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Abstract

Causal learning is shaped by people’s prior beliefs, including
their expectations. In this paper, we specifically examine
expectations of determinism: do they vary with perceptual
features of physical causal events, and how do they influence
subsequent causal learning from data? We show that
perceptual features lead adults to different expectations of
determinism for different causes of launching (Exps. 1A &
1B). Those expectations lead to significant differences in
responses to causal “failures”; that is, we show a difference in
violation-of-expectation effect after a failed launch (Exp. 2).
Actual data can reduce or eliminate the impact of these
expectations, but they do not override the effect of perceptual
features (Exp. 3). Overall, spatiotemporal contiguity cues and
expectation of determinism have similar effects on causal
learning outcomes, but neither is fully reducible to the other.

Keywords: causal learning; determinism; sequential learning
paradigm; violation of expectation

Determinism and Causal Learning

Causal learning—the ability to identify and represent causal
relations given data—is crucial to human cognition. Many
theories of causal learning focus on nondeterministic settings
and largely predict learning to be gradual (e.g., Bonawitz et
al., 2014; Bramley et al., 2017; Cheng, 1997; Fernbach &
Sloman, 2009). Yet causal learning need not be incremental:
if people expect a causal relation to be deterministic, then
they can learn from just one case (Michotte, 1963; Scholl &
Nakayama, 2002). Determinism—the general idea that an
effect is entirely and reliably determined by one or a few
causes—is a potent cue for causal learning (Deverett &
Kemp, 2012; Lu et al., 2008). As such, people often form
expectations about how deterministic a causal relation is
(Frosch & Johnson-Laird, 2011; Yin & Sun, 2021). Notably,
four-year-olds resist the idea that causes can be inherently
stochastic (Schulz & Sommerville, 2006).

In this paper, we examine three different questions about
interactions in causal learning between expectations of
determinism, perceptual features, and sequences of data:

1. Exps. 1A & 1B: Do expectations of determinism vary
based on perceptual features (within a single domain)?

2. Exp. 2: Do differences in expectation of determinism
lead to different causal learning from nondeterministic
sequences of data?

3. Exp. 3: How do manipulations of expectations of
determinism affect later sequential causal learning?

Experiments 2 and 3 use a sequential causal learning
paradigm in which participants see a series of cases and
repeatedly evaluate the power of the apparent causes. This
design enables us to study the causal learning trajectory. In
contrast with most prior sequential causal learning studies
(e.g., Danks & Schwartz, 2006; Marsh & Ahn, 2009), we
focus on a domain—physics—where deterministic causal
relations are often expected (Yeung & Griffiths, 2015; Yin &
Sun, 2021), though not necessary. This focus enables us to
manipulate determinism expectations and use a violation-of-
expectation paradigm, thereby expanding our understanding
of the role of determinism in sequential causal learning.

Experiments 1A & 1B

Many studies on determinism in causal learning has varied
expectations by using situations from different domains,
thereby confounding (expectations of) determinism and
domain effects (e.g., Strickland et al., 2017; Yeung &
Griffiths, 2015). Our first experiment examines the role of
perceptual features on people’s expectations of determinism
in the single domain of physical causation.

Method

Participants Two independent samples of 63 adults each
were recruited for Experiments 1A and 1B on Amazon
Mechanical Turk (MTurk). All participants had a HIT
approval rating of >90% and were paid $2.50.

Materials & Design All participants watched six animated
launching events (hosted on Youtube) in random order, each
lasting 4-5 s with 0.67 s blue screens at the start and end. (All
videos can be found at https://osf.io/uqv5a/.) All events
showed a ball starting to move, but in different ways:

e Jaunch: A red ball is stationary in center. A blue ball
enters from left and contacts the red ball. The red ball
then moves rightward and the blue ball remains in center.

e rebound: Identical to launch except that the blue ball
rolls back (left) slowly for 1.3 s as if it rebounded.

e delay: Identical to launch except that the red ball does
not move until 1 s after the blue ball contacts it.

e  gap: Identical to launch except the blue ball stops before
contact with the red ball, which then begins moving.

e gradual: A yellow ball is stationary in center. Its color
changes to green over 1.4 s, and then moves rightward.
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e Dblink: A peach-colored ball is stationary in center. Its
color flickers rapidly six times (in 1.4 s) between peach
and purple, and then stays purple and moves rightward.

