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Abstract

Soft Matter in Motion: 3D Active Nematics, Active Phase Separations and Vesicle

Closure

by

Raymond Adkins

The field of soft matter seeks to understand materials which easily deform in response

to applied stresses. Several systems have served as foundational models in soft matter,

including liquid crystals, liquid phase separations and membranes. In this thesis, I inves-

tigated the dynamics of these classic soft materials, by building and characterizing new

several model systems.

First, I detail initial work on a 3D active nematic. I doped a three-dimensional liquid

crystal with biologically-based active filaments that produced turbulent-like mixing of

the material. These chaotic flows generated neutral disclination lines, which we show

behave in accordance with nematic hydrodynamic models.

Next, I developed a model system to study an actively-driven liquid-liquid phase

separations. This system consisted of an active phase that contained microtubule bundles,

and a passive phase, separated by a soft interface. The active bundles generated stresses

that resulted in complex interfacial dynamics. We used this system to measure values of

the active stress generated by the microtubule bundles, a defining measurement that has

eluded the field.

Lastly, I quantitatively studied vesicle formation using colloidal membranes as a model

system. I observed the transformation from a flat membrane to a closed vesicle via a

gravity-assisted pathway. Subsequently, I showed that the shape change accompany-

ing vesicle closure can be understood by minimizing the elastic energy. Additionally, I

vii



investigated membrane disassembly caused by continuous vesicle shrinking. I demon-

strated that the shape change dynamics associated with vesicle shrinking followed an

energy-minimizing pathway through the area-dependent energy landscape.
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Chapter 1

Introduction

Soft materials easily deform in response to applied stresses. In these systems, dynamics

occur at low energy scales, comparable to thermal energy at room temperature. Examples

of soft matter range from everyday systems like liquid interfaces, soap bubbles, and

polymer suspensions, to more unusual materials like liquid crystals. Many biological

building blocks including DNA, proteins and cell membranes, can form soft materials.

Importantly, these biological examples exist in a non-equilibrium environment, where

they are actively mixed or undergoing large-scale shape change.

This dissertation describes my research developing and characterizing several biologically-

based soft materials that are driven out of equilibrium either by internal drive of external

forces. Chapter 2 discusses the structure and interactions of topological defects that arise

in a three-dimensional active nematic. Chapter 3 describes an active liquid-liquid phase

separation that we used to measure the stress generated by the microtubule-based active

fluid. Finally, Chapter 4 introduces a new model system for studying vesicles formation,

and investigates pathways of topological transformation as flat colloidal membranes close

into vesicles. To establish proper background, concepts of soft and active matter as well

as membrane physics must be introduced.

1



Introduction Chapter 1

1.1 Background

1.1.1 Nematic liquid crystals

One of the most commonly studied systems in soft matter is the nematic liquid crystal.

A nematic comprises of anisotropic molecules, which locally align with their neighbors

along an axis called the ’director’. Nematics are head-tail symmetric, and lack positional

order between molecules.

The long-range orientational order in a nematic is disrupted by singularities, called

topological defects, where the director field winds around a single point. In 2D nematics,

topological defects are characterized by their topological charge; the number of counter-

clockwise rotations of the director field that encircles the defect. These defects take on a

number of half integer rotations and can be positive or negative. At the cost of increased

in elasitc distortion energy, defects can nucleate in pairs from an aligned background, if

the sum of their topological charge is zero 1.1.

Figure 1.1: Schematic of defect pair unbinding A pair of +1/2 and �1/2 defects
are able to unbind from an originally aligned state.

Liquid crystals have become a foundational model system in soft matter. Models

of how rod-like particles with excluded volume interactions spontaneously form nematic

liquid crystals began over 70 years ago [1]. A significant amount of work has studied how

various molecular structure induce increasingly more complex phases [2, 3, 4, 5], and how

liquid crystalline order alters hydrodynamics [6, 7, 8]. A section of this dissertation will

introduce a model system for studying the dynamics of a 3D nematic liquid crystal made

2



Introduction Chapter 1

from from biological components, which generates its own spontaneous flows by locally

consuming energy microscopic motors. We will preform the first study of the structure

and interactions of topological defects in 3D, and compare with hydrodynamic models

and simulations.

1.1.2 Liquid phase separation

Liquid-liquid phase separations (LLPS) are a phenomena where a homogeneous solu-

tion separates into two fluids. One such example which is common to everyday experience

is a mixture of oil and water. When mixed together, oil and water rapidly demix into two

bulk liquid phases, separated by an interface. Similar LLPS occur in polymer-polymer

and polymer-salt mixtures.

Recently, LLPS have been shown to be a fundamental organizing principle in cells.

These ‘membraneless organelles’ are collections of proteins and RNA that phase sepa-

rate from the cytoplasm, to localizing proteins and regulate genes [9, 10]. These LLPS

exist in the highly dynamic environment of the cytoplasm, and are acted on by cellular

forces, which alter the phase separation dynamics [11]. In this dissertation, I explore the

dynamics of LLPS which undergo a stress applied by active microtubule bundles, as a

model to study the general physics of out-of-equilibrium LLPS.

1.1.3 Filamentous phages

Filamentous phages are semi-flexible rod-like viruses, composed of coat proteins

packed around a loop of single-stranded DNA. One commonly studied wild-type phage,

fd-wt, is 6.6 nm wide, 880 nm long and has a persistence length of several microns [12].

This makes fd-wt, and other filamentous phages, ideal hard-rod colloids. At low concen-

tration, these rods form an isotropic phase with uniformly distributed orientations. As

3



Introduction Chapter 1

the concentration of phages increases, the virus transitions to a nematic phase, making

filamentous phages an excellent model to study liquid crystals [13].

1.1.4 Colloidal membranes

Tuning the intermolecular forces between filamentous phages can be used to produce

self-assembled structures. Phages are negatively charged, causing particles to electrostat-

ically repel each other. To produce self-assembled structures, we screen these charges by

adding salt. An attractive force can be induced by the addition of a depleting polymer

[Fig. 1.2A]. Together, this causes phages to latterly align and condense into flat disks

having a thickness equal to the length of the virus and with a interparticle spacing of

several nanometers [14] [Fig. 1.2B].

Figure 1.2: Schematic of colloidal membrane formation. (A) In the presence
of salt and a depletant, phages align and attract. (B) Groups of thouands of phages
organize into a flat disk with an interparticle spacing of several nanometers.

The resulting membranes are 2D fluid sheets which are described using the Helfrich

Hamiltonian, exactly like lipid membranes [15, 14, 16]. However, colloidal membranes

4
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are ⇡ 1µm in thickness and are hundreds of microns in diameter. These length and

time scales are orders of magnitude larger than lipid membranes, enabling high-resolution

imaging and quantitative study of membrane dynamics. Additionally, genetic engineering

techniques can be used to change the physical properties of the phages to adjust the

energy landscape of the membranes, to produce various self-assembled structures like

catenoids, membranes containing rafts and sponge phases [17, 18]. In this dissertation, we

leverage the size and control over colloidal membranes to study colloidal vesicle formation.

1.2 Active matter

The field of active matter studies materials comprising energy-consuming motile com-

ponents. Examples of active systems are animal flocks, dense bacterial suspensions and

driven colloidal particles [19, 20, 21, 22, 23]. The unifying feature of all these systems is

that each are made of components that consume energy to produce motion. This mo-

tion of constituent objects cascades up length scales, resulting in large scale dynamics.

For example, the flocking motion of starlings can be modeled as particles that interact

through nearest neighbor interactions [24, 20, 23]. However, generic modeling of active

systems remains a significant challenge. Because of the immense number of components

in these systems, predicting how they self-organize is di�cult. Further, the local energy

consumption precludes any understanding from equilibrium statistical mechanics.

To progress toward understanding these systems, several well-controlled active ma-

terials have been developed. These systems are either synthetic, like driven colloidal

particles [22, 25, 26], or based on biological components, like reconstituted protein mix-

tures [27, 28, 29, 30]. Being simpler than biological systems, synthetic systems are more

straightforward for making direct comparison with models. On the other hand, while

biologically-based systems have direct relevance to biological systems. The work pre-

5



Introduction Chapter 1

sented in this dissertation consist entirely of biologically-based materials.

1.2.1 Microtubule-based active matter

In this dissertation, we study active materials based on cytoskeletal proteins. The cy-

toskeleton is a network of filamentous proteins which gives the cell structure, and enables

cell motility. One major cytoskeletal component are microtubules, which are filaments

formed by repeating dimers of ↵ and � tubulin. These dimers assemble into a polar-

ized hollow filament that is 22 nm in diameter. Microtubules polymerize by hydrolyzing

Guanosine Triphosphate (GTP) as dimers are added to the filament, while periodically

undergoing ‘catastrophe’, which are periods of rapid shortening. In our system, we have

stabilized microtubules to prevent catastrophe using the non-hydrolyzable GMPCPP in

place of GTP.

The motion of microtubule-based active matter system is driven by molecular motor

proteins. Kinesin-1 is one of the most well studied molecular motors, having been the

subject of single molecule studies for decades [31, 32, 33]. Kinesin-1 molecular motors

consist of a cargo domain at one end and a head domain that binds to and walks along

microtubules at the other end, connected together by a long flexible stalk. These motors

hydrolyze Adenosine Triphosphayte (ATP) to step hand-over-hand in 8 nm steps [34].

To form microtubule-based active matter, we use kinesin motor clusters (KSA). We

start with Kinesin-1 which have been modified to keep their first 401 amino acids, and

have been fused to a biotin-binding domain [Fig. 1.3A] [35]. This biotin conjugates are

connected with streptavidin tetramer, so that pairs of kinesin motors bind end-to-end,

with their heads facing outward. Kinesin-streptavidin motor clusters bind to multiple

microtubules and walk along each producing a relative sliding force. Adding a depletant

induces an entropic attraction between pairs of microtubules, producing bundles that

6
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Figure 1.3: Schematic of active microtubule bundles. (A) Kinesin used in mi-
crotubule-based active matter. Dimers of the truncated motor protein k401, bound to
streptavidin. (B) The polymer depletant (green) entropically drives microtubules to
together. Kinein motor clusters attach to and walk along pairs of microtubules, caus-
ing extension of large-scale bundles (C) containing many hundreds of mictotubules.

containing hundreds of microtubules and KSA clusters [Fig. 1.3B,C]. The collective

motion of these motors causes the entire bundle to extend, bend and fracture. On the

millimeter length scale, the motion of the microtubule bundles leads to turbulent-like

dynamics [29, 36, 37].

1.3 Scope of the dissertation

Having reviewed the main topics, we are able to outline the main results described

in this dissertation. Chapter 2 discuses the development and characterization of a

model system for studying three dimensional active nematics [38]. We construct a three-

dimensional nematic using filamentous phages, and disperse active microtubule bundles

throughout the solution, which renders it active. The system is imagd using light-sheet

microscopy, a technique common in developmental biology [39]. We characterize the sys-

tem by studying the structure and interactions of the topological disclinations that arise

in three-dimensions as a result of active flows.

Chapter 3 is based on work in [40], and details the development of an active liquid-

7
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liquid phase separation (active-LLPS). The active-LLPS is formed by combining a well

characterized polymer-based phase separation with active microtubule bundles. The

polymer mixture separates into two phases, separated by a soft interface, with the active

bundles segregated to one phase. The turbulent motion of the active bundles drives

deformations of the interface, resulting in a range of dynamics which depend on the

sample geometry. Active-LLPS provides a means to quantify active stresses generated

by microtubule bundles, a defining measurement that has long eluded the field.

Chapter 4 discusses colloidal membranes that spontaneously close to form colloidal

vesicles. We detail the development of this system, first studying a pathway of gravity-

assisted vesicle closure. Initially curved membranes are suspended and pulled by gravity

to form tether-like structures, which then tear and close into a vesicle. We derive a model

for the dynamics of vesicle shape, and show that it agrees with the observed membrane

shape, with no free parameters. We then study the shape change which occurs during

vesicle shrinking by induced evaporation. As vesicles shrink, the energy landscape leads

to shape change, eventually causing the vesicles to revert back into a flat membrane. We

show that the observed shape change can be understood as the instantaneous positions

of the minima in the energy landscape of the shrinking vesicle. This framework gives a

simple mechanism to understand the complex observed shape changes.

