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Expectations of Causal Determinism in Causal Learning 
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Pittsburgh, PA 15213 USA 

David Danks (ddanks@ucsd.edu) 
Department of Philosophy and The Halıcıoğlu Data Science Institute, 9500 Gilman Drive 
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Abstract 

Causal learning is shaped by people’s prior beliefs, including 
their expectations. In this paper, we specifically examine 
expectations of determinism: do they vary with perceptual 
features of physical causal events, and how do they influence 
subsequent causal learning from data? We show that 
perceptual features lead adults to different expectations of 
determinism for different causes of launching (Exps. 1A & 
1B). Those expectations lead to significant differences in 
responses to causal “failures”; that is, we show a difference in 
violation-of-expectation effect after a failed launch (Exp. 2). 
Actual data can reduce or eliminate the impact of these 
expectations, but they do not override the effect of perceptual 
features (Exp. 3). Overall, spatiotemporal contiguity cues and 
expectation of determinism have similar effects on causal 
learning outcomes, but neither is fully reducible to the other.  

Keywords: causal learning; determinism; sequential learning 
paradigm; violation of expectation 

Determinism and Causal Learning 
Causal learning—the ability to identify and represent causal 
relations given data—is crucial to human cognition. Many 
theories of causal learning focus on nondeterministic settings 
and largely predict learning to be gradual (e.g., Bonawitz et 
al., 2014; Bramley et al., 2017; Cheng, 1997; Fernbach & 
Sloman, 2009). Yet causal learning need not be incremental: 
if people expect a causal relation to be deterministic, then 
they can learn from just one case (Michotte, 1963; Scholl & 
Nakayama, 2002). Determinism—the general idea that an 
effect is entirely and reliably determined by one or a few 
causes—is a potent cue for causal learning (Deverett & 
Kemp, 2012; Lu et al., 2008). As such, people often form 
expectations about how deterministic a causal relation is 
(Frosch & Johnson-Laird, 2011; Yin & Sun, 2021). Notably, 
four-year-olds resist the idea that causes can be inherently 
stochastic (Schulz & Sommerville, 2006).  

In this paper, we examine three different questions about 
interactions in causal learning between expectations of 
determinism, perceptual features, and sequences of data: 
1. Exps. 1A & 1B: Do expectations of determinism vary 

based on perceptual features (within a single domain)?  
2. Exp. 2: Do differences in expectation of determinism 

lead to different causal learning from nondeterministic 
sequences of data? 

3. Exp. 3: How do manipulations of expectations of 
determinism affect later sequential causal learning? 

Experiments 2 and 3 use a sequential causal learning 
paradigm in which participants see a series of cases and 
repeatedly evaluate the power of the apparent causes. This 
design enables us to study the causal learning trajectory. In 
contrast with most prior sequential causal learning studies 
(e.g., Danks & Schwartz, 2006; Marsh & Ahn, 2009), we 
focus on a domain—physics—where deterministic causal 
relations are often expected (Yeung & Griffiths, 2015; Yin & 
Sun, 2021), though not necessary. This focus enables us to 
manipulate determinism expectations and use a violation-of-
expectation paradigm, thereby expanding our understanding 
of the role of determinism in sequential causal learning. 

Experiments 1A & 1B 
Many studies on determinism in causal learning has varied 
expectations by using situations from different domains, 
thereby confounding (expectations of) determinism and 
domain effects (e.g., Strickland et al., 2017; Yeung & 
Griffiths, 2015). Our first experiment examines the role of 
perceptual features on people’s expectations of determinism 
in the single domain of physical causation. 

Method 
Participants Two independent samples of 63 adults each 
were recruited for Experiments 1A and 1B on Amazon 
Mechanical Turk (MTurk). All participants had a HIT 
approval rating of >90% and were paid $2.50. 
 