Delay and gap were chosen because they disrupted temporal

and spatial contiguity, respectively, between the cause and

the effect. Gradual and blink removed the external agent yet
preserved the spatial and temporal contiguity between the

candidate cause and effect (Schlottmann & Shanks, 1992).

Experiments 1A and 1B differed based on the question
asked after each event about the obvious candidate cause:

e Exp. 1A: Rate the degree to which [candidate cause]
seemed like a convincing cause of the ball’s motion (0 =
not at all, 100 = absolutely, in increments of 10)

e Exp. 1B: Estimate the number of cases in which the
stationary ball would move, given 100 cases in which the
cause was present (0 to 100 scale in increments of 1)

Procedure Participants joined on MTurk and were directed
to Qualtrics. After consent, they completed a check of the
YouTube console and watched the six events, answering the
two questions after each event. Participants completed an
instructional manipulation check and read a debriefing form.
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Figure 1: Ratings of different launch events. Error bars:
95% CI.

Results

Although different rating/estimation questions were used in
the two versions of Experiment 1, they provide the same
qualitative pattern of results (Figure 1). Linear regressions
were run for each question-type with the type of cause as
predictor (and launch as the reference category).

In Experiment 1A, there was no significant difference
between causal perception ratings of launch and rebound
(Brebound = 2.54, p = 0.64, 95% CI = [-2.16, 7.43]). In contrast,
participants gave significantly lower causal perception
ratings to the apparent cause in the other four events: delay
(Bdetay=-36.5, p <.001, 95% CI = [-45.1, -27.3]); gap (Bgap=
-35.1, p <.001, 95% CI = [-44.3, -25.7]); gradual (Bgradual = -
32.2, p <.001, 95% CI = [-41.7, -22.8]) and blink (Buiink = -
37.5,p <.001, 95% CI = [-46.6, -28.6]).

Experiment 1B had the same result pattern: no significant
difference between proportion ratings of launch and rebound
(Brebound = 0.635, p = 0.54, 95% CI = [-4.08, 5.27]), but
significantly lower proportion ratings for delay (Bgelay =-19.7,
p <0.001, 95% CI = [-26.5, -12.6]); gap (Bgap = -29.0, p <
0.001, 95% CI = [-37.9, -20.3]); gradual (Bgradual = -31.9, p <
0.001, 95% CI = [-40.7, -23.0]); and blink (Byiink = -35.7, p <
0.001, 95% CI = [-44.7, -26.9)).

Discussion

Results, whether ratings of perceptual realism or a more
traditional causal strength measure, echo prior research. A
rebound effect did not significantly alter participants’
judgments, but a delay or gap between the agent and its
recipient lowered causal judgments (Michotte, 1963). Most
importantly, a color change, whether gradual or sudden, was
deemed a weak cause of motion of a stationary ball even
when it was the only apparent cause in the event.

Experiment 2

In Experiments 1A and 1B, participants judged launch to be
a highly effective, almost-deterministic cause, while blink
appeared to be a less powerful and less deterministic cause
(though not ineffectual). We thus focused on those two types
of events in Experiments 2 and 3. In Experiment 2, we tested
if participants’ expectations about causal determinism affect
causal learning over multiple trials, particularly depending on
whether those expectations were supported or violated.

Method

Participants A sample of 98 adults was recruited on MTurk,
all with a HIT approval rating >95%, and physical location in
the U.S. Participants received $2.50 for their time. Fifteen
participants were excluded for failing an attention check, and
two for misinterpreting rating scales, resulting in N=81.

Materials & Design Participants watched two series, each
with twelve animated (4 s) events of the same type. One
series had /aunch events and the other had blink events.

