
UCLA
UCLA Previously Published Works

Title
Zero-shot visual reasoning through probabilistic analogical mapping.

Permalink
https://escholarship.org/uc/item/5332w52s

Journal
Nature Communications, 14(1)

Authors
Webb, Taylor
Fu, Shuhao
Bihl, Trevor
et al.

Publication Date
2023-08-24

DOI
10.1038/s41467-023-40804-x
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5332w52s
https://escholarship.org/uc/item/5332w52s#author
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-023-40804-x

Zero-shot visual reasoning through
probabilistic analogical mapping

Taylor Webb 1,4 , Shuhao Fu1,4, Trevor Bihl2, Keith J. Holyoak1 &
Hongjing Lu 1,3

Human reasoning is grounded in an ability to identify highly abstract com-
monalities governing superficially dissimilar visual inputs. Recent efforts to
develop algorithmswith this capacity have largely focused on approaches that
require extensive direct training on visual reasoning tasks, and yield limited
generalization to problems with novel content. In contrast, a long tradition of
research in cognitive science has focused on elucidating the computational
principles underlying human analogical reasoning; however, this work has
generally relied on manually constructed representations. Here we present
visiPAM (visual Probabilistic Analogical Mapping), a model of visual reasoning
that synthesizes these two approaches. VisiPAM employs learned representa-
tions derived directly from naturalistic visual inputs, coupled with a similarity-
based mapping operation derived from cognitive theories of human reason-
ing. We show that without any direct training, visiPAM outperforms a state-of-
the-art deep learning model on an analogical mapping task. In addition, visi-
PAM closely matches the pattern of human performance on a novel task
involving mapping of 3D objects across disparate categories.

If a tree had a knee, where would it be? Human reasoners (without any
special training) can provide sensible answers to such questions as
early as age four, revealing deep understanding of spatial relations
across different object categories1. How such abstraction is possible
has been the focus of decades of research in cognitive science, leading
to several proposed theories of analogical reasoning2–8. The basic
elements of these theories include structured representations invol-
ving bindings between entities and relations, together with some
mechanism for mapping the elements in one situation (the source)
onto the elements in another (the target), based on the similarity of
those elements.However, while this work has succeeded in accounting
for a range of empirical signatures of human analogy-making, a sig-
nificant limitation is that the structured representations at the heart of
these theories have typically been hand-designed by the modeler,
without providing an account of how such representations might be
derived from real-world perceptual inputs9. This concern is particu-
larly notable in the case of visual analogies. Unlike linguistic analogies

in which relations are often given as part of the input (via verbs and
relational phrases), visual analogies more obviously depend on a
mechanism for the eduction of relations10: the extraction of relations
from non-relational inputs, such as pixels in images.

More recently, a separate line of research inspired by the success
of deep learning in computer vision and other areas has aimed to
develop neural network algorithms with the ability to solve analogy
problems. Thiswork tackles the challenge of solving analogy problems
directly from pixel-level inputs; however, it has typically done so by
eschewing the structured representations and reasoning operations
that characterize cognitive models, focusing instead on end-to-end
training directly on visual analogy tasks. These approaches have gen-
erally relied on datasets with massive numbers (sometimes more than
a million) of analogy problems, and typically yield algorithms that
cannot readily generalize to problems with novel content11–13. More
recent efforts have attempted to address this limitation, proposing
algorithms that can learn from fewer examples or display somedegree
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of out-of-distribution generalization14–18. But this work still maintains
the basic paradigm of treating analogy problems as a task on which a
reasoner will receive at least some direct training. This is in stark
contrast to human reasoners, who can often solve analogy problems
zero-shot—that is, with no direct training on those problem types.
When visual analogy problem sets are administered to a person,
training is typically limited to general task instructions with at most
one practice problem. This format is critical to the use of analogy
problems to measure fluid intelligence19,20, the ability to reason about
novel problems without prior training or exposure.

Herewe propose a synthesis that combines the strengths of these
two approaches. Our proposed model, visiPAM (visual Probabilistic
Analogical Mapping), combines learned representations derived
directly from pixel-level or 3D point-cloud inputs, together with a
reasoning mechanism inspired by cognitive models of analogy. Visi-
PAM addresses two key challenges that arise in developing such a
synthesis. The first issue is how structured representations might be
extracted from unstructured perceptual inputs. VisiPAM employs
attributed graph representations that explicitly keep track of entities,
relations, and their bindings. We propose two methods for deriving
such representations, one for 2D images and one for point-cloud
inputs representing 3Dobjects. Second, representations inferred from
real perceptual inputs are necessarily noisy and high-dimensional,
posing a challenge for any reasoning mechanism that must operate
over them. To address this problem, visiPAM employs a recently pro-
posed Probabilistic Analogical Mapping (PAM)21 method that can effi-
ciently identify patterns of similarity governing noisy, real-world
inputs.We evaluated visiPAM on a part-matching task with naturalistic
images, where it outperformed a state-of-the-art deep learning model
by a large margin (30% relative reduction in error rate)—despite the
fact that, unlike the deep learning model, visiPAM received no direct
training on the part-matching task. We also performed a human
experiment involving visual analogies between 3D objects from dis-
parate categories (e.g., an analogy between an animal and aman-made
object), where we found that visiPAM closely matched the pattern of
human behavior across conditions. Together, these results provide a
proof-of-principle for an approach that weds the representational
power of deep learning with the similarity-based reasoning operations
that characterize human cognition.

Results
Computational framework
Figure 1 shows an overview of our proposed approach. VisiPAM con-
sists of two core components: (1) a vision module that extracts struc-
tured visual representations from perceptual inputs corresponding to
a source and a target, and (2) a reasoning module that performs
probabilistic mapping over those representations. The resulting
mappings can then be used to transfer knowledge from the source to
the target, to infer the part labels in the target image based on the part
labels in the source.

