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Abstract

Interactive visualization and exploration of large-scale scientific data sets

is an important application for the analysis of data obtained from compu-

tational fluid dynamics (CFD), computerized tomography (CT), and laser-

range scans. These data sets are typically defined by discrete samples, either

aligned on regular grids or randomly scattered in space, describing an under-

lying shape or a volumetric field function. Examples are isosurfaces and shock

waves in CFD, height maps for terrain data, and three-dimensional scanned

objects in reverse engineering. Starting with discrete samples, a continu-

ous geometric model is built, that closely approximates an underlying shape.

Multiresolution representations are essential for displaying large-scale surface

and volume models within minimal computation time, satisfying certain er-

ror bounds or bounds on complexity. This dissertation is concerned with the

efficient construction of multiresolution surface and volume models for high-

quality approximation of scientific data. We present two adaptive clustering

methods used for scattered data approximation. The first method uses hierar-

chical Voronoi diagrams and Sibson’s interpolant for multiresolution surface

modeling. The second approach is based on binary space-partition trees and

quadratic polynomial approximation used as intermediate representation for

the construction of triangulated surfaces. For multiresolution representation

and compression of data sets defined on regular grids, we construct biorthog-

onal lifted B-spline wavelets with small filters. A major contribution is the

construction of new symmetric lifted B-spline subdivision-surface wavelets

with finite filters for representing surfaces of arbitrary topology defined by

irregular polygonal base meshes. Regular mesh subdivision results in smooth

limit surfaces with the option of sharp features and boundary curves repre-

sented by modified subdivision rules. These new wavelet constructions are

used for approximation and compression of isosurfaces taken from a high-

resolution turbulent-mixing hydrodynamics simulation. A similar approach

is used to define wavelets on planar tessellations.
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Chapter 1

Introduction

Geometric modeling is concerned with the representation and manipulation

of curves and surfaces, required for geometric design, computer graphics,

and scientific visualization applications. In the scope of scientific visualiza-

tion, geometric modeling is used to create continuous, highly detailed math-

ematical representations for large-scale data sets defined by discrete samples.

Geometric models are close approximations to physical shapes or processes,

enabling exploration and visualization techniques that could not be applied

to discrete sampled representations or to physical processes. Examples for

data used in geometric modeling come in two flavours: physical phenomena

that can be measured by some technique and numerical simulations that can

be reproduced virtually at any resolution.

Applications for modeling physical phenomena include studying the shape

of a tumor reconstructed from computerized tomography (CT) scans, visu-

alizing vortex cores in the air flow around an aircraft wing measured from a

wind-tunnel experiment, and reverse engineering of a car body scanned from

a solid prototype. Applications for numerical simulations are, for example,

stress tests of a concrete structure during an earthquake and visualization

of turbulent-mixing hydrodynamics simulated on massive parallel supercom-

4



CHAPTER 1. INTRODUCTION 5

Scans of
Physical
Phenomena

Numerical
Simulation

Discrete
Samples

Continuous
Representation

Visualization

Exploration

Manufacturing

Geometric
Modeling

Virtual Reality

Figure 1.1: Geometric modeling provides continuous approximations of

high fidelity to enable techniques that cannot be applied to discrete data or

to physical processes.

puters. The role of geometric modeling in these applications is illustrated in

Figure 1.1. A broader definition of geometric modeling includes also applica-

tions in computer-aided geometric design (CAGD), which refers to interactive

techniques for designing curves and surfaces.

A geometric model is a multi-dimensional function or a set of functions ap-

proximating data with high fidelity and providing efficient evaluation meth-

ods for answering queries. In the case of a CT scan, this function defines

the material density for every point (x, y, z) in space. In the case of a time-

varying compressible flow field, this function has a four-dimensional (x, y, z, t)

domain and may have a six-dimensional range (p, ρ, T, u, v, w), encompassing

pressure, density, temperature, and three velocity components, respectively.

Often, the domain of a geometric model is defined by an irregular finite el-

ement mesh that may even be deforming or changing topology over time,

which complicates the construction of continuous functions. Also, there may

be discontinuities like material boundaries and shock waves that should be

explicitly represented in a geometric model.

Another difficult problem is the construction of a surface parametrization

when none is given. This problem arises in reverse engineering applications,

where a surface is reconstructed form a cloud of sampled three-dimensional



CHAPTER 1. INTRODUCTION 6

x

y

z

f(x,y,z) = 0

u

v

(x,y,z) = f(u,v)

δf
δu

δf
δv

Figure 1.2: Implicit surface (isosurface, left) and parametric patch (right).

points, and in isosurface-extraction applications where a parametric repre-

sentation for an implicit surface {(x, y, z) | f(x, y, z) = 0} is sought, see

Figure 1.2. Parametric representations are often preferred, since the geom-

etry is represented as the range of a function whose domain can be freely

chosen to be a simple topological equivalent, for example a polygonal sur-

face, providing efficient access to the corresponding geometry.

We build geometric models for data sets defined by discrete samples that

are often not accurate. The data may be “contaminated” with sampling

noise or numerical errors accumulated when solving large systems of equa-

tions. Geometric modeling techniques allow the construction of continuous

representations that, despite of errors and missing data, closely describe the

underlying geometry. From a good geometric model, supplementary infor-

mation can be derived, like partial derivatives in a flow field and Gaussian

curvature of a surface. The model should minimize aliasing effects due to

discrete sampling as well as anomalies not supported by the data, like “wig-

gles” caused by interpolation constraints or by using certain basis functions.

The representation should be fair, i.e., it should be as smooth as suggested

by the data, except along sharp features and discontinuities.

Multiresolution representations become essential to process large-scale

data sets efficiently. They allow displaying a model at a low-resolution global
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view as well as zooming into certain regions at increased resolutions such

that the computation and transmission times remain small. If the geomet-

ric model can be evaluated locally and progressively, it is possible to satisfy

demand-driven queries, i.e., providing a maximal amount of detail within a

prescribed processing time or providing a minimal amount of detail satisfying

a prescribed error bound. Progressive evaluation means that the resolution

of a geometric model adaptively increases while the data is accessed, with-

out processing the same information twice. The concept of multiresolution

modeling is surveyed by Heckbert/Garland [63].

In this dissertation, we describe a variety of algorithms that efficiently

generate multiresolution models from discrete samples. One class of algo-

rithms are adaptive clustering methods that partition a set of samples recur-

sively into smaller groups (clusters) based on adjacency in space or correlation

of associated function values. Every cluster is represented by its most signifi-

cant sample or by a simple approximation of all samples inside, thus reducing

the amount of data and sorting it by decreasing significance. In Chapter 2,

we describe two adaptive clustering methods based on hierarchical Voronoi

diagrams, see Figure 1.3, and binary space partition (BSP) trees. We pro-

vide numerical examples and describe a triangulation method that is based

on adaptive clustering.

A second class of multiresolution models are based on wavelet represen-

tations [25, 123]. Wavelets have a wide range of applications, including pro-

gressive transmission and compression, see Figure 1.4, signal processing, mul-

tiresolution design, hierarchical rendering and solving difficult mathematical

problems like integrating radiosity kernels and partial differential equations

(PDEs). In Chapter 3, we review some fundamental theory of the wavelet

transform and describe some highly efficient wavelet constructions based on

the lifting scheme [125]. We use these constructions for lossless compres-

sion and visualization of large-scale scientific data obtained from simulated

turbulent-mixing hydrodynamics.
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Figure 1.3: An image represented by color values of 500 selected points and

the underlying tessellation (Voronoi diagram).

Figure 1.4: Terrain data set (left) and reconstruction from a 1:100 compres-

sion (right) using a linear B-spline wavelet transform and arithmetic coding.
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Figure 1.5: Local view of an isosurface re-sampled on a regularly refined

polygonal base mesh. The surface model is shown at full resolution (left) and

reconstructed from 5 percent of its wavelet coefficients (right).

A major contribution of this dissertation is the construction of lifted B-

spline wavelets generalized to arbitrary polygonal mesh domains. Wavelets

on arbitrary topology were already described by Lounsbery [90]. Our new

construction approach, however, provides the most efficient and comprehen-

sive wavelet transform for smooth two-manifold geometries to date. To the

author’s knowledge, our approach is the first lifting-style wavelet transform

for two-manifold geometries with finite decomposition and reconstruction

filters, reproducing tensor-product B-splines on regular, rectilinear meshes.

Our wavelet transform satisfies a lot of desirable properties, like vanishing

moments, polynomial precision, and tangent-plane continuity at extraordi-

nary points (points with other than four adjacent edges in a polygonal mesh

domain). Finally, we outline an isosurface fitting method generating meshes

and parametrizations for our wavelet transform. We use this wavelet trans-

form for isosurface compression and visualization at different levels of res-

olution. A re-sampled isosurface reconstructed form a small set of wavelet

coefficients is shown in Figure 1.5.



Chapter 2

Adaptive Clustering

Clustering techniques [94] can be used to generate a data-dependent hier-

archy representing inherent topological and geometric structures. For ex-

ample, clustering can be applied to recover topological structures of two-

manifold surfaces from scattered data points in 3D space [65]. In contrast

to mesh-reduction algorithms, adaptive clustering methods do not require a

grid structure connecting the given data points. A cluster hierarchy can be

built in a “top-down” fashion, so that coarse levels of resolution require less

computation times than finer levels.

In this chapter, we give a general overview of adaptive, data-dependent

clustering schemes and introduce two clustering methods, based on hierarchi-

cal Voronoi diagrams and BSP trees for adaptive triangulation. We provide

numerical examples for these algorithms applying them to adaptive image

approximation and terrain modeling.

10
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Figure 2.1: Scattered points with associated function values (s = 2, t = 1).

2.1 Clustering Approach

Adaptive clustering schemes construct a hierarchy of regions, each of which

is associated with a simplified representation for the data points located

inside. We assume that a data set is represented at its finest level of detail

by a set P of n points in s-dimensional space, s = 1, 2, . . . , with associated

t-dimensional function values, t = 0, 1, . . . :

P = {(pi, fi) | pi ∈ R
s, fi ∈ R

t, i = 1, . . . , n}.

For our applications, the dimension s is at most four (in the case of time-

varying volumetric data). However, the number t of associated function

values can be much higher.

The set P is the input for adaptive clustering. It represents a function

f : D → R
t, where D ⊂ R

s is assumed to be a compact domain that contains

all points pi. The points pi define the associated parameter values for the

samples fi. We do not assume any kind of “connectivity” or grid structure

for the points pi. An example of a point set is illustrated in Figure 2.1.

The output of an adaptive clustering scheme consists of a number of levels

Lj, j = 0, 1, . . . , defined as

Lj = {(τ jk , f̃
j
k , ε

j
k) | k = 1, . . . , nj},

where for every level with index j, the tiles {τ jk ⊆ D | k = 1, . . . , nj} form

a partition of the domain D, the functions f̃ jk : τ jk → R
t approximate the
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function values of points located in the tiles τ jk , i.e.,

f̃ jk(pi) ≈ fi ∀pi ∈ τ jk ,

and the residuals εjk ∈ R ≥ 0 estimate the approximation error. In principle,

any error norm can be chosen to compute the residuals εjk. We note that the

error norm has a high impact on the efficiency and quality of the clustering

algorithm, since it defines an optimization criterion for the approximations

at every level of resolution. We suggest the following norm:

εjk =


 1

njk

∑

pi∈τ jk

‖f̃ jk(pi)− fi‖p



1

p

, p ∈ [1,∞], (2.1)

where njk = |{pi ∈ τ jk}| is the number of points located in tile τ jk and ‖ · ‖
denotes the Euclidean norm (or any other norm) in R

t. In the case of p =∞,

the residual is simply the maximal error within the corresponding tile.

A global error εj with respect to this norm can efficiently be obtained for

every level of resolution from the residuals εji as

εj =


 1

n

nj∑

k=1

∑

pi∈τ jk

‖f̃ jk(pi)− fi‖p



1

p

=

(
1

n

nj∑

k=1

njk
(
εjk
)p
) 1

p

. (2.2)

Starting with a coarse approximation L0, an adaptive clustering algorithm

computes finer levels Lj+1 from Lj until a prescribed number of clusters or a

prescribed error bound is satisfied. To keep the clustering algorithm simple

and efficient, the approximation Lj+1 should differ from Lj only in cluster

regions with large residuals in Lj. As the clustering is refined, it should

eventually converge to a space partition, where every tile contains exactly

one data point or where the number of points in every tile is sufficiently low

providing zero residuals.
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Figure 2.2: Planar Voronoi diagram and its dual, the (not uniquely defined)

Delaunay triangulation.

2.2 Hierarchical Voronoi Diagrams

We propose a new adaptive clustering approach for multiresolution represen-

tation of scattered data: a hierarchy of Voronoi diagrams [117] constructed

from nested subsets of the original set of points.

2.2.1 Algorithm

The Voronoi diagram of a set of k-dimensional points pi, i = 1, . . . , n, is a

space partition consisting of n tiles τi. Each tile τi is defined as a subset of

R
k that contains all points that are closer to pi than to any pj, j 6= i, with

respect to the Euclidean norm, see Figure 2.2.

A Voronoi diagram can be derived from its dual, the Delaunay trian-

gulation [34, 36, 38, 48], see Figure 2.2. The circumscribed circle of every

triangle in a Delaunay triangulation does not contain any other data points.

If more than three points are located on a such a circle, then the Delaunay

triangulation is not unique. The Voronoi vertices are located at the centers

of circumscribed circles of Delaunay triangles, which can be exploited for

constructing a Voronoi diagram. The Voronoi diagram is unique, in contrast

to the Delaunay triangulation.
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Figure 2.3: Construction of Delaunay triangulation by point insertion. Every

triangle whose circumscribed circle contains the inserted point is erased. The

points belonging to removed triangles are connected to the new point.

A Delaunay triangulation is constructed in expected linear time, provided

the points are evenly distributed [96]. Figure 2.3 illustrates the adaptive

construction process in the plane. For every point inserted into a Delau-

nay triangulation, all triangles whose circumscribed circles contain the new

point are erased. The points belonging to erased triangles are then con-

nected to the new point, defining new triangles that automatically satisfy

the Delaunay property. Point insertion is an operation performed in ex-

pected constant time, provided that the triangles to be removed are identi-

fied in expected constant time, which requires the use of some acceleration

method. Generalizing the Delaunay triangulation to k-dimensional space

is straight-forward: A Delaunay triangulation consists of k-simplices whose

circumscribed k-dimensional hyperspheres contain no other point.

The adaptive clustering algorithm uses Sibson’s interpolant [121] for con-

struction of the functions f̃ jk , described in Section 2.1. Sibson’s interpolant

is based on blending function values fi associated with the points pi that

define the Voronoi diagram. The blending weights for Sibson’s interpolant

at a point p ∈ R
k are computed by inserting p temporarily into the Voronoi

diagram and by computing the areas/volumes ai that are “cut away” from

Voronoi tiles τi, see Figure 2.4. The value of Sibson’s interpolant at p is
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fi

a ip

Figure 2.4: Computing Sibson’s interpolant at point p by inserting p into

a Voronoi diagram and using the areas cut away from every tile as blending

weights.

defined as

f(p) =

∑
i aifi∑
i ai

.

Sibson’s interpolant is C1-continuous everywhere except at the points pi. To

avoid infinite areas/volumes ai, one clips the Voronoi diagram against the

boundary of the compact domain D. A natural choice for the domain D is

the convex hull of the given points pi.

In the following, we provide the clustering algorithm in pseudocode, using

notation from Section 2.1. The algorithm performs these steps:

(i) Construct the Voronoi diagram for the minimal point set defining the

convex hull of all points pi, i = 1, . . . , n. The tiles of this Voronoi

diagram define the cluster regions τ 0
k of level L0.

(ii) From the functions f̃ jk , defined by Sibson’s interpolant and from error

norm (2.1) (p = 2), compute all residuals ε0
k. To avoid square root

computations, (ε0
k)

2 is stored.

(iii) Refinement: Lj → Lj+1. Let m be the index of a maximal residual in

Lj, i.e., εjm ≥ εjk ∀k = 1, . . . , nj. Among all pi ∈ τ jm, identify a data
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point pmax with maximal error max
pi∈τ jm{‖f̃

j
m(pi)− fi‖}. Insert pmax

into the Voronoi diagram.

(iv) Update εj+1
max and all residuals associated with tiles adjacent to the new

tile τ j+1
max with center pmax. (All other clusters remain unchanged, i.e.,

τ j+1
i = τ ji , f̃

j+1
i = f̃ ji , and εj+1

i = εji .)

(v) Compute the global approximation error εj using the error norm (2.2).

Terminate the process when a prescribed global error bound is satisfied

or when a prescribed number of points has been inserted. Otherwise,

increment j and continue with step (iii).

2.2.2 Numerical Examples

We have applied the Voronoi-based clustering approach to represent the two

analytical functions f1(x, y) = sin (x2) sin (y2) and f2(x, y) = tan (x),

as well as the Hubble image “Dying Sun”, courtesy of NASA. All three data

sets have been sampled on a regular, uniformly spaced 256 × 256 grid. The

algorithm does not exploit this grid structure. Approximation results are

listed in Table 2.1.

Hierarchical voronoi Diagrams can also be used for terrain modeling. We

have applied our clustering approach to the Crater Lake terrain data set,

courtesy of U.S. Geological Survey. The original dataset contains 159272

samples. A hierarchy of Voronoi-based approximations is shown in Figure 2.7

and the corresponding approximation errors are listed in Table 2.2.
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Dataset No. Voronoi Tiles Error (p = 1) [%] Error (p = 2) [%]

f1 100 6.0 7.4

1000 1.0 1.2

f2 100 7.9 11.3

200 5.1 6.3

“Dying Sun” 100 4.2 4.6

200 3.6 4.1

500 2.8 3.2

2000 2.0 2.3

Table 2.1: Numerical approximation results. The errors are computed based

on (2.2). Figures 2.5 and 2.6 show Sibson’s interpolant and the corresponding

Voronoi diagrams.

No. Voronoi Tiles Error (p =∞) [%] Error (p = 2) [%]

100 31.6 3.13

200 17.1 1.96

300 16.3 1.55

400 13.9 1.33

500 11.9 1.21

1000 10.8 0.80

Table 2.2: Approximation errors in percent of amplitude for Crater Lake

terrain data set. Figure 2.7 shows the different levels of resolution.
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Figure 2.5: Approximations of f1(x, y) = sin(x2)sin(y2) based on 100 and

1000 samples (top) and of f2(x, y) = tan(x) based on 100 and 200 sam-

ples (bottom). Left: original function; middle: Sibson’s interpolant; right:

underlying Voronoi diagrams. Approximation errors are listed in Table 2.1.
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Figure 2.6: Approximations of “Dying Sun” image at different levels of detail,

based on 100, 200, 500, and 1000 tiles, see Table 2.1. Left: original image;

middle: Sibson’s interpolant; right: underlying Voronoi diagrams.
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n = 100

n = 300

n = 1000n = 500

n = 200

full resolution

Figure 2.7: Crater Lake terrain data set at different levels of resolution.
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2.3 Binary Space Partition (BSP) Trees

BSP trees [34] are generated by clustering schemes that recursively split

cluster regions in s-dimensional space along a (k−1)-dimensional hyperplane.

Every node in the BSP tree corresponds to a splitting step. Adjacency of

clusters at any level of resolution can efficiently be recovered by traversing the

tree. Thus, BSP trees are well suited to recover topologies of two-manifold

surfaces in three-dimensional space or, more generally, to reconstruct (s−1)-

manifolds in s-dimensional space.

One of the most common problems in scientific visualization is the ex-

traction of surfaces especially isosurfaces of scalar fields. We assume that

the geometry of a surface is given by discrete samples in three-dimensional

space, possibly with additional function values defining normals, color, etc.

To visualize surfaces efficiently, modern graphics hardware requires a surface

representation of polygons, preferably triangles. The number of triangles to

be rendered has a major impact on the efficiency of the visualization pro-

cess. Thus, a progressive clustering scheme from which a triangulated surface

representation can be derived is desirable.

Although all clustering approaches discussed in the following sections

generalize to s dimensions, we emphasize the application of reconstructing a

triangulated surface and describe all necessary implementation details. The

clustering schemes differ mostly in their use of an approximating function f̃ jk
and in their choice of a splitting plane for refinement.