If the series was deterministic, then the cause was always
followed by the stationary ball moving. If the series was
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probabilistic, then the cause only led to the motion of the
stationary ball on 75% (9/12) of the cases. In all probabilistic
series, participants observed four instances of successful
causation, followed by a “failure” case on trial 5. (The other
failures were at trial 7, then either 8 or 11.) All participants
saw one deterministic and one probabilistic series.
Presentation order was counterbalanced across participants.
For each series, participants answered two questions after
events 1,3,5,7,9, 11, and 12. Participants rated the extent to
which the apparent cause (contact with the moving ball or
color change) made the stationary ball move (-100 = /cause]
prevents movement, 0 = No relationship between [cause] and
movement, 100 = [cause] causes movement in increments of
10). They also estimated the number of cases in which they
would expect the stationary ball to move, given 100 cases in
which [cause] was present (0 to 100 scale in increments of 1).
For both questions, participants were explicitly instructed to
consider all of the events that they had seen in that series.
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Figure 2: Mean causal ratings for deterministic (top) and
probabilistic (bottom) sequences. Error ribbon: 95% CI.

Results

Linear mixed-effect regressions (LMEs) were used to
compare both kinds of judgments between trials 1, 5 (first

failure case in the probabilistic series), and 12 (final case).
These comparisons provide a description of the pattern of
data rather than a complete statistical model. In all models,
trial number, cause-type, trial-cause interaction, and order
were fixed factors, and participant ID was the random factor.
Trial 1 and blink were the reference categories. Analyses of
both types of judgments revealed similar patterns.

Causal Ratings Causal ratings for the deterministic series
(Figure 2) were as expected. launch was higher than blink at
trial 1 (Bylink =-82.6, SE =10.4, #(154) =-7.98, p <.001, 95%
CI = [-102, -62.7], R?pariu = .374). Ratings increased across
trials, both at trial 5 (Bs, viink = 33.9, SE = 10.4, t(154) = 3.27,
p=.0014,95% CI =[13.9, 53.8], R?yuris = .118) and trial 12
(B12, blink = 56.5, SE=10.4, t(154) = 5.44,]) <.001,95% CI =
[36.5, 76.4]1, R?yuriar = 219). This increase is largely driven
by blink, though launch ratings are likely at ceiling.

Causal ratings for the probabilistic series revealed three
main effects of trial numbers and type of cause. Relative to
ratings at trial 1, participants’ causal ratings for launch
dropped significantly at trial 5 (Bs = -58.0, SE = 10.7, #(154)
=-5.41,p<.001,95% CI =[-78.6, -37.4], R?puriar = .217) and
marginally at trial 12 (B,2=-19.0, SE=10.7, #(154) =-1.77,
p = .0783, 95% CI = [-39.6, 1.60], R’y = .017). That is,
participants’ causal ratings for launch never recovered to
their initial level. Participants also gave lower causal ratings
for blink than launch at trial 1 (Bpiink =-62.0, SE=12.7, #(198)
=-4.87, p <.001,95% CI = [-86.4, -37.6], R?parir = 0.159).

Notably, the drop in causal rating from trial 1 to trial 5 in
the probabilistic series was smaller for blink than launch
(Bspiink = 40.5, SE =152, #(154) = 2.67, p = .00835, 95% CI
=[11.4, 69.6], R?puriar = .059). This finding is consistent with
a violation-of-expectation effect: participants expected
determinism for launch (but not blink), and the first failure
case violated that expectation. A similar, though smaller,
interaction effect was found between trial 12 and type of
cause: The drop in causal rating from trial 1 to 12 was larger
for launch than blink (Blz,blink = 26.5, SE = 15.2, t(l 54) = 1.75,
p=.0824,95% CI =[-2.64, 55.6], R?sari = .031). That is, the
nondeterminism impacted /aunch judgments more than blink,
even when the statistics of the event series were identical.