8



Chapter 2

Topological defects in three

dimensional active nematics

Topological structures are e↵ective descriptors of the nonequilibrium dynamics of di-

verse many-body systems. For example, motile, point-like topological defects capture the

salient features of two-dimensional active liquid crystals composed of energy-consuming

anisotropic units. We dispersed force-generating microtubule bundles in a passive col-

loidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy

revealed the temporal evolution of the millimeter-scale structure of these active nematics

with single-bundle resolution. The primary topological excitations are extended, charge-

neutral disclination loops that undergo complex dynamics and recombination events. Our

work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic

systems as diverse as driven complex fluids, active metamaterials, biological tissues, and

collections of robots or organisms.

9
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2.1 Introduction

The sinuous change in the orientation of birds flocking is a common but startling sight.

Even if one can track the orientation of each bird, making sense of such large datasets

is di�cult. Similar challenges arise in disparate contexts from magnetohydrodynamics

[41] to turbulent cultures of elongated cells [19], where oriented fields coupled to velocity

undergo complex dynamics. To make progress with such extensive three-dimensional

(3D) data, it is useful to identify e↵ective degrees of freedom that allow a coarsegrained

description of the collective nonequilibrium phenomena. Promising candidates are singu-

lar field configurations locally protected by topological rules [42, 43, 44, 45, 46, 47, 48].

Examples of such singularities in 2D are the topological defects that appear at the north

and south poles when covering the Earth’s surface with parallel lines of longitude or lati-

tude. These point defects are characterized by the winding number of the corresponding

orientation field.

The quintessential systems with orientational order are nematic liquid crystals, which

are fluids composed of anisotropic molecules. In equilibrium, nematics tend to minimize

energy by uniformly aligning their anisotropic constituents, which annihilates topologi-

cal defects. By contrast, in active nematic materials, which are internally driven away

from equilibrium, the continual injection of energy destabilizes defect-free alignment

[49, 50]. The resulting chaotic dynamics are e↵ectively represented in 2D by point-

like topological defects that behave as self-propelled particles [51, 52, 37, 53, 54]. The

defect-driven dynamics of 2D active nematics have been observed in many systems rang-

ing from millimeter-sized shaken granular rods and micrometer-sized motile biological

cells to nanoscale motor-driven biological filaments [29, 55, 56, 57, 58, 27, 59] . Several

obstacles have hindered generalizing topological dynamics of active nematics to 3D. The

higher dimensionality expands the space of possible defect configurations. Discriminating

10
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Figure 2.1: Schematic of 3D nematic system. Active microtubule bundles are dispersed
in a passive colloidal liquid crystal.

between di↵erent defect types requires measurement of the spatiotemporal evolution of

the director field on macroscopic scales using materials that can be rendered active away

from surfaces.

2.2 Experimental system

The 3D active nematics that we assembled are based on microtubules and kinesin

molecular motors. In the presence of a depleting agent, these components assemble into

isotropic active fluids that exhibit persistent spontaneous flows [29]. Replacing a broadly

acting depletant with a specific microtubule cross-linker, PRC1-NS, enabled assembly of a

composite mixture of low-density extensile microtubule bundles (⇡ 0.1 % volume fraction)

and a passive colloidal nematic based on filamentous viruses [Fig. 2.1], a strategy that is

similar to work on the living liquid crystal [58]. Adenosine 5’-triphosphate (ATP)–fueled

stepping of kinesin motors generates microtubule bundle extension and active stresses

that drive the chaotic dynamics of the entire system.

11
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Figure 2.2: 3D nematic volume with director field. (A) Multi-view light
sheet microscopy allows for 3D imaging of millimeter sized samples with single-bundle
resolution. (B) A 2D slice of the elastic distortion energy map, with an overlaid
nematic director field (red).

Elucidating the spatial structure of a 3D active nematic requires measurement of the

nematic director field on scales from micrometers to millimeters. Furthermore, uncov-

ering its dynamics requires acquisition of the director field with high temporal resolu-

tion. To overcome these constraints, we used a multiview light sheet microscope [Fig.

2.2A] [39]. The spatiotemporal evolution of the nematic director field n(x, y, z, t) was

extracted from a stack of fluorescent images using the structure tensor method. Spa-

tial gradients of the director field identified regions with large elastic distortions [Fig.

2.2B]. Three-dimensional reconstruction of such maps revealed that large elastic distor-

tions mainly formed curvilinear structures, which could either be isolated loops or belong

12



Topological defects in three dimensional active nematics Chapter 2

Figure 2.3: Thresholding the three-dimensional elastic distortion reveals curvilinear
defects (left). Sequentially zooming in on the entangled network of lines reveals iso-
lated loop defects (right). A slice of the orientation field (red) shows high nematic
distortion near the loop defect.

to a complex network of system-spanning lines [Fig. 2.3]. These curvilinear distortions

are topological disclination lines characteristic of 3D nematics. Similar structures were

observed in numerical simulations of 3D active nematic dynamics using either a hybrid

lattice Boltzmann method or a finite di↵erence Stokes solver numerical approach.

2.3 Characterization of topological defect

Reducing the ATP concentration slowed down the chaotic flows, which revealed the

temporal dynamics of the nematic director field. In turn, this identified the basic events

governing the dynamics of disclination lines. We focused on characterizing the closed loop

disclinations because they are the objects seen to arise or annihilate in the bulk. Isolated

loops nucleated and grew from undistorted, uniformly aligned regions [Fig. 2.4A, figs.

A.5.3 and A.2]. Likewise, loops also contracted and self-annihilated, leaving behind a

uniform region [Fig. 2.4B, figs. A.5.3 and A.2]. Furthermore, expanding loops frequently

encountered and subsequently merged with the system-spanning network of distortion

13
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Figure 2.4: Dynamics of experimentally observed isolated disclination loops.
(A) Loop nucleation from a defect-free region. (B) Loop self-annihilation leaves be-
hind a defect-free nematic. Each bounding box is 30 µm x 30 µm x 38 µm. The time
interval between frames is 12 seconds.

lines, whereas the distortion lines in the network self-intersected and reconnected to emit

a new isolated loop [Fig. 2.5A,B; figs. A.5.3 and A.2].

Topological constraints require that topological defects can only be created in sets

that are, collectively, topologically neutral. Point-like defects in 2D active nematics

thus always nucleate as pairs of opposite winding number [52]. In 3D active nematics, an

isolated disclination loop as a whole has two topological possibilities: It can either carry a

monopole charge or be topologically neutral, depending on its director winding structure.

Because charged topological loops can only appear in pairs, nucleation of isolated loops

as observed in our system implies their topological neutrality.

To establish that the closed-loop distortions are nematic disclination loops with no

net charge, we characterized their topological structure. In 2D nematics, point-like discli-

nation defects are characterized by the winding number or topological charge(s). The

lowest-energy disclinations have s = ±1/2, which corresponds to a ⇡ rotation of the

director field in the same sense or the opposite sense, respectively, as the traversal of

any closed path encircling only the defect of interest. In 3D nematics, point-like defects

from 2D systems are generalized to disclination lines, where the director similarly has

14
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Figure 2.5: Dynamics of experimentally observed disclination loops inter-
acting with lines. (A) A disclination line self-intersects, reconnects, and emits a
loop. (B) A disclination loop intersects, reconnects and merges with a disclination
line. Each bounding box is 30 µm x 30 µm x 38 µm. The time interval between frames
is 12 seconds.

a ⇡ winding, a↵ording a broader variety of director configurations. We define t to be

the disclination line’s local tangent unit vector. The director field winds by ⇡ about a

direction specified by ⌦, the rotation vector, which can make an arbitrary angle � with

t [60]. If ⌦ points antiparallel or parallel to t, then the local director field rotates in

the plane orthogonal to t, assuming the disclination profiles familiar from 2D nematics.

These configurations in which � is equal to 0 or ⇡ are said to have a local wedge winding

[Fig. 2.6]. If ⌦ is perpendicular to t, then � = ⇡/2 and the director forms a spatially

varying angle away from the orthogonal plane, locally creating what is called a twist

winding. Because ⌦ may point in any direction relative to t, both ⌦ and � can vary

continuously along a disclination line.

For disclination lines forming loops, ⌦ can vary continuously providing it returns

to its original orientation upon closure, leading to a broad range of possible winding

variations. A family of loops of particular relevance to 3D active nematics is characterized

by a spatially uniform ⌦, interpolating between two emblematic geometries: wedge-twist

and pure-twist loops. In the wedge-twist loop, ⌦ makes an angle � = ⇡/2 with the loop
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Figure 2.6: Cross-sectional structure of disclinations A local +1/2 wedge wind-
ing continuously transforms into -1/2 wedge through an intermediate twist winding.
The director field winds by ⇡ about the rotation vector ⌦ (black arrows), which makes
angle � with the tangent t, and which is orthogonal to director field everywhere in each
slice. For ±1/2 wedge windings, �=0 and ⇡. �=⇡/2 indicates local twist winding.
Reference director n0 (brown) is held fixed. The color map indicates angle �.

normal N [Fig. 2.7A]. As the disclination’s tangent t rotates by 2⇡ upon traveling around

the loop, the angle � varies from 0 (+1/2 wedge) to ⇡/2 (twist), to ⇡ (–1/2 wedge), then

back to ⇡/2, and finally returning to 0 [60, 61]. The pure-twist loop has ⌦ uniformly

parallel to N, so � = 0 and ⌦ is perpendicular to t (� = ⇡/2, twist profile) at all points

on the loop [Fig. 2.7B] [60, 62]. In this family of loops, the director just outside the

loop, nout, is also uniform. The lack of winding of both ⌦ and nout implies that both

wedge-twist and pure-twist loops are topologically neutral [63, 64].

Figure 2.7: Structure of wedge-twist and pure-twist disclination loops. (A)
The wedge-twist loop where local winding as reflected by angle � varies along the
loop. ⌦ is spatially uniform and forms an angle � = ⇡/2 with the loop’s normal,
N. Double-headed brown arrows indicate nout, the director just outside the loop.
(B) Pure-twist loop, with ⌦ both uniformly parallel to loop normal N (�=0) and
perpendicular to the tangent vector.
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2.4 Topology of experimental loops

Figure 2.8: Structure of disclination loops in experiments. (A) Structure of
wedge-twist disclination loops and (B) pure-twist disclination loops. Panels show the
director field’s winding in the corresponding cross-sections. Coloring of loops indicates
the angle �.

Experimental measurements of the director field allowed us to fully characterize the

topological structure of the disclination loops [Fig. 2.8]. Analysis of the director field

indicated that the distortion lines and loops have the ⇡ winding indicative of disclinations

[Fig. 2.3], with continuous variation of �, which indicates local winding. Furthermore,

most of the analyzed loops were well approximated by the family of curves where ⌦

and nout varied little along the loop circumferences. Categorizing loops according to

their � values revealed that the entire continuous family from wedge-twist [Fig. 2.8A] to

pure-twist [Fig. 2.8B] was represented, with the latter being more prevalent [Fig. 2.9].

Structural analysis revealed topological neutrality, as all 268 experimental loops and all

94 loops extracted from hybrid lattice Boltzmann simulations carried no charge. This

demonstrates that among many possible configurations, topologically neutral loops are

the dominant excitation mode of 3D active nematics. The same class of loop geometries

also dominated the dynamics in our numerical simulations of bulk 3D active nematics and

in confined active nematics [65, 66]. The phenomenology observed is a direct consequence
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of activity-induced flows and is insensitive to backflows induced by reactive stresses. This

conclusion is supported by the agreement of results from the mechanical model considered

in the hybrid lattice Boltzmann method and the purely kinematic Stokes method.

Figure 2.9: Distribution of loop types extracted from experiment (N=268) and hybrid
lattice Boltzmann simulations (N=94). | cos(�)| = 0 for wedge-twist loops and 1 for
pure-twist loops.