Materials & Design All participants watched six animated 
launching events (hosted on Youtube) in random order, each 
lasting 4-5 s with 0.67 s blue screens at the start and end. (All 
videos can be found at https://osf.io/uqv5a/.) All events 
showed a ball starting to move, but in different ways: 
 launch: A red ball is stationary in center. A blue ball 

enters from left and contacts the red ball. The red ball 
then moves rightward and the blue ball remains in center.  

 rebound: Identical to launch except that the blue ball 
rolls back (left) slowly for 1.3 s as if it rebounded.  

 delay: Identical to launch except that the red ball does 
not move until 1 s after the blue ball contacts it.  

 gap: Identical to launch except the blue ball stops before 
contact with the red ball, which then begins moving. 

 gradual: A yellow ball is stationary in center. Its color 
changes to green over 1.4 s, and then moves rightward.  
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 blink: A peach-colored ball is stationary in center. Its 
color flickers rapidly six times (in 1.4 s) between peach 
and purple, and then stays purple and moves rightward. 

Delay and gap were chosen because they disrupted temporal 
and spatial contiguity, respectively, between the cause and 
the effect. Gradual and blink removed the external agent yet 
preserved the spatial and temporal contiguity between the 
candidate cause and effect (Schlottmann & Shanks, 1992). 

Experiments 1A and 1B differed based on the question 
asked after each event about the obvious candidate cause:  
 Exp. 1A: Rate the degree to which [candidate cause] 

seemed like a convincing cause of the ball’s motion (0 = 
not at all, 100 = absolutely, in increments of 10) 

 Exp. 1B: Estimate the number of cases in which the 
stationary ball would move, given 100 cases in which the 
cause was present (0 to 100 scale in increments of 1) 

 
Procedure Participants joined on MTurk and were directed 
to Qualtrics. After consent, they completed a check of the 
YouTube console and watched the six events, answering the 
two questions after each event. Participants completed an 
instructional manipulation check and read a debriefing form.  

 
Figure 1: Ratings of different launch events. Error bars: 

95% CI. 

Results 
Although different rating/estimation questions were used in 
the two versions of Experiment 1, they provide the same 
qualitative pattern of results (Figure 1). Linear regressions 
were run for each question-type with the type of cause as 
predictor (and launch as the reference category).  

In Experiment 1A, there was no significant difference 
between causal perception ratings of launch and rebound 
(Brebound = 2.54, p = 0.64, 95% CI = [-2.16, 7.43]). In contrast, 
participants gave significantly lower causal perception 
ratings to the apparent cause in the other four events: delay 
(Bdelay = -36.5, p < .001, 95% CI = [-45.1, -27.3]); gap (Bgap = 
-35.1, p < .001, 95% CI = [-44.3, -25.7]); gradual (Bgradual = -
32.2, p < .001, 95% CI = [-41.7, -22.8]) and blink (Bblink = -
37.5, p < .001, 95% CI = [-46.6, -28.6]). 

Experiment 1B had the same result pattern: no significant 
difference between proportion ratings of launch and rebound 
(Brebound = 0.635, p = 0.54, 95% CI = [-4.08, 5.27]), but 
significantly lower proportion ratings for delay (Bdelay = -19.7, 
p < 0.001, 95% CI = [-26.5, -12.6]); gap (Bgap = -29.0, p < 
0.001, 95% CI = [-37.9, -20.3]); gradual (Bgradual = -31.9, p < 
0.001, 95% CI = [-40.7, -23.0]); and blink (Bblink = -35.7, p < 
0.001, 95% CI = [-44.7, -26.9]). 

Discussion 
Results, whether ratings of perceptual realism or a more 
traditional causal strength measure, echo prior research. A 
rebound effect did not significantly alter participants’ 
judgments, but a delay or gap between the agent and its 
recipient lowered causal judgments (Michotte, 1963). Most 
importantly, a color change, whether gradual or sudden, was 
deemed a weak cause of motion of a stationary ball even 
when it was the only apparent cause in the event.  

Experiment 2 
In Experiments 1A and 1B, participants judged launch to be 
a highly effective, almost-deterministic cause, while blink 
appeared to be a less powerful and less deterministic cause 
(though not ineffectual). We thus focused on those two types 
of events in Experiments 2 and 3. In Experiment 2, we tested 
if participants’ expectations about causal determinism affect 
causal learning over multiple trials, particularly depending on 
whether those expectations were supported or violated. 