Proportion Ratings Due to limited space, we omit the
graphs of proportion ratings as they are qualitatively the same
as Figure 2; for completeness, the graphs are provided at
https://osf.io/f3bjq/. In the deterministic series, proportion
ratings were higher for launch than blink at trial 1 (Byiink = -
44.7, SE =17.00, t(158) = -6.38, p <.001, 95% CI =[-58.1, -
31.2], Rpariiar = .285). Proportion ratings overall increased
significantly from trial 1 to trial 12 (B2 = 10.4, SE = 4.99,
#(154) = 2.082, p = .0390, 95% CI = [0.798, 20.0], Rpurtia =
.284), primarily due to blink (Bpiink,12=22.2, SE =7.14, 1(154)
=3.106, p = .00226, 95% CI = [8.45, 35.9], R%partis = .107)
The probabilistic series showed three main effects.
Proportion ratings dropped from trial 1 to trial 5 (Bs =-20.9,
SE = 5.85, #((154) = -3.57, p = .000473, 95% CI = [-32.1, -
9.65], Rpariial = .122) and to trial 12 (Bi» = -14.4, SE = 5.85,
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#(154) = -2.45, p = .0153, 95% CI = [-25.6, -3.10], R?partial =
.024). Participants overall gave lower proportion ratings for
blink (Buiink =-34.7, SE = 8.00, #(160) = -4.33, p <.001, 95%
CI=[-50.0,-19.3], R%paria = .144). Notably, the magnitude of
drop in proportion ratings from trial 1 to trial 12 was
modulated by the type of cause, as the difference was smaller
for blink than launch (Biopink = 17.1, SE = 8.28, t(154) =
2.067, p = .0405, 95% CI = [1.19, 33.0], R?purial = .083).

Discussion

Experiment 2 showed that expectations of determinism
influence causal learning trajectories, as those differed for
series with the same statistics but different expectations. If a
cause was expected to be deterministic, then causal and
proportion ratings were near ceiling so long as there were no
violations. A failure case, however, produced a sharp decline
of both causal and proportion ratings. In contrast, if the cause
was expected to be probabilistic, then causal and proportion
ratings started relatively lower, increased gradually with each
success, and decreased gradually with each failure.

Experiment 3

Experiment 2 could not determine if perceptual features and
determinism expectations separately affect causal learning,
or whether features produce expectations which influence
learning. Experiment 3 used an “alien object” cover story to
exogenously manipulate expectations of determinism, since
participants would not necessarily assume that alien objects
behave like those on Earth. By independently manipulating
perceptual features and expectations of determinism, we
tested if the effect of the former was solely through the latter.

Method

Participants We recruited 440 participants on MTurk with a
HIT approval rating >95% and physical location in the U.S.
Participants received $2.00. Data from 113 participants were
removed for failing an attention check, resulting in N=327.

Materials & Design Before seeing any cases, participants
read a brief story about alien objects being brought to Earth
for study. No one has figured out what these objects are,
though there are some preliminary reports. The objects do not
normally move, but in response to certain internal or external
changes, they behave either in “regular and consistent ways”
(deterministic expectation condition), or in “surprising and
inconsistent ways” (probabilistic expectation condition). A
manipulation recall check was used to ensure that participants
remembered the expectation; those who failed the check were
reminded of it before seeing the sequence of cases.

We chose a between-participants design to reduce fatigue
and interference. Each participant saw only one series of 12
events from one of 8 conditions: Expectation {deterministic,
probabilistic} x Sequence {deterministic, probabilistic} x
Cause {launch, blink}. In the probabilistic sequence, failure
cases were trials 5, 7, and 11. The causal and proportion
rating questions and scales from Experiment 2 were used.

Results

The basic data analysis mirrored Experiment 2 but included
consistency (between expectation and sequence-type) in the
LME models. However, the data analysis was complicated by
the fact that participants who passed the manipulation recall
check (N = 108, 93 for deterministic, probabilistic series)
responded differently in several ways from those who failed
the check and had to be reminded (N = 54, 72). We thus report
separate analyses based on manipulation recall, and later
summarize key differences between those two groups.
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Figure 3: Mean causal ratings for deterministic sequence
for participants who passed (top) and failed (bottom) the
manipulation recall check. Error ribbon: 95% CI.