The inputs to the vision module consisted of either 2D images, or
point-cloud representations of 3D objects. The vision module uses
deep learning components to extract representations in the form
of attributed graphs. These graph representations consist of a set of
nodes and directed edges, each of which is associated with a set of
attributes (i.e., a vector). In the present work, nodes corresponded to
object parts, and edges corresponded to spatial relations, though
other arrangements are possible (e.g., nodes could correspond to
entire objects in a multi-object scene, and edges could encode other
visual or semantic relations in addition to spatial relations). For 2D
image inputs, we used iBOT22 to extract node attributes that captured
the visual appearance of each object part. iBOT is a state-of-the-art,
self-supervised vision transformer that was pretrained on a masked
image modeling task. Masked image modeling shows promise as a
suitable pretraining objective for capturing general visual appearance,
rather than only information relevant to a particular task, such as
object classification. For 3D point-cloud inputs, we used a Dynamic
Graph Convolutional Neural Network (DGCNN)23 trained on a part
segmentation task in which each point was labeled according to the
object part to which it belonged. We hypothesized that this objective
would encourage the intermediate layers of the DGCNN (which were
used to generate node embeddings) to represent the local spatial
structure of object parts. We evaluated visiPAM on analogies involving
3D objects fromeither the same superordinate category (e.g., both the
source and target were man-made objects) or different superordinate
categories (e.g., the source was aman-made object, and the target was
an animal). Note that the DGCNN was only trained on part segmenta-
tion for man-made objects, not for animals. Edge attributes encoded
either the 2D or 3D spatial relations between object parts (see “Edge

Fig. 1 | Overview of visiPAM. VisiPAM contains two core components: a vision
module and a reasoning module. The vision module receives visual inputs in the
form of either 2D images, or point-cloud representations of 3D objects, and uses
deep learning components to extract structured visual representations. These
representations take the form of attributed graphs, in which both nodes o1..N

(corresponding to object parts) and edges r1..N(N−1) (corresponding to spatial

relations between parts) are assigned attributes. The reasoning module then uses
Probabilistic AnalogicalMapping (PAM) to identify amappingM from the nodes of
the source graph G to the nodes of the target graph G0, based on the similarity of
mapped nodes and edges. Mappings are probabilistic, but subject to a soft iso-
morphism constraint (preference for one-to-one correspondences).
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embeddings” for more details). We denote the node attributes of each
graph as oi=1..N, and the edge attributes as r1..N(N−1), where N is the
number of nodes in the graph. We denote the source graph as G and
the target graph as G0.

After these representations were extracted by the vision module,
we used PAM to identify correspondences between analogous parts in
the source and target, based on the pattern of similarity across both
parts and their relations. Formally, this corresponds to a graph-
matching problem, inwhich the objective is to identify themappingM
thatmaximizes the similarity ofmapped nodes and edges. PAMadopts
Bayesian inference to compute the optimal mapping:

pðMjG,G0Þ / pðG,G0jMÞpðMÞ ð1Þ

whereM is anN ×Nmatrix in which each entryMii0 corresponds to the
strength of the mapping between node i in the source and node i0 in
the target. The likelihood term pðG,G0jMÞ in Equation (1) is basedon the
following log-likelihood:

logðpðG,G0jMÞÞ= ð1� αÞ
P

i

P
j≠i

P
i0
P

j0≠i0Mii0Mjj0simðrij ,ri0 j0 Þ
NðN � 1Þ +α

P
i

P
i0Mii0simðoi,oi0 Þ

N

ð2Þ

in which simðrij ,ri0 j0 Þ is the cosine similarity between edge rij (the edge
between nodes i and j in the source) and edge ri0 j0 (the edge between
nodes i0 and j0 in the target), and simðoi,oi0 Þ is the cosine similarity
betweennodeoi in the source andnodeoi0 in the target. Intuitively, the
optimal mapping is one that assigns high strength to similar nodes,
and to nodes attached by similar edges. The relative influence of node
vs. edge similarity is controlled by the parameter α. In addition, PAM
incorporates a prior p(M) that favors isomorphic (one-to-one) map-
pings (see detailed equation in section "VisiPAM reasoning module").
In other words, a mapping function with one-to-one correspondences
between the source and the target is assigned a higher prior
probability. At the algorithm level, given that an exhaustive search
over possiblemappingswas not feasible (we address problemswith up
to 10 object parts, corresponding to 10! ≈ 3.6 million possible one-to-
one mappings), we used a graduated assignment algorithm24. In this
approach,M is initialized as a uniformmapping, in which each source
node is equally likely to map to any target node, and this mapping is
then iteratively updated based on the likelihood in Eq. (2). This
iterative procedure is also guided by the prior p(M) to encourage
convergence to an isomorphic (one-to-one) mapping. It should be
noted that this approach is fully differentiable, and therefore the entire
model, including the visionmodule, could in principle be learned end-
to-end based on the mapping task. However, since our goal in the
present work was to account for the human capacity for zero-shot
analogical reasoning, we instead use visual representations provided
from pretrained deep learning models, such that no direct training on
the mapping task is required. More details about PAM can be found in
Section 4.3.

Analogical mapping with 2D images
We evaluated visiPAM on a part-matching task developed by Choi et
al.25. In this task two images are presented, each together with a set of
coordinates corresponding to the locations of various object parts (as
in Fig. 1). The task is to label the object parts in the target image, based
on a comparison with the labeled object parts in the source image.
Importantly, the test set for this dataset consists only of object cate-
gories not present in the training set, so that it is not possible to solve
the task by learning to classify the object parts in the target image
directly. Choi et al. also developed the Structured Set Matching Net-
work (SSMN, see Section 4.4), which they found outperformed a range
of othermethods after training directly on the part-matching taskwith
a set of separate object categories. Herewe go beyond this benchmark

by removing any direct training on the part-matching task, relying
instead on visiPAM’s similarity-based reasoning mechanism to align
the object parts between source and target.

