHC)
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afferents, the Type II outer spiral (OHC) afferents, the

large (radial) medial efferents destined for the OHCs, and

the finer diameter, spiral efferents of the ISB and TSB that

terminate primarily within the IHC region. In the cat and

guinea pig, each fine-diameter lateral spiral efferent

fiber, and its collaterals, exhibit numerous *en-passant’

swellings, making terminal axo-dendritic contacts with at

least two radial (Type I) afferent dendrites (Brown, 1987b;

Liberman, 1980b). The lateral efferent terminal endings, 0.8

to 1.5pum in diameter, are very rarely observed making direct

contact with IHCs in adult species (e.g. Liberman, 1980b;

Nadol, 1983a). Indeed, the disappearance of direct IHC

synapses is one of the few changes occurring at the IHC

level during mammalian synaptogenesis (e.g. Ginzberg and

Morest, 1984; Pujol, 1985; Pujol et al., 1978; 1979; 1980;

Pujol and Lenoir, 1986; Whitehead, 1986). Synaptic contacts

made by these spiral lateral efferents, OCCUlrS at

postsynaptic regions on the Type I dendrites identified by

frequent constrictions and postsynaptic densities (Ginzberg

and Morest, 1984; Liberman, 1980b; Pujol et al., 1980; Pujol

and Lenoir, 1986).

A brief categorical description of the primary Type I

radial afferent fibers is prerequisite to a summary of

lateral efferent patterns of axodendritic innervation, and

to the possible understanding of lateral efferent function.

Additional mention will be made regarding the poorly

understood auditory Type II spiral afferents also known to
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innervate the OHCs (e.g. Brown, 1987a; Santi, 1988;

Schwartz, 1986; Spoendlin, 1972; 1978; 1979; 1988). Below,

therefore is a short description of the afferent auditory

fibers which innervate the cochlea, integrated with a

categorical description of the lateral efferent innervation

of primary Type I afferents.

Segregation of Axodendritic Contacts: Type I auditory

cell bodies (within the spiral ganglia) are relatively large

(12-20pum), and are surrounded by a compact myelin sheath.

They give rise to fibers with 2 to 3pm diameters, peripheral

processes with 1pm diameters, and are numerous in mammalian

species (e.g. Schwartz, 1986; Spoendlin, 1988). Indeed, they

comprise at least 95% of the total number of afferent fibers

(e.g. Santi, 1988; Schwartz, 1986; Spoendlin, 1972; 1978;

1988). Therefore, Type I fibers constitute approximately 95%

of the auditory afferent fibers totaling: 36,000 in humans,

50,000 to 60,000 in cats, and 15,000 to 20, 000 in rats (see:

Schwartz, 1986; Spoendlin, 1972; 1978; 1988). Type I fibers

usually contact single IHCs, with one synapse per fiber, and

each IHC is contacted by about 20 Type I fibers (Liberman

and Oliver, 1984; Schwartz, 1986; Spoendlin, 1972; 1978;

1988).

Type I Fiber Segregation: Within a given CF region of

the organ of Corti, three functional groups of radial

afferent fibers have been distinguished both in cats and

chinchillas. Existing evidence further indicates that each

IHC is contacted by about 20 Type I afferents, belonging to
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all three functional categories (Liberman and Oliver, 1984).

The Type I fiber segregation is based upon fiber diameter,

mitochondrial density, IHC synaptic complexity, synaptic

location, and spontaneous discharge rate (Evans and Palmer,

1980; Harrison, 1988; Javel, 1986; Liberman, 1978; 1980a;

1980b; 1982; 1988b; Liberman and Oliver, 1984; Nadol, 1983a;

Salvi, Henderson, Hamernik and Ahroon, 1983). In general,

spontaneous discharge rate (SDR) can range from near 0, to

120 spikes/second. A Type I radial afferent exhibiting

relatively higher rates of spontaneous discharge will also

tend to exhibit a relatively lower threshold, a relatively

higher maximum discharge rate, and a relatively narrower

dynamic range (within 20 to 50dB SL, seldom exceeding 40 to

50dB SL) in response to an auditory stimulus (Evans and

Palmer, 1980; Harrison, 1988; Javel, 1986; Liberman, 1978;

1988b; Salvi et al., 1983; Shofner and Sachs, 1986).

Lateral Efferent Innervation of Pillar-Oriented Fibers: Most

(about 60%) Type I radial afferents have relatively large

diameter axons (0.3 to 1.3 pum), high mitochondria densities,

small synaptic endings, and relatively simple IHC synaptic

junctions. These units, which contact the lateral (inner

pillar) side of the IHCs, exhibit low thresholds (0 to 10dB

SPL) and high (>18 to ~200/spikes/sec.) SDRs, distributed

around a mean of 50 to 60/sec. with only a few exhibiting

SDRs in excess of 100/sec. These higher SDR-Type I fibers

seem to comprise a homogeneous group with respect to

threshold, such that a fiber exhibiting a SDR of 100
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spikes/sec is no more or less sensitive than a frequency

matched unit exhibiting SDRs of 20 spikes/sec (Liberman,

1978; 1988b). These Type I fibers with larger diameters

contact the inner pillar side of the IHCs where the density

of afferent contacts is relatively lower and the size of the

presynaptic endings is relatively smaller (Liberman, 1980a;

1980b; 1982; Liberman and Oliver, 1984; Nadol, 1983a). The

important point to note is that each of these inner pillar

oriented Type I afferent fibers receive from 1 to 35

(Mean=11) synaptic contacts from the spiral, fine diameter

lateral efferent fibers, as demonstrated in the cat

(Liberman, 1980b).

Lateral Efferent Innervation of Modiolar-Oriented Fibers:

The remaining 40% of radial Type I afferent fibers are

characterized by lower SDRs, higher thresholds, smaller

fiber diameters (0.1 to 0.8pum), and a lower density of

mitochondria. While many high SDR fibers in the auditory

nerve saturate at levels 20 to 30dBSL, many of the remaining

fibers with lower SDRs can exhibit dynamic ranges in excess

of 60 to 70dB SL (Evans and Palmer, 1980; Liberman, 1988b;

Sachs and Abbas, 1974; Salvi et al., 1983). Collectively,

these Type I fibers contact the modiolar-oriented surface of

each IHC, where the overall synaptic density is greater and

the relative size of the presynaptic endings is larger

(Liberman, 1980a; 1980b; 1982; Liberman and Oliver, 1984;

Nadol, 1983a).
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Approximately 67% of modiolar-oriented units (or 25 to

30% of the total) exhibit intermediate SDRs (<18

spikes/sec.), intermediate thresholds (10 to 200B SPL), and

make relatively simple synaptic contacts with IHCs

(Liberman, 1978; 1980a; 1982). Important here is that each

of these receives from 1 to 32 (Mean=10) lateral efferent

synapses per dendrite. The remaining 33% of modiolar

oriented Type I afferents (or 10 to 15% of the total) are

extremely mitochondria-poor, exhibiting relatively complex

synaptic IHC junctions, marked by additional patches of

specialized pre- and postsynaptic membrane apposing

exceptionally long and narrow synaptic densities (Liberman,

1980a; 1980b; 1982; Pujol and Lenoir, 1986). These

mitochondria-poor fibers usually exhibit low SDRs (<0.5

spikes/sec) and high thresholds, ranging from 20 to 800 B

greater than low-threshold high SDR units (Liberman, 1978;

1980a; 1980b; 1982; 1988b). Fibers in this third SDR

category are more heterogeneous as a group than high or

medium SDR fibers, with respect to their thresholds, which

may span a range of more than 50dB. This range is 20 to 803B

greater than the range exhibited by low threshold units

(Liberman, 1978; 1988b). The dendrites of these neurons are

contacted by 7 to 32 (Mean=20) lateral efferent synapses per

fiber (Liberman, 1980b), or twice as many synapses as the

more abundant inner pillar-oriented fibers.

These observations of the lateral efferent innervation

of Type I fibers (Liberman, 1980b) were made from samples
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obtained from near the cochlear base. Such evidence strongly

suggests that where more lateral efferent synapses exist,

there is also less Type I activity. This further suggests

that tonic activity in lateral efferents may modulate

(through inhibition) both the sensitivity and spontaneous

discharge activity of Type I auditory fibers (Liberman,

1988b; 1990). Unfortunately, there are apparently no

published reports giving the number of efferent synapses in

the IHC region as a function of position along the length of

the cochlea.

Type II Afferent Neurons: Before concluding, some

mention should be made with respect to the smaller, and

mostly unmyelinated Type II spiral ganglion cells (e.g.

Brown, 1987a; Santi, 1988; Schwartz, 1986; Spoendlin, 1972;

1978; 1979; 1988). In most mammalian species, the Type II

neurons are 8-12pm and less numerous (about 5% of the total)

that the Type I afferents (Santi, 1988; Schwartz, 1986;

Spoendlin, 1988). Upon crossing at the lower extremes of the

tunnel (of Corti), fibers from these neurons reach the OHCs,

and give rise to the outer spiral fibers of the cochlea.

Each outer spiral afferent fiber, usually less than 0.5pum in

diameter, then arborizes and innervates about 10 (5 to 28)

OHCs (Brown, 1987a; Schwartz, 1986; Spoendlin, 1972; 1978;

1979; 1988).
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Physiology And Function of The Efferent System

Auditory Effects Of Efferent Activation

Overview: Although a comprehensive picture of the role

played by the efferent OC system in hearing has yet to

emerge, it is generally accepted that activation of medial

efferent fibers leads to the suppression of gross neural

responses, and modifies both the spontaneous and driven

discharge rates of single auditory units. Medial efferent

activation also simultaneously alters other stimulus

dependent potentials recorded from the periphery, as well as

some cochlear resting potentials. Below is a short

description of some of these auditory potentials, and a

brief account of their susceptibility to medial efferent

activation.

The Compound Action Potential (CAP)

The auditory nerve compound action potential (CAP) is a

series of volume-conducted neural responses, representing

extracellular current sources (outward) and (inward) current

sinks (e.g. Buchwald, 1983; Dallos, 1973; Davis, 1976;

Martin, 1985). It is well established that the size of the

auditory nerve compound action potential reflects the extent

of overall (whole nerve) activity and synchronization in

response to an auditory stimulus. The response consists of

the complex sum of the all-or-none discharges (voltages)

initiated by the activation of single auditory neurons

(units) which primarily innervate the basal turn of the
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cochlear organ of Corti (Dallos, 1973; Davis, 1976;

Glasscock, Jackson and Josey, 1981; Glattke, 1983; Jacobson,

1985; Moller, 1983b; Moller and Jannetta, 1982; 1985; Moore,

1983; Sohmer, 1989).

The CAP has two pronounced negative peaks, N1 and N2.

These first and second negative N1 and N2 peaks of the

auditory nerve compound action potential reflect neural

activity of the auditory periphery and lower brainstem,

respectively. In most mammalian species (including human),

the amplitude of N1 represents neural activity and

synchronization coincident with the onset discharges

produced by single units within the auditory nerve in the

periphery (Moller, 1983b ; Moller and Jannetta, 1982; 1985;

Sohmer, 1989; Starr and Zaaroor, 1990; Wada and Starr,

1983a; 1983b; 1983c). The magnitude of N2 in rodents

coincides with the discharge level of neurons located within

the region nearer to the ipsilateral cochlear nucleus and

contralaterally, in areas such as the superior olivary

complex that receive input from the trapezoid body (Wada and

Starr, 1983a; 1983b; 1983c).

It is also well established that the whole nerve CAP is

best obtained in response to broadband or high frequency

filtered transients, such as clicks or tone pips,

respectively (e.g. Davis, 1976; Glasscock et al., 1981;

Glattke, 1983; Jacobson, 1985; Moller, 1983a; 1985; Moore,

1983; Sohmer, 1989; Stockard and Stockard, 1983) having very

abrupt, Or instantaneous rise times. Owing to the



36

distribution of frequencies along the basilar membrane, a

suprathreshold broadband transient stimulus such as a click,

will primarily activate those fibers tuned to higher

frequencies (Davis, 1976; Glasscock et al., 1981; Glattke,

1983; Moller, 1985; Sohmer, 1989), and therefore the CAP

response will be dominated by neurons that innervate the

cochlear base. Due to basilar membrane mechanics, single

units with lower CF units found within the more apical

cochlear turns, will respond too asynchronously to clicks to

contribute effectively to the CAP (e.g. Glattke, 1983;

Moller, 1983b; Moller and Jannetta, 1982; 1985; Sohmer,

1989).

Latency Of The CAP Response: Latency of the CAP

response is defined as the time interval between the

stimulus onset and the onset or peak of the response (i.e.

Durrant and Wolfe, 1991; Glattke, 1983). The travel time of

the peak response on the basilar membrane (from base to

apex) contributes greatly to the total latency of the CAP

response, and therefore, to the latency of both peaks in the

CAP. Latency is therefore largely a cochlear manifestation

in healthy subjects (Eggermont, 1983; Glattke, 1983;

Jacobson, 1985; Moller, 1985; Salvi et al., 1983). The CAP

latency is also restricted by cochlear (hair cell) and

neural transduction time, and therefore, is never less than

about 1 to 1.5msec (Durrant and Wolfe, 1991; Glattke, 1983).

When a broadband click stimulus is presented at near

threshold intensities, the preferred resonating properties
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of the earphone as well as the low pass resonant filtering

action of the middle ear apparatus result in an emphasis

upon mid-frequencies (about 1 or 2kHz) of the broadband

stimulus (Eggermont, 1983; Moller, 1983a; Weber, 1983). This

generally results in a basilar membrane response exhibiting

a moderately longer latency (Eggermont, 1983; Glattke, 1983;

Jacobson, 1985; Sohmer, 1989).

It is well known that in the normal ear, the latencies

of the CAP peaks also depend upon the stimulus intensity

(e.g. Dallos, 1973; Davis, 1976; Durrant and Wolfe, 1991;

Glasscock et al., 1981; Jacobson, 1985; Moller, 1985; Moore,

1983; Sohmer, 1989; Stockard and Stockard, 1983). As the

sound pressure level (SPL) of a broadband click stimulus

increases, more of the higher frequency energy (of the

stimulus) becomes dominant (Durrant and Wolfe, 1991;

Glattke, 1983; Moller, 1983a). The energy concentrated

within the midfrequency region of the traveling wave, also

activates a wider area of the basilar membrane (towards the

base) effectively driving the neurons innervating the basal

region (Dallos, 1973; Davis, 1976; Glattke, 1983; Moller,

1983a). Absolute latency of the CAP decreases about 0.4msec

for each 10dB increase in stimulus intensity (Durrant and

Wolfe, 1991).

Amplitude of The CAP Response: As the stimulus

intensity is increased, a larger area of the basilar

membrane is displaced (e.g. Dallos, 1973; Davis, 1976). The

greater IHC transduction current, leads to a progressive
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addition (recruitment) of neurons to the response, an

increase in the overall discharge rate, and a greater number

of fibers discharging in close registration (synchronously).

Therefore, the increased amplitude of the CAP in response to

an increase in the SPL of the stimulus, is primarily a

function of the extended range of basilar membrane

displacement and the concomitant increase in neural activity

(e.g. Dallos, 1973; Davis, 1976; Durrant and Wolfe, 1991;

Glattke, 1983; Moller, 1983a; Salvi et al., 1983).

Nerve CAP: Galambos (1956) first demonstrated, in cats, that

electrical (shock) stimulation of the efferent fibers can

reduce the N1 and N2 amplitudes of the round window-recorded

whole nerve (compound) action potential to 75 pusec duration

clicks, in a non-noise background. In that landmark

investigation, concentric bipolar stimulating electrodes

(0.3mm gap) were positioned near the midline of the medulla

on the floor of the fourth ventricle, approximately 1cm

(+2mm) rostral to the obex, thus defining the necessary

electrode location to a block of tissue some 4X4X2mm thick.

The results obtained in the Galambos (1956) investigation

were foremost in establishing an inhibitory role for the

medial efferent system, and have since been replicated under

similar (Brown and Nuttall, 1984; Dewson, 1967; Fex, 1959;

1962; 1967) or somewhat varying conditions (Comis, 1970;

Desmedt, 1962; 1975; Desmedt and LaGrutta, 1963; Desmedt,

LaGrutta and LaGrutta, 1963; 1971; Gifford and Guinan, 1983;
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1987; Kiang, 1984; Konishi and Slepian, 1971a 1971b; Nieder

and Nieder, 1970a; Wiederhold, 1970; 1986; Wiederhold and

Kiang, 1970; Wiederhold and Peake, 1966). When the medial

efferent fibers in the cat are activated at midline, the

ratio Of the average SPL shift in N1 recorded

contralaterally, to the average shift in N1 recorded

ipsilaterally is about 2.6:1 (Gifford and Guinan, 1987).

This amount parallels to the 2. 5: 1 ratio Of

crossed: uncrossed medial efferent fibers observed in this

species (e. g. Warr et al., 1982; 1986).

The stimulus parameters for achieving optimal amplitude

reduction of the CAP are known (e.g. Desmedt, 1962; 1975;

Desmedt and LaGrutta, 1963; Desmedt et al., 1963; 1971;

Galambos, 1956; Gifford and Guinan, 1983; 1987). The degree

of neural suppression achieved by optimizing such parameters

are approximately equivalent to a 17.5 to 24 dB reduction (or

70%) in the SPL of the click or tone stimulus. This can also

equate to a 70 to 100pa V amplitude reduction, and is

optimally observed within 100 to 200msec (Desmedt, 1962;

1975; Desmedt and LaGrutta, 1963; Desmedt et al., 1963;

1971; Gifford and Guinan, 1983; 1987; Konishi and Slepian,

1971a; 1971b; Wiederhold, 1970; 1986; Wiederhold and Kiang,

1970; Wiederhold and Peake, 1966). As the sound pressure

level of the click or tone stimulus exceeds 60a B SPL, the

percentage reduction in the CAP amplitude achieved with the

same shock level begins to decline. Progressively stronger

shock intensities will eventually fail to effect N1
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amplitude as higher click or tone levels are employed

(Desmedt, 1975; Konishi and Slepian, 1971a; Wiederhold,

1986; Wiederhold and Peake, 1966). Furthermore, the N1

response to a low intensity (less than 4 OdB SL) higher

(10kHz) frequency filtered click (tone pips) is more

susceptible to medial efferent suppression than is the

auditory response to equivalent SPLs of lower-frequency

(i.e. 400 Hz) filtered clicks (Wiederhold and Peake, 1966).

In guinea pigs, CAP suppression by medial efferent

activation is greatest for tone bursts having frequencies of

4 to 6kHz (Konishi and Slepian, 1971a).

Shock stimulation of the medial efferent fibers has

very little effect on the latencies of N1 and N2 for

auditory stimuli above 25dB up to 40dB SL. At stimulus

levels below about 25dB SL, N1 latency may increase by ~ 0.3

to 0.5msec (20 pisec/dE) provided that the click stimulus is

not more than 24 dB SL (Desmedt et al., 1963; 1971; Dewson,

1967; Wiederhold, 1986).

Lateral Efferent Effects On The CAP: Gifford and Guinan

(1987) reported that selective stimulation of brainstem

nuclei falling within the lateral efferent region failed to

produce any detectable change in the CAP response to clicks.

In an earlier study, Comis (1970) reported an occasional

100pa V reduction in the round window-recorded N1 response to

100pusec clicks following the insertion of monopolar

electrodes into the outlying region dorsolateral to the

lateral limb of the LSO, within the DLPO nuclei). Whether
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the effects obtained by Comis (1970) can be attributed to a

synaptic interaction of lateral efferent fibers with Type I

primary afferents or merely to current spread from the

monopolar electrode tips into the medial efferent fiber

regions, remains uncertain.

Medial Efferent Effects on Single Auditory Units: The

principal outcome of medial efferent stimulation on Type 1

primary afferent fiber discharge rates in the absence of a

background noise stimulus, is a reduction in response to

low-moderate stimulus intensities (Fex, 1962). The

suppression observed is always greatest for lower SPLs (5 to

10dB SL up to about 30dB SL) of the auditory stimulus and

can range in SPL equivalents from 1 to 25dB. This

corresponds to a reduction in spike activity of 10 to over

94%, respectively (Gifford and Guinan, 1983; 1987; Guinan

and Gifford, 1988a; 1988b; 1988c.; Teas, Konishi and Nielsen,

1972; Wiederhold, 1970; 1986; Wiederhold and Kiang, 1970;

Winslow and Sachs, 1987). At very low (at threshold) or

higher tonal levels (i.e. 15 to 25dB SL) medial efferent

activation again reduces discharge rate (29% and 16%

respectively), though the effects are significantly reduced

(Guinan and Gifford, 1988b; Wiederhold, 1970; 1986). Indeed,

medial efferent-induced suppression of single unit activity

is generally lost at stimulus levels at or above about 30

40dB SL (Gifford and Guinan, 1983; Guinan and Gifford,

1988b; 1988 d? Wiederhold, 1970; 1986).
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Medial efferent stimulation also produces a 15 to 40%

suppression in spontaneous discharge activity (Guinan and

Gifford, 1988a; 1988c.; Wiederhold and Kiang, 1970) and a 12

to 14 dB threshold shift (Guinan and Gifford, 1988 d) for

primary auditory fibers. At the fiber’s characteristic

frequency, medial efferent stimulation also reduces the

sharpness of auditory fiber tuning (Q10) by 7 to 31%, and

(Q20) by 14.5%, for fibers exhibiting high rates of

spontaneous discharge (Guinan and Gifford, 1988d ;

Wiederhold, 1970; 1986). The general results obtained from

investigations of medial efferent activation on gross neural

potentials, and on the firing rates of single auditory units

(e.g. Fex, 1962; Gifford and Guinan, 1983; Guinan and

Gifford, 1988a; 1988b; 1988c.; 1988d; Teas et al., 1972;

Wiederhold, 1970; 1986; Wiederhold and Kiang, 1970) are

summarized below in Table 2.

The Cochlear Microphonic (CM)

The cochlear microphonic (CM) is an extracellular,

frequency- and intensity-dependent manifestation of a

response to sound generated predominantly by OHCs (Dallos,

1981; 1984; Dallos, Billone, Durrant and Raynor, 1972;

Dallos and Wang, 1974; Moller, 1983a; Sellick and Russell,

1980; Pickles, 1988; Wang and Dallos, 1972), and is

proportional to the instantaneous displacement pattern of

the basilar membrane at the recording electrode location.

The CM therefore exhibits no measurable latency between the
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time of arrival of a stimulus within the cochlea (~1.30pusec.),

and its onset (Glattke, 1983).

It is well accepted (i.e. Glattke, 1983; Pickles, 1988)

that the CM is proportional to the transduction current

passing through each individual hair cell (Corey and

Hudspeth, 1979a; 1983a; Hudspeth, 1982). Consequently, the

CM is an alternating current (AC) potential without a true

threshold, that appears to follow the waveform of the

stimulus (Dallos, 1973; 1981; 1984; Dallos et al., 1972;

Dallos and Cheatham, 1976; Sellick and Russell, 1980). The

mammalian CM has therefore been used reliably as an assay of

the integrity of the mechanoelectric transduction currents

at the apex of the OHCs, located within the first cochlear

turn (i. e. Dallos, 1973; Honrubia & Ward, 1969; 1970;

Patuzzi and Thompson, 1991; Patuzzi, Yates and Johnstone,

1989; Sohmer, 1989; Yates, Geisler, Patuzzi and Johnstone,

1989).

Effects of Medial Efferent Activation on The CM: In

contrast to an observed suppression of neural activity,

electrical stimulation of the medial efferent bundle

potentiates the amplitude of an intracochlear (Gans, 1977;

Konishi and Slepian, 1971a; 1971b; Mountain, Geisler and

Hubbard, 1980; Teas et al., 1972) or round window-recorded

CM by as much as 13 to 16p.V, which is about a 30% change

(Brown and Nuttall, 1984; Desmedt, 1962; Desmedt et al.,

1971; Dewson, 1967; Fex, 1959; 1962; 1967; Gifford and

Guinan, 1987; Wiederhold, 1986; Wiederhold and Peake, 1966)
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or an equivalent SPL of approximately 3-6dB, though much

greater (175puV) effects have also been reported (Konishi,

1972).

The parameters producing optimal CM enhancement by

medial efferent stimulation are known and are similar or

identical to those producing maximal neural changes (e.g.

Brown and Nuttall, 1984; (Desmedt, 1962; Desmedt et al.,

1971; Dewson, 1967; Fex, 1959; 1962; 1967; Konishi, 1972;

Konishi and Slepian, 1971a; 1971b; Teas et al., 1972;

Wiederhold, 1986; Wiederhold and Peake, 1966). In guinea

pigs, CM enhancement following medial efferent activation is

greatest (3 dB) for 1kHz tone bursts, and is not observed at

tone burst frequencies much above 5 kHz (Konishi and Slepian,

1971a; 1971b; Teas et al., 1972).

The Summating Potential (SP)

Another stimulus-dependent extracellular potential that
has been attributed to endolymphatic transduction current

shunting through both the OHCs and IHCs (Dallos, 1981; 1984;

Dallos and Cheatham, 1976; Dallos and Wang, 1974; Glasscock

et al., 1981; Moller, 1983a; Pickles, 1988) appears as a

small-i.e. < 0.05 to 0.51, V when round window recorded

negative shift in the baseline of the recorded signal. The

summating potential (SPT) is thought to represent a

negative, direct current deviation in the scala media

(Johnstone and Johnstone, 1966; Pickles, 1988) relative to

the more positive shift produced by the depolarizing direct
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current within hair cells and the scala tympani, during

acoustic stimulation (Dallos, 1973; 1984). It has been

referred to as a rectified or DC variation of the CM that,

like the CM, persists for the duration of the stimulus

(Dallos, 1973; 1984; Pickles, 1988).

The negative summating potential (SPT) can be observed

with a round window electrode, but is recorded best with an

intracochlear electrode placement. Overall, optimal

recordings are obtained when electrodes are differentially

placed (i.e. non-inverting and inverting) between the scala

vestibuli and scala tympani, respectively (Dallos, 1973;

1984; Pickles, 1988).

Medial Efferent-Induced Changes. In SPT : Fex (1959)

initially noted a modification in the round window recorded

SPT following medial efferent stimulation that was

coincident with a reduction of N1 and augmentation of the

CM. In general, activation of the medial efferent system

leads to a reduction (or an approximate 100pa V positive

shift) in the amplitude of the SPT.

Hair Cell Potentials

The resting potentials from (unstimulated) mammalian

outer and inner hair cells tend to be unequal. The OHC

resting membrane potential is -70m V (range = -60 to -80mV)

and is roughly double the -30 to -45mV potential recorded

from the IHCs (Dallos, 1973; 1981; 1985a ; 1985b; 1986;

Gitter et al., 1986; Nuttall, 1986; Pickles, 1988; Russell
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and Sellick, 1978; 1983; Santos-Sacchi, 1988; Sellick and

Russell, 1980). Lower IHC resting potentials (-67mV.) have

also been reported (Kros and Crawford, 1989). It may be

possible that the comparatively lower IHC resting membrane

potential is the result of a greater continuous flow of

transduction current (K" or ca”) into the hair cell across

the apical hair cell surface (Hudspeth, 1983; 1985; 1986;

Lewis and Hudspeth, 1983a) generating the spontaneous

release of neurotransmitter, and producing spontaneous

discharge activity in Type I fibers (Nuttall, 1986). When

stimulated with tone bursts near their CF, both an AC and a

positive DC potential (Nuttall, 1986; Patuzzi and Sellick,

1983) can be recorded from within both inner and outer hair

cells (Pickles, 1988).

Medial Efferent Effects on IHC Potentials: The

magnitude of the IHC depolarizing DC and AC potentials are

reduced by activation of the medial efferent fibers, which

is equivalent to a tonal stimulus reduction of roughly 9.5

to 24 dB SPL (Brown and Nuttall, 1984; Brown et al., 1983a;

Nuttall, 1986). Maximum suppression is often observed at low

to moderate tonal stimulus levels (50dB SPL or less) at the

CF of the hair cell, and is less effective at higher

stimulus levels, where IHC output is nearly saturated.

Another outcome of stimulating the medial efferents is the

reduction in IHC sensitivity. IHC sensitivity is reversibly

reduced by an amount roughly 5dB to 17dB SPL. In addition to

a reduction in IHC sensitivity, the IHC Q10 is reversibly
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reduced by as much as 333 following stimulation of the

medial efferent fibers (Brown and Nuttall, 1984; Brown et
al., 1983a; Nuttall, 1986).

The Endocochlear Potential (EP)

When a microelectrode enters the fluid-filled Space of

the mammalian scala media, a static, direct current (DC)

Pºtential having a relative magnitude of approximately +80
to +100mv is recorded (e.g. Dallos, 1973; 1984; Desmedt and

Robertson, 1975; Konishi and Kelsey, 1973; Pickles, 1988;

Salt and Konishi, 1986; salt and Thalmann, 1988; santi,

1988). It is well accepted that the high positivity of this
*ndocochlear potential (EP) is the direct result of an

especially high concentration (about 30x that of perilymph)
* Potassium cations (K*) in the cochlear endolymph (e.g.

Anniko and Wroblewski, 1986; Ashmore, 1991; Konishi and
Kelsey, 1973; Marcus, 1986; Pickles, 1988; Santi, 1988;
*ith, Lowry and Wu, 1954; Salt and Konishi, 1986; salt and

Thalmann, 1988), and that a high endolymphatic K*
*ntration is critical for maintaining normal cochlear

function (e.g. Konishi, Kelsey and Singleton, 1966; Pickles,

1988; Russell, 1983; Santi, 1988; Tasaki and Spyropoulos,
1959).

Considerable evidence indicates that the low levels of

Na", *nd high levels of endolymphatic K* are maintained by

active *eostatic mechanisms located primarily within the
*ia vascularis (e.g. Anniko and Wroblewski, 1986; Marcus,
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1986; Pickles 1988; Smith et al., 1954). The EP polarizes

the apical surface of the IHCs in mammals. When combined

with the intracellular IHC resting potential, both are

believed to form the major driving force which moves current

into the cell (Dallos, 1973; 1984; Mountain, 1986; Pickles,

1988; Santos-Sacchi, 1988), and potassium (K*) ions carry

the apical hair cell transduction current in vertebrate

species (e.g. Corey and Hudspeth, 1979a; Brownell, Zidanic

and Spirou, 1986; Dallos, 1973; 1981; Gitter et al., 1986;

Gitter and Zenner, 1988; Hudspeth, 1983; 1985; 1986; Lewis

and Hudspeth, 1983a; Nuttall, 1986; Pickles, 1988; Santos

Sacchi, 1988; Zenner, 1986a ; 1986b).

Results from wide range of investigations (Brown et

al., 1983b; Nuttall, 1984; 1985; Sewell, 1984a: 1984b) have

all suggested an important role for the EP in regulating

frequency selectivity and the sensitivity of IHCs, via

alterations in electrochemical transduction Currents

(Mountain, 1986; Nuttall, 1986). Lowering the EP also

produces an elevated auditory nerve threshold (Sewell,

1984a) and reduces spontaneous discharge rates in single

auditory fibers >100 fold (Liberman and Dodds, 1984a:

Sewell, 1984b).

Medial Efferent Effects. On The EP: Activation of medial

efferent fibers will alter cochlear resting potentials like

the EP (Brown and Nuttall, 1984; Desmedt and Robertson,

1975; Fex, 1962; 1967; Gifford and Guinan, 1987; Konishi and

slepian, 1971a; 1971b; Mountain et al., 1980; Teas et al.,
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1972). Medial efferent activation produces anywhere from a

0.75, to a 4-6mV (or a 6 to 7%) drop from 80mV in a scala

media-recorded EP. The suppression develops relatively

slowly (over 200msec) beginning 10 to 40msec after the onset

of the stimulus, and exhibits a recovery-time course similar

to the effects on the N1, CM and SP following medial

efferent stimulation (e.g. Gifford and Guinan, 1987).

Cochlear Distortion Products

When two tones of frequencies fl and f2 where f3-fl are

presented simultaneously to the ear, distortion products, or

'combination tones’ are generated in the cochlea at

frequencies m■ 1 + nf2, and can be recorded from the external

auditory meatus, the round window, or from single auditory

units (Brown and Kemp, 1984; Buunen and Rhode, 1978; Gibian

and Kim, 1982; Javel, 1986; Kemp and Brown, 1984; Pickles,

1988; Kiang, 1984; Kim et al., 1980; Mountain, 1986; Rhode,

1984; Siegel and Kim, 1982; Siegel et al., 1982).

These combination tones can be attributed to the

intrinsic mechanical nonlinear properties of the cochlea

(e.g. Buunen and Rhode, 1978; Gibian and Kim, 1982; Glattke

and Kujawa 1991; Javel, 1986; Kim, Molnar and Matthews,

1980; Pickles, 1988; Rhode, 1984; Siegel, Kim and Molnar,

1982). Though many exist, some combination tones are more

salient than others. The second-order combination tones, or

distortion products, consist of the difference (f2 - fl) and

summation tones (f2 + f1), with the difference tone the more
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salient (Javel, 1986), and consequently the most

investigated. Similarly, there are third-order combination

tones consisting of 2f1 + f2, 2f1 - f2., 2fa + f1, and 2fa +
*1. The 2f1 - f2 combination tone, the so-called "cubic

difference tone", is the most salient and most studied (e.g.

Buunen and Rhode, 1978; Glattke and Kujawa, 1991; Javel,

1986; Pickles, 1988; Rhode, 1984). In general, cochlear and

neural responses to the second order and cubic difference

tone distortion °omponents behave as though tones at the

distortion frequencies were actually introduced as separate

*imuli along with their primaries, fl and f2 (Buunen and

Rhode, 1978; Dallos, 1981; Glattke and Kujawa, 1991); Javel,

1986; Kim et al., 1980; Siegel et al., 1982). Depending upon

their frequency and intensity, the cubic and second order

*fference tone can range from 15 to 45dB below the SPL of

the fl and *2 primary frequencies (Buunen and Rhode, 1978;

Kim et al., 1980; Mountain, 1980; siegel and Kim, 1982).