Method 
Participants A sample of 98 adults was recruited on MTurk, 
all with a HIT approval rating >95%, and physical location in 
the U.S. Participants received $2.50 for their time. Fifteen 
participants were excluded for failing an attention check, and 
two for misinterpreting rating scales, resulting in N=81. 
 
Materials & Design Participants watched two series, each 
with twelve animated (4 s) events of the same type. One 
series had launch events and the other had blink events.  

If the series was deterministic, then the cause was always 
followed by the stationary ball moving. If the series was 
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probabilistic, then the cause only led to the motion of the 
stationary ball on 75% (9/12) of the cases. In all probabilistic 
series, participants observed four instances of successful 
causation, followed by a “failure” case on trial 5. (The other 
failures were at trial 7, then either 8 or 11.) All participants 
saw one deterministic and one probabilistic series. 
Presentation order was counterbalanced across participants. 

For each series, participants answered two questions after 
events 1, 3, 5, 7, 9, 11, and 12. Participants rated the extent to 
which the apparent cause (contact with the moving ball or 
color change) made the stationary ball move (-100 = [cause] 
prevents movement, 0 = No relationship between [cause] and 
movement, 100 = [cause] causes movement in increments of 
10). They also estimated the number of cases in which they 
would expect the stationary ball to move, given 100 cases in 
which [cause] was present (0 to 100 scale in increments of 1). 
For both questions, participants were explicitly instructed to 
consider all of the events that they had seen in that series. 

 
Figure 2: Mean causal ratings for deterministic (top) and 

probabilistic (bottom) sequences. Error ribbon: 95% CI. 

Results 
Linear mixed-effect regressions (LMEs) were used to 
compare both kinds of judgments between trials 1, 5 (first 

failure case in the probabilistic series), and 12 (final case). 
These comparisons provide a description of the pattern of 
data rather than a complete statistical model. In all models, 
trial number, cause-type, trial-cause interaction, and order 
were fixed factors, and participant ID was the random factor. 
Trial 1 and blink were the reference categories. Analyses of 
both types of judgments revealed similar patterns. 
 
Causal Ratings Causal ratings for the deterministic series 
(Figure 2) were as expected. launch was higher than blink at 
trial 1 (Bblink = -82.6, SE = 10.4, t(154) = -7.98, p < .001, 95% 
CI = [-102, -62.7], R2

partial = .374). Ratings increased across 
trials, both at trial 5 (B5, blink = 33.9, SE = 10.4, t(154) = 3.27, 
p = .0014, 95% CI = [13.9, 53.8], R2

partial = .118) and trial 12 
(B12, blink = 56.5, SE = 10.4, t(154) = 5.44, p < .001, 95% CI = 
[36.5, 76.4], R2

partial = .219). This increase is largely driven 
by blink, though launch ratings are likely at ceiling. 

Causal ratings for the probabilistic series revealed three 
main effects of trial numbers and type of cause. Relative to 
ratings at trial 1, participants’ causal ratings for launch 
dropped significantly at trial 5 (B5 = -58.0, SE = 10.7, t(154) 
= -5.41, p < .001, 95% CI = [-78.6, -37.4], R2

partial = .217) and 
marginally at trial 12  (B12 = -19.0, SE = 10.7, t(154) = -1.77, 
p = .0783, 95% CI = [-39.6, 1.60], R2

partial = .017). That is, 
participants’ causal ratings for launch never recovered to 
their initial level. Participants also gave lower causal ratings 
for blink than launch at trial 1 (Bblink = -62.0, SE = 12.7, t(198) 
= -4.87, p < .001, 95% CI = [-86.4, -37.6], R2

partial = 0.159).  
Notably, the drop in causal rating from trial 1 to trial 5 in 

the probabilistic series was smaller for blink than launch 
(B5,blink = 40.5, SE = 15.2, t(154) = 2.67, p = .00835, 95% CI 
= [11.4, 69.6], R2

partial = .059). This finding is consistent with 
a violation-of-expectation effect: participants expected 
determinism for launch (but not blink), and the first failure 
case violated that expectation. A similar, though smaller, 
interaction effect was found between trial 12 and type of 
cause: The drop in causal rating from trial 1 to 12 was larger 
for launch than blink (B12,blink = 26.5, SE = 15.2, t(154) = 1.75, 
p = .0824, 95% CI = [-2.64, 55.6], R2

partial = .031). That is, the 
nondeterminism impacted launch judgments more than blink, 
even when the statistics of the event series were identical.  