2.5 Loop nucleation dynamics

Figure 2.10: Nucleation mechanism for wedge twist loops (A) Schematic of
a wedge-twist loop and the director field in the plane that intersects ±1/2 wedge
profiles. (B) Nucleation and growth of a wedge-twist disclination loop through a
self-amplifying bend distortion. Purple rods represent the 2D director field through
the local ±1/2 wedge profiles.

In 2D active nematics, self-amplifying bend distortions give rise to the nucleation of

a pair of topological defects of opposite charge [51, 52, 37, 53, 54, 29, 55]. Nucleation
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of isolated, topologically neutral wedge-twist loops are the 3D analog of the 2D defect-

creation process. Specifically, a cross-section through the +1/2 and –1/2 wedge profiles

recalls unbinding of a pair of point disclinations in 2D [Fig. 2.10 A,B]. The +1/2 wedge

profile typically appears on the side of the growing bend distortion, oriented away from

the –1/2 wedge profile. Similarly, wedgetwist loops with the +1/2 wedge profile oriented

inward toward the –1/2 wedge are driven to shrink by active and passive stresses. Unlike

in 2D active nematics, after nucleation, the wedge profiles remain bound to each other

through a disclination loop that includes points with a local twist winding. It is possible

that some analyzed pure-twist loops have evolved from wedge-twist loops by continuous

deformation of local winding character. However, both simulations and experiments

showed cases of loop nucleation in nearly pure-twist (� ⇡ 0) geometries from previously

defect-free regions. Local active nematic stresses alone are not expected to drive growth

of a pure-twist loop [Fig. 2.11A,B]. One possibility is that long-range hydrodynamic

flows build up twist distortions that locally relax through creation of a pure-twist loop

[Fig. 2.11C].

Figure 2.11: Nucleation mechanism of pure-twist loops. (A) Schematic of a
pure-twist loop and the director field in the loop’s plane. (B) Experimental view of
pure-twist loop and director field in the loop’s plane. (C) A pure-twist disclination
loop nucleates and grows from a local twist distortion. Black arrows indicate the local
buildup of the twist distortion.
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2.6 Summary

By coupling a flow field to an orientational order parameter with curvilinear topolog-

ical defects, 3D active nematics display dynamics even more complex than the chaotic

flows of 2D active systems. Combined with emerging theoretical work [65, 66], the ex-

perimental model system described herein o↵ers a platform with which to investigate

the role of topology, dimensionality, and material order in the chaotic internally driven

flows of active soft matter. Furthermore, the use of a multiview light sheet imaging

technique demonstrates its potential to unravel dynamical processes in diverse nonequi-

librium soft materials, such as relaxation of nematic liquid crystals upon a quench or

their deformation under external shear flow [42, 67].
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ALLPS

Controlling interfaces of phase separating fluid mixtures is key to creating diverse func-

tional soft materials. Traditionally, this is accomplished with surface-modifying chemical

agents. Using experiment and theory, we study how mechanical activity shapes soft in-

terfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give

rise to giant interfacial fluctuations and non-inertial propagating active waves. At high

activities, stresses disrupt interface continuity and drive droplet generation, producing an

emulsion-like active state comprised of finite-sized droplets. When in contact with a solid

boundary, active interfaces exhibit non-equilibrium wetting transitions, wherein the fluid

climbs the wall against gravity. These results demonstrate the promise of mechanically

driven interfaces for creating a new class of soft active matter.

3.1 Introduction to system

Liquid-liquid phase separation (LLPS) is a ubiquitous phase transition, with examples

abounding throughout material science, biology and everyday life [68, 69]. Immiscible

liquid phases are separated by sharp, but deformable, interfaces that strongly couple to
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flows and the input of mechanical energy. For example, gentle shaking of an oil-water

mixture induces gravity-capillary interfacial waves, while more vigorous perturbations

break up the entire interface, reinitializing the phase separation [70, 71, 72, 73]. Active

matter provides an alternative method of continuously stirring a fluid [49, 74]. In such

systems, mechanical energy, inputted locally through the motion of microscopic con-

stituents, cascades upward to generate large-scale turbulent-like dynamics [29, 75, 58].

We study how active stresses and associated flows perturb soft interfaces and LLPS. Us-

ing experiment and theory, we identify universal features of active-LLPS, including giant

interfacial fluctuations, traveling interfacial waves, activity-arrested phase separation and

activity-induced wetting transitions. These results demonstrate how active matter drives

liquid interfaces to configurations that are not accessible in equilibrium. In turn, active

interfaces are elastic probes that provide insight into the forces driving active fluids, for

example by allowing for the measurement of the active stresses.

The active liquid interfaces studied here belong to a wider class of activity-driven

boundaries, that includes lipid bilayers, colloidal chiral fluids and interfaces between

motile and immotile bacteria in a swarm [76, 25, 77, 78, 79]. From a biology perspective,

LLPS has emerged as a ubiquitous organizational principle [69, 80]. How cytoskeletal

active stresses couple to self-organization of membraneless organelles remains an open

question. Studies of simplified systems can shed light on these phenomena. Relatedly,

active wetting plays a potential role in the development and shaping of tissues [81].

3.2 Materials and methods

To explore how activity modifies soft interfaces, we combined poly(ethylene-glycol)

(PEG) and polysaccharide dextran with stabilized microtubule filaments and clusters

of kinesin molecular motors. Above a critical polymer concentration, the passive PEG-
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Figure 3.1: Composition of active-LLPS (A) Coexisting PEG-rich (dark) and
dextran-rich (cyan) domains. (B) Labeled microtubules (red) are dispersed in the
dextran phase. Scale bar, 75mm. (C) Microscopic-scale depiction of phase separation.
Minority PEG polymers (gray) in the dextran-rich phase induce microtubule bundling.
(D) Kinesin clusters drive interfilament sliding.

dextran mixture phase separated [82]. Microtubules and kinesin clusters exclusively par-

titioned into the dextran phase, where depletion forces promoted microtubule bundling

[Fig. 3.1A-C]. Streptavidin-bound kinesin clusters (KSA) stepped along adjacent micro-

tubules within a bundle, driving interfilament sliding. The kinesin-powered bundle exten-

sions continuously reconfigured the filamentous network, generating large-scale turbulent-

like flows, similar to those previously studied [29] [Fig. 3.1D]. The PEG-dextran interfaces

were susceptible to large deformations by active stresses generated within the dextran

phase, due to their ultra-low interfacial tension (< 1 µN/m) [82].

3.3 Droplet coarsening is modified by activity

We first visualized the phase separation dynamics of active-LLPS in ⇠30 µm thick

horizontal microscopy chambers. In such samples, PEG-dextran interfaces had a nearly-

flat vertical profile [Fig. B.1]. The quasi-2D nature of the system was supported by a
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Figure 3.2: Coarsening dynamics of active-LLPS (A) Correlation length evolu-
tion, ⇠(t) for three KSA concentrations (Top). For 230 nM KSA, ⇠ plateaus at long
time (yellow highlight).(Bottom) Root mean square velocity of turbulent flows in the
dextran phase at 230 nM KSA. (B-D) Time series of the active LLPS at three KSA
concentrations. Scale bar, 350mm.

nearly constant area fraction of the PEG-rich domains [Fig. B.2]. In a passive system

with microtubules but no kinesin motors, the droplets coalesced slowly [Fig. 3.2B]. The

addition of motors altered the coarsening kinetics. At intermediate KSA concentrations,

active flows powered droplet motility, which increased the probability of droplets en-

countering each other and coalescing, thus speeding up coarsening dynamics [Fig. 3.2C].

Higher KSA concentrations accelerated buildup of interfacial fluctuations leading to an

entirely di↵erent dynamical state where droplets incessantly fused and fissioned with each

other [Figs. 3.2D, 3.3].

To quantify the influence of activity on the PEG-dextran phase separation, we mea-

sured the equal-time two-point correlation function C(�r, t) = hI(r + �r, t)I(r, t)ir,

where I = 1 in the dextran phase and �1 otherwise [Fig. B.3]. Spatial correlations

decayed over a length scale ⇠, defined by C(⇠) = 0.5, which is comparable to the average

droplet size [Fig. B.4]. For passive samples, ⇠ increased slowly in time [Fig. 3.2A (top)].

Enhanced coarsening at intermediate KSA concentration was reflected by a much faster

initial growth of ⇠ than the passive case. At high motor concentration, ⇠ peaked at ⇠ 1
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Figure 3.3: Fusion (top) and fission (bottom) of PEG droplets. Sample chamber
thickness, 30mm. Scale bar, 100 µm.

hour and subsequently decayed to a finite plateau, ⇠steady. In parallel, average interface

curvature  monotonically grew, reaching su�cient large value to cause droplet fission

[Fig. B.5]. The steady-state lengthscale ⇠steady, was maintained by the balance of droplet

fission and fusion events, where ⇠steady was comparable to the inverse of the average inter-

face curvature steady. Concomitantly with the plateauing of ⇠, active flow speed became

constant [Fig. 3.2A (bottom)]. These results demonstrate activity-suppressed coarsening

dynamics, which created an emulsion-like state wherein finite-sized droplets continuously

merge, break apart and exchange their content [Fig. 3.3]. The volume fraction of the

active and passive phases were nearly equal [Fig. B.2]. Low volume fraction of active

fluid generated similar steady states. Finite-sized domains are reminiscent of theoretical

prediction in motility-induced-phase-separation of isotropic active particles [83]. How-

ever, in contrast to theory, the active fluid in our experiments is anisotropic and perturbs

an underlying equilibrium phase separation.

3.4 Active stresses drive interfacial fluctuations

To gain insight into how active stresses drive interfacial fluctuations we formed a

macroscopic interface by gravity-induced bulk phase separation [Fig. 3.4A]. In equilib-
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Figure 3.4: Configuration of fluctuation experiments. (A) Schematic of chamber
in fluctuation experiments. The active dextran phase sediments below the passive
PEG phase. (B) Example of a time series of fluctuations typically seen in experiment.

rium, molecular motion works against the density di↵erence �⇢ and interfacial tension �

to roughen the liquid-liquid interface. Typical disturbances of PEG-dextran interfaces,

bereft of activity, are ⇠ 100 nm in amplitude, resulting in boundaries that appear flat

when viewed with our imaging setup [Fig. 3.4B]. When driven out of equilibrium, how-

ever, interfaces exhibited giant undulations that were visible by naked eye. As motor

concentration increased, interfaces became multivalued with frequent overhangs, indicat-

ing that active stresses directly control interface configurations [Fig. 3.5A].

Figure 3.5: Fluctuations of the interface with increasing KSA concentration.
(A) Conformations of bulk phase–separated interfaces with increasing motor (KSA)
concentration. ✓(s) defines the local interface tangent angle as a function of arc length.
Chamber thickness, 60 µm. Scale bar, 150mm. (B) ✓ power spectra obtained by
averaging over 3-mm interface length, 6 to 8 hours after sample preparation. (Inset)
Root mean square ✓ versus KSA concentration.
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The interplay of activity and capillarity is clarified by measuring the interfacial fluc-

tuation spectrum. To this end, local interface tangent angles ✓(s, t) were sampled at a

time t as a function of the arc-length distance s along the interface [Fig. 3.5A]. Inter-

facial fluctuations were described by time-averaged power spectra S(k) = h|✓k|2it, with

✓k =
R
ds ✓(s, t)e�iks. Due to equipartition of thermal energy among Fourier modes,

the spectrum of equilibrium interfaces is S(k) ⇠ Tk2/(k2 + k2
c ), where T denotes tem-

perature . The capillary wave-number kc =
p

�⇢g/�, sets a crossover from a gravity

dominated regime at large scales S(k) ⇠ k2 to a plateau at small scales where surface

tension attenuates fluctuations. Active interfacial fluctuations were markedly di↵erent.

Active spectrum S(k) increased for small wave-numbers [Figs. 3.5B]. After reaching a

maximum for km ⇠ 30mm�1, it decayed as S(k) ⇠ k�3, instead of plateauing as in

equilibrium. While the shape of S(k) remained the same for all KSA concentrations, the

root-mean-square tangent angle ✓rms increased linearly with activity [Fig. 3.5B, inset].