2.3.1 Principal Component Analysis (PCA)

A PCA-based clustering approach for surface reconstruction is introduced

by Heckel et al. [64, 65]. We briefly summarize this work, since it matches

exactly our general definition of adaptive clustering. This approach makes

use of PCA for the construction of an approximating function f̃ jk that pro-
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c
e

e

λmax

λmin

Figure 2.8: PCA provides a coordinate system aligned with scattered points.

If these points define a surface, then eλmin is a local estimate for the surface

normal.

vides the local distance from a reconstructed two-manifold surface, and for

the estimation of a splitting plane.

In the following, we explain how PCA can be used to define a data-

dependent coordinate system in s dimensions. Given a “cloud” of points

pi = (pi1 · · ·pik)T , i = 1, . . . , n, the centroid is defined as

c =
1

n

n∑

i=1

pi.

We use the centroid as origin for a local coordinate system. Eigenanalysis of

the symmetric matrix

ajk =
1

n

n∑

i=1

(pij − cj)(pik − ck) (2.3)

defines a set of orthonormal eigenvectors e1, . . . , ek that serve as local basis

vectors. The square-roots of the corresponding real and positive eigenvalues,√
λ1, . . . ,

√
λk, determine the amounts by which the cloud of points is scaled

in direction of the corresponding eigenvectors, see Figure 2.8.

If the points pi define a s-manifold, then the eigenvector eλmin with small-

est eigenvalue is assumed to be locally orthogonal to the manifold. Hence,

f̃ jk can be defined as signed distance to the manifold:

f̃ jk(x) = (x− c) · eλmin .
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A splitting plane, or a hyperplane in general, is chosen such that it in-

terpolates the centroid c and is orthogonal to the eigenvector eλmax with

maximal eigenvalue. This choice of the splitting plane ensures that every

cluster is split orthogonal to its longest axis, resulting in well-shaped clus-

ters.

We note that the clustering process only considers the points pi and

ignores associated function values fi. This can be changed by assigning a

positive weight wi, defined by the approximation error, to every point pi.

When performing PCA, the weighted centroid

c =

∑n

i=1 wi pi∑n

i=1 wi

is used as origin for the local coordinate system and the matrix (2.3) is

replaced by

ajk =

∑n

i=1 wi(pij − cj)(pik − ck)∑n

i=1 wi
. (2.4)

It is shown in [65] how to obtain a triangulation for a two-manifold surface

from the result of the clustering process.

2.3.2 Quadratic Polynomial Approximation

We present a similar clustering approach for efficient triangulation of scat-

tered data in the plane [10]. This approach can be generalized to triangulate

two-manifolds by projecting the data locally onto a plane obtained by PCA.

A major difference to the clustering method explained above is that the

approximating functions f̃ jk are quadratic polynomials representing smooth

surfaces much better than piecewise linear approximations.

In the following, we summarize our adaptive clustering approach [10] [10]

that is based on quadratic polynomial approximations. The construction of
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high quality triangulations outgoing from this representation is discussed in

Section 2.4. We assume that the given data set is composed of points pi

in the plane with associated scalar function values fi. A generalization to

higher dimensions is possible.

For every cluster s at level Lj, a quadratic polynomial

f̃ jk(x1, x2) =
∑

l, m≥0; l+m≤2

cl,m xl1 x
m
2 =

∑

0≤|l|≤2

cl xl (2.5)

approximating the function values fi at the locations pi ∈ τ jk is estimated by

least-squares fitting, see Appendix A.

For the splitting process, a straight line is defined along which a cluster

is subdivided. Therefore, we construct two weighted centers, called c+ and

c−, which correspond to the positive and negative errors, respectively. The

centers are given by

c+ =

∑n

i=1 w+
i pi∑n

i=1 w+
i

, w+
i =

{
f̃ jk(pi)− fi, if f̃ jk(pi)− fi > 0

0, otherwise

and

c− =

∑n

i=1 w−
i pi∑n

i=1 w−
i

, w−
i =

{
fi − f̃ jk(pi), if f̃ jk(pi)− fi < 0

0, otherwise.

A cluster is subdivided along the bisector of the line segment c+c−

(Figure 2.9). If c+ and c− are identical, then the direction of subdivision

will be arbitrary.

We provide a description of the clustering algorithm in pseudocode, us-

ing notation from Section 2.1. At a high level, these are the steps to be

performed:

(i) Establish level L0 containing a single cluster, τ 0
1 = D. The function

f̃ 0
1 is a quadratic polynomial resulting from a least-squares fit based on

all points pi, as explained above. The residuals are estimated based on

the error norm in equation (2.1), with p =∞ (maximum norm).
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Figure 2.9: Subdivision along perpendicular bisector of c+ and c−.

(ii) Refinement: Lj → Lj+1. Let m be the index of a maximal residual in

Lj, i.e., εjm ≥ εjk ∀k = 1, . . . , nj. Split tile τ jm as described above. For

the two resulting tiles, construct the approximating quadratic poly-

nomials and the residuals using the maximum norm. All other tiles

remain unchanged.

(iii) Terminate the process when a prescribed global error bound is satisfied

by all residuals εjk or when a prescribed number of tiles is reached.

Otherwise, increment j and continue with (ii).

We use the maximum error norm p = ∞ to approximate the given data

within a prescribed tolerance. In Section 2.4, we construct a triangulation

for every approximating quadratic polynomial with a minimal number of

triangles so that a prescribed maximal error bound is satisfied. Numerical

examples are provided in Section 2.5.

2.3.3 Affine-invariant Approach

Both clustering schemes introduced above provide clusters that remain the

same if a data set is translated, rotated, or uniformly scaled, but they are

not invariant under affine transformations like a shear.
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An affine-invariant norm is discussed in [102]. To exploit this idea for

clustering, we can transform a set of points pi into the coordinate system

defined by PCA, see Section 2.3.1, and scale every coordinate corresponding

to the eigenvector ei by 1√
λi

. The coordinates obtained from this transforma-

tion are now affine-invariant. A splitting hyperplane can be defined in these

coordinates and transformed back into the previous system, see Figure 2.10.

e 12e e 12e e 12e

Figure 2.10: Left: set of points pi and induced normalized eigenvectors; mid-

dle: estimated splitting line in affine-invariant coordinates; right: resulting

splitting line.

We have implemented this adaptive clustering approach for scattered

points in the plane with associated function values. The PCA-based splitting

method provides well-shaped clusters, but it does not consider the associated

function values. The splitting approach based on bisectors between centers

of positive and negative errors typically provides a lower number of clusters

than PCA within the same approximation error, because it generates long

and skinny clusters when the associated function is curved in only one direc-

tion. The affine invariant approach, however, provides poor approximation

behavior in some regions where clusters are recursively split along similar

directions. It may work well on densely sampled, smooth data sets.
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2.4 Optimal Approximation with Triangles

A new hierarchical and data-dependent triangulation approach, based on

the adaptive clustering scheme of Section 2.3.2, has recently been published

[10]. This approach uses piecewise quadratic polynomial approximation as

intermediate data representation. The cost for generating a triangulation

depends only on the complexity of the clustering and on the error bound,

but not on the number of points in the original data set.

2.4.1 Related Work

A variety of triangulation approaches optimizing different geometrical cri-

teria or analytic cost functions exist, but most of them are not based on

clustering. Some early approaches, see for example De Floriani et al. [36],

apply the Delaunay triangulation that leads to low aspect ratios of the result-

ing triangles (the ratios between the radii of the circumscribed and inscribed

circles for all triangles). However, in the case of data-dependent triangula-

tions the use of long and skinny triangles can reduce approximation errors

[19, 43, 95, 111]. To obtain a global optimum for a cost function, multidi-

mensional optimization methods, such as simulated annealing, can be applied

[79, 116].

A different class of algorithms does not rely on the original data points as

triangle vertices. Nadler [100] and D’Azevedo [4] apply a coordinate transfor-

mation to generate an optimal triangulation for a certain class of analytical

functions. This transformation is based on principal axes, which are also

used in our approach. Quak et al. [108] apply least-squares fitting to linear

splines to approximate scattered data.

Considering the large amount of data produced by supercomputer simu-

lations, it becomes important to handle data locally and on multiple levels of

detail for interactive visualization. A variety of view-dependent triangulation
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algorithms, are discussed in [42, 71, 73, 130]. For more general multireso-

lution triangulations, we refer to [37, 52, 55, 62]. Algorithms for adaptive

two-manifold surface reconstruction from scattered points are described in

[47, 65, 68].

Once a triangulation is constructed for a given scattered data set, the

mesh can be reduced to a coarser level of detail. Mesh reduction strategies

are described, for example, in [69, 113]. Not only is elimination of detail

possible, but also synthesis. In this context, the concept of the discrete

wavelet transform (DWT) [93], which is a highly efficient method for signal

processing and data compression on regular grids, has been generalized to

arbitrary triangular meshes [33, 58].

2.4.2 Triangulation Approach

Most triangulation approaches operate directly on the data. In contrast, our

method is based on adaptive clustering and a piecewise quadratic represen-

tation. Quadratic polynomials have the property that their graph surfaces

can be approximated by a regular triangulation in such a way that all trian-

gles imply the same approximation error. This property provides a method

for rapidly generating a set of optimally shaped triangles for every cluster

region. The individual triangulations are “stitched” together to a single tri-

angulation by exploiting the connectivity implied by a BSP tree. The overall

triangulation method is illustrated in Figure 2.11.

The construction of an optimal triangulation for a quadratic graph surface

is discussed in [107], which provides the basis of our constructive approach.

We call a triangulation optimal when it approximates a quadratic polynomial

within a prescribed error bound and consists of triangles with maximal area.

The basic idea is to exploit affine invariance of the error norm to transform

a quadratic graph surface to a prototype for which a regular triangulation

satisfying an error bound is known.
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Figure 2.11: Left: scattered points sampled from smooth graph surface;

middle: clusters with optimal triangulations; right: final triangulation.

2.4.3 Principal Axis Transformation

In matrix notation a quadratic function can be written as

f(x, y) = (x y)

(
c20 c11

c11 c02

)(
x

y

)
+ (c10 c01)

(
x

y

)
+ c00. (2.6)

To analyze its principal axes, i.e., the directions of minimal and maximal

second derivative (or curvature), we can neglect the constant and linear terms

that do not affect approximation error. Thus, we only need to consider the

quadratic form

(x y)

(
c20 c11

c11 c02

)(
x

y

)
= xTCx = 0. (2.7)

The graph surface’s principal curvatures are implied by the eigenvalues

λ1 and λ2 of the matrix C and the principal axes are determined by the

corresponding eigenvectors e1 and e2 [16]. Depending on the sign of the

eigenvalues, we have to distinguish between three different surface types:

• The surface is elliptic, i.e., λ1λ2 > 0.

• The surface is hyperbolic, i.e., λ1λ2 < 0.
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• The surface is parabolic (or planar), i.e., λ1λ2 = 0.

For every type, a different optimal triangulation scheme is used.

2.4.4 The Elliptic Case

The graph surface of a quadratic function f of elliptic type is equivalent to

the graph surface of the paraboloid

g(x, y) = x2 + y2, (2.8)

i.e., there exists a linear transformation for the arguments of g that produces

the same graph surface as f , neglecting linear and constant terms. In the

case of positive eigenvalues, this transformation is given by
(
x

y

)
=

(
1√
λ1
e11

1√
λ2
e21

1√
λ1
e12

1√
λ2
e22

)(
x

y

)
= G

(
x

y

)
, (2.9)

where the matrix entries are determined by the normalized eigenvectors

e1 = (e11, e12)
T and e2 = (e21, e22)

T . This result can be verified by insert-

ing (2.9) into the quadratic form (2.7). Considering the orthogonality of

eigenvectors, GTCG is the identity matrix, and it therefore reproduces the

quadratic form of g.

We need to construct an optimal triangulation for g, which will also be

optimal for f , after applying the above transformation. Due to the rotational

symmetry of g, all triangles that share the same circumscribed circle of radius√
2ε have the same maximal error ε. Hence, an equilateral triangle, with

arbitrary orientation in the xy-plane — like the one in Figure 2.12 given

by the points (−
√

2ε, 0)T , (
√

0.5ε,
√

1.5ε)T , and (
√

0.5ε,−
√

1.5ε)T — has

maximal area. The maximal error occurs at the center and at the vertices of

the triangle.

In the case of positive eigenvalues, the vertices must be placed below

the quadratic surface by a distance ε to obtain the error profile shown in
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Figure 2.12: Optimal triangle and error profile for g(x, y) = x2 + y2.

Figure 2.12. For negative eigenvalues, the function f can be replaced by −f ,

which implies positive eigenvalues. The only difference in this case is that

the vertices need to be placed above the surface by ε.

To obtain the final triangulation only two of the edges need to be trans-

formed according to (2.9). The transformed edges define a regular triangu-

lation that is established for the convex region corresponding to the cluster,

emanating from its centroid, see Figure 2.11. Only triangles that lie entirely

in the cluster region are generated, leaving an untriangulated gap along the

cluster boundaries.

2.4.5 The Hyperbolic Case

In analogy to the elliptic case, we can choose a single prototype for a hyper-

bolic quadratic polynomial. We choose the polynomial

h(x, y) = x2 − y2. (2.10)

To transform the quadratic form of h into the quadratic form of a given

quadratic hyperbolic function f , with eigenvalues λ1 > 0 and λ2 < 0 and

normalized eigenvectors e1 = (e11, e12)
T and e2 = (e21, e22)

T , we apply the
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map

(
x

y

)
=

(
1√
λ1
e11

1√
−λ2

e21
1√
λ1
e12

1√
−λ2

e22

)(
x

y

)
= H

(
x

y

)
. (2.11)

The transformation is correct, since it reproduces the quadratic form of h:

HTCH =

(
1 0

0 −1

)
.

Due to the nature of hyperbolic surfaces, it seems necessary to place the

triangle vertices exactly on the surface. Offsetting a vertex may reduce the

error of a single triangle, but, at the same time, will increase the error of

an adjacent triangle. As shown in [107], an optimal triangle for the polyno-

mial h has the vertices (
√
ε,
√
ε)T , (

√
ε,−√ε)T , and

(
(1−

√
5)
√
ε, 0
)T

, see

Figure 2.13.

y

x

(     ,     )εε

(     ,−     )εε

((1−     )     , 0)ε5

Figure 2.13: Optimal triangle for hyperbolic polynomial h(x, y) = x2 − y2.

Since the vertices interpolate the surface, the maximal error is located at

the midpoint of every triangle edge. We note that the graph surface h has

zero curvature (and zero second derivatives) along the lines x + y = 0 and

x − y = 0, which implies that the error inside a triangle cannot be greater
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than the maximal error on its edges. The maximal error for any edge ab is

given by

εab =
1

4

∣∣∣(ax − bx)2 − (ay − by)2
∣∣∣. (2.12)

The final triangulation is established in the same way as in the case of

an elliptic surface, using two edges transformed according to (2.11). (In the

case of λ1 < 0 and λ2 > 0, the triangulation can be obtained by considering

the quadratic form of −f .)

2.4.6 The Parabolic Case

In the parabolic case, one of the two eigenvalues, and consequently one of the

principal curvatures is zero. (In the case of two zero eigenvalues the surface

is a plane, and the cluster region can be triangulated by only considering the

vertices of its convex boundary polygon.) We now consider the case λ1 > 0

and λ2 = 0. We can transform the quadratic form of the function

p(x, y) = x2 (2.13)

into the quadratic form of f by using the map
(
x

y

)
=

(
1√
λ1
e11 0

1√
λ1
e12 0

)(
x

y

)
. (2.14)

The error profile for a line segment is uniquely determined by its pro-

jection onto the first normalized eigenvector e1 of the quadratic form

(Figure 2.14). The length of this component should be at most
√

4ε/λ1.

As in the elliptic case, the vertices need to be placed below the surface by

the distance ε for λ1 > 0 and above it for λ1 < 0. In the case that λ1 = 0

and λ2 6= 0 the eigenvalues and eigenvectors simply change their roles. The

cluster region is finally triangulated by two, typically skinny triangles for ev-

ery subregion of width
√

4ε/λ1. To leave some space at the cluster boundary
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Figure 2.14: Line segment with error ε on parabolic surface.

for the stitching process, we shrink the cluster region by a small percentage

towards its centroid.

2.4.7 Merging Triangulations

Based on the BSP tree defining the cluster hierarchy and the set of individual

optimal triangulations, the final step of the algorithm stitches the triangula-

tions together by triangulating the gaps along the cluster boundaries. This

is done in reverse order of the cluster subdivision process, which allows us

to stitch exactly two triangulations at a time along the bisecting lines that

separate the corresponding cluster regions, see Figure 2.15.

To efficiently identify the polygon strips that need to be connected, we

keep track of the boundary of every triangulation. We initially need to con-

struct a closed boundary polygon for every optimal triangulation. This is

straightforward in the case of a triangulation resulting from a parabolic or

planar graph surface. In the elliptic and hyperbolic cases, the triangulations

inside the cluster region may be disconnected or contain line segments that

are not part of any triangle. Some special cases are shown in Figure 2.16.

The boundary of an optimal triangulation is defined as a single “loop”
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Figure 2.15: Pairs of triangulations are stitched together along straight-line

cluster bisectors.

Figure 2.16: Special stitching cases: All simplices — triangles, edges, and

vertices — must be enclosed by the boundary polygon.

that encloses all triangles, edges, and vertices of the optimal triangulation

that are inside the cluster region. It does not enclose areas other than optimal

triangles. Thus, a vertex can be part of the boundary polygon multiple times.

To efficiently construct a triangulation boundary, we use a scan-line algo-

rithm that identifies the left- and right-most vertices inside the cluster region

for every scan line parallel to the longest edge in a triangulation. In a second

step, additional vertices inside the cluster region are added to the boundary

polygon to ensure that the enclosed area contains only optimal triangles.

The boundary construction process is illustrated in Figure 2.17.
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Figure 2.17: Boundary construction for optimal triangulations. Left: bound-

ary vertices for every scan-line are inserted into triangulation boundary;

right: additional vertices are used to minimize enclosed area.

p1 2p

Figure 2.18: Shorter edges are preferred when stitching two triangulations.

In Figure 2.18, two optimal triangulations that need to be merged are

separated by the line segment p1p2. First, we extract from the two trian-

gulation boundaries two polygon strips along p1p2, starting with the vertex

closest to p1 and ending with the one closest to p2. Second, we construct

triangles by marching along the two polygon strips and by connecting point

pairs using vertices from opposite sides of p1p2. Considering the two possible

choices for defining the next triangle, we choose an edge with minimal length,

see Figure 2.18. One must not produce triangles with negative area, i.e., tri-

angles that overlap others. In the case that both choices would produce

triangles with negative areas, we construct a triangle from three consecu-

tive vertices in one of the polygon stips and thus eliminate the vertex in the
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middle. If the stitching process would still produce negative areas for both

choices, we insert a triangle from three vertices of the other polygon strip.

The triangles resulting from the stitching process are not guaranteed to

satisfy the given error bound. For a rigorous treatment, the final approxima-

tion errors must be estimated for all scattered data points located inside the

regions in the xy-plane defined by the triangles resulting from the stitching

procedure. Triangles that do not satisfy the error bound need to be modified.

This can be done by flipping an edge between two triangles or by inserting

the sample with greatest approximation error as a vertex into the triangu-

lation. The errors for all modified triangles need to be checked again. In

our numerical examples, we use a greater error bound for quadratic approxi-

mation than for triangulating polynomials. This implies that the total error

bound is relatively loose for the triangles obtained from the stitching process

and that violations of the error estimate are extremely rare.

2.4.8 Numerical Examples

We have applied our algorithm to approximate scattered data sets sampled

randomly from three different analytical functions and to approximate two

terrain data sets sampled on regular grids. The analytical functions are

defined as follows:

f1(x, y) = 0.5 x +

{
x2 + y2 if x < 0

−x2 + y2 otherwise,
x, y ε [−0.5, 0.5] ;

f2(x, y) = e−(x2 + y2), x, y ε [−2.2, 2.2] ;

and

f3(x, y) = sin(x2) sin(y2), x, y ε [−3, 0] .
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The numbers of clusters and triangles corresponding to different error

bounds are shown in Table 2.3. The error bounds (measured in percents of

the distance between minimal and maximal function values) are split in a

four-to-one ratio between quadratic approximation and triangulation of the

polynomials.

Function No. Error No. No.

Samples Bound [%] Clusters Triangles

f1 1000 1.0 2 179

0.3 3 662

f2 3000 2.0 35 437

0.5 73 1479

f3 3000 10.0 38 332

3.0 79 938

Table 2.3: Approximation results for sets of points sampled from analytical

functions. Figures 2.19–2.21 show the resulting triangulations.