 
Proportion Ratings Due to limited space, we omit the 
graphs of proportion ratings as they are qualitatively the same 
as Figure 2; for completeness, the graphs are provided at 
https://osf.io/f3bjq/. In the deterministic series, proportion 
ratings were higher for launch than blink at trial 1 (Bblink = -
44.7, SE = 7.00, t(158) = -6.38, p < .001, 95% CI = [-58.1, -
31.2], R2

partial = .285). Proportion ratings overall increased 
significantly from trial 1 to trial 12 (B12 = 10.4, SE = 4.99, 
t(154) = 2.082, p = .0390, 95% CI = [0.798, 20.0], R2

partial = 
.284), primarily due to blink (Bblink,12 = 22.2, SE = 7.14, t(154) 
= 3.106, p = .00226, 95% CI = [8.45, 35.9], R2

partial = .107) 
The probabilistic series showed three main effects. 

Proportion ratings dropped from trial 1 to trial 5 (B5 = -20.9, 
SE = 5.85, t(154) = -3.57, p = .000473, 95% CI = [-32.1, -
9.65], R2

partial = .122) and to trial 12 (B12 = -14.4, SE = 5.85, 
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t(154) = -2.45, p = .0153, 95% CI = [-25.6, -3.10], R2
partial = 

.024). Participants overall gave lower proportion ratings for 
blink  (Bblink = -34.7, SE = 8.00, t(160) = -4.33, p < .001, 95% 
CI = [-50.0, -19.3], R2

partial = .144). Notably, the magnitude of 
drop in proportion ratings from trial 1 to trial 12 was 
modulated by the type of cause, as the difference was smaller 
for blink than launch (B12,blink = 17.1, SE = 8.28, t(154) = 
2.067, p = .0405, 95% CI = [1.19, 33.0], R2

partial = .083). 

Discussion 
Experiment 2 showed that expectations of determinism 
influence causal learning trajectories, as those differed for 
series with the same statistics but different expectations. If a 
cause was expected to be deterministic, then causal and 
proportion ratings were near ceiling so long as there were no 
violations. A failure case, however, produced a sharp decline 
of both causal and proportion ratings. In contrast, if the cause 
was expected to be probabilistic, then causal and proportion 
ratings started relatively lower, increased gradually with each 
success, and decreased gradually with each failure.  

Experiment 3 
Experiment 2 could not determine if perceptual features and 
determinism expectations separately affect causal learning, 
or whether features produce expectations which influence 
learning. Experiment 3 used an “alien object” cover story to 
exogenously manipulate expectations of determinism, since 
participants would not necessarily assume that alien objects 
behave like those on Earth. By independently manipulating 
perceptual features and expectations of determinism, we 
tested if the effect of the former was solely through the latter. 

Method 
Participants We recruited 440 participants on MTurk with a 
HIT approval rating >95% and physical location in the U.S. 
Participants received $2.00. Data from 113 participants were 
removed for failing an attention check, resulting in N=327. 
 
Materials & Design Before seeing any cases, participants 
read a brief story about alien objects being brought to Earth 
for study. No one has figured out what these objects are, 
though there are some preliminary reports. The objects do not 
normally move, but in response to certain internal or external 
changes, they behave either in “regular and consistent ways” 
(deterministic expectation condition), or in “surprising and 
inconsistent ways” (probabilistic expectation condition). A 
manipulation recall check was used to ensure that participants 
remembered the expectation; those who failed the check were 
reminded of it before seeing the sequence of cases.  

We chose a between-participants design to reduce fatigue 
and interference. Each participant saw only one series of 12 
events from one of 8 conditions: Expectation {deterministic, 
probabilistic} × Sequence {deterministic, probabilistic} × 
Cause {launch, blink}. In the probabilistic sequence, failure 
cases were trials 5, 7, and 11. The causal and proportion 
rating questions and scales from Experiment 2 were used.  