Using the crossover at km as a determinant of the fluctuation amplitude, it would take

an e↵ective temperature of ⇠ 1011K to achieve equilibrium interfaces whose roughness

is comparable to those measured at the lowest activities.

3.5 Activity produces propagating waves

The dynamics of activity-driven interfacial fluctuations exhibit non-trivial spatiotem-

poral correlations. To gather su�cient statistics, we imaged ⇠10 mm-long active inter-

faces over a 2 hour interval [Fig. 3.6A]. Space-time maps of local interface height h(x, t)

exhibited diagonally streaked crests and troughs that were suggestive of propagating

waves [Fig. 3.6B]. To characterize these modes, we measured the dynamic structure fac-

tor (DSF) of the interface height D(k,!) =
R
dxdt eikx+i!t

hh(x0, t0)h(x0 + x, t0 + t)ix0,t0

[Fig. 3.6C]. Over a finite range of wave numbers, the DSF exhibited peaks at finite fre-
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Figure 3.6: Activity generates interfacial waves (A) Example of a single interface
configuration used to calculate the dynamic structure factor. (B) Space-time map of
h(x). Disturbances propagating along the interface (dashed lines). Interfaces were
corrected for drift and tilt. (C) The square-root DSF averaged 4 to 6 hours after sam-
ple preparation. Maximum lag distance, 1000 µm; maximum lag time 1800 sec. (D)
DSF sections at constant wave-number (colored dots). Black lines are best approxi-

mations with F (!) = a
�
(!/!1)2 + 1

��1
+ b

h�
(!/!0)2 � 1

�2
+ (!�!/!2

0)
2
i�1

, where

a, b,!1,!0,�! are adjustable parameters. Data taken over 2-4 hours after sample
preparation. Inset: Frequency peaks !p =

p
!2
0 ��!2/2 overlayed on DSF intensity

(full line). DSF maxima for constant ! (dashed line). For (A-D), KSA concentra-
tion, 270 nM. (E) Peak frequencies of the propagating modes !p (full symbols). DSF
maxima at constant frequency sections (empty symbols).

quencies !p, confirming the presence of propagating modes [Fig. 3.6D]. Increased KSA

concentration resulted in higher !p for the same wave-numbers; thus, activity controlled

the phase velocity [Fig. 3.6E].

The giant non-equilibrium fluctuations and propagating wave modes result from the

interaction of active flows in the bulk dextran phase with interfacial elasticity. To eluci-

date the processes driving active interfaces, we numerically integrated 2D hydrodynamic

equations that describe a bulk-phase-separated active fluid [84, 85]. The two coexisting
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phases were modelled as incompressible Newtonian fluids under gravity that experience

confinement friction in the low Reynolds number limit. The top phase was passive, while

the velocity of the bottom phase v was governed by

�vv� ⌘r2v = �rP +r · � , (3.1)

with P the pressure, ⌘ the viscosity, and �v the confinement friction. The stresses �

driving the flows were assumed to be generated by an active liquid crystal producing

extensile active stresses, �a = ↵Q, with ↵ < 0.. The local orientational order was

quantified by a traceless tensor Qij = hn̂in̂j � �ij/2i averaged over molecular orientations

n̂. Active shear flows engendered orientational order via flow-induced alignment. These

assumptions are summarized in the continuum equation

DQ

Dt
+ [!,Q] = �u+

1

�Q
H , (3.2)

with ! the vorticity tensor, u the strain rate and � the flow alignment parameter. H

denotes elastic forces that arise from the liquid crystal free energy, and �Q the rotational

viscosity of microtubule bundles. In the absence of activity the liquid crystal is in the

isotropic phase, consistent with the microtubule density used in experiments.

The hydrodynamic model reproduces key experimental observations. Finite-sized

chaotic flows, driven by active stresses, continuously deform the liquid-liquid interface

[Fig. 3.7A]. Similarly to experiments, the interfacial power spectra showed a crossover

between growth at small wave-numbers and decay at large wave-numbers, while the

root-mean-square tangent angle increased linearly with |↵| [Fig. 3.7B]. The numerically

obtained DSF also exhibited signatures of active travelling waves [Fig. 3.7C-E], as in the
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Figure 3.7: Numerical hydrodynamics of active interfaces. (A) Phase boundary
(cyan) separating a passive fluid (black) and the active phase, depicted with local order
parameter (grayscale) and orientation (red lines). Scale bar, 100 µm. (B) ✓ power
spectra. Simulation interval, 2 mm. Correlation maximum lag distance, 400 µm.
Inset: Root-mean-square ✓ vs. |↵|. (C) Square root DSF. |↵| = 40mPa. Maximum
lag time, 270 sec. Maximum lag distance, 670 µm. Total simulation time, 3 hours.
Simulation interval, 2 mm. (D) Constant wave-number sections of DSF intensity(filled
circles). Best approximations F (!), as in Fig. 2E (black lines). |↵| = 20 mPa. Inset:
!p(k) overlay on DSF intensity (full line). DSF maxima for constant ! (dashed line).
(E) Peak frequencies of the propagating modes !p (full symbols). DSF maxima for
constant ! (empty symbols).

experiment. The wave frequencies !p(k) increased with activity, showing active-stress-

dependent wave velocity. Our numerical model also suggests a non-inertial mechanism of

active waves [76], which di↵ers from conventional inertia-dominated capillary waves [86,

87]. In the context of our hydrodynamic model, the active waves arise from the coupling

between the interface vertical displacement h and orientational order Q in the interfacial

region [85]. Stress balance at the interface predicts that the orientational order drives

interfacial deformation as @th ⇠ va? ⇠ ↵Q, where va? is the active contribution to the

flow velocity normal to the interface. In turn, passive flows vp? relaxing the interface

at a wave-number dependent rate ⌫(k) feed back to induce local liquid crystalline order
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@tQ ⇠ �ikvp? ⇠ �⌫(k)h. Consequently, interface height obeys a wave equation @2t h ⇠

�↵⌫(k)h. Accordingly, travelling wave velocities increase with active stress, which is in

agreement with both experiments and numerics.

Propagating waves might be a generic feature of active boundaries [76, 25]. More

broadly, the active-stress-dependent wave dispersion mirror those of elastic waves in

entangled polymers solutions [88]. While the numerical hydrodynamics reproduced qual-

itative features of the experimentally observed active fluctuations and waves, there were

important quantitative di↵erences. In particular, with increasing activity, numerics pre-

dict increase in both interface fluctuations and bulk velocity. In contrast, in experiments

active flows remain constant between 200 and 350 nM KSA, while interfacial fluctuations

increase [Fig. B.9]. Moreover, in numerics, the maximum wave-number km increased

with activity, while remaining constant in experiments [Figs. 3.5B, 3.7B, B.10].

3.6 Activity induced wetting at a hard wall

To demonstrate the unique properties of active interfaces, we studied their structure

next to a solid boundary [Fig. 3.8 A,B]. In the absence of motors, the interface assumed

an exponential profile h / e�x/`e with a decay length of `e ⇠ 45 µm, which we identified

with the capillary length `c =
p
�/�⇢g. At the wall, the rise in the interface height

was ⇠ 70 µm, which is close to the maximum capillary rise of
p
2`c, indicating complete

wetting B.7.1. At intermediate KSA concentrations, the capillary rise exhibited active

fluctuations around the equilibrium exponential height profile, and the time-averaged

center-of-mass height of the wetting region increased slowly [Fig. 3.8C]. Above a critical

value of 300 nM KSA, activity generated a new interfacial structure. Specifically, we

observed formation of a ⇠20 µm thick dynamical wetting layer, which climbed several

hundred microns above the equilibrium capillary rise [Fig. 3.8A]. Within this layer,
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microtubule bundles preferentially aligned with the wall [Fig. 3.8B]. Coinciding with

the appearance of the microtubule-rich wetting layer, the capillary rise sharply increased

[Fig. 3.8C]. These observations demonstrate an activity driven wetting transition beyond

the complete wetting of a passive fluid.

Figure 3.8: Active wetting transition. (A) Active fluid wetting on a polyacry-
lamide-coated vertical boundary at three KSA concentrations. Scale bar, 50 µm.
(B) Confocal image of wetting layer aligned with acrylimide-coated wall. (C) Aver-
age center-of-mass height of active fluid within 5`e of the vertical boundary, where
`e = 45µm. Zero height is defined as the average bulk interface position. Each point
is the mean of two experiments. Uncertainty in sample preparation is indicated with
horizontal bars.(Inset) Average wetting height profiles as a function of distance from
the vertical boundary. KSA concentrations, 180 nM (blue) to 270 nM (red). Black
line indicates ⇠ e�x/`e .

We performed numerical simulations of the active-interface adjacent to a vertical

boundary. The liquid crystal director was anchored parallel to the wall, and the surface-

liquid energy �w corresponds to an equilibrium contact angle 10� [Fig. 3.9A]. Similar to

experiments, the average height profile had an exponential decay [Fig. 3.9B, inset]. As

the activity ↵ increased from zero, the height of the contact point increased. Furthermore,

above |↵| = 10 mPa, the active fluid generated a thin wall-adjacent layer, indicating a

transition from partial to complete wetting [Fig. 3.9A]. The capillary rise was supported

by a `w ⇠ 3µm thick, vertically aligned liquid crystalline domain with Q ⇠ 1. This

domain generated coherent active stress along the wall �a = ↵, which supported the

interface rise. Balancing the active tension �a ⌘ |�a
|`w at the contact point with wall
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adhesion �w, surface tension � cos ✓a, and gravity Fg resulted in a boundary condition for

the climbing interface [Fig. B.7.3] [B.7.2],

|�a
|`w + �w = � cos ✓a + Fg . (3.3)

Predictions of the center-of-mass height of the capillary rise, using Eq. 3.3, show a

crossover from slow to fast growth at ↵ = 10 mPa which is in agreement with the partial

to complete wetting transition seen in simulations [Figs. 3.9B, B.12].

Figure 3.9: Active wetting transition in simulation. (A) Wetting profiles from
numerical simulations. Equilibrium contact angle, ✓e = 10�. Interface position (cyan).
Scale bar, 50 µm. Inset: Local liquid crystalline orientation (red lines). (B) Cen-
ter-of-mass height of the numerical wetting profile. Red line, prediction of Eq. 3.3
with lw = 2.5µm. Onset of complete wetting (blue arrow). Inset: Average numerical
wetting profiles. Activities, 10 (blue) to 40 (red) mPa.

3.7 Measuring active stress

Active interfaces provide a unique experimental probe to estimate the magnitude

of the active stress, a critical parameter that governs dynamics of active fluids. To

avoid resorting to various assumptions on the numerical model, we analytically solved

Eq. 3.1 treating the stress � as a random field with correlations h�ij(r, t)�ij(0, 0)i =
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�2
rmse

�|r|/`a�|t|/⌧a , where correlation length `a and time ⌧a are identified with those of

the bulk active flow [Fig. B.13]. The analytical model captured the interface fluctua-

tions spectrum S(k) without fitting parameters, revealing that its non-monotonic shape

resulted from active flows with scale-dependent kinetic energy spectrum [Figs. 3.10A,

B.10, Eq. B.32] [89]. In contrast, fluctuations of equilibrium interfaces are driven by

thermal energy ⇠ kBT that is equally distributed among all scales. By integrating S(k)

over all wave numbers, the active stress is predicted to increase proportionally to tangent

angle fluctuations �rms = p✓rms, with p ' 9 mPa/rad [Fig. 3.10B, Eq. B.35].

Figure 3.10: Measurement of the active stress (A) The normalized tangent power
spectrum for a 200 nM KSA sample (circles), plotted with the hydrodynamic pre-
diction from equation B.35 (dashed line). (B) �rms estimate from the interfacial
fluctuations (circles) plotted with the active stress estimate from active wetting.

To independently verify these numbers we note that the force balance Eq. 3.3, as-

sociated with active wetting, provides an alternative method of estimating active stress.