Dataset, Error [%] No. No. Comp. Time [sec]

No. Samples Our Regular Clusters Triangles (i) (ii) (iii)

Method Tri.

“St. 10.0 18.7 46 464 0.732 0.046 1.232

Hellens”, 5.0 11.5 173 1,799 1.347 0.057 1.539

151,728 1.0 5.4 2,330 28,881 4.361 0.246 3.284

“Crater 10.0 22.9 114 1,149 1.029 0.054 1.464

Lake”, 5.0 16.4 400 4,316 1.861 0.077 1.951

159,272 1.0 10.1 2,798 36,456 4.503 0.288 3.799

Table 2.4: Approximation results for terrain data sets. Figures 2.22 and 2.23

show the resulting triangulations.

Approximation results for the two terrain data sets “St. Hellens” and

“Crater Lake” are shown in Table 2.4. The corresponding triangulations are

depicted in Figures 2.22 and 2.23. We compared the error bounds for our
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triangulations with the approximation errors of regular triangulations that

have approximately the same number of triangles and that are obtained from

a rectilinear grid. The error bounds for our method are split in a nine-to-

one ratio between quadratic approximation and triangulation of polynomials.

Since the terrain data sets are more “noisy” than samples from analytical

functions used above, we need to allocate a larger fraction of the error bound

for the quadratic approximation. The computation times shown in Table 2.4

have been obtained on a 194 MHz MIPS R10000 processor. The computation

times are split into three categories:

• (i) Adaptive clustering.

• (ii) Constructing the triangulation.

• (iii) Verifying the error bounds for the triangles obtained from stitching.

In the case of tight error bounds, the clustering step becomes the most

expensive part of the algorithm, but it needs to be computed only once for all

levels of resolution. The computation time for the triangulation (including

stitching) is very small and does not depend on the number of scattered

points in the initial data set. Checking the approximation errors, however,

requires significant more computation time for dense data sets. We suggest

to estimate the approximation error from only a small subset of randomly

selected samples.
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Figure 2.19: Triangulations for f1. Top: samples on original graph surface;

middle: optimal cluster triangulations in xy-plane (left) and final triangula-

tions in xyz-space (right); bottom: same for higher level of resolution.
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Figure 2.20: Triangulations for f2. Top: samples on original graph surface;

middle: optimal cluster triangulations in xy-plane (left) and final triangula-

tions in xyz-space (right); bottom: same for higher level of resolution.
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Figure 2.21: Triangulations for f3. Top: samples on original graph surface;

middle: optimal cluster triangulations in xy-plane (left) and final triangula-

tions in xyz-space (right); bottom: same for higher level of resolution.
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Figure 2.22: Triangulations for data set “St. Hellens.” Left: optimal cluster

triangulations in xy-plane at three different resolutions, right: corresponding

final triangulations in xyz-space.
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Figure 2.23: Triangulations for data set “Crater Lake.” Left: optimal cluster

triangulations in xy-plane at three different resolutions, right: corresponding

final triangulations in xyz-space.
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2.5 Conclusions Concerning Clustering

We introduced a general concept for adaptive clustering and provided nu-

merical results for two different algorithms, hierarchical Voronoi diagrams

based on Sibson’s interpolant and piecewise optimal triangulations derived

from adaptive quadratic approximation. The computational costs for both

clustering approaches are O(n log m) for n data points and m clusters. To

make these algorithms applicable to large-scale data sets, some modifications

are necessary that reduce the computational cost to expected linear time:

• Considering the refinement step Lj → Lj+1, more than one cluster

needs to be refined so that the number of clusters grows exponentially

with the level index j. This can be achieved by refining all tiles τ jk
corresponding to residuals εjk greater than a specified threshold.

• The number of points that determine an approximating function f̃ jk ,

see Section 2.1, must be bounded by a constant nmax. If a tile contains

more than nmax points, we select nmax of them randomly.

• Also, the residuals εjk can be estimated based on a (different) set of at

most nmax points. We note that the final approximation error might

not exactly satisfy the prescribed error bound.

• For any data point pi and any level Lj, the tile containing pi needs to

be estimated in expected constant time. A list of all points inside a

certain tile needs to be available in expected linear time. If the data is

evenly distributed, this can be achieved by a regular decomposition of

the domain D into squares or voxels (hypercubes, in general), for each

of which a list of overlapping tiles is recorded.

In addition to adaptive approximation, hierarchical manipulation of data

could be implemented by modifying f̃ jk at a coarse level and translating the

resulting changes in some way to the next finer representations. However, the
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geometry of a modified tile would have a great impact on such a modeling

approach. It seems to be more natural to use a uniform or user-defined

clustering for hierarchical modeling.

Our adaptive triangulation scheme can be generalized to higher-

dimensional spaces. Least-squares fitting with quadratic polynomials and

principal axis transformation are available in k-dimensions. The only prob-

lem is the construction of a regular simplicial grid. In three dimensions, for

example, two types of tetrahedra need to be combined. A tetrahedron can

be split into four smaller, similar tetrahedra and one octahedron that can be

split into eight tetrahedra, see Figure 2.24.

Figure 2.24: Decomposition of a tetrahedron into four smaller, similar tetra-

hedra and one octahedron.

A challenging research topic for future work is the generalization of these

clustering techniques to domains of arbitrary topology, like two-manifolds

embedded in three-dimensional space. We want to combine our clustering

techniques with smooth basis functions defined by wavelet transforms and

subdivision surface schemes to obtain multiresolution surface representations

of high quality.



Chapter 3

Wavelet Representations

A wavelet transform [25, 89, 97] provides a sparse representation for highly

detailed functions. The corresponding basis functions are dilated and trans-

lated versions of one function that, due to its nature, is called wavelet. Sparse

representations are extremely useful in image compression [66] and for solving

difficult mathematical problems, like integrating radiosity kernels [24, 53, 114]

and partial differential equations (PDEs) [29, 128]. The discrete wavelet

transform is computed in linear time, which makes it superior to most other

multiresolution techniques.

Wavelets have their roots in signal processing and pure mathematics.

In this chapter, we review the most fundamental results in the theory be-

hind wavelets. Then, we show that the wavelet transform is also a modeling

paradigm that naturally combines the concept of recursively generated ba-

sis functions with the concepts of fitting and fairing. We use the lifting

scheme [125] to construct wavelets for efficiently modeling massive volumet-

ric data sets. Finally, we describe algorithms for hierarchical representation

and lossless compression of scientific data obtained from turbulent-mixing

hydrodynamics simulations.

47
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3.1 Motivation

Classical image compression algorithms consist of the following three steps

[66]:

(i) Compute a linear, non-singular transform of an image.

(ii) Quantize the resulting coefficients (for lossy compression only).

(iii) Apply an entropy coding scheme to compress the coefficients.

The first step de-correlates the information present in an image. Exploiting

spacial correlation, i.e., similarity of local function values, e.g., RGB color

values, leads to a sparse representation in a Fourier basis or a wavelet basis,

see Figure 3.1. For lossless compression, the linear transform is computed in

integer arithmetic to obtain integer coefficients that can be encoded without

quantization. In the case of lossy compression, the coefficients resulting from

the transform are rounded to closest numbers on a certain grid to obtain

values in a discrete set of symbols represented by integers. Coefficients of

small absolute value can be replaced by zero for high lossy compression rates,

see Figure 3.2. The integer coefficients are compressed by a coding scheme,

for example by arithmetic coding [99], exploiting that small absolute values

appear more frequently than greater ones.

To reconstruct an image, the compressed coefficients are decoded. If they

have not been quantized in the compression step, the original coefficient

values are restored and the inverse transform exactly reproduces the original

image. In the case of quantization, the reconstructed image contains an error.

In many cases, however, the human eye does not recognize this quantization

error since it has been introduced in the range of a transform and is smoothly

distributed across the image domain by the inverse transform. When using

the wavelet transform, high compression rates in the order of 64:1 [66] are

obtained by lossy compression with almost invisible artifacts.
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pixel value coefficient value0 255 -128 127

Figure 3.1: Wavelet transform (using a linear spline wavelet) and histogram

of pixel and coefficient values.

Figure 3.2: Image reconstructed from ten percent of coefficient values (left)

and reconstruction error scaled by a factor of ten (right).



CHAPTER 3. WAVELET REPRESENTATIONS 50

HL
H
H

H

H

LL
L

L H
H

H

H

L

L

LH
LH

LL
LH

LH
LLLLL

LLH
LLH
LLH

LLH
LLL

Figure 3.3: The wavelet transform separates details of different frequency

bands by recursive band-pass and low-pass filtering.

Early compression standards, like JPEG [3], are based on the discrete

cosine transform (DCT) using a basis of different-frequency cosine functions.

Compared to the Fourier transform, the DCT produces no complex coeffi-

cients. The problem of the DCT is that all its basis functions have global

support, and thus cannot represent local details of an image in a stable way.

When the DCT is applied globally to an image, small quantization errors

would corrupt local details in an unpredictable way. Therefore, JPEG sub-

divides an image into frames of 8 × 8 or 16 × 16 pixels before transforming

it. This fragmentation, however, may become visible in reconstructed images

at high compression rates. Newer standards, like JPEG2000, are based on

wavelet-like techniques to overcome these problems.

When applying the wavelet transform, fragmentation of images is not

necessary, since wavelets have local support in image domain and frequency

space. The wavelet transform recursively separates high frequency details

from the remaining lower frequencies of an image. This is done by band-

pass and low-pass filtering in x- and y-directions separately. The coefficients

that are obtained from low-pass filtering in both directions are recursively

transformed by the same filtering operations, see Figure 3.3. This treatment,

called decomposition or analysis, separates different frequency bands, referred

to as details of an image. The inverse process of assembling details is called

reconstruction or synthesis.
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Figure 3.4: Wavelet transform and coefficient histogram for a slice of a

Rayleigh-Taylor instability data set, courtesy of Lawrence Livermore Na-

tional Laboratory.

Modeling scientific volume data for compression, progressive transmis-

sion, and multiresolution visualization can be accomplished with the same

techniques used for image compression [126]. Generalization to multiple di-

mensions is straight forward, since the filtering operations are applied in-

dependently in every canonical direction. This treatment implies that the

corresponding basis functions are tensor products and that the data repre-

sentations are limited to topologies equivalent to (possibly periodic) hyper-

cubes. Constructions for more general topologies are provided in Chapter

4.

The histogram of a slice taken from a Rayleigh-Taylor instability data set,

shown in Figure 3.4, suggests that the expected absolute value of wavelet co-
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efficients for this data set is even smaller than in the case of images. The

entire data set describes a volumetric, time-varying temperature field sam-

pled at a resolution of 5123 bytes for each of 301 time steps. Applying the

filtering operations to all four dimensions exploits much more correlation

than in the two-dimensional case.

For compression and visualization of scientific data sets the representation

needs to satisfy tight prescribed error bounds. Hence, it is not acceptable

to introduce an unpredictable quantization error. Instead, the samples are

rounded to a prescribed precision and represented as integer numbers. These

are then transformed and compressed without loss. To reconstruct a smooth

floating-point approximation, one can use iterative fairing techniques fitting

B-splines to the tolerance intervals around the integer samples minimizing

some kind of fairness function. This is a non-linear optimization process,

since the approximation criterion is not defined in terms of least-squares

errors.

3.2 Wavelets and Signal Processing

We briefly review basics of the wavelet transform and provide a summary of

the most significant theoretical results. We start with the continuous wavelet

transform that is closely related to Fourier analysis. Then we summarize the

most important definitions and results that discretize the wavelet transform

and lead to the linear-time algorithm known as the fast wavelet transform.

3.2.1 Fourier Transform

Fourier analysis is used to transform functions given in signal space into

frequency space to analyze and manipulate them, i.e., to apply high-pass,

low-pass and band-pass filtering. Given a function f ∈ L2(R), as defined in
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the Appendix. The Fourier transform of f and its inverse are defined as

Ff(ω) = f̂(ω) = 1√
2π

∫

R

f(x) e−iωx dx and

f(x) = 1√
2π

∫

R

f̂(ω) e+iωx dωx, where

i =
√
−1.

(3.1)

The Fourier transform is an isometry, due to Parseval’s identity

‖f‖L2 = ‖f̂‖L2 . (3.2)

One of the most important properties of the Fourier transform is given

by the convolution theorem,

F(f ∗ g) =
√

2π f̂ ĝ, (3.3)

where the convolution operator “∗” is defined as

f ∗ g(x) =

∫

R

f(y) g(x− y) dy. (3.4)

For a signal f and a band-pass filter g, the result of filtering f with g corre-

sponds to multiplying f̂ and ĝ in frequency space, see Figure 3.5.

We note that the Fourier transform can be applied to a wider class of

functions and distributions that are not in L2(R). A prominent example is

the Dirac distribution, defined as

δ(x) =




∞ if x = 0

0 otherwise
and

∫

R

δ(x) dx = 1.

(3.5)

It satisfies the equation

δ̂(ω) = 1√
2π

(3.6)

and thus represents the identity of the convolution operator.
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f g(ω)*

f(ω) g(ω)

ω

ω

Figure 3.5: Application of the convolution theorem.

3.2.2 Continuous Wavelet Transform

The Fourier transform provides a tool to analyze frequencies that contribute

to a given function. However, it fails to localize contributions of these fre-

quencies in signal space, since its basis functions eiωx have infinite support.

To localize the contribution of a signal at a certain point (ω, x), one needs

to construct a filter with local support in both signal and frequency space.

A band-pass filter ψ has local support in signal space when its center x∗ and

radius ∆x exist [25]:

x∗ =
1

‖ψ‖2
L2

∫

R

x |ψ(x)|2 dx, and

∆x =
1

‖ψ‖L2

√∫

R

(x− x∗)2 |ψ(x)|2 dx.
(3.7)

Local support in frequency space can be described by center ω∗ and radius

∆ω of the Fourier transform ψ̂. However, this is not a good choice, since ω∗

is always zero for real-valued filters. In this case, the Fourier transform is

redundant, since

ψ̂(−ω) = ψ̂(ω) for ψ : R→ R. (3.8)
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Figure 3.6: Time-frequency localization with an uncertainty proportional

to the product of both radii, corresponding to the size of the shaded region.

Hence, we use the quantities |ω|∗ and ∆|ω|, obtained by integrating over

positive frequencies, instead.

To analyze a given function at the point (ω, x), one needs to compute its

convolution with a filter ψ that has centers x∗ = x, |ω|∗ = ω and radii ∆x,

∆|ω| as small as possible. Unfortunately, these radii are not independent,

due to Heisenberg’s uncertainty principle [101]. The product of both radii is

a constant, depending on the shape of the filter, see Figure 3.6.

For a given filter ψ with known localization properties, we introduce two

parameters a and b that modify ψ as follows:

ψa,b(x) = 1√
|a|
ψ
(
x−b
a

)
, a ∈ R 6= 0, b ∈ R. (3.9)

The translation parameter b manipulates the center in signal space and the

dilation parameter a accomplishes this in frequency space, since

ψ̂a,b(ω) =
√
|a| e−iωb ψ̂(aω). (3.10)

Convolution with this set of translated and dilated filters defines a new

transform that provides the desired localization property (in the limits of the

uncertainty principle). For the existence of the inverse transform, ψ must

satisfy the wavelet condition:
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Figure 3.7: Three different wavelets (top) and amplitudes of their Fourier

transforms (bottom).

Definition 3.2.1 A function ψ ∈ L2(R) is called wavelet, if there exists a

constant cψ ∈ R > 0 with

cψ = 2π

∫

R

|ψ̂(ω)|2
|ω| dω.

The continuous wavelet transform and its inverse are defined as

Wψf(a, b) = 1√
cψ
〈f, ψa,b〉L2 = 1√

cψ

∫

R

f(x) ψa,b(x) dx,

f(x) = 1√
cψ

∫

R2

Wψf(a, b) ψa,b(x)
da db

a2
.

(3.11)

We note that the inner product in the wavelet transform is equivalent to the

convolution operator. In analogy to the Fourier transform, the continuous

wavelet transform is an isometry, due to the identity

‖f‖L2 = ‖Wψf‖L2(R2, da db

a2
). (3.12)

The wavelet condition implies that ψ̂ decreases quickly approaching ω = 0

and that the average (direct current) of ψ is zero. Examples for wavelets and

their Fourier transforms are shown in Figure 3.7.
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Figure 3.8: Dyadic grid samples that are sufficient for reconstruction.

3.2.3 Wavelet Frames

The continuous wavelet transform is highly redundant. A discrete sampling

on a dyadic grid {(a, b) = (2i, 2ij) | i, j ∈ Z}, illustrated in Figure 3.8, is often

sufficient to reconstruct any function in L2(R) (except for differences of zero

L2(R)-norm, see Appendix). A discrete sampling of the Fourier transform,

however, can exactly represent only periodical functions.

A sufficient condition for the existence of an inversion formula from dis-

crete samples of the wavelet transform is that the corresponding discrete

wavelet basis is a frame, as defined in the following.

Definition 3.2.2 A system of functions {ψi | i ∈ Z} is called frame for

L2(R), if constants 0 < A,B <∞ exist so that for every f ∈ L2(R)

A‖f‖2L2 ≤
∑

i∈Z

‖〈f, ψi〉L2‖2 ≤ B‖f‖2L2 . (3.13)

A frame with constants A = B is called tight.

In the case of a tight frame, the functions ψi are mutually orthogonal. It

can be shown that a function ψ satisfies the wavelet condition, if the system

of functions {ψ2i,2ij | i, j ∈ Z} is a frame [89].
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The frame condition can be exploited to reconstruct a function f from

its wavelet coefficients ci := 〈f, ψi〉L2 . Therefore, the frame operator S is

defined as

Sf =
2

A+B

∑

i∈Z

〈f, ψi〉L2 ψi. (3.14)

The inverse of the frame operator is given by Neumann’s series, so that

f = S−1Sf =
∞∑

k=0

(I − S)k Sf, (3.15)

where I is the identity. The convergency rate for this series depends on

the ratio of the constants A and B. Only in the case of a tight frame, the

operator S is the identity and no iteration is necessary to reconstruct f , i.e.,

f = Sf . A more useful and efficient reconstruction algorithm, is described

in the next section.

3.2.4 Discrete Wavelet Transform

An algorithm for the discrete wavelet transform (DWT), also called fast

wavelet transform due to its linear computation time, was discovered by

Mallat [93]. The DWT is a basis transform implemented by discrete filtering

between two individual levels of resolution. This filtering is recursively ap-

plied, starting with the finest resolution. High frequency detail is separated

by every filtering step, resulting in a coarser, lower-frequency representation.

The original algorithm by Mallat is based on orthogonal basis functions with-

out compact support, but with exponentially decreasing amplitude. Since the

discrete filters must be finite, the algorithm does not provide perfect recon-

struction when using these basis functions. It is possible, however, to obtain

perfect reconstruction when using compactly supported basis functions that

need not to be orthogonal.

The main concept of the DWT is called multi-scale analysis, defined as

a sequence of nested spaces Vj, spanned by scaling functions. Every space
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Figure 3.9: Nested spaces Vj and their duals Wj of a multi-scale analysis.

Vj provides the basis functions for one particular level of resolution. The

differences (details) between two levels of resolution are represented in spaces

Wj spanned by wavelets, see Figure 3.9.

Definition 3.2.3 A multi-scale analysis is defined by a set of nested spaces

Vj and a scaling function φ with the following properties:

1. Vj ⊂ Vj+1 ∀j ∈ Z,

2.
⋃
j∈Z

Vj = L2(R), (the bar denoting closure)

3.
⋂
j∈Z

Vj = {0}.

4. f ∈ Vj ⇔ f(2 ·) ∈ Vj+1 ∀j ∈ Z, and

5. V0 = span{φ0
k := φ(· − k) | k ∈ Z} is a Riesz basis, i.e., there exist

constants 0 < A,B <∞ such that

A
∑

k∈Z

c2k ≤ ‖
∑

k∈Z

ck φ
0
k ‖L2 ≤ B

∑

k∈Z

c2k ∀c ∈ l2(Z). (3.16)

Starting with a certain multi-scale analysis, we construct wavelet spaces

Wj that are complements of Vj in Vj+1, i.e.,

Vj ⊕Wj = Vj+1.
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Figure 3.10: Basis functions for multi-scale analysis based on the Haar

wavelet.

All spaces Vj and Wj are dilated versions of V0 and W0, spanned by

translates of a scaling function φ and a wavelet ψ, respectively:

Vj = span{φjk := φ (2j · −k) | k ∈ Z}, and

Wj = span{ψjk := ψ (2j · −k) | k ∈ Z}.