Results 
The basic data analysis mirrored Experiment 2 but included 
consistency (between expectation and sequence-type) in the 
LME models. However, the data analysis was complicated by 
the fact that participants who passed the manipulation recall 
check (N = 108, 93 for deterministic, probabilistic series) 
responded differently in several ways from those who failed 
the check and had to be reminded (N = 54, 72). We thus report 
separate analyses based on manipulation recall, and later 
summarize key differences between those two groups. 

Figure 3: Mean causal ratings for deterministic sequence 
for participants who passed (top) and failed (bottom) the 

manipulation recall check. Error ribbon: 95% CI. 
 
Causal Ratings For the deterministic series, participants who 
passed the manipulation recall check (Figure 3 top) gave 
lower causal ratings for blink than launch, including at trial 1 
(Bblink = -21.8, SE = 10.7, t(185) = -2.034, p = .0433., 95% CI 
= [-42.5, -1.09], R2

partial = .074). Blink causal ratings increased 
from trial 1 to trial 5, and this increase was greater with 
inconsistent instruction indicating that the alien objects 
behaved unreliably (Bblink,5,inconsistent = 28.2, SE = 14.2, t(208) 
= 1.99, p = .0479, 95% CI = [0.820, 55.5], R2

partial = .019).  
For that series, participants who failed the recall check 

(Figure 3 bottom) only gave significantly lower causal ratings 
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for blink than launch at trial 1 (Bblink = -41.7, SE = 14.2, t(89) 
= -2.94, p = .0042, 95% CI = [-68.7, -14.7], R2

partial = .113). 
For the probabilistic series, participants who passed the 

manipulation recall (Figure 4 top) gave launch causal ratings 
that dropped significantly from trial 1 to trial 5, the first 
failure (B5 = -39.0, SE = 14.4, t(178) = -2.70, p = .0076, 95% 
CI = [-66.8, -11.2], R2

partial = .117). Causal ratings were lower 
for blink than launch at trial 1, though this main effect was 
only marginally significant (Bblink = -28.0, SE = 14.5, t(237) 
= -1.94, p = .054, 95% CI = [-55.8, -.191], R2

partial = .049). 

Figure 4: Mean causal ratings for probabilistic sequence 
for participants who passed (top) and failed (bottom) the 

manipulation recall check. Error ribbon: 95% CI. 
 

For the probabilistic series, participants who failed the 
manipulation recall (Figure 4 bottom) also had a significant 
drop in causal ratings from trial 1 to trial 5 (B5 = -44.0, SE = 
8.44, t(136) = -5.21, p < .001, 95% CI = [-60.2, -27.8], R2

partial 
= .156), as well as lower blink than launch causal ratings at 
trial 1 (Bblink = -39.2, SE = 11.1, t(177) = -3.53, p < .001, 95% 
CI = [-60.4, -17.9], R2

partial = .146). There were also multiple 
interaction effects. The causal rating decrease was smaller for 
blink than launch from trial 1 to trial 5 (Bblink,5 = 45.0, SE = 
13.3, t(136) = 3.37, p < .001, 95% CI = [19.4, 70.6], R2

partial 
= .157), and also from trial 1 to trial 12 (Bblink,12 = 25.8, SE = 
13.3, t(136) = 1.94, p = .055, 95% CI = [-53.0, 11.7], R2

partial 

= .069). The violation-of-expectation effect at trial 5 was 
marginally greater when the instruction was inconsistent with 
the data (B5,inconsistent = -32.0, SE = 16.9, t(177) = -1.54, p = 
.060, 95% CI = [-64.4, 0.367], R2

partial = .015).  
 