*al Errerent Effects Qn Cochlear Distortion Products:

*lation of the medial efferent fibers alters the second

order (f2 - fl) and cubic difference tone (2f1 - f2)
*dulation-distortion components recorded from the

*** (Mountain, 1980, (Siegel and Kim, 1982)). For

instance, "edial efferent stimulation can lead to a 20 to

66% *tude reduction in the second order difference tone

*istortion product (700Hz), for primary (f1 and f2)

*requencies of 8.0 and 8.7 kHz, respectively, recorded from
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the outer ear canal (Mountain, 1980). The general results

obtained from investigations of medial efferent activation

on cochlear potentials, are summarized below in Table 2.
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TABLE 2

Summary table of medial efferent effects on the cochlear and
neural activity in mammalian species, as presented in the
text.

MEDIAL MAGNITUDE OF DIRECT SUPPORTING
EFFERENT EFFECT EFFECT EVIDENCE

Distortion 20 to 66% Mountain, 1980
Products reduction

$ IHC DC Potential 9.5–24 dB equival. Broun & Nutta11, 1984

{ IHC Tuning 5 to 17d5 Or 33% Broun & Nutta11, 1984

10011V Konishi & Slepian,
4. SP– reduction 1971b.

Fex, 1959

Broun & Nutta11, 1984
f CM 13 to 1611V or 30% Wiederhold, 1986.

3 to 6dB equiv. Wiederhold & Peake,
1966

4–6mV; or 6 to 7% Gifford & Guinan,
4 EP reduction 1987

Konishi, 1972

Galambos, 1956;
70 to 10011V Gifford & Guinan,

or 70% reduction 1983; 1987
$ N1 17.5 to 24dB Wiederhold, 1970; 1986

equivalent Wiederhold & Peake,
1966

Guinan & Gifford,
$ Single Unit 15 to 40% 1988a; 1988c;

SDR reduction Wiederhold & Kiang,
1970.

* Single Unit 12.3 to 14.3dB Guinan & Gifford,
Threshold shift 1988a; 1988d.

W. Single Unit 7 to 31% Wiederhold, 1970; 1986
Tuning reduction Guinan & Gifford,

1988d.

Single Unit
iven Discharge

"-

29%
94%
the
16%

at threshold
or 25dB at
rising phase
at plateau

Guinan & Gifford,
1988b; Wiederhold,
1970; Wiederhold &

Kiang, 1970.
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CHAPTER 2

Medial And Lateral Efferent Neurotransmitters

Overview: There is considerable evidence in support of

acetylcholine (ACh) as a neurotransmitter for both the

lateral and medial divisions of the descending efferent

system (e.g. Altschuler and Fex, 1986; Bledsoe, 1986;

Bledsoe et al., 1988; Eybalin and Altschuler, 1990; Eybalin

and Pujol, 1987; Gacek, 1972; Godfrey, Wiet and Ross, 1986;

Guth and Melamed, 1982; Klinke, 1981; 1986; Wenthold, 1980).

There are as yet no published reports demonstrating the
presence of ACh in presynaptic efferent vesicles, though

much Of the evidence in support Of an efferent

neurotransmitter role for ACh has been inferred from the

presence of associated enzymatic neurochemicals, such as

acetylcholinesterase (AChE) and choline acetyltransferase

(Ch.AT) within the cochlea.

Neurotransmitter Evidence For Ach

Within cholinergic neurons, the enzyme ChâT catalyzes

the final step in ACh synthesis, the acetylation of choline

with acetyl coenzyme-A (e.g. Cooper et al., 1986; Lefkowitz,

Hoffman and Taylor, 1990; Weiner and Taylor, 1985). Since

ChâT serves no other known biochemical function (Cooper et

al., 1986) it is generally regarded as a reliable indicator

of cholinergic activity, and its presence within the

perikarya, axon and axon terminals of neurons is widely

accepted as unequivocal evidence for the production of ACh
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(Altschuler and Fex, 1986; Cuello and Sofroniew, 1984;

Eckenstein and Sofroniew, 1983; Fex and Altschuler, 1985;

1986; Godfrey et al., 1986; Morley, Farley and Javel, 1985;

Schwartz, 1985a).

Histochemical investigations in the guinea pig (Fex and

Wenthold, 1976; Godfrey et al., 1986), cat (Jasser and Guth,

1973; Wiet, Godfrey, Dunn and Ross, 1989) and rat (Eybalin

and Altschuler, 1990; Eybalin and Pujol, 1987; Godfrey et

al., 1984; Godfrey, Park, Dunn and Ross, 1982; Godfrey and

Ross, 1985; Godfrey et al., 1986; Wiet, Godfrey, Ross and

Dunn, 1986) have demonstrated high levels of the choline

specific enzyme ChâT within the descending medial and

lateral efferent fiber bundles, and medial and lateral

fibers within the organ of Corti. In rats, the activity

level of ChâT within the organ of Corti is more than 10X

higher than the average ChâT activity found either in whole

brain, or in non-neural cochlear structures in that species.

Indeed, cochlear/efferent fiber levels of ChàT are

equivalent to values obtained for the facial nucleus and

nerve root (Godfrey and Ross, 1985; Godfrey et al., 1982;

1984; 1986). Total transection of the efferent fibers leads

to a significant peripheral depletion of ChâT (Guth, Jasser

and Daigneault, 1972; Jasser and Guth, 1973) that exceeds

90% by 2 post-operative days, and is complete by 7 days

(Godfrey et al., 1982; 1984; 1986; Godfrey and Ross, 1985;

Wiet et al., 1986) suggesting that all ChâT activity within

the organ of Corti can be attributed to the efferent OC
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system. Indeed, immunoreactivity to ChaT is not observed in

the organ of Corti following complete transection of the

cochlear efferent bundle (Altschuler, Kachar, Rubio,

Parakkal and Fex, 1985b).

Immunocytochemical investigations conducted in rats and

guinea pigs also demonstrate ChâT immunoreactivity within

both the lateral and medial efferent cells of origin

(Altschuler et al., 1984a). High levels are detected within

the organ of Corti in fibers and terminals ascribed to the

efferent system (Altschuler and Fex, 1986; Altschuler et

al., 1985b; Eybalin and Pujol, 1984a: Fex and Altschuler,

1985; 1986). For example, ChâT immunoreactivity is observed

within: (a) the inner and tunnel spiral bundles; (b) puncta

(patches) near the IHC bases; (c) the tunnel crossing

fibers; and (d) within large puncta at the OHC base and

circumnuclear OHC region (Altschuler and Fex, 1986;

Altschuler et al., 1985b, Eybalin and Pujol, 1984a: 1987;

Fex and Altschuler, 1985; 1986; Pujol and Lenoir, 1986).

Other investigations employing immunoelectron microscopy in

the rat cochlea have demonstrated axodendritic

immunoreactive varicosities presynaptic to IHCs. Axosomatic

densities presynaptic to OHCs are also immunostained for

ChâT, within the lateral and medial efferent fibers and

terminals, respectively (Eybalin and Altschuler, 1990;

Eybalin and Pujol, 1987).

In both the guinea pig and rat, the distribution of

Ch.AT is considerably greater within the inner vs the OHC
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region (Fex and Wenthold, 1976; Godfrey and Ross, 1985;

Godfrey et al., 1986). Unlike the relatively even

distribution from the second to third cochlear turn in the

guinea pig, overall ChâT distribution in the rat cochlea is

notably enhanced within the second turn (Fex and Wenthold,

1976; Godfrey and Ross, 1985; Godfrey et al., 1986). In both

rodent species, the distribution of ChâT consistently

declines towards the cochlear apex (Eybalin and Altschuler,

1990; Fex and Wenthold, 1976; Godfrey and Ross, 1985;

Godfrey et al., 1986).

In cats, ChâT activity within the IHC region is

uniformly distributed in all 3 cochlear turns (Wiet et al.,

1989). In the guinea pig, anatomical evidence has shown that

the inner and tunnel spiral bundles of the lateral efferent

system do not extend to the cochlear apex (e.g. Wright,

1975; Wright and Preston, 1973). Similarly, cochlear ChâT

ascribed to the lateral efferent system in this species is

only observed as patches of immunoreactivity near the IHC

region in the extreme cochlear apex (Altschuler and Fex,

1986; Altschuler et al., 1985b; Fex and Altschuler, 1985;

1986).

In cats, ChâT activity within the OHC region is highest

in the first cochlear turn (Wiet et al., 1989). Consistent

with the known medial efferent innervation pattern in the

guinea pig cochlea (i. e. Brown, 1987b; Smith, 1975) is the

observation that immunoreactive puncta are found at the

basal end of the cochlea in all three OHC rows, averaging
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about nine puncta per OHC (Altschuler and Fex, 1986;

Altschuler et al., 1985b; Fex and Altschuler, 1985; 1986).

The total number of observable immunoreactive puncta,

however, progressively declines towards the cochlear apex in

this species. For example, the apicalward decline in ChâT

immunoreactive medial efferent puncta begins in the third

OHC row (1st turn), advances to the second row (2nd to 3rd

turn), and by the beginning of the fourth turn, the number

of large chat immunoreactive puncta are restricted to the
first row of OHCs (Altschuler and Fex, 1986; Altschuler et

al., 1985b; Fex and Altschuler, 1985; 1986).

These studies have all provided direct evidence for the

presence within the efferent system, of the specific enzyme

ChâT, necessary for the synthesis of ACh. These studies have

also demonstrated the existence of ChâT within presynaptic

terminals, or within close proximity to the site of presumed

efferent OC action.

In the guinea pig, electrical stimulation of the medial

efferents (2001, A, 400 shocks/sec) produces a 4-fold release

of ACh into perilymph, as indicated by recovery with push

pull perfusion pipettes (Norris and Guth, 1974; Norris, Guth

and Stockwell, 1972). Such quantities were found to be

sufficient to produce a contractile response in isolated

samples Of guinea pig ileum. Furthermore,

immunohistochemical investigations have detected the

presence of cholinergic receptors on isolated mammalian OHCs
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(Plinkert and Zenner, 1989; Zenner et al., 1989), which are

nicotinic (Canlon et al., 1990; Plinkert and Zenner, 1991;

Plinkert et al., 1991). There is also some evidence for the

existence of muscarinic M3 receptors within the organ of

Corti (Guiramand et al., 1990a; 1990b). Such evidence has

indicated that ACh is released presynaptically within the

cochlea, in amounts sufficient to produce a postsynaptic

alteration. The evidence also supports the existence of

specific postsynaptic receptors for ACh located within close

proximity to presynaptic terminals.

It was the initial investigation in the guinea pig

conducted by Gisselsson (1960) that first suggested that an

intracochlear infusion of ACh could mimic the known effects

of efferent OC activation. In that study, intracochlearly

applied ACh produced an increase in the CM amplitude

resembling the microphonic effects of efferent stimulation.

Subsequent investigations in the guinea pig have shown

that intracochlear infusion of Ach at doses between 5x107°

to 3x10"4 M (or 50 to 300puM) in combination with the anti

AChE agent (Taylor, 1990b) eserine (physostigmine) at doses

of 10 to 2011M (2x10"? M) produces a 150 to 2001, V increase in

the amplitude of the basal promontory-recorded CM response

(Bobbin and Konishi, 1971; 1974). The same doses of ACh and

eserine cited above also produced a 70pi V suppression of the

basal promontory-, or intracochlear-recorded N1 potential,

elicited by low intensity tone pips, 10msec in duration
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(Bobbin and Konishi, 1971; 1974). They also produced a 25 to

30dB loss in tuning curve threshold sensitivity, together

with a 70 to 75% reduction in the (rising phase) discharge

of single auditory units. Indeed, maximal ACh effects are

observed in fibers stimulated at low (10 to 30dB SL)

stimulus intensities (Comis and Leng, 1979; Robertson and

Johnstone, 1978). Finally, ACh and eserine given at the

above-cited dose leads to a significant reduction in single

auditory fiber spontaneous discharge (Comis and Leng, 1979).

The interpretation of investigations using anti

acetylcholinesterases like eserine (Taylor, 1990b) are

complicated by the finding that AChE is involved in the

proteolytic processing of neuropeptide precursors like

proenkephalin-A (Chubb, Ranieri, White and Hodgson, 1983;

Dowton and Boelen, 1988). While intracochlear pharmacologic

investigations of putative efferent neurotransmitters have

not been conducted in the cat, intra-arterially administered

ACh at a dose of 20 to 25pig (without eserine) in one study

did produce a 25% reduction in the N1 amplitude just 30 to

35sec post-infusion in this species (Brown, Daigneault and

Pruett, 1969).

Additional evidence for cholinergic-mediated medial

efferent effects COImeS from the demonstration that

iontophoretic application of ACh to the basal synaptic

region of isolated guinea pig OHCs produces cell shortening

similar to the contractile effects produced by a

depolarizing current (Brownell et al., 1985). This ACh
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induced hair cell response was reported to develop within

approximately 33msec. It was also observed that ACh failed

to produce a response if administered at locations distal to

the basal synaptic region (Brownell et al., 1985). These

studies have all demonstrated that the direct application of

ACh in reasonable concentrations into synaptic regions of

the cochlea produces a postsynaptic response nearly

identical to the effects produced by the presumed release of

neurotransmitter, during presynaptic activation by shock

stimuli.

The enzyme AChE, which catalyzes ACh hydrolysis, is a

less specific marker for cholinergic neurons, since it is

found not only in presynaptic cholinergic neurons, but also

postsynaptically within cholinergic and non-cholinergic

neurons (Cooper et al., 1986; Cuello and Sofroniew, 1984;

Eckenstein and Sofroniew, 1983; Morley et al., 1985; Weiner

and Taylor, 1985). Indeed, AChE exhibits low substrate

specificity. As alluded to earlier, in addition to its role

in rapidly destroying extracellular ACh, it is also involved

in the proteolytic processing of neuropeptide precursors

(Chubb, Ranieri, White and Hodgson, 1983; Dowton and Boelen,

1988).

Histochemical staining for the nonspecific cholinergic

inactivating enzyme AChE in cats (Gacek, 1972; Osen et al.,

1984; Osen and Roth, 1969; Spangler and Henkel, 1982; Warr,

1975; 1978; 1980; Warr et al., 1982), rats (Godfrey et al.,
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1982; 1984; 1986; Godfrey and Ross, 1985; Osen et al., 1984;

White and Warr, 1983), mice (Osen et al., 1984), monkeys

(Thompson et al., 1984; 1986), chinchillas (Iurato, Luciano,

Pannese and Reale, 1971; Osen et al., 1984) and guinea pigs

(Altschuler et al., 1983; Brown, 1987b; Iurato et al., 1971;

Thompson et al., 1984) has revealed concentrated amounts of

AChE within the descending efferent fiber bundles and

brainstem cells of origin, and within the intraganglionic

spiral bundle (IGSB) and organ of Corti. In the guinea pig,

AChE is contained within: (a) the inner and tunnel spiral

bundles; (b) the tunnel crossing fibers; and (c) beneath the

IHCs all three rows of OHCs (Iurato et al., 1971; Brown,

1987b). The cochlear distributions of AChE and ChâT are very

similar in both the rat and guinea pig. Both AChE and ChâT

exhibit a progressively greater distribution toward the

cochlear base, and less towards the apex, with a

considerably greater distribution within the IHC vs the OHC

region (Brown, 1987b; Godfrey and Ross, 1985; Godfrey et

al., 1986). The average activity of AChE within the organ of

Corti in rats is more that 5X higher than the average AChE

activity found either in whole brain or in non-neural

cochlear structures. Indeed, cochlear efferent fiber bundle

levels of AChE are greater than AChE levels observed within

the facial nucleus and nerve root (Godfrey et al., 1982;

1984; 1986; Godfrey and Ross, 1985). These studies have

shown that a specific enzymatic mechanism exists for the

inactivation and subsequent synaptic removal of Ach
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following its presynaptic release and postsynaptic action

within the cochlea.

There is also evidence for antagonism of electrical

stimulation-induced medial efferent effects. In cats,

intracochlear perfusion of the highly specific, nicotinic

receptor blocker and snake neurotoxin, “ -bungarotoxin

(Koelle, 1975; Lefkowitz et al., 1990; Taylor, 1990c),

completely and reversibly blocks the medial efferent-induced

round window recorded changes in the EP, and N1 and CM

evoked by low intensity click stimuli (Fex and Adams, 1978).

In another investigation in cats (Galley, Klinke, Oertel,

Pause and Storch, 1973), intracochlear perfusion of a number

of nicotinic and muscarinic cholinergic antagonists

completely blocked the medial efferent-induced N1

suppression and CM potentiation. These antagonists included

the: (a) nicotinic ganglionic/neuromuscular antagonist d
tubocurarine (curare); (b) the nicotinic ganglionic blockers

hexamethonium (C6); and mecamylamine (c); the nicotinic

depolarizing neuromuscular blocker succinylcholine; (d) the

choline transport/ACh synthesis blocking agent hemicholinium

(HC-3); and (e) the muscarinic cholinergic antagonist

atropine sulfate (Brown, 1990; Cooper et al., 1986; Taylor,

1990a; 1990c ; Weiner and Taylor, 1985). In these

investigations, the reported effects: (a) began 5 to 10

minutes post-perfusion; (b) were maximally effective by 25
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minutes; and (c) were reversed by wash perfusions with

artificial perilymph (Galley et al., 1973).

In guinea pigs, cochlear perfusion into the scala

tympani with the presynaptic autoreceptor-blocking and

postsynaptic muscarinic antagonist atropine sulfate or the

In Ore potent quaternary antimuscarinic methylatropine

completely reversed the medial efferent-induced: (a) 150

175p, V augmentation in the basal cochlear promontory recorded

CM; (b) 40-60puV positive shift in the basal cochlear

promontory recorded summating potential (SPT); (c) 4-6mV

negative shift in the promontory- and scala media-recorded

EP (Konishi, 1972), or 70-80p.V suppression in the

promontory-recorded N1 (Bobbin and Konishi, 1974). Identical

results are obtained following intracochlear infusion with

the nicotinic ganglionic antagonists, decamethonium (C10)

and hexamethonium (C6), or the nicotinic ganglionic and

neuromuscular blocker d-tubocurarine (Bobbin and Konishi,

1974; Konishi, 1972). Furthermore, atropine, d-tubocurarine,

and all of the above mentioned drug effects are reversed by

an intracochlear rinse with artificial perilymph (Bobbin and

Konishi, 1974; Konishi, 1972).

There is additional evidence for antagonism of ACh

induced efferent activation effects. Anticholinergic

blockade of ACh-induced efferent effects have also been

demonstrated in guinea pigs. The addition of d-tubocurarine

to a cochlear perfusate containing ACh and eserine,

completely blocks the cholinergically-induced promontory
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recorded: (a) 150 to 2001, V amplitude increase in CM; and (b)

70p V suppression of the N1 potential (Bobbin and Konishi,

1974). Robertson and Johnstone (1978) demonstrated that d

tubocurarine added to a cochlear perfusate containing ACh

and eserine completely blocks the cholinergically-induced 25

to 30dB (SPL) loss in single unit tuning curves and threshold

sensitivity in Type I neurons recorded from the spiral

ganglia.

These studies collectively demonstrate that the

exogenous application of synthetic agents with known

pharmacological antagonistic properties at cholinergic

receptors can produce a postsynaptic blockade of efferent

effects in a predictable manner.

Neurotransmitter Evidence For Gamma (T) -Aminobutyric Acid

(GABA)

Some evidence has suggested the possibility of an

efferent neorotransmitter role for the inhibitory amino acid

(i.e. Bloom, 1990; Cooper et al., 1986 Davidoff and Hackman;

1985; Kandel, 1985a) -aminobutyric acid (GABA) (Altschuler

and Fex, 1986; Beattie and Moore, 1991; Bobbin, Ceasar and

Fallon, 1990; Drescher and Drescher, 1985; Drescher,

Drescher and Medina, 1983; Eybalin and Altschuler, 1990;

Eybalin, Parnaud, Geffard and Pujol, 1988; Fex and

Altschuler, 1984; 1985; 1986; Fex, Altschuler, Kachar,

Wenthold and Zempel, 1986; Gulley, Fex and Wenthold, 1976;

Schwartz and Ryan, 1983; 1986; Schwarz, Schwarz, Hu and
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Vincent, 1988; Thompson et al., 1986; Thompson, Cortez and

Lam, 1985). However, within the organ of Corti of both

guinea pig and rat, the relative concentrations of GABA and

enzymatic GAD-activity are actually quite low (Eybalin et

al., 1988; Fex and Wenthold, 1976), and are no higher than

concentrations found within non-neural structures of the

cochlea (Godfrey et al., 1986). Such evidence has made it is

difficult to consider GABA as an important inhibitory

neurotransmitter within the efferent system of the cochlea

in these species (Beattie and Moore, 1991; Bledsoe, 1986;

Bledsoe et al., 1988; Eybalin and Altschuler, 1990; Eybalin

et al., 1988; Godfrey et al., 1986; Guth and Melamed, 1982;

Klinke, 1981; Wenthold, 1980). For reviews see: Bledsoe,

1986; Bledsoe et al., 1988.

There is also considerable evidence that the lateral

efferent olivocochlear system employs neuroactive opioid

peptides. Therefore, what follows is a short review of this

literature.

Historical Overview of Opioid Research

Terminology: The term opioid is presently taken in a

generic sense to refer to all substances, natural or

synthetic, having opiate or morphine-like actions via their

binding to designated (opioid) receptors. Opioid also refers

to the antagonists of these substances, and to the receptors

that bind their ligands (Goldstein, 1984; Jaffe and Martin,

1990). These include morphine and the thebain derivative,
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naloxone. They also include synthetic phenylpiperidines

like: meperidine, fentanyl, sufentanil, and alfentanil

(Bovill, 1987; Jaffe and Martin, 1985; 1990) and the

synthetic benzomorphans like pentazocine, cyclazocine,

ketocyclazocine, bremazocine, and SKE-10, 047 (Chang, Hazum

and Cuatrecasas, 1981; Itzhak, 1988). The term ' opioid’ also

refers to the biologically endogenous peptides which are

opium-like in action.

Historical Perspective: Opioid peptide research was

given a great impetus by the discovery in three laboratories

of stereospecific opioid drug binding in the vertebrate

central nervous system, using tritiated ([*H]-labeled) :
naloxone (Pert and Snyder, 1973), etorphine (Simon, Hiller

and Edelman, 1973), or dihydromorphine (Terenius, 1973).

These initial discoveries introduced the possibility that

the brain possessed its own analgesic/antinociceptive

system. The identification in 1973 of opioid receptors

instituted an active search for the opioid-like ligand

endogenous to the mammalian nervous system.

This search led to the isolation and identification in

porcine brain, Of the naturally-occurring opioid

pentapeptides, methionine [Met?]- and leucine [Leu”]-
enkephalin (Hughes, 1975; Hughes, Smith, Kosterlitz,

Fothergill, Morgan and Morris, 1975). The application of

recombinant DNA biochemistry in 1979 for the

characterization of adrenocorticotropic and melanocyte

stimulating (ACTH/MSH) hormone (Nakanishi, Inoue, Kita,
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Nakamura, Chang, Cohen and Numa, 1979), and the

characterization in 1982 of opioid peptides from endocrine

tissue, resulted in the identification of three genetically

distinct opioid peptide families (Comb, Herbert and Crea,

1982a : Comb, Seeburg, Adelman, Eiden and Herbert, 1982b;

Gubler, Seeberg, Hoffman, Gage and Udenfriend, 1982;

Kakidani, Furutani, Takahashi, Noda, Morimoto, Hirose, Asai,

Inayama, Nakanishi and Numa, 1982; Noda, Furutani,

Takahashi, Toyosato, Hirose, Inayama, Nakanishi and Numa,

1982a : Noda, Teranishi, Takahashi, Toyosato, Notake,

Nakanishi and Numa, 1982b). Illustration 4 on the following

page schematically depicts the three biochemical precursors

and some of their metabolic products found within mammalian

endocrine and nervous tissue, from which the known opioid

peptides are derived. These are proopiomelanocortin (POMC) ;

proenkephalin, derived from en kephalos meaning in the head

(Hughes, 1984); and prodynorphin (proenkephalin B), derived

from the Greek word dynamis for power and endorphin, from

endogenous morphine (Frederickson, 1984; Goldstein, 1984;

Goldstein, Tachibana, Lowney, Hunkapiller and Hood, 1979).

Opioid Receptors: The term receptor is operationally

used to denote any cellular macromolecule to which a ligand

binds in order to initiate its cellular effects (Ross,

1990). Earlier investigations of opioid binding (e.g. Pert

and Snyder, 1973; Simon et al., 1973; Terenius, 1973) pri
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I 11 ustration 4

ENDOGENOUS OPIOID FAMILIES

POMC (1–264) *—B-LPH-(1-91)—º-
|-ACTH-(1–39)--|--|-LPH->| |B-endorphin (1–31).

T 0. f;
MSH MSH | | CLIP MSH | |<e.

<!-- <!-- |<!-O- <-->

[Metº I-enkephalin (1–5): f
Tyr—Gly-Gly-Phe-Met”

(inactive)

PROENKEPHALIN (A) —[Met” I–enkephalin (1–5)

(1-267) k Tyr—G1 y—Gly-Phe-Metº

sº sº-º Kº-> Kº■ º “º-e

iMet-1-enkephalin (1-8):—f
Tyr—Gly-Gly-Phe-Metº —Argº —G1y? —Leure

[Leu” I–enkephalin (1–5): Tyr—Gly-Gly-Phe-Leu

[Met? I—enkephalin (1–7):
Tyr—Gly-Gly-Phe-Metº —Argº —Phe7

PROENKEPHALIN B

PRODYNORPHIN [[ Leuº 1 -enkephalin (1–5): Tyr—Gly-Gly-Phe-Leu"(1—256)
k k !

º º º->

■ º-neoendorphin s—1-9 *–1-8-> bºr.ol-neoendorphin ::::::: k−1-17 ri■ k-e
Dynorphin-A

(MOdified from: Aki 1 et al., 1984; Dores et al., 1984;
Khachaturian et al., 1985a; Lever et al., 1983)
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marily identified the u-opioid receptor. Based originally

upon a detailed analysis of a wide spectrum of structure

activity relationships among analgesic ligands, it was

Portoghese (1967) who first proposed the existence of

multiple opioid receptor types. The pharmacological studies

of Martin (1967) and associates (Martin, Eades, Thompson,

Huppler and Gilbert, 1976) in the chronic spinal dog

preparation, later complemented and provided a more detailed

framework for this concept (Takemori and Portoghese, 1984).

Biochemical, pharmacological and anatomical evidence

has accumulated supporting the existence of at least three

general classes of opioid receptors. Brain opioid receptor

types encompass an alkaloid (morphine-like) mu (pl) receptor,

an enkephalin delta (d) receptor, and a prodynorphin

selective (ketocyclazocine) kappa (K) receptor (Chang, 1984;

Chang and Cuatrecasas, 1979; Chang et al., 1981; Goodman and

Pasternak, 1984; Goodman, Snyder, Kuhar and Young, 1980;

Hollt, 1986; Itzhak, 1988; Kosterlitz, 1985; Kosterlitz,

Lord, Paterson and Waterfield, 1980; Kosterlitz, Magnan,

Paterson and Tavani, 1981a; Kosterlitz, Paterson and Robson,

1981b; Lever, Chang and McDermed, 1983; Lord, Waterfield,

Hughes and Kosterlitz, 1977; Mansour, Khachaturian, Lewis,

Akil and Watson, 1987; Mansour, Khachaturian, Lewis, Akil

and Watson, 1988; Mansour, Lewis, Khachaturian, Akil and

Watson, 1986; Millan, 1986; Paterson, Robson and Kosterlitz,

1983; 1984). While there is no obvious endogenous opioid

family associated with the best characterized opioid
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receptor, the pi-site (Dores, Akil and Watson, 1984), there

is evidence supporting the existence of an endorphin

selective (i. e. POMC) epsilon (£) -receptor (Chang, 1984;

Goodman, Adler and Pasternak, 1988; Goodman, Houghten and

Pasternak, 1983; Houghten, Johnson and Pasternak, 1984; Law,

Loh and Li, 1979; Schulz, Wuster and Herz, 1981; Wuster,

Schulz and Herz, 1979).

Autoradiographic and immunohistochemical investigations

have revealed separate yet interacting u-, d-, K- and g

opioid receptor distributions within the rodent (e. g. Akil,

Watson, Young, Lewis, Khachaturian and Walker, 1984; Goodman

et al., 1980; 1983; 1988; Itzhak, Hiller and Simon, 1984;

Law et al., 1979; Mansour et al., 1986; 1987; 1988) cat

(Walker, Bowen, Thompson, Frascella, Lehmkuhle and Hughes,

1988), and primate CNS (Lewis, Khachaturian and Watson,

1983; Lewis, Mansour, Khachaturian, Watson and Akil, 1987;

Lewis, Mishkin, Bragin, Brown, Pert and Pert, 1981). Each

opioid precursor (Illustration 4) produces multiple

products, and each product has a range of receptor (non)

selectivities (i.e. Kosterlitz, 1985; Paterson et al., 1983;

1984). Like many other known neurotransmitters, most of

these substances (especially the enkephalins) are rapidly

metabolized (Hughes, 1975; Miller, 1983; Miller, Chang,

Cuatrecasas and Wilkinson, 1977; Paterson et al., 1984) by

peptidases (carboxy and amino) and generally, do not readily

pass the blood–brain barrier (e.g. Kosterlitz, 1985;

Zlokovic, Begley and Chain-Eliash, 1985).
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Overall Significance: There is presently little doubt

that endogenous opioid substances play an important role in

gating nociceptive sensory input (Akil, 1982; Basbaum, 1984;

Basbaum, Clanton and Fields, 1976; Basbaum and Fields, 1978;

1984; Fields and Basbaum, 1978; Millan, 1986). Their

ubiquitous distribution however, has indicated that many

other physiologic processes fall under the influence of

these neuroactive transmitter/modulators. For instance,

endogenous opioid peptides and their unique receptors have

widespread CNS distributions within the forebrain

(telencephalon; diencephalon), midbrain (mesencephalon),

hindbrain (pons; medulla), and spinal cord (Cruz and

Basbaum, 1985; Dores and Akil, 1987; Dores et al., 1984;

Elde, Hokfelt, Johansson and Terenius, 1976; Glazer and

Basbaum, 1981; 1984; Gouarderes, Cros and Quirion, 1985;

Khachaturian, Lewis, Schafer and Watson, 1985a ;

Khachaturian, Lewis, Tsou and Watson, 1985b, Khachaturian,

Lewis and Watson, 1983; Lewis et al., 1981; 1983; 1987;

Mansour et al., 1986; 1987; 1988; Watson and Akil, 1987;

Watson, Akil, Fischli, Goldstein, Zimmerman, Nilaver and van

Wimersma Greidanus, 1982a: Watson, Akil, Khachaturian, Young

and Lewis, 1984; Watson, Akil, Richard and Barchas, 1978;

Watson and Barchas, 1979; Watson, Khachaturian, Akil, Coy

and Goldstein, 1982b; Watson, Khachaturian, Coy, Taylor and

Akil, 1982c). They are also found within the PNS (Araujo and

Collier, 1987; Glazer and Basbaum, 1980; Schultzberg, 1984;

Schultzberg, Hokfelt, Lundberg, Terenius, Elfvin and Elde
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1978; Vincent, Dalsgaard, Schultzberg, Hokfelt, Christensson

and Terenius, 1984).

It is believed that their modulatory role in biologic

systems has evolved to encompass the regulation of responses

to physical and psychological stress (e.g. Akil et al.,

1984; Grossman and Rees, 1983) affect, mood, drive and

reinforcement (Herkenham and Pert, 1980; Miller and Pickel,

1980; Panksepp, 1980; 1986) and attention (Arnsten, Neville,

Hillyard, Janowsky and Segal, 1984; Arnsten, Segal, Neville,

Hillyard, Janowsky, Judd and Bloom, 1983), and to the

ultimate survival of species (Blank, Paneria and Friesen,

1979; Cicero, Schainker and Meyer, 1979). Evidence indicates

that they enhance, or fine tune the regulatory functions

exerted by other neurotransmitters or hormones (Cox, 1988;

Henderson, 1983; Leander, 1983; Mudge, Leeman and Fischbach,

1979; North, 1986; Simonds, 1988; Walker, Ghessari, Peters,

Watson, Seidah, Chretien and Akil, 1987a; Wood and Iyengar,

1988), and they appear to play a role in the filtering and

processing of sensory information, as they are quite

abundantly found within primary sensory nuclei of the

visual, auditory, olfactory and somatosensory systems (e.g.

Mansour et al., 1986; 1987; 1988; Walker et al., 1988).

Benzomorphans

Benzomorphan opioids, which include the racemic (+) and

levorotatory (-) isomers of pentazocine, cyclazocine, ethyl

ketocyclazocine (EKC), bremazocine, and SKF-10, 047, exhibit

both K-receptor agonist and pi-receptor antagonist properties
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(Cowan, 1981; Gillan, Kosterlitz and Magnan, 1981;

Kosterlitz et al., 1981b; Lahti et al., 1985; Magnan,

Paterson, Tavani and Kosterlitz, 1982). Important to the

present series of investigations, however, is the overall

distinction between benzomorphans which bind opioid

(specifically kappa), and those which bind non-opioid

receptors, such as sigma (or). As indicated below, many

dextrorotatory (+) benzomorphan isomers bind non-opioid

receptors.

Sigma Receptors; Relationship To Opioid Receptors:

Receptors that bind the benzomorphan (+)-SKF-10,047 (N-

allylnormetazocine) were originally designated as sigma (or),

and OT-receptors were once postulated as a type of opioid

receptor (Martin et al., 1976). Evidence in support of an

’ opioid CT-receptor’ was based upon behavioral studies in

animals, using the racemates of SKF-10,047 and related

benzomorphans like pentazocine and cyclazocine (Gilbert and

Martin, 1976; Martin et al., 1976). The cº-receptor was

thought to mediate the opioid-induced spectrum of behaviors

in the dog (Martin et al., 1976) referred to as canine

delirium, a condition concomitant with autonomic stimulation

(e. g. mydriasis, tachycardia and tachypnea). In humans, the

C -receptor effects of benzomorphans were thought to be

responsible for sedation and analgesia at low doses, and

psychotomimetic effects (i.e. depersonalization, paranoid

delusions, and hallucinations) at higher doses (e.g. Martin,

1967; Haertzen, 1970). Subsequent experimental evidence has
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failed, however, to support the view that OT-receptors

represent a class of opioid receptor.