Table 1 shows the results of this evaluation. Accuracy was com-
puted based on the proportion of parts that were mapped correctly
across all problems (i.e., the model could receive partial credit for
mapping some but not all of the parts correctly in a given image pair).
As originally proposed, the part-matching task involved within-
category comparisons of animals (comparing either two images of
cats, or two images of horses). In that setting, visiPAM significantly
outperformed SSMN, resulting in a 30% reduction relative to SSMN’s
error rate, despite the fact that SSMN, but not visiPAM, received direct
training (37,330 problems) on this task. We also developed extensions
of this task involving other object categories. These included within-
category mapping of vehicles (involving either two images of planes,
or two images of cars), and between-category mappings of animals
(mapping froman imageof a cat to an imageof a horse).We found that
visiPAM performed comparably well across all three of these condi-
tions (within- and between-category animal mapping, within-category
vehicle mapping).

A key element of our proposedmodel is that it performsmapping
based on the similarity of both object parts and their relations. To
determine the importance of this design decision, we performed
ablations on either nodeor edge similarity components, by settingα to
either 0 or 1. We found that both of these ablations significantly
impaired the performance of visiPAM. This pattern aligns with findings
from studies of human analogy-making, which show that human rea-
soners are typically sensitive to similarity of both entities and
relations26.

We also performed ablations that targeted different aspects of
visiPAM’s edge embeddings. Specifically, visiPAM’s edge embeddings
contain information based on both angular distance and relative
location (vector difference). We found that both of these sources of
information contributed to visiPAM’s performance (Supplementary
Table S2). Furthermore, we found that augmenting visiPAM’s edge
embeddings with topological information (i.e., whether two parts are
connected) can lead to further improvements in mapping perfor-
mance (Supplementary Table S3). Thus, the specific types of spatial
relations employed by the model play an important role in its perfor-
mance, and the addition of new sources of relational information will
likely lead to continued improvement.

Figure 2 shows some examples of the mappings produced by
visiPAM. These include some impressive successes, includingmapping

Table 1 | Analogical mapping with 2D images

Within-category Between-category

Animals Vehicles Animals

VisiPAM 63.2% (59.1%) 69.5% (58.8%) 67.9% (59.9%)

VisiPAM
(nodes only)

55.5% (50.6%) 61.6% (48.1%) 62.3% (52.9%)

VisiPAM
(edges only)

47.8% (42%) 63.7% (50.9%) 51.5% (39.4%)

SSMN 46.6% (40.7%)

Random 10% 26% 20%

Mapping accuracy on part-matching task proposed by Choi et al.25. Original task in ref. 25
involved the evaluation on within-category animal comparisons after training with 37,330
mapping problems. VisiPAM significantly outperformed SSMN, the previous state-of-the-art,
despite having no direct training on mapping. VisiPAM also performed well on new problems
involving within-category vehicle comparisons, and between-category animal comparisons
(e.g., mapping from cat to horse). VisiPAM performed best when mapping was based on both
node and edge similarity (as indicated by bold text). ‘Random’ denotes chance performance
(determined by average number of part comparisons). Values in parentheses reflect chance-
normalized performance (percentage of the range between chance performance and 100%
accuracy). VisiPAM’s performance is roughly comparable across all conditions once chance
performance is taken into account.
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of a large number of object parts across dramatic differences in
background, lighting, pose, and visual appearance (Fig. 2a), as well as
between objects of different categories (Fig. 2b). Notably, we also
found that visiPAM’s performance was unaffected when the target
imagewashorizontally reflected relative to the source (Supplementary
Section S2.1 and Table S1), suggesting that the model is robust to low-
level image manipulations.

Our analyses also illustrated some of the model’s limitations.
Figure 2c shows an example of an error pattern that we commonly
observed, in which visiPAM confused corresponding left and right
parts (in this case the left and right feet in a comparisonof two horses).
A more comprehensive analysis is shown in Supplementary
Figs. S2–S4, where it can be seen that this kind of confusion of corre-
sponding lateralized parts accounts for a large percentage of visiPAM’s
errors.We also found that visiPAMparticularly struggledwithmapping
images of planes (achieving the model’s lowest within-category map-
ping accuracy of 42.5%), as shown in Fig. 2d. This is likely due to the
limitation of the 2D spatial relations used in this version of the model,
which are particularly ill-suited to objects such as planes that can
appear in a wide variety of poses and viewpoints. Thus, while visiPAM
shows an impressive ability to perform mappings between complex,
real-world images using only these 2D spatial relations, we suspect that
accurate 3D spatial knowledge is likely necessary to solve some chal-
lenging visual analogy problems at a human level. To address this
concern, we next sought to evaluate the performanceof visiPAM in the
context of 3D visual inputs.

Analogical mapping between 3D objects
We evaluated visiPAM on analogies involving point-cloud representa-
tions of 3D objects, and compared visiPAM’s performance with the
results of a human experiment.27 In that experiment, we presented
human participants with analogy problems consisting either of images
from the same superordinate category (e.g., an analogy between a dog
and a horse), or two different superordinate categories (e.g., an ana-
logy between a chair and a horse). Human behavioral data was espe-
cially important as a benchmark in the latter case, since there is not
necessarily a well-defined, correct mapping between the parts of the
two objects.

Figure 3a shows the analogy task used in the human experiment,
which we adapted from a classic task employed by Gentner1. On each
trial, participants received a source image and a target image. The
source image had two coloredmarkers placed on the object, while the
target image had twomarkers that appeared in the upper right corner.
Participants were instructed to ‘move the marker on the top right

corner in the target image to the corresponding location that maps to
the same-color marker in the source image.’ Figure 3b shows two
representative examples of human responses. Marker placements
from different participants are shown as a heatmap on the target
image. When presented with source and target images from the same
superordinate categories, there was generally strong agreement
between participants. Responses were significantly more variable
when participants were presented with source and target images from
different superordinate categories (distance from mean marker pla-
cement of 32.06 pixels in the different-superordinate-category con-
dition vs. 8.08 pixels in the same-superordinate-category condition; 2
(target category, animal vs. man-made object) X 2 (category con-
sistency, different- vs. same-superordinate-category) repeated-
measures ANOVA, main effect of category consistency F1,40 = 625.37,
p <0.0001). We also found a significant interaction, such that the
effect of category consistency was larger for problems where the tar-
get category was an animal vs. a man-made object (F1,40 = 19.29,
p <0.0001). There was no significant main effect of target category.
For problems involving mapping between different superordinate
categories, responses in some trials were bimodal, with some partici-
pants preferring one mapping (e.g., from the back of the chair to the
head of the horse), and other participants preferring anothermapping
(e.g., from the back of the chair to the back of the horse), though the
same qualitative effects were still present even after accounting for
these separate clusters (main effect of category consistency,
F1,40 = 151.53, p <0.0001; interaction effect, F1,40 = 11.91, p <0.005; see
section “Analysis” for more details on clustering analysis).