Proportion Ratings Due to limited space, we omit the 
graphs of proportion ratings as they are qualitatively the same 
as Figures 3 and 4; for completeness, the graphs are provided 
at https://osf.io/f3bjq/. In the deterministic series, participants 
who passed the recall check gave lower proportion ratings for 
blink than launch (Bblink = -18.2, SE = 6.61, t(186) = -2.76, p 
= .0064, 95% CI = [-31.0, -5.45], R2

partial = .102). When the 
initial instruction indicated (falsely) that the objects were 
unreliable, then ratings increased more for blink than launch 
at trial 5 (Bblink,5,inconsistent = 20.3, SE = 8.79, t(208) = 2.31, p = 
.0217, 95% CI = [3.35, 37.3], R2

partial = .025), and trial 12 
(Bblink,12,inconsistent = 23.9, SE = 8.79, t(208) = 2.72, p = .0072, 
95% CI = [6.90, 40.9], R2

partial = .034). 
In the deterministic series, those who failed the recall check 

similarly gave lower proportion ratings for blink than launch 
(Bblink = -31.3, SE = 10.2, t(68.9) = -3.07, p = .0031, 95% CI 
= [-50.8, -11.8], R2

partial = .151). Proportion ratings were also 
lower at trial 1 when the instruction falsely stated that the 
objects were unreliable (Binconsistent = -22.2, SE = 10.4, t(68.9) 
= -2.13, p = .0372, 95% CI = [-42.1, -2.24], R2

partial = .065). 
In the probabilistic series, participants who passed the 

recall test gave lower proportion ratings for blink than launch 
at trial 1 (Bblink = -26.8, SE = 10.1, t(194) = -2.66, p = .0084, 
95% CI = [-46.2, -7.40], R2

partial = .065). Ratings decreased 
from trial 1 to trial 5 in response to the first failure case of the 
series (B5 = -27.4, SE = 8.74, t(178) = -3.14, p = .0020, 95% 
CI = [-44.2, -10.6], R2

partial = .101), but this drop was smaller 
for blink than launch (Bblink,5 = 28.0, SE = 10.7, t(178) = 2.17, 
p = .0096, 95% CI = [7.38, 48.6], R2

partial =.043). 
In the probabilistic series, participants who failed the recall 

test gave lower proportion ratings for blink than launch at 
trial 1 (Bblink = -15.9, SE = 7.66, t(140) = -2.07, p = 0.0403, 
R2

partial = .111). Proportion ratings dropped significantly from 
trial 1 to trial 5, the first failure (B5 = -10.9, SE = 4.94, t(136) 
= -2.21, p = 0.0286, R2

partial = .074), and the drop was larger 
when the initial instruction was inconsistent with the data 
(B5,inconsistent = -25.6, SE = 9.88, t(136) = -2.59, p = .0107, 
R2

partial = .027). Proportion ratings at trial 1 were marginally 
lower for blink than launch given inconsistent manipulation 
(Bblink,inconsistent = -25.5, SE = 13.7, t(1340) = -1.86, p = .0645, 
R2

partial = .024). Finally, the decrease in proportion rating at 
trial 5 was smaller for blink than launch, but this difference 
was marginally greater if the instruction was inconsistent 
with the data (Bblink,5,inconsistent = 23.8, SE = 14.0, t(136) = 1.70, 
p = .0915, 95% CI = [-3.04, 50.5], R2

partial = .021). 
 
Summary Overall, blink elicited lower causal and proportion 
ratings than launch for early cases. Manipulation of 
expectations of determinism had no consistent effect. In the 
deterministic series, participants who passed the recall check 
had an increase in blink causal and proportion ratings across 
trials when the instruction (falsely) said that the objects were 
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unreliable, yet those who failed the recall check showed little 
change across trials. In the probabilistic series, participants 
who passed the recall check showed no effect of instruction 
consistency, but participants who failed the recall check 
generally had a greater violation-of-expectation after the first 
failure case (trial 5). For proportion ratings, this effect was 
moderated by the perceptual features of the cause.  

Importantly, both instruction consistency and recall check 
(and, to a lesser extent, type of cause) ceased to have an effect 
on learning by trial 12 in the series. Given the task context of 
alien objects, learning seemingly came to be almost entirely 
determined by the statistical data, rather than initial 
expectations invoked by instruction or perceptual cues. 

Discussion 
A few observations about Experiment 3 were notable. First, 
in the deterministic series, mean causal and proportion ratings 
of launch never approached ceiling, even though those 
ratings were consistently near ceiling in the previous 
experiments. The task context (alien objects) might have 
invited a baseline expectation of probabilistic behavior such 
that even an ordinary cause of launching was perceived as 
less-than-full-strength. Even so, perceptual details impinged 
on causal and proportion ratings, at least at trial 1, as seen by 
the main effect of type of cause. 