To begin with, although the regional distribution of G -

receptors in some cases overlaps (McLean and Weber, 1988;

Tam, 1983; 1985), the distributions of pi-, d - and K-opioid

receptors are nevertheless distinct from those of C –

receptors. Indeed, OT-receptors seem most concentrated within

nuclei and structures associated with the expression of

motor behavior. These include cranial nerve nuclei: III, V,

VI, VII, IX and X, and also the cerebellum (Gundlach,

Largent and Snyder, 1986; McLean and Weber, 1988; Tam, 1983;

1985; Walker, Bowen, Walker, Matsumoto, de Costa and Rice,

1990).

Compared to the classic (pl.-, d - and K-) opioid

receptors, OT-receptors exhibit a reverse stereoselectivity

for opioid-like compounds. Indeed, while pi-, d- and K-opioid
receptors are characteristically enantioselective for the

levorotatory (-)-isomers of opioid agonists and antagonists

(i.e. Goldstein, 1976), the or -receptor is enantioselective

for the dextrorotatory (+)-isomers of some opioid substances

(Largent, Gundlach and Snyder, 1986b; Lahti et al., 1985;

Pert and Snyder, 1973; Su, 1981; Tam, 1983; 1985; Tam and

Cook, 1984; Walker et al., 1990; Zukin, 1982; Zukin and

Zukin, 1988). For example, the dextrorotatory isomers of

pentazocine, EKC, cyclazocine and SKF-10,047 are all devoid

of opioid receptor activity (Lahti et al., 1985; Tam, 1985;

Tiberi and Magnan, 1990; Walker et al., 1990; Zukin, 1982),
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yet are potent CT-receptor ligands. Furthermore, the CT

receptor fails to bind the pu-opioid receptor ligands:

morphine, T-endorphin, (-)-etorphine, levorphanol, and

naloxone. It also fails to bind the d-opioid receptor

ligands: [Met?]- [Leu?]-, and [D-Ala”, D-Leu-j-enkephalin
(DADLE) ; and the K-opioid receptor ligands: (-)-pentazocine,

(-)-cyclazocine, (-)-ethylketocyclazocine, ox-neoendorphin,

and dynorphin A (1-17) or B (Bowen, de Costa, Hellewell,

Thurkauf, Walker and Rice, 1990a; de Costa, Bowen,

Hellewell, Walker, Thurkauf, Jacobson and Rice, 1989;

Largent, Wikstrom, Gundlach and Snyder, 1987; Su, 1981; Tam,

1983; 1985; Tam and Cook, 1984; Tam and Zhang, 1988).

The universal u, d and K-opioid antagonist (-)-

diprenorphine (i. e. Chang, 1984; Chang et al., 1981) also

fails to bind the a■ -receptor (Tam, 1983). The prototypic

opioid antagonists, naloxone and naltrexone are also

ineffective against the agonist effects of or -receptor

ligands both in vivo (Brady, Balster and May, 1982; Iwamoto,

1981; Vaupel, 1983) and in vitro (Largent et al., 1987; Tam,

1983; 1985; Tam and Cook, 1984). Such evidence further

supports the view that the OT-receptor is non-opioid. Indeed,

the OT-receptor is often referred to as 'naloxone- or

etorphine-inaccessible’ (Su, 1981; Tam, 1983, 1985; Walker

et al., 1990). Since sensitivity to the non-specific

antagonist naloxone is an important requirement for a

receptor to be considered opioid in character (i.e. Quirion,

Chicheportiche, Contreras, Johnson, Lodge, Tam, Woods and
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Zukin, 1987) it is clear that the CT-receptor is not a type

of opioid receptor (Walker et al., 1990).

Sigma-Receptor Ligands: Of the synthetic opioid-like

compounds, many of the racemic and dextrorotatory isomers of

benzomorphans like pentazocine, cyclazocine, phenazocine,

SKF-10, 047, ethylketocyclazocine (EKC) and bremazocine

evidence the highest overall dr-receptor binding affinity

(Largent et al., 1987; Tam and Cook, 1984; Tam and Zhang,

1988; Walker et al., 1990; Zukin and Zukin, 1988). Other

potent and selective OT-receptor ligands include (+)-[*H]-3-
PPP (Gundlach et al., 1986; Largent, Gundlach and Snyder,

1986a ; 1986b; 1987; Matsumoto, Hemstreet, Lai, Thurkauf, de

Costa, Rice, Hellewell, Bowen and Walker, 1990; Walker et

al., 1990; Zukin and Zukin, 1988) and the optically pure

(+)-(*H]- (1b)-pentazocine (de Costa et al., 1989). All of

these are potently displaced by racemic and dextrorotatory

benzomorphans, while their levorotatory isomers are, of

course, without such effects.

Relationship of Sigma Receptors to Dopamine Receptors:

It had also been suggested (i.e. Martin et al., 1976) that

the sigma agonist activity of (+)-SKF-10,047 involved a

dopaminergic mechanism. Indeed, binding of the tritiated

neuroleptic butyrophenone [*H]-haloperidol is potently

displaced by the dextrorotatory OT-receptor ligand (+)-SKF

1 O, O47, as well as by the pentazocine and cylazocine

racemates (Tam and Cook, 1984). Furthermore, many other

antipsychotic drugs bind to -receptors with high affinity
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(Largent et al., 1987; Tam and Cook, 1984; Walker et al.,

1990). The neuroleptic agent, haloperidol, which is

completely devoid of opioid activity (Millan, 1989),

produces its therapeutic and extrapyramidal side effects via

blockade of dopamine (D2) receptors (e.g. Bloom, 1990;

Ellenbroek, Artz and Cools, 1991) while also exhibiting a

very high binding affinity for CT-receptors (Bowen, Moses,

Tolentino and Walker, 1990b; Largent et al., 1987; Matsumoto

et al., 1990; Su, 1981; Tam, 1983; Tam and Cook, 1984;

Walker et al., 1990).

Haloperidol has been shown to be the most potent

inhibitor of the o-receptor ligands; (+)-[*H]-skF 10,047
(Bowen et al., 1990a; Gundlach, Largent and Snyder, 1985;

Largent et al., 1986a ; 1986b; Su, 1981; Tam, 1983; 1985; Tam

and cook, 1984; Walker et al., 1990); (+)-(*H]-3-PPP
(Gundlach et al., 1986; Largent et al., 1986a ; 1986b; 1987;

Tam and Zhang, 1988; Walker et al., 1990); and the optically

pure ([*H]-1b) (+)-[*H]-pentazocine (Bowen et al., 1990a; de

Costa et al., 1989; Walker et al., 1990). Indeed, only the

optically pure ([*H]-1b)-pentazocine exhibits an affinity

for the O■ -receptor, equal to that of haloperidol (Bowen et

al., 1990a; de Costa et al., 1989). Such data might suggest

that (+)-SKF-10,047, (+)-pentazocine, or other benzomorphans

label dopamine receptors. However, additional evidence

indicates that this is not the case.

To begin with, the binding affinity of haloperidol at

the -receptor is equal to its affinity at the D2 receptor
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(Bowen et al., 1990b; Tam and Cook, 1984). The butyrophenone

neuroleptic and haloperidol-analog, spiperone (spiroperidol)

is one of the most potent dopaminergic antagonists yet

discovered, exhibiting a 10-fold higher affinity for D2

receptors than haloperidol (Creese, Burt and Snyder, 1978).

It has been shown however, that (+)-pentazocine displaces

[*H]-haloperidol from the guinea pig brain at least 10X more

potently than does spiperone (Tam and Cook, 1984).

Haloperidol has been shown to displace (+)-[*H]-SKF-10,047
from guinea pig brain with a potency as great as 273X that

of spiperone (Tam, 1985). Haloperidol also displaces (+)-

[*H)-3-PPP from the same tissue, 335X more potently than

does spiperone (Largent et al., 1986b). Finally, haloperidol

displaces (+)-[*H]-pentazocine binding from guinea pig brain

with a potency ~1000 times that of spiperone (Walker et al.,

1990). Such evidence strongly indicates that haloperidol

displaces cº-receptor binding, and that CT -receptors are not

dopamine receptors.

Additional evidence employing the dopamine (D2)

receptor ligand apomorphine also indicates that cº-receptors

are not a type of dopamine receptor. Apomorphine is about 25

times more potent an agonist than dopamine itself (Bloom,

1990; Creese et al., 1978). Both apomorphine and dopamine

are, however, completely devoid of Cº-receptor binding

activity (de Costa et al., 1989; Largent et al., 1987; Tam

and Cook, 1984; Walker et al., 1990). Thus it appears that

the molecular structural requirements of ligands for sigma
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and dopamine receptor activity are divergent (Largent et

al., 1987; Walker et al., 1990), and that the Cº-receptor is

not a type of dopamine receptor.

Relationship of Sigma Receptors To Phencyclidine (PCP)

Receptors: It was once believed that the sigma activities of

benzomorphan opioids were mediated through a common O Z PCP

receptor (Mendelsohn, Kalra, Johnson and Kerchner, 1985;

Miller, 1983; Zukin, 1982; Zukin and Zukin, 1981; Zukin,

Tempel, Gardner, and Zukin, 1986). The assertion that CT- and

PCP-receptors are identical was based primarily upon

receptor studies of [*H]-PCP displacement by the prototypic

sigma ligand (+)-SKF-10, O47 (i. e. Mendelsohn et al., 1985;

Tam, 1983; Zukin, 1982). Indeed, the racemic, levo- and

dextrorotatory isomers of SKF-10,047 and cyclazocine all

bind PCP receptors, albeit with very low affinity (Largent

et al., 1986a, Mendelsohn et al., 1985; Rothman, Bykov,

Newman, Jacobson, and Rice, 1988; Steinfels, Alberici, Tam

and Cook, 1988; Tam, 1983; Tam and Zhang, 1988; Zukin, 1982;

Zukin and Zukin, 1981; 1988). The potent K/or-receptor ligand

(+)-pentazocine (Gundlach et al., 1985; Largent et al.,

1986a ; Zukin and Zukin, 1988) or the highly selective and

potent cº-receptor ligand (+)-pentazocine are, however,

devoid of PCP receptor activity (Rothman et al., 1988;

Steinfels et al., 1988; Tam and Zhang, 1988; Walker et al.,

1990).

Several different classes of compounds can bind CT

receptors, including dissociative arylcyclohexylamine



80

anesthetics like the psychoactive PCP (e.g. Largent et al.,

1986a ; Mendelsohn et al., 1985; Tam, 1983; 1985; Walker et

al., 1990; Zukin and Zukin, 1988). However, while systematic

studies of PCP are generally lacking, this compound does

exhibit a much greater affinity for the PCP-receptor than it

does for the cº-receptor (Mendelsohn et al., 1985; Quirion et

al., 1987; Tam, 1983; 1985; Walker et al., 1990; Zukin et

al., 1986), on the order of 12 to 23X (Gundlach et al.,

1985; Largent et al., 1986a, Steinfels et al., 1988; Tam and

Zhang, 1988; Zukin and Zukin, 1988). Furthermore, the drug

selectivity pattern of cº-receptor ligands: (+)-[*H]-skF
10,047, (+)-[*H]-3-PPP, [*H)-haloperidol, and (+)-[*H]-1b
pentazocine differ considerably from that of [*H]-PCP,
indicating that [*H]-PCP binds different receptors (Tam,

1983; Tam and Cook, 1984; Walker et al., 1990). For example,

haloperidol potently displaces (+)-[*H]-skF 10,047 (Bowen et

al., 1990a; Gundlach et al., 1985; Largent et al., 1986a,

1986b; Su, 1981; Tam, 1983; 1985; Tam and Cook, 1984; Walker

et al., 1990), while it is weak or inactive (by a factor of

7,636 to 10,000X) against PCP-receptor binding with the

potent tritiated PCP-ligands [*H)-PCP (Tam, 1983), [*H)-MK
8 O1, or [*H]-TcP (Gundlach et al., 1985; Largent et al.,

1986a, Steinfels et al., 1988; Zukin and Zukin, 1988).

Hal operidol also displaces (+)-[*H]-1b-pentazocine on the

order of 479 to 542X more potently than does PCP (Bowen et

al. , 1990a; de Costa et al., 1989).
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The CNS distribution of receptors that bind the

(tritiated) or-receptor ligands (+)-[*H)-skF 10,047 and (+)-

[*H]-3-PPP, also differs from the distribution of sites that

bind the (tritiated) PCP-receptor ligands [*H]-PCP and [*H]-
TCP (Gundlach et al., 1985; Largent et al., 1986a , McLean

and Weber, 1988; Tam, 1983; Zukin and Zukin, 1988). Such

evidence supports the view that the sigma receptor is not

identical to the PCP-receptor site (Walker et al., 1990). A

comprehensive review of the biology and function of these

non-opioid, haloperidol-sensitive cº-receptors can be found

elsewhere (see: Walker et al., 1990).

Evidence For Opioid Peptide Activity. Within The Cochlea

Immunocytochemical Investigations

Evidence For Proenkephalin: With the aid Of

immunofluorescence immunocytochemistry, Fex and Altschuler,

(1981) were the first to report [Met?]-enkephalin-like
immunoreactivity within cochleae of guinea pigs and cats. In

both species, immunofluorescence was localized to: (1) the

unmyelinated OC efferent fibers of the intraganglionic

spiral bundle (IGSB) within the osseous spiral lamina; (2)

the efferent OC fibers traveling within the inner and ; (3)

tunnel spiral bundles; as well as; (4) the tunnel crossing

fiber bundles. Immunoreactivity was also found within

efferent fibers beneath the IHCs and within the efferent

terminals at the OHC bases in all three rows of the first

and second turns (and in the first OHC row of the third
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turn) within the organ of Corti (Altschuler and Fex, 1986;

Fex and Altschuler, 1981; 1985; 1986). Separate antisera

developed against B-LPH and B-endorphin failed, however, to

produce specific immunofluorescence (Fex and Altschuler,

1981).

Within the guinea pig cochlea, the effects of a weaker,

or more specific antiserum having less cross reactivity with

[Leu?]-enkephalin (e.g. Fex and Altschuler, 1985) than

previously observed (Fex and Altschuler, 1981) were then

compared (Altschuler, Parakkal, Rubio, Hoffman and Fex,

1984b). As previously reported (i. e. Fex and Altschuler,

1981), immunofluorescence and immunoperoxidase

immunohistochemistry (see: Fex and Altschuler, 1985; 1986)

with this less specific antiserum, labeled both lateral

(i.e. inner spiral and tunnel spiral) and medial efferent

fiber bundles, and their tracts within the cochlea

(Altschuler et al., 1984b). Immunoreactive puncta were again

observed both at the bases of the OHCs and within the

circumnuclear OHC regions, in all rows up to the third turn.

Electron microscopy of the lateral and medial efferent

terminal endings further confirmed the existence of

enkephalin-like immunoreactivity (Altschuler et al., 1984b)

over large, round, dense core vesicles commonly found

together with the smaller, clear vesicles (e.g. Pujol and

Lenoir, 1986). In the medial system, these dense

microvesicles were observed within both the smaller

circumnuclear and larger basal synaptic terminals, and in
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the latter case were distinctly apposed postsynaptically by

subsurface cisternae. Immunoreactivity was also observed

over the dense microvesicles in the lateral efferent

terminals that apposed the Type I afferent fibers

(Altschuler et al., 1984b).

Both antisera in the Altschuler et al. (1984b) study

permitted the identification of enkephalin-like-containing

lateral efferent terminals directly apposed to primary

afferent fibers. The lateral efferent fiber bundles and the

smaller circumnuclear medial efferent terminals, up to the

third and fourth cochlear turns were completely labeled

(Altschuler et al., 1984b). However, the antisera exhibiting

less cross reactivity with [Leu’l-enkephalin failed to label

the large medial efferent terminals at the base of the OHCs.

Indeed, results obtained from the pre-absorption of both

antisera with purified [Met?]- and [Leu”]-enkephalin
(Altschuler et al., 1984b; Hoffman, Rubio, Altschuler and

Fex, 1984), has strongly suggested a lack of multiply active

proenkephalin derivatives within the medial efferent

terminals which synapse at the OHC base. In fact, results

from subsequent studies conducted by these investigators

indicated that most antisera to [Met] -enkephalin only

produced immunoreactive labeling to the lateral and

circumnuclear medial efferent fibers, and failed to label

the larger group of medial efferents innervating the OHC

base (Altschuler and Fex, 1986; Altschuler et al., 1983;
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1984a: 1984b; Eybalin and Altschuler, 1990; Fex and

Altschuler, 1985; 1986).

Additional immunofluorescence and immunoperoxidase

investigations further corroborated these initial studies by

demonstrating the existence Of enkephalin-like

immunoreactivity within the lateral efferent brainstem

nuclei in rats, guinea pigs (Abou-Madi et al., 1987;

Altschuler et al., 1983; 1988), and chinchillas (Hoffman,

Hassett, Landry and Brimijoin, 1991). Both [Met?]- and

[Leu”]-enkephalin-like activity are also found within the

IGSB and in cochlear fiber bundles associated with the

lateral efferent system (Eybalin and Altschuler, 1990;

Eybalin, Cupo and Pujol, 1984; Eybalin and Pujol, 1984b;

Lehto salo, Ylikoski, Eranko, Eranko and Panula, 1984).

Consistent with previous studies, was the report that

lateral efferent enkephalin-like immunoreactivity is

greatest from the base to middle cochlear turns, gradually

diminishing toward the apex (Lehtosalo et al., 1984).

However, lateral efferent enkephalin-like immunoreactivity

extending throughout the full length of the organ of Corti

has also been reported (i.e. Eybalin et al., 1984; Eybalin

and Pujol, 1984b). Presynaptic enkephalin-like

immunoreactive terminal varicosities have been visualized

making synaptic contacts with afferent fibers within the

IGSB, and in the regions beneath the IHCs (Eybalin and

Altschuler, 1990; Eybalin et al., 1984). Enkephalin-like

immunoreactivity was not observed within any OHC regions, in
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two of these cited investigations (e.g. Eybalin et al.,

1984; Lehtosalo et al., 1984).

The octapeptide proenkephalin derivative [Met”]-
enkephalin, has additionally been localized within the

lateral efferent brainstem nuclei in rats and guinea pigs

(Abou-Madi et al., 1987). Both the hepta- and octapeptide

proenkephalin derivatives [Met? J- and [Met°]-enkephalin,
respectively, are also found within the cochlea. As

expected, these proenkephalin derivatives are found within

the IGSB and within the lateral efferent fiber bundles of

the organ of Corti (Eybalin and Altschuler, 1990; Eybalin et

al., 1984; Eybalin, Cupo and Pujol, 1985b ; Lehto salo et al.,

1984). Hepta- and octapeptide immunoreactive lateral

efferent varicosities have been visualized making synaptic

contacts with afferent fibers within the IGSB, and in the

regions beneath the IHCs (Eybalin and Altschuler, 1990;

Eybalin et al., 1984: Eybalin, Cupo and Pujol, 1985b).

Furthermore, total efferent fiber transection by evulsion of

the vestibular nerve close to the vestibulocochlear (Oorts)

anastomosis eliminates the enkephalin-like immunoreactivity

found within the cochlea (Altschuler et al., 1984b; Eybalin

and Altschuler, 1990; Hoffman et al., 1984; Hoffman, Zamir,

Rubio, Altschuler and Fex, 1985).

Evidence For Prodynorphin: The deca-, trideca- and

heptadeca-peptide prodynorphin derivatives, cº-neoendorphin,

dynorphin-B and dynorphin-A, respectively, also occur within

the brainstem superior olivary lateral efferent nuclei, in
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guinea pigs and rats (Abou-Madi et al., 1987; Altschuler et

al., 1988). Both of -neoendorphin and dynorphin-B have also

been localized to the lateral efferent (i.e. inner spiral

and tunnel spiral) fiber bundles, and terminals near the IHC

base in this species. Prodynorphin immunoreactivity has been

observed in all cochlear turns within the organ of Corti

(Altschuler, Hoffman, Reeks and Fex, 1985a). Tunnel crossing

and outer spiral fibers of the medial efferent system also

exhibit prodynorphin immunoreactivity. However,

immunoreactive labeling to both derivatives is observed only

within the medial efferent terminals which synapse at the

circumnuclear level of the OHCs. Similar to the enkephalin

like distribution described earlier, prodynorphin

immunoreactive circumnuclear OHC puncta were often seen in

the third and lower-fourth turns of the cochlear spiral

(Altschuler et al., 1985a).

Since the prodynorphin antisera used above exhibited no

CITOSS reactivity to proenkephalin derivatives, the

similarity of the prodynorphin distribution with previously

reported proenkephalin distributions strongly suggested the

co-localization of products derived from these two distinct

opioid families (Altschuler et al., 1985a). Similar to the

cochlear distribution observed for ACh, enkephalin

immunoreactivity, unlike prodynorphin immunoreactivity (i.e.

Altschuler et al., 1985a) is generally not observed at the

extreme cochlear apex (Altschuler and Fex, 1986; Fex and

Altschuler, 1981; 1985; 1986). For reviews, see: Altschuler



87

and Fex (1986); Eybalin and Altschuler (1990) ; Fex and

Altschuler (1985; 1986).

Summary: With the exception of the prodynorphin

containing efferent terminals at the circumnuclear level of

the OHCs, the available evidence has indicated that the

medial efferent system is relatively unresponsive to

proenkephalin/prodynorphin antisera, when compared to the

lateral efferent fiber system. Indeed, immunocytochemical

investigations have further suggested that the enkephalin

like immunoreactivity earlier observed in medial efferent

terminals at the base of OHCs (i.e. Altschuler et al.,

1984b; Eybalin and Pujol, 1984b; Fex and Altschuler, 1981;

Hoffman et al., 1984) may indicate the presence of some

other structurally homologous enkephalin peptide or peptides

sharing antigenic sites with methionine enkephalin (e.g.

Altschuler et al., 1984a: 1984b; Eybalin, Abou-Madi, Rossier

and Pujol, 1985a ; Eybalin and Altschuler, 1990; Hoffman et

al., 1984; Lehtosalo et al., 1984). It has even been

suggested that proenkephalin-derived opioids are completely

restricted to the lateral efferent fibers and terminals

(Eybalin et al., 1985a Lehtosalo et al., 1984).

Additional HPLC/RIA Investigations: Additional evidence

for the existence of multiple opioid neuropeptide products

within the cochlea begins with the results obtained from a

high-performance liquid chromatography (HPLC) analysis of

neuromodulator candidates within the perilymph of the guinea

pig cochlea. During exposure to wide-band noise at 80 to
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115q B SPL, [Met”)-enkephalin-like levels were significantly

elevated relative to control values obtained in quiet

(Drescher and Drescher, 1985; Drescher et al., 1983).

However, in another experiment (70, 90 and 110 dB SPL: 60

minutes exposure) there was a decrease of cochlear [Met?]-
enkephalin-like levels as a function of broadband noise

intensity (Eybalin, Rebillard, Jarry and Cupo, 1987).

In guinea pigs, [Met?]-enkephalin has also been

identified by a combined HPLC and subsequent

radioimmunoassay (RIA) analysis of whole or partial cochleae

sonicates (Eybalin, et al., 1984; Hoffman, 1986; Hoffman,

Altschuler and Fex, 1983; Hoffman et al., 1984). Also

identified, has been the pentapeptide [Leu?]-enkephalin
(Hoffman, 1986; Hoffman et al., 1984), the heptapeptide

[Met’)-enkephalin (Eybalin et al., 1984), and the

octapeptide [Met”]-enkephalin (Eybalin et al., 1985b ;

Hoffman et al., 1985). RIA of guinea pig cochlear sonicates

has also demonstrated the presence of immunoreactivity to

dynorphin-B within the cochlea (Hoffman, 1986; Hoffman et

al., 1985). Total efferent fiber transection by evulsion of

the vestibular nerve close to the vestibulocochlear (Oorts)

anastomosis eliminated the enkephalin-related peptides

identified by HPLC-RIA (Hoffman, 1986; Hoffman et al., 1984;

1985).
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Evidence That ACh Coexists With Proenkephalin And

Prodynorphin Gene Products Within Efferent Neurons

Evidence Within Lateral Efferent Neurons: In the

present context, the term 'coexistence” refers to the

presence of more than a single neuroactive substance within

a neuron, and is much more difficult to demonstrate than the

' colocalization’ of the same substances within a group of

neurons (Chan-Palay and Palay, 1984a: 1984b). Following the

initial investigation of Fex and Altschuler (1981), [Met°]-
enkephalin-like immunoreactivity was found to coexist with

immunoreactivity for AChE within the same brainstem lateral

efferent olivary cells of origin in the guinea pig

(Altschuler et al., 1983). Indeed, and more importantly,

both [Met?]- and [Met”]-enkephalin-like immunoreactivities

coexist with ChâT-immunoreactivity (Abou-Madi et al., 1987;

Altschuler et al., 1984a) within the same lateral efferent

perikarya in rats and guinea pigs (Altschuler and Fex, 1986;

Fex and Altschuler, 1985; 1986). [Met?]-enkephalin-like
immunoreactivity, however, does not coexist with AChE or

ChâT-immunoreactivities within medial efferent brainstem

olivary cells of origin (Abou-Madi et al., 1987; Altschuler

et al., 1983; 1984a: Eybalin and Altschuler, 1990). However,

proenkephalin activity has been detected within brainstem

medial efferent cell bodies of origin in gerbils (Ryan,

Simmons, Watts and Swanson, 1988).

Immunoreactivities to the prodynorphin derivatives, cº

neoendorphin and dynorphin-A have also been found to coexist
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with ChâT-immunoreactivity within the same lateral efferent

perikarya in rats and guinea pigs (Abou-Madi et al., 1987).

Furthermore, the gene products of prodynorphin synthesis: «-

neoendorphin, dynorphin-A and dynorphin-B, coexist with

enkephalin-like immunoreactivity within the same cell bodies

of lateral efferent fiber origin, within the brainstem in

guinea pigs and rats (Abou-Madi et al., 1987; Altschuler et

al., 1988). Such evidence has indicated that ACh,

enkephalins and dynorphins coexist within the lateral

efferent neurons which project their terminals into the

cochlea. Though some cell to cell variability may exist in

the respective distributions of these neuroactive substances

(Abou-Madi et al., 1987; Altschuler et al., 1988), even

their co-localization suggests potentially complex

modulatory interactions.

Evidence For Opioid Receptors Within The Cochlea

The specific opioid receptors of the mammalian efferent

system within the cochlea, are presently unknown. The

existence of opioid receptors within the cochlea has,

however, been confirmed by a nonspecific opioid binding

assay conducted in the guinea pig cochlea (Hoffman, 1986).

The possibility of the co-distribution of both u and d

cochlear receptors has some gained support from the

demonstration (Eybalin, et al., 1987) of naloxone-reversible

opioid (morphine; DAGO; DSLET; [Leu’l-enkephalin) inhibition

of adenylate cyclase within guinea pig cochlear homogenates.
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Indeed, it is well known that morphine and the pl-receptor,

as well as [Met?]- and [Leu”]-enkephalin and the d-receptor,

can be negatively coupled to adenylate cyclase (Childers,

1988; Chang, 1984; Cooper, Londos, Gill and Rodbell, 1982;

Law, Wu, Koehler and Loh, 1981; Sharma, Nirenberg and Klee,

1975; Simonds, 1988). The available evidence (Eybalin et

al., 1987) has indicated that both u and d-cochlear opioid

receptors may be coupled to the same pool of cochlear

adenylate cyclase.

The suggestion that pu- and K, or pu- and d-opioid

receptor types may be coupled to the same terminals is quite

consistent with what is presently known regarding the

distribution of opioid receptors (e.g. Egan and North, 1981;

North, 1986). Products of proenkephalin biosynthesis are

found within the cochlea, and all proenkephalin-related

opioids are known to exhibit d-receptor activity. This

activity ranges from the K-receptor-inactive pentapeptides

[Leu”]-, which are predominantly d-selective, and [Met°]-
which is slightly more potent but less selective at d

(Barnard and Demoliou-Mason, 1983; Dores et al., 1984;

Kosterlitz, 1985; Kosterlitz et al., 1981b; Paterson et al.,

1983; 1984; Zukin and Zukin, 1984), to the heptapeptide

[Met? J- and octapeptide [Met”]-enkephalins, which seem to

interact equally well at both the pi- and d-receptors (Chang,

1984; Kosterlitz, 1985; Miller, 1983; Watson et al., 1984).

Although the K-receptor has yet to be linked to

adenylate cyclase, products of prodynorphin biosynthesis are
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found within the cochlea, and these products are known to

bind K-receptors (Chavkin, James and Goldstein, 1982;

Corbett, Paterson, McKnight, Magnan and Kosterlitz, 1982;

James, Chavkin and Goldstein, 1982). Furthermore, the

coexistence of opioid derivatives within the same or

associated lateral efferent neurons additionally suggests

that K-receptors may reside pre- or postsynaptically with d

receptors within the same or adjacent neurons or structures

within the mammalian cochlea.

Overall Objectives

Virtually nothing is known regarding the function of

the lateral efferent system. It is well known that lateral

efferent neurons co-contain proenkephalin and prodynorphin

derivatives together with ACh. In spite of this, systematic

attempts to demonstrate opioid-induced modulation of

efferent activity as indexed by cochlear output employing d

or K-opioid receptor ligands, have been lacking.

The anatomical evidence reviewed earlier (Liberman,

1980b) has suggested that tonic input from lateral efferent

neurons might be required to establish or modulate or

maintain spontaneous activity levels and therefore, may

influence the sensitivities and thresholds of Type I

auditory afferent fibers (Liberman, 1988b; 1990). This

evidence further indicates that the proposed modulation via

the lateral efferent neurotransmitter ACh is inhibitory.
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Additional evidence supporting an inhibitory role for

the lateral efferent/IHC system can be gleaned from

developmental studies of stimulus-induced neural suppression

and microphonic changes occurring prior to the ontogeny of

OHCs and/or their medial efferent innervation (Pujol, 1985;

Pujol et al., 1978; 1979; 1980). Perhaps ACh serves a

hyperpolarizing role at the lateral efferent synapse.

Indeed, ACh may produce postsynaptic inhibition of Type I

afferent activity in a manner similar to the parasympathetic

inhibition observed by ACh at the preganglionic vagal

cardiac synapse, by an increased K* channel (efflux)

conductance acting through muscarinic (M2) receptors

(Lefkowitz et al., 1990; Little, 1981; Weiner & Taylor,

1985).

Experimental Hypothesis: It is hypothesized that: (a)

presynaptic (autoreceptor) K-opioid receptors modulate the

release of ACh from lateral efferent terminals, just as

presynaptic K-receptors inhibit the release of ACh onto the

postsynaptic parikarya of neurons within the guinea pig

myenteric plexus, via a direct reduction in a Catt

conductance (influx) at the presynaptic terminal (Cherubini

and North, 1985; North, 1986). Alternatively: (b) perhaps K

receptors are allosterically coupled with a macromolecular

cholinergic receptor complex, providing noncompetitive

postsynaptic antagonism of ACh (Henderson, 1983). In either

case, introduction into the cochlea of a K-opioid agonist

could act to antagonize either the presynaptic release (a) ,
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or the postsynaptic effects (b) of ACh, which are presumed

to be inhibitory. A disinhibition of Type I fibers would

result in the addition of more fibers to the overall CAP at

lower stimulus intensities (i.e lower thresholds) and

therefore to increased CAP response amplitudes.

Alternatively, many K-opioid receptor ligands have been

shown to produce postsynaptic hyperpolarization via direct

suppression of a voltage-dependent N-type ca” current. Such

effects are observed within neurons of the mouse dorsal root

ganglia (Gross and MacDonald, 1987; North, 1986; Shen and

Crain, 1990a; 1990b; Werz and MacDonald, 1985). The N-type

ca” current normally contributes both to the peak and

duration (plateau) of the postsynaptic action potential

(see: Tsien, 1987). In this case, introduction into the

cochlea of a K-opioid agonist could result in the

postsynaptic reduction of CAP amplitude.

It is difficult to predict the direction of CM effects

following the introduction into the cochlea of a K-opioid

agonist. This is partly due to the difficulty in knowing

which ion channel (s) would be effected, and In Ore

importantly, when and under what conditions the medial

efferents are naturally activated. Indeed, the medial

efferent system plays no tonic role in determining auditory

threshold sensitivity (Littman, Cullen and Bobbin, 1991;

Rajan, Robertson and Johnstone, 1990), and most medial

efferents fibers (86 to 89%) lack spontaneous activity

(Liberman and Brown, 1986; Robertson & Gummer, 1985). The
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thresholds for many (monaural) efferent fibers range 15 to

80dB above low-threshold (T 10 to 15q B) CF matched afferents

from the same ear (Cody and Johnstone, 1982a : Liberman,

1988b; Liberman and Brown, 1985; 1986; Robertson & Gummer,

1985), and most fail to respond to stimuli below 40dB SPL

(Fex, 1962; 1965; Liberman and Brown; 1986). Finally, medial

efferent fibers are not activated by short duration stimuli

such as 100pusec clicks, independent of stimulus intensity

(Liberman and Brown, 1986).

Experimental Goals: In view of these considerations,

the primary goals of the present set of investigations were

to: (a) demonstrate receptor specific opioid-mediated

changes in waves N1 and N2 of the CAP, using the K-opioid

receptor ligands like U-50488H, U-69593, (+)-pentazocine,

and (-)-pentazocine at half the dose of the racemate. The

purpose was to document the magnitude rather than the

specific duration of such effects. Another goal was ; (b) to

differentiate potential opioid effects from non-opioid, by

comparing the CAP effects of the non-opioid, optical isomer

(+)-pentazocine. A third goal was: (c) to further

characterize the active receptor as K-, and to localize such

effects to the cochlea by demonstrating a blockade of opioid

effects using a specific and potent K-receptor antagonist,

carefully and noninvasively placed upon the round window.

Finally, another goal; (d) was to compare changes in the CAP

with CM changes recorded simultaneously, in order to further

demonstrate that any effects observed following the
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administration of the K-opioid ligand (-)-pentazocine are

not due simply to changes in the overall conduction of

auditory stimuli by the middle ear system. Such evidence

would strengthen the argument that such effects are mediated

at the lateral efferent synapse. The principal dependent

measures in the experiments described below were the

amplitudes of the first and second negative peaks (N1 and

N2) of the auditory nerve compound action potential (CAP),

and the amplitude of the CM potential.

Choice of Species

The chinchilla was the mammalian species chosen for

these investigations. The chinchilla is unique among rodents

in that it has a life span of more than 20 years (Bohn,

Gruner and Harding, 1990). In healthy animals, age-related

changes in auditory function (i.e. spontaneous loss of OHCs)

at age two years is less than 1%. A comparable loss in the

number of IHCs is not observed until age 4 years in this

species. Even during their last few years of life, healthy

chinchillas exhibit only a 20% average loss in the number of

OHCs, and only a 7% loss of IHCs (Bohn et al., 1990).