Causal Ratings For the deterministic series, participants who
passed the manipulation recall check (Figure 3 top) gave
lower causal ratings for blink than launch, including at trial 1
(Boiink =-21.8, SE=10.7, (185) =-2.034, p = .0433., 95% CI
=[-42.5,-1.09], R?parir = .074). Blink causal ratings increased
from trial 1 to trial 5, and this increase was greater with
inconsistent instruction indicating that the alien objects
behaved unreliably (Bpiinks inconsistent = 28.2, SE = 14.2, #208)
=1.99, p =.0479, 95% CI = [0.820, 55.5], R%partiar = .019).
For that series, participants who failed the recall check
(Figure 3 bottom) only gave significantly lower causal ratings

2660



for blink than launch at trial 1 (Bpink = -41.7, SE = 14.2, #(89)
=-2.94, p=.0042, 95% CI = [-68.7, -14.7], R partir = .113).
For the probabilistic series, participants who passed the
manipulation recall (Figure 4 top) gave launch causal ratings
that dropped significantly from trial 1 to trial 5, the first
failure (Bs =-39.0, SE = 14.4, (178) =-2.70, p = .0076, 95%
CI=[-66.8, -11.2], R?paris = .117). Causal ratings were lower
for blink than launch at trial 1, though this main effect was
only marginally significant (Bylink = -28.0, SE = 14.5, #237)
=-1.94, p =.054, 95% CI = [-55.8, -.191], R?pariir = .049).

100

50
o =74
c Y -
I »\\/xi\' Condition
© 0 + Blink Consistent
© - Blink Inconsistent
(4] + Launch Consistent
% + Launch Inconsistent
(&)

-50

-100

1 3 5 7 g9 41 42
Trial

100

50
(=)}
c -
= Condition
© 0 + Blink Consistent
© - Blink Inconsistent
(4] + Launch Consistent
% + Launch Inconsistent
(&)

-50

-100

Trial

Figure 4: Mean causal ratings for probabilistic sequence
for participants who passed (top) and failed (bottom) the
manipulation recall check. Error ribbon: 95% CI.

For the probabilistic series, participants who failed the
manipulation recall (Figure 4 bottom) also had a significant
drop in causal ratings from trial 1 to trial 5 (Bs = -44.0, SE =
8.44, #(136) =-5.21, p <.001,95% CI = [-60.2, -27.8], R%parial
=.156), as well as lower blink than launch causal ratings at
trial 1 (Buiink =-39.2, SE=11.1, (177) =-3.53, p <.001, 95%
CI = [-60.4, -17.9], R?pariar = .146). There were also multiple
interaction effects. The causal rating decrease was smaller for
blink than launch from trial 1 to trial 5 (Byplink,s = 45.0, SE =
13.3, #(136) = 3.37, p < .001, 95% CI = [19.4, 70.6], R?puriiat
=.157), and also from trial 1 to trial 12 (Bpiink,12 = 25.8, SE =
13.3, (136) = 1.94, p = .055, 95% CI = [-53.0, 11.7], R?puriias

= .069). The violation-of-expectation effect at trial 5 was
marginally greater when the instruction was inconsistent with
the data (Bs inconsistent = -32.0, SE = 16.9, t(177) = -1.54, p =
.060, 95% CI = [-64.4, 0.367], R?puriia1 = .015).