Second, the manipulation of determinism expectation did 
not have a consistent effect across conditions. We found no 
effect with instruction consistency in the probabilistic series 
when participants passed the recall check, for both causal and 
proportion ratings. Although null results are hard to interpret, 
this lends support to the conjecture that the task context 
induced such a strong nondeterminism expectation that an 
explicit instruction was redundant. Notably, the initial impact 
of instruction consistency largely disappeared by trial 12. 
That is, a written manipulation of expectation of determinism 
swayed early causal judgments, but this impact faded out as 
participants received increasing numbers of observations.  

Third, the statistical contribution of the manipulation of 
determinism expectation did not replace that of type of cause 
(blink vs. launch), regardless of performance on the recall 
check. In other words, written instructions did not explain 
away the effect of perceptual cues associated with the 
different causes of launching. In one possibility, the written 
manipulation was too brief: participants might need input 
about why these objects behave as they do (e.g., mechanism 
information). In another possibility, the alien object context 
induced so strong an expectation of nondeterminism that it 
rendered the written instruction less (but not completely in-) 
effective. In a third possibility, written instructions and 
perceptual cues are distinct contributors to participants’ 
expectation of determinism such that manipulating one need 
not affect the other. Separating these possibilities requires 
further experimentation, but Experiment 3 implies that the 
impacts of type of cause (i.e., the perceptual features of 
physical causal events) and of verbal manipulation of 
expectations of determinism are not reducible to each other. 

General Discussion 
Past research offered many algorithms for incremental causal 
learning in which outcomes changed gradually with new 
statistical data. Yet human causal learning could also be 
abrupt, especially when people assume a causal relation to be 
deterministic (e.g., Michotte, 1963). In the present research, 
we examined how expectations of determinism interact with 
statistical input to shape causal learning in the context of 
physical causation. Different perceptual event features 
accompanied different expectations of determinism (Exp. 1A 
& 1B), and a violation of determinism expectation resulted in 
greater changes in causal learning outcomes than a violation 
of probabilistic expectation (Exp. 2). Notably, causal learning 
outcomes were affected by a brief written manipulation of 
their determinism expectation, but this effect occurred only 
early in the series and did not screen off the effect of 
perceptual cues (Exp. 3). Results showed that perceptual 
features affect how adults integrate and evaluate statistical 
data during causal learning. However, the relationship 
between perceptual features, determinism expectation, and 
causal learning remains a question for further research. 

The present research leaves room for further inquiry. First, 
the written manipulation of determinism expectation in 
Experiment 3 was short and focused largely on the statistical 
properties of the alien objects. As previously discussed, it 
might take a much stronger manipulation to supplant the 
effect of perceptual cues, if that is even possible. Indeed, 
Schlottmann and Shanks (1992) provide “anecdata” that it is 
very difficult to override the effect of perceptual cues during 
causal learning, at least with physical causation. 

Second, the present research leaves open the question of 
how to conceptualize the notion of determinism. Some have 
suggested that it functions as a continuous variable akin to 
causal strength (Lu et al., 2008; Yeung & Griffiths, 2015). 
Others have posited that people’s notion of determinism is a 
categorical variable with two “modes”: deterministic and 
nondeterministic (Yin & Sun, 2021). The sharp difference in 
causal and proportion ratings between launch and blink 
(Experiments 1A, 1B, and 2) is more consistent with a 
categorical notion of determinism, but this needs to be tested 
with other types of physical causation and across domains. 

Overall, the present research showed that different 
expectations of determinism—as invoked by different 
perceptual event features—accompany different causal 
learning outcomes in a sequential learning task. A violation 
of the determinism expectation results in a much more drastic 
change in learning outcome compared to that of the 
nondeterminism expectation: such a pattern is not easily 
explained by any of the incremental models of causal 
learning. Furthermore, the effect of perceptual cues on causal 
learning is powerful and not easily supplanted by written 
manipulations of determinism. Future research on human 
causal learning should account for expectations of 
determinism and the different sources for these expectations. 
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