Parametric studies of frequency sensitivity and selectivity

in chinchillas have used animals as old as two years of age

(e.g. Spagnoli and Saunders, 1987).

The chinchilla’s hearing capabilities are similar to

those found in humans (see: Heffner and Heffner, 1991; Moody

and Stebbins, 1986). Indeed, minimum audibility sound
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pressure (SPL) curves for both human and chinchilla obtained

in behavioral investigations, indicate hearing threshold

sensitivity greatest (i.e. within approximately 10dB SPL or

less), for the 250Hz-500Hz to 4 kHz-8 kHz range (Heffner and

Heffner, 1991; Moody and Stebbins, 1986). At the relatively

extreme frequencies of 125Hz and 16kHz in both species,

thresholds worsen to 25-30dB SPL and progressively worsen at

a greater rate, for frequencies falling below and above

those 'extremes’ (Heffner and Heffner, 1991; Moody and

Stebbins, 1986).

An electrophysiological investigation of frequency

specific, round-window-recorded whole Iner Ve action

potentials elicited by tone bursts (3 Omsec duration;

delivered 4/sec) in awake chinchillas reported thresholds of

35-40dB SPL at 1-2 kHz, and within 10–20 dB SPL for

frequencies 3kHz-8 kHz (Spagnoli and Saunders, 1987). Taken

together with additional evidence obtained from single unit

investigations in this species (Salvi et al., 1983), there

is a fairly close correspondence between behavioral

responses and whole nerve-recorded thresholds in this

species (Salvi, Ahroon, Perry, Gunnarson, and Henderson,

1982; Spagnoli and Saunders, 1987).

The chinchilla has a total of about 23,554 auditory

fibers, 95% of which have diameters of 2-4pum, with the

remaining 5% exhibiting diameters of 1-6pm (Boord and

Rasmussen, 1958). Compared to the 2 */4 to 2 */s cochlear

turns found in humans (e.g. Pickles, 1988; Salt and

!
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Thalmann, 1988), there are 3 */4 turns in the chinchilla

cochlea (Harrison and Hunter-Duvar, 1988; Santi, 1986;

1988). The total volume of cochlear endolymph and perilymph

in the chinchilla cochlea is probably close to the values of

2pul and 16pul, respectively, reported in the guinea pig

cochlea (Salt and Konishi, 1986; Salt and Thalmann, 1988).

As in most mammalian species, the efferent OC system of

the chinchilla is divided into medial and lateral pathways.

Like most other mammalian species, lateral efferent fibers

in the chinchilla project to the Type I auditory dendrites,

and primarily those innervating the ipsilateral cochlea.

Also, as expected, the medial efferent fibers project to the

OHCs, and mostly to the contralateral cochlea (Iurato, 1974;

Iurato et al., 1971; 1978). As in most rodents, lateral

efferent nuclei are contained within (rather than in close

proximity to), the brainstem LSO (Bianchi and Salvi, 1990;

Osen et al., 1984). Medial efferent fibers in the chinchilla

arise from cell bodies located within the dorsomedial and

ventromedial periolivary nuclei (DMPO and VMPO) of the

medial superior olivary region, and from within the medial

and ventral nuclei (MNTB and VNTB, respectively) of the

trapezoid body (Bianchi and Salvi, 1990; Osen et al., 1984).

The total number of medial and lateral efferent neurons

innervating each chinchilla cochlea has been reported to

range from 373 to 472, with an approximate mean value of 413

(Bianchi and Salvi, 1990). This rather low (conservative)

value, based upon an HRP investigation, can be contrasted
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with combined medial and lateral totals (for each cochlea)

observed in the mouse, rat, primate, guinea pig, and cat

(reviewed in an earlier discussion), which are approximately

475, 480, 780, 1234 and 1230-1300, respectively (e.g.

Campbell and Henson, 1988; Warr et al., 1986; Robertson et

al., 1987; Strominger et al., 1981). In the chinchilla,

approximately 334 lateral efferent neurons innervate each

cochlea. A large percentage (99%; or 331) of these are

neurons contained within the ipsilateral LSO, while only

about 1-2 (<0.1%) neurons have been observed arising from

within the contralateral LSO (Bianchi and Salvi, 1990). This

percent of uncrossed fibers is quite similar to that

reported in guinea pigs (Strutz and Bielenberg, 1984), rats

(White and Warr, 1983) and mice (Campbell and Henson, 1988).

In the chinchilla, only about 80 medial efferent

neurons innervate each cochlea. About 70% of those neurons

arise from within MSO regions on the contralateral side,

while the remaining 30% arise ipsilaterally (Bianchi and

Salvi, 1990). This medial efferent percentage of crossed

fibers (70%) reported in the chinchilla, is similar to the

73%, 64%, 75% and 75% crossed distributions observed in the

cat, rat, mouse and guinea pig, respectively, as discussed

earlier (Campbell and Henson, 1988; Guinan et al., 1983;

1984; Robertson et al., 1987; Warr, 1975; Warr, 1978; 1980;

Warr and Guinan, 1979; Warr et al., 1982; 1986; White and

Warr, 1983). Furthermore, the overall synaptic distribution

and pattern of efferent innervation within the chinchilla
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cochlea most resembles the innervation pattern observed in

the guinea pig (Iurato, 1974; Iurato et al., 1971; 1978).

As indicated in an earlier discussion, histochemical

investigations conducted in chinchillas have detected the

presence of the nonspecific, cholinergic inactivating enzyme

AChE within brainstem medial and lateral efferent nuclei

(Iurato et al., 1971; Osen et al., 1984). Both medial and

lateral efferent terminals within the chinchilla cochlea are

also selectively damaged by the choline uptake inhibitor

AF64A (Smith, Mount and Callahan, 1989). Also recall that

enkephalin-like immunoreactivity has been reported within

lateral efferent brainstem nuclei in this species (Hoffman

et al., 1991).

Background Review of Opioid Substances Employed

Morphine: Morphine effects were not investigated in the

present study. However, many descriptions of the receptor

affinities and potencies of the substances which were

employed, use morphine as a standard of comparison.

Therefore, the classic drug alkaloids such as morphine, and

related agonists (normorphine, dihydromorphine, oxymorphine,

and levorphanol) are all relatively selective for pi

receptors, and exhibit comparatively less activity ( 1%) at

other opioid receptors (Barnard and Demoliou–Mason, 1983;

Chang, 1984; Magnan et al., 1982; Paterson et al., 1983;

1984; Tam, 1985). For instance, morphine’s pu-receptor

affinity is about 90–125X greater than its affinity at d
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receptors (2% cross reactivity), and about 200-1000X greater

than its affinity (0.6% cross reactivity) at the K-receptor

(Barnard and Demoliou-Mason, 1983; Chang, 1984; Chang and

Cuatrecasas, 1979; Chang et al., 1981; Magnan et al., 1982;

Paterson et al., 1983; 1984; Robson, Paterson and

Kosterlitz, 1983).

Fentanyl: Fentanyl effects were investigated in the

present study. The binding affinity of fentanyl for the pi

receptor is similar to morphine (Paterson et al., 1983).

Fentanyl however, exhibits only a 22 fold greater affinity

for pu- over d-receptors, and a 67 fold greater affinity for

pu-over K-receptors (Magnan et al., 1982; Paterson et al.,

1983). Like the potent sufentanil, fentanyl is highly

lipophilic (Bovill, 1987; Magnan et al., 1982), and

therefore its relative potential for entering the CNS is

156X greater than morphine (Bovill, 1987). Following iv

administration, the onset of action is rapid, and the

duration of action is short (Bovill, 1987).

Fentanyl. Potency: Compared to morphine, fentanyl (0.04 to

0.17 mg/kg sc) has been reported to exert 22 to 85-fold

greater antinociception in mice (Shaw, Rourke and Burns,

1988; Upton, Sewell and Spencer, 1982), and a 70 to 100X

greater antinociception in rats (Millan, 1989). Peak

antinociceptive effects of fentanyl in rats (0.02-0. 05 mg/kg

sc) are observed within 15min post injection (Millan, 1989).

Peak antinociceptive effects of iv fentanyl (0.02mg/kg) in

rabbits is observed within 10min (Herz, Albus, Metys,
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Schubert and Teschemacher, 1970). In animals, a lethal dose

of fentanyl is usually >10 mg/kg (Bovill, 1987).

Clinically, fentanyl is 60 to 80X more potent as an

antinociceptive agent than morphine (Bovill, 1987; Jaffe and

Martin, 1990). The average duration Of fentanyl

antinociception in humans has been reported to be 1-2 hrs

and the plasma half-life (t +), defined as the duration in

hours producing a 50% clearance in plasma concentrations, is

3–4 hrs (Bovill, 1987; Jaffe and Martin, 1990; Marshall and

Longnecker, 1990). The longer t , of fentanyl, compared to -

morphine (1.5 to 2. Ohrs) is apparently due to fentanyl's

higher tissue affinity (Bovill, 1987). * *

Naloxone: Naloxone, which is a relatively selective pi

opioid-receptor antagonist was also employed in these

investigations. Naloxone exhibits about an equal binding

affinity as morphine for the pi-receptor (e.g. Barnard and

Demoliou-Mason, 1983; Chang, 1984; Jaffe and Martin, 1990;

Kosterlitz, 1985; Magnan et al., 1982; Paterson et al.,

1984; Robson et al., 1983), and is the antagonist of choice

for use in selective blockade of p-receptor-mediated effects

(Lahti et al., 1985). Unlike morphine, however, naloxone is

only about 10-30X less active at d-and K-receptors

(respectively) when compared to its affinity for pi-receptors

(e.g. Akil et al., 1984; Barnard and Demoliou-Mason, 1983;
-

Chang, 1984; Chang and Cuatrecasas, 1979; Kosterlitz, 1985;

Lahti et al., 1985; Paterson et al., 1983; 1984; Robson et

al., 1983; Tam, 1985; Tiberi and Magnan, 1990). Therefore,
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while useful as tool in generally determining the possible

involvement of opioid mechanisms, naloxone is insufficiently

selective to sort out actions mediated by subpopulations of

opioid receptors (e. g. Barnard and Demoliou-Mason, 1983;

Goldstein, 1984; Paterson et al., 1984).

Naloxone Potency: Animal studies have generally indicated

that parenteral doses of between 0.05 and 0.30mg/kg can

antagonize the antinociceptive effects produced by morphine

(Duggan and North, 1984; Martin, 1984), though much higher

doses can safely be used as well. A dose of naloxone

(1mg/kg: sc) provides effective pi-antagonist effects. A dose

of about 10mg/kg is required to achieve significant blockade

of the d-receptor, while K-receptors in animals appear

relatively insensitive to naloxone, requiring even higher

doses (Leander, 1983; Lewis et al., 1987). In humans, the

average duration of naloxone effects is 1–4 hrs, and t # is

1.1 (+ 0. 6) hrs (Bovill, 1987; Jaffe and Martin, 1990).

U-504.88H and U-69593: Two K-opioid receptor agonists

were also investigated in a limited number of animals. These

Were the K-selective, non-peptide agonists U-504.88H

(Piercey, Lahti, Schroeder, Einspahr and Barsuhn, 1982; Von

Voigtlander, Lahti and Ludens, 1983) and U-69593 (Lahti,

Mickelson, McCall and Von Voigtlander, 1985; Tiberi,

Payette, Mongeau and Magnan, 1988). Although U-504.88H is

much less potent (i.e. 63X) at the K-binding site than some

prodynorphin fragments (Kosterlitz, 1985; Paterson et al.,

1984; Tam, 1985), it exhibits up to a 120-1300X greater
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binding affinity for K- over pi-, and is devoid of d-receptor

activity (Goldstein, 1984; Kosterlitz, 1985; Lahti et al.,

1985; Lever et al., 1983; North, 1986; Paterson et al.,

1984) . U-69,593 is a more potent analog of U-50488H

exhibiting a 484X greater binding selectivity for K-,

relative to u- or d-receptors (Lahti et al., 1985). Indeed,

its affinity for KAPPA is 1.3X greater than U-50488H (Lahti

et al., 1985; Tiberi et al., 1988).

Onset Of Effects and Acceptable Doses: Both U-504.88H and U

69593 display antinociceptive activity in a variety of

assays (Chang, 1984; Lever et al., 1983; Lahti et al., 1985;

Leighton, Rodriguez, Hill and Hughes, 1988; Nagase, Narita,

Suzuki and Misawa, 1990; Piercey et al., 1982; Shaw et al.,

1988; Takemori, Ho, Naeseth and Portoghese, 1988; Von

Voigtlander et al., 1983). Peak antinociception to both heat

and pressure following U-504.88H (1.0 to 2.14 mg/kg sc) in

mice (Portoghese, Lipkowski and Takemori, 1987b), or 10mg/kg

sc in rats (Millan, 1989) can occur within 15min,

diminishing over a period of approximately 45min. Peak

antinociception following 2mg/kg U-69593 (sc) in rats has

also been observed within 15min, diminishing over a period

of about 135min (Millan, 1989).

In mice and rats, U-50488H has been investigated at sc

doses as high as 20 to 40mg/kg (Millan, 1989; Millan,

Czlonkowski, Lipkowski and Herz, 1989; Shaw et al., 1988;

Von Voigtlander et al., 1983; Von Voigtlander and Lewis,

1988), or even as high as 150.0 mg/kg (10, 20, 40, 40, 40
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mg/kg) over a 5-day period (Cowan and Murray, 1990).

Intravenous doses as high as 10mg/kg over a 30sec period

have also been used in rats (Leighton et al., 1988) . U-69593

has been administered to rats at scº doses as high as 5mg/kg

sc (Millan, 1989; Millan and Colpaert, 1990), or iv as high

as 10mg/kg within 30sec (Leighton et al., 1988).

Pentazocine: The K-opioid receptor binding effects of

pentazocine (N-dimethylallylnormetazocine) were investigated

in all three sets of experiments.

Opioid Actions: The antinociceptive (K-receptor) properties

of (+)-pentazocine reside within its (–)-isomer (e.g.

Brogden, Speight and Avery, 1973). Unfortunately, there are

no well controlled, receptor-specific binding investigations

comparing the relative K-receptor potencies of the other

benzomorphans against (+)- or (-)-pentazocine. As aiscussed
earlier, levorotatory isomers of benzomorphans typically

exhibit both K-receptor agonist and pu-receptor antagonist

properties. Levorotatory forms of pentazocine, however,

exhibit potent K-receptor agonist, and very weak pl-receptor

antagonist properties (Duthie and Nimmo, 1987; Bovill, 1987;

Brogden et al., 1973; Jaffe and Martin, 1990; Lahti et al.,

1985). Indeed, pentazocine exhibits pi-receptor activity

which is: 87X less than (+)-cyclazocine, 43X less than (+)-

bremazocine, 17X less than (-)-EKC, 13X less than (-)-

SKF10,047, and 35X less than naloxone (Tam, 1985). In fact,

pentazocine exhibits the lowest affinity for the morphine

receptor of all the benzomorphans (e.g. Lahti et al., 1985),
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and only appears to interact with * pi * at scº doses (in rats)

of about 32mg/kg (Brogden et al., 1973; Holtzman and Jewett

1972). Pentazocine is also 522X less effective than naloxone

in precipitating morphine withdrawal in dogs (Martin, 1984),

and is virtually devoid of d-receptor activity (Lahti et

al., 1985; Tam, 1985).

Sigma-Receptor Actions: (+)-Pentazocine appears to exhibit

about an equal affinity for opioid K- and non-opioid O -

receptors (Walker et al., 1990). (+)-Pentazocine in guinea

pig brain exhibits about a 53-fold higher binding affinity

for CT-, compared to (+)-SKF-10,047 (Tam, 1985; Tam and Cook,

1984), and (+)- or (+)-SKF-10, O47 in rat brain (Largent et

al., 1987; Zukin and Zukin, 1988). The cº-receptor potency

difference is even greater for (+)-pentazocine vs (+)-EKC

(Tam, 1985). A similar potency difference has been observed

for the dextrorotatory isomer (+)-pentazocine compared to

(+)-SKF-10,047, in displacing the potent C - receptor ligand

(+)-[*H]-3-PPP (Walker et al., 1990). Therefore, among the

benzomorphans, both (+)- and (+)-pentazocine exhibit the

highest overall specificity for the Cº-receptor (Tam and

Cook, 1984; Tam, 1985; Largent et al., 1987). As indicated

earlier, the levorotatory (-)-pentazocine fails to bind cº

receptors (Bowen et al., 1990a; de Costa et al., 1989).

Solubility, Potency, Onset, and Acceptable Dose: Pentazocine

is reported to be highly lipophilic relative to other

benzomorphans (Walker et al., 1990). It is well absorbed

from parenteral sites, passes the human placental barrier,
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and is rapidly metabolized (Brogden, et al., 1973; Jaffe and

Martin, 1990; Payne, 1973).

Compared to morphine, antinociception from pentazocine

reaches a higher initial peak, and declines more rapidly

(Angel, 1983; Brogden et al., 1973). Its clinical and

experimental K-receptor potency for antinociception has been

reported to vary from about one-third to one-tenth that of

morphine (Bovill, 1987; Brogden et al., 1973; Gilbert and

Martin, 1976; Martin, 1984; Payne, 1973), depending upon the

particular assay (Levine, Gordon, Taiwo and Coderre, 1988;

Shaw et al., 1988; Tyers, 1980). An antinociceptive dose of

pentazocine (TALWIN) in humans is approximately 30

60mg/70kg, or about 0.43 to 0.86mg/kg (comparable to

10mg/70kg morphine) administered parenterally (Angel, 1983;

Brogden et al., 1973; Bromm, Ganzel, Herrmann, Meier and

Scharein, 1987; Jaffe and Martin, 1990).

Peak antinociception in humans occurs within 2 to 15min

following 0.29 mg/kg iv., and within 15min to 1hr following

0.64 mg/kg (im or sc) administration (Angel, 1983; Brogden

et al., 1973; Jaffe and Martin, 1990; Payne, 1973). In

humans, the average duration of pentazocine effects can last

from 1 hour (iv) to 4-6 hrs (0.64 mg/kg; im or sc) (Brogden

et al., 1973; Jaffe and Martin, 1990). The plasma half life

(t +) in humans following iv (0.36 mg/kg) or im (0.64 mg/kg)

administration is from 2.0 to 4.6 (+ 1.0) hours respectively

(Brogden et al., 1973; Jaffe and Martin, 1990).
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Standard antinociceptive (sc) doses of pentazocine in

rats (2mg/kg) and mice (10mg/kg) have been reported

(Harkness and Wagner, 1983), as have iv. doses (5mg/kg) in

dogs (Vaupel, Nickel and Becketts, 1989). Pentazocine at

64 mg/kg (sc) may produce seizure activity in rats (Holtzman

and Jewett, 1972), however, most antinociceptive studies

have successfully employed higher doses (50-80mg/kg; sc) in

this species (Cowan, 1981; Tyers, 1980). In dogs, iv

pentazocine doses greater than 5mg/kg produce seizure

activity (Vaupel et al., 1989). The LD50 of pentazocine in

mice is reported to be 125mg/kg (sc) and 24mg/kg (iv). In

rats the LD50 is reported to be 175 (+ 36) mg/kg (sc) and

21.5mg/kg iv (Brogden et al., 1973; Windholz, Budavari,

Blumetti and Otterbein, 1983).

Nor-Binal torphimine (nor-BNI): Some of the experiments

in the present set of investigations employed the

naltrexone-derived, highly K-opioid receptor-selective

antagonist, nor-BNI (Portoghese, Lipkowski and Takemori,

1987a; 1987b; Portoghese, Nagase, Lipkowski, Larsson and

Takemori, 1988). In tests of K-receptor selectivity for

antagonism, nor-BNI exhibits a 66X greater K-receptor

preference over naloxone, and a 100 fold greater K/pu

receptor preference OVer naltrexone (Millan, 1989;

Portoghese et al., 1987b). In selectivity tests of K

receptor antagonism using EKC vs morphine or EKC vs DADLE or

DSLET, nor-BNI exhibits a 170 fold greater K/p-receptor
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affinity and a 150 fold greater K/d-receptor selectivity

(Portoghese et al., 1987a; 1988; Takemori et al., 1988).

Nor-BNI also exhibits a K-receptor binding affinity

which is 77.5X greater than U-50488H (Takemori et al.,

1988), and 20X (Tiberi and Magnan, 1990) to 44X greater than

U-69593 (Smith, Medzihradsky, Hollingsworth, de Costa, Rice

and Woods, 1990). Nor-BNI is effective at scº doses (20mg/kg)

in reducing the antinociceptive effects of U-50488H in rats

(Millan, 1989). While peak K-receptor antagonism is seen by

90min, nor-BNI antagonist activity is also apparently quite

potent 5 minutes post scº administration (Millan, 1989).
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MATERIALS And METHODS

Animals: Experiments were conducted in adult male

pigmented chinchillas (Chinchilla laniger, 43 0-666 g), 0.5 to

1.5 years of age. Animals were obtained from a local

breeder. Auditory thresholds were estimated in all

chinchillas by the use of auditory brainstem response (ABR)

recording. In these brief preliminary hearing assessments,

animals were anesthetised with an intramuscular injection of

20mg/kg Telazol (see: Hrapkiewicz, Stein and Smiler, 1989).

Far field auditory brainstem responses were elicited by

1200 clicks delivered at a rate of 68.3/sec. Stimuli were

produced by an ER-3A ceramic microphone mounted through a

form-fitting foam earplug that sealed the left external ear

canal. Bioelectric signals recorded with Grass E-2 cephalic

needle electrodes were amplified and band pass filtered from

150 to 1500 Hz (6dB/octave roll off). Twelve hundred click

evoked responses were averaged on-line.

Standard cephalic electrode positions were used in

these ABR screening procedures. That is, the positive

electrode was inserted subcutaneously at the vertex, and the

negative electrode was positioned near the nasion. A common

ground electrode was inserted into the neck musculature. ABR

electrode impedances for both active electrodes were

typically 2-5km. Far-field threshold estimates of no greater

than 40dB SPL were taken to indicate normal hearing.

Following the threshold screening procedure confirming
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reasonable hearing status, chinchillas were returned to

their cages and were allowed to recover from the anesthesia

for at least 48 hours prior to acute surgery initiating

further experimental study.

Acute Electrophysiological/Neuropharmacological Studies

Surgical Preparation: Animals were food- and water

deprived overnight prior to the surgery that initiated acute

electrophysiological experiments. Unless otherwise noted,

chinchillas were pre-anesthetized with an intramuscular dose

(50mg/kg) of the dissociative anesthetic ketamine

hydrochloride (Ketalar). With the chinchilla anesthetised,

the head and neck were sheared and the eyelids closed to

reduce corneal drying. A polyethylene tracheal tube was

introduced following a standard tracheostomy procedure, to

aid in maintaining a stable and open airway. A small-animal

positive-pressure respirator was available for assisted

ventilation in these experiments, but was not used unless

indicated in the text or Figure legends.

The right internal jugular vein was cannulated with the

aid of a stereo dissecting microscope (Wild # M-32) using

standard procedures. A zero dead-volume three-way Hamilton

stopcock valve was mounted on the end of the venous cannula

tubing. Microliter syringes were mounted as needed on this

stopcock in order to administer supplementary anesthesia,

Ringer's control solutions, and intravenous doses of

important opioid and non-opioid receptor ligands. An

additional length of PE-10 tubing also extended from the
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stopcock to a syringe mounted on a Harvard Apparatus

multispeed perfusion pump (#600-000) system located outside

of the test chamber, to maintain constant anesthetic

infusion.

A steady plane of surgical anesthesia was achieved by

weaning the chinchilla from Ketalar, and maintaining

anesthesia with sodium pentobarbital (6.5mg/ml in sterile

lactated Ringer’s solution) delivered at a constant rate of

5 to 10pul/min. Additional supplemental pentobarbital

anesthesia was occasionally required as indicated by regular

corneal and withdrawal reflex tests, and cardiac monitoring.

Heart rate was routinely monitored using the Nicolet signal

averager. At the end of each experiment, chinchillas were

euthanized via the jugular cannula with 0.1ml of Somlethal.

Surgical Exposure of The Middle Ear: Following tracheal

and venous cannulation, the animal’s left pinna was

retracted anteriorward and the skin, muscle and connective

tissue overlying the left auditory bulla, in the mastoid

region were surgically excised (see: Browning and Granich,

1978). Postauricular vessels were surgically ligated or

cauterized when necessary. With the pinna still retracted

forward, an opening into the osseous canal entrance was

created with a jewelers forceps. The thin bone of the

auditory bulla was perforated with a dental pick, and the

bulla then opened by use of a small rongeur. Through this

bulla opening, the tympanic annulus, tympanic membrane,
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cochlear base, round window, and part of the incudostapedial

joint were exposed.

With the cochlear exposure completed, the animal’s head

was placed into a restraint appliance that secured it

without compromising respiration. The pinna of the

contralateral ear was folded inward and taped to reduce

contralateral ear stimulation by ambient noise. Each animal

was maintained on a Harvard Apparatus heating blanket (30

7079) during all phases of auditory testing. Body

temperature was monitored with a rectal thermistor-probe

(Fluke #52 K/J), and maintained at a constant 35.5 to 36° C

throughout testing.

Recording Equipment: The animal preparation was placed

on a surgical table in a portable sound attenuating chamber

that was itself located within an isolated room. A click

attenuator (Grason Stadler #1292) calibrated in 1.3 +0.1 dB

steps was used to control stimulus intensities. All auditory

potentials in the experiments described below were elicited

by 100 pisec rectangular pulses generated by a Nicolet 1007A

click generator. Click stimuli were delivered at a rate of

18.3/sec for recording near-field compound action potential

(CAP) responses, and at 68.3/sec for far-field auditory

brainstem response (ABR) recording. The sound generation

system was capable of producing stimuli ranging from 22 to

135 dB peak sound pressure level (SPL) (i.e., re 20 pupa).
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Again, in all described experiments, clicks were

delivered to the animal through an Etymotic ER-3A ceramic

(insert) microphone. The ER-3A device has a nearly flat

frequency response from 250Hz to >3kHz (i. e. Beauchaine,

Kaminski and Gorga, 1987; Musiek and Baran, 1990; Wilber,

Kruger and Killion, 1988), and is especially well suited for

reducing or eliminating stimulus artifacts. The 28cm-long

ER-3A sound tube produces a 0.9 msec delay in the delivery

of the acoustic stimulus (e.g. Beauchaine, et al., 1987).

The form-fitting foam ear plug used to couple the ER-3A

sound-delivery tube to the osseous ear canal reduced ambient

room noise by 32-42dB (Beauchaine, et al., 1987). Taken

together with the measured 31 to 33dBA SPL noise level

within the test chamber, stimuli were therefore delivered to

each animal in a virtually noise-free environment.

Recorded responses were amplified 100,000 times (Nicolet

HGA-200A), filtered (Nicolet 501A), and averaged on-line

(Nicolet Clinical Averaging System; CA-1000) with a signal

averager. Data was digitized by use of an 8-bit A/D

converter with a 10kHz sampling rate. In CAP recording,

three hundred responses were averaged over a 5msec time

window. Neuroelectric activity was band pass filtered

(6dB/octave roll off) from 0.15 to 3.0 kHz. CAPs were

differentially recorded, again using standard platinum-alloy

Grass E2 subdermal needle electrodes. The positive electrode

was positioned at the scalp vertex, and again, a common

ground electrode was inserted into the neck. The second
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differential electrode was positioned near the round window

niche in the opened middle ear, using the dissecting

microscope. This electrode consisted of a subdermal

platinum-alloy needle electrode, wrapped with a fine

diameter silver wire flamed at the tip to form a º 0.5mm

diameter ball. The impedance of the round window electrode

was maintained during each experiment by the controlled

application and/or removal of a conductive hypoallergenic

gel (Aquasonic 100; Parker Labs). The impedance of this

electrode was never allowed to vary more than + 2000■ l during

any experiment. The spherical electrode tip was held in

place over the mastoid opening and against the surface of

the cochlea under slight pressure by use of a custom

designed clamp. This clamp was adjustably secured to the

head holder, allowing for easy placement, fine adjustment,

and removal of this middle ear-recording electrode. During

all phases of testing, the position of the middle ear

recording electrode was continually monitored to further

insure recording stability.

Recording Sequence: Electrophysiologically obtained far

field and near-field auditory responses at near-threshold

were defined as: (a) the lowest click intensity that

produced a replicable ABR response; and (b) the lowest click

intensity that produced visually identifiable and replicable

N1 and N2 waves in the near-field recording of the CAP.

Thresholds were established by use of a tracking procedure

in which the intensity was reduced in 26B steps from +40dB
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SPL, until no response (N1 or N2) could be observed. The

intensity level was then increased in 23B steps until a

response was again obtained. The intensity was then again

reduced to no response, and then once again increased in 23B

steps. Near-threshold estimates derived in the descending

series invariably matched those made during ascending

trials.

The near-threshold values obtained in initial ABR

screening served as a guide for setting up these descending

ascending stimulus intensity series. The stimulus intensity

defined as "near threshold" (just-suprathreshold) for each

animal during pre-drug baseline periods served as a

reference for all subsequent testing in that animal.

Stimulus Intensity and Wave Analysis: The first and second

negative waves (N1 and N2) of the CAP were obtained just

above threshold, and at +10, +30 and +50dB above threshold

(dB SL) in all experiments. In Experiments 2 and 3,

responses to +5dB SL were also recorded in many

preparations. Latencies of each wave peak of interest were

measured at their point of maximum amplitude. Response

amplitudes were peak-to-peak, that is, were measured from

the point of maximum negativity to maximum positivity of the

following trough.

Establishing Baselines: The recording procedure described

above was repeated 30-36 times at each intensity, over the

full duration of each experiment. For a given animal, the
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amplitude data obtained at each intensity was accepted as a

baseline only when it met criterion for stabilization.

Responses were regarded as stable in the absence of a

consistent amplitude increase or decrease in the N1 or N2 at

any stimulus intensity, over a total baseline period of not

less than 90 minutes. When amplitude data obtained during an

initial baseline period was judged to be stable, the

acquisition time of the first "stable" response was noted.

Additional responses were then recorded repetitively until a

reliable baseline was seen for a period of exactly 90 min.

Baseline Treatment: Following the last 60-minute

baseline recording, each chinchilla in Experiments 1 and 2

received iv.-administered Ringer’s solution (1pul/5g body

weight; rate of 50 pul/min). In Experiment 3, each chinchilla

received 1pil of an artificial perilymph solution in the

absence or presence of 1-2mmolar (1-2 puM/ml; or 0.74 to

1.5pg/pul) of the specific K-opioid receptor antagonist nor

binaltorphimine (nor-BNI), which was applied directly to the

round window via a microliter syringe. Recordings were then

obtained thereafter in all animals, for the final 30 minutes

of this baseline period.

Postbaseline Testing: At the end of the 90 minute

baseline period described above, animals received either

one, two, or three iv. doses of an opioid or non-opioid

substance, or injections of Ringer’s solution in the

controls. All multiple iv administrations were separated in
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time from the previously administered dose by 30 minutes.

All postbaseline iv solutions were given at a constant

volume (1pul/5g body weight) and rate (50pul/min). Again, all

postbaseline solutions were delivered through a port on the

three-way Hamilton valve, using a microliter syringe.

Auditory electrophysiological testing was immediately

resumed after each drug injection. Recording continued for

an additional 90 minute-long postbaseline period (i.e.

through three additional 30min periods). The total

experimental time was therefore always 180 minutes. Thus,

data from each of the 3 sets of experiments described below

were obtained during 3 equal-duration baseline and 3 equal

duration postbaseline time intervals, each 30 minutes long.

EXPERIMENT 1.

Electrocochleography- (CAP) : In the first experimental

series, N1 and N2 components of the CAP were recorded before

and after drug administration in 21 chinchillas. CAP

responses were generated by alternating polarity clicks

While threshold detection of evoked potentials is generally

not influenced by click polarity (i.e. Sininger and Masuda,

1990), the advantage to using alternating polarity clicks

was the elimination of distortion, especially at the

intensity level of 50dB SL. A disadvantage is the

elimination of the cochlear microphonic potential by

cancellation.
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The overall across-animal impedances of round window

electrodes in this series ranged from 4500–8500 KL . Five to

six N1 and N2 potential measurements were obtained for each

stimulus intensity during each of the six (3 baseline; 3

postbaseline), 30 minute-long test periods. Animals studied

in this first series had N1 and N2 response at near

threshold, ranging from 22 to 40dB SPL, with average near

threshold responses at 29qB SPL. This threshold range is

fairly consistent with earlier electrophysiologic data

obtained in this species (Spagnoli and Saunders, 1987).

Drug Administration: In this first experimental series,

the following drugs were administered postbaseline: (+)-

pentazocine at 8.0 mg/kg (n=4) and 16.0 mg/kg (n=5); U

50488H (6.0 mg/kg; n=3); fentanyl citrate (2.0 mg/kg; n=2);

and naloxone HCl (1.1 mg/kg; n=2). The (+)-pentazocine given

at 16mg/kg was always delivered in one dose, administered

immediately after the last 90 minute-long baseline recording

period.

The lower doses of (+)-pentazocine, fentanyl, naloxone

and U-50488H were always delivered in multiple doses. For

example (+)-pentazocine (4mg/kg), fentanyl (1mg/kg),

naloxone (0.1mg/kg) and U-50488H (2mg/kg) were all given

after the last 90 minute baseline recording. A second

administration Of (+)-pentazocine (4mg/kg), fentanyl

(1mg/kg), naloxone (1.0mg/kg), or U-50488H (2mg/kg) was

given 30 minutes after the first postbaseline dose. A third
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administration of U-50488H (2mg/kg) was given 30 minutes

after the second.

All drugs were dissolved in sterile lactated Ringer’s

solutions and were mixed on the day of testing. Control

animals (n=5) were given equivalent postbaseline volumes of

the drug vehicle, sterile lactated Ringer’s solution, in

lieu of solutions containing drugs. Immediately following

the 90 minute baseline recording period, two of these five

control animals received a single postbaseline Ringer’s

injection, another two of the five control animals received

two postbaseline Ringer’s ' doses’ spaced 30 minutes apart,

and One control animal received three vehicle

administrations spaced 30 minutes apart.