Figure 4 shows some examples ofmappings produced by visiPAM
for point-cloud representations of the 3D objects used in the human
experiment. To apply visiPAM to these problems, we obtained
embeddings for each point using the DGCNN, then clustered these
points, and assigned each cluster to a node, where the attributes of
that node were defined based on the average embedding for all points
in the cluster. Edge attributes were defined based on the 3D spatial
relations between cluster centers. Figure 4 shows examples of suc-
cessful mappings for all four problem types, though visiPAM also
sometimes made errors (see Supplementary Section S2.2 for detailed
error analysis).

To systematically compare the model’s behavior with human
responses, we applied the model to all image pairs used in the
experiment, and measured the distance from the marker location
predicted by visiPAM to the mean locations of human placements for
eachpair. Figure 5 shows the results of this comparison.We found that
visiPAM reproduced the qualitative pattern displayed by human

Fig. 2 | VisiPAM part mappings with 2D images. Examples of part mappings
identified by visiPAM for 2D image pairs. a Successful within-category animal
mapping involving 10 separate parts. Note the significant variation in visual
appearance between source and target. b Successful between-category animal

mapping. cWithin-category animal mapping illustrating a common error in which
the left and right feet are mismapped. d Within-category vehicle mapping. Map-
ping between images of planes was especially difficult, likely due to significant
variation in 3D pose.
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mappings across conditions. Aswith the humanparticipants, visiPAM’s
mappings showed greater deviation from the mean human placement
whenmapping between objects from different vs. same superordinate
categories. The size of this difference was also larger when the target
category was an animal vs. man-made object, capturing the significant
interaction effect observed in the human data (see Supplementary
Fig. S6 for an explanation of this interaction). Overall, marker locations
of analogous parts predicted by visiPAM were an average of 25 pixels
from mean locations of human placements, close to the average
human distance to mean locations (20 pixels). Relative to the object
sizes (average height of 213 pixels and width of 135 pixels), the model
and human distances were very similar. The same qualitative results
were present when taking the bimodal nature of human responses into
account (i.e., when measuring distance to the mean of the closest
human cluster for trials with a bimodal response distribution), with
both visiPAM and human participants showing lower variance when
behavior was quantified in this manner (Supplementary Fig. S8).

We also calculated the item-level correlation across all analogy
problems between average human distances from mean placement
locations and distances of the model predictions from the samemean
locations. VisiPAM reliably predicted human responses at the item

level (r = 0.70). In addition, aswith the results for analogies between2D
images, we found that visiPAM performed best when mapping
involved both node and edge similarity (Supplementary Table S4). The
ability of visiPAM to predict human responses at the item level was
impaired both when focusing exclusively on node similarity (r = 0.61
for α = 1), and when focusing exclusively on edge similarity (r =0.60
for α = 0).

Discussion
We have presented a computational model that performs zero-shot
analogical mapping based on rich, high-dimensional visual inputs.
To accomplish this, visiPAM integrates representations derived
using general-purpose algorithms for representation learning
together with a similarity-based reasoningmechanism derived from
theories of human cognition. Our experiments with analogical
mapping of object parts in 2D images showed that visiPAM out-
performed a state-of-the-art deep learning model, despite receiving
no direct training on the analogy task. Our experiment with map-
ping of 3D object parts showed that, when armed with rich 3D visual
representations, visiPAM matched the pattern of human mappings
across conditions.

Fig. 3 | Experiment measuring human performance for mapping between 3D
objects. a Sample stimuli used in human experiment. Participants were instructed
tomovemarkers in target image to locations corresponding to same-colormarkers
in source image. Left panel: example trials with source and target images from the
same superordinate object category. Right panel: example trials with images from
different superordinate categories. b Example heatmaps of human marker place-
ments on target images for two comparisons. The intensity of the color indicates

the proportion of participants who placed the marker in that location. Source
images have been reduced in size for the purpose of illustration. Left panel: marker
placements were highly consistent across subjects when source and target came
from same superordinate category. Right panel: marker placement showed more
variation across participants when source and target came from different super-
ordinate categories.
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These results build on other recent work that has employed
similarity-based reasoning over representations derived using deep
learning21,28,29, enabling analogy to emerge zero-shot. Most notably,
visiPAM builds on a previous model of analogical mapping, PAM21, by
combining it with embeddings from state-of-the-art computer vision
models22,23, thus enabling its application to real-world visual inputs,
evenwhen those inputs are fromdistinctively different categories (i.e.,
far analogy). VisiPAM also has commonalities with some recent deep
learning models. These include models of visual analogy that are
applied to real-world visual inputs25,30–32, and models that incorporate
graph-based representations similar to visiPAM’s structured visual
representations33–35. Unlike visiPAM, these deep learning models all
involve end-to-end training on a large number of examples for a spe-
cific task, with limited generalization to new analogy tasks. Among
deep learning models, visiPAM is most closely related to models that
incorporate a relational bottleneck, notably involving a central role for
similarity-based mechanisms16–18. These models achieve better out-of-
distribution generalization in relational tasks, and require significantly
fewer training examples than standard deep learning models, but
unlike visiPAM they are still centered around end-to-end training on
specific tasks, and therefore are not capable of zero-shot reasoning on
completely novel tasks.