For intermediate KSA values, prior to the appearance of the active wetting layer, the

active stress estimated from wetting is comparable to those extracted from interface fluc-

tuations [Fig. 3.10B]. Above 300 nM KSA, active stresses are a few times larger than

those obtained from interface fluctuations. These large values might be a consequence

of flow-enhanced alignment of microtubule bundles within the thin wetting layer. The

formation of the active wetting layer at finite activity, however, is outside the scope of the

static stress balance embodied in Eq. 3.3. A more complete description of the wetting
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transition would include dynamical considerations, such as active wave propagation and

gravitational sedimentation, that appear to be essential for the formation and turnover

of the wetting layer.

3.8 Summary

In summary, we demonstrated a rich interplay between active fluids and soft de-

formable interfaces. On the one hand, liquid interfaces provide a quantitative probe that

can reveal intrinsic properties of the active fluids, such as active stress. On the other hand,

bulk active fluids drive the extreme interfacial deformations that yield intriguing non-

equilibrium dynamics, including arrested phase separation, stress-dependent non-inertial

propagating waves and activity-controlled wetting transitions. Our findings provide a

promising experimental platform to design shape-changing adaptable soft materials and

machines whose capabilities begin to match those observed in biology [90, 91, 92].
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Chapter 4

Vesicle formation

4.1 Introduction

A remarkable feature of lipid membranes is the ability to undergo dramatic topologi-

cal transformation with little energetic cost. A foundational example of such topological

change is vesicle formation, where a locally flat membrane curves, budding o↵ a spher-

ical vesicle. Vesicles formed by budding processes are essential to cellular mechanics,

facilitating transport within the cell and compartmentalizing the cytoplasm. Although

of fundamental importance, studying vesicle formation in lipid bilayers is di�cult due

to the short length and time scales associated with vesicle closure, precluding direct vi-

sualization of the mechanics of budding with the resolution necessary to test physical

mechanisms. Understanding these dynamics is critical, both to gain an understanding of

membrane physics and for its relevance to biological and engineered systems.

An alternate candidate for studying the physics of membrane closure is colloidal mem-

branes. Colloidal membranes are composed of filamentous phages, which are semi-flexible

rod-like viruses that are several nanometers in diameter and hundreds of nanometers

long [12]. In the presence of salt to screen electrostatic charges, and a depleting poly-
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mer, phages align and self-assemble into structures. Within a range of salt and depletant

concentration, filamentous phages form monolayer membranes having a thickness approx-

imately equal to the length of the virus, and with an average particle spacing of several

nanometers [Fig. 4.1A,B] [14]. These 2D fluid sheets have an identical energy functional

as lipid membranes [14, 16, 15, 93], but are hundreds of microns in diameter and deform

on length and time scales several orders of magnitude larger than lipid membranes. With

few exceptions [17, 18], colloidal membranes appear in a flat disk-like configuration that

minimizes the energy. In this chapter we detail the modification of the phage to form

membranes that favor closed vesicle formation, and use these membranes to understand

mechanistic pathways of vesicle closure and disassembly. The long time and length scales

associated with colloidal vesicle formation, enables direct study of the energy landscape

an how it relates to the observed shape change of the vesicle.

Figure 4.1: Stability of flat disks vs edgeless vesicles. Both (A) Wild-type
M13 and (B) Litmus align and assemble into membranes whose thickness is set by
the rod length. (C) Phase diagram of membrane thickness and area showing where flat
membranes (white) or closed vesicles (gray) are favored in experiment. The shaded
region is a metastable region. The vertical lines corresponds to M13 membranes (red)
and Litmus membranes (cyan).
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4.2 Background

The size and composition of colloidal membranes make them ideal for studying the

physical principals of models that underpin our understanding of membranes. By lever-

aging genetic engineering techniques, previous work has altered the physical properties of

phage particles, modifying the length [94], chirality and rigidity [12]. Membranes made

from mixtures of phage types has enabled study of processes like membrane raft forma-

tion, where domains of small rods separate from the membrane to form circular domains

[18], a process known to be important in cellular membranes [95]. Similarly, changes in

phage structure can alter the energy landscape of the assembled membranes, producing

structures like ribbons, catenoids and sponge phases [96, 17]. Aside from these few ex-

ceptions, colloidal membranes assemble as flat sheets that minimize curvature energy.

However, lipid membranes most often appear as closed vesicles. Assembling colloidal

vesicles would provides an unique opportunity to study the topological transformations

that underpin closure of lipid membranes.

The Helfrich Hamiltonian provides theoretical insight into the vesicle to disk transi-

tion, considering only the curvature and edge tension terms [97, 98]:

E = �

Z
dL+

c
2

Z
(2H)2dA (4.1)

where c the mean curvature modulus and �, the edge tension. In this approximation,

we have ignored the Gaussian curvature, as the Gaussian bending modulus is generally

much smaller than the mean bending modulus in colloidal membranes [16]. To estimate

membrane stability, we consider the energy of both a flat membrane and a closed spherical

vesicle. A flat membrane has no bending energy contributions

Emem = 2⇡R� (4.2)
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while closed spherical vesicle does not have an edge tension energetic contribution, but

has a bending energy of

Evesicle = 8⇡c. (4.3)

The flat membrane conformations is favored over the closed vesicle when Evesicle > Emem,

which occurs when

A⇤
� 4⇡(2

c
�
)2. (4.4)

For membranes larger than this area, the curvature energy of the vesicle configuration

becomes smaller than the line tension of a flat disc, favoring the formation of a closed

vesicle [Fig. 4.1C] [14]. To decrease A⇤, we recognize that both � and c depend on the

viral length, l, with � / l and c / l3, so that R⇤
/ l2 [98]. This strong dependence on

viral length predicts that shortening the virus will dramatically increase the likelihood

of forming closed colloidal vesicles.

Analogous work studying the disk to vesicle transition has been preformed in molecu-

lar dynamics simulations of lipid bilayers. Flat bilayers that are initialized as a spherical

cap, will close into a vesicle with a probability dependent on both the area and curvature

moduli [99]. More detailed analysis has correlated bilayer thickness and sti↵ness with

spontaneous curvature and the critical area to form a vesicle [100]. However, these anal-

yses also reveal that vesicle closure is expected in lipid bilayers with a radius of ⇡ 20nm,

far below the resolution of optical microscopes.
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4.3 Colloidal vesicles take on an energy-minimizing

shape

We will begin by studying the shape of static colloidal vesicles. First, will form closed

colloidal vesicles, and image their three-dimensional structure. We will then extracting

the surface that contours the vesicles from the raw images. Finally, we will compare the

vesicle surface with shapes predicted by minimizing the Helfrich Hamiltonian. This will

serve as an initial test of whether colloidal vesicles can be described using the Helfrich

Hamiltonian, and therefore whether they behave like lipid vesicles.

To form colloidal vesicles, we used the 385 nm long phagemid Litmus 38i [101] to

make membranes. We found that the single substitution of a shorter phage was su�-

cient to produce colloidal vesicles. After making samples according to C.1.1, we found

vesicles resting on the bottom of the chamber. Using spinning-disk confocal microscopy,

we recorded the three-dimensional shape of the resulting vesicles [Fig. 4.2A]. Vesicles

were only imaged if they were not in contact with other membrane structures and were

therefore axisymmetric [Fig. 4.2B]. Such vesicles can be completely described by their

cross-sectional contour [Fig. 4.2C]. We observed a wide distribution of colloidal vesicles

shapes and sizes, with diameters ranging from ⇡ 100 µm to ⇡ 350 µm. Small vesicles

were usually found to be nearly spherical is shape [Fig. 4.2D,E], while larger vesicle

would often sag in the middle [Fig. 4.2F].

To describe the shape of experimentally observed vesicles, we use an axisymmetric

parameterization r(s) and z(s), for arclength s, which simplifies the energy of the vesicle

E =

Z
(
c
2
(2H)2 + ̄G+ �gz + µ)rds+ P

Z
r2 cos�ds (4.5)

where � is the arial density, g is the gravitational constant, ̄ is the Gaussian modulus,
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Figure 4.2: 3D images of colloidal vesicles (A) A typical Litmus vesicle seen in
experiment. (B-C) Cross sections of this vesicle with overlaid coordinate system.
(D-F) Renderings of several vesicles showing the variation of vesicle size and shape
observed in experiment.

G is the Gaussian curvature, µ is a Lagrange multiplier to enforce a constant area and P

is a Lagrange multiplier to enforce a constant volume. Term P is a pressure, accounting

for the possibility that a closed vesicle may be inflated or deflated. The possibility for a

vesicle to remain inflated or deflated is due to the several nanometer spacing between viral

rods [16]. Pores of this size would easily allow the volume to change by exchanging water

with the surrounding fluid, but the dextran, with a radius of gyration of 20 nm, cannot

be exchanged through the vesicle [102]. Once the vesicle is closed, it is prevented from

changing its volume, since inflating of deflating would alter the concentration of dextran

inside the vesicle, producing an osmotic pressure di↵erence across the membrane.

Taking the deviation of the energy functional in r, z and  leads to several Euler-

Lagrange equations. These equations transform into a set of eleven first-order ordinary

41



Vesicle formation Chapter 4

Figure 4.3: Numerical solutions for closed vesicles. (A) Predicted curves with
varying ↵ values with Ṽ = 1. (B) Predicted curves varying Ṽ with fixed ↵ = 40.

di↵erential equations that are solved numerically C.6. In this model, the shape of the

vesicle is set by two adjustable dimensionless parameters ↵ = A(�gc )
2/3, and Ṽ = V

V0
,

where A and V are the area and volume and V0 is the volume at P = 0. Small ↵ values

correspond to vesicles having a small area. In this limit, the vesicle shape is dominated

by the curvature energy and is roughly spherical. At large ↵ values the gravitational

energy significantly a↵ects the vesicle shape, causing them to sag under their own weight

[Fig. 4.3A]. Similarly, Ṽ alters the vesicle shape from sagging deflated vesicles at small

Ṽ to contours that are inflated and rounded at large Ṽ [Fig. 4.3B].

Our model predicts that the vesicle shape is completely defined by c, the surface

area and the volume of each vesicle. We will measure these quantities to predict the

vesicle shape, and overlay with the experimental images. Since, the equations do not

have any adjustable parameters, comparing the predicted shape with the images will

serve as a rigorous test for our model. The area and volume are measured directly after

converting the confocal images into a mesh, as described in C.1.4. The bending modulus

c was measured by fitting the out-of-plane fluctuation spectrum of flat membranes[97],

as described in C.2.3. The value of c was found to be 11000 ± 1000kBT is four orders

of magnitude larger than the typical bending modulus of a lipid bilayer [103, 104] and

consistent with previous measurements of fd-wt membranes [16]. Since c / l3, it is
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Figure 4.4: Comparison of predicted shape with experimental vesicles (A-C)
Examples of cross sections of observed vesicles using measured values of c, V and A.

Scale bar 80 µm (D) hd2i
A value of vesicle fit and Ṽ for N=42 vesicles. (E) Histogram

of V 1/3 for all 42 vesicles in experiment, with red dashed line showing the average.

unsurprising that thick colloidal membranes have a large bending modulus.

After determining all necessary parameters experimentally, we compare the vesicle

cross sections with the predicted vesicle shape. We imaged 42 isolated vesicles, converted

each into a mesh and measuring the area and volume. We then solved the numerical

equations for each vesicle, an overlaid the predicted contours over a cross section of the

vesicle [Fig. 4.4A-C]. The contours predicted by the Euler-Lagrange equations fit well

over the experimental data, with no free fitting parameters. This demonstrates that the

shape of vesicles minimizes the energy, given a fixed volume and area. To measure the

goodness-of-fit between the predicted contour and the exact shape of the vesicle cross

sections we detected the bright region of the image using a standard active contouring

scheme. The fit for each vesicle in experiment was characterized by the average squared

distance between the predicted contour and the actual contour, hd2i normalized by the

total area of the vesicle. The normalized squared distance between curves averaged across

all vesicles was hd2i
A = 0.015 with the largest value being max( hd

2i
A ) = 0.05 [Fig. 4.4D].