Electrocochleography- (CM) : To preliminarily investigate

the possible opioid effects at the outer hair cells,

cochlear microphonic (CM) potentials were also recorded in

two of the five animals tested with (+)-pentazocine

(16mg/kg). Microphonic activity was bandpass filtered from

150Hz to 8 kHz and recorded differentially using the CAP

electrodes. CM potentials were elicited by 300 negative

polarity clicks (18.3/sec), and were obtained at the single

intensity of 10 dBSL. In both tested animals, CMs were

tracked through each successive 30-minute-long baseline and

post-drug recording period.

Far Field Recording (ABR): As an added control,

amplitudes and latencies of the component waves I-IV of the

auditory brainstem response (ABR) were obtained in two of
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the four animals tested with (+)-pentazocine (8mg/kg), and

in one of the animals tested with (+)-pentazocine at

16mg/kg. Near-threshold and suprathreshold ABR recording was

conducted as described earlier.

Additional Animals: Additional CAP studies were

conducted using the same experimental design in ten other

animals not included in the above group. U-50488H was

administered to eight of the ten; one other chinchilla was

tested with (+)-pentazocine; the last was administered U

69593. In seven of the eight U-50488H-animals, the K

receptor agonist U-50488H was delivered in two equal 10

mg/kg injections to receive a total dose of 20.0 mg/kg.

Injections were spaced 30 minutes apart, with the first

immediately following the 90 minute-long baseline period.

Four of these animals succumbed from respiratory failure

following the initial 10mg/kg dose. Another animal succumbed

from respiratory failure following the second of two 5mg/kg

administrations. These animals could not be revived using

the small-animal respirator.

Three of the seven animals receiving a total dose of

20.0 mg/kg U-50488H survived. In one of these three animals,

naloxone (0.1mg/kg) was co-administered with the first

10mg/kg delivery of U-50488H. In the second, naloxone

(2mg/kg) was co-administered with the second delivery of U

50488H. The third surviving animal received no naloxone.

Following the baseline period, naloxone (1mg/kg) was

co-administered with (+)-pentazocine (16mg/kg) in one
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additional animal; U-69593 (1mg/kg) was administered alone

in another. U-69593 is relatively insoluble in water and was

made to enter solution by employing a minute amount of 1M

HCl diluted with Ringer’s, then pH adjusted with 2pul of

NaOH, as suggested elsewhere (e.g. Leighton et al., 1988).

EXPERIMENT 2.

In a second experimental series, CAPs and CM responses

were recorded in a total of 10 chinchillas, that were

administered two isomeric forms of pentazocine. CM recording

was more complete in this series, as it was achieved at all

stimulus intensity levels. The Overall across-animal

impedances of the round window electrodes in this series

ranged from 8,000 to 10,000 ■ l. Animals had near threshold

CAP values ranging from 7.7 to 34 dB SPL, with an average

value of 20. 8dB SPL.

Drug Administration: In determining whether or not the

response amplification effects of (+)-pentazocine (16mg/kg)

observed in Experiment 1 (see Results) could be ascribed to

its levorotatory K-opioid rather than to its or—receptor

(dextrorotatory) binding properties, the pentazocine doses

used in Experiment 2 were approximately halved from the

original 16mg/kg injections. In the one group of five

chinchillas, the K-opioid ligand (-)-pentazocine succinate

was administered at 8mg/kg. The non-opioid, dextrorotatory

isomer and -receptor ligand (+)-pentazocine succinate

(8mg/kg) was injected in five other animals. Again, all
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drugs were dissolved in the sterile lactated Ringer’s

solution, and were mixed on the day of testing.

Additional Animals: Additional CAP investigations were

conducted in another three animals in the second

experimental series, with the potent K-receptor agonist, U

69593. U-69593 was dissolved in an acidic solution that was

later neutralized, as described earlier. U-69593 was

injected immediately postbaseline with a single

administration at a total dose of 10. Omg/kg and 2. Omg/kg in

two of the three animals. Both animals succumbed from

respiratory failure. Effects observed from one animal in

this experimental series surviving a postbaseline dose of

1.0 mg/kg are described in the Results.

EXPERIMENT 3.

In the third experimental series, CAP and CM responses

were recorded in 15 chinchillas. In some of these animals,

the K-receptor antagonist nor-binaltorphimine (nor-BNI) was

introduced at the round window, prior to intravenous

administration of the K-receptor agonist (-)-pentazocine.

The impedances of round window electrodes in this

experimental series ranged from 8,000 to 10,000 QL. , and

animals had near threshold CAP values ranging from 11.6 to

32dB SPL with an average value of 24.6dB SPL.

Drug Administration: In these experiments, after 60

minutes of the baseline period, the round windows in each of

these 15 animals were treated with 1pil of an artificial
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perilymph solution (see Appendix A) introduced either alone

(n=6), or as a vehicle solution for 1-2 mMolar (about 1

2p M/ml or 0.74 to 1.5pug/pul) nor-BNI (n=9). Note that the

molecular weight of nor-BNI is 734. 73. Round window

solutions were applied under the stereo dissecting

microscope, using a 10pul Hamilton syringe mounted with a

blunt-ended 32 gauge needle. The relatively large size of

the cochlear reference electrode (~0.5mm diameter) required

its temporary displacement during the application of these

solutions to the round window. However, the position and

impedance of this electrode were restored relatively easily

following this simple procedure.

The artificial perilymph solution containing the 0.74

to 1.5pug/pil of nor-BNI was mixed on the day of testing. All

solutions placed onto the cochlear round window were 36° C.

It might be noted that the pH of guinea pig endolymphatic

and perilymphatic fluid has been reported to be

approximately 7.3 (Salt and Konishi, 1986; Schacht, 1986).

Investigations conducted in guinea pigs involving direct

perfusion of the scala tympani have typically employed

artificial perilymphatic solutions having a pH of 7.4, or

slightly less (Bobbin and Konishi, 1971; 1974; Comis and

Leng, 1979; Robertson and Johnstone, 1978). In the present

experiments, the chinchilla cochlear perilymph pH was found

to be approximately 7. 6. In one pilot animal, a 1pul round

window application of a slightly more acidic (pH 7.2)

artificial perilymph solution produced an immediate 20q B
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loss in hearing that did not recover. Therefore, in the

present investigation the stock solution of artificial

perilymph was always mixed to a pH of 7.4 (see Appendix A).

The relatively high 1-2mm concentration of nor-BNI exhibited

a relatively acidic pH of 6.8, and was therefore always

buffered to 7.4 with pil amounts of NaOH.

Following the 90 minute-long baseline epoch, that is 30

minutes after the application of round window solutions, the

levorotatory K-opioid ligand (-)-pentazocine succinate

(8mg/kg) was delivered with one postbaseline administration

to thirteen of the fifteen animals. As a final control, two

animals received postbaseline, post nor-BNI Ringer’s

solution at the same volume and rate.

DATA ANALYSES

Data matrices from all three experiments were submitted

to Statistical Analysis System (SAS) multivariate analysis

of variance (MANOVA) programs. The strategy used throughout

each experiment (Appendix B) was a 'between treatment’

analysis. The first analysis tested the stability of

baselines values collapsed across drug treatment, that is,

independent of animal treatment. This was accomplished by

comparing the overall baseline values obtained at 0-30 and

30-60 minutes, to the values obtained during the 60-90

minute period (i.e. following i.v. Ringer’s, or the round

window administrations). As a rule, these procedures did not

measurably alter CAP, ABR or CM responses, and responses in
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control and experimental groups had equivalent baseline

stabilities.

A second analysis examined possible changes in pre- vs

postbaseline values collapsed across animal treatment. This

was accomplished by combining all of the baseline responses

measured at the 0-90 minute preinjection period, and

comparing them to all postbaseline (i.e. 90-180 minute)

response measures. The remaining statistical analyses took

the two separate treatment groups in each experimental

series into account. Thus, between-treatment differences

across time were assessed, as were between-treatment

baseline stabilities, and between-treatment changes in pre

Vs postbaseline values. In all five analyses, statistical

significance was defined by an alpha level of p3.05.

Experiment 1: (+)-Pentazocine effects on the amplitudes

of the first and second components (N1 and N2) of the CAP

were statistically evaluated in a total of 14 animals.

Baseline vs postbaseline changes in these compound auditory

nerve evoked responses were assessed for (+)-pentazocine

effects at two doses of 16mg/kg (n=5) and 8mg/kg (n=4).

Responses were compared with those derived in single (n=2)

and multiply injected (n=3) vehicle-control chinchillas.

Experiment 2: In this experimental series, the CAP

response amplification effects of (-)-pentazocine (n=5) at

specific stimulus intensities were compared with responses

recorded after administration of the non-opioid O-receptor
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ligand (+)-pentazocine (n=5), using a modified form of the

statistical program (Appendix B). In addition, ANOVA tests

were applied (Appendix B) to determine whether CAP response

amplitude differences existed both between and within the

two (i. e. (+)-pentazocine control (n=5); (-)-pentazocine

experimental (n=5) treatment groups, as a function of

stimulus intensity. The same MANOVA programs were used to

compare the treatment effects of (-) - vs (+)-pentazocine on

CM amplitudes at specific stimulus intensities.

Experiment 3: The capacity for K-receptor block of (-)-

pentazocine-induced CAP amplitude changes by a single, round

window-administered dose of nor-BNI was statistically

evaluated at each stimulus intensity in a total of 13 (7

experimental; 6 control) animals. Data were analyzed in a

single statistical run using the MANOVA programs previously

described (Appendix B).
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RESULTS

EXPERIMENT 1.

Preanesthesia Effects: Preliminary experiments of near

field-recorded auditory potentials using 30mg/kg

tiletamine/zolozepam (Telazol) as a preanesthetic to

pentobarbital, revealed that it produced a consistent

positive drift in CAP response amplitudes. Amplitudes at all

stimulus intensities exhibited a consistent upward

instability that was greatest at the relatively high

suprathreshold intensity of +50dB SL. Amplitudes usually

stabilized after roughly 2-3 hours of CAP testing. Including

surgical preparation time, this stabilization occurred

approximately >5 hours after Telazol administration. Such

response instability was never observed in chinchillas that

were initially anesthetised with 50mg/kg ketamine.

The different effects of these anesthetics on CAP (N1)

response amplitudes are illustrated for responses evoked by

+50dB SL stimuli from four representative animals (2 Telazol

and 2 ketamine-treated) in Figure 1. In each of these two

pairs of animals, two N1 amplitudes were initially recorded

(O min), and two additional recordings were made during each

of six successive 15 minute-long time periods. Data are

plotted with reference to response amplitudes recorded

initially. Again note that the initial recording time in the

cases shown in Figure 1 actually corresponds to an

approximately 3 hour post-preanesthetic benchmark.
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Given this observed instability in baseline recordings,

the use of tiletamine/zolozepam as a preanesthetic agent was

discontinued. The results described and shown in the

remaining figures represent experiments conducted

exclusively with ketamine/pentobarbital anesthesia.

Basic Data Presentation Format: Most Of the

neuropharmacological data from these experimental series is

presented in figures describing changes in peak-to-trough

CAP (N1 & N2) and CM response amplitudes plotted as a

percent change from baseline. A grand baseline mean was

determined for each experimental and control group, defined

as the mean of the summary amplitude values obtained during

the 90 minute-long baseline recording periods. Thus, in most

data presented in the Figures, each of the three baseline

(control) and postbaseline 30 minute averages are presented

relative to this grand baseline mean.

Consequences of IV Fentanyl, Naloxone and U-50488H

Injections

Administration For Auditory Nerve Response Amplitudes:

Mu-opioid effects on near-field auditory potentials were

determined using fentanyl and naloxone. Multiple iv

administrations of pu-opioid receptor-preferring ligands

failed to significantly affect CAP N1 and N2 response

amplitudes at any stimulus intensity. Those negative results

applied to administration of the pu-opioid receptor

antagonist naloxone (1.1mg/kg; n=2), and the potent pi
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receptor agonist fentanyl (2mg/kg; n=2), as shown in Figures

2A (N1) and B (N2) below. Multiple postbaseline iv delivery

of the selective K-receptor agonist U-50488H (6mg/kg; or

2mg/kg X 3) also failed (n=3) to produce postbaseline N1 and

N2 amplitude changes (see Figures 9A and B; respectively).

No drug-induced changes in response latency were observed in

any animal following any of the above drug treatments.

(#)-Pentazocine (16mo/kg) Iniection

Effects on Compound Auditory Potential (CAP) Response

Amplitudes: The administration Of Ringer’s solution

following the initial 60 minutes of the baseline recording

period failed to produce alterations in the amplitudes of

CAP N1 [F (1, 8) =2.99; p (ns) ) and N2 [F (1, 8) =0.03; p (ns) )

responses. By contrast, postbaseline administration of the

potent K/o-receptor ligand (+)-pentazocine markedly

increased near-threshold N1 and N2 amplitudes as shown in

Figures 2A and B, respectively. Indeed, at near-threshold

intensities, 16 mg/kg (+)-pentazocine (n=5) significantly

amplified postbaseline N1 amplitudes [F (1, 8) =18.29; p <0.005]

compared to controls. In one animal, (+)-pentazocine-induced

postbaseline amplitudes in N1 averages rose to 13.3% of

baseline value. In the same animals, however, postbaseline

(+)-pentazocine (16 mg/kg) effects on the amplitudes of the

second CAP component, N2, were not statistically significant

[F (1, 8)=4.25; p-. O7]. Nevertheless, (+)-pentazocine led to
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postbaseline amplitude changes in N2 averaging as high as

122% in one animal. Maximum effects of (+)-pentazocine on

the amplitudes of these two CAP components were observed

within 60 minutes of its iv administration at either dose.

In one animal, CAP amplitude effects of (+)-pentazocine

(16mg/kg) appeared to return to baseline values by

approximately 135 minutes post administration. No measurable

drug-induced changes in response latencies followed (+)-

pentazocine administration.

Positive amplitude changes following 16mg/kg (+)-

pentazocine seemed to apply at least primarily to responses

to stimulus intensities near the defined threshold

intensities for the CAP. This intensity-dependent effect on

CAP N1 and N2 response amplitudes following (+)-pentazocine

injection are illustrated by example in Figures 3A and B.

There, responses obtained at each of the four stimulus

intensities applied in one chinchilla, are shown.

Representative waveforms at the baseline threshold intensity

of +30dB SPL in this chinchilla are shown with a +30 minute

post-pentazocine response below in Figure 4A.

Cochlear microphonic (CM) potentials derived using

constant polarity clicks were also obtained in two

experimental animals receiving postbaseline 16mg/kg (+)-

pentazocine in this initial experimental series. Data were

derived only for +10dB SL click stimuli. Unlike the observed

(+)-pentazocine-induced amplitude changes in spiral

9anglion-generated CAP responses, (+)-pentazocine failed to
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Figure 4A:CAP (N1 & N2) Responses Evoked During Baseline And
30 Minutes After(+/-)-Pentazocine Administration. In
The Same Animal
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-
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produce evidence of amplitude changes in the microphonic

responses attributable to outer hair cells. Additional

documentation of cochlear microphonic response stability

following K-receptor activation with pentazocine will be

described with the presentation of data from Experimental

series 2 and 3, below.

Effects on Evoked Brainstem Responses: Limited data

obtained with ABR recording in this first series indicated

that all ABR wave components at near-threshold sound

intensities generally demonstrated proportionally similar

positive amplitude changes following postbaseline (+)-

pentazocine (16mg/kg) administration. ABR potentials from

the same animal whose near-field data are also illustrated

in Figures 3A, B and 4A, are shown below in Figure 4.B. The

ABRs shown were obtained at a near-threshold intensity of

30dB SPL throughout baseline, and during the 0-60 minute

postbaseline epoch. Again, no detectable drug-induced ABR

latency changes followed (+)-pentazocine administration at

either dose level, in any animal so tested.

(+)-Pentazocine (8mg/kg). Iniection

Postbaseline administration of (+)-pentazocine at a

lower dose level of 8 mg/kg (n=4), given 4 mg/kg in two

successive doses, each separated by 30 minutes, produced

similar amplitude effects on the CAP at near-threshold

stimulus intensities (Figures 2A and B). CAP response

amplitudes were consistently further increased by the second

*g/kg (+)-pentazocine dose. After the second 4mg/kg dose,
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Figure AB; ABR Responses Evoked During Baseline, And At 30 &
60 minutes After(+/-)-Pentazocine Administration. In
The Same Animal
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average N1 and N2 amplitude changes were > +50% overall, and

about 2X baseline values in one animal. However, overall

postbaseline N1 [F (1, 5) =3.35; p (ns) ) and N2 [F (1,5)=2.30;

p (ns) ) amplitudes were not statistically different when

postinjection responses were compared with control animal

responses in these lower-dose chinchillas.

Additional Animals: Some results from additional but

less complete studies conducted with U-50488H (20mg/kg;

n=3), U-69593 (1mg/kg; n=1) and (+)-pentazocine (16mg/kg;

n=1) are summarized in Figures 9A, B and C (pp. 160-162). In

one of the three animals surviving a 20mg/kg dose of U

50488H, a 3 fold average positive change in N1 amplitude was

observed (Figure 9A ; p. 160). Changes observed in N2 were

more variable (Figure 9B; p. 161). In a second animal,

naloxone (0.1mg/kg) was co-administered with the first

10mg/kg delivery of U-50488H following the last 90 minute

baseline recording. The positive change in the amplitude of

N1 was eliminated or drastically reduced, even after the

second 10mg/kg delivery of U-50488H given 30 minutes later

(Figure 9C; p. 162). Such data suggests a possible blockade

of the K-opioid effects of U-50488H by the pi-receptor

antagonist naloxone. In a third special preparation,

naloxone (2mg/kg) co-administered with the second 10mg/kg

delivery of U-50488H appeared to suppress the amplitude of
N1.

The potent K-receptor agonist U-69593, administered at

*he non-lethal dose of lmg/kg in one animal failed to
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produce an observable change in CAP (N1) response amplitudes

(Figure 9A and B). Finally, naloxone (1mg/kg) CO

administered with (+)-pentazocine appeared to antagonize the

positive N1 effects of the pentazocine racemate (Figure 9C).

These limited examples again suggest a possible naloxone

antagonism of (+)-pentazocine response amplification effects

on compound auditory nerve potentials. Results of the first

experimental series demonstrated significant changes in CAP

responses following administration of the potent K/O-

receptor ligand, (+)-pentazocine. Experiment 2 was therefore

designed to determine whether the amplitude changes observed

in Experiment 1 were mediated by K-opioid, or non-opioid CT

receptors.

EXPERIMENT 2.

(-)-Pentazocine vs. (+)-Pentazocine; Effects on CAP

Responses: consistent with the results obtained in

Experiment 1, postbaseline administration (8mg/kg) of the K

opioid receptor ligand (-)-pentazocine (n=5) produced

significant and positive changes both in N1 [F (1, 8) =15. 76;

p30.005] and N2 [F (1, 8) =15.06; p <0.005] CAP response

component amplitudes at near-threshold stimulus levels.

Administration of the non-opioid, cº-receptor ligand (+)-

pentazocine was without effect (Figures 5A and B, Tables 3

and 4). As indicated in Figure 5A and Table 3, postbaseline

(-)-pentazocine effects on the near-threshold N1 amplitude

Over the 30-60 minute period after injection, averaged a
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TABLE 3

Experiment 2

Data Matrix Of Mean CAP Amplitudes (in Microvolts) In Response To Near- Threshold
Stimulus Levels Before And After A Single (-)-Pentazocine (8 mg/kg; iv) Administration

N1 Amplitudes
ANIMAL & Baseline3 Postbaseline Postbaseline Postbaseline

Baseline1 Baseline2 (Ringers) PNTZ obs 1 PNTZobs 2 PNTZ Obs 3
1 (1/29) 3.43 3.53 3.80 8.08 8.48 7.05
2 (3/8) 3.30 3.48 3.42 6.58 4.38 2.58

5 (3/11) 2.75 2.45 3.70 4.95 4.70 3.53
7(3/14) 3.62 2.86 3.37 6.60 6.58 5.68
8 (3/20) 6.56 6.62 6.85 11.08 12.22 9.36

MEAN= 3.93 3.79 4.23 7.46 7.27 5.64
SD= 1.50 1.65 1.48 2.31 3.22 2.72

BASELINE GM =
3.98

PLOT *= -1.25% -4.89% 6.14% 87.29% 82.56% 41.63%

N2 Amplitudes
ANIMAL º Baseline3 Postbaseline Postbaseline Postbaseline

Baseline1 Baseline2 (Ringers) PNTZobs 1 PNTZobs 2 PNTZ Obs 3
1 (1/29) 2.30 2.52 2.56 4.02 4.73 4.28
2(3/8) 2.53 2.05 2.37 3.60 2.26 1.53

5 (3/11) 0.97 0.87 1.37 1.75 1.60 1.70
7(3/14) 3.24 2.32 2.85 4.44 4.75 4.08
8(3/20) 2.08 1.68 1.87 3.32 3.82 3.38

MEAN= 2.22 1.89 2.20 3.43 3.43 2.99
SDr. 0.83 0.65 0.59 1.03 1.44 1.30

BASELINE GM =
2.11

PLOT *= 5.64% -10.32% 4.69% 62.73% 63.01% 42.21%
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Data Matrix
Stimulus

ANIMAL &

3 (1/30)
4(3/4)

14 (4/17)
15(4/18)
16 (4/19)

MEAN=
SDr.

BASELINE GM's
5.57

PLOT *-

ANIMAL &

3 (1/30)
4 (3/4)

14 (4/17)
15 (4/18)
16 (4/19)

MEAN=
SD=

BASELINE GM=
2.53

PLOT *=

TABLE 4

Experiment 2

Of Mean CAP Amplitudes (in Microvolts)
Levels Before And After A Single

N1 Amplitudes
Baseline3

Baseline1 Baseline2 (Ringers)
4.18 3.95 4.45
8.57 8.60 10.98
4.59 3.36 4.25
4.94 5.40 5.22
4.57 5.17 5.35

5.35 5.30 6.05
1.81 2.03 2.80

-3.87% –4.84% 8.72%

N2 Amplitudes
Baseline3

Baseline1 Baseline2 (Ringers)
1.23 1.25 1.33

4.60 4.03 5.42
2.89 2.27 2.90
2.44 2.13 1.95
1.87 1.70 1.83

2.61 2.29 2.69
1.28 1.06 1.63

3.17% -9.50% 6.33%

in Response
(+)-Pentazocine

Postbaseline
PNTZ obS 1

4.18
9.27
4.27
4.23
4.45

5.28
2.23

-5.13%

Postbaseline
PNTZ Obs 1

1.08
3.92
2.57
1.33
1.30

2.04
1.20

-19.24%

To Near
(8 mg/kg; iv)

Postbaseline
PNTZobs 2

4.58
8.53
4.92
4.28
4.64

5.39
1.77

Postbaseline
PNTZ Obs 2

1.10
3.73
2.86
1.38
1.62

2.14
1.12

-15.36%

Threshold
Administration

Postbaseline
PNTZ obs 3

4.48
10.40
5.08
3.73
4.98

5.73
2.66

3.03%

Postbaseline
PNTZ Obs 3

0.94
4.93
3.36
1.50
1.92

2.53
1.61

0.16%
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87.3% and 83.0% positive change relative to baseline

amplitudes. This corresponded to a mean positive response

amplitude change in near-threshold N1s from a baseline level

of 3.981, V to postbaseline values of 7.4.6-7.27 puV (Table 3).

In one animal, average N1 amplitude effects in this same

time epoch revealed a 13.6% positive change relative to the

animal’s baseline values. Average postbaseline (-)-

pentazocine effects on the amplitudes of N2s at near

threshold were also observed as a 62.7% to 63% change from

overall baseline levels (Figure 5B, Table 3). This

corresponded to a positive amplitude change in N2 from a

baseline of 2.1p V, to postbaseline means of about 3.4LV

(Table 3). In one animal, average positive postbaseline N2

amplitude changes were as great as 92% from respective

baseline values.

The clear shift in the near-threshold response that

occurred within 60 minutes after (-)-pentazocine (8mg/kg)

administration was carefully measured during peak drug

effects in three of these experimental cases. The recorded

shift was the amount of sound attenuation required to

produce postdrug CAP response amplitudes that approximately

matched predrug (baseline) amplitude values. The mean change

amounted to a 6.77 it 0.93dB improvement in near-threshold

stimulus levels. Threshold improvements during peak drug

effects in each of these three animals are plotted in the

scatter diagram of Figure 6 below. The CAP waveforms from

each of these three animals are used in Figures 7A, B and C
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to illustrate these postbaseline (-)-pentazocine effects at

near-threshold stimulus intensities. Baseline and +15-minute

postinjection waveform responses shown below in Figure 7A

were obtained at 24 dB SPL. Baseline and +40 minute

postinjection waveforms obtained for 7.7 dB SPL are shown

below in Figure 7B, as are baseline and +45 minute

postinjection waveforms for 18.1 dB SPL in Figure 7C.

Similar though less dramatic (-)-pentazocine induced

positive changes in the amplitudes of N1 and N2 were

observed at the stimulus intensities of +5 and +10dB SL

(Figures 5A and B). Indeed, postbaseline amplitude changes

were significantly different from baseline in N1 for +5 dB

[F (1,3) =10.08; p=0.05] and +10dB [F (1, 8) =10.00; p30.02], and

in N2 for +5dB IF (1,3) =172.08; p-0.001], and +10dB

[F (1, 8) =8.59; p &0.02]. Suprathreshold CAP waveforms from

animals used to illustrate drug amplification of near

threshold responses, are also shown below for responses to

+5 (Figures 7D and E) and +10dB SL (Figure 7F). As indicated

earlier in Figures 5A and B, these positive effects of (-) -

pentazocine on CAP amplitudes were not evident at +30dB SL

for N1 [F (1, 8) =0.47; p (ns) ) or N2 amplitudes [F (1, 8) =0.25;

p(ns) ). Again, no drug-induced changes in N1 or N2 latencies

followed either (-) - or (+)-pentazocine administration at

any stimulus intensity, in any tested animal. This negative

effect on N1 and N2 latencies is also summarized below in

Tables 5 and 6, respectively.
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Figure 7: Averaged CAP(N1 & N2) Responses In Representative
(-)-Pentazocine-Injected Chinchillas. At The Indicated

A Stimulus Levels And Post-Injection Times

Animal #1
N1 N2

*ºn ld (-)-pentazocine§: 8mg/kg15min

511W I —->~\/N Baseline
0 1 2 3 4 5

Time (msec)
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B

Near
Threshold Animal #7

(7.7dB SPL) (-)-pentazocine
8mg/kg
40min

5 avl ~~~~~~ Baseline

0 1 2 3 4 5
Time (rnsec)
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C

Animal #8
Near
Threshold
(18.1 dB SPL) (-)-pentazocine

Baseline

~\Z^-
45min

10 Juv | ~~~~~
H–5–;

Time (min)
;
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D

Animal #7

+5dB SL
(-)-pentazocine
8mg/kg

~/N/N. 40min
Baseline

5uVI
H––.

Time (msec)



+ 5dB SL

Time (msec)

Animal #8

(-)-pentazocine
8mg/kg
45min

Baseline
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+ 10dB SL

Time (rnsec)

Animal #8

(-)-pentazocine
8mg/kg
45min

Baseline
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Data Matrix
Stimulus

ANIMAL #

1 (1/29)
2 (3/8)

5 (3/11)
7 (3/14)
8 (3/20)

MEAN=
SD=

BASELINE GM =
3.00

% Change=

ANIMAL #

1 (1/29)
2 (3/8)

5 (3/11)
7(3/14)
8 (3/20)

MEAN=
SD=

BASELINE GM
4.05

% Change=

Of Mean CAP
Levels Before

N1 Latencies

Baseline1
3.05

3.03
2.94
3.05

2.83

2.98
0.10

-0.67%

N2 Latencies

Baseline1
4.01
4.06
4.07
4.08
3.96

4.04

0.05

-0.30%

Latencies
And After

Baseline2
3.08
3.08
2.98
3.03
2.86

3.01
0.09

0.20%

Baseline2
4.08
4.14

3.98
4.09
3.97

4.05
0.07

0.10%

TABLE 5

Experiment 2

(in Milliseconds)
A Single

Baseline3

(Ringers)
3.08

3.09
2.95
3.04

2.91

3.01
0.08

0.47%

Baseline3

(Ringers)
4.07
4.10
4.04
4.06
4.01

4.06
0.03

0.20%

In Response
(-)-Pentazocine

Postbaseline
PNTZ Obs. 1

3.04
3.04
3.01
3.02
2.85

2.99
0.08

–0.27%

Postbaseline
PNTZobs 1

4.06
4.1.1
4.07
4.06
3.97

4.05
0.05

0.15%

To Near

(8 mg/kg; iv)

Postbaseline
PNTZ Obs. 2

3.03
3.09
2.95
3.03
2.88

3.00

0.08

0.07%

Postbaseline
PNTZ obS 2

4.05
4.06
4.13
4.08
3.93

4.05
0.07

0.05%

Threshold
Administration

Postbaseline
PNTZobs 3

3.05

3.04
3.01
3.03
2.88

3.00
0.07

0.07%

Postbaseline
PNTZobs 3

4.04
4.13
4.04
4.07
3.94

4.04
0.07

-0.10%
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Data Matrix
Stimulus

ANIMAL #

3 (1/30)
4 (3/04)

14 (4/17)
15 (4/18)
16 (4/19)

MEAN=
SD=

BASELINE GM =
3.13

% Change =

ANIMAL #

3 (1/30)
4 (3/04)

14 (4/17)
15 (4/18)
16 (4/19)

MEAN=

SD=

BASELINE GM =
4.19

% Change =

Of Mean CAP
Levels Before

N1 Latencies

Baseline1

2.90
2.98
3.10
3.20
3.45

3.13
0.21

-0.26%

N2 Latencies

Baseline1
3.91
3.87
4.21
4.45
4.47

4.18

0.29

-0.24%

Latencies
And After

Baseline2
2.92
3.01
3.11
3.18
3.46

3.14

0.21

-0.06%

Baseline2
3.99
3.90
4.21
4.44

4.48

4.20
0.26

0.29%

TABLE 6

Experiment 2

(in Milliseconds)
A Single

Baseline3

(Ringers)
2.91
3.00
3.12
3.21
3.46

3.14

0.21

0.19%

Baseline3

(Ringers)
3.95
3.92
4.18

4.42
4.48

4.19

0.26

-0.05%

In Response
(+)-Pentazocine

Postbaseline
PNTZ Obs. 1

2.94
3.02
3.07
3.21
3.44

3.14
0.20

0.06%

Postbaseline
PNTZ Obs. 1

4.00

3.92
4.17

4.42
4.49

4.20

0.25

0.19%

To Near

(8 mg/kg; iv)

Postbaseline
PNTZ obs2

2.92
3.02
3.10
3.20
3.45

3.14
0.20

0.13%

Postbaseline
PNTZ Obs. 2

4.04

3.91
4.18

4.44
4.49

4.21

0.25

0.48%

Threshold
Administration

Postbaseline
PNTZ Obs 3

2.92
2.99
3.10
3.21
3.45

3.13
0.21

0.00%

Postbaseline
PNTZ Obs 3

4.02
3.89
4.15

4.40

4.47

4.19

0.25

-0.14%
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Tests For Trends: Significant amplitude changes in N1

[F (1, 8) =31.70; p3. 001] and N2 [F (1, 8) =16.50; p <. 005] were

found between the two treatment groups as a function of

intensity. The statistically significant 'between-treatment’

difference at each intensity justified separate * within

treatment’ analyses for linear intensity-dependent trends.

Significant linear trends (see Methods) were found in the

postbaseline amplitude change for both N1: (-)-pentazocine=

[F (1,4) =44. 14; p.<0.003 ); and the N2: (-)-pentazocine=

[F (1,4) =15.33; p:0.02 ) CAP responses for experimental

animals. Thus, the postbaseline amplitude increments

observed were quantitatively different as a function of

stimulus intensity in this group. No such intensity trends

were observed for animals within the non-opioid pentazocine

control group, for N1 : [ (+)-pentazocine= [F (1,4) =0.49;

p (ns) ), or N2: (+)-pentazocine= [F (1,4) =1.03; p (ns) J.

Pentazocine Effects on CM Responses: There were no

obvious or consistent postbaseline changes in the amplitudes

of cochlear microphonic responses following the postbaseline

administration of either the opioid (-) - , or the non-opioid

(+)-pentazocine control, at near-threshold, +5, +10 and

+3 OdB SL stimulus levels. Near threshold, however,

significant pre- vs postbaseline amplitude differences were

observed between the two treatment groups [F (1, 8) =13.35;

ps. 01]. That occurred in part because CM amplitudes in (+)-

Pentazocine-injected animals were lower on the average in

the postbaseline periods. Note that both pre- and
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postbaseline CM amplitudes in the experimental group were

somewhat variable in this experimental series (see Figure 8

below).

Figure 8 directly contrasts the postbaseline neural

(N1) and cochlear microphonic potential (CM) effects of (-) -

pentazocine administration recorded simultaneously at three

stimulus intensities, in the same animals. These data again

indicate that postbaseline effects of (-)-pentazocine are

not simply due to factors that might alter the overall level

of acoustic input to the organ of Corti, as such factors

would affect the response amplitudes of both the mass neural

(CAP) and mass hair cell (CM) potentials in parallel.

Moreover, they again demonstrate pentazocine effects on CAP

responses in parallel with stable receptor (hair cell)

potential responses in the organ of Corti.

Additional Animal: Included in this series are results

from an additional but less complete experiment on CAPs

derived with constant polarity clicks, following 1.0 mg/kg

U-69593 in one chinchilla. U-69593 appeared to produce a

positive amplitude change in both the N1 (Figure 9A) and N2

potentials (Figure 9B). Generally, however, the results of

Experiment 2 using (-)-pentazocine indicated that the

observed drug induced shifts in near-threshold responses,

and concomitant CAP amplitude changes, were K-opioid

mediated. Experiment 3 was designed to determine whether

Such effects could be further characterized
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pharmacologically with K-receptor-specific blockade at the

cochlea.

EXPERIMENT 3.

Combined Nor-BNI and (-)-Pentazocine (8mg/kg) ; Effects

On CAP Responses: In the third experimental series, the

objective WaS to determine whether the response

amplification effects of (-)-pentazocine could be blocked by

the potent and specific K-receptor antagonist nor-BNI.