A few recent studies have applied a more traditional cognitive
model of analogical mapping, the Structure-Mapping Engine (SME), to
visual analogy problems involving simple geometric forms36,37. This
work represents an impressive effort, showing that SME is able to solve
the majority of problems in the Raven’s Standard Progressive
Matrices38, a commonly usedmeasure of fluid intelligence. However, a

significant limitation of this approach lies in its traditional symbolic
representations, which are derived from image-based inputs using
hand-designed algorithms. This characteristic arguably limits the
ability of such an approach to address more complex, real-world
inputs such as natural images. Other so-called neurosymbolicmethods
have attempted, with some success, to extract symbolic representa-
tions directly from pixel-level inputs, which can then be passed to a
task-specific symbolic algorithm39. However, these approaches may
not be able to capture the richness of real-world perceptual inputs, or
the wide variety of tasks that human reasoners can performover those
inputs. Here, by contrast, we have specifically sought to employ
representations that preserve as much of this perceptual richness as
possible (by representing elements as vectors), while also incorpor-
ating the structured nature of symbolic representations (by main-
taining explicit bindings between entities and relations). This was
made possible by using a probabilistic reasoning algorithm capable of
accommodating such high-dimensional, uncertain inputs.

Human analogical reasoning is thought to be driven by similarity
both at the relational level and at the basic object level26. This latter
influence has often been framed as a deficiency in human reasoning—
an inability to achieve the pure abstraction that would presumably be
enabled by focusing exclusively on relations. An important finding
from the present study is that visiPAM performed best when con-
strained both by edge (relational level) and node (object level) simi-
larity. This result suggests that the influence of object-level similarity in
human analogical reasoningmay bedriven inpart by the fact that it is a
useful constraint in the context of complex, real-world analogy-
making40.

Fig. 4 | VisiPAM part mappings between 3D objects. Examples of part mappings
for 3D objects represented as point-clouds. Colored regions of point-clouds (upper
panels in each figure) indicate themappings identified by visiPAM for each cluster in
the source and target. Images (lower panels in each figure) depict the sourcemarker
locations (red and green circles in the lower left panels of each figure), the target

marker locations identified by visiPAM (red and green circles in the lower right
panels of each figure) and the average of the target marker locations identified by
human participants (red and green crosses). a, b Examples of problems in which the
source and target are from the same superordinate category. c, d Examples of
problems inwhich the source and target are fromdifferent superordinate categories.
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One limitation of the present work is the lack of a method for
deriving 3D representations (such as point-clouds) from the 2D inputs
that human reasoners typically receive. We found the incorporation of
topological information (e.g., whether two parts are connected) sig-
nificantly improved visiPAM’s mapping performance, but it would be
desirable to derive this information directly from 2D inputs. Some
recent advances maymake it possible to take a step in that direction41,
but visiPAM will likely benefit from the rapid pace of innovation in
representation learning algorithms. We are particularly excited about
the continued development of general-purpose, self-supervised algo-
rithms (such as the iBOT algorithm that we employed22), which we
hope will provide increasingly rich representations over which rea-
soning algorithms such as PAM can operate. Similarly, it will be useful
in future work to incorporate non-visual semantic and functional
information into visiPAM’s representations. We found that this kind of
information was a significant contributing factor to human mapping
judgments. Potential sources of such knowledge include word
embeddings42, multimodal embeddings43, and representations of
relations between verbal concepts28.

Finally, an important next stepwill be to expand the capabilities of
visiPAM to incorporate other basic cognitive elements of analogy. For
example, human analogical reasoning often involves an interaction
between bottom-up and top-down processes, in which the reasoning
process can sometimes guide the reinterpretation of perceptual
inputs5,9,44. VisiPAM in its current formulation is purely bottom-up—
visual representations are constructed by the vision module, and then
passed toPAMtoperformmapping—but apromising avenue for future
work will be to incorporate top-down feedback to the vision module.
One possibility for doing so is to incorporate additional parameters
(e.g., parameters for visual feature attention) to visiPAM’s optimization
procedure, such that the visual representations are modulated based
on the downstream graph-matching objective. In addition, the present
work focused on the identification of analogies between pairs of ima-
ges, but human reasoners are also capable of inducing more general
schematic representations that capture abstract similarity across

multiple examples45. Future work should investigate how visiPAM’s
reasoning mechanisms can be extended to capture this capacity for
schema induction. There are many exciting prospects for the con-
tinued synergy between rich visual representations and human-like
reasoning mechanisms.

Methods
Datasets
Analogical mapping with 2D images. To evaluate visiPAM on analo-
gicalmappingwith 2D images, we used the Pascal PartMatching (PPM)
dataset proposed by Choi et al.25. This dataset was developed based on
the Pascal Part dataset46, a dataset containing images of common
object categories, together with segmentation masks for object parts.
PPM consists of images from 6 categories (cow, dog, person, sheep,
cat, and horse). Each problem consists of a pair of images from the
same category, together with coordinates corresponding to object
parts, as well as the labels associated with those parts. The task is to
label the parts in the target image based on a comparison with the
labeled parts in the source image. Choi et al. trained variousmodels on
37,330 problems consisting of images from four object categories
(cow, dog, person, and sheep), and tested those models on 9060
problems consisting of images from twodistinct object categories (cat
and horse). In the present work, we did not train visiPAM on part
matching at all. Therefore, we only used the problems in the test set.
For these problems, both the source and target image each contained
10 object parts. There were 5860 problems involving cat images, and
3200problems involving horse images. Accuracywas computedbased
on the proportion of parts that were mapped correctly across all
problems (i.e., the model could receive partial credit for mapping
some but not all of the parts correctly in a given image pair). Despite
the class imbalance between problems involving horses and cats, we
computed performance on this dataset as an average over all pro-
blems, to be consistent with the method used by Choi et al., and
therefore ensure a fair comparison with their SSMNmethod. The PPM
dataset can be downloaded from: https://allenai.github.io/one-shot-
part-labeling/ppm/.