A good choice for Wj is the orthogonal complement of Vj in Vj+1. In this

case, all spaces Wj are mutually orthogonal. If the function ψ is constructed

so that all ψ0
k are mutually orthogonal, for example by using Gram-Schmidt

orthonormalization, then the set of all wavelets ψjk forms an orthogonal basis

for L2(R). Orthogonal bases generally lead to small coefficients for repre-

senting functions. An example for an orthogonal wavelet basis is defined by

the Haar wavelet, shown in Figure 3.10.

Orthogonality, symmetry, smoothness, and compact support are conflict-

ing goals, however. The discontinuous Haar wavelet is actually the only

real-valued wavelet that is orthogonal, symmetric, and has compact support

[31, 72]. For geometric modeling purposes, however, symmetry, compact sup-

port, and certain degrees of smoothness are essential. These considerations

lead to wavelet constructions where the spaces Vj and Wj are not orthogonal.
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Figure 3.11: Basis transforms for a piecewise linear function.

In this case, there exist sets of dual spaces Ṽj and W̃j defined as

Ṽj⊥Wj, W̃j⊥Vj, and

Ṽj ⊕Wj = W̃j ⊕ Vj = Vj+1.

The dual spaces are spanned by dilates and translates of a dual scaling func-

tion φ̃ and a dual wavelet ψ̃ defining also a multi-scale analysis. Wavelet

constructions of this type are thus called biorthogonal [25].

The DWT is simply a basis transform from Vj+1 into Vj and Wj that

is recursively applied. Since this basis transform is regular, i.e., it has an

inverse, neither ψ, nor ψ̃ need to satisfy the wavelet condition defined in

the context of the continuous wavelet transform. An example for the basis

transforms between different spaces is illustrated in Figure 3.11.

The basis transform uniquely defines sequences h, l, h̃, and l̃ with the

properties

φj+1
k =

∑

i∈Z

(lk−2i φ
j
i + hk−2i ψ

j
i ), (3.17)

φjk =
∑

i∈Z

l̃i−2k φ
j+1
i , and (3.18)
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ψjk =
∑

i∈Z

h̃i−2k φ
j+1
i . (3.19)

If the functions φ and ψ have compact support, then all four sequences are

finite. These sequences represent discrete high-pass and low-pass filters that

are used in the fast algorithm for the DWT.

Projections of an analytical function f into spaces Vj and Wj are repre-

sented by sets of coefficients cj and dj, respectively,

fVj(x) =
∑

k∈Z

cjk φ
j
k(x) and (3.20)

fWj
(x) =

∑

k∈Z

djk ψ
j
k(x). (3.21)

Transforming the coefficients cj+1 into a coarser representation defined by

coefficients cj plus a representation for the differences (details) by coefficients

dj is called decomposition or analysis. The inverse operation, i.e., obtaining

coefficients cj+1 from cj and dj, is called reconstruction or synthesis.

Starting with a coefficient representation cn for a function f at fine reso-

lution, its DWT is computed by successive decomposition steps, resulting in

sets of coefficients dn−1, dn−2, . . . , d0, and c0, see Figure 3.12. The wavelet

coefficients dj are sparse (using integer arithmetic) or small in absolute value

(using floating-point arithmetic), since they capture only the differences be-

tween two levels of resolution. The inverse DWT reconstructs the coefficient

sets c1, c2, . . . , cn again.

The decomposition and reconstruction formulae are based on the four dis-

crete filters defined above. The filter h is a band pass separating the highest

frequency band (the details) from a function, l is a low-pass filter generating

a coarser approximation without the highest frequency band, and h̃ and l̃

are necessary to invert the transform. These are the standard decomposition

and reconstruction formulae:
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Figure 3.12: Decomposition process.

Decomposition:

cji =
∑

k∈Z

lk−2i c
j+1
k , (3.22)

dji =
∑

k∈Z

hk−2i c
j+1
k . (3.23)

Reconstruction:

cj+1
k =

∑

i∈Z

(l̃k−2i c
j
i + h̃k−2i d

j
i ). (3.24)

The algorithm known as fast wavelet transform applies this decomposition

formula recursively starting with N coefficients cn that are considered as

samples of a function f . Every decomposition step is computed in linear time

with respect to the number of coefficients, since the filters l and h have finite

length. The number of transformed coefficients decreases by one half for every

level of resolution, since the wavelet coefficients dj are not transformed again.

Thus, the overall complexity is O
(
N + 1

2
N + 1

4
N + 1

8
N + · · ·

)
= O(2N) =

O(N).

In the two-dimensional case, decomposition is first applied to all rows

and then to all columns of a coefficient matrix. The reduction is even more

drastic, since only the coefficients that correspond to scaling functions with
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respect to both directions, i.e., one quarter of all coefficients, are trans-

formed again. The complexity for the two-dimensional algorithm is linear,

since O
(
N + 1

4
N + 1

16
N + · · ·

)
= O

(
4
3
N
)

= O(N). Generalization to higher

dimensional spaces is straight forward and the resulting basis functions are

tensor products of the one-dimensional basis functions.

3.3 Wavelets for Geometric Modeling

In the context of geometric modeling, the discrete filters h, l, h̃, and l̃ obtain

an entirely different meaning that is not related any longer to signal pro-

cessing. Wavelets for geometric modeling, sometimes referred to as second-

generation wavelets, are used for multiresolution representation of functions

with sharp features, boundaries, non-uniform parametrizations, and irregu-

lar (non-Euclidean) domains. In the remainder of this chapter, we introduce

some terminology and wavelet constructions for modeling large-scale data

sets. Some of these constructions are generalized in Chapter 4 to represent

arbitrary two-manifolds, i.e., surfaces of arbitrary topological genus.

3.3.1 A Modeling Paradigm

Starting with a high-resolution curve or surface represented by a control

polygon or control mesh, we want to compute a number of coarser approxi-

mations using smaller and smaller sets of basis functions. At the same time,

we want to store the differences between any two adjacent levels of resolution

compactly in form of wavelet coefficients from which the original resolution

can be reconstructed, see Figure 3.13.

The transition to a coarser representation is computed by a linear fitting

operator F predicting the coordinates of the reduced set of control points.

In contrast to the example shown in Figure 3.13, the coordinates of these
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Figure 3.13: Decomposition of a control polygon. The wavelet coefficients

dj are accumulated difference vectors representing the displacements of local

control points from a coarser control polygon.

points may be changed, which is necessary to minimize a certain error norm

between the limit curves of both control polygons. The wavelet coefficients

located at the eliminated control points thus represent the displacements

of all control points (and not only the displacements of the removed ones).

This is accomplished by a linear compaction-of-detail operator C. These two

operators define the decomposition formula:

cj = F cj+1 and

dj = C cj+1.
(3.25)

The inverse of these operations is computed by a subdivision operator S

and an expansion-of-detail operator E. The subdivision operator S provides

a smooth limit curve when recursively applied to a control polygon defining

any level of resolution. The operator E is used to reconstruct detail from the

wavelet coefficients that is added to the curve during the subdivision process.

The reconstruction formula is defined as

cj+1 = S cj + E dj. (3.26)

The decomposition and reconstruction formulae are illustrated in

Figure 3.14.

These four operators can be interpreted as matrix multiplications. In the

special case of a multi-scale analysis defined by filters h, l, h̃, and l̃, these
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Figure 3.14: Wiring diagram for decomposition (left) and reconstruction

(right). We note that the coefficients cj are recursively transformed, which

is not shown in the diagram.

matrices are infinite periodic band matrices, satisfying

Fij = lj−2i,

Cij = hj−2i,

Sij = l̃i−2j , and

Eij = h̃i−2j.

(3.27)

We recall that the operators F and C compute a regular basis transform

from a space Vj+1 into complementary spaces Vj and Wj, and that the in-

verse basis transform is computed by S and E. This imposes the following

compatibility constraints on the construction of these operators:

FS = CE = I and

FE = CS = 0,
(3.28)

where I is the identity matrix. We note that in the case of second-generation

wavelets the spaces Vj and Wj are not spanned by dilated and translated

versions of the same function. However, the hierarchical structure of nested

spaces remains still the same and in the regions with uniform parametriza-

tions all other results remain valid.

The subdivision operator S is the most important one for modeling pur-

poses, since it determines the shape of the basis functions used for repre-

senting functions at multiple levels of resolution. Once S is constructed, we
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Figure 3.15: Dyadic refinement for quadratic and cubic B-splines.

have various choices for the remaining three operators. The resulting basis

functions spanning the spaces Vj and Wj are recursively generated by

φji = S∞ δji and

ψji = S∞ E δji ,
(3.29)

where δji is a control polygon at resolution j with the ordinate of the control

point with index i set to one and the ordinates of all other control points set

to zero.

3.3.2 Recursive Subdivision

A natural choice for scaling functions are uniform B-splines [35], since they

provide a continuous, smooth data representation, have compact support,

are efficiently computed at arbitrary parameter values, and are widely used

in computer-aided geometric design (CAGD). For uniform B-splines of any

polynomial degree, the sequence l defining the dyadic refinement rules cor-

responds to a row in Pascal’s triangle, normalized such that the sum of all

entries is two [41]. These entries are shown for different polynomial degrees

in Table 3.1. The subdivision process for quadratic and cubic B-splines is

illustrated in Figure 3.15

Smooth interpolating subdivision schemes can also be used for wavelet

construction, For example, the subdivision weights for cubic C1-continuous
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degree l̃0,1 l̃−1,2 l̃−2,3

0 1

2 3
4

1
4

4 5
8

5
16

1
16

degree l̃0 l̃±1 l̃±2 l̃±3

1 1 1
2

3 3
4

1
2

1
8

5 5
8

15
32

3
16

1
32

Table 3.1: Sequence l̃ defining subdivision operator S for B-spline scaling

functions of different polynomial degrees.

splines are l̃0 = 1, l̃±1 = 9
16

, l̃±2 = 0, and l̃±3 = − 1
16

. Since some of the

weights are negative, these splines do not lie within the convex hull of their

control polygons. In some cases they show undesirable “wiggles” due to

the interpolation constraints. Thus, we use B-spline subdivision as basis for

our wavelet constructions. In the case of higher dimensions, considering, for

example, surfaces and volumes, we apply the one-dimensional subdivision op-

erator in all canonical directions, resulting in tensor-product B-spline scaling

functions.

3.3.3 Least-Squares Fitting

We briefly summarize the results of related work regarding the construction

of fitting operators F based on B-spline subdivision in the following. These

approaches minimize certain error norms in every coarsening step.

A prominent example are semi-orthogonal wavelets [50, 123, 109]. Start-

ing with spaces Vj and Vj+1 spanned by uniform B-splines, the space Wj is

chosen to be the orthogonal complement of Vj in Vj+1. The wavelets span-

ning Wj are not mutually orthogonal which is the only difference to fully

orthogonal wavelet bases. Symmetric wavelets with compact support can

be constructed. A regular basis transform from the space Vj+1 into the or-

thogonal sum of Vj and Wj is always an orthogonal projection into these

spaces.
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Since the fitting operator F is an orthogonal projection, it minimizes the

L2-norm of the error function, i.e.,

‖fVj+1
− fVj‖L2 → min (3.30)

for every function f ∈ L2(R). Due to the global nature of this optimization

problem, the matrix F is dense. However, the decomposition can still be

computed in linear time using a band-matrix solver [109].

Despite of the fact that the operator F is uniquely determined by the

bases of the spaces Vj and Vj+1, the basis for Wj can be chosen, resulting

in different wavelet constructions. Semi-orthogonal B-spline wavelets with

minimal support were constructed by Chui [25]. A more general framework

for subdivision and fitting schemes minimizing certain fairness functions was

described by Kobbelt/Schröder [77]. It is also feasible to construct semi-

orthogonal wavelets based on a different inner product inducing a fairness

norm. If Wj is chosen to be orthogonal to Vj with respect to a certain

inner product, then the induced norm is minimized by the resulting fitting

operator.

A different least-squares fitting approach based on discrete displacements

of control points was described by Duchaineau [41]. Provided that the coef-

ficients cn at the finest level of resolution are samples from an approximated

function, this approach may lead to smaller wavelet coefficients than minimiz-

ing least squares between limit functions obtained from recursive subdivision.

The idea is to minimize the expanded wavelet coefficients E dj directly for ev-

ery function f that can be represented by coefficients cj+1. This optimization

problem is equivalent to

‖cj+1 − S cj‖ → min. (3.31)

Differentiating with respect to cj leads to

cj = (STS)−1 S cj+1. (3.32)
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The expression STS corresponds to a discrete filter that can be inverted by

discrete Fourier transform and application of the convolution theorem [41].

Hence, the matrix F and the corresponding sequence l are determined from

equation (3.32):

F = (STS)−1 S. (3.33)

Unfortunately, due to the global nature of this optimization problem, the

sequence l is infinite, but exponentially decreasing. It is possible to approx-

imate l by a finite sequence satisfying the constraint FS = I. The two

remaining sequences h and h̃ are constructed such that

hi = (−1)i+1 l̃i−m, and

h̃i = (−1)i+1 li−m,
(3.34)

where m = 0 for B-spline scaling functions with even polynomial degrees

(point-symmetric wavelets) and m = 1 for odd degrees (symmetric wavelets).

This construction satisfies the compatibility conditions of the four operators

as defined in equation (3.28). An example for a quadratic B-spline wavelet

constructed with this approach is provided in the next section.

Another desirable property for the construction of wavelets are vanishing

moments. A wavelet ψ has N vanishing moments, if its inner products with

N polynomials are zero:

〈ψ, pk〉L2 = 0, pk(x) = xk, k = 0, 1, · · · , N − 1. (3.35)

Vanishing moments are desirable for the approximation of smooth functions

and for solving certain inversion problems like integrating radiosity kernels,

since they lead to sparse approximations with improved stability. Vanishing

moment conditions are an alternative to global optimization properties, since

they allow for wavelet constructions with finite-length filters for both, decom-

position and reconstruction. Finite-length filters are required to compute the

DWT efficiently at local regions of large-scale data sets.
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3.3.4 The Lifting Scheme

The lifting scheme described by Sweldens [125] is an important tool for con-

structing wavelets. A similar technique was introduced independently by

Dahmen [28]. The lifting scheme subdivides the computation of the wavelet

transform into small local lifting operations updating the value of one co-

efficient at a time. Using the lifting scheme has several advantages over

computing the standard decomposition and reconstruction formulae:

• Increased efficiency. In many cases, the lifting scheme uses fewer oper-

ations than the standard formulae, since it combines the computation

of two operators, for example F and C, into one process.

• Lossless compression. Certain lifting operations can be implemented

in integer arithmetic with perfect reconstruction. This allows for the

construction of integer-to-integer wavelet transforms for lossless com-

pression.

• Simpler wavelet construction. The lifting scheme can be used to design

wavelets with certain properties, like vanishing moments. Starting with

a simple wavelet prototype, sometimes called lazy wavelet, lifting is used

to improve the shape of this wavelet. Lifting can also be used to design

scaling functions and dual wavelets.

The general lifting scheme for the decomposition formula is illustrated in

Figure 3.16. In the simplest case, the operators F′ and C′ defining the lazy

wavelet transform are just down-sampling operators. The inverse DWT is

defined by the same lifting operations, applied with negated signs in reverse

order. In the case of integer arithmetic, the result of every lifting operation

is rounded to the closest integer. Since this is done in the same way for

decomposition and reconstruction, there is no loss.

We now provide some examples for factoring wavelets into lifting op-

erations. A rigorous mathematical treatment of this topic was done by
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Figure 3.16: Lifting scheme for decomposition and reconstruction formula.

The operators F′, C′, S′, and E′ define the lazy wavelet transform. An arbi-

trary number of lifting operations can be applied to shape scaling functions

and wavelets.

wavelet h−1 h0 h1 h2 l−3 l−2 l−1 l0 l1 l2 l3 l4

ψH 1 −1 1
2

1
2

ψQ −1
4

3
4
−3

4
1
4

−1
4

3
4

3
4
−1

4

ψD −1
4

3
4
−3

4
1
4

1
12
−1

4
0 2

3
2
3

0 −1
4

1
12

wavelet h̃−3 h̃−2 h̃−1 h̃0 h̃1 h̃2 h̃3 h̃4 l̃−1 l̃0 l̃1 l̃2

ψH
1
2
−1

2
1 1

ψQ
1
4

3
4
−3

4
−1

4
1
4

3
4

3
4

1
4

ψD − 1
12
−1

4
0 2

3
−2

3
0 1

4
1
12

1
4

3
4

3
4

1
4

Table 3.2: Examples for discrete filters defining wavelet transforms.

Daubechies/Sweldens [32]. Consider the wavelets defined in Table 3.2. ψH

is the piecewise constant Haar wavelet, ψQ is a quadratic B-spline wavelet

with small support, and ψD is a wavelet constructed by Duchaineau [41].

The decomposition formula for the Haar wavelet ψH is being evaluated

independently for pairs of adjacent coefficients,

(
cji
dji

)
=

(
1
2

1
2

1 −1

)(
cj+1
2i

cj+1
2i+1

)
. (3.36)
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Figure 3.17: Decomposition for Haar wavelet (left) and equivalent lifting

operations (right).

Figure 3.18: Constructed wavelets ψH , ψQ, and ψD.

The matrix in this equation can be split into two operations updating only

one coefficient at a time, as illustrated in Figure 3.17:
(

1
2

1
2

1 −1

)
=

(
1 −1

2

0 1

)(
1 0

1 −1

)
. (3.37)

In general, every regular 2 × 2-matrix M with non-zero entries on the

diagonal can be split in this way, based on four constants a1, b1, a2, and b2

satisfying

M =

(
b2 a2

0 1

)(
1 0

a1 b1

)
=

(
b2 + a2a1 a2b1

a1 b1

)
. (3.38)

The lifted decomposition formula for the Haar wavelet can be written in

algorithmic notation as

d′i ← ci − di

c′i ← ci − 1
2
d′i,
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Figure 3.19: Factoring the decomposition for wavelet ψQ into two matrix

multiplications (left), which can be split into four lifting operations (right).

where we first re-label the coefficients ci ← cj+1
2i and di ← cj+1

2i+1. Then,

every lifting operation is computed for all indices i. The coefficients for the

decomposition formula are the last updated ones, in this case cji ← c′i and

dji ← d′i. We use this notation also for the following lifting constructions.

Decomposition for the quadratic B-spline wavelet ψQ is defined according

to the entries in Table 3.2 as

(
cji
dji

)
=

(
−1

4
3
4

3
4
−1

4

−1
4

3
4
−3

4
1
4

)



cj+1
i−1

cj+1
i

cj+1
i+1

cj+1
i+2


 . (3.39)

As illustrated in Figure 3.19, this formula can be factored into two 2× 2-

matrix multiplications with unique matrix entries (except for scaling). We

have computed these matrix entries form the constraints in equation (3.39)

by solving a system of non-linear equations. The corresponding update op-
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erations are defined as
(
d′i−1

c′i

)
←

(
3 −1

−1 3

) (
di−1

ci

)
and

(
c′′i
d′′i

)
←

(
1
4

1
4

1
4
−1

4

)(
c′i
d′i

)
.

(3.40)

Both matrices can be split into two lifting operations each, resulting in the

lifting scheme

c′i ← − di−1 + 3ci

d′i−1 ← 8
3
di−1 − 1

3
c′i

d′′i ← 1
4
c′i − 1

4
d′i

c′′i ← 1
2
c′i − d′′i .

Combining the second and third lifting operations results in the more com-

pact scheme,

c′i ← − di−1 + 3ci

d′′i ← 1
4
c′i − 2

3
di + 1

12
c′i+1

c′′i ← 1
2
c′i − d′′i .

(3.41)

For lifting the wavelet ψD, we exploit that it is based on the same

compaction-of-difference filter h as the wavelet ψQ. We observe that the

fitting filters of both wavelets, denoted as lD and lQ, satisfy the relation

lDi = lQi + 1
3
(hi−2 − hi+2) .

The lifting scheme for ψD is thus identical to the one for ψQ, with one addi-

tional lifting operation, given by

c′′′i ← −1
3
d′′i−1 + c′′i + 1

3
d′′i+1.

We note that the last two lifting operations can again be combined. Despite

of its long filters, the wavelet transform for ψD requires only one more lifting

operation as the transform for the compact Haar wavelet ψH .