Control animals (n=6) were administered an artificial

perilymph vehicle at 1pul, topically applied to the round

window (RW). Experimental animals (n=7) were administered

the artificial perilymph vehicle (1pul) containing 1-2mm of

nor-BNI to the RW. Baseline response amplitudes remained

stable throughout the 30 minutes following the topical

application of these 36° C solutions to the RW. Consistent

with results obtained in earlier described experiments,

8mg/kg (-)-pentazocine injections produced positive,

statistically significant postbaseline changes in CAP

component amplitudes recorded at three of the five stimulus

intensities tested, with greatest effects at the near

threshold intensities (i.e. overall N1= [F (1,11)=4.80;

p=. 05]. As illustrated below in Figure 10A and Table 7,

average (-)-pentazocine effects on near-threshold N1

amplitudes in the control condition (i.e. perilymph on the

RW: n=6), were seen as a 182% - 191% postbaseline change in

the 120-150 minute epoch (i.e. 30-60 minutes after
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Data Matrix Of Mean CAP
Stimulus Levels After

A Single (-)-Pentazocine

N1 Amplitudes
ANIMAL &

Baseline1

19 (5/13) 3.65
20 (5/17) 4.38
23 (6/27) 3.06
24 (8/07) 4.90
25 (8/08) 3.30
26 (8/09) 3.58

MEAN's 3.81
SD- 0.69

BASELINE GM's
3.96

PLOT *s -3.81%

w/o º 19
MEAN's 3.84

SDs 0.77

BASELINE GM's
3.92

new PLOT *s -1.87%

N2 Amplitudes

ANIMAL º
Baseline1

19 (5/13) 1.68
20 (5/17) 3.80
23 (6/27) 0.96
24 (8/07) 2.94
25 (8/08) 3.20
26 (8/09) 1.26

MEAN's 2.31
SDr. 1.16

BASELINE GM's
2.34

PLOT *s -1.21%

w/o º 19
MEAN's 2.43

SDs 1.25

BASELINEGM's
2.37

new PLOT *s 2.50%

TABLE 7

Experiment 3

Amplitudes (in Microvolts) In Response To Near
Round Window Treatment With 1 ul Perilymph

(8 mg/kg; wy Administration

Baseline 3
(1 ul) Postbaseline Postbaseline

Baseline2 RW PERI PNTZobs 1 PNTZobs 2
4.46 4.48 30.13 36.60
4.00 4.2.2 6.58 5.52
3.42 3.48 7.63 6.03
4.28 4.88 7.65 6.63
4.18 3.82 5.20 5.74
3.68 3.58 9.80 8.75

4.00 4.08 11.17 11.55
0.39 0.55 9.41 12.33

0.98% 2.83% 181.63% 191.21%

3.91 4.00 7.37 6.53
0.36 0.57 1.69 1.31

-0.14% 2.01% 88.19% 66.80%

Baseline 3

(1 ul) Postbaseline Postbaseline
Baseline2 RW PERI PNTZobs 1 PNTZobs 2

2.28 2.48 11.05 14.88
2.88 3.92 4.43 4.26
1.00 1.43 1.88 1.97
3.02 2.50 3.55 3.93
3.08 3.20 3.27 4.18
1.22 1.16 1.48 1.73

2.25 2.45 4.28 5.16
0.93 1.04 3.49 4.89

-3.78% 5.00% 83.15% 120.91%

2.24 2.45 2.92 3.21

1.04 1.16 1.22 1.25

-5.59% 3.09% 23.15% 35.46%

Threshold
Followed By

Postbaseline
PNTZobs 3

35.98
4.80
4.90
7.33
4.68
5.95

10.61
12.47

167.54%

5.53
1.13

41.22%

Postbaseline
PNTZobs 3

13.90
4.72
1.57
4.10
3.72
1.72

4.96
4.57

112.21%

3.17
1.43
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injection). Average (-)-pentazocine effects on near

threshold N2 amplitudes in controls were 83% to 121% over

responses recorded during the baseline period.

The positive change in N1 amplitudes near threshold

corresponded to an overall shift from a baseline mean of

3.96pºv to postbaseline means of 11 to 12p. V (Table 7).

Corresponding postbaseline positive changes in N2 amplitude

recorded near-threshold, ranged from means of 4 to 5pºv, from

an overall baseline of 2. 34p V (Table 7). In one animal

included in the group average, mean N1 amplitude effects at

time 120-150 minute epoch were observed as a 77.1% positive

postbaseline change with near-threshold responses rising to

36. 6p, V from the baseline level of 4.2HV. Similar changes

were recorded for the N2 component. From Table 7 it can be

seen that data from this animal (#19) were not generally

representative of the magnitudes of (-)-pentazocine effects

observed in other pentazocine-treated chinchillas.

A downward postbaseline threshold shift (dB SPL) was

documented in all of these (n=6) control chinchillas (Figure

6). It was greatest within 60 minutes of (-)-pentazocine

(8mg/kg) administration. The mean change in these non-nor

BNI chinchillas (which included data from animal #19) was

7.47 it 4.75dB SPL. The threshold shift excluding data from

chinchilla #19 (i.e. n=5), indicated a mean relative

threshold improvement in this (-)-pentazocine-only group, of

5.56 +0. 97 dB SPL.
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As illustrated in Figures 10A above and 10B (below),

round window pre-pentazocine treatment in experimental

animals with nor-BNI (1-2mm) followed 30 minutes later by (-

)-pentazocine (8mg/kg) again, but not in all cases (see

Figure 6 and Table 8) resulted in positive postbaseline

amplitude changes of CAP potentials. These were observed in

the N1 and N2 amplitudes recorded in response to near

threshold stimuli, and at +5dB and +10dB SL. However, the

magnitudes of the amplitude changes from baseline were

generally lower than those recorded following (-)-

pentazocine administration in control chinchillas (Figures

10A, B, and Table 8). CAP (N1) amplitude changes recorded at

near-threshold during postinjection epochs 0-30 and 30-60

minutes were 59.8% to 46.8% over baseline values (Figure

10A, Table 8). Postinjection N2 amplitudes were 27.5% to 47%

over baseline values (Figure 8B, Table 8). Again, these

changes compared to relatively stronger postbaseline

amplitude effects (1823 – 191% for N1; 83% to 121% for N2)

seen at near-threshold in the (-)-pentazocine control

chinchillas in this experimental series, suggesting that

some blockade of (-)-pentazocine effects was achieved by

prior round window administration of nor-BNI (see Figures 6,

10A and B).

As in the control chinchillas, the amount of

postbaseline threshold shift (dB SPL) was greatest in the 30

to 60 minute epoch following (-)-pentazocine (8mg/kg)

injection in these seven nor-BNI / (-)-pentazocine
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FIGURE10B:
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Data Matrix
Stimulus

A Single

ANIMAL #

9 (4/2)
10 (4/4)
11 (49)

12 (4/10)
13 (4/12)
17 (5/15)
18 (5/16)

MEAN=
SD=

BASELINE GM =
4.77

PLOT *=

ANIMAL #

9 (4/2)
10 (4/4)
11 (4/9)

12 (4/10)
13 (4/12)
17 (5/15)
18 (5/16)

MEAN=
SD=

BASELINE GM =
2.51

PLOT *=

Of Mean CAP

Levels. After

(-)-Pentazocine

N1 Amplitudes

Baseline1
6.93
5.38
3.93
3.60
4.36
3.90
3.90

4.57
1.19

-4.23%

N2 Amplitudes

Baseline1
2.62
2.58
2.38
2.40

2.26
1.50
2.85

2.37
0.43

-5.61%

Amplitudes
Round Window

(8 mg/kg; iv)

Baseline2
7.67
5.00
4.27
3.90
4.84
4.15

4.38

4.89
1.28

2.38%

Baseline2
3.08

1.82
2.92
2.66

2.60
1.35
3.30

2.53
0.70

0.87%

TABLE 8

Experiment 3

(in Microvolts)
Treatment

Administration

Baseline 3

1-2m MG)1ul
RW BNI

8.97
4.78
3.13
3.53
4.65
4.63
4.35

4.86
1.91

1.85%

Baseline 3

1-2mV (21ul
RW BNI

3.00

1.53
3.30
2.55

3.25
1.80
2.98

2.63
0.71

4.74%

In Response
With 1-2mVM

Postbaseline
PNTZ Obs 1

11.40
7.34
3.48

10.33
7.68
6.83
6.35

7.63
2.62

59.85%

Postbaseline
PNTZ Obs 1

3.80

2.58
2.70
5.10

3.43
1.80
3.00

3.20
1.05

27.50%

To Near

Nor-BNI (1ul)

Postbaseline
PNTZ Obs 2

10.95
6.70
4.05
8.30
8.00
5.67
5.40

7.01
2.29

46.86%

Postbaseline
PNTZ Obs. 2

3.90
2.26
6.00
5.00

3.87
1.67
3.17

3.70
1.50

47.18%

Threshold

Followed By

Postbaseline
PNTZ Obs. 3

11.08
5.88
3.20
6.73
6.50
6.57
4.80

6.39
2.42

33.93%

Postbaseline
PNTZobs 3

3.58
1.83
4.73
4.23

4.03
2.57
2.87

3.41
1.03

35.63%

s

*
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(experimental) animals. The mean (+SD) shift in threshold

following (-)-pentazocine (8mg/kg) in this group was 4.86

+3.1, which compares to the greater 7.47 it 4.75dB SPL mean

threshold change in the non-nor BNI chinchillas (Figure 6).

It might be noted that application of the potent K-receptor

antagonist nor-BNI on the RW probably contributed little by

itself to the observed postbaseline alterations in N1 and N2

amplitudes. This is suggested by results from two additional

control animals (Figures 11A and B below) that received nor

BNI, then Ringer’s solution in place of (-)-pentazocine,

postbaseline. Such evidence is again consistent with a

partial blockade of (-)-pentazocine effects by nor-BNI.

Finally, baseline response latencies of the CAP

remained stable at all stimulus intensities throughout the

30 minutes following the topical application of the 36° C

artificial perilymph solutions to the RW. Postbaseline

latencies of CAP responses also remained relatively stable

at all stimulus intensities in both groups, following the

administration of (-)-pentazocine. To illustrate this

stability, near-threshold N1 and N2 response latencies for

the six control and seven experimental animals are presented

below in Tables 9 and 10, respectively.

Statistical Analyses: No significant between-treatment

differences were observed in CAP response amplitudes at any

applied stimulus intensity, indicating a statistically

nonsignificant blockade of (-)-pentazocine-induced amplitude

effects by round window-application Of
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FIGURE11A:
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Data Matrix
Stimulus

A Single

ANIMAL &

19 (5/13)
20 (5/17)
23 (6/27)
24 (8/07)
25 (8/08)
26 (8/09)

MEAN's
SDs

BASELINE GMs
3.12

SDs 0.13

% Changes

w/o º 19
MEAN's

SDs

BASELINE GM's
3.09

SDs 0.12

% Changes

ANIMAL &

19 (5/13)
20 (5/17)
23 (6/27)
24 (8/07)
25 (8/08)
26 (8/09)

MEAN's
SDm

BASELINE GM's
4.26

SD=0.17
% Changes

wo º 19
MEAN's

BASELINE GM's
4.23

SDso.17

% Changes

Of Mean CAP
Levels. After

(-)-Pentazocine

N1 Listencies

Baseline1
3.30
3.23
3.08
2.90
3.25
3.01

3.13
0.16

0.20%

3.09
0.15

0.06%

N2 Latencies

Baseline1
4.46
4.28
4.16
4.02
4.42
4.23

4.26
0.16

0.03%

4.22

-0.28%

TABLE 9

Experiment 3

Latencies (in Millivolts) In Response To Near
Round Window Treatment With 1 ul Perilymph

(8 mg/kg; iv) Administration

Baseline3

(1 ul) Postbaseline Postbaseline
Baseline2 RW PER PNTZobs 1 PNTZobs 2

3.26 3.26 3.12 3.13
3.19 3.17 3.11 3.21
3.12 3.08 3.08 3.08
2.92 2.95 2.89 2.90
3.22 3.25 3.33 3.26
3.02 2.99 3.01 2.94

3.12 3.12 3.09 3.09
0.13 0.13 0.15 0.14

-0.02% -0.18% -1.03% -1.14%

3.09 3.09 3.08 3.08
0.12 0.12 0.16 0.16

0.06% -0.13% -0.26% -0.45%

Baseline 3

(1 ul) Postbaseline Postbaseline
Baseline2 RW PERI PNTZobs 1 PNTZobs 2

4.42 4.30 4.25 4.16
4.33 4.37 4.35 4.24
4.1.1 4.10 4.1.1 4.13
3.98 4.00 4.00 4.01
4.51 4.50 4.56 4.46
4.20 4.30 4.25 4.19

4.26 4.26 4.25 4.20
0.20 0.18 0.19 0.15

-0.05% 0.03% -0.17% -1.46%

4.23 4.25 4.25 4.21

-0.19% 0.47% 0.47% -0.66%

Threshold
Followed By

Postbaseline
PNTZobs 3

3.13
3.18
3.11
2.91
3.24
2.96

3.09
0.13

•1.09%

3.08
0.14

-0.39%

Postbaseline
PNTZobs 3

4.17
4.29
4.1.1
4.07
4.48
4.22

4.22
0.15

-0.87%

4.23

0.00%
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Data Matrix
Stimulus

A Single

ANIMAL º

9 (4/2)
10 (4/4)
11 (4/9)

12 (4/10)
13 (4/12)
17 (5/15)
18 (5/16)

MEAN=
SD=

BASELINE GM =
3.12

% Change=

ANIMAL #

9 (4/2)
10 (4/4)
11 (4/9)

12 (4/10)
13 (4/12)
17 (5/15)
18 (5/16)

MEAN=
SD=

BASELINE GM =
4.20

% Change=

Of Mean CAP
Levels. After

(-)-Pentazocine

N1 Latencies

Baseline1
3.02

3.02
3.31
3.17
3.05
3.11
3.13

3.12
0.10

-0.21%

N2 Latencies

Baseline1
4.03
4.20
4.43
4.26
4.18
4.19
4.12

4.20
0.12

-0.03%

Latencies
Round Window

(8 mg/kg; iv)

Baseline2
3.01
3.06
3.36
3.20
3.04
3.10
3.14

3.13
0.12

0.24%

Baseline2
4.02
4.20
4.36
4.35
4.16
4.32
4.08

4.21
0.14

0.24%

TABLE 10

Experiment 3

(in Millivolts)
Treatment

Administration

Baseline3
1-2mVIQ1ul

RW BNI
3.02
3.01
3.36
3.19
3.06
3.09

3.12

3.12
0.12

-0.03%

Baseline3
1-2m MQ1ul

RW BNI
4.01
4.28
4.25
4.37
4.17
4.19
4.09

4.19
0.12

-0.20%

In Response
With 1-2m M.

Postbaseline
PNTZ obs 1

3.05
3.11
3.36
3.17
3.04
3.11
3.14

3.14
0.11

0.56%

Postbaseline
PNTZ obs 1

4.06
4.35
4.45
4.33
4.14
4.28
4.11

4.25

0.14

1.02%

To Near

Nor-BNI (1ul)

Postbaseline
PNTZ Obs 2

3.04
3.06
3.34
3.19
3.03
3.07
3.10

3.12
0.11

-0.12%

Postbaseline
PNTZ obs 2

4.04
4.30
4.43
4.34
4.1.1
4.17
4.07

4.21

0.15

0.14%

Threshold

Followed By

Postbaseline
PNTZ Obs 3

3.02
3.09
3.35
3.19
3.04
3.09
3.16

3.13
0.11

0.38%

Postbaseline
PNTZ obs 3

4.01
4.27
4.42
4.37

4.17
4.19
4.12

4.22
0.14

0.44%
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nor-BNI. Similarly, no statistically significant between

group differences were observed postbaseline as a function

of stimulus intensity for either the N1 [F (1,11) =1.46;

p (ns) ) or N2 amplitudes [F (1,11) =1.65; p (ns) J. Such evidence

tends to further support a possible partial, but

statistically non-significant blockade of (-)-pentazocine

effects by nor-BNI in this limited number of animals.

t-tests: The possible blockade afforded by RW

administration of nor-BNI was further evaluated by

additional t-tests. Summary percent-change-from-baseline

mean values obtained for each control (perilymph on RW: n=6)

and experimental animal (nor-BNI on RW; n=7) over the period

0-30 and 30-60 minutes after (-)-pentazocine injection, were

used. The t-test comparisons between the experimental and

control groups were therefore performed on the average

magnitudes of postbaseline amplitude changes determined

animal by animal, following (-)-pentazocine.

Differences in postbaseline amplitude changes of N1

between the two groups observed in the first 0-30 minutes

after (-)-pentazocine injection were not statistically

significant using an alpha level of 0.05, at near-threshold

stimulus intensities [t (11)=1.36; p=0.1], at +5dB SL

[t (11)=1 .. 64; p=0.06], or at +10dB SL [t (11)=1.45; p-0.08].

Similarly, postbaseline N1 amplitude changes between the two

groups, observed 30-60 minutes after (-)-pentazocine were

again not statistically significant at near-threshold

[t (11)=1.26; p=0.11], at +5dB SL [t (11)=1.49; p-0.08], or at
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+100 B SL [t (11)=1.45; p-0.08). Differences in postbaseline

N2 amplitude changes between the two groups were also not

statistically significant. Taken collectively, these

probability values indicate a trend for the nor-BNI versus

(-)-pentazocine-treated experimental animals that suggests,

but does not unequivocally demonstrate a partial block of

the (-)-pentazocine amplification of CAPs by this specific

K-receptor antagonist.

There were no obvious baseline or postbaseline changes

in the cochlear microphonic amplitudes at any stimulus

intensity following the round window or iv administration of

K-receptor ligands given in any combination, in these

experiments (Figures 12A and B below). Figure 12A contrasts

postbaseline neural (N1) and microphonic effects of (-)-

pentazocine recorded simultaneously at three stimulus

intensities from the same control animals (n=6). As in

Experiment 2, there was no evident (-)-pentazocine effect on

CM amplitudes. Figure 12A also includes CAP and CM data from

animal #19. Even the very large amplitude changes observed

in the CAPs in this animal were not paralleled by changes in

the cochlear microphonic. Such data again indicates that

postbaseline amplitude effects of (-)-pentazocine are not

due to factors that might simply alter the overall levels of

stimuli reaching the cochlear hair cells, or their

transduced responses to such stimuli.
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FIGURE12B:
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DISCUSSION

Little is presently known about the synaptic

relationships between the neuroactive substances CO

contained within the descending lateral efferent

olivocochlear fibers, just as little is known about the

operating characteristics and functional role of the lateral

efferent neurons. It is well established that ACh, and

derivatives of proenkephalin and prodynorphin coexist within

lateral efferent neurons (e.g. Abou-Madi et al., 1987;

Altschuler and Fex, 1986; Altschuler et al., 1984a: 1988;

Fex and Altschuler, 1985; 1986). Endogenous neuroactive

opioid ligands in lateral efferent neurons may function

presynaptically by modulating the release of ACh, or they

may cross the synapse and bind d- and/or K-opioid receptors

on Type I auditory ganglion cell dendrites. Either a pre- or

postsynaptic mechanism would likely result in complex

changes in the overall firing rates of individual Type I

auditory fibers. These changes would be expected to be

manifested by changes in the magnitudes of the first and

second negative peaks (N1 and N2) of the auditory nerve

compound action potential (CAP), and in the magnitudes of

the auditory brain stem response components.

Products of prodynorphin biosynthesis are found within

the cochlea, and these products are known to bind K

receptors (Chavkin et al., 1982; Corbett et al., 1982; James

et al., 1982). Results of all the experimental series
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presented herein have demonstrated positive K-opioid

receptor-mediated changes in waves N1 and N2 of the CAP,

concomitant with changes in threshold sensitivity. These

results cannot be attributed to actions at the pu-opioid or

non-opioid haloperidol sensitive or-receptor. Furthermore,

such effects appear to be inversely dependent upon the

intensity of the stimulus, and cannot be attributed to

changes in middle ear mechanisms, temperature, electrode

impedance, or the medial efferent system. Taken together

with the probable partial (though statistically non

significant) blockade of these effects in the cochlea, these

results suggest a K-opioid receptor mediation of auditory

neural activity at the lateral efferent synapse.

Opioid Mediated Auditory Neural Disinhibition

In the present set of experiments, both the K/or

receptor agonist (+)-pentazocine (16mg/kg) and the K

receptor agonist (-)-pentazocine (8mg/kg) produced

significant and positive postbaseline amplitude changes in

the N1 and N2 potentials of the CAP. Threshold sensitivity

was improved an average of 5 to 7dB SPL. Since the amplitude

of the CAP reflects overall (whole nerve) Type I activity

and synchronization in response to auditory stimuli (e. g.

Dallos, 1973; Davis, 1976; Glattke, 1983; Moller, 1983a;

Salvi et al., 1983), the observed pentazocine effects would

appear to be neural in origin.

Variance Due To Electrode Position: There is little

possibility that the observed amplitude effects on near
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field recorded potentials were due to slight alterations in

the position of the round window electrodes, as similar

amplitude effects on far-field-recorded waves (I-IV) were

observed following (+)-pentazocine administration in

Experiment 1. Recall that an independent set of electrodes

was employed to record these far-field potentials.

Furthermore, the impedances were monitored and the positions

of the electrodes were maintained at the round window

before, during and after every recording session via the

stereo dissecting microscope, which remained in a fixed

position over the surgical field. Furthermore, electrode

application in experimental and control groups was

identical.

Variance Due To Changes. In Stimulus Intensity: It is also

unlikely that the observed pentazocine effects originated

from changes within the organ of Corti (basilar membrane),

or from changes effecting the overall sound pressure level

(SPL) of the stimulus reaching the inner ear. Indeed, both

CAP peak latencies and microphonic (CM) amplitudes were

unaffected by pentazocine administration. As indicated

earlier, the travel time of the peak response on the basilar

membrane (from base to apex) contributes to the total

latency of N1 and N2 components of the CAP (Eggermont, 1983;

Glattke, 1983; Jacobson, 1985; Moller, 1985; Salvi et al.,

1983), and the latencies of CAP peaks in the normal ear are

a function of stimulus intensity (e.g. Dallos, 1973; Davis,

1976; Glasscock et al., 1981; Jacobson, 1985; Moller, 1985;
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Moore, 1983; Sohmer, 1989; Stockard and Stockard, 1983).

Furthermore, CAP latencies were unaffected by (-)-

pentazocine, and as reviewed earlier, the CM amplitude is

proportional to the transduction current passing through the

individual outer (and inner) hair cells and would be

directly effected by sound intensity changes (Corey and

Hudspeth, 1979a; 1983a; Dallos, 1973; Honrubia and Ward,

1969; 1970; Hudspeth, 1982; Patuzzi and Thompson, 1991;

Patuzzi et al., 1989; Sohmer, 1989; Yates, et al., 1989).

Indeed, the CM was consistently stable in (-)-pentazocine

treated animals, concomitant with substantial CAP response

amplification.

Variance Due To Middle Ear Mechanisms: It is also improbable

that the observed pentazocine-induced positive changes in

CAP amplitude reflected a relaxation in the tonic activity

of the middle ear system. This is unlikely since

ketamine/pentobarbital anesthetised animals generally

exhibit an absence of tonic EMG activity within both the

stapedius and tensor tympani muscles (Guinan and McCue,

1987; McCue and Guinan, 1988). In addition, the intact

middle ear system has no influence on auditory responses at

or near threshold intensities (Guinan and McCue, 1987).

Furthermore, reductions in middle ear impedance would have

been reflected as positive changes in CM amplitudes

(Gerhardt et al., 1979), and by intensity-dependent changes

in the latencies of the CAP peaks.
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The possible assertion that the observed pentazocine

induced changes in the CAP reflected dynamic changes in the

middle ear mechanism must also be ruled out, since: (a) the

EMG thresholds for both muscles in ketamine/pentobarbital

anesthetised animals are reported to be 90dB SPL for lkHz

tone bursts, and even higher for frequencies up to 5kHz

(Guinan and McCue, 1987; McCue and Guinan, 1988); (b)

transient broadband stimuli such as clicks (having durations

<200msec) fail to elicit a middle ear reflex, independent of

stimulus intensity (Djupesland, 1980); and (c) the acoustic

reflex thresholds obtained in three animals in Experiment 1

were 82 to 903B SPL at the frequencies 500 Hz and 1kHz,

respectively. While generally consistent with reflex

measures obtained in a previous study in this species

(Gerhardt, Melnick and Ferraro, 1979), these values are very

far above the levels at which maximum pentazocine effects

were observed in these studies.

Variance Due To Alterations. In Temperature: The potential

effects of hyper- or hypothermia were also not a

contributing factor to the results obtained in the present

set of investigations. Indeed, the effects of both on the

latencies and amplitudes of the far-field recorded ABR are

well documented. Fluctuations in core temperature typically

lead to a 2% to 5.3% progressive and cumulative prolongation

in wave I-IV latency, such that earlier waves are much less

effected than later waves. As a general rule, fluctuations

in core temperature fail to produce consistent or reliable
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amplitude changes in ABR waves (Kileny and McIntyre, 1985;

Markland, Lee, Warren, Stoelting, King, Brown and Mahomed,

1987; Marsh, Yamane and Potsic, 1984; Sohmer, 1989; Sohmer,

Gold, Cahani and Attias, 1989; Stockard, Sharbrough and

Tinker, 1978; Williston and Jewett, 1982), or in the

amplitudes of the near-field recorded CAP waves (Inamura,

Kusakari and Takasaka, 1987). In one report, N1 latencies

increased by about 0.04ms for every 19 C drop in

intracranial temperature (from 35 to 30°C) in pentobarbital

anesthetised guinea pigs (Inamura et al., 1987). In the

present investigation, no latency changes were discerned at

any intensity that could be attributed to the reasonable

0.5° C core temperature variability, nor were there any

obvious latency changes during baseline following the round

window application of a lul solution (~36° C) in Experiment
3.

Variance Due To The Medial Efferents: Finally, it is

unlikely that the observed CAP amplitude effects of

pentazocine reflected changes in the tonic activity of

medial efferent (basal or circumnuclear) fibers. Indeed, as

discussed earlier: (a) the medial efferent system plays no

tonic role in determining auditory threshold sensitivity

(Borg, 1971; Capps and Ades, 1968; Carlier and Pujol, 1982;

Cody and Johnstone, 1982; Dewson, 1968; Handrock and

Zeisberg, 1982; Igarashi, Alford, Nakai and Gordon, 1972;

Igarashi, Cranford, Allen and Alford, 1979a; Igarashi,

Cranford, Nakai and Alford, 1979b; Igarashi, Mauldin and



185

Jerger, 1979 c : Liberman, 1988a; Rajan et al., 1990;

Trahiotis and Elliott, 1970); (b) most medial efferent

fibers (86 to 89%) lack spontaneous activity (Liberman and

Brown, 1986; Robertson & Gummer, 1985); (c) many monaural

responding medial efferent fibers exhibit very high (95dB

SPL) thresholds (Cody and Johnstone, 1982a; Fex, 1962; 1965;

Liberman, 1988b; Liberman and Brown, 1985; 1986; Robertson &

Gummer, 1985); and (d) medial efferent fibers are not

activated by short-duration stimuli like 100pusec clicks,

independent of their stimulus intensity. Indeed, medial

efferent discharge rates decline sharply if tone burst

duration falls much below 25msec (Liberman and Brown, 1986).

Therefore, the results obtained herein suggest an opioid

receptor mediated interaction at the lateral efferent

synapse.

Likelihood of Cochlear Penetration: Pentazocine has

been reported to be highly lipophilic relative to other

benzomorphans (Walker et al., 1990), is well absorbed from

parenteral sites, and is rapidly metabolized (Brogden et

al., 1973; Jaffe and Martin, 1990; Payne, 1973). Substances

exhibiting relatively lower molecular weights (i.e. <1000

Daltons), such as pentazocine (285.44 Daltons), as well as

each of the other substances investigated, will pass more

readily across the blood-labyrinthine barrier than those

exhibiting higher molecular weights (Juhn and Rybak, 1981;

Juhn, Rybak and Prado, 1981; Salt and Konishi, 1986).



186

Peak amplitude changes following pentazocine were

always observed within 60 minutes after administration. This

time course is relatively consistent with the peak

antinociceptive effects reported in humans, which occur

within 2 to 15 minutes after iv, and 15 to 60 minutes after

im or scº administration (Angel, 1983; Brogden et al., 1973;

Jaffe and Martin, 1990; Payne, 1973). Indeed, in each of the

three experiments, the effective pentazocine doses were

administered at or above the effective parenteral

antinociceptive doses previously reported in rodents (2mg/kg

to 10mg/kg sc; Harkness and Wagner, 1983), and canines

(5mg/kg iv.; Vaupel et al., 1989), and were above the

antinociceptive dose (30-60mg/70kg or 0.43 to 0.86mg/kg)

previously reported in humans (Angel, 1983; Brogden et al.,

1973; Bromm et al., 1987). Additional studies are required

however, to more carefully document the time course of

effects of both iv or intracochlear administered pentazocine

under various stimulus parameters.

Opioid-Receptor Specificity of . Effects: The overall

positive amplitude changes seen following the administration

of racemic and levorotatory isomers of pentazocine and the

general lack of effects of fentanyl and naloxone on near

field amplitudes and latencies suggest a K-, rather than a

pu-opioid receptor-mediated effect on auditory potentials. As

reviewed earlier, fentanyl exhibits a 67X greater affinity

for pi-over K-receptors (Magnan et al., 1982; Paterson et

al., 1983), is highly lipophilic (Bovill, 1987; Magnan et
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al., 1982), and therefore enters the CNS with an affinity

156X greater than morphine (Bovill, 1987). The fentanyl dose

(lmg/kg X2) employed in Experiment 1 was well above the

effective antinociceptive doses previously reported in

rodents (0.02 to 0.17 mg/kg sc; Millan, 1989; Shaw et al.,

1988; Upton et al., 1982), rabbits (0.02mg/kg; Herz et al.,

1970), and in humans (0.1 mg/70kg, or 1.43 pug/kg; Jaffe and

Martin, 1990; Marshall and Longnecker, 1990).

Recall that naloxone is about 10X and 30X less active

at d-and K-receptors, respectively, compared to its pu

receptor affinity (e.g. Akil et al., 1984; Barnard and

Demoliou-Mason, 1983; Chang, 1984; Chang and Cuatrecasas,

1979; Kosterlitz, 1985; Lahti et al., 1985; Paterson et al.,

1983; 1984; Robson et al., 1983; Tam, 1985; Tiberi and

Magnan, 1990). The cumulative iv. dose (1.1mg/kg) employed in

Experiment 1 was well above the effective parenteral dose

(0.05 to 0.30mg/kg) required to antagonize the

antinociceptive pi-receptor effects of morphine previously

reported in animal studies (e.g. Duggan and North, 1984;

Martin, 1984). Indeed, even lower iv. doses (0.4 to 0.8mg or

5. 7 to 11.4 pug/kg) of naloxone can reverse the effects of

most pu-opioid agonists in humans (Bovill, 1987; Jaffe and

Martin, 1990).

The overall absence of pu-mediated amplitude effects on

auditory potentials corroborates previous research which

also failed to identify pu-mediated alterations (i.e. using

morphine, fentanyl and naloxone) in the latencies and
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amplitudes of far-field (ABR) recorded potentials (Samra,

Krutak–Krol, Pohorecki and Domino, 1985; Samra, Lilly, Rush

and Kirsh, 1984; Velasco, Velasco, Castenada and Sanchez,

1984). However, in none of those investigations were pu

opioid effects systematically examined at different stimulus

intensities. Suprathreshold intensity levels of 65dB SPL or

greater were typically employed. Furthermore, the previous

investigations cited (i. e. Samra et al., 1984; 1985; Velasco

et al., 1984) used lower doses of fentanyl and naloxone than

those used in the present study.

That the observed amplitude changes reflect actions at

a K-opioid receptor is further suggested by the relatively

greater K- over pi-receptor selectivity of pentazocine.

Indeed, the antinociceptive K-receptor properties of

pentazocine reside within its (–)-isomer (e.g. Brogden et

al., 1973). Pentazocine exhibits the lowest affinity for the

morphine (p1) receptor of all the known benzomorphans (e.g.

Lahti et al., 1985), is 522X less effective than naloxone in

precipitating morphine withdrawal in dogs (Martin, 1984),

and is virtually devoid of d-receptor activity (Lahti et

al., 1985; Tam, 1985). Pentazocine only appears to interact

with 'pu’ at subcutaneous doses (in rats) of 32mg/kg (Brogden

et al., 1973; Holtzman and Jewett 1972). That dose is about

4X the effective dose used in the present experiments.

Therefore, although it is classified as a benzomorphan with

mixed agonist/antagonist properties, the opioid properties

of pentazocine reflect activity primarily at the K-receptor.
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As reviewed earlier, (+)-pentazocine exhibits about an

equal affinity for K-opioid and non-opioid C. -receptors

(Walker et al., 1990). Therefore, in the present set of

experiments, the strongest support for a K-receptor-mediated

effect by (+)- and (-)-pentazocine is given by the failure

of the dextrorotatory isomer (+)-pentazocine to produce

similar postbaseline amplitude changes (Experiment 2).

Recall that (-)-pentazocine fails to bind cº-receptors (e.g.

Bowen et al., 1990a; de Costa et al., 1989; Largent et al.,

1987), and (+)-pentazocine is devoid of opioid receptor

binding activity (e.g. Lahti et al., 1985; Tam, 1985; Tiberi

and Magnan, 1990; Walker et al., 1990). Indeed, (+)-

pentazocine is both a potent and selective ligand at the or

receptor (Tam, 1985; Tam and Cook, 1984; Walker et al.,

1990). As reviewed earlier, the Cº-receptor is not an opioid

(e.g. Bowen et al., 1990a; de Costa et al., 1989; Largent et

al., 1987; su, 1981; Tam, 1983; 1985; Tam and cook, 1984),
nor a dopamine (Bowen et al., 1990a; 1990b; de Costa et al.,

1989; Gundlach et al., 1985; 1986; Largent et al., 1986a ;

1986b; 1987; Matsumoto et al., 1990; Walker et al., 1990),

nor a PCP-receptor (e.g. Quirion et al., 1987; Walker et

al., 1990). Instead, the Cº-receptor is often referred to as

a * naloxone- Or etorphine-inaccessible’ - 'haloperidol

sensitive' receptor (e.g. Su, 1981; Tam, 1983, 1985; Walker

et al., 1990).