We also created two variants on the PPMdataset. First, we created
problems involving between-category comparisons of animals. To do
this, we selected the subset of object parts shared by both the cat and
horse images (head, neck, torso, left and right ear), and created 3200
problems in which the source was an image of a cat, and the target was
an image of a horse. Second, we created new problems involving
within-category comparisons of vehicles. To do so, we used images of
cars and planes from the original Pascal Part dataset. We generated
markers corresponding to the centroid of the masks for each object
part. Then, we identified within-category image pairs for which there
were at least two commonobject parts. Someparts had to be excluded
due to a lack of systematic correspondences between images (for
instance, wheels are sometimes labeled, but there does not appear to
be a consistent numbering scheme that might allow identification of
corresponding wheels in two images). This procedure identified 406
mapping problems involving images of cars, and 6860 problems
involving images of planes, with an average of 3.85 parts per problem.
Due to this significant class imbalance, we first computed the average
performance for cars and the average performance for planes, and
then computed an average of these two values.

Analogicalmappingwith 3D objects. 3D object stimuli were selected
from two publicly available datasets used in computer vision:
ShapeNetPart47 and a 3D animal dataset (Animal Pack Ultra 2) from
Unreal EngineMarketplace, which are shown in Supplementary Fig. S1.
Eight chairs were selected from the ShapeNetPart dataset (each chair
with a different shape), and eight animals from the Animal Pack data-
set: horse, buffalo, Cane Corso, domestic pig, Celtic wolfhound, Afri-
can elephant, Hellenic hound, and camel. For simulations with

Fig. 5 | Comparison of visiPAM with human behavior. Violin plot comparing
human placements and visiPAM predictions. Strip plots (small colored dots) indi-
cate average distance of marker locations from the overall humanmean, one point
for eachparticipant (N = 41). Thin gray lines show thewithin-participant differences
for the same- vs. different-superordinate-category conditions. Violin plots exclude
data points > 2.5 standard deviations away frommean, though these individual data
points are included in strip plots. Black horizontal lines indicate mean human
distances in each condition, and error bars indicate standard deviations. Large
greendots indicate visiPAMpredictions (i.e., the distancebetweenmodel predicted
location andhumanmean location). Both human and visiPAMmappingsweremore
variable when mapping objects from different superordinate categories.
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visiPAM, the vision module (described in Section “Node embeddings
for 3D objects”) received point-clouds sampled directly from these 3D
object models, using the CloudCompare software (v2.12). For the
human experiment, we used the Blender software (v2.79) to render 2D
images fromthe 3Dmodels. The stimulus imageswere generatedusing
a constant lighting condition,with a gray background.Multiple camera
positions were sampled for each object, with 30∘ separation between
camera angles for depth rotation. Two undergraduate research assis-
tants manually annotated the keypoints (i.e., center locations) of pre-
defined parts on the 3D objects, using the Unreal Engine software.
Chair parts included seat, back, and chair legs, while animal parts
included spine of torso, head, and legs.

We generated 192 pairs of images. Each image pair included a
source image (either a chair or an animal), which was annotated with
two markers on two different parts of the object. To generate marker
locations for source images, we first rendered the images using the
corresponding 3D object models, and then calculated marker loca-
tions on the rendered 2D images using a perspective projection for the
predefined camera position. In one condition, the source and target
images were from the same superordinate object category (e.g., two
images of animals). In another condition, the two images were from
different superordinate object categories (e.g., a chair image with an
animal image). The two objects in an image pair were shown in the
same orientation.

VisiPAM vision module
Node embeddings for 2D images. We used iBOT22 to extract node
attributes for object parts from 2D images. iBOT is a self-supervised
visionmodel, trainedon amasked imagemodeling task.Masked image
modeling (MIM) is similar to the masked language model pre-training
approach that has becomepopular in natural language processing48, in
which a neural network model (typically a transformer49) is trained to
fill in masked tokens in an input sequence. Similarly, MIM is the task of
filling inmasked patches in an input image. Predictingmasked patches
directly in image space is significantly more challenging than masked
language modeling, presumably due to the amount of fine detail pre-
sent in pixel-level representations relative to linguistic tokens. To
address this, iBOT uses an online tokenization scheme in which the
MIM objective is applied in a learned token space, rather than directly
in pixel space. iBOT was trained on the ImageNet dataset50, and is
currently the state-of-the-art approach for unsupervised image classi-
fication on that dataset (the ability to linearly decode image classes
given embeddings learned without supervision).

We used the pre-trained version of iBOT that employs a vision
transformer (ViT) architecture51. We specifically used the version that
employs the largest variant of this architecture, ViT-L/16, and was
trained on ImageNet-1K using a random (as opposed to block-wise)
masking scheme. We downloaded the pre-trained parameters for this
model from: https://github.com/bytedance/ibot. To apply iBOT to the
images from the PPM dataset, we resized the images to 224 × 224, and
split them into 16 × 16 patches.We then passed the images through the
pre-trained iBOT model, and obtained the 1024-dimensional embed-
dings for these patches in the final layer of the transformer backbone
(not the projection head). We used bilinear interpolation to obtain
embeddings corresponding to the specific coordinate locations for
each object part.

These simulations were carried out in Python v3.9.12 using
PyTorch v252, NumPy v1.19.253, SciPy v1.6.254, and code from the iBOT
GitHub repository (linked to above).

Node embeddings for 3D objects. We used a Dynamic Graph Con-
volutional Neural Network (DGCNN)23 to extract node attributes for
object parts from 3D point-clouds. The core component of DGCNN is
the EdgeConv operation: for each point, this operation first computes
edge embeddings for that point and each of its K nearest neighbors

(using a shared Multilayer Perceptron (MLP) that takes pairs of points
as input), then aggregates these edge embeddings. Nearest neighbors
are recomputed after each EdgeConv operation based on the resulting
embeddings (thus making the graph dynamic). The point-cloud first
passes through three layers of EdgeConv operations. The features
created by each EdgeConv layer are max-pooled globally to form a
vector, and concatenated with each other to combine geometric
properties. These features are then passed to four additional MLP
layers to produce a segmentation prediction for each 3D point.