CHAPTER 3. WAVELET REPRESENTATIONS 76

It can be verified that computing the lifted wavelet transforms requires

fewer operations than computing the original decompositon and reconstruc-

tion schemes. Another advantage of lifting is that the boundary treatment

becomes much simpler. The local lifting operations can individually be

adapted to the boundaries. Magnitudes of wavelet coefficients can be re-

duced at a boundary by reflecting the data at rather than assuming zero

function values behind the boundary.

3.3.5 Integer Arithmetic

For certain applications, like lossless compression, it is essential to produce

integer wavelet coefficients from which the finest resolution representation can

be reconstructed without rounding errors. This is possible for certain wavelet

constructions, when the scaling-function coefficients cn at the finest resolution

are integers. If the cn are finite-precision numbers within a tolerance ε, then

we can scale them by 1
2ε

and round them to closest integers.

To provide an example for an integer-to-integer transform with perfect

reconstruction, we adapt the lifting scheme for ψQ, defined in equation (3.41),

to integer arithmetic. First, we scale every row such that the variable that is

modified is scaled by ±1 (or by an integer). We note that such scaling may

also change the subsequent rows. Scaling the first row by 1
3

results in the

modified lifting scheme

c′i ← ci − 1
3
di−1

d′′i ← −2
3
di + 3

4
c′i + 1

4
c′i+1

c′′i ← 3
2
c′i − d′′i .

The modified scheme still produces the same coefficients d′′i and c′′i as equation

(3.41). We now scale the second row by 3
2

and the third one by 2
3
, which also
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scales the resulting coefficients. The new scheme is given by

c′i ← ci − 1
3
di−1

d′′i ← −di + 9
8
c′i + 3

8
c′i+1

c′′i ← c′i − 4
9
d′′i .

Finally, we must ensure that the computed coefficients are integers. We use

the operator [ · ] that rounds real numbers to their closest integers. The

integer decomposition for wavelet ψQ is defined by

c′i ← ci − [1
3
di−1]

d′′i ← −di + [9
8
c′i + 3

8
c′i+1]

c′′i ← c′i − [4
9
d′′i ].

(3.42)

The inverse of this decomposition formula is obtained by applying the

inverse of every lifting operation in reverse order. The integer reconstruction

formula is thus defined by

c′i ← c′′i + [4
9
d′′i ]

di ← −d′′i + [9
8
c′i + 3

8
c′i+1]

ci ← c′i + [1
3
di−1].

(3.43)

Every lifting operation has an inverse, provided that the modified variable is

scaled by an integer with a fraction of other variables (rounded to an integer)

added.

In our example, the scaling-function coefficients loose precision in every

decomposition step, which decreases the absolute value of wavelet coefficients

on coarser levels of resolution. For compression purposes this is a desired

property, since perfect reconstruction is guaranteed. For high-quality repre-

sentations at coarse levels of resolution, however, it is necessary to maintain

a certain precision of the fitting operator, which is done by choosing greater

scaling factors when adapting the lifting scheme to integer arithmetic.
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3.4 Symmetric Lifted B-spline Wavelets

We now provide a systematic construction approach for symmetric lifted

B-spline wavelets with odd polynomial degrees. These wavelets have two

vanishing moments and have minimal support. The decomposition and re-

construction schemes are computed with a minimum number of operations,

which makes this construction extremely useful for compression of large-scale

data sets. It is possible to use integer arithmetic for lossless compression.

These symmetric wavelet constructions can be generalized to surfaces of ar-

bitrary topology, as shown in Chapter 4.

We use algorithmic notation to define our wavelet construction, since

the coefficients of the wavelet transform are updated multiple times during

the process. A decomposition step is computed by re-labeling coefficients

according to

ci ← cj+1
2i and di ← cj+1

2i+1, (3.44)

followed by a sequence of alternating s-lift and w-lift operations updating

scaling-function and wavelet coefficients, respectively. These operations

modify one coefficient at a time, depending on its own and its two neighbors’

values. The s-lift and w-lift operations are defined as

s-lift(a, b):

ci ← adi−1 + bci + adi ∀i (3.45)

w-lift(a, b):

di ← aci + bdi + aci+1 ∀i (3.46)

After a sequence of s-lift and w-lift operations, we obtain the transformed

coefficients

cji ← ci and dji ← di. (3.47)
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Figure 3.20: Lifting scheme for linear B-spline wavelet. Decomposition (left)

and reconstruction (right) are composed of one s-lift and one w-lift operation.
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Figure 3.21: Wiring diagram for lifted DWT. Lifting operations that modify

coefficients with even indices are called s-lift and those that modify coeffi-

cients with odd indices are called w-lift operations.

Our lifting scheme is depicted in Figure 3.20 for a linear B-spline wavelet.

Wiring diagrams for the general approach are shown in Figures 3.21 and 3.22.

The last operation for the DWT and the first operation for the inverse DWT

is always an s-lift operation, which is necessary to maintain enough degrees

of freedom to satisfy the vanishing-moment conditions.

Since we use the same lifting operations to construct both filters h and l

at once, we restrict the class of wavelets that can be defined by these opera-

tions. However, this wavelet construction uses a minimum of operations and

every individual lifting step is inverted simply by replacing a and b by − a
b
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Figure 3.22: Wiring diagram for inverse DWT. The same lifting operations

as for DWT occur in reverse order with changed parameters ãi = −ai
bi

and

b̃i = 1
bi

.

and 1
b
, respectively, see Figure 3.22. The only constraint for the existence of

the inverse DWT is that the parameter b must be non-zero for all lifting op-

erations. Due to the width of the B-spline subdivision filters l, the number of

alternating s-lift and w-lift operations is fixed. Our one-dimensional decom-

position rules for symmetric B-spline wavelets are computed by the following

operations, where the parameters ai and bi are still to be determined:

(i) Linear B-spline wavelet:

w-lift (a1, b1)

s-lift (a2, b2)
(3.48)

(ii) Cubic B-spline wavelet:

s-lift (a1, b1)

w-lift (a2, b2)

s-lift (a3, b3)

(3.49)
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(iii) Quintic B-spline wavelet:

w-lift (a1, b1)

s-lift (a2, b2)

w-lift (a3, b3)

s-lift (a4, b4)

(3.50)

In the following, we compute the lifting parameters ai and bi defining

linear, cubic, and quintic B-spline wavelets. Since the number of non-zero

coefficients must be odd for our lifting scheme, we can only construct the

DWT for B-spline scaling functions with odd polynomial degrees. The se-

quence l̃, defining the two-scale relation for B-splines,

φ(x) =
∑

i∈Z

l̃i ψ(2x− i), (3.51)

is already defined in Table 3.1.

To find the constraints imposed by the first vanishing moment condition,

we review the two-scale relation between wavelets and scaling functions, given

by

ψ(x) =
∑

i∈Z

h̃i φ(2x− i). (3.52)

The integral of the wavelet ψ is zero, if and only if h̃ satisfies
∑

i∈Z

h̃i = 0. (3.53)

The second vanishing moment condition is satisfied by symmetry of h̃, which

implies symmetry of ψ.

3.4.1 Linear B-spline Wavelet

The construction of h̃ is constrained by our specific lifting approach illus-

trated in Figure 3.20. Figure 3.23 shows the constraints that result from the
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Figure 3.23: Constraints for construction of filters h, l, h̃, and l̃ for linear

B-spline scaling functions.

lifting scheme. These constraints for l̃ are

l̃0 = b̃2 and l̃1 = b̃2ã1. (3.54)

Using the values from Table 3.1, we obtain

a1 = 1
2

and b2 = 1. (3.55)

The constraints for h̃ are given by

h̃0 = 2ã2ã1 + b̃1 = ã2 + b̃1,

h̃1 = ã2, and

h̃2 = ã2ã1 = 1
2
ã2.

(3.56)

We note that l̃ and h̃ are symmetric, and the coefficients with negative indices

do not produce additional constraints. Hence, (3.53) becomes

h̃0 + 2h̃1 + 2h̃2 = 4ã2 + b̃1 = 0. (3.57)

Since ã2 and b̃1 are proportional and either one of them appears on the

right-hand sides of equations (3.56), they do not modify h̃, except for scaling

it. Thus, we can choose b̃1 = 1 and obtain the lifting parameters shown in

Table 3.3. The remaining filters h and l can be derived from these lifting

parameters, which are summarized in Table 3.4.
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Figure 3.24: Constraints for lifting scheme for cubic B-spline scaling func-

tions.

3.4.2 Cubic B-spline Wavelet

In analogy to linear B-spline wavelets, one can construct wavelets for cu-

bic scaling functions using one additional lifting step. The constraints for

the lifting parameters are shown in Figure 3.24. The constraints for l̃ are

equivalent to

ã1 = 1
4
, ã2 = b̃1, and b̃1b̃3 = 1

2
. (3.58)

The equations for h̃, after eliminating ã1 and ã2, are given by

h̃0 = b̃2 + 2ã3b̃1,

h̃1 = 1
4
b̃2 + 7

4
ã3b̃1

h̃2 = ã3b̃1, and

h̃3 = 1
4
ã3b̃1.

(3.59)

Using equation (3.53) we obtain

3b̃2 = −16ã3b̃1. (3.60)
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Figure 3.25: Linear, cubic, and quintic B-spline wavelets.

Again, we observe that the remaining lifting parameters do not modify

h̃, except for scaling, since b̃2 and ã3 (as well as b̃2 and b̃1) are proportional.

Hence, we can choose b̃1 = b̃2 = 1 and determine the remaining parameters

from the above equations. The resulting values are listed in Tables 3.3 and

3.4.

3.4.3 Quintic B-spline Wavelet

For the quintic case, we only summarize the solution. From the constraints

for l̃ we obtain the equations

ã1 = 1
6
,

ã2 = 9
16
b̃1,

b̃4b̃2 = 1
4
, and

ã3b̃1 = 4
3
b̃2.

(3.61)

The constraints for h̃ can be written in terms of b̃3b̃1 and ã4b̃2. Inserting

them into equation (3.53) results in

5b̃3b̃1 = −32ã4b̃2. (3.62)

We can choose b̃3, b̃2, and b̃1 to be one, since they do not modify h̃. The

remaining lifting parameters are then uniquely determined.
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degree a1 b1 a2 b2 a3 b3 a4 b4

1 −1
2

1 1
4

1

3 −1
4

1 −1 1 3
8

2

5 −1
6

1 − 9
16

1 −4
3

1 5
8

4

degree ã1 b̃1 ã2 b̃2 ã3 b̃3 ã4 b̃4

1 1
2

1 −1
4

1

3 1
4

1 1 1 − 3
16

1
2

5 1
6

1 9
16

1 4
3

1 − 5
32

1
4

Table 3.3: Lifting parameters for DWT and inverse DWT.

degree h0 h±1 h±2 h±3 l0 l±1 l±2 l±3 l±4

1 1 −1
2

3
4

1
4

−1
8

3 3
2
−1 1

4
5
4

5
32

−3
8

3
32

5 5
2
−15

8
3
4

−1
8

231
96
− 7

32
−21

24
15
32
− 5

64

degree h̃0 h̃±1 h̃±2 h̃±3 h̃±4 l̃0 l̃±1 l̃±2 l̃±3

1 3
4
−1

4
−1

8
1 1

2

3 5
8
− 5

64
− 3

16
− 3

64
3
4

1
2

1
8

5 77
128

7
128

− 7
32
− 15

128
− 5

256
5
8

15
32

3
16

1
32

Table 3.4: Filters for DWT and inverse DWT resulting from lifting parame-

ters.
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The resulting lifting parameters and filters for our constructions are sum-

marized in Tables 3.3 and 3.4. A desirable property of the lifting parameters

bi is, that they are integers, which makes it possible to compute the lifting

scheme in integer arithmetic with perfect reconstruction. In the cubic and

quintic cases, we can even scale the last lifting step down by 1
2

and 1
4
, re-

spectively, which decreases the wavelet coefficients at coarser levels of detail,

improving the potential for lossless compression. However, this down-scaling

results in a loss of precision when coarser levels of resolution are displayed.

The constructed wavelets are plotted in Figure 3.25. A wider class of

wavelets is available by using scaling functions different from B-splines. In

particular, it is feasible to construct a wavelet first and obtain a proper scaling

function from the constraints given by the lifting scheme.

3.4.4 A Remark on Stability

In the case of large data sets where a number of different levels of resolution

are computed, some wavelets may exhibit unstable behavior. This is espe-

cially a problem for wavelets with short decomposition and reconstruction

filters representing curves and surfaces at high degrees of smoothness. In

fact, our quintic wavelet construction fails to represent certain data sets at

low resolutions, which is evident in some of the numerical examples provided

in the next sections.

Expanding the reconstruction formula for a number of level transitions

yields

cn = Sn c0 +
n−1∑

j=0

Sj E dj. (3.63)

Stability of the reconstruction formula depends on the subdivision opera-

tor S that is applied multiple times. Since we choose dyadic refinement of

B-splines for our subdivision schemes, it is guaranteed that the limit curve
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or surface is smooth and lies within the convex hull of initial control points

when no detail is added. The variation-diminishing property of B-splines

guarantees also that the derivatives of a limit curve or surface do not exceed

the slope of difference vectors between adjacent control points [49]. Our re-

construction schemes are thus stable in the sense that they produce bounded

approximations with bounded derivatives for every level of detail.

The decomposition formula can be expanded as

c0 = Fn cn and

dj = C Fn−j−1 cn.
(3.64)

Thus, the fitting operator F controls of stability for decomposition. When

applying F to a control polygon defined by coefficients cj+1, the resulting

control points cj are not necessarily located within the convex hull of the

cj+1. However, we can compute a bound for the growth of coefficient values

and of differences between adjacent coefficients.

For our linear wavelet construction, we derive a bound from the fitting

scheme defined by the filter l:

cji =
(
−1

8
1
4

3
4

1
4
− 1

8

)



cj+1
i−2
...

cj+1
i+2




≤ 3
2
max{cj+1

k }2k=−2.

(3.65)

Defining the differences

∆cji = cji − cji−1, (3.66)

we can derive a similar bound for

∆cji =
(

1
8
− 1

8
− 1 − 1 − 1

8
1
8

)



∆cj+1
i−3
...

∆cj+1
i+2




≤ 5
2
max{∆cj+1

k }2k=−3.

(3.67)
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This bound on difference vectors limits the growth of the first derivative to
5
4
, since the parametric distance of control points cj doubles for level j + 1.

The wavelet coefficients dj are defined in terms of ∆cj+1, since they are

translation-invariant and thus represent difference vectors between control

points, provided that
∑

i hi = 0.

For our cubic fitting scheme, these bounds are defined as

cji = 1
32

(3 − 12 5 40 5 − 12 3)




cj+1
i−3
...

cj+1
i+3




≤ 5
2
max{cj+1

k }3k=−3.

(3.68)

and

∆cji = 1
32

(−3 9 7 − 45 − 45 7 9 − 3)




∆cj+1
i−4
...

∆cj+1
i+3




≤ 4 max{∆cj+1
k }3k=−4.

(3.69)

For the quintic wavelet construction, these bounds for the growth of cji
and ∆cji are 5.6875 and 9.875, respectively. It is possible to construct control

polygons such that the coordinates of the control points exactly grow by

these bounds for one fitting step. When multiple fitting steps are computed,

a tighter bound applies for every single step. This bound can be computed

from the matrix norm of Fn,

c0i ≤ ‖Fn‖∞ max{cnk}k∈Z, (3.70)

where ‖Fn‖∞ is the maximal sum of the absolute values of the entries in

any row of Fn. This bound is difficult to compute, since the matrix Fn

becomes denser and denser with increasing n. Numerical analysis of this

matrix suggests that its norm is bounded independently of n for the linear

wavelet. In the cubic case, it grows moderately with n and in the quintic
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case it grows rapidly. We note that this situation becomes different when

integer arithmetic is used, since the rate of growth is cut down by 1
2

and 1
4

for the cubic and quintic wavelets, respectively.

3.5 Modeling Scientific Data

Compressed hierarchical representations are required to store, transmit, and

visualize large-scale scientific data sets. The biorthogonal wavelet transforms

defined in the previous sections provide ideal tools for computing multiple

levels of resolution locally or globally for massive data sets. The transforms

are efficiently computed by a small number of local lifting operations. In the

following, we describe the use of these tools for modeling scientific data and

provide numerical examples for lossless and lossy compression.

Representing scientific data with high fidelity often requires that a pre-

scribed error bound is satisfied. Discretized data is defined by a set of real-

valued samples that typically are contaminated with numerical noise of very

low amplitude. When this amplitude is known, the samples can be rounded

to a certain precision such that most of the noise is cut off and only the signif-

icant information is preserved. Choosing this precision is crucial for lossless

compression, since it is impossible to compress numerical noise. When it

becomes necessary to re-sample a data set to a regular grid, the resolution

must be chosen carefully so that the introduced sampling error lies in the

same order of magnitude as the data precision.

For lossless compression, the finite-precision samples are scaled to integers

from which they can exactly be reproduced. An integer-to-integer wavelet

transform maps these integer samples into a set of integer coefficients of low

absolute values. These are compressed by arithmetic coding [99, 129], as

described in the next section. For compressing large-scale data sets, it is

possible to transform small blocks independently for caching purposes. Such
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Figure 3.26: Abstraction of wavelet transform applied to surfaces and vol-

umes.

a fragmentation does not cause artifacts, since neither the wavelet transform,

nor the arithmetic coder introduce errors.

Higher compression rates are obtained by lossy compression. In this case,

the data is transformed using floating-point arithmetic and the resulting

coefficients are quantized, i.e., rounded to a finite precision and scaled to

integers. Depending on the precision and on the number of level transitions

in the wavelet transform, one can still compute a bound for the introduced

error. Though this bound is much greater than the rounding error for each

coefficient, the resulting accumulated quantization error remains usually low

in average. The quantization error can be computed from the reconstructed

data set. Again, compression is obtained by arithmetic coding of the integer-

valued coefficients.

Generalizing the wavelet transform to higher-dimensional data, like sur-

faces and volumes, is straight forward. The block structure containing coeffi-

cients of different types is illustrated in Figure 3.26 for surfaces and volumes.

We note that the lifting scheme does not separate coefficients cj and dj into

different regions.
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Figure 3.27: Arithmetic coding of the symbol list “ADBAAABC.” The

average number of bits per symbol is 1.75 for this example.

3.5.1 Arithmetic Coding

In the coding step, the small range of coefficient values and the fact that

small coefficients occur more often than larger ones are exploited to store the

coefficients compactly. For a range of n possible coefficient values (symbols)

with occurance probabilities p1, . . . , pn, the minimal average number of bits

per symbol is

n∑

i=1

−pi log2 (pi). (3.71)

This optimum is actually reached by arithmetic coding. A list of symbols

is encoded by subdividing the interval [0, 1] according to the probabilities of

all symbols. The subinterval corresponding to the current symbol in the list

is selected and recursively subdivided according to the succeeding symbols,

see Figure 3.27. Finally, the encoded list of symbols is represented as a single,

highly precise number in [0, 1] that identifies the final subinterval. From this

number, the list of symbols can be uniquely recovered.

Despite its linear computation time, arithmetic coding requires a lot of

implementation to avoid numerical problems, since an entire data set is en-

coded into one single number. Other coding schemes, like Huffman coding
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Figure 3.28: Numerical simulation of a Rayleigh-Taylor instability. The

data set is composed of 5123 samples for 301 time steps. Image and data set

are courtesy of Lawrance Livermore National Laboratory.

[90], provide a more efficient implementation, but they do not obtain optimal

compression rates. An implementation for an arithmetic coder is provided

by Witten et al. [129].

A major advantage of arithmetic coding is that the probabilities for sym-

bols can be changed adaptively. The local histogram of coefficient values is

typically much different in dense and sparse regions of a data set and for

coefficients of different types. Starting with a Gaussian distribution of prob-

abilities, one can update the histogram based on the most recently decoded

coefficients and thus change it adaptively during the process. An approach

exploiting correlation between different levels of a wavelet transform, useful

for sparse data, are zerotrees described by Shapiro [120].
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Figure 3.29: 5122 slice of Rayleigh-Taylor data set (left), linear B-spline

integer wavelet transform with coefficients separated in space (middle), and

same transform without separating coefficients (right). The wavelet coeffi-

cients are scaled by ten, and a grey level was added.

3.5.2 Lossless Compression Examples

We have applied the lossless compression algorithm to a Rayleigh-Taylor

instability simulation, shown in Figure 3.28. This data set represents a three-

dimensional, time-varying temperature distribution in a turbulent flow. This

simulation was computed on a massively parallel supercomputer at Lawrence

Livermore National Laboratory, California, U.S.A. Its resolution is 5123 byte

samples for each of 301 time steps. Since the data set is sparse in the first

time steps, a high lossless compression rate (storage size / compressed storage

size) in the order of 20 can be achieved.