Likelihood of CP Receptor Involvement: It is also

important to consider the possibility of additional non
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opioid receptor involvement in these observed response

amplification effects. Recall that the potent K/or-receptor

ligand (+)-pentazocine (Gundlach et al., 1985; Largent et

al., 1986a : Zukin and Zukin, 1988) and the highly selective

and potent Cº-receptor ligand (+)-pentazocine (which produced

no effects) are both devoid of phencyclidine (PCP) receptor |
activity (Rothman et al., 1988; Steinfels et al., 1988; Tam

and Zhang, 1988; Walker et al., 1990). However, the ~
dissociative anesthetic, ketamine which was employed for

-

preanesthesia in these investigations, is related to PCP. *

PCP-sensitive receptor sites are associated, though not
-

exclusively (Jaffe, 1990; Quirion et al., 1987), with one of

the most extensively characterized excitatory amino acid

receptor subtypes, the N-methyl-d-aspartate (NMDA) receptor

(Monaghan, Bridges and Cotman, 1989). NMDA receptors

potently bind: (a) l-glutamate; (b) N-methyl-d-aspartate

(NMDA), and less potently bind; (c) l-aspartate (Fagg, 1985;

Fagg, Foster and Ganong, 1986; Monaghan et al., 1989). Since

l-glutamate binds with high affinity to the NMDA (AA1), the

quisqualate (AA2), and the kainate-preferring (AA3) amino

acid receptor sites, it is generally believed to function as

the neurotransmitter agonist at all excitatory amino acid

synapses (Bloom, 1990; Cooper et al., 1986; Fagg, 1985; Fagg

et al., 1986; McCormick, 1990; Monaghan et al., 1989;

Nistri, 1985).

PCP and related dissociative arylcyclohexylamine

anesthetic derivatives like ketamine selectively block
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postsynaptic excitatory activity at the NMDA receptor (Anis,

Berry, Burton and Lodge, 1983). Such actions at the NMDA

receptor are not mediated by competitive inhibition of l

glutamate, however. Instead, PCP-sites on NMDA-receptors are

likely to be allosterically coupled with an NMDA/l-glutamate

macromolecular receptor complex, providing noncompetitive

antagonism of the voltage-dependent cation Channels

(principally ca”) initiated by glutamate (Bloom, 1990; Fagg

et al., 1986; Jaffe, 1990; Monaghan et al., 1989; Zukin and

Zukin, 1988).

While ABR latencies and amplitudes are extremely

resistant to high levels of barbiturates (e.g. Bobbin, May

and Lemoine, 1979; Glasscock et al., 1981; Hall, Mackey

Hargadine and Allen, 1985; Kileny and McIntyre, 1985;

Sohmer, 1989), ketamine administration (200mg/kg) in rodents

can produce dose and stimulus intensity-dependent changes in

both the latencies and amplitudes of the major components of

the ABR (Church and Gritzke, 1987). Such effects have been

observed as positive amplitude changes in ABR waves I-IV

with increasing stimulus intensities. These reported effects

are similar to those reported earlier in this investigation

(Figure 1) with the use of Telazol, which consists partly of

tiletamine, an anesthetic agent similar to ketamine

(Hrapkiewicz et al., 1989). A lower 100mg/kg dose of

ketamine, however, fails to alter latencies and amplitudes

of the early wave (I-IV) components of the rodent ABR

(Bobbin et al., 1979). An even lower 50mg/kg dose of
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ketamine also fails to alter latencies and amplitudes of the

ABR (Smith and Mills, 1989), which was the dose level

employed in all investigations reported herein. Moreover,

the plasma half life (t +) of ketamine is 2.3 hours

(Marshall and Longnecker, 1990), and ketamine administration

preceded data collection by 3 to 4 hours in these studies.

It should also be added that in spite of its reported

advantages as an anesthetic agent (Hrapkiewicz et al.,

1989), Telazol appears to have limited utility in long-term

electrophysiological studies of the auditory system.

Kappa-Receptor Blockade With Nor-BNI: Results of the

present investigation suggested that at least some of the

(0.74 to 1.5pug/pul) nor-BNI diffused through the round window

membrane. The feasibility of this assertion is supported by

results from a number of round window membrane permeability

studies. A number of factors are involved in determining the

passage of substances through this membrane, and one

significant factor is molecular weight (Juhn et al., 1988;

Lundman et al., 1988). While the round window membrane is

permeable to a wide variety of substances having a wide

range of molecular weights (Anniko, Hellstrom, Schmidt and

Spandow, 1988; Juhn, Hamaguchi and Goycoolea, 1988;

Goycoolea, Muchow, Martinez, Aguila, Goycoolea, Goycoolea,

Schachern and Knight, 1988; Lundman, Bagger-Sjoback,

Holmquist and Juhn, 1988), generally however, low molecular

weight-substances (<1000 Daltons) are incorporated into the

cochlea via the round window at a faster rate than are
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substances with higher molecular weights (Juhn et al.,

1988). For example, NaCl (58.45 Daltons) and KCl (74.55

Daltons) are transported through the round window into the

perilymph within 1 to 5 minutes, while substances with

higher molecular weights (e.g. 12k to 415k Daltons) may be

incorporated into the cochlea within 3 to 60 minutes

(respectively; see Goycoolea et al., 1988; Juhn et al.,

1988). Recall that the molecular weight of nor-BNI is only

734. 73 Daltons.

While not statistically significant, the apparent

partial blockade of (-)-pentazocine effects by the cochlear

application of nor-BNI further supports a K-opioid receptor

mediated modulation of the near-field recorded auditory

potentials. Recall that nor-BNI exhibits a K-receptor

binding affinity 77.5X greater than U-50488H (Takemori et

al., 1988), and 20X (Tiberi and Magnan, 1990) to 44X greater

than U-69593 (Smith et al., 1990).

Inability. To Thoroughly Investigate U-50488H and U

6.9593: Finally, in these investigations, the auditory

properties of the K-opioid receptor agonists U-50488H and U

69593 could not be evaluated at the respective doses of

1 Omg/kg and 2mg/kg. This was an unfortunate outcome since U

5 O488H exhibits up to a 120-1300X greater binding affinity

for K- over u-receptors, and is devoid of d-receptor

activity (Goldstein, 1984; Kosterlitz, 1985; Lahti et al.,

1985; Lever et al., 1983; North, 1986; Paterson et al.,

1984). U-69593, a still more potent analog of U-50488H,
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exhibits a 484X greater binding selectivity for K-, relative

to u- and d-opioid receptors (Lahti et al., 1985), and its

affinity for K has been reported to be 1.3X greater than U

50488H (Lahti et al., 1985; Tiberi et al., 1988).

The reason for the observed lethal respiratory effects

cf these two K-receptor agonists in this species is not

clear. As indicated earlier, U-50488H has been investigated

in rodents at subcutaneous doses as high as 20 to 40mg/kg

(Millan, 1989; Millan et al., 1989; Shaw et al., 1988; Von

Voigtlander et al., 1983; Von Voigtlander and Lewis, 1988),

and at iv. doses as high as 10mg/kg administered over a 30

second period (Leighton et al., 1988). U-69593 has been

administered to rats at subcutaneous doses as high as 5mg/kg

(Millan, 1989; Millan and Colpaert, 1990), or iv within 30

seconds at 10mg/kg (Leighton et al., 1988).

Perhaps chinchillas, like guinea pigs, have higher

overall concentrations of K-receptors. Indeed, relative

forebrain concentrations of the three major opioid-receptor

types vary considerably across species (Besse, Lombard,

Zajac, Roques and Besson, 1990; Chang et al., 1981; Goodman

et al., 1980; Hewlett, Akil, Carlini and Barchas, 1982;

Mansour et al., 1987; Paterson et al., 1983; Tiberi and

Magnan, 1990; Walker et al., 1988). Guinea pigs exhibit much

higher forebrain concentrations (44-50%) of K-receptors

relative to their lower u-(24–25%) and d-(25–32%) receptor

concentrations (Mansour et al., 1988; Maurer, 1982; Paterson

et al., 1984). Also, the relative proportions of K-, [1- and
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d-opioid receptors in guinea pig spinal cord are 63%, 28%,

and 9%, respectively (Tiberi and Magnan, 1990). Perhaps

again, the additional K-receptors in chinchilla are

concentrated within pontine and medullary brainstem centers

involved in ventilatory control.

The distribution of p-receptors within the CNS (Mansour

et al., 1988) corresponds well their known respiratory and

cardiovascular effects (e.g. McQueen, 1983; Pfeiffer,

Feurstein, Faden and Kopin, 1982). It has been suggested

(i.e. Pasternak, 1980; 1981; 1982; 1988a; 1988b) that p. 1

receptors responsible for supraspinal analgesia, differ

functionally from those (p12-) producing opioid-induced

respiratory depression. Indeed, there is some evidence that

morphine’s analgesic actions may be dissociated from its

lethal, respiratory depressive actions (Ling, Spiegel,

Nishimura and Pasternak, 1983; Ling, Spiegel, Lockhart and

Pasternak, 1985; Pasternak, 1981). The 'classic” u2-, vs the

d-receptor (e.g. Florez and Pazos, 1982) has been implicated

in mediating the lethal respiratory depressive effects of

morphine (Goodman et al., 1988; Ling et al., 1985 Pasternak,

1981; 1982; 1988b; Pasternak and Wood, 1986; Wood and

Iyengar, 1988). Recall that U-50488H exhibits a 120-1300X

greater binding affinity for K- over pi-receptors, and is

devoid of d-receptor activity (Goldstein, 1984; Kosterlitz,

1985; Lahti et al., 1985; Lever et al., 1983; North, 1986;

Paterson et al., 1984). However, in addition to its lack of

d—receptor activity, U-50488H is also devoid of u2—receptor
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activity, and exhibits a very poor affinity at p. 1-receptors

as well (Clark and Pasternak, 1988). Therefore, further

experiments are needed to more systematically investigate

the properties of potent K-receptor ligands, and to

determine the reason for their lethal K-mediated effects in

this species.

Proposed Synaptic Mechanisms Of Action

Some Properties of Opioid Receptor Actions: It should

be noted that while the net hyperpolarizing effect of

opioid-receptor binding is similar, u- (or d-) and K

receptors appear to have little in common with respect to
-

their coupling to ion channel conductances within neurons

(Chavkin, 1988; Cherubini and North, 1985; Cox, 1988; Gross

and MacDonald, 1987; North, 1986; North and Egan, 1983; Shen

and Crain, 1989; 1990a; 1990b; Werz and MacDonald, 1985). * *

For example, opioid binding with pl-receptor (e. g. DAGO:

morphine; morphiceptin) or d-receptor ligands (DPDPE; DPLPE;

DADLE: [Met?]- and [Leu”]-enkephalin) both in the CNs and
PNS, produces pre- or postsynaptic neural hyperpolarization

by activating voltage- and/or ca”-dependent K*-channel

conductances (Kandel, 1985a ; Lefkowitz et al., 1990;

Yoshimura and North, 1983). The increased Kº-channel
conductance is in turn indirectly followed by a voltage

gated reduction in ca” conductance (Chavkin, 1988;
Cherubini and North, 1985; Cooper et al., 1986; Dingledine,

1985; Duggan and North, 1984; Gross and MacDonald, 1987;
-
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Henderson, 1983; Kandel, 1985b; North, 1986; North and Egan,

1983; North and Williams, 1983; 1985; Werz and MacDonald,

1985; West and Miller, 1983).

The voltage-dependent ca” influx at the presynaptic

terminal is known to be essential for the binding of

neurotransmitter vesicles to their release sites. This ca”

influx also promotes exocytosis and neurotransmitter release

(Cooper et al., 1986; Hille, 1984b; Kandel, 1985b, Lefkowitz

et al., 1990; Zucker, 1987). The properties of the

intracellular ca”-dependent repolarizing species of K*

channel described above are well understood (Chavkin, 1988;

Ewald and Levitan, 1987; Henderson, 1983; Jackisch et al.,

1986; Koester, 1985c; Levitan and Kaczmarek, 1987; North,

1986; North and Egan, 1983; North and Williams, 1985).

Likelihood of Postsynaptic Inhibition: Neuroactive

opioid peptides in the cochlea could very well act alone as

inhibitory postsynaptic neurotransmitters, just aS

proenkephalins (Pepper and Henderson, 1980; Ruda, 1982;

Yoshimura and North, 1983), GABA, and glycine function in

the CNS (e.g. Cooper et al., 1986; Kandel, 1985a; Krnjevic,

1984; Schwartz, 1985a). Indeed, as a general rule, the net

result of u-, d- or K-opioid receptor binding is a reduction

in neuronal discharge rate and/or a reduction in the amount

of neurotransmitter release (i.e. inhibition) by subsequent

action potentials in the neuron bearing the receptor (e.g.

Cherubini and North, 1985; Cooper, Bloom and Roth, 1986;

Cox, 1988; Duggan and North, 1984; Gross and MacDonald,
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1987; Millan, 1986; North, 1986; North and Egan, 1983;

Simonds, 1988). Postsynaptic hyperpolarization may occur via

an increased ClT conductance (influx); or by an increased K+

channel (efflux) conductance (Cooper et al., 1986; Kandel,

1985a ; 1985b; Koester, 1985a ; 1985b; Krnjevic, 1984;

Lefkowitz, et al., 1990; North, 1986; Phillis, 1984; Zucker,

1987). Kappa-opioid receptor ligands Can produce

postsynaptic hyperpolarization via direct suppression of a

voltage-dependent N-type ca” current (Gross and MacDonald,

1987; North, 1986; Shen and Crain, 1990a; 1990b; Werz and

MacDonald, 1985). This current normally contributes both to

the peak and duration of the postsynaptic action potential

(McCormick, 1990; Tsien, 1987).

In the present investigation, however, the

administration of the K-receptor agonist pentazocine led to

an increase in auditory sensitivity and/or a facilitation in

neural responses to low stimulus levels. It is therefore

unlikely that the observed auditory effects were due to

postsynaptic inhibition of auditory activity at the lateral

efferent/Type I synapse. Another consideration is that K

receptors are allosterically coupled with a macromolecular

cholinergic receptor complex, providing noncompetitive

postsynaptic antagonism of ACh actions (Henderson, 1983).

Likelihood of Presynaptic Facilitation: Over the past

several years, investigations conducted both within the CNS

and periphery (PNS) and especially on vertebrate autonomic

sympathetic ganglia, have provided convincing evidence that
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opioid peptides can modulate the release of other

neuroactive substances (e.g. Chavkin, 1988; Cherubini and

North, 1985; Cox, 1988; Dingledine, 1985; Duggan and North,

1984; Jackisch, Geppart and Illes, 1986; Konishi, 1985;

Martin, 1983; North, 1986; North and Egan, 1983; West and

Miller, 1983; Wood and Iyengar, 1988). For instance, several

studies have shown that p-, d-, k- and E-receptors decrease

ACh turnover, and modulate catecholamine, monoamine, and

neuropeptide turnover in many regions of the CNS (e.g.

Cedarbaum and Schleifer, 1990; Gauchy, Desban, Krebs,

Glowinski and Kemel, 1991; Thompson, Matsumoto, Hohmann and

Walker, 1990; Thompson and Walker, 1990; Walker, Thompson,

Frascella and Friederich, 1987b; Werling, Frattali,

Portoghese, Takemori, and Cox, 1988; West and Miller, 1983;

Wood and Iyengar, 1988).

Presynaptic facilitation generally occurs by reduction

in a Kº channel conductance, which acts to broaden the

duration of the action potential and prolong the opening of

voltage-gated Catt channels, and thereby ca” influx. This

leads in turn to the subsequent release Of In Ore

neurotransmitter (Cooper et al., 1986; Kandel, 1985a ; 1985b ;

Kosterlitz 1984; Krnjevic, 1984; Lefkowitz et al., 1990;

North, 1986; Phillis, 1984; Zucker, 1987). If it is

generally assumed that ACh neurotransmitter release at the

lateral efferent-Type I ganglion cell synapse is

hyperpolarizing, then it is unlikely that the observed

changes in near-field amplitudes reflected a presynaptic K
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receptor facilitation of ACh release following pentazocine

administration, in the present investigation.

A presynaptic facilitating mechanism via opioid

receptors is an unlikely explanation for other reasons as

well. Ontological evidence in mammalian species has

suggested a lateral efferent system that functions early in

development to hyperpolarize IHCs (Carlier and Pujol, 1976;

Ginzberg and Morest, 1983; 1984; Pujol, 1985; Pujol et al.,

1978; 1979; 1980; Pujol and Lenoir, 1986; Schwartz, 1986;

Whitehead, 1986). Furthermore, anatomical evidence reviewed

earlier (Liberman, 1980b) suggests that tonic input from

lateral efferent neurons might be required to establish or

maintain the distribution of spontaneous activity and

sensitivity of Type I auditory fibers (especially in those

fibers exhibiting low SDRs) via hyperpolarization (Liberman,

1988b; 1990).

It should be added at this juncture that complete

transection of the lateral efferents near Oorts anastomosis

fails to affect ABR thresholds (e.g. Littman et al., 1991).

Interestingly, complete unilateral midline transection of

both the lateral and medial efferent fibers actually fails

to affect either thresholds or rate level functions of Type

I auditory fibers. To the contrary, the efferent transection

procedure leads to a decline in spontaneous discharge rates

for high-spontaneous discharge rate (SDR)-fibers (Liberman,

1990).
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Likelihood of Presynaptic Inhibition: Many CNS actions

of opioid peptides appear to be presynaptic (Araujo and

Collier, 1987; Atweh and Kuhar, 1983; Chavkin, 1988; Cuello,

1978; Dingledine, 1985; Duggan, 1983; Duggan and North,

1984; Glazer and Basbaum, 1980; 1981; Hokfelt et al., 1980;

1984; Iverson, Iverson and Bloom, 1980; Jackisch et al.,

1986; Kennedy and Krier, 1987; Kinouchi, Maeda, Saito,

Inoki, Fukumitsu and Yoshiya, 1989; Konishi, 1985; Konishi,

Tsunoo and Otsuka, 1979; 1981; Leander, 1983; Martin, 1983;

Miller and Pickel, 1980; Mudge et al., 1979; Mulder, Wardeh,

Hogenboom and Frankhuyzen, 1984). A major action of

neuroactive opioid peptides in the PNS seems to involve

presynaptic inhibition of neural activity and

neurotransmitter release (Cherubini, Morita and North, 1985;

Cherubini and North, 1985; Gross and MacDonald, 1987;

Konishi, 1985; North, 1986; North and Egan, 1983; Shen and

Crain, 1989; 1990a; 1990b; Waterfield, Smokcum, Hughes,

Kosterlitz and Henderson, 1977; Werz and MacDonald, 1985).

A presynaptic, K-opioid receptor inhibition of ACh

release from the lateral efferent terminals is a more

parsimonious explanation for the observed pentazocine

effects. This hypothesis is strengthened by evidence cited

earlier supporting the coexistence of neuroactive peptides

with ACh in lateral efferent neurons. Indeed, the

coexistence and corelease of multiply active peptide cores

from within the same neuron has proven to be a common

occurrence (see: Akil and Watson, 1983; Araujo and Collier,
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1987; Chan-Palay and Palay, 1984b; Cooper et al., 1986;

Hokfelt, Johansson, Ljungdahl, Lundberg, and Schultzberg,

1980; Larsson, 1984; Lewis et al., 1987; Miller, 1983;

Panula, Yang and Costa, 1984; Schwartz, 1985a, Vincent,

1984; Walker et al., 1987a). The coexistence of opioid and

non-opioid neuroactive peptides together with small molecule

neurotransmitters within the Salºne neuron, probably

represents the rule rather than the exception (Chan-Palay

and Palay, 1984c.; Cooper et al., 1986; Gilbert and Emson,

1983; Hokfelt, Johansson and Goldstein, 1984; Jan and Jan,

1985; Konishi, 1985; Kosterlitz, 1984; Miller, 1983;

Schultzberg, 1984; Schultzberg, Hokfelt, Nilsson, Terenius,

Rehfeld, Brown, Elde, Goldstein and Said, 1980; Schwartz,

1985a ; Walker et al., 1987a).

In general, presynaptic inhibition of neurotransmitter

release can occur: (a) by a direct reduction of a voltage

gated ca” channel conductance; (b) by an increased ClT

conductance; or (c) by an increased K* channel conductance.

Presynaptically, both mechanisms in (b) and (c) will reduce

the likelihood of activating a voltage-gated ca” channel by

short-circuiting (hyperpolarizing) the presynaptic action

potential. Regardless of the ion channel involved, in all

three cases there is a reduction in presynaptic ca” influx,

and a subsequent reduction in the release Of

neurotransmitter. Indeed, the general response to opioid

substances, at least in the periphery, is a reduction in the
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cellular uptake of Catt (Gross and MacDonald, 1987; Simonds,

1988; Werz and MacDonald, 1985; West and Miller, 1983).

Kappa Receptor Channel Properties: Perhaps K-receptor

ligands (natural or synthetic) presynaptically inhibit the

release of ACh from lateral efferent terminals by a direct

action on a voltage-dependent ca” conductance. Indeed, many

K-opioid receptor ligands (dynorphin A; dynorphin A (1-8)

and (1-9); dynorphin B; cK- and B-neoendorphin; U-50488H)

produce presynaptic hyperpolarization in the PNS by direct

reduction of a voltage-dependent ca” conductance (Cherubini

and North, 1985; North, 1986). That K-opioid receptors

modulate activity in peripheral cholinergic neurons is

supported by the demonstration of K-mediated inhibition of

ACh release onto postsynaptic parikarya of neurons within

the guinea pig myenteric plexus. This action occurs of

course, via a direct reduction of ca” influx into the

presynaptic terminal (Cherubini and North, 1985).

Likelihood of Postsynaptic Excitation: Finally, there

is the additional though remote possibility that K-receptor

actions following pentazocine administration were the result

of postsynaptic excitation at the lateral efferent synapse.

In addition to confirming the hyperpolarizing ionic

properties of pi- d- and K-opioid ligands (described above)

one lab also reported excitatory effects of u- d, - and K

receptor activation (Shen and Crain, 1989; 1990a; 1990b).

Such effects were observed in a subpopulation of mouse

dorsal root ganglia cell extracts grown in culture,
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employing much smaller (nM VS puM) opioid ligand

concentrations. In some neurons, low doses of p- and d -

receptor ligands, and the K-receptor ligand Dynorphin B (1-

13), were found to produce excitatory effects (i. e.

prolonged action potentials) via a reduction in a voltage

sensitive K+ channel conductance. However, the excitatory

properties observed with low doses of U-50488H were linked

to the activation of voltage-dependent ca” channel

conductances (Shen and Crain, 1989; 1990a; 1990b).

Summary and Conclusion: The exact role played by the

(medial and lateral) olivocochlear system in peripheral

auditory processing is not well defined at this time. It has

been suggested that medial efferent fibers provide a gain

control (Geisler, 1974a; Kim, 1984; 1986) to the operating

range of single units (Gifford and Guinan, 1983; Guinan and

Gifford, 1988b; Wiederhold, 1970; 1986; Wiederhold and

Kiang, 1970). More convincing however, is the evidence in

support of a medial efferent system that functions to

improve the discriminability of signals in backgrounds of

noise (Dewson, 1967; Nieder and Nieder 1970a; 1970b :

Winslow, 1988; Winslow and Sachs, 1984; 1985; 1987).

It has been consistently argued that all of the

observed effects following electrical stimulation of the

efferent pathway are due to the effects at medial efferent

synapses (e.g. Gifford and Guinan, 1987). Indeed, there are

presently no published reports on either the spontaneous or

driven response properties of unmyelinated lateral efferent
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fibers, and therefore nothing is known of their physiology.

Inconclusive attempts have been made to elucidate their

function (Comis, 1970; Desmedt and LaGrutta, 1963; Fex,

1965; 1967; Liberman, 1990; 1991). The general failure to

determine the role played by the lateral efferents in

audition (e.g. Wiederhold, 1986) has resulted in the virtual

exclusion of this major fiber projection from any

theoretical consideration, with perhaps one or two

exceptions where neural inhibition has been suggested (Fex,

1967; Kim, 1984; 1986; Liberman, 1988b).

Previous investigations have shown that medial efferent

activation generally exerts greater effects on neural

responses to lower stimulus levels, typically those which

are less than 40dB SL (Dewson, 1967; Fex, 1962; Gifford and

Guinan, 1983; Guinan, 1986; Guinan and Gifford, 1988a;

1988b; Nieder and Nieder 1970a; 1970b ; Wiederhold, 1970;

1986; Wiederhold and Kiang, 1970; Winslow and Sachs, 1987).

Results obtained in these investigations suggest that this

property may also be true of the lateral efferent system.
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Future Directions And Possible Clinical Relevance

Future Studies: Additional investigations are needed to

determine the dose response properties of iv administered K

receptor agonists such as (-)-pentazocine On

electrophysiological indices Of peripheral auditory

sensitivity. The exact duration of such effects on CAP

response amplitudes and threshold sensitivity is also of

interest. Experiment 3, of course, needs to be replicated

using higher round window-applied doses of the specific K

receptor antagonist nor-BNI, combined with a range of (-) -

pentazocine doses given iv. Additional dose effect

relationships need to be carefully determined for round

window application of K-receptor agonists, which would

include U-50488H and U-69593.

It is also of interest to understand whether the

observed K-receptor effects are pre- or postsynaptically

(allosterically) linked to ACh, or whether a postsynaptic K

receptor functions independently of ACh. To this end, these

pharmacological experiments could again be conducted

following the transection and degeneration (<6months) of the

efferent olivocochlear bundle (Liberman, 1990). The adequacy

of efferent transection could be evaluated using light

microscopy Of sectioned cochleas stained for

acetylcholinesterase (Liberman, 1990). The ability to

replicate these amplitude effects under such conditions

would suggest a postsynaptic mechanism independent of ACh.

It is also predicted that amplitude effects (disinhibition)
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similar to those observed in the present investigation would

be observed following systemic or cochlear administration of

cholinergic (muscarinic or nicotinic) receptor blocking

drugs.

Endogenous proenkephalin derivatives which coexist

within lateral efferent neurons may play a similar or

different role in the lateral efferent modulation of

auditory function via d-receptors. Therefore, 4-receptor
ligands may produce similar or different effects on CAP

response amplitudes and threshold sensitivity. To answer

these general questions, similar investigations could be

conducted to determine the auditory changes in response to

opioid d-receptor ligands administered iv (e.g. DPDPE,

DPLPE, DPDCE) or diffused through the round window of the

cochlea (e. g. [Met?]- and [Leu’l-enkephalin).
It is anticipated, however, that a clearer

understanding of the apparent opioid-induced disinhibition

will be gleaned most from further experiments employing K

Or d-preferring ligands, and click or frequency specific

tone burst stimuli which are embedded in backgrounds of

noise. These procedures could then be combined with

additional experiments using electrical stimulation of the

medial efferent fibers. Indeed, it may be possible to

de monstrate that the mammalian auditory system has evolved a

bandpass filtering mechanism, with perhaps two distinct

Components: a broad spectrum-filtering (noise suppressive)

medial and a narrow spectrum-filtering (disinhibitory)
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lateral efferent system of fibers. Indeed, medial efferent

fibers exhibit a much more diffuse cochleotopic innervation

pattern than does the lateral bundle (Guinan et al., 1984;

Warr et al., 1986). The innervation range of a single medial

efferent fiber (in cat) can span from 0.55 to 2.8mm, or

roughly 2.2 to 11.2% of the total cochlear length, with the

majority spanning more than 1.5mm or 6% of the total

(Ginzberg & Morest, 1983; Liberman & Brown, 1985; 1986). In

the guinea pig, efferent fibers span OHC distances of 0.22

to 1.5mm, and the majority range from 0.20 to 0.79, or

roughly 1 to 4.1% of the total cochlear length (Brown,

1985b; 1987b; Robertson, 1984). Therefore, available data

suggests that a comparatively greater range of CFs may

correspond to single medial efferent OC neurons. The lateral

efferent fibers on the other hand, are strictly cochleotopic

in their projections to the auditory periphery (Guinan et

al., 1984; Warr et al., 1986), indicating that their

innervation of primary afferents is rather frequency

specific.

Potential Clinical Relevance: It may be possible that a

greater tonic suppression directed by the lateral efferents

on the low SDR-afferents (i.e. Liberman, 1980b) enables

these fibers to maintain a prominent discharge rate peak at

1 - 5 kHz over a wide range of stimulus intensities (Shofner &

Sachs, 1986). The stable low frequency rate-place

representation by the low SDR-fibers could act to facilitate

the encoding (by rate) of the lower frequencies (<2kHz)
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important for vowel recognition, especially in backgrounds

of noise (i. e. Delgutte & Kiang, 1984).

Endogenous opioids may play an important

neuromodulatory role in the normal function of the efferent

olivocochlear system. Indeed, they may be sporadically

released from lateral efferent terminals under certain non

stressful environmental conditions. Conceivably, factors

which would disrupt the tonic activity of lateral efferent

fibers would permit certain populations of primary afferents

to be driven into saturation. The endogenous opioid peptides

could conceivably modulate lateral efferent activity by

diminishing the effectiveness of ACh as a hyperpolarizing

neurotransmitter. For instance, under non-stressful

conditions, the release of endogenous opioid peptides from

the lateral efferent system might act in concert with the

medial efferents (i. e. Winslow, 1988) to improve the

detection of signals in noise backgrounds, in order to

maximize the outcome of various forms of foraging behavior.

Perhaps a more prolonged release of endogenous opioid

peptides in the cochlea might be triggered by stress-related

events, as is thought to occur within the CNS. A stress

related release of these peptides within the cochlea would

be perceived as counterproductive to the overall function of

the efferent system. When confronted with a potentially

stressful (fight or flight) environmental predicament, an

organism conceivably has little need for a peripheral

sensory mechanism that normally contributes to the
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deliberation of fine-tuned perceptions. Rather, the

relatively short term exposure to aversive environmental

conditions might cause the physiology of the organism to

adaptively shift into an operating mode whereby response

selection to the environment might advantageously become

limited or narrowed. Hypothetically, peripheral sensory

systems may then begin to function under a state of

'vigilance’ whereby all environmental stimuli temporarily

acquire equal saliency (i.e. neural disinhibition) and

* figure-ground” discrimination is therefore the poorest.

Much experimentation is needed however, in order to validate

these assertions.

A Cochlear Model

A model is offered (Illustration 5) which summarizes

much of what is presently known regarding lateral and medial

olivocochlear efferent physiology, and general cochlear

physiology. For the sake of simplicity, the model only

presents the probable actions of ACh within medial efferent

(BME and CME), and lateral efferent fibers.

Inner Hair Cell Physiology: The initiation of auditory

signalling in the mammalian periphery is highly dependent

upon the release of excitatory neurotransmitter from within

the IHCs (e.g. Ashmore, 1991; Pickles, 1988), which are the

primary sensory cells of the auditory nerve (e.g. Santos

Sacchi, 1988; Spoendlin, 1988). Indeed, practically all that

is known regarding the properties of the auditory nerve
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stems from investigations of the Type I fibers (e.g.

Harrison, 1988; Javel, 1986; Pickles, 1988).

Transduction of the mechanical traveling wave into

neural activity by the IHCs is characterized by the initial

deflection of IHC stereocilia, followed by an inward flow of

(endolymphatic) transduction current across the apical IHC

membrane (e.g. Ashmore, 1991; Brownell et al., 1986; Dallos,

1973; 1981; Gitter et al., 1986; Gitter and Zenner, 1988;

Pickles, 1988; Santos-Sacchi, 1988). Physiological events

occurring at the IHC level following auditory stimulation,

are likely to proceed in a manner previously described based

upon results obtained from extensive investigations of ion

channel conductances within the saccular hair cells of the

American bullfrog (i. e. Corey and Hudspeth, 1979a; 1979b;

1983a; 1983b; Holton and Hudspeth, 1986; Hudspeth, 1982;

1983; 1985; 1986; Hudspeth and Corey, 1977; Lewis and

Hudspeth, 1983a; 1983b; Roberts, Jacobs and Hudspeth, 1990).

What follows, therefore is a brief summary of the

nonmammalian transduction events likely to occur within

mammalian IHCs during normal auditory stimulation. Available

data from mammalian IHCs will also be included when

appropriate.

During the resting state, the hair cell is exposed to a

constant thermal buffeting by surrounding molecules, and

each transduction channel may fluctuate from an open to a

closed state permitting a small steady flow of positively

charged ions to cross into the hair cell (Hudspeth, 1983;
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1985). In mammalian species, only about 15% of the IHC

transducer channels are open at rest (i. e. Dallos, 1985a ;

1985b). The apical transduction channel, as in mammalian

IHCs (Kros and Crawford, 1989), prefers cations over anions

(Corey and Hudspeth, 1979a; Hudspeth and Corey, 1977), and

the random opening of appropriate channels allows cations to

flow in, lowering slightly, the hair cell membrane

potential.

A positive deflection of 1-100nm, of the stiff actin

filled (2-8 pum long) nonmammalian stereocilia bundle

(consisting of about 100 stereocilia) is sufficient to gate

an inward flow of current through the few hundred transducer

channels associated with the bundle, about 4 channels per

stereocilium (Holton and Hudspeth, 1986). The flask-shaped

mammalian IHCs support about 60 (apically) to 77 (basally)

stereocilia, having lengths of from 1pm (cochlear base) to

greater than 8pm in the cochlear apex (i. e. Harrison and

Hunter-Duvar, 1988; Santi, 1988). With the delivery of an

auditory stimulus, an active stereociliar deflection in a

positive direction further increases the apical membrane

conductance for positively charged ions (Corey and Hudspeth,

1979a; Santos-Sacchi, 1988), and the membrane potential of

the (nonmammalian) hair cell depolarizes to about -40mV

(Corey and Hudspeth, 1979a; Hudspeth, 1982; 1983; 1986).

This mechanosensitive transduction current traverses

the apical hair cell membrane (Corey and Hudspeth, 1979a 7

1983a; Hudspeth and Corey, 1977; Hudspeth, 1982) via
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elastically gated (e.g. Hudspeth, Roberts and Howard, 1989)

transduction channels located at or near the distal tips of

the stereocilia (Hudspeth, 1982; 1983; 1985). The principal

cation within the amphibian saccular endolymph is K+ (Corey

and Hudspeth, 1979a; Hudspeth, 1982; 1983; 1985; 1986) which

also appears to be the major carrier of the depolarizing

current across the mammalian apical IHC membrane (Ashmore,

1991; Brownell et al., 1986; Dallos, 1973; 1981; Gitter et

al., 1986; Gitter and Zenner, 1988; Pickles, 1988; Russell,

1983; Salt and Konishi, 1986; Salt and Thalmann, 1988; Smith

et al., 1954; Tasaki and Spyropoulos, 1959).