We used a pre-trained DGCNN, with code that can be downloaded
from (the ‘part segmentation’ model): https://github.com/antao97/
dgcnn.pytorch and parameters that can be downloaded from: https://
github.com/antao97/dgcnn.pytorch/blob/master/pretrained/model.
partseg.t7.

The DGCNNwas trained on a supervised part segmentation task47

using 16 types of 3D objects drawn from the ShapeNetPart dataset,
which contains about 17,000models of 3D objects from 16 man-made
object categories, including cars, airplanes, and chairs. Each 3D object
is annotated with 2-6 parts. After training with a part segmentation
task, DGCNN is able to extract local geometric properties from nearby
3D points and encode these as embedding features. Hence, DGCNN
transforms the three-dimensional input (x, y, z coordinates) of each 3D
point of the object into a 64-dimensional embedding vector in the
third EdgeConv layer. These embeddings capture critical local geo-
metric properties of 3D shapes, and thus represent informative visual
features associated with object parts.

In all simulations with visiPAM, the DGCNN was trained on the
ShapeNetPart dataset only. Critically, the DGCNN was only trained on
man-made objects in the ShapeNetPart dataset and was never trained
with 3D animals. About 2000 points were used to represent each 3D
object. To reduce the computation cost in the reasoning module, a
clustering algorithm (KMeans++ algorithm55) was applied to point
embeddings to group the points into eight clusters. These clusters
tended to correspond to a semantically meaningful part of the object.
Node attributes were defined based on the average embeddings for
each cluster.

The DGCNN was implemented in Python v3.9.12 using PyTorch
v252, NumPy v1.19.253, and scikit-learn v1.0.256.

Edge embeddings. Edge embeddings were computed based on the
spatial relations between object parts. For the analogy problems with
2D images, these spatial relations were computed using the 2D part
coordinates. We defined two types of spatial relations, one based on
angular distance:

rθij = ½cosθðci � cj ,ci � c0Þ, cosθðci � c0,cj � c0Þ, cosθðci � cj,cj � c0Þ�
ð3Þ

and one based on vector difference:

rδij
=
½cj � ci,ci � c0,cj � c0�
maxðc1::NÞ �minðc1::NÞ

ð4Þ

where ci and cj are the coordinates of nodes i and j, c0 are the coor-
dinates for the centroid of the entire object (defined in terms of the
segmentation masks for the object parts), cosθ is cosine distance, [,]
indicates concatenation, andmaxðc1::NÞ �minðc1::NÞ is the elementwise
range of the coordinates for all nodes. For each pair of nodes i and j,
edge attributes were formed by concatenating rθij and rδij

.
For the analogy problemswith 3D images, the coordinates of each

cluster were computed based on the average of the 3D coordinates for
eachpoint in that cluster, and the object centroidwas computedbased
on the average of the 3D coordinates for all points in the object. Edge
attributes were computed using the 3D equivalent of rθij and rδij

.
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VisiPAM reasoning module: probabilistic analogical map-
ping (PAM)
As described in Section “Computational framework”, PAM21 adopts
Bayesian inference to compute the optimal mapping between two
attributed graphs G and G0, as formulated in Eqs. (1) and (2). The log-
likelihood in Eq. (2) incorporates a parameter α that controls the
relative influence of node vs. edge similarity, where the mapping is
entirely driven by node similarity when α = 1, and is entirely driven by
edge similarity when α =0. Note that the edge similarity and node
similarity terms are normalized by the number of edges (N(N − 1)) and
the number of nodes (N), respectively, so that they are on the same
scale before being multiplied by α. We used a value of α =0.9 for our
primary experiments with 2D image mapping and 3D object mapping.
We also performed ablation experiments with values of α = 1 and α =0.

Importantly, PAM also employs a prior that favors isomorphic
(one-to-one) mappings:

pðMÞ= e1
β

P
i

P
i0Mii0 logMii0 ð5Þ

where β is a parameter that controls the strength of the preference for
isomorphism (higher values of β correspond to a stronger preference
for isomorphism).

To implement the inference in Eq. (1), we used a graduated
assignment algorithm24 that minimizes the following energy function
(equivalent to maximizing the posterior in Equation (1), subject to the
prior in Eq. (5)):

EðMÞ= � ð1� αÞ
P

i

P
j≠i

P
i0
P

j0≠i0Mii0Mjj0simðrij ,ri0 j0 Þ
NðN � 1Þ

� α

P
i

P
i0Mii0simðoi,oi0 Þ

N
� 1

β

X

i

X

i0
Mii0 logMii0

ð6Þ

The algorithm starts with a low value of β, and gradually increases
it so as to gradually approximate the one-to-one constraint. We used
500 iterations for all experiments with 2D images, and 200 iterations
for all experiments with 3D point-clouds. For all experiments, we used
an initial β value of β0 = 0.1, and an initial mapping matrix M0 corre-
sponding to a uniform mapping (such that the strength of each map-
pingwas set to 1/N). Algorithm 1 provides pseudocode for themapping
algorithm. Note that, in the algorithm, the edge similarity term is
normalized by the number of edges per node (2(N − 1)), rather than the
total number of edges, since the algorithmcomputes the compatibility
of each potential node-to-node mapping separately (rather than
summing across all potential mappings as in Eq. (6)). Before per-
forming mapping, we applied an iterative bistochastic normalization
procedure (with 10 iterations) to both the node similarity and edge
similarity matrices57.