Plotting Ṽ s a function of vesicle volume, one notices that large vesicles tend to be

underinflated, while smaller vesicles are not [Fig. 4.4D], measured across a wide range

of vesicle [Fig. 4.4E]. This demonstrates that the volume term is essential to describe

colloidal vesicle shape.
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4.4 Dynamics of gravity-assisted vesicle formation

Figure 4.5: Snapshot of entire chamber, showing both pendent membranes and closed
vesicles at the chamber bottom.

We observe colloidal vesicles that form after being suspended from the top of the

chamber. However, the analysis in section 4.2 does not take into account gravitational

energy, and so will not accurately describe the vesicle formation observed here. We find

the formation of colloidal vesicles is a two step process. The first step is an hours-long

elongation from a curved membrane into a tube-like membrane. The second more rapid

step, is initiated by a small crack near the attachment point with the top surface. Just

after inverting the chamber, curved pendent-shaped membranes were found suspended

from the upper chamber surface [Figs. 4.5, 4.6A]. These membranes had attachment

points with the top glass surface, preventing them from immediately sedimenting to the

bottom of the chamber. The suspended membranes had di↵erent extension and shapes,

which slowly evolved over time.

We seek to explain these pendent membranes, using a similar framework as before.

To predict the membrane shape, we solved the the Euler-Lagrange equations associated
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Figure 4.6: Shape of pendent membranes. (A) Cross sections of several pendent
membranes at single time point with predicted fit. (B) Predicted vesicle shape at
Ṽ = 1 with varying values of ↵. (C) Vesicle shape at ↵ = 33 with variable Ṽ .

with a pendent membrane C.3.3. These equations are identical to closed vesicles, with

alternate boundary conditions to account for the opening at the top. Solving these

equations predict a family of shapes as a function of ↵ and Ṽ . With increasing ↵,

associated with a larger area, pendent membranes become more elongated [Fig. 4.6B].

Altering Ṽ changes the volume inside the pendent membrane, making the contour thin

and elongated at small Ṽ , or rounded and retracted at large Ṽ [Fig. 4.6C]. Similar to

closed vesicles, the area and volume completely define the membrane shape.

To predict the shape of the pendent membranes, we extract the mesh from the raw

images. The area and volume were measured from these meshes for each membrane. The

predicted shapes were plotted over the images and found to match the experimentally

observed shape well, with no fitting parameters [Fig. 4.6A]. This shows that, similar

to the above-described vesicles, the pendent membranes also minimize the energy for a

given area.

It is surprising that the shape of pendent membranes agree with an energy minimizing

contour, considering pendent membranes are not static, but slowly extend under gravity.

The slow dynamics of the colloidal membranes allow the 3D shape of pendent membrane
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to be visualized over several hours. Pendent membranes were observed to extend to the

chamber bottom, stretching hundreds of microns [Fig. 4.7A], while others stabilized at

a finite length [Fig. 4.7B].

To understand the observed extension dynamics of these pendent membranes, we

first modeled them as a viscous cylinder that extends under gravity. As a simple

model, we can consider the pendents to be a viscous cylinder with thickness d, ra-

dius rt and length l(t). For an extension rate of l̇, the viscous dissipation is Ė =

⌘m
R
(rV )2d3x = 4⇡⌘mrd

l̇
l . The bending and gravitational energy of a cylindrical mem-

brane is E = b
2

R
(2H)2dA+��g

R
zdA = ��gA l

2 +
2bl2⇡2

A . Setting the time derivative

of the energy equal to the viscous dissipation, gives l̇ = ��g
4⌘md l

2 + 2b⇡2

A2⌘md l
3. Inputting ex-

perimentally measured numbers into this equation, we find that a viscous cylinder will

extend from l = 200 µm to l = 800µm in ⇡ 20 s, which is several orders of magnitude

faster than is seen in experiment [Fig. 4.7C]. This suggests the existence of an alternate

mechanism that controls the extension rate.

To understand the extension of pendent membranes, the area and volume of the pen-

dent membranes were tracked over time [Fig. 4.8B]. We calculated fits of the pendent

membranes, using the measured area as an input parameter and the volume as a fitting

parameter. The resulting contours overlay the raw images well, indicating that through-

out the extension process, the pendent membrane minimizes energy [Fig. 4.8A]. We note

that Ṽ ⇡ 1 throughout pendent extension, indicating that pendant membranes extend

by recruiting material to increase their surface area, while extending slowly enough to

maintain zero pressure and minimize their energy throughout extension [Fig. 4.8C]. The

pendent membranes maintain this zero pressure state by exchanging dextran with the

surrounding fluid through opening at the top. These membranes also have a relatively

short time scale associated with shape relaxation when compared with the hours-long

extension time, giving them time to relax their to their energetic minima throughout
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Figure 4.7: Time series of pendent membranes. (A) Pendent membrane ex-
tending toward chamber bottom. (B) Pendent membrane that stabilizes after a finite
time. (C) Rates of falling for both membranes.

the extension process. In this way pendent membranes pass through a series of energy

minimizing surfaces as they recruit material, extending toward the chamber bottom.

In the second regime of vesicle formation, the membrane tears away from the top

surface of the chamber before forming a closed vesicle [Fig. 4.9A]. Initially, a small crack

forms near the attachment point where gravitational stresses are largest, which propa-

gates downward. This crack remains roughly parabolic when small, but as it propagates,

the tear unwraps the pendent neck, leaving a flat tether connecting the extending mem-

brane to the top of the chamber. The membranes continue extending to the bottom of

the chamber for several millimeters, driven by the stretching of this tether, before reach-

ing chamber bottom. The membrane then remains attached to the top of the chamber

by this tether, holding a single pore of the membrane open. Within several hours, the

tether continues to thin, eventually snapping and pulling away from the vesicle. The

pore then rapidly closes, leaving an isolated vesicle at the chamber bottom [Fig. 4.9B].
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Figure 4.8: Pendent membrane extending over several hours (A) Cross sec-
tions of membranes with predicted profiles overlaid. (B) The surface area and volume
of this membrane increases throughout extension, while (C) Ṽ remains near 1.

The two relevant time scale associated with this pore closure are the time associated

with vesicle closure and the time associated with the exchange of dextran to reduce the

pressure across membrane. We hypothesize that the magnitude of these time scales is

similar and that explains the deviation from Ṽ = 1 observed in closed vesicles. Since

large vesicles take more time to exchange dextran with their surrounding, they are most

likely to deviate from Ṽ = 1.
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Figure 4.9: Pendent membranes tear before extending. (A) Time series of
membrane after tear forms. (B) Tether pulling away, leaving a closed vesicle. Scale
bars 100 µm

4.5 Kinetic pathways of vesicle disassembly follow

the energy landscape

So far, we have described the equilibrium shape of colloidal vesicles and the gravity-

assisted process that leads to their formation. In this section, we will induce continuous

shrinking of closed vesicles. Elastic energy arguments demonstrate that, below a critical

size, closed vesicles become unstable and will transform into a flat sheet 4.1. This opens

the possibility to track the dynamics of vesicle disassembly.

To probe the phenomena of vesicle disassembly into a flat membrane, we formed

colloidal vesicles as before. Subsequently, we used a dialysis chamber to reduce the

salt concentration in the sample, thereby reducing the electrostatic screening between

phages [Fig. C.5]. The increased electrostatic repulsion between the particles caused

their evaporation from the 2D membrane surface into the background solvent. The
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consequence of this is a continuous reduction in the vesicle area.

Throughout the reduction of vesicle area, we observe two stages of vesicle disassembly.

In the first stage, transient pores nucleate on the surface of the vesicle [Fig. 4.10A].

These pores remain open for several minutes before closing again. The transient pore

formation is indirectly caused by the area decrease of the vesicles. As the vesicles shrink,

dextran is concentrated inside, since vesicles are impermeable to the 500 kDa dextran.

Consequently, there is a buildup in the pressure di↵erence between the inside and outside

of the vesicle. This pressure di↵erence increases the surface tension, which allows for the

nucleation of the pore. The dextran is then able to escape through this open pore,

equilibrating the pressure and allowing the pore to reseal.

With continued shrinking, one approaches the limit of vesicle stability. At this critical

area, the pores do not close again, but remain open throughout the remainder of vesicle

shrinking. This is the second stage of vesicle disassembly. With continued shrinking,

one pore remains open, and the vesicle takes on a bulbous shape. This is followed by

the opening of a second pore which is diametrically opposed to the first. Both holes

continue to grow while the membrane decreases in area, yielding an intermediate tube-

like structure. On longer time scales, the configuration breaks symmetry, with one pores

growing while the other shrinks, inverting the tube into a flat membrane [Fig. 4.10B].

Membranes were also observed which did not open a second pore, but instead followed

a simpler pathway toward vesicle disassembly. The single pore remained on the surface,

until the membrane reached a critical area, at which point, the pore opened completely,

unwrapping the membrane into a flat sheet [Fig. 4.10C]. All vesicles were observed to

shrink continually, and followed one of these two pathways [Fig. 4.10D,E].

The instantaneous membrane shape can be understood as a local energy minimum.

The energy of membranes with pores can again be found by solving the associated Euler-

Lagrange equation for one pore (C.3.4) or two pores (C.3.5). Constructing this energy
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Figure 4.10: Shrinking vesicles undergo shape change. (A) Time series showing
spontaneous pore opening. (B) Time series of vesicle unwrapping via the two pore
and (C) single pore pathway. (D) Surface area of vesicles, with highlighted region
showing the regime of transient pores (red) and the two pore unwrapping (green). (E)
Surface area of the vesicle undergoing single pore unwrapping.

landscape required three input variables; the vesicle area, c and the line tension �.

Since c has already been measured, and the area can be measured from meshes as

before, only � is left to measure. The line tension of the membranes was extracted

from the in-plane fluctuations thermal fluctuation spectrum of flat colloidal membranes,

described in C.2.4. This was done for nine separate membranes, to measure an average

of � = 350± 20kBT/µm [Fig. C.6C].

The dynamic of disassembly is slow, determined by the rate of vesicle evaporation.

Studying intermediate points along this pathway are quantitatively described by mini-

mizng the energy, given the boundary conditions measured from experiment. The shapes

found by minimizing the energy match the membrane cross section with no free param-

eters [Fig. 4.11]. This demonstrates that the change in area is su�ciently slow that the

vesicle is constantly in a local energy minimum for a given area. The membrane shape

change is then determined by the rate of change of the area.

To explain the shape transformation as the vesicle shrinks, we construct the energy
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Figure 4.11: Predicted one and two pore membrane shape plotted over ex-
perimental data. Membrane shape (A) one minute and (B) 15 minutes after a
single hole nucleates. (C) two-hole contour over experimental data. All predicted
shapes are in good agreement with the experimentally-observed shapes.

landscape as a function of membrane size. We numerically found the energy-minimizing

contour for a fixed area, A, and pores radii r1 and r2. By sweeping through all possible

values of the two radii at an area, A, the full energy landscape E(r1, r2, A) at several

vesicle areas was constructed. Motivated by the observation that vesicles appeared in a

configuration that locally minimize the energy, we studied the minima of these energy

landscapes, beginning by considering only membranes with two pores. Large membranes

(⇡ 10,000 µm2) had a global energy minima at zero pore size [Fig. 4.12A], indicating that

at this surface area, vesicles are universally stable. For intermediate sized membranes

(⇡ 7200 µm2) the local energy minimum moves away from zero, producing a shape with

two stable finite-sized pores [Fig. 4.12B]. This local energy minimum is a symmetric

configuration, with both pores being identical. At this area, the global minimum is in

a flat-membrane configuration (located in phase space at r1 = 0, r2 = 1 or r1 = 1, r2 =

0), but the vesicle is prevented from unwrapping to a disk by a large energy barrier.

With continued area decrease this energy barrier disappears (⇡ 6000 µm2), so that the

vesicle will unwrap to a flat membrane from any configuration in the energy landscape.

Beginning from a membrane with two symmetric pores, the steepest energetic descent
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will drive the shape of the membrane toward the saddle point, corresponding to a tube

configuration. This configuration will spontaneously breaking symmetry to unwrap into

a flat membrane [Figs. 4.12 C,D, 4.13]. Taking equally-spaced configurations along

gradient decent pathways of the energy landscape produces expected membrane shapes

that qualitatively agrees with those seen in experiment [Fig. 4.15].