Proportion Ratings Due to limited space, we omit the
graphs of proportion ratings as they are qualitatively the same
as Figures 3 and 4; for completeness, the graphs are provided
at https://osf.io/f3bjq/. In the deterministic series, participants
who passed the recall check gave lower proportion ratings for
blink than launch (Buyink = -18.2, SE = 6.61, t(186) = -2.76, p
=.0064, 95% CI = [-31.0, -5.45], Rpariar = .102). When the
initial instruction indicated (falsely) that the objects were
unreliable, then ratings increased more for blink than launch
at trial 5 (Bplinks inconsistent = 20.3, SE = 8.79, #(208) =2.31, p =
0217, 95% CI = [3.35, 37.3], R%pursiar = .025), and trial 12
(Bblink, 12,inconsistent = 23.9, SE = 8.79, #(208) = 2.72, p = .0072,
95% CI = [6.90, 40.9], R%partiar = .034).

In the deterministic series, those who failed the recall check
similarly gave lower proportion ratings for blink than launch
(Boiink =-31.3, SE =10.2, #(68.9) = -3.07, p = .0031, 95% CI
=[-50.8, -11.8], R?puriar = .151). Proportion ratings were also
lower at trial 1 when the instruction falsely stated that the
objects were unreliable (Binconsistent = -22.2, SE = 10.4, #(68.9)
=-2.13,p=.0372,95% CI = [-42.1, -2.24], R®puriu = .065).

In the probabilistic series, participants who passed the
recall test gave lower proportion ratings for blink than launch
at trial 1 (Bylink = -26.8, SE = 10.1, #(194) = -2.66, p = .0084,
95% CI = [-46.2, -7.40], R?,uiar = .065). Ratings decreased
from trial 1 to trial 5 in response to the first failure case of the
series (Bs = -27.4, SE = 8.74, (178) = -3.14, p = .0020, 95%
CI=[-44.2, -10.6], R?puriar = .101), but this drop was smaller
for blink than launch (Bylink,s = 28.0, SE = 10.7, #(178) = 2.17,
p =.0096,95% CI = [7.38, 48.6], R?purias =.043).

In the probabilistic series, participants who failed the recall
test gave lower proportion ratings for blink than launch at
trial 1 (Buiink = -15.9, SE = 7.66, #(140) = -2.07, p = 0.0403,
R%pariiar = .111). Proportion ratings dropped significantly from
trial 1 to trial 5, the first failure (Bs =-10.9, SE =4.94, t(136)
=-2.21, p = 0.0286, R?yuiiar = .074), and the drop was larger
when the initial instruction was inconsistent with the data
(Bs,inconsistent = -25.6, SE = 9.88, #(136) = -2.59, p = .0107,
R%puriar = .027). Proportion ratings at trial 1 were marginally
lower for blink than launch given inconsistent manipulation
(Bblink,inconsistent = -25.5, SE = 13.7, #(1340) = -1.86, p = .0645,
R%puriar = .024). Finally, the decrease in proportion rating at
trial 5 was smaller for blink than launch, but this difference
was marginally greater if the instruction was inconsistent
with the data (Bbpink 5 inconsistent = 23.8, SE = 14.0, £(136) = 1.70,
p=.0915,95% CI = [-3.04, 50.5], R?purticr = .021).

Summary Overall, blink elicited lower causal and proportion
ratings than /launch for early cases. Manipulation of
expectations of determinism had no consistent effect. In the
deterministic series, participants who passed the recall check
had an increase in blink causal and proportion ratings across
trials when the instruction (falsely) said that the objects were
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unreliable, yet those who failed the recall check showed little
change across trials. In the probabilistic series, participants
who passed the recall check showed no effect of instruction
consistency, but participants who failed the recall check
generally had a greater violation-of-expectation after the first
failure case (trial 5). For proportion ratings, this effect was
moderated by the perceptual features of the cause.
Importantly, both instruction consistency and recall check
(and, to a lesser extent, type of cause) ceased to have an effect
on learning by trial 12 in the series. Given the task context of
alien objects, learning seemingly came to be almost entirely
determined by the statistical data, rather than initial
expectations invoked by instruction or perceptual cues.

Discussion

A few observations about Experiment 3 were notable. First,
in the deterministic series, mean causal and proportion ratings
of launch never approached ceiling, even though those
ratings were consistently near ceiling in the previous
experiments. The task context (alien objects) might have
invited a baseline expectation of probabilistic behavior such
that even an ordinary cause of launching was perceived as
less-than-full-strength. Even so, perceptual details impinged
on causal and proportion ratings, at least at trial 1, as seen by
the main effect of type of cause.