We used the final mappings produced by PAM in the following
ways. For each target node i0, we identified the source node i with the
strongestmapping strength. For analogy problemswith 2D images, we
used this mapping to transfer labels from the source nodes to their
corresponding target nodes. For analogy problems with 3D point-
clouds,weused themapping result to generatemarker locations in the
target object corresponding to the matched markers in the source
object. First, we assigned each source marker to one of the clusters
(i.e., object parts) in the source object, based on the distance of the 3D
coordinates for the marker to the centers of each cluster. Then we
computed the location of the targetmarker by selecting fromamongst
the points (in the point-cloud) locatedwithin the corresponding target
cluster (as identified by PAM). For each point, we computed three
distances: (1) dlocal, the spatial distance of the point to the center of the
matched cluster, (2) dglobal, the spatial distance of the point to the
center of the object calculated as the mean of all cluster centers, and
(3) dfeat, the feature distance (Euclidean distance in feature space) to
the center of the matched cluster. We computed these distances for
the source marker, and for all points in the matched cluster in the
target object, and selected the target point that minimized the fol-
lowing metric:

dδii0
=
1
3
ðjdlocali

� dlocali0
j+ jdglobali

� dglobali0
j+ jdf eati

� df eati0
jÞ ð7Þ

wheredlocali
,dglobali

, and df eati
are the distances for the sourcemarker,

and dlocali0
,dglobali0

, and df eati0
are the distances for each target point i0.

We then used the camera angle for the images presented to human
participants to project the 3D coordinates for the selected target point
onto the 2D images for comparison with human marker placements.

Structured set matching network
We compared visiPAM’s performance to the results reported by Choi
et al.25 for their Structured Set Matching Network (SSMN). The SSMN
has some interesting commonalities, as well as some important dif-
ferences, with visiPAM. Briefly, the SSMNoperates by assigning a score
to a specified mapping between source and target parts. This score is
basedon a combinationof: (1) the similarity of the learned embeddings
for the mapped parts, (2) a score assigned (by a learned neural net-
work) to spatial relation vectors formapped parts, (3) a score assigned
(again by a learned neural network) to appearance relations for map-
ped parts, and (4) a hard isomorphism constraint that guarantees only
one-to-one mappings are considered. VisiPAM differs from SSMN in
the following ways. First, rather than learning representations end-to-
end in the service of the part-mapping task, as is done in SSMN, visi-
PAM employs representations learned in the context of more general-
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purpose objectives, either self-supervised learning in the case of our
experiments with 2D images, or part segmentation in our experiment
with 3D objects. Second, whereas SSMN scores relation similarity
between source and target using a learned neural network, visiPAM
explicitly computes the similarity ofmapped relations. Together, these
two features allow visiPAM to perform mapping without any direct
training, whereas SSMN relies on learned components that have the
opportunity to overfit to the specific examples observed during
training. Finally, SSMN is designed to assign a score to a prespecified,
one-to-one mapping, necessitating a search over deterministic map-
pings at inference time. VisiPAM, by contrast, employs a continuous
relaxation of this search problem that allows it to much more effi-
ciently converge on a soft, but approximately isomorphic, mapping.

Human experiment
Participants. Fifty-nine participants (mean age = 20.55 years; 51
female) were recruited from the Psychology Department subject pool
at the University of California, Los Angeles. All participants provided
informed consent, and were compensated with course credit. The
study was approved by the Institutional Review Board.

Five out of the 59 participants were removed from analysis either
because they indicated they were not serious, or because they moved
fewer than 30% of the markers in the entire experiment. Thirteen
additional participants were removed because they did not move any
of themarkers in at least one of the conditions. Thus, data from a total
of 41 participants were included in the analyses.

Procedure. We collected behavioral data for the 3D object mapping
task using an online experiment coded in JavaScript. Each participant
performed mapping for all 192 image pairs that were used to evaluate
visiPAM. The experiment used a 2 (target category, animal vs. man-
made object) X 2 (category consistency, different- vs. same-super-
ordinate-category) design. Each condition consisted of 48 trials. On
each trial, participants were presented with one image pair, with two
colored markers displayed on both the source and target image. For
each of the two coloredmarkers, they were asked to ‘move themarker
on the top right corner in the target image to the corresponding
location thatmaps to the same-colormarker in the source image.’ If the
participant did not think there was an analogy between the two ima-
ges, they were allowed to move the markers back to the top right
corner. No time constraint was imposed. The entire experiment was
completed in about 41 minutes on average. On each trial, the exact
location of each marker placement was recorded.

Analysis. Since there are two markers on each trial, from the 41 par-
ticipants, we collected 15,744 marker locations (41 participants × 192
problems× 2 markers), among which 2895 markers were excluded
because the participants either did not move the marker or moved it
back to the top right corner. In total, we have 12,849 marker locations
for our analysis. Among the 2895markers indicating the absence of an
analogous part in the target images, 453 were from within-category
problems, and 2442 were from cross-category problems.

The dependent measure in our experiment is the marker-offset-
from-mean-location. We first computed the mean location (in 2D
image space) for each marker in a problem by averaging reported
marker locations across participants.We next calculated the Euclidean
distance of each individual participant’s marker displacement to the
corresponding mean marker location. A smaller distance from the
mean location indicates a typicalmarker location closer to the average;
a larger distance indicates an atypical location far away from themean
placement. Hence, the dependent measure naturally captures human
response variability in identifying the analogous part of the
target image.

For different-superordinate-category problems, visual inspection
of the pattern of marker placements across participants (see an

example in Fig. 3b) indicated the potential presence of multiple clus-
terswithin the responses to a given problem. Therefore, we performed
a dip test (with a threshold of p < 0.05) to identify the source markers
for which the target markers had a bimodal distribution. For those
markers, we then used the KMeans++ algorithm55 to segregate
responses into two clusters, and performed an additional analysis
based on the average distance to the closest cluster mean.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Human behavioral data, model results, and original stimulus materials
can be downloaded from: https://github.com/taylorwwebb/visiPAM.

Code availability
Analysis code can be downloaded from: https://github.com/
taylorwwebb/visiPAM. Model code is not accessible to the public due
to the requirements of the funding agency (AFRL). However, it will be
made available to individual members of the research community
upon request. To request access to this code, please contact H.L.
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