Due to the large size of the data set, the compression algorithm needs

to be applied locally to smaller blocks. For numerical examples, we have

chosen a horizontally aligned 5122 slice and a 643 brick in the middle of the

data set at the last, most turbulent time step. The slice and its linear B-

spline integer wavelet transform is shown in Figure 3.29. The coefficients

can be re-arranged in space according to their types. This may be useful to

use different histograms for encoding different groups of coefficients. It also

shows, which type of coefficient has large absolute values in average for a
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Figure 3.30: Integer wavelet transforms using ψH , ψQ, and ψD (top), and

ψ1, ψ3, and ψ5 (bottom).

certain wavelet transform.

We have applied six lifted integer wavelet transforms to the same slice.

The following wavelets have been used:

• ψH : the Haar wavelet.

• ψQ: the quadratic B-spline wavelet with small support and one vanish-

ing moment.

• ψD: the quadratic wavelet constructed by Duchaineau [41].

• ψ1: the linear B-spline wavelet with two vanishing moments.

• ψ3: the cubic B-spline wavelet with two vanishing moments.
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wavelet comput. arith. code compr. number of coeff. range

time [sec] length [%] rate zeros [%] min max

ψH 0.055 51.0 1.96 20.7 −67 112

ψQ 0.097 35.6 2.81 35.5 −49 46

ψD 0.115 35.8 2.79 35.6 −59 50

ψ1 0.078 39.5 2.53 37.3 −94 110

ψ3 0.121 37.6 2.66 31.7 −74 68

ψ5 0.136 52.6 1.90 16.9 −221 188

Table 3.5: Lossless compression results for 5122 slice of Rayleigh-Taylor data

set.

• ψ5: the quintic B-spline wavelet with two vanishing moments.

Figure 3.30 shows the different wavelet transforms scaled by ten with a grey

level added. Coefficients of same type are grouped together. It can be ob-

served that the discontinuous Haar wavelet represents high frequency parts

well but leads to large coefficients on coarse levels of resolution (located in

the upper left corner). The quintic wavelet produces large coefficients on the

diagonal, due to its instability.

The numerical compression results for the slice of the Rayleigh-Taylor

instability data set are summarized in Table 3.5. Computation times have

been measured on a 194 MHz MIPS R10000 processor on an SGI Onyx

system. The arithmetic code length is shown in percent of the size of the

uncompressed slice (262144 bytes). The code lengths and the corresponding

compression rates are computed from equation (3.71). We note that the

size of the coefficient histogram is not included. However, it is possible to

recover the histogram adaptively from the decoded coefficients resulting in

even higher compression rates. We have also counted the number of zero

coefficients and recorded the range of coefficient values for every transform.

Numerical compression results for a 643 brick of the Rayleigh-Taylor data
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wavelet comput. arith. code compr. number of coeff. range

time [sec] length [%] rate zeros [%] min max

ψH 0.103 34.5 2.90 41.7 −43 60

ψQ 0.177 29.4 3.40 43.3 −89 62

ψD 0.222 29.0 3.45 44.3 −95 62

ψ1 0.151 26.7 3.75 52.6 −83 103

ψ3 0.246 35.0 2.86 37.0 −87 162

ψ5 0.308 56.6 1.77 18.8 −512 1177

Table 3.6: Lossless compression results for 643 brick of Rayleigh-Taylor data

set.

set are provided in Table 3.6. The total number of samples is the same as

for the slice, but the transforms are computed in three dimensions. Higher

compression rates are obtained, due to the correlation of function values in

the third dimension.

3.5.3 Lossy Compression Examples

As an example for lossy compression based on floating-point data, we have

chosen the Crater Lake data set, courtesy of U.S. Geological Survey. We

have resampled this data set to a regular grid of 320× 448 samples, which is

about 90 percent of the original data set (159272 samples). For re-sampling

we used the function values of the closest original samples We did not use a

blending scheme to preserve the structure of the data.

Table 3.7 shows the maximal and L2 quantization errors in percent of the

amplitude for different wavelet transforms at compression rates of ten and

100. The compression rates are obtained by scaling the wavelet coefficients

of each individual transform by an individual factor before rounding them

to integers. Some of the reconstructed terrain data sets are depicted in

Figure 3.31.
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Figure 3.31: Re-sampled Crater Lake data set and reconstructions from a

1:100 compression. Full 320×448 resolution (top left), Haar wavelet ψH (top

right), linear B-spline wavelet ψ1 (bottom left), and Duchaineau’s wavelet ψQ

(bottom right).

wavelet compression rate 10 compression rate 100

L∞-error L2-error L∞-error L2-error

ψH 3.55 0.89 16.34 4.01

ψD 1.53 0.29 12.21 2.49

ψQ 1.18 0.24 9.66 2.03

ψ1 1.41 0.26 7.94 1.67

ψ3 3.40 0.66 34.63 7.37

Table 3.7: Lossy compression results for Crater Lake.
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Figure 3.32: Different levels of resolution, j = 1, 2, 3, 4, for linear B-spline

wavelet ψ1.

wavelet level 1, 1
4

of data level 2, 1
16

of data level 3, 1
64

of data

L∞-error L2-error L∞-error L2-error L∞-error L2-error

ψH 11.8 0.47 20.3 0.97 24.7 1.78

ψD 9.6 0.21 11.4 0.48 13.4 0.99

ψQ 9.6 0.19 11.1 0.42 14.8 0.85

ψ1 10.4 0.22 15.4 0.49 18.1 1.01

ψ3 11.0 0.21 18.5 0.22 21.3 1.22

ψ5 13.8 0.31 40.4 2.26 196.5 18.3

Table 3.8: Fitting errors for Crater Lake using different wavelets at three

levels of resolution j = 1, 2, 3.
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Figure 3.33: Third fitting level ( 1
64

of data) for the wavelets ψH , ψQ, ψD,

ψ1, ψ3, and ψ5. The instability of ψ5 becomes evident.
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Another important application of wavelets is the computation of different

levels of resolution, obtained by the fitting operator. To visualize the fitting

quality for a wavelet transform, we set all coefficients located on fine levels

of resolution to zero and use only the subdivision scheme for reconstruc-

tion. Different levels for using our linear B-spline wavelet ψ1 are shown in

Figure 3.32. The third fitting level obtained by different wavelet transforms

is depicted in Figure 3.33. Here, the instability of the fitting operator for the

quintic B-spline wavelet ψ5 becomes a serious problem. The approximation

errors of the fitting schemes for different wavelets at three levels of resolution

are compared in Table 3.8.



Chapter 4

Wavelets on Arbitrary

Topology

Many scientific data sets are not defined on regular, rectilinear grids. Non-

planar geometries, like isosurfaces, shock waves, material boundaries, and

computer-aided design (CAD) models cannot be represented as functions

defined over Euclidean domains. Even in the case of planar or volumetric

data sets, it is often desirable to exploit an underlying grid structure for

building a geometric model, rather than re-sampling the data to a uniform

grid. Multiresolution models are required to follow the topology or grid

structure suggested by the data.

This chapter is concerned with generalizing symmetric lifted B-spline

wavelets to surface domains of arbitrary topology, i.e., two-manifolds of arbi-

trary genus, defined by polygonal base meshes. Base meshes serve as control

meshes for coarse-level surface approximations. We apply recursive subdivi-

sion schemes, resulting in a smooth surface representation with locally regular

(rectilinear) parametrization. Sharp feature lines and boundary curves are

processed by different subdivision rules. Detail can be added to or removed

from a surface at every level of subdivision. We generalize the four operators,

101
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fitting F, compaction-of difference C, subdivision S, and expansion-of-detail

E, defined in Chapter 3, to construct a wavelet transform on this mesh hier-

archy.

A different application for our generalized wavelet transform is a multires-

olution representation defined on tessellations. Starting with a partitioning

of an Euclidean domain composed of convex cells (or tiles), we recursively

subdivide these cells in a regular fashion. This subdivision hierarchy is then

used to represent functions defined on tessellations at multiple levels of res-

olution. We exploit the tessellations as a natural parametrization.

4.1 Multiresolution Representation of Two-

Manifolds

The need for multiresolution surface models of arbitrary topology arises from

applications in different fields, such as

• Computational fluid dynamics (CFD). For example, isosurfaces in

three-dimensional flow fields are surfaces defined by a constant scalar

parameter like density, pressure, temperature, and absolute values of

velocity and vorticity. For visualization and exploration purposes, para-

metric surface representations are often preferred, since they explicitly

represent surface topology and provide efficient access to the corre-

sponding geometry.

• Medical imaging. Surface approximations representing bone or vessel

structures are obtained from contouring algorithms applied to volu-

metric data constructed from computerized tomography (CT) scans.

Smooth surface models can be used for visualizing these structures,

identifying diseases, and planning surgery.
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• Reverse engineering. Points sampled from a physical model using, for

example, laser range scanners are approximated or interpolated by con-

tinuous surface models. This method can be used for designing car or

aircraft bodies by building prototypes and converting them into geo-

metric models used for numerical analysis and manufacturing.

A preliminary problem is reconstructing surfaces from some initial data

and assigning parametrizations to their geometry. Starting with a coarse

parametric surface model, in our case a coarse control (or base) mesh whose

polygons are mapped to certain surface regions, we create a hierarchy of finer

approximations to the underlying geometry and, if applicable, to functions

defined on the geometry. Once our hierarchical surface model is built, it can

efficiently be used to display, analyze, and edit local regions at user-defined

resolutions. Applications include view-dependent visualization, progressive

transmission, CAD, and compression.

4.1.1 Related Work

Many approaches to multiresolution surface modeling exist. We summarize

related work on surface reconstruction, triangle meshes and smooth surface

modeling, and we review recent developments regarding wavelets defined on

arbitrary topology.

In the case of isosurfaces, an initial triangulated surface representation

is obtained by standard contouring methods, like marching cubes. A more

difficult problem is the reconstruction of a surface from a set of unorganized

points in three dimensions, which arises in reverse engineering applications

where solid objects are sampled from different views using laser-range scan-

ners. Starting with such a set of unorganized points, Hoppe et al. [68] con-

struct a signed-distance function based on the three-dimensional Voronoi dia-

gram of these points by using an Euclidean minimum-spanning tree (EMST)

to propagate a consistent orientation of surface normals. Their distance
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function, defined by the signed orthogonal distance from a linear surface ap-

proximation in every Voronoi cell, is used to obtain a triangulated isosurface

from marching cubes. Curless/Levoy [26] also use signed distance functions

for surface reconstruction from range-scanned images. Their algorithm builds

an individual signed-distance function for every scanned image and then uses

a weighted sum of these distance functions to extract a triangulated surface.

Another Voronoi-based approach to surface reconstruction from unorga-

nized points by triangulating these points directly is described by Amenta

et al. [1, 2]. Their algorithm uses the medial axis, i.e., the set of points

that have equal distance from at least two surface components, to separate

distinct surface regions that are close in space. Heckel et al. [64, 65] recon-

struct surfaces by adaptive clustering based on principal component analysis

(PCA). PCA provides a linear surface approximation with a least-squares

error estimate for every cluster of unorganized points. From this clustering,

a triangulated surface is constructed.

Alpha shapes, introduced by Edelsbrunner/Mücke [47], provide a powerful

tool for surface reconstruction by identifying connected surface components.

A simplicial complex is constructed for a set of unorganized points, con-

taining all simplices, i.e., line segments, triangles and tetrahedra, that fit

into spheres of radius α. The optimal radius can interactively be chosen by

the user. The final triangulated surface is defined as the outer boundary of

the simplicial complex. The idea of identifying triangles of an outer surface

boundary by “rolling” a sphere of constant radius along the boundary of a

triangulated region, thus augmenting this region, is exploited by Bernardini

et al. [9], resulting in a highly efficient reconstruction method for densely

sampled surfaces.

A reconstruction algorithm for smooth surfaces using B-spline patches is

discussed by Eck/Hoppe [45]. Triangular surface meshes are simplified to

coarser meshes, conserving surface topology and minimizing geometric dis-

tortion. Polygonal base meshes with quadrilateral faces are constructed first.
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Figure 4.1: Mesh simplification by collapsing edge vivj to a single vertex v,

decrementing the valences of vertices a and b.

The faces are then filled with B-spline patches that are fitted to the under-

lying points using a least-squares approach satisfying C1-continuity condi-

tions. A similar algorithm by Guo [56] constructs base meshes form alpha

shapes and uses a C2-continuous blending surface representation [54]. Kr-

ishnamurthy/Levoy [80] introduce a method for fitting B-spline patches to

dense polygon meshes. A surface reconstruction approach based on piecewise

algebraic surfaces is described by Bajaj et al. [5] and by Bernardini et al.

[8].

Multiresolution surface representations are important for processing

large-scale surface models efficiently. A mesh-simplification method for tri-

angulated surfaces is described by Hoppe [70]. This approach uses edge

collapsing, see Figure 4.1, to reduce the number of triangles resulting in mul-

tiple levels of resolution. A survey of different mesh simplification methods

is provided by Lindstrom/Turk [83, 84]. Recently developed signal process-

ing algorithms for triangulations are described by Guskov et al. [58] and by

Daubechies et al. [33]. Inspired by the wavelet transform, these methods

define similar filtering operations on irregular meshes without regular sub-

division connectivity. An earlier approach to signal processing on irregular

meshes is due to Taubin [127]. A mesh-optimization method is introduced

by Rumpf [112]. Interactive multiresolution mesh editing techniques are pre-
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Figure 4.2: Subdivision structures used for Catmull-Clark, Doo-Sabin, and

Loop’s subdivision surfaces.

sented by Zorin et al. [131] and by Kobbelt et al. [76].

Surfaces of arbitrary topology can be represented without the need of

completely irregular meshes at every level of resolution. Coarse irregular

base meshes defining surface topology can be recursively refined in a regular

way. The first wavelet constructions for subdivision surfaces were introduced

by Lounsbery [90] and by Lounsbery et al. [91]. These approaches construct

semi-orthogonal wavelets for a hierarchy of scaling functions defined by a

subdivision surface scheme. Only in the case of interpolating subdivision,

the resulting decomposition filters are finite. Our approach, in contrast,

provided in the next section, constructs biorthogonal wavelets with finite

filters based on generalized B-spline subdivision.

The first subdivision schemes generating C1-continuous limit surfaces

were described by Catmull/Clark [22] and by Doo/Sabin [40]. Starting with

an irregular polygonal control mesh, Catmull-Clark subdivision creates a new

control point located at the centroid of every face (polygon) and a new con-

trol point for every edge, see Figure 4.2. After the first subdivision step, all

faces are quadrilaterals and the only irregularity in the mesh is due to ex-

traordinary vertices, i.e., vertices with other than four adjacent edges. Their

subdivision scheme generates bicubic B-splines on regular, rectilinear grids.

Doo-Sabin subdivision is a generalization of biquadratic B-splines based on a

subdivision structure that is dual to the meshes generated by Catmull-Clark
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subdivision, i.e., vertices correspond to faces and vice versa. Doo-Sabin sub-

division constructs a new control point for every vertex inside each polygon,

see Figure 4.2. The initial control points are erased. A smooth subdivi-

sion scheme generalizing box splines [15] based on triangular subdivision is

introduced by Loop [86].

These three different subdivision schemes are local, linear, and station-

ary, i.e., they compute the new control points from a weighted sum of a local

stencil of the original control points where the weights are constants depend-

ing on the local connectivity, yet independent of the subdivision level. In

the case of Catmull-Clark and Loop’s subdivision, the locations of the orig-

inal control points are modified, as well. Interpolating subdivision schemes

do not modify control points arising from coarser subdivision levels. An

interpolating scheme generalizing bicubic C1-continuous splines based on

Catmull-Clark mesh connectivity is described by Kobbelt [78]. A smooth

interpolating scheme for triangular meshes using Loop’s mesh structure is

known as butterfly subdivision, introduced by Dyn et al. [44]. Its behavior

at extraordinary points was improved by Zorin et al. [132].

All previously described subdivision schemes have in common, that the

number of vertices is (approximately) quadrupled in every subdivision step.

Subdivision methods with less aggressive refinement are described by Pe-

ters/Reif [105] and by Kobbelt [74]. Subdivision surfaces acting as height

maps, thus providing surface detail by offsetting a coarse surface approxima-

tion are recently presented by Lee et al. [82] and by Guskov et al. [59].

Compared to other smooth surface constructions, like blending surfaces

[54], triangular B-splines [119, 27], constructions based on triangular or

quadrilateral Bézier patches [88, 60, 104, 67], and S-patches [87], subdivi-

sion surfaces require much less implementation and provide control meshes

at multiple levels of resolution. The corresponding basis functions span a

sequence of nested spaces, which is required for the construction of wavelets.

Subdivision schemes generating piecewise polynomials can efficiently be eval-
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Figure 4.3: Polynomial patches in the neighborhood of an extraordi-

nary point for generalized bilinear subdivision (left) and bicubic subdivision

(right).

uated at arbitrary parameter values, even if there are an infinite number of

smaller and smaller patches located in the neighborhood of extraordinary

points [122], see Figure 4.3. The limit behavior at extraordinary points can

be analyzed using the eigenstructure of a local subdivision matrix [106], which

was first done by Doo/Sabin [40]. It is feasible to interpolate points and nor-

mals and to minimize certain fairness functions when constructing surfaces

with subdivision schemes [61].

Inspired by Lounsbery’s subdivision-surface wavelet constructions,

Schröder/Sweldens [115] developed a variety of wavelets for subdivision

schemes embedded in spherical domains. Piecewise constant approaches with

nearly orthogonal wavelets were constructed by Nielson et al. [103] and by

Bonneau [17, 18]. Subdivision surface wavelets can also be used for repre-

senting functions defined on a surface, like texture, opacity, and bump maps.

The application of multiresolution surface viewing was described by Certain

et al. [23].

An important problem arising from the use of subdivision-surface wavelets

is the construction of base meshes with smooth parametrizations for the sub-

division hierarchy. This problem was addressed by Eck et al. [46]. Starting
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with a triangulated surface, their approach uses a sequence of harmonic maps

to construct locally planar surface parametrizations with minimal geometric

distortion. A coarse approximating Delaunay triangulation is constructed

and the initial surface representation is mapped to the Delaunay triangles.

These are recursively refined and the new control points are re-sampled from

the initial surface using their local parametrization.

A similar, yet more efficient algorithm for multiresolution adaptive

parametrization (MAPS) of surfaces was described by Lee et al. [81]. MAPS

simplifies a given triangle mesh by recursively removing vertices and re-

triangulating. During this procedure, the original mesh is mapped onto the

coarser triangulation. The coarsest mesh is regularly refined and re-sampled

from the original surface using a parametrization that is smoothed by Loop’s

subdivision scheme. A shrink-wrapping approach for surfaces topological

equivalent to a sphere is described by Kobbelt et al. [75]. This method ap-

proximates surfaces by recursively subdividing, relaxing and projecting the

control points of an initial base mesh to a given geometry.

4.1.2 Generalized Lifting Operations

We now generalize the symmetric s-lift and w-lift operations, defined in Chap-

ter 3, to subdivision surfaces defined by irregular base meshes. Our linear,

cubic and quintic B-spline wavelet constructions are thus generalized to do-

mains of arbitrary topology for the representation of two-manifolds. The

resulting basis functions are composed of tensor-product B-splines in the

rectilinear mesh regions and are smooth (C1-continuous in the bicubic case)

at extraordinary points. We introduce an index-free notation to define our

generalized lifting operations in a comprehensive way.

Before we define wavelets on arbitrary surfaces, we review our one-

dimensional wavelet constructions using a notation without coefficient in-

dices. Considering a decomposition step for a control polygon, depicted in
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Figure 4.4: Decomposition for a control polygon.
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Figure 4.5: S-lift and w-lift operations applied to a control polygon.