Figure 4.12: Shrinking vesicles undergo shape change. (A-C) Two pore energy
landscape for decreasing surface areas. The reduced energy E

c
as a function of the

radii of both pores. Red points denote local minima, and yellow points denote saddle
points (D) Surfaces corresponding to five points along the energy minimizing pathway,
corresponding to the white dots in (C).

If a second pore is unable to nucleate, the vesicle follows a single pore pathway,

associated with a one-dimensional energy diagram. For the single pore membranes, the

energy landscape is qualitatively similar to that seen in the two pore case. For large

membranes (⇡ 10,000 µm2) the energy minima is at zero pore size [Fig. 4.14A], indicating

that vesicles are stable. For intermediate sized membranes (⇡ 7200 µm2) the local energy

minimum moves away from zero, corresponding to a contour with a single stable pore
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Figure 4.13: Circumference of both pores during two-pore disassembly. Pores are
nearly identical, before symmetry is broken and one continues growing while the other
shrinks.

[Fig. 4.14B]. The global minimum is once again a flat-membrane configuration, but the

vesicle is prevented from unwrapping by a large energy barrier. At a smaller area (⇡ 6000

µm2) this energy barrier disappears, so that the membrane is able to smoothly unwrap to

a flat membrane [Fig. 4.14C,D]. Taking equally-spaced configurations along the energy

diagram produces shapes that qualitatively agrees with those seen in experiment.

As an additional comparison, we measured the membrane pore size as a function of

area for experimental membranes and found that they transition to a period of rapid

increase in radius at a critical area. This critical area is in quantitative agreement with

the area at which the energy barrier disappears in numerical simulation (6080 µm) [Fig.

4.15].

Why a vesicle begins to unwrap via a one or two pore pathway has yet to be under-

stood, but insight can be gained by studying the energy landscape. We note that the

two pore configuration is at lower energy than the single pore configuration for a range of

areas [Fig. 4.12B,C]. This qualitatively explains why the two pore pathway may occur: if
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Figure 4.14: Shrinking vesicles undergo shape change. (A-C) Single pore
energy landscape for decreasing surface areas. The reduced energy E

c
as a function

of the radii of both pores. Red points denote local minima, and yellow points denote
saddle points (D) Surfaced corresponding to five points along the energy landscape,
indicated with red lines in (C).

the vesicle is able to overcome the energy barrier associated with pore nucleation, there

is a range of areas where a second pore will be preferred. When this second pore nucle-

ates, the energy landscape will move the surface into a symmetric configuration, where

both holes have the same size. Consequently, once this second pore is open the energy

landscape constrains the energy-minimizing shape to follow the two-pore unwrapping

process. Since pore nucleation is a dynamic process, we hypothesize that the dynamics

of vesicle unwrapping is controlled by two time scales; the first is the rate of area change

and the second is the time to nucleate a second pore. If the vesicle shrinks slowly, the

second pore may have enough time to nucleate a second pore leading to the two-pore

disassembly pathway.
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Figure 4.15: Vesicle instability as a function of area. (A) The opening angle of
predicted energy-minimizing single-pore contours plotted as a function of membrane
area. A rapid transitions to a flat membrane occurs at a critical area of A⇤ = 6020µm2.
(B) Size of the pores for experimental membranes as a function of area reveals a similar
rapid change in pore size at a critical area. In multiple experiments, this critical point
appears to occur at A⇤

⇡ 6000µm2 expected from the model (dashed line).

4.6 Discussion

The structure and dynamics of both colloidal and molecular membranes are described

by the same coarse-grained principals, but di↵erent on length and time scales. Colloidal

membranes enable high-resolution optical imaging, making them a valuable model system

for studying general membrane physics. We demonstrate that colloidal membranes can

form 3D vesicles. We have demonstrated that the shape vesicles take on are energy

minimizing surfaces, given a fixed area and volume, and that dynamics are su�ciently

slow to be considered quazistatic. Next, we outlined one pathway for closed vesicle

formation, which follows an extension-then-fracture mechanism. Finally, we studied how

membranes respond to continual shrinking, first by opening transient pores, and then by

unwrapping back into a flt membrane.

Each of the experiments detailed here have potential for future work that will shed

light on general membrane dynamics. For example, previous work has studied the dy-
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namics of force-generated membrane tubes, and their biological relevance [105, 106, 107].

By studying colloidal pendent membranes pulled by gravity we can directly image details

which would be nanometers in scale for lipid membranes. The size of colloidal vesicles

and their constituent particles can be leveraged to extend the study of membrane tube

formation. Sparse labeling of viral particles would enable particle flow tracking on the

entire membrane surface as the pendent membrane extends. Similarly, the flow sur-

rounding the membrane can be directly measured, opening the possibility for studying

the hydrodynamic flows of both the membrane and the surrounding fluid throughout

extension.

Another topic requiring further study is the observed transient pores. The pores

observed here are similar to those formed in lipid vesicles in response to osmotic shock

[108], mechanical stress [109] or electroportion [110]. However, the transient pores in col-

loidal vesicles last for tens of minutes, opening the possibility to study pore nucleation at

the single-particle level. Finally, the ability to track the shape changes of disassembling

membranes is unique to colloidal membranes. To observe similar dynamics in lipid mem-

branes, one would need to shrink lipid membranes below A⇤. For a lipid bilayer, with

typical values of c ⇡ 20kBT and � ⇡ 50pN [111] the critical radius R⇤ = 12nm, signifi-

cantly below optical resolution, obfuscating any shape changes associated with shrinking

vesicles. Further study of this entirely new phenomena will elucidate understanding of

the dynamics of a membrane subjected to a slowly-changing the energy landscape.
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Appendix for 3D active nematic

A.1 Materials

A.1.1 Microtubule polymerization

Tubulin dimers were purified from bovine brains, through two cycles of polymeriza-

tions and depolymerizations in a high molarity PIPES bu↵er [112]. Tubulin was flash

frozen and stored at -80 �C in M2B bu↵er (80 mM PIPES, pH 6.8, 1 mM EGTA, 2 mM

MgCl2). Tubulin was labeled with Alexa-Fluor 647-NHS (Invitrogen, A-20006) as pre-

viously described [113]. To induce polymerization, tubulin (80 µM in M2B) was mixed

with 0.6mM GMCPP (Jena Biosciences, NU-4056) and 1mM dithiothreitol DTT in M2B.

3% of the tubulin was fluorescently labeled. The tubulin was first incubated for 30 min

at 37�C, followed by an annealing step at room temperature for 6 hours. The GM-

PCPP stabilized microtubules have an average length of 1.5 µm [114]. The polymerized

microtubules were then flash frozen and stored at -80�C.

58



Appendix for 3D active nematic Chapter A

A.1.2 Assembly of kinesin clusters

K401-BIO-6xHIS is the 401 amino acid N-terminal domain derived from the Drosophila

melanogaster kinesin-1 and labeled with a 6-his and a biotin tag. The motor proteins

were transformed, expressed in Rosetta (DE3) pLysS E. coli cells, and purified as de-

scribed previously [115]. The purified proteins were flash frozen in liquid nitrogen with

36% sucrose and stored at -80 �C. The K401 biotin-labeled motors were assembled into

multimotor clusters using tetravalent streptavidin (ThermoFisher, 21122). We mixed 5

µL of 6.4 µM kinesin motors with 5.7 µL of 6.6 µM streptavidin (MW: 52.8 kDa) in 1.7:1

biotin to streptavidin ratio, and 0.5 µL of 5 mM dithiothreitol (DTT) in M2B (80 mM

PIPES,pH 6.8, 1 mM EGTA, 2 mM MgCl2). The clusters were then incubated on ice for

30 min, before being flash frozen and stored at -80C.

A.1.3 PRC-1 purification

The truncated PRC1-NS�C (MW: 58 kDa) was used to specifically crosslink micro-

tubules while still allowing for their sliding. It consists of the first 486 amino acids of

the full length PRC1 protein (MW: 72.5 kDa). The protein was transformed and ex-

pressed in Rosetta BL21(DE3) cells, and subsequently purified as described previously

[116]. The truncated form of PRC1 has greatly increased stability, while maintaining the

dimerization and the microtubule binding domaina and allowing for assembly of active

fluids that exhibit chaotic flows [117].

A.1.4 Colloidal virus purification

Filamentous virus fd-wt and fd-Y21M were purified andn characterized as described

previously [118, 119]. All samples were stored in high salt 20 mM Tris bu↵er (pH 8.0,

100 mM NaCl). fd-Y21M forms a colloidal nematic liquid crystal phase as predicted by
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the Onsager theory of hard rods [119].

A.1.5 Assembling active nematic liquid crystal

We assembled active nematics by doping an fd colloidal liquid crystal with extensile

microtubule bundles. A pre-mixture was prepared in a high salt M2B (M2B + 3.9

mM MgCl2) containing an oxygen scavenging system (3.3 mg/mL glucose, DTT (5.5

mM), glucose oxidase (Sigma, G2133) and catalase (0.038 mg/mL, Sigma, C40)), 2nM

Trolox to reduce photobleaching (Sigma, 238813), ATP (1420 uM), an ATP regeneration

system (phosphoenol pyruvate (26 mM PEP, Beantown Chemical, 129745) and pyruvate

kinase/lactate dehydrogenase enzymes (2.8% v/v PK/LDH, Sigma, P-0294)). We then

added the kinesin clusters (121 nM Streptavidin), PRC-1 (200nM), fd viruses (25 mg/mL)

and microtubules (13 µM). Typical samples consist of 7 mL of Premix, 3 mL of fd virus

(100 mg/mL) and 2mL of microtubules (8 mg/mL). The samples are typically active for

3 hours. Passive samples were assembled using the same recipe but lacked both ATP

and the kinesin clusters. The isotropic samples were obtained by assembling the previous

recipe without fd-wt viruses. For SPIM imaging, the ATP concentration was reduced to

100 µM. The acquisition time (12 sec) of a 3D stack was small compared to the typical

fluid velocity, which is less than 0.1 µm/sec.

A.2 Imaging 3D nematic samples

A.2.1 Widefield microscopy

Samples were imaged with an inverted microscope (Nikon Ti-E) equipped with a XYZ

motorized stage, polarization optics, and a fluorescence imaging module. Simultaneous

pictures of the birefringence and the fluorescent microtubules were obtained with a 20x
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objective (Pan Fluor, NA 0.75) and a CCD camera (Andor, Clara E).

A.2.2 Multiview-SPIM imaging

The 3D samples were imaged using multi-view light sheet microscopy [120]. Briefly,

the microscope is composed of two detection and illumination arms. The detection arm

is an epifluorescence microscope, consisting of a water-dipping objective (Apo LWD 25x,

NA 1.1, Nikon Instruments Inc.), a filter wheel (HS-1032, Finger Lakes Instrumentation

LLC), emission filters (BLP01-488R-25, BLP02-561R-25, Semrock Inc.), a tube lens (200

mm, Nikon Instruments Inc.), and an sCMOS camera (ORCA-Flash4.0 V3 Digital) with

an e↵ective pixel size of 0.26 µm. The illumination arm consisted of a water-dipping

objective (CFI Plan Fluor 10x, NA 0.3), a tube lens (200 mm, both Nikon Instruments

Inc.), a scan lens (S4LFT0061/065, Sill optics GmbH and Co. KG), a galvanometric

scanner (6215 hr, Cambridge Technology Inc.), and two lasers (06-MLD 488 nm, Cobolt

AB, and 660LX/LS OBIS 660 nm, Coherent Inc.). The FEP tubing is translated using

a linear piezo stage (P-629.1cd with E-753 controller) and rotated using a rotational

piezo stage (U-628.03 with C-867 controller) and a linear actuator (M-231.17 with C-863

controller, all Physik Instrumente GmbH and Co. KG). Samples were recorded using 4

views, by 900 rotated views, 200 slices with an optical sectioning of 2 µm, and a temporal

resolution of either 12 or 20s depending if tracer beads were also imaged. Sample were

mounted in a FEP tube of 800 µm inner diameter and sealed with NOA UV glue. The

immersion water for the objectives was suplemented with 7.4% sucrose to mach the

refractive index of the FEP tubing (n=1.344).
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A.3 Image processing

A.3.1 Image post-processing: data fusion and deconvolution

Image processing was performed using Matlab, Fiji and associated multi-view decon-

volution plugin [121, 122]. The light sheet data was unpacked and binned (2*2 binning,

spatial resolution of 0.52 µm after binning) using a custom made Matlab program. To

ensure a correct measurement of the microtubule orientation, we first removed distor-

tions introduced by an anisotropic point-spread function (PSF) - SPIM being subject to

optical aberration. We deconvolved the four views post-acquisition using an empirical

PSF measured on passive fluorescent particles immersed in the active LC (20 iterations).