The lateral membrane of the amphibian saccular hair

cell also bears a voltage-sensitive ca” conductance that is

activated at membrane potentials more positive than -60mV,

and is therefore partially activated during the resting

state (Hudspeth and Corey, 1977; Lewis and Hudspeth, 1983a;

1983b). Indeed, the random, resting level influx of Catt

into the hair cell has been offered as an explanation for

the spontaneous discharge of afferent fibers (Hudspeth,

1983; 1985; 1986; Lewis and Hudspeth, 1983a). With the

delivery of an auditory stimulus, hair cell depolarization

by K* influx (from the hair cell apex) opens these voltage

sensitive ca” channels, resulting in a ca” influx. As ca”

enters, the additional positivity further depolarizes the

hair cell, augmenting the K+ -induced depolarization

(Hudspeth, 1983; 1985; 1986; Lewis and Hudspeth, 1983a).

Since the inward ca” conductance is not appreciably
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inactivated during prolonged depolarization, it is estimated

to be involved in the endogenous release of afferent

neurotransmitter from the hair cells (Hudspeth, 1983; 1986;

Lewis and Hudspeth, 1983a; 1983b). Indeed, the voltage

dependent influx of ca” is known to be essential for

coupling presynaptic action potentials to the release of

neurotransmitter, by promoting the presynaptic membrane

fusion of neurotransmitter vesicles with their release

sites, and by promoting the exocytosis and release of the

prepackaged neurotransmitter vesicles (Cooper et al., 1986;

Hille, 1984b; Kandel, 1985b; Lefkowitz et al., 1990; Zucker,

1987).

The rising intracellular concentration of ca” then

activates basolaterally located ca”-dependent K+ channels,

at potentials above approximately -60 to -45mV (Hudspeth,

1983; 1985; 1986; Lewis and Hudspeth, 1983a; 1983b; Roberts

et al., 1990). Activation of this intracellular ca”-

dependent K* conductance allows the inward apical

depolarizing K’ current to exit the hair cell through
channels located within the basolateral hair cell surface

(Corey and Hudspeth, 1979a; 1979b; 1983a; 1983b; Hudspeth,

1982; 1983; 1985; 1986; Roberts et al., 1990). The ensuing

K* efflux, traveling down the cytoplasmic-perilymphatic ion

concentration gradient then begins to repolarize the hair

cell membrane. These ca” —activated K* channels not only

repolarize the cell, but also produce the electrical

resonance that tunes each cell. The inward ca” also
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facilitates the release of neurotransmitter (Roberts et al.,

1990). As the intracellular potential begins to drop

(following K’ efflux), there is a temporarily reduction in

the net inward current across the basolateral voltage

sensitive ca” channels (Hudspeth, 1983; 1985; 1986; Lewis

and Hudspeth, 1983a; 1983b).

The K* efflux repolarizes the hair cell beyond the

resting negativity until the excess ca” within the

cytoplasm is buffered and rapidly extruded by metabolic pump

or sequestration. The subsequent intracellular decline in

Catt proceeds to close the basolateral ca”-dependent K+

channels, and the hair cell returns to an approximation of

its initial resting state. The continuing apical influx of

depolarizing K’ current then proceeds to initiate another

cycle of electrical oscillation (Hudspeth, 1983; 1985; 1986;

Lewis and Hudspeth, 1983a; 1983b). Hyperpolarization of the

hair cell by antagonistic (negative) stereociliary

displacement will close the voltage-dependent ca” channels

(Hudspeth, 1983; Hudspeth and Corey, 1977), and is thought

to reduce the amount of released neurotransmitter under

stimulus-driven conditions. The essential features of this

ionic and mechanoelectric transduction model originally

proposed by Hudspeth (1983; 1985; 1986), are applicable to

an understanding of IHC function in mammalian species, and

are contained within the larger explanatory model presented

below.
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Outer Hair Cell Physiology: The cylindrically shaped

mammalian OHCs, have base to apical lengths within the

cochlea, from 20p, M to 50p. M, respectively (e.g. Harrison and

Hunter-Duvar, 1988), and appear to play a dual role in the

auditory system (i.e. LePage, 1989). They have a much poorer

afferent innervation than the IHCs (e.g. Spoendlin, 1988) and

may serve as active, force-generating (Geisler, 1991;

LePage, 1989) 'mechanical effectors’ that provide a "boost’

(within about the first 40dB) for basilar membrane mechanics

(Ashmore, 1991; Geisler, 1986; Kim, 1984; 1986; Mountain and

Cody, 1989; Neely and Kim, 1986; Salvi et al., 1983; Santos

Sacchi, 1988; Zenner, 1986a, 1986b). This mechanical boost

is then transferred to the IHC stereocilia as an increased

electrochemical transduction current, in some orderly

fashion (i.e. Ashmore, 1991; Mountain and Cody, 1989;

Pickles, 1988).

The actin filled stereocilia of the OHCs (and IHCs) are

interconnected by cross-links (Hackney and Furness, 1989;

Harrison and Hunter-Duvar, 1988; Pickles, 1988; Pickles,

Osborne, Comis, Koppl , Gleich, Brix and Manley, 1989; Santi,

1988), and OHC stereocilia pivot at their cuticular base

(Lim, 1986; Nielsen and Slepecky, 1986; Zenner, 1986b). The

OHC generally number from 50 to 150 per bundle, with

slightly greater numbers in the base, and have (base to

apex) lengths of from 0.5-1pm to 8pm or greater. Each OHC

supports about three stereociliar rows, configured in a "W"-

pattern. Each stereociliar row is progressively graded in
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length as a function of its distance from the modiolus (e. g.

Harrison and Hunter-Duvar, 1988; Santi, 1988).

Unlike the flattened distal tips and wider diameter

(20.45puM) of the IHC stereocilia, OHC stereocilia are

rounded at their extremes and are generally (20.20puM)

thinner (Santi, 1988). While it appears that the tips of the

tallest OHC stereocilia are embedded within the tectorial

membrane, the IHC stereocilia by contrast, show no evidence

of tectorial membrane embedding (Lim, 1980; Steel, 1986).

Therefore, while the stereocilia of the OHCs are probably

displaced directly by movements of the tectorial membrane,

the IHC stereocilia are thought to be displaced by the

viscous drag of fluid within the subtectorial space

(Pickles, 1988).

OHCs Under Normal Operating Conditions: It is assumed that

the three rows of OHC stereocilia bundles, the OHC sub

plasma membrane, and the overlying tectorial membrane form a

resonant system consisting of stiff levers, elastic hair

cell attachments (for a restorative force), and an inertial

mass, in the tectorial membrane (Ashmore, 1991; Geisler,

1986; Holley and Ashmore, 1989; Mountain and Cody, 1989;

Steel and Jen, 1988; Turner and Nielsen, 1983). During the

resting state, it is further assumed that the OHCs are

exposed to a constant thermal buffeting by surrounding

molecules. A passive positive deflection of OHC stereocilia

opens apical hair cell transduction channels, and cations

(mostly K*) rush into the OHCs, causing depolarization
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(Ashmore, 1989; Dallos, 1985a; 1986; Zenner, 1986a i Zenner

et al., 1985). The influx of K+ may well open a voltage- or

ca”-dependent (Ashmore, 1987; 1991) basolateral K+ channel,

allowing for the repolarization of the OHCs by K* efflux.

Indeed, recall from an earlier discussion that a voltage

sensitive, intracellular ca”-sensitive, and stretch

sensitive hyperpolarizing K*-channel conductance has indeed

been found within the mammalian lateral OHC membrane (Gitter

et al., 1986; Li et al., 1991; Zenner, 1986b).

The OHC depolarization normally produced by an inward

K* transduction current (e.g. Zenner, 1986a i Zenner et al.,

1985) is surmised to produce either a stiffening of the OHC

stereocilia (Kim, 1984; 1986) or an inward retraction of the

actin-rich (Lim, 1986; Lim et al., 1989; Nielsen and

Slepecky, 1986) OHC cuticular plate (Zenner, 1986a | 1986b) ,

micromechanically channeling the flow of endolymphatic K+

transduction current toward the IHC stereocilia via the

tectorial membrane (Liberman and Dodds, 1984a: 1984b;

Mountain and Cody, 1989). It has been suggested that the OHC

stereocilia may simply secure the tectorial membrane in a

position suitable for IHC activation (Steel, 1986). Perhaps

OHC-induced changes in IHC transduction are mediated

mechanically by the tallest rows of stereocilia on both

types of hair cells through the tectorial membrane (Liberman

and Dodds, 1984a: 1984b; Liberman and Kiang, 1984). Of

course the precise OHC-tectorial membrane-IHC mechanism is

still a matter of controversial conjecture. As discussed
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earlier, if the stimulus is intense enough, the influx of K+

may also produce a shortening of the OHCs, an affect not

mediated by a (medial efferent-type) ca”-dependent
contractile protein mechanism, as described and below

(Ashmore, 1987; Dulon et al., 1988; 1991; Ulfendahl, 1987;

Zajic et al., 1991; Zenner et al., 1985; 1989).

Evidence For A Type of OHC Motility: Brownell and associates

(Brownell, Bader, Bertrand and DeRibaupierre, 1985) were

among the first to demonstrate that OHCs are capable of

electrically-induced mechanical shortening along their

longitudinal axis. When isolated mammalian OHCs are

intracellularly stimulated (200 msec duration; 100 to 200

pA), a bidirectional mechanical change in their length is

observed. The delivery of intracellular depolarizing

currents to the basal synaptic region produces a decrease in

OHC length and an increase in width, while hyperpolarizing

currents cause an increase in cell length and a lessening in

cell width (Ashmore, 1987; Brownell et al., 1985; Zenner et

al., 1989).

A variety of forms of OHC motility have since been

demonstrated, having time constants ranging from pusec to

msec to sec (Ashmore, 1987; Zenner, 1986a ; 1986b). For

instance, an electrically elicited contractile response of

about 2 p.m. (4%) can develop within 120-255 pºsec (Ashmore,

1987). Electrically-induced contractile properties are never

observed in supporting cells or IHCs (Brownell et al., 1985;
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Flock et al., 1986). Transcellular stimulation with

sinusoidal alternating current delivered along the long axis

of the hair cell is also effective in evoking motile

responses from OHCs (Brownell et al., 1985; Zenner, 1986b).

Exposure of intact OHCs to a high K* solution also
results in slower (msec to sec) hair cell shortening, in a

range from 1-8pm or from 2.4-11% (Dulon, Aran and Schacht,

1988; Dulon, Zajic and Schacht, 1991; Ulfendahl, 1987;

Zenner et al., 1989; Zenner, Zimmermann and Schmitt, 1985;

Zajic, Dulon and Schacht, 1991), effects thought to be due

to osmotic factors. Investigations of OHC physiology have

indicated that the presence of extracellular ca” is not

required for OHC contraction. Extracellular ca” is

required, however, for OHC relaxation in the presence of a

bathing medium containing the anion Cl- (Dulon et al., 1988;

Zenner 1986a ; Zenner et al., 1985). Intracellular Ca" is,

on the other hand, necessary for OHC contraction and

shortening (Dulon et al., 1988; 1991; Flock et al., 1986;

Schacht and Zenner, 1986; 1987; Slepecky, Ulfendahl and

Flock, 1988; Ulfendahl, 1987; Zenner, 1986a, Zenner et al.,

1989).

A Lipid Second Messenger System: Polyphosphoinositides are

common lipids found within the plasma membrane of cells in

several types of neural, endocrine, connective and muscle

tissue (Berridge, 1984; Berridge and Irvine, 1984). These

lipids are messengers in a fundamental transmembrane

signalling system for neuromodulators and hormones known to
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elevate intracellular ca” levels (Berridge, 1984; Berridge

and Irvine, 1984; Hesketh, 1983; Huganir, 1987; Ross, 1990;

Tsien, 1987). Indeed, several neurotransmitters including

ACh, and several important postsynaptic receptors including

the muscarinic cholinergic type (M1 and M3) are known to

stimulate the enzymatic hydrolysis of the membrane-bound

lipid, phosphatidylinositol bisphosphate (PPD), thereby

liberating diacylglycerol and inositol trisphosphatate (IP3)

as transmembrane second messengers (Berridge, 1984; Berridge

and Irvine, 1984; Brown, 1990; Cooper et al., 1986; Huganir,

1987; Lefkowitz et al., 1990; Taylor, 1990a; Tsien, 1987).

The second messenger IP3 then mobilizes ca” from internal

stores (i. e. endoplasmic reticulum), thereby raising the

concentration of free ca” within the cell (Berridge, 1984;

Berridge and Irvine, 1984; Hesketh, 1983; Huganir, 1987;

Ross, 1990; Tsien, 1987). The unbound intracellular ca” can

trigger the contraction of actinomyosin filaments, as in

smooth, skeletal or cardiac muscle (Alberts, Bray, Lewis,

Raff, Roberts and Watson, 1983; Huganir, 1987; Tsien, 1987),

and/or may act by itself as a second messenger activating

phosphorylase kinase which enhances the breakdown of

glycogen to supply ATP for the contractile process (Hille,

1984b). The action of IP3 is regulated by an inositol

trisphosphatase (see: Berridge, 1984; Berridge and Irvine,

1984).

Lipids. Within OHCs: High metabolic levels of PPD and related

lipids have been found within mammalian OHCs (Schacht and
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Zenner, 1986; 1987; Zenner et al., 1989), providing direct

evidence for the existence of these phosphoinositide

mechanisms within the mammalian auditory system. Muscarinic

agonists have been shown to stimulate the formation of IP3

in the guinea pig organ of Corti (Niedzielski and Schacht,

1991) or developing rat cochlea, via a muscarinic M3

receptor (Guiramand et al., 1990a; 1990b). Muscarinic

receptor-induced IP3 turnover is greater (1.8x) in OHCs from

the basal, compared to the apical organ of Corti

(Niedzielski and Schacht, 1991). Nicotinic receptors in the

basal pole of the mammalian OHC have also been shown to

elicit OHC contraction by opening ca” channels (Plinkert et

al., 1991).

In addition, isolated OHCs exhibit a slow contractile

response (within 50 to 200msec) in a ca” –free medium in

the presence of very low concentrations of IP3 (Schacht and

Zenner, 1986; 1987; Zenner et al., 1989), or by increasing

the intracellular levels of unbound ca” (Schacht and

Zenner, 1986; 1987; Zajic et al., 1991; Zenner et al.,

1989). No such contractile change in shape or tonicity is

observed, however, following elevation Of unbound

intracellular ca” within IHCs (Dulon et al., 1991; Zajic et

al., 1991).

Such evidence has generally suggested that the more

basally vs apically (relative to the round window)

concentrated medial efferent terminals innervating the organ

of Corti, which utilize ACh as a neurotransmitter and
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synapse near the OHC base, alter cochlear micromechanics by

activating a cascade of intracellular second messengers

(including ca”). Such action then produces a depolarizing

actomyosin-mediated OHC contraction (e.g. Dallos et al.,

1991; Niedzielski and Schacht, 1991; Schacht, 1986; Zajic et

al., 1991; Zenner et al., 1989).

Investigations of the membrane properties of isolated

mammalian OHCs have also revealed the existence of a number

of other potentially important ion channels within the

lateral OHC wall (Gitter, Fromter and Zenner, 1986; Li, Jia,

Iwasa and Kachar, 1991; Zenner, 1986b). Indeed, there is

also a graded, hyperpolarizing potassium (K*) channel

conductance having an open probability that increases with:

(a) OHC membrane depolarization (i.e. voltage sensitive);

(b) intracellular ca” ion concentration; or (c) OHC stretch

(Gitter et al., 1986; Li et al., 1991). There is also

evidence for a nongraded chloride (Cl") conductance on the

lateral wall of the mammalian OHCs (Gitter et al., 1986).

Medial Efferent Mechanism of Action

Currently, the most parsimonious explanation offered

for the observed medial efferent olivocochlear-induced

suppression of auditory single unit, and whole nerve (N1 and

N2) response in mammalian species has been attributed to a

medial efferent-modulated biomechanic alteration in the

basilar membrane/tectorial membrane coupling between the

outer and inner hair cells (Mountain, 1980; 1986; Mountain

and Cody, 1989; Rhode, 1984; Siegel and Kim, 1982). Indeed,
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both anatomic (Benson and Ryugo, 1987; Brown, 1987a) and

physiologic evidence (Dallos, Evans and Hallworth, 1991;

Guinan, 1986; Mountain, 1980; 1986; Nuttall, 1986; Siegel

and Kim, 1982; Zenner, 1986a, 1986b) have suggested that the

OHCs are actively involved (perhaps primarily) as peripheral

’ effectors’ of cochlear nonlinear biomechanics in the

Control Of basilar membrane damping characteristics

(Geisler, 1986; Kim, 1984; 1986; LePage, 1989; Mountain and

Cody, 1989; Zenner, 1986a, 1986b).

This view is also supported by the observed medial

efferent-induced reduction (e.g. Mountain, 1980; 1986;

Nuttall, 1986) in the purely mechanical second order (f2 –

fl) and cubic difference tone (2f1 - f2) intermodulation

distortion components (Buunen and Rhode, 1978; Gibian and

Kim, 1982; Javel, 1986; Kim et al., 1980; Siegel et al.,

1982), and otoacoustic emissions (Glattke and Kujawa, 1991;

Mott, Norton, Neely and Warr, 1989; Norton, Mott and

Champlin, 1989). This view is additionally supported by the

discovery of the contractile protein actin, and actin

related molecules (such as myosin, cº-actinin, fimbrin and

tropomyosin) within the stereocilia, cuticular plate, and

synaptic cell membrane regions of the OHCs (Flock, 1983;

Flock, Flock and Ulfendahl, 1986; Lim, 1986; Lim et al.,

1989; Pickles, 1988; Tilney, DeRosier and Mulroy, 1980;

Zenner, 1986a ; 1986b).

Additional corroborating evidence indicates that

activation of the medial efferent system postsynaptically
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mobilizes the intracellular release Of endoplasmic

reticular-bound ca” by liberating the lipid transmembrane

second messenger IP3. This triggers an actin-dependent OHC

motile response (Dulon et al., 1988; Slepecky et al., 1988;

Zenner, 1986a) in al I■ lannel." similar to the

phosphatidylinositol activity observed in smooth muscle

(Cooper et al., 1986; Huganir, 1987; Schwartz, 1985b ; Tsien,

1987). Presented below are some of the likely mechanical and

ionic mechanisms involved in the medial efferent modulation

of neural and transduction potentials, which were summarized

above in Table 2.

Mechanism of Effects: By modulating the length, tension

and stiffness of the OHCs along their longitudinal axis, an

active biomechanical explanation has been singularly

adequate to elucidate many actions of the descending medial

efferent fibers. Perhaps medial efferent-induced changes in

OHC shape damp the micromechanical activity of the OHCs and

alter the coupling between outer and inner hair cells (i.e.

Geisler, 1991; Mountain and Cody, 1989; Neely and Kim, 1986;

Rhode, 1984; Zenner et al., 1989).

It has been suggested that by decoupling the OHC

tectorial membrane from the motion of the basilar membrane,

the IHC stereocilia would move less in proportion to the

movement of the basilar membrane (i.e. Guinan, 1986). The

OHCs are securely attached at their perinuclear region, to

the Dieter’s cells (e.g. Santi, 1988), which are capable of

stretching (LePage, 1989), and to the reticular lamina at
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the OHC apex. A change in OHC length would also change the

separation between the reticular lamina and the basilar

membrane (Neely, 1989). Indeed, it has been demonstrated

with optic probe investigations, that these OHC motor units

can alter the shape of the basilar membrane independent of

the traveling wave, changing its relative position to the

tectorial membrane along select regions, which may serve to

facilitate or damp sensitivity at select frequency bands

(LePage, 1989).

Alterations in the mechanical properties of the organ

of Corti following medial efferent activation would

therefore result in a reduction of mechanical stimulation

reaching the IHC stereocilia, subsequently leading to the

observed reduction in the IHC depolarizing DC potential

(e.g. Brown and Nuttall, 1984). Following from this, would

be the additional reduction in the net quantity of released

excitatory neurotransmitter at IHC-Type I afferent synaptic

junctions (Brown and Nuttall, 1984; Brown et al., 1983a;

Gifford and Guinan, 1983; Guinan, 1986; Guinan and Gifford,

1988a; 1988b; Kim, 1986). Such events would explain the

observed amplitude decline in the gross discharge (N1 and

N2) of auditory neurons, and the observed threshold

elevations in single auditory fibers following medial

efferent activation (e.g. Brown and Nuttall, 1984; Dewson,

1967; Fex, 1959; 1962; 1967; Galambos, 1956; Kiang, 1984;

Konishi and Slepian, 1971a 1971b; Gifford and Guinan, 1983;

1987; Guinan and Gifford, 1988a; 1988b; 1988c.; Wiederhold,
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1970; 1986; Wiederhold and Kiang, 1970; Wiederhold and

Peake, 1966; Winslow, 1988).

The damping of micromechanical activity by OHC

contraction could also alter (by alterations in transduction

currents) the sensitivity of the IHCs (Guinan, 1986; Kim,

1984; 1986; Nuttall, 1986; Siegel and Kim, 1982; Zenner,

1986a, 1986b) producing the observed reductions in both IHC

tuning (Brown and Nuttall, 1984; Brown et al., 1983a;

Nuttall, 1986), and conceivably in single auditory fiber

tuning (Guinan and Gifford, 1988d; Wiederhold, 1970; 1986).

Indeed, it is likely that contractile factors which reduce

or dampen the resonating properties of OHCs, also dampen the

resonances of other structures within the organ of Corti,

including the IHCs (Pickles, 1988; Turner and Nielsen,

1983). The OHCs are also critical for the generation of

single auditory fiber tuning curves (Liberman and Dodds,

1984b). More specifically the first OHC row, known to

receive considerably more medial efferent terminals (i.e.

Ginzberg and Morest, 1984; Liberman and Brown, 1986)

contributes more to the generation of single unit tuning

curve tips than does the second or third OHC rows (Liberman

and Dodds, 1984b). A medial efferent-induced reduction

(positive shift) in the voltage amplitude of the negative

(SPT) summating potential (Fex, 1959; Konishi and Slepian,

1971b) is also consistent with a reduced transduction

current shunt through the IHCs, and a damping of basilar

membrane displacement (Johnstone and Johnstone, 1966).
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It has Inever been apparent how al■ º active

micromechanical alteration in the organ of Corti could be

called upon to explain the observed medial efferent-induced:

(a) amplitude augmentation of the CM (e.g. Fex, 1959; 1962;

1967; Gifford and Guinan, 1987; Wiederhold, 1986; Wiederhold

and Peake, 1966); (b) decline in the EP (Brown and Nuttall,

1984; Desmedt and Robertson, 1975; Fex, 1967; Gifford and

Guinan, 1987; Konishi and Slepian, 1971a; 1971b); or (c)

decline in single fiber spontaneous discharge (Guinan and

Gifford, 1988a; 1988c.; 1988d; Wiederhold and Kiang, 1970).

Indeed, it has been suggested that the mechanical coupling

of OHCs with IHCs via the OHC stereocilia and tectorial

membrane is alone insufficient to explain all of the medial

efferent effects observed in mammalian species (Guinan and

Gifford, 1988a; 1988c.; Wiederhold, 1986). The possibility of

an additional medial efferent action which employs a passive

ionic shunting mechanism, is discussed below.

Recall from an earlier review, that while most medial

efferent fibers synapse with OHCs at their base, a smaller

number also terminate higher, at the lateral circumnuclear

regions of the OHCs (Altschuler and Fex, 1986; Engstrom and

Ades, 1972; Iurato, 1974; Liberman and Brown, 1986; Lim,

1986; Spoendlin, 1966; 1969; Spoendlin and Gacek, 1963;

Wright and Preston, 1973; Pujol and Lenoir, 1986; Smith and

Rasmussen, 1965; Spoendlin, 1966). The iontophoretic

application of the medial efferent neurotransmitter (ACh;

see discussion below) to the basal synaptic region of the
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OHCs produces a shortening of the cell, similar to the

effects of a depolarizing current (Brownell et al., 1985),

while ACh fails to produce a response if administered at

locations distal to the basal region (Brownell et al.,

1985). Such evidence has supported the view that the basal

(not the lateral) portions of the OHC membrane are most

important in effecting cochlear mechanics via initiating OHC

contractions (Brownell et al., 1985; Mountain, 1980). These

results also suggest that the more numerous, basally

innervating medial efferent fibers, rather than the less

numerous circumnuclear medial efferent fibers, may be the

population of fibers primarily responsible for initiating

the cascade (e.g. Niedzielski and Schacht, 1991) of

intracellular second messengers, which produce depolarizing

OHC contractions.

Hypothetically, a postsynaptic change in the membrane

resistance of OHCs (i. e. Brownell, 1982; Mountain et al.,

1980) or in Type I afferents, leading to either a K* efflux

(e.g. Li et al., 1991) or CLT influx (Hille, 1984a; Kandel,

1985a ; 1985b; Lefkowitz et al., 1990), would result in

cellular or neural hyperpolarization, respectively. In an

early investigation of efferent function (Desmedt and

Robertson, 1975), cochlear perilymphatic perfusions with low

ClT solutions during midline efferent activation were

reported to reduce both the medial efferent-induced

suppression of the N1 and EP, as well as the CM

potentiation. Desmedt and Robertson (1975) concluded that
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medial efferent activation results in an increased OHC

conductance to perilymphatic Cl", and other small anions,

and that a Cl" influx carries a medial efferent-OHC

hyperpolarizing current. Recall as well, that OHC relaxation

following contractile depolarization requires extracellular

ca” in the presence of a bathing medium containing Cl"

(Dulon et al., 1988; Zenner 1986a, Zenner et al., 1985).

Taken together with the demonstrated lateral OHC membrane,

ClT conductance discussed earlier (Gitter et al., 1986;

Zenner, 1986b), such evidence tends to suggest the existence

of a hyperpolarizing ClT channel on the lateral surface of

the OHCs. As discussed below, the hyperpolarizing influx of

ClT may well play an important role in medial efferent-OHC

physiology.

Possible Functional Segregation of Medial Efferents: A

ca”-dependent circumnuclear medial efferent (CME) induced

ClT influx could act to stabilize and repolarize (Hille,

1984a) the OHC from expected net depolarizing effects

following the contractile, IP3-induced intracellular release

of ca” by basal medial efferent (BME) activation. The
possibility of a repolarizing inward Cl" conductance (Gitter

et al., 1986; Zenner, 1986b) is viewed as one component of a

self-regulating medial efferent system. The membrane

associated cisternae of the OHCs are structurally similar to

the sarcoplasmic reticulum of smooth muscle (Flock et al.,

1986), which serve to internalize unbound intracellular Ca"

ions via a metabolic pump (Berridge and Irvine, 1984; Tsien,
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Catt pump within the OHC1987). Perhaps a similar

endoplasmic reticulum prevents excess depolarization caused

by the release of cations, by regulating intracellular Catt

levels.

A Passive OHC Shunting Mechanism: Fex (1962; 1967) was

the first to suggest that the medial efferent system

produces a drop in the EP by a shunting of transduction

current through the hair cells. Indeed, an efferent-induced

drop in the EP and an augmentation in the CM would be

expected outcomes of an increased endolymphatic current

shunt through the OHCs (Geisler, 1974b; Wiederhold, 1967;

1986; Pickles, 1988).

The hypothetical CME-induced ClT influx described above

could alter the depolarizing OHC transduction (K*) current,

resulting in a current shunt directed away from the IHC

transducer. For instance, activation of CME fibers, and

producing an increase in intracellular anions (Cl"), may

increase the intracellular electrochemical gradient for

cations. The effect of this might be to augment the apical

K* inward conductance during positive OHC stereociliar

displacement. The hypothetically augmented inward K*
conductance might then lead to an even greater intracellular

concentration gradient for K*, producing an increased

outward ca”-dependent conductance for K*. Recall from an

earlier discussion that a potassium channel indeed exists

within the lateral membrane of the mammalian OHC (Gitter et

al., 1986; Zenner, 1986b). Therefore, the combined increase
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in inward and outward current brought about by a

circumnuclear medial efferent-induced repolarizing ClT

influx, may be the shunting mechanism responsible for the

observed medial efferent-induced potentiation of the CM.

A CME-initiated shunting of K* transduction current

through the rows of OHCs as described above, may also be the

mechanism that leads to the observed decline in the scala

media-generated EP. As discussed earlier, factors which

reduce the EP, also reduce spontaneous discharge rates in

single auditory fibers (Liberman and Dodds, 1984a: Sewell,

1984b), elevate auditory nerve threshold (Sewell, 1984a),

reduce the IHC depolarizing DC current, and reduce IHC

tuning (Brown et al., 1983b; Nuttall, 1984; 1985).

** is also essential for medial efferentExtracellular Ca

induced changes in the N1, CM and EP in the mammalian

cochlea (Konishi and Kelsey, 1970). Indeed, it is highly

likely that the presynaptic release of neurotransmitter from

both BME and CME terminals synapsing upon OHCs is ca”-

dependent.

Cholinergic receptors on OHCs may be nicotinic (e.g.

Plinkert et al., 1991) or slower acting (Taylor, 1990b:

Lefkowitz et al., 1990) muscarinic (Niedzielski and Schacht,

1991). Finally, ACh release from lateral efferent terminals

may effect hyperpolarization in Type I fibers, by producing

alterations in a clº or a K* conductance. A summary of the

effects of medial efferent activation, together with the

possible mechanisms described within the text are summarized
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Summary
mechanisms.
evidence
and

Tab1e of Media1
as yet,There

ABLE 11

Efferent effects and possible
no direct physiological

for the hypothesized basal medial efferent
Circumnuclear medial efferent (CME ) subsystems. Possible

lateral efferent effects are not included here.

MEDIAL EFFERENT POSSIBLE MECHANISM(S)

driven discharge

EFFECT

& Distortion BME-Induced OHC contraction
Products mediated via IP2 second

messenger

SP- 85me as above

IHC DC OHC contraction or 4 in EP
Potential

4. IHC Tuning same as above

$ N1 and N2
Amplitude same as above

& single unit
same as above

discharge

f single unit
threshold same as above

$ single unit
tuning same as above

CME-Induced C1- Influx
Producing an OHC Kº current

t CM shunt

4 EP same as above

single unit
4. spontaneous 4 in EP
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I11ustration 5

An integrated model of mammalian efferent physiology. As
part of an active mechanical system, ACh is released from
the medial efferent fibers. A Ca" * -dependent activation (3a)
of the basal medial efferent (BM E ) fibers results in a
postsynaptic hydrolysis of PPD, liberating diacy 191ycero1
(not shoun) and IP3 as transmembrane second messengers. The
second messenger IPs mobilizes Ca" from internal stores and
produces OHC depolarization. The unbound Ca" * triggers the
contraction of actinomyosin filaments within the hair cell
cytoskeleton. Alterations in the OHC shape are mechanical 1 y
conveyed to the IHC by the stereocilia–tectorial membrane
(TM) attachment. In the model, the IHC functions in a manner
identical to nonmammalian hair cells described in the text.
As part of a passive resistive system, a Ca" * -dependent (48)
circumnuclear-medial efferent (CME )—induced C1- influx at
resistance (4) repolarizes the Ca" + -induced OHC
depolarization and also increases the intrace 11tular
electrochemical gradient for K* , resulting in an increased
K” influx at (1). The greater concentration of intracellular
K* produces an increased current flou of K* through the
resistance at (2). Lateral efferent (LE) release of ACh
results in hyperpolarization of Type I fibers by activating
either an invard C1 conductance, or an outward K”
conductance.

IHC OHC

Kº Kº Kº K+ #: Kº Kº K+
Kº Kº

"ill|| |
Kº Kº Kº Kº Kº Kº Kº
º, mill
pººrººl

-

(K" or C1- )

-Bºs E
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APPENDIX A



PERILYMPH

CHEMICAL MOLARITY M.W. GMS
NaCl 130.00 mM 58.44 7.6

KCL 4.00 mM 74.56 0.3

CaCl2 4.00 mM 147.00 0.59

MgCl2 2.00 mM 203.30 0.41

HEPES 12.50 mM 238.30 2.98

Glucose 10.00 mM 180.16 1.80

add 650 ul of 10 N NaOH to adjust pH to 74. (This changes the NaCl to 136.00 mM)
Add everything to DI H2O and bring up to a final volume of 1000 mL.



APPENDIX B



Modified Program; Experiments 2 and 3

options ls-78;

data a,
infile DATA MATRIX;
input wave $level $id tri r1 r2 r3 rq r5 rô;
proc sort;
by wave level;

proc glm;
class tri;
title" TIME EFFECTS ';
model r1—ró = tri / nouni;

manova h-intercept m= -.50°r1-.50°r2+r3,
-.33*r1-.33*r2-.33*r3+.33*rq+.33*rS+.33*ró

mnames=baseline drug / short summary;
by wave level;

-

proc glm;
class tri;
title" TIME x DRUG EFFECTS ';
model r1—ró = tri / nouni;

manova h- trf m= r1+r2+r3+r4+rS+ró,
-.50°r1-.50°r2+r3,

-.33°r1-.33°r2-.33*r3+.33*rq+.33*rS+.33*ró
mnames=overall baseline drug / short summary;

by wave level;



Sample Test For Trends; Experiments 2 and 3

options ls=78;

data a,
infile DATA MATRIX;
input wave $level $id tri r1 r2 r3 rq rS ré;
meanint=mean(rq,r5, rô);
meanbase=mean(r1,r2, r3);
meanch=(meanint-meanbase)/meanbase;
proc sort;
by wave triid level;

data foo;
do i=1 to 4;
set a:
by wave trf id;
if level='thresh' then int()=meanch;
if level="fiveSL' then intS=meanch;
if level="tenSL' then int10=meanch;
if level='thirtySL' then int30=meanch;
if last.id then do;

output;
return;
end;

end;
keep wave trf id into int5 int10 int30;

“proc print;

proc glm;
model into int5 int10=trt/nouni;
repeated intensity 3 (0.510) polynomial/summary;
by wave;
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