Figure 4.4, we denote the points that correspond to vertices in the coarse

polygon as v points. The points transformed into wavelet coefficients cor-

respond to edges in the coarse polygon and are denoted as e points. De-

composition rules for a DWT are defined by two linear operators, a fitting

operator F, predicting the control points v′ for a coarser polygon, and a

compaction-of-difference operator C, providing the wavelet coefficients e′,

v′ = F(v, e) and

e′ = C(v, e).
(4.1)

The corresponding reconstruction rules are due to a subdivision operator S

predicting the shape of a next-finer level control polygon and an expansion

operator E providing the missing details:
(

v

e

)
= S(v′) + E(e′). (4.2)

In Chapter 3, we defined decomposition and reconstruction rules for

symmetric B-spline wavelets in terms of s-lift and w-lift operations, see

Figure 4.5. We can re-define these lifting operations using the index-free
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operator xy that returns for every point of type y the centroid of all adjacent

points of type x, as follows:

s-lift(a, b) : v ← bv + 2aev (4.3)

w-lift(a, b) : e ← be + 2ave (4.4)

Our one-dimensional decomposition rules for symmetric B-spline wavelets

are computed by the following operations:

(i) Linear B-spline wavelet:

w-lift
(
−1

2
, 1
)

s-lift
(

1
4
, 1
) (4.5)

(ii) Cubic B-spline wavelet:

s-lift
(
−1

4
, 1
)

w-lift (−1, 1)

s-lift
(

3
8
, 2
)

(4.6)

(iii) Quintic B-spline wavelet:

w-lift
(
−1

6
, 1
)

s-lift
(
− 9

16
, 1
)

w-lift
(
−4

3
, 1
)

s-lift
(

5
8
, 4
)

(4.7)

In the following, we generalize these wavelet transforms to surfaces. Start-

ing with a polygonal mesh, we use the same subdivision structure as for

Catmull-Clark surfaces, inserting a new vertex for every face and for every

edge. Considering only one subdivision step at a time, we call the initial
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Figure 4.6: Wavelet transform for irregular base mesh.

mesh submesh and the mesh resulting from subdivision supermesh, since it

contains more vertices (about four times as many) as the submesh. We de-

note the points of the supermesh as f , e, and v, depending on which submesh

primitives they correspond to, i.e., faces, edges, and vertices, respectively. A

decomposition step maps these points into submesh points v′ and wavelet

coefficients f ′ and e′, as illustrated in Figure 4.6.

Analogously to the one-dimensional case, decomposition rules for a DWT

are defined by a fitting operator F and by a compaction-of-difference operator

C, given by the rules

v′ = F(v, e, f) and
(

e′

f ′

)
= C(v, e, f).

(4.8)

Starting with a control mesh at a fine subdivision level with points sam-

pled from a given surface, this decomposition formula is recursively applied

to every level transition from fine to coarse, resulting in valid control points

for a base mesh and in wavelet coefficients for every level transition.

The corresponding reconstruction rules for the inverse DWT are defined
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Figure 4.7: A one-dimensional decomposition step is applied to all rows and

then to all columns of a rectilinear grid.

by a subdivision operator S and by an expansion-of-difference operator E:




v

e

f


 = S(v′) + E(e′, f ′). (4.9)

Reconstruction can be recursively applied to a base mesh with wavelet

coefficients. When the finest level of resolution is reached, a smooth limit

surface is obtained by applying the subdivision operator S ad infinitum.

Analogously, every intermediate control mesh represents a smooth limit sur-

face that is obtained by assuming zero wavelet coefficients on all finer levels,

i.e., by using only the subdivision scheme.

On rectilinear grids, a one-dimensional decomposition step can be applied

to the rows and columns, independently, as illustrated in Figure 4.7. This

approach defines scaling functions as tensor products of one-dimensional scal-

ing functions. The wavelets corresponding to f points are tensor products

of one-dimensional wavelets, and the wavelets located at e points are tensor

products of a wavelet (along the edge) and a scaling function (crossing the

edge). For a decomposition step defined by a sequence of lifting operations,

the resulting transform remains the same (except for floating-point errors),

when every individual lifting operation is applied to the rows and columns,

successively.
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Figure 4.8: S-lift operation applied to rows and then to columns.
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Figure 4.9: S-lift operation computed in different order.

Instead of applying a symmetric lifting operation to the rows and columns

of a regular grid, as illustrated in Figure 4.8, we can update the control points

of different types individually, see Figure 4.9. Therefore, we need to adjust

the weights for the point updates such that the result is the same. The two-

dimensional s-lift and w-lift operations can be defined in index-free notation.

We use the operator xy returning for every point of type y the centroid of all

adjacent points of type x. If there are no adjacent points of this type, like

for fv, then the centroid of the closest stencil of points of type x is returned.

The symmetric lifting operations can be defined as

s-lift(a, b) : v ← b2v + 4a2fv + 4abev

e ← be + 2afe

(4.10)

w-lift(a, b) : f ← b2f + 4a2vf + 4abef

e ← be + 2ave.
(4.11)

Alternatively, we can change the order of computation, resulting in
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Figure 4.10: Basis functions on top face of a prism near an extraordinary

point of valence three. Far left: mesh configuration (top face of prism with

control points corresponding to basis functions). Top row: bilinear construc-

tion; bottom row: bicubic construction; From left to right: scaling function,

e wavelet, and f wavelet.

slightly different rules, defined as

s-lift(a, b) : e ← be + 2afe

v ← b2v − 4a2fv + 4aev

(4.12)

w-lift(a, b) : e ← be + 2ave

f ← b2f − 4a2vf + 4aef .
(4.13)

We defined these two-dimensional s-lift and w-lift operations so that they

are applicable to extraordinary points. Due to the averaging operator xy,

the total weight added to a control point is independent of its valence. It is

possible to use different rules at extraordinary points. We note that the f

points updated by a w-lift operation are always ordinary points, except for

the first subdivision level of an irregular mesh.

We can apply the tools for generalizing wavelet decomposition and recon-

struction schemes based on s-lift and w-lift operations to arbitrary polygonal
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Figure 4.11: Piecewise bilinear and bicubic basis functions on top face of a

cube.

Figure 4.12: Generalized bilinear and bicubic basis functions on top face

near an extraordinary point of valence five.
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j=5 j=4

j=3 j=2

Figure 4.13: Shape with random noise added at subdivision level j = 5 and

reconstructions for levels j = 4, 3, 2 predicted by generalized bilinear fitting.

base meshes. To provide an example, we formulate the decomposition rules

for our generalized bilinear B-spline wavelet transform using equations (4.11)

and (4.12) and combining the e updates for both lifting operations:

1. f ′ ← f + vf − 2ef

2. e′ ← e − ve + 1
2
f ′e

3. v′ ← v − 1
4
f ′v + e′

v.

(4.14)

The corresponding reconstruction formula is obtained by inverting these

three update operations in reverse order

1. v ← v′ + 1
4
f ′v − e′

v

2. e ← e′ + ve − 1
2
f ′e

3. f ← f ′ − vf + 2ef .

(4.15)

Rules for generalized bicubic and biquintic wavelet transforms are con-
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structed analogously. Any use of the two variants for each s-lift and w-lift

operations results in an equivalent wavelet transform. Analogously, it is fea-

sible to start with generalizing a reconstruction scheme. Differences in the

order of computations may have an impact when integer arithmetic is used.

Examples for the constructed basis functions for the generalized bilinear and

bicubic wavelet transforms are depicted in Figures 4.10–4.12. The fitting

capabilities of the generalized bilinear wavelet transform are demonstrated

in Figure 4.13.

Integer arithmetic, as discussed in Chapter 3, can be used for the individ-

ual operations, providing a lossless compression algorithm for meshes with

control points represented by integer or finite-precision coordinates. Provided

that the lifting parameter b ia a non-zero integer for every lifting operation,

we can implement equations (4.10) and (4.11) in integer arithmetic:

integer s-lift(a, b) : v ← b2v + [4a2fv + 4abev]

e ← be + [2afe],
(4.16)

integer w-lift(a, b) : f ← b2f + [4a2vf + 4abef ]

e ← be + [2ave],
(4.17)

where the operator [ · ] rounds real numbers to integers. The inverse of these

integer lifting operations is defined as

inverse int. s-lift(a, b) : e ← 1
b

(
e − [2afe]

)

v ← 1
b2

(
v − [4a2fv + 4abev]

)
,

(4.18)

inverse int. w-lift(a, b) : e ← 1
b
(e − [2ave])

f ← 1
b2

(
f − [4a2vf + 4abef ]

)
.

(4.19)

4.1.3 Sharp Features and Surface Boundaries

Subdivision surfaces with sharp feature lines and boundaries were presented

by DeRose et al. [39] and by Zorin et al. [14]. The idea is to label certain
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edges in a base mesh as features and to apply different subdivision rules to

control points located on these edges. Sederberg et al. [118] have gener-

alized non-uniform rational B-splines (NURBS) to subdivision of irregular

meshes by assigning knot-spacings to all edges. Their approach provides a

lot of flexibility to surface construction, since the knot-spacings can be used

to create any possible blend between a sharp feature and smooth surface.

However, their approach requires more implementation and is less intuitive

tnan uniform subdivision. Semi-sharp features can also be modeled with uni-

form schemes by applying the modified subdivision rules to an edge labeled

as feature line only for a fixed number of subdivision steps and then using

the smooth subdivision scheme for all finer levels [39].

Incorporating modified subdivision rules for features and surface bound-

aries into a wavelet transform requires to change all four operators S, E, F,

and C in a consistent way. We start with modifying the subdivision operator

S such that the one-dimensional B-spline subdivision rules are applied along

sharp edges. The remaining three operators for the wavelet transform are

then automatically adapted by the resulting lifting operations.

The one-dimensional cubic reconstruction rules are defined in Chapter 3

as a sequence of lifting operations:

s-lift
(
− 3

16
, 1

2

)
; w-lift (1, 1) ; s-lift

(
1
4
, 1
)
.

Using index-free notation, the reconstruction formula becomes

1. v′ ← 1
2
v′′ − 3

8
e′

v

2. e ← e′ + 2v′
e

3. v ← v′ + 1
2
ev,

(4.20)

where v′′ represent the initial control points and e′ are the wavelet coefficients

representing difference vectors. The control points at a finer level, resulting

from reconstruction, are denoted as v and e.

When modifying the subdivision operator S, to introduce sharp vertices
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with C0 continuity, for example, we need to understand whether the interme-

diate coefficients v′ represent points or vectors. We associate a weight of one

with every control point and a weight of zero with every vector, since vec-

tors (such as wavelet coefficients) represent differences between points. The

introduction of features becomes simpler, when all intermediate coefficients

represent either points or vectors. Therefore, we scale v′ in equation (4.20)

such that it has weight one, resulting in the following reconstruction rules:

1. v′ ← v′′ − 3
4
e′

v

2. e ← e′ + v′
e

3. v ← 1
2
v′ + 1

2
ev.

(4.21)

This reconstruction scheme is equivalent to equation (4.20), except that the

intermediate coefficients v′ represent points. For every sharp vertex, the third

update operation in equation (4.21) is ignored, leaving the corresponding

control point at its initial position during the subdivision process, as long as

no surface detail is added. Sharp vertices can be used to represent cusps on

a smooth surface or corners of a surface boundary.

We derive the reconstruction rules for generalized bicubic B-spline

wavelets from equation (4.21), which is equivalent to the sequence of lift-

ing operations

s-lift
(
−3

8
, 1
)
; w-lift

(
1
2
, 1
)
; s-lift

(
1
4
, 1

2

)
.

Inserting equations (4.12) and (4.13) provides the generalized bicubic recon-

struction scheme, given by these rules:

1. e′′ ← e′′′ − 3
4
f ′e

2. v′ ← v′′ − 9
16

f ′v − 3
2
e′′

v

3. e′ ← e′′ + v′
e

4. f ← f ′ − v′
f + 2e′

f

5. e ← 1
2
e′ + 1

2
fe

6. v ← 1
4
v′ − 1

4
fv + ev,

(4.22)
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where v′′ represent initial control points and e′′′ and f ′ represent wavelet

coefficients. The intermediate coefficients v′ and e′ represent points and e′′

represents vectors.

This reconstruction formula can be modified to represent sharp edges and

vertices correctly. The subdivision operator S applies the one-dimensional

subdivision rules for all v and e vertices belonging to sharp edges and it does

not modify sharp vertices. To guarantee “pleasant” behavior of the slope

near a sharp vertex, edges incident to this vertex are temporarily treated as

sharp edges. The following modifications, with respect to equation (4.22),

are necessary to represent sharp features:

• For any e vertex located on a sharp edge or belonging to an edge with

a sharp vertex, the first and fifth rules are ignored, i.e.,

1. e′′ ← e′′′ and 5. e ← e′.

• For any sharp v vertex, the second and sixth rules are ignored, i.e.,

2. v′ ← v′′ and 6. v ← v′.

• For any v vertex that has incident sharp edges and that is not sharp

itself, the second and sixth rules are replaced by

2. v′ ← v′′ − 3
4
e′′

v and 6. v ← 1
2
v′ + 1

2
ev.

For these modified rules, the averages e′′
v and ev are computed from

only those adjacent e vertices that are located on sharp edges.

The decomposition rules for our bicubic wavelet transform are obtained

from this reconstruction formula, applying the inverse of every update op-

eration in reverse order, with the same exceptions for vertices located on

sharp features. Examples for basis functions with features are depicted in

Figure 4.14.
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a)

c)

e)

b)

d)

f)

Figure 4.14: Basis fuctions for generalized bicubic B-spline wavelet trans-

form. a) scaling function, b) scaling function located at a sharp vertex (cusp),

c) scaling function located on a sharp edge (crease), d) wavelet located on a

face, e) wavelet located on an edge, and f) wavelet located on a sharp edge

(crease).
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4.1.4 Subdivision and Fitting Properties

The four linear operators S, E, F, and C for our bicubic wavelet construction

correspond to non-square matrices that are multiplied with corresponding

sets of control points or wavelet coefficients. Considering that our wavelet

transform has an inverse, it holds that FS and CE are identity matrices.

Since the subdivision operator S can reproduce every bicubic polynomial

on a regular (rectilinear) control mesh, the fitting operator F has bicubic

precision, as well. This implies that all wavelet coefficients are zero when

representing a bicubic polynomial. We note that F does not interpolate

certain surface points, but that it closely approximates the finer levels of

resolution. Interpolation constraints often introduce unwanted “wiggles” to

curves and surfaces.

A property of the subdivision operator S is that it produces limit surfaces

with tangent-plane continuity at extraordinary points. This can be shown

by exploring a square sub-matrix of S transforming a local set of control

points around an extraordinary point into another set of points with the same

local mesh topology. Eigenanalysis of this matrix characterizes the limit

behavior at the extraordinary point, i.e., the surface limit and its normal

can be computed analytically based on the eigenvectors. Our subdivision

scheme falls into a class of generalized Catmull-Clark schemes for which the

eigenvalues and eigenvectors of a local subdivision matrix were evaluated by

Ball/Storry [6]. A proof of tangent-plane continuity was given by Peters/Reif

[106].

Our subdivision scheme generates polynomial patches satisfying C2-

continuity constraints in all regular mesh regions. Except for extraordinary

points, all surface regions become regular after a sufficient number of sub-

divisions. Around every extraordinary point there is an infinite number of

smaller and smaller patches. However, it is possible to compute the limit-

surface efficiently at arbitrary parameter values based on eigenanalysis of

subdivision matrices [122].
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4.1.5 Isosurface Fitting

Using the wavelet construction described previously, we can efficiently com-

pute detail coefficients at multiple levels of surface resolution when a base

mesh and control points on the finest subdivision level are given. In order

for the transform to apply to an arbitrary input surface, the surface must be

re-mapped to one with subdivision connectivity. In this section we describe

an efficient algorithm generating base meshes for isosurfaces and recursively

shrink-wrapping subdivided meshes towards the underlying isosurface geome-

tries. This algorithm was developed and implemented by Duchaineau and is

presented in a recent publication [13]. We use this method to construct a

subdivision hierarchy for large-scale isosurfaces obtained from an extremely

high-resolution turbulent-mixing hydrodynamics simulation by Mirin et al.

[98].

Starting with an initial triangulated isosurface representation, we con-

struct a base mesh by performing a variant on edge-collapse simplification

according to Hoppe [70], followed by an additional pass removing some edges

while keeping the vertices fixed. This class of simplification method works

on triangulations (manifolds with boundary), and preserves the genus of

the surface, resulting in polygonal meshes. We constrain the simplification

to produce polygons with three-, four- and five-sided faces, and vertices of

valences from three to eight. These constraints result in higher quality map-

pings improving compression efficiency, since very low or high degree vertices

and faces may cause highly skewed or uneven parametrizations in the subse-

quent fitting process.

Our variant on edge-collapse simplification uses a fast priority queue im-

plemented using bucket sorting, where within each bucket of priorities the

legal edge collapses are listed in first-in-first-out order. Collapses are per-

formed on the highest-priority legal edge, iterating until no legal collapses

are possible or a target vertex count is met. We mark an edge as legal to

collapse if the rules from [70] and certain additional constraints hold. We
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v

v

i

j

a

b
v

Figure 4.15: Collapsing edge vivj modifies the triangulation in the shaded

region. The error estimates for all edges shown are updated.

ensure that valences on any new vertex are in the range {3, . . . , 8} (valence

two is allowed for boundary vertices). The new vertex formed by the edge

collapse is located at the edge center if neither edge vertex belongs to a sur-

face boundary. Otherwise, the new vertex is located on the boundary. The

general configuration is shown in Figure 4.15.

Collapsing edge vivj decrements the valences of vertices a and b belonging

to incident triangles as shown in Figure 4.15, and replaces vi and vj by a

single vertex v of valence Ni+Nj−4, where Ni and Nj are the valences of vi

and vj, respectively. We check the valences that a, b and v would have after

collapse using these formulae to enforce the desired constraints.

The error function used in our mesh-collapse algorithm is simpler than

Hoppe’s and does not require evaluating shortest distances of a dense sam-

pling of points to the finest mesh every time an edge is updated. It was

demonstrated by Lindstrom/Turk [83] that memoryless simplification can

provide results at least as good as the methods of Hoppe and others but

without expensive metrics computed with respect to the original fine mesh.

The priority computation we have developed has some similarity in spirit,

but has been re-formulated in response to experience attempting to opti-

mize the subsequent fitting process and resulting mappings. We believe it is
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important to test the volume-preserving aspect of the Lindstrom-Turk edge

collapses in future work, since this has the potential to reduce some artifacts

encountered in especially aggressive reductions (e.g., > 50 times reductions

for the turbulence contours we examine).

The priority for an edge collapse is computed as follows: Let ci be the

vectors obtained by taking cross products of consecutive vectors associated

with the ring of edges adjacent to the new vertex after collapse. Then ni =

ci/‖ci‖ are the unit normals to the triangles forming a ring around the new

vertex. The unit average normal is n/‖n‖, where n = 1/k
∑k−1

i=0 ni. The

error introduced by an edge collapse is estimated by

∆E0 = max
i=0,... ,k−1

∣∣∣∣
d

2
· ni
∣∣∣∣ , (4.23)

where d = vj − vi. To allow priority distinctions in “skewed/tangled” pla-

nar neighborhoods, we clamp ∆E0 to a small positive value by ∆E1 =

max{∆E0, 10
−8}. Errors in higher-curvature or tangled neighborhoods are

emphasized by a weighting factor, providing the final delta in error energy

as

∆E =

(
2− min ci · n

max ‖ci‖

)16

∆E1. (4.24)

We keep an estimate of accumulated error for every edge neighborhood, Eacc.

The original edges are initialized with an accumulated error of zero. The total

error for an edge is defined as

E = Eacc + ∆E (4.25)

When an edge is collapsed, the accumulated error for any edge adjacent to

the new vertex is set to the maximum of its previous value Eacc and the

values E for the five old edges destroyed by the collapse. The priority of

a collapse is given by log(1/E). This value is discretized, for example, to

about 105 buckets within a maximum expected range of [log 10−10, log 1010]

defining bucket indices.
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Upon collapse, a neighborhood of nearby edges must have their legality

markings and priorities updated. These edges are: (a) those remaining from

the two triangles that were collapsed to edges and (b) the ring of edges formed

between consecutive outer endpoints of the edges in (a). The complete stencil

of edge updates is shown in Figure 4.15.

To improve the vertex and face valences of the base mesh, we delete some

edges that satisfy certain constraints, in a priority-queue order. An edge is

eligible for deletion if its incident vertices both have valences at least four,

and if the resulting merged face has no more than five sides. If the unit

normals of the faces on either side of the edge have a dot product less that a

specified threshold, for example .5, then we also make the edge ineligible for

removal. The priority for removal is formulated to be higher when the new

face has four sides, when the two faces being combined have similar normals,

and when high-valence vertices (valence > 4) are on the ends. Removal

priority is lower when the new face has more than four sides, when the two

combining faces have disparate normals, and when the edge’s vertices have

valence four.