Second, the manipulation of determinism expectation did
not have a consistent effect across conditions. We found no
effect with instruction consistency in the probabilistic series
when participants passed the recall check, for both causal and
proportion ratings. Although null results are hard to interpret,
this lends support to the conjecture that the task context
induced such a strong nondeterminism expectation that an
explicit instruction was redundant. Notably, the initial impact
of instruction consistency largely disappeared by trial 12.
That is, a written manipulation of expectation of determinism
swayed early causal judgments, but this impact faded out as
participants received increasing numbers of observations.

Third, the statistical contribution of the manipulation of
determinism expectation did not replace that of type of cause
(blink vs. launch), regardless of performance on the recall
check. In other words, written instructions did not explain
away the effect of perceptual cues associated with the
different causes of launching. In one possibility, the written
manipulation was too brief: participants might need input
about why these objects behave as they do (e.g., mechanism
information). In another possibility, the alien object context
induced so strong an expectation of nondeterminism that it
rendered the written instruction less (but not completely in-)
effective. In a third possibility, written instructions and
perceptual cues are distinct contributors to participants’
expectation of determinism such that manipulating one need
not affect the other. Separating these possibilities requires
further experimentation, but Experiment 3 implies that the
impacts of type of cause (i.e., the perceptual features of
physical causal events) and of verbal manipulation of
expectations of determinism are not reducible to each other.

General Discussion

Past research offered many algorithms for incremental causal
learning in which outcomes changed gradually with new
statistical data. Yet human causal learning could also be
abrupt, especially when people assume a causal relation to be
deterministic (e.g., Michotte, 1963). In the present research,
we examined how expectations of determinism interact with
statistical input to shape causal learning in the context of
physical causation. Different perceptual event features
accompanied different expectations of determinism (Exp. 1A
& 1B), and a violation of determinism expectation resulted in
greater changes in causal learning outcomes than a violation
of probabilistic expectation (Exp. 2). Notably, causal learning
outcomes were affected by a brief written manipulation of
their determinism expectation, but this effect occurred only
early in the series and did not screen off the effect of
perceptual cues (Exp. 3). Results showed that perceptual
features affect how adults integrate and evaluate statistical
data during causal learning. However, the relationship
between perceptual features, determinism expectation, and
causal learning remains a question for further research.

The present research leaves room for further inquiry. First,
the written manipulation of determinism expectation in
Experiment 3 was short and focused largely on the statistical
properties of the alien objects. As previously discussed, it
might take a much stronger manipulation to supplant the
effect of perceptual cues, if that is even possible. Indeed,
Schlottmann and Shanks (1992) provide “anecdata” that it is
very difficult to override the effect of perceptual cues during
causal learning, at least with physical causation.

Second, the present research leaves open the question of
how to conceptualize the notion of determinism. Some have
suggested that it functions as a continuous variable akin to
causal strength (Lu et al., 2008; Yeung & Griffiths, 2015).
Others have posited that people’s notion of determinism is a
categorical variable with two “modes”: deterministic and
nondeterministic (Yin & Sun, 2021). The sharp difference in
causal and proportion ratings between launch and blink
(Experiments 1A, 1B, and 2) is more consistent with a
categorical notion of determinism, but this needs to be tested
with other types of physical causation and across domains.

Overall, the present research showed that different
expectations of determinism—as invoked by different
perceptual event features—accompany different causal
learning outcomes in a sequential learning task. A violation
of the determinism expectation results in a much more drastic
change in learning outcome compared to that of the
nondeterminism expectation: such a pattern is not easily
explained by any of the incremental models of causal
learning. Furthermore, the effect of perceptual cues on causal
learning is powerful and not easily supplanted by written
manipulations of determinism. Future research on human
causal learning should account for expectations of
determinism and the different sources for these expectations.
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