Finally, the same markers were used to register the four complementary views of sample

taken at 90 deg rotation intervals, which also reduced the e↵ect of the anisotropic PSF.

A.3.2 3D Orientation analysis

The 3D nematic director field was extracted by computing the local structure tensor

in 3D with a custom-made Matlab code. This method has been described previously for

2D samples [123]. The Gaussian window size was ⇡6 µm. Choosing the right window

size is important for corect detection of the topological defects. Choosing a smaller

window size resulted in false positives. Choosing a larger window size led to smoothing

of the nematic director, and increased the number of undetected defects. To find the

defects, we first computed the distortion energy in the one-elastic constant approximation,

approximating spatial partial derivatives @i with finite di↵erences. We did not measure

(@inj)(@inj). Instead we measured (@i[njnk])(@i[njnk]). In principle these two provide

the same information. However, the first option picks up a large artificial derivative

when n flips to -n, and then squares that derivative. The second option fixes the n =
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-n problem by taking derivatives of njnk instead of just nj, removing the large artificial

derivatives. We then looked at the winding of the director field where the distortion

energy was greater than a 0.5 threshold. We verified that the defects’ detection did not

depend on the energy threshold chosen. We manually verified that the defects observed

in the nematic field correspond to disclinations in the fluorescent microtubule channel.

We found that about 20% of the detected defects were false positives, principally due to

a low signal/noise ratio in regions where the light sheet is not in focus (on the edge of

the FOV).

A.4 Data analysis

A.4.1 Identifying defect loops in director fields

We identify the defect set in a voxelated director field as the set of all voxels where

the magnitude of the gradient in the director, |rn| =
p
@inj@inj, exceeds a threshold,

typically 0.5–0.6. The defect set is divided into its connected subsets, each of which is

a defect. To di↵erentiate loops from other defect structures, we filter these connected

subsets by their topological genus. The genus, g, which counts the number of holes, can

be computed from the Euler characteristic, �, through the relation � = 2�2g. Because a

connected subset is a collection of cubic voxels, we can treat the subset as a polyhedron.

Then, we can compute the Euler characteristic as

� = V � E + F, (A.1)

where V , E, and F are the number of vertices, edges, and faces of the polyhedron,

respectively.

A connected subset D is a collection of cubic voxels which has an easily counted
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number of vertices, edges, and faces, from which we calculate the Euler characteristic.

To avoid spurious one-voxel holes, we inflate D by adding to it all of the nearest-neighbor

voxels to each of the original voxels of D (without repetition). The computation of the

Euler characteristic can be sped up using pre-computed information about possible voxel

cluster motifs [124, 125]. From the Euler characteristic we obtain the genus and identify

loops as connected subsets with g = 1.

A.4.2 Calculating a loop core

Once a connected defect subset D has been identified as a loop, we obtain the director

profiles and calculate ⌦ at several points on the loop. We first identify a loop core, a one-

voxel-thick thread through the disclination contour, to guarantee a nontrivial winding of

the director field in a small circuit around the disclination. Our algorithm to compute the

defect loop core C chooses a starting point xstart as the location of the smallest value of

nematic order S (simulation) or the largest value of |rn| (experiment) in the connected

subset. Then, successive points in the loop core are chosen as follows:

1. Construct a list {xi}elig. of eligible next points in C, choosing from among the

nearest-neighbor points to the most recently added point xprev in C, and selecting

only those neighbors that are members of D but not already members of C. Exclude

any points that are in the list {xi}excl. of excluded points (defined below). Further

specify that {xi}elig. cannot include any point that is a nearest neighbor of any point

already in C besides xprev and xstart, unless this requirement leaves zero eligible next

points in {xi}elig..

2. If xprev is not a nearest neighbor of xstart, but at least one of the eligible next

points in {xi}elig. is a nearest neighbor of xstart, then choose one of those points

neighboring xstart as the next point xnext in C in order to close the loop. Otherwise,
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choose the next point xnext according to smallest S or largest |rn| among the

options in {xi}elig.. Append xnext to C. If this operation is not possible because

there are no eligible next points in {xi}elig., then we have made a wrong turn; we

therefore remove xprev from C, place xprev in the list of excluded points {xi}excl.,

and return to step 1 with xprev taken from the previous iteration.

3. If xnext is a nearest neighbor of xstart, and C contains at least ten points, then we

consider the loop core closed. Otherwise, we repeat steps 1-2 until C is closed.

By following the path of largest |rn| or smallest S, the loop core advances through the

connected subset until it closes. In some instances steps 1-3 produce a curve that does

not thread through the defect loop, but instead forms a small loop in one portion of

the defect subset. In these cases we run the algorithm again with a di↵erent starting

point, chosen by the next-largest |rn| value or next-smallest S value in D. To obtain

the loop normal N, the loop core is fit to a circle, and the normal to the plane of the

circle serves as N. An arbitrary choice of sign for N determines the positive sense of

rotation around the loop. The local tangent vector t to the disclination is determined by

the vector di↵erence between next and previous points in the loop core, with sign chosen

by the positive sense of rotation.

A.4.3 Calculating the rotation vector and reference director

To calculate ⌦ at a given point P on the loop core, we first make a collection of

directors {n(xi)} from points {xi} that are near P and nearly in the plane ⇥ transverse to

t. More specifically, {xi} is the set of points with separation vector di from P satisfying

dmin  |di|  dmax and | arccos(di · t)| >  min. We use dmin = 3, dmax = 7, and

 min ⇡ 0.61⇥ (⇡/2), where lengths are given in units of the voxel spacing.

Next, for each point xi, we project di into the transverse plane ⇥, d?
i = di� t(di · t),
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to obtain an angle �i in the plane relative to a fixed reference direction. The collection of

directors {n(xi)} is then plotted on the unit sphere in order of �i. A semi-circle is fitted

to the path traced out by this ordered collection of directors, with a definite orientation

given by the positive sense of rotation in ⇥, whose positive normal direction is aligned

with t. We thus compute ⌦ as the positive normal direction to this fitted semi-circle on

the unit sphere. We also take the reference director nout to be the n(xi) at the point xi

in the collection for which di is most nearly outward from the center of the circle fitted

to the loop. Any small component of this n(xi) along ⌦ is projected out to obtain nout.

A.4.4 Calculating disclination loop topology

We measure the topological index ⌫ of a disclination loop, defined in the Supplemen-

tary Text, as follows: At roughly even intervals around a loop separated by angle ��, we

calculate ⌦ and nout to find the frame F(�) at each step. We record the SO(3) rotation

operation R�,�+�� that takes F(�) into F(�+��) and use �� between 2⇡/12 and 2⇡/8.

Expressing R�,�+�� as a rotation by angle ↵ about an axis â, we convert the rotation to

a quaternion q�,�+�� = cos(↵/2)1 � sin(↵/2)(â · ~�), where ~� = ix̂ + jŷ + kẑ (borrowing

from the Pauli matrix language). The product q0,2⇡ =
Q2⇡���

�=0 q�,�+�� identifies the loop

with one of the cases named in Sec. A.5, as q0,2⇡ must be one of the following: 1 (unlinked

and neutral), �1 (unlinked and charged), or a quaternion satisfying q2 = �1 (linked).

A.5 Theoretical calculations

A.5.1 Rotation vector

The rotation vector ⌦ used in this work is the rotation angle specifying the symmetry

operation in order parameter space, RP 2, undergone by the director n(x), on a small
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closed measuring circuit C around the disclination at the point of interest [126]. For all

disclinations studied in this work, the angle of rotation is |⌦| = ⇡, which corresponds to

topological winding numbers of ± 1/2. The axis of rotation, ⌦̂ ⌘ ⌦/|⌦|, is determined

from the closed loop � in RP 2 traced out by n on the measuring circuit C. Because � is,

in general, approximately a semi-great circle, ⌦̂ is simply the normal to the semi-circle,

with sign given by the positive sense of rotation on � as C is traversed in the positive

sense (Fig. 2D). Near the defect point of interest, n is (approximately) confined to the

plane orthogonal to ⌦. We can form an orthonormal triad {n0,n1, ⌦̂} such that, along

C, n rotates from n0 through n1 into �n0.

A.5.2 Topological classification of disclination loops

The classification of topological defects in this work follows the standard application

of homotopy theory to nematics. Disclination loops, like hedgehog point defects, carry

an integer hedgehog charge:

d =
1

4⇡

Z

S2
d✓d�n · [@✓n⇥ @�n], (A.2)

identifying the defect with an element of the second homotopy group ⇡2(RP 2) ⇠= Z [127].

Whereas hedgehogs with di↵erent d are topologically distinct, for disclination loops

the topological categorization depends only on d modulo 2 [127].

We refer to loops with even d as topologically neutral, because shrinking a d = 0 loop

to a point leaves behind a locally defect-free director field.

The topological information about a disclination loop is obtained using a meauring

torus T2 enclosing the defect. Maps from RP 2 to T2 are divided into four topologically

distinct classes with a Z4 group structure when joining loops together [128].

We classify a disclination loop’s topology by recording ⌦ and nout, which together
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specify the disclination profile, at several sampled points along the disclination’s length.

The choice of nout as reference director follows the canonical choice of tracking n along a

cycle of the torus unlinked with the disclination [128]. Together, {nout,nin, ⌦̂} define an

orthonormal frame F, where nin ⌘ ⌦̂⇥ nout is the director on the inner side of the loop.

Importantly, F̃ ⌘ {�nout,�nin, ⌦̂} gives the same profile as F because of the n ⌘ �n

symmetry of the director. From point to point on a disclination loop parametrized by

angle ✓, the frame F rotates according to F(✓i+1) = Ri,i+1F(✓i), where R is an element

of the group SO(3) of rotations of a 3D rigid body. Upon traversing the loop completely,

F(✓ = 2⇡) must return to either F(✓ = 0) or F̃(✓ = 0). In the latter case, the disclination

loop is linked by another disclination loop (or an odd number of them), a situation that

we do not observe in experimental or simulated active nematics. If F returns to itself,

then the loop is unlinked, and falls into the even-d or the odd-d class.

Let ⌥ be the path in SO(3) representing the composition of all the rotations be-

tween N sampled points, R0,2⇡ = R0,✓1R✓1,✓2 · · ·R✓N�1,2⇡. To topologically classify these

paths, we lift ⌥ from SO(3) to the simply connected covering space SU(2), which can

be parametrized by the unit quaternions (±i, ±j, ±k, ±1, and their multiplicative prod-

ucts). Following the spirit of Ref. [129], we choose a parametrization in which ±k repre-

sent the rotation of nout by ⇡ about ±⌦. The set of all possible total rotations R0,2⇡ is

then represented by {1, k,�1,�k} = k⌫ , ⌫ 2 {0, 1, 2, 3}

(30 , 48 ), forming a group under multiplication with the requisite Z4 structure.

The mod-4 integer ⌫ provides a topological index for the loop: topologically neutral

loops have ⌫ = 0, topologically charged loops have ⌫ = 2, and the linked-loop scenario

corresponds to ⌫ = 1 or 3.

Disclination loops with approximately uniform ⌦ and nout, which are the focus of

this work, are trivially ⌫ = 0 loops, and therefore neutral and unlinked. The practical

application of this theory, to calculate ⌫ in observed disclination loops, is described in

68



Appendix for 3D active nematic Chapter A

Materials and Methods (A.