Given the initial base mesh from the edge collapse and removal proce-

dures, a refinement fitting procedure is the final step in converting the contour

surface to have subdivision-surface connectivity, a fair parametrization, and

a close approximation to the original unstructured geometry. Our method

is inspired by the shrink-wrapping algorithm by Kobbelt et al. [75], which

models an equilibrium between attracting forces pulling control points to-

wards a surface and relaxing forces minimizing parametric distortion. We

iterate the attraction/relaxation phases a few times at a given resolution,

then refine using Catmull-Clark subdivision, repeating until a desired accu-

racy or resolution is attained. Relaxation is provided by a simple Laplacian

averaging procedure, where every vertex is replaced by the average of its old

position and the centroid of its neighbor vertices. Boundary vertices can be

relaxed only along the boundary. The remainder of this section describes the
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Figure 4.16: Updating closest isosurface points for constructing the signed-

distance function.

attraction method.

For attraction, vertices are moved to the actual isosurface along a line

defined by the unit average normal of the faces adjacent to the vertex in the

current shrink-wrap mesh. The location chosen along this line is determined

by use of a signed-distance field for the original contour surface. We choose

the normal direction of the current mesh to ensure that samples spread evenly

over the surface, especially for high-curvature features. The even spread is

facilitated by the mesh relaxation procedure. The signed-distance field is

used to help locate the best attraction point because it is a reliable indicator

of which way to move and how far, and it can help disambiguate between near

isosurface locations by selecting the one facing a direction that most agrees

with the mesh normal. The scalar field itself, while available at no additional

space or time cost, is generally less reliable due to the possibility of steep or

zero gradients. We move to the nearest isosurface along the mesh-normal

line that has a contour normal facing in the same direction (the dot product

of the two normals is positive). If the distance to this location is greater that

a specified threshold, then the point remains at its current position until

further iterations/refinements provide a sensible target location.

We briefly outline the algorithm we use for computing the signed-distance
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field for the contour. If the scalar field is defined on a regular hexahedral

grid, we use the same grid for the signed-distance function. The sign for

our distance function can be obtained from the underlying scalar field while

estimating the distance to the isosurface involves more work. Our algorithm

creates a breadth-first queue of “updated” nodes in the grid, initialized to

include the grid nodes for cells containing isosurface, using the isolevel, scalar

value and gradient to estimate these initial distances. Each queue entry

contains the node index and coordinates of the closest surface point found

so far for that node. The first entry on the queue is removed, and all its

neighbors are checked to see whether they need to be updated. A neighbor

is updated if the removed node’s closest point is closer that its closest point,

see Figure 4.16. Updating involves replacing the coordinates of the closest

point, placing the neighbor at the end of the queue, and storing the new

distance in the distance field for the neighbor’s node. The queue processing

continues until the queue is empty. Typically, every node gets updated only

a few times, resulting in an expected linear-time computation of the signed-

distance field.

We note that an isosurface of a signed-distance function will have slight

differences from the original extracted isosurface, hence the fitting process

will converge to a slightly different surface than may be desired. This can

be optionally corrected after fitting, by moving the vertices in the scalar-

gradient direction to the exact isosurface. This is possible after the fitting

process because the points are within a fraction of a cell width from the exact

surface and the scalar field is reliable when in that proximity.

4.1.6 Numerical Examples

To demonstrate the performance of our algorithm, we have extracted an

isosurface from a block of a high-resolution turbulent-mixing hydrodynam-

ics simulation [98], converted it into our surface representation and displayed
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No. of coefficients Percent of full resolution L2-error [%]

237490 20.0 7.6

118728 10.0 20.5

59364 5.0 41.7

19527 1.6 71.3

Table 4.1: Approximation errors in percent of edge length of volume cell for

reconstructions from subsets of coefficients.

different levels of resolution. Starting with a block of 256×256×384 samples,

we have constructed an isosurface mesh composed of 976321 vertices. This

mesh has been simplified to a base mesh with only 19527 vertices. We have

used three subdivision steps for the shrink-wrapping process and obtained a

fine-resolution mesh composed of 1187277 vertices, which corresponds to the

total number of control points and wavelet coefficients. We obtained compu-

tation times of 12 minutes for base mesh generation, about one minute for the

shrink-wrapping step, and 30 seconds for computing the wavelet transform

on a 250 MHz MIPS R10000 processor.

Assuming that the control points of the shrink-wrapped mesh interpolate

the isosurface, we can estimate an approximation error for a mesh recon-

structed from only a subset of coefficients by using differences between con-

trol points at finest resolution. Error estimates are shown in Table 4.1. The

errors are computed in percent of the edge length of one volume cell. The

main diagonal of the entire block is about 528 edge lengths. The coarsest res-

olution possible can be obtained by reconstruction from the base mesh, which

corresponds to 1.6 percent of the full resolution. Every wavelet coefficient is

a vector-valued quantity with three components.

Figures 4.17–4.20 show the base mesh with interpolating control points

and different levels of resolution from local points of view. All figures are

rendered at a mesh resolution corresponding to three subdivision levels (same

resolution as obtained from shrink-wrapping), using flat shading.
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Figure 4.17: Isosurface at full resolution (1187277 control points) with

patches corresponding to base-mesh polygons shown in four different colors.
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Figure 4.18: Isosurface reconstructed from 5 percent of wavelet coefficients,

selected by thresholding.
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a) b)

c) d)

e) f)

Figure 4.19: Local view of isosurface. a) initial triangulation, b) base mesh,

c) full resolution, d) full resolution with colored patches, e) reconstruction

from 5 percent of coefficients, and f) reconstruction from base mesh (1.6

percent).
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b)a)

c) d)

e) f)

Figure 4.20: Bottom view of isosurface. a) initial triangulation, b) base

mesh, c) full resolution, d) reconstruction from 10 percent of coefficients, e)

5 percent, and f) 1.6 percent.
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4.2 Wavelets on Tessellations

Besides multiresolution representation of arbitrary two-manifolds, an inter-

esting problem is to represent functions defined on planar tessellations. Both

approaches are based on local parametrizations defined by polygonal meshes.

In the case of two-manifolds, this parametrization is not part of the geometry.

In the case of planar tessellations, however, two coordinates of a geometric

model are parameters and the model itself is a graph surface. The planar

mesh defining a parametrization and its associated function values are not

necessarily refined by the same subdivision rules. Our primary application

is image compression, applied to sets of polygonal image regions.

It was shown by Stam that subdivision surfaces can be evaluated analyt-

ically at arbitrary parameter values [122]. Thus, they can be used as a tool

for constructing continuous basis functions on irregular domains like tessella-

tions. Most subdivision schemes that offer tangent plane continuity, however,

assume that the parametric domain is deformed by the same subdivision

rules. For evaluation of the corresponding basis functions at global parame-

ter values, this deformation needs to be inverted, which, in general, cannot

be done in a closed form. Concerning simpler subdivision schemes that gen-

erate C0-continuous surfaces, like bilinear splines, it is straight-forward to

construct global closed-form parametrizations.

We use bilinear subdivision to define parametrizations for tessellations

consisting of convex polygonal regions (tiles). The shape of these tiles is pre-

served during the bilinear subdivision process applied to a tessellation. The

tiles would be deformed when using, for example, bicubic subdivision. Due to

this piecewise bilinear parametrization, smooth subdivision schemes applied

to the associated function values may produce creases along the edges of an

initial tessellation. Thus, we use our generalized bilinear wavelet transform

to represent functions defined on tessellations.
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4.2.1 Parametrization

We define a parametrization for tessellations composed of convex polygons

using bilinear subdivision. Such a tessellation is defined by sets of vertices

V , edges E, and convex, non-overlapping polygons (faces) F that completely

cover a given domain I. It is assumed that the valence of every vertex is

at least three, except for boundary vertices. The edges are line segments

connecting two vertices that encompass all convex combinations of these,

except for the vertices themselves. The faces are the remaining open regions

enclosed by vertices and edges. It is assumed that every angle between two

incident edges enclosing a face is strictly less than 180 degrees, i.e., all faces

must be convex and T-nodes (or hanging nodes) are not allowed.

We consider an initial tessellation

T0 = {V0, E0, F0}. (4.26)

We define recursive refinement rules for a sequence of tessellations T1, T2, . . .

The set Vi+1 is composed of Vi, the midpoints of all edges in Ei, and the

centroids of all faces in Fi. The set Ei+1 is composed of four edges incident

to every midpoint of an edge in Ei connecting this midpoint to the two

adjacent vertices in Vi and the centroids of the two adjacent faces in Fi.

The midpoints of boundary edges have only three incident edges, since they

have only one adjacent face in Fi. The set Fi+1 contains the remaining open

surface regions in the plane. All polygons in Fi+1 are convex quadrilaterals,

provided that all polygons in Fi are convex, see Figure 4.21.

We define a local parametrization for the quadrilaterals in F1. This

parametrization can be used for all subsequent levels of subdivision, since

the quadrilaterals are uniformly subdivided. For every face fk ∈ F1, defined

by points pk,00,pk,10,pk,11,pk,01 ∈ V1 (counterclockwise order), we define lo-

cal coordinates u, v ∈ [0, 1] so that every point p in the closure of fk can be
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Figure 4.21: Subdivision process applied to a tessellation.
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Figure 4.22: Local parameters u and v for point p (bilinear interpolation).

written as the result of bilinear interpolation:

p = (1− u)(1− v)pk,00 + u(1− v)pk,10
+ (1− u)vpk,01 + uvpk,11.

(4.27)

It is more difficult to compute the local coordinates u and v for a point

p = (x, y) in the domain I. We compute these local coordinates in this way:

first, the face index k needs to be determined (k is not uniquely defined when

p lies on an edge or coincides with a vertex); second, we compute u from the

z-component of

(p− p0)× (p1 − p0) = 0, where

p0 = (1− u)pk,00 + upk,10 and

p1 = (1− u)pk,01 + upk,11.

(4.28)
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Equation (4.28) is a quadratic equation that has a unique solution u ∈ [0, 1],

provided that the quadrilateral fk is convex. Once u is determined, v can be

computed from

p = (1− v)p0 + vp1. (4.29)

This process is illustrated in Figure 4.22. Computing the local parameters

u and v from the global ones is expensive, due to the evaluation of a square

root for solving the quadratic equation. We therefore avoid using global

parameters in our algorithm. For re-sampling a function represented by

samples on a grid obtained from recursive subdivision of a tessellation Tj, we

suggest to use graphics hardware to render the quadrilaterals of T1 and to

use texture representing all finer subdivision levels.

4.2.2 Wavelet Transform

The input for our wavelet transform is a bilinearly blended function f(I)

defined by samples located at the vertices of a subdivided tessellation. The

range of this function is an arbitrary vector space, whose dimension depends

on the application. For example, the range of a function representing a

RGB image has three dimensions. For rendering applications, additional

coordinates for opacity and z-buffering would have to be added. In the case

of a radiosity application, the domain I represents all surface components

in a scene and f describes the local radiance emanating from them. Since

our wavelet transform is applied independently, yet in the same way to all

coordinates, the number of dimensions does not have an impact.

Given a hierarchy of tessellations, a wavelet transform can be defined

based on the mesh hierarchy. Initially, a function is represented by a fine

tessellation Tj and by a sample of the function f(I) at every vertex in Vj.

These samples are denoted as v, e, and f points, depending on the types of

their associated vertices in Vj that correspond to vertices, edges and faces,

respectively, in the next coarser tessellation Tj−1. A decomposition step
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e
v f

Figure 4.23: Basis functions near an extraordinary vertex of valence three.

Scaling function (top right), e wavelet (bottom left), and f wavelet (bottom

right). Dark regions correspond to negative and bright regions to positive

function values.

transforms v points into control points v′ of the next coarser level, j − 1,

and the f and e points become wavelet coefficients representing the missing

detail. Using only the v′ points as samples associated with the vertices

in Vj−1, decomposition is recursively applied to all levels until base level

j = 0 is reached. We use the decomposition and reconstruction rules for

our generalized bilinear B-spline wavelet transform, as defined by equations

(4.14) and (4.15). Basis functions defined on a tessellation are depicted in

Figure 4.23.

To represent boundary edges properly and to model discontinuities along

certain edges within a tessellation – which requires a double set of coeffi-

cients along these discontinuities – all vertices located on boundary edges

are transformed by the one-dimensional decomposition and reconstruction

rules, instead. Corner vertices of the tessellation are not modified by the

subdivision rules.

The computation time for one decomposition step is linear in the number

of transformed vertices. Since only one quarter of these vertices is trans-

formed again on the next coarser level, the computation time for the wavelet

transform, starting with n samples, is O(n + 1
4
n + 1

16
n + · · · ) = O(n). Ap-

plications for our wavelet transform are outlined in the next section.
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a)

c)

e) f)

d)

b)

Figure 4.24: “Cygnus Loop” image. a) original, re-sampled image on tessel-

lation T7 (217921 samples), b) tessellation T0 and three levels of subdivision,

c) bilinear wavelet transform, d) reconstruction from 10 percent of wavelet

coefficients, e) reconstruction from 1 percent, and f) reconstruction from 0.1

percent.
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4.2.3 Results and Applications

To demonstrate that our wavelet transform works correctly, we transformed

the “Cygnus Loop” Hubble telescope image, courtesy of NASA. The image

was re-sampled using a tessellation T0 composed of 20 vertices and 14 faces.

The finest tessellation T7 has 217921 vertices, which is about 3.5 times the

number of pixels of the original image (249× 251). Figure 4.24 shows the re-

sampled image, the tessellation, our wavelet transform, and reconstructions

using 10, 1, and 0.1 percent of the wavelet coefficients. Since the coefficients

are RGB values, we use the Euclidean length for thresholding. For progressive

transmission purposes, the coefficients can be sorted by decreasing absolute

values in expected linear time by using a hash table. For lossless compression

of a re-sampled image, the wavelet transform can be implemented in inte-

ger arithmetic. The integer-valued coefficients have low expected modulus

and are compressed by arithmetic coding [99]. Some of the most important

applications of our wavelet transform are:

• Video compression. Video data can be compressed in a straight-forward

way by applying a trivariate tensor product wavelet transform. Corre-

lation in time, however, can be exploited much better when applying

a wavelet transform defined on a grid that is deformed or moves with

the objects. Our wavelet transform has therefore a great potential to

improve compression rates for moving images.

• Image Morphing. Morphing algorithms deform objects and compute

the intermediate image regions by blending two images. This blending

operation can be improved by performing it in the range of our wavelet

transform. This treatment would blend the individual frequency bands

rather than pixel values resulting in a much more realistic image. Our

wavelet transform can be applied to polygonal regions that are de-

formed simultaneously with the blending process.
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• Radiosity. Occlusion of objects causes radiance functions to be discon-

tinuous on smooth surfaces [85]. These discontinuities define tessel-

lations on the surface regions that provide a natural parametrization

for the radiance function. Since our wavelets have two vanishing mo-

ments (in local parameters, except at extraordinary points), they form

an ideal basis for efficient and stable integration of radiosity kernels.

• Scattered Data Approximation. Starting with a tessellation of selected

scattered data points, our efficient wavelet transform can be used for

further regular refinement and finer-detail approximation. Our wavelet

basis functions are piecewise bilinear in local parameters and can be

computed analytically for fitting purposes. To construct initial tes-

sellations at certain levels of resolution, we can use, for example, the

hierarchical Voronoi diagram, defined in Chapter 2.

4.3 Conclusions and Future Work

We have presented a technique for multiresolution analysis and representa-

tion of arbitrary two-manifolds, of functions defined on two-manifolds and

on planar tessellations. The corresponding decomposition and reconstruc-

tion filters have finite width filters and are efficiently computed based on

local lifting operations. Our surface representation is piecewise polynomial,

C0-continuous in the bilinear case and C2-continuous in the bicubic case

(except at extraordinary points, where C1 continuity is satisfied).

Our wavelet transforms have a wide range of applications that still need

to be explored. Future work will be directed at constructing wavelets and

subdivision surfaces on planar tessellations with C1 continuity and local

parametrizations that can be evaluated in a closed form. We also plan to

use our lifted wavelet construction for domains defined by three-dimensional

lattices of arbitrary topology. Subdivision schemes similar to Catmull-Clark
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volumes [92] can be complemented by a wavelet construction.

Many other research issues related to subdivision surfaces and wavelets

remain, for example: How should one change a uniform parametrization to a

chordal one to improve data approximation? Knot intervals can be associated

with edges in irregular base meshes, analogously to the knot vectors for

non-uniform B-splines [118]. It might be feasible to construct wavelets for

non-uniform subdivision schemes with knot intervals as additional modeling

parameters.

Our Wavelets on two-manifolds can be used as an underlying data repre-

sentation for sculpting or solid modeling operations. Since feature lines are

represented by using modified subdivision rules, all kinds of solids can be

defined by a single subdivision surface without the need of intersecting and

trimming different patches. Combined with the efficiency and compactness

of wavelet representations, subdivision schemes become a powerful tool for

multiresolution surface editing in CAGD.



Appendix

Least-squares Fitting

In the following, we briefly review least-squares approximation, see [16].

Given a set of n points pi with associated function values fi and m basis

functions Bj(x), least-squares approximation determines a coefficient vector

c = (c1 · · · cm)T for an approximating function

f(x) =
m∑

j=1

cj Bj(x) (A.30)

such that the residual

r(c) =
n∑

i=1

(
f(pi)− fi

)2

, n ≥ m, (A.31)

is minimized. A set of necessary conditions for the minimum is given by the

equations

∂r

∂cj
= 0, j = 1, . . . ,m. (A.32)

By inserting (A.30) into (A.31) one obtains a linear system of equations,

given by

n∑

k=1

m∑

i=1

ci bik bjk =
n∑

k=1

fk bjk, bij = Bi(xj), (A.33)
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which can be written in matrix form as

BBTc = Bf .

This system can be solved in O(n) time, since the number of basis func-

tions is fixed. However, it may happen that the matrix BBT is singular,

e.g., when nearly all points are colinear. In the case of a singular system,

a reduced set of basis functions may solve the problem. If the system is

non-singular, the global minimum for the residual is found.

Notations for L2 and l2

The Hilbert space L2(R) consists of all functions f : R → C for that the

following norm converges [51]:

‖f‖L2 =
√
〈f, f〉L2 , where

〈f, g〉L2 =

∫

R

f(x) g(x) dx

defines the inner product for L2(R). (The bar denotes complex conjugation.)

Two functions f and g are equal in L2(R), if and only if

‖f − g‖L2 = 0.

Hence, two functions that differ at most for a discrete set of values are still

considered equal in L2(R). Two functions f and g are orthogonal, i.e., f⊥g,
if and only if

〈f, g〉L2 = 0.

Hilbert spaces L2(Rn) for functions f : R
n → C are defined analogously

by using the above inner product modified by integration over the domain
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R
n. An inner product can alternatively be defined as an integral with a

non-negative weight function, e.g.,

〈f, g〉L2(R,w(x)dx) =

∫

R

f(x) g(x) w(x) dx, w(x) > 0 ∀x ∈ R.

In the discrete case, one can define corresponding Hilbert spaces for sequences

f : Z→ C, e.g., l2 has the inner product

〈f, g〉l2 =
∑

i∈Z

fi gi.

A linear, surjective map T : H1 → H2 between two Hilbert spaces is

called isometry, if it satisfies the identity

‖f‖H1
= ‖T (f)‖H2

.

Any isometry has an inverse T−1 = T ∗, with the property

〈f, T ∗(g)〉H1
= 〈T (f), g〉H2

.
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[77] L. Kobbelt and P. Schröder, A multiresolution framework for variational

subdivision, ACM Transactions on Graphics, Vol. 17, No. 4, Oct. 1998,

pp. 209–237.

[78] L. Kobbelt, Interpolatory subdivision on open quadrilateral nets with

arbitrary topology, Proceedings of Eurographics ’96, Computer Graphics

Forum Vol. 15, Blackwell Publishers, 1996, pp. 409–420.



BIBLIOGRAPHY 158

[79] O. Kreylos, B. Hamann, On simulated annealing and the construc-

tion of linear spline approximations for scattered data, Proceedings of

Joint Eurographics-IEEE TCCG Symposium on Visualization, Springer-

Verlag, Vienna, Austria, 1999, pp. 189–198.

[80] V. Krishnamurthy and M. Levoy, Fitting smooth surfaces to dense poly-

gon meshes, Computer Graphics, Proceedings of Siggraph ’96, ACM,

1996, pp. 313–324.

[81] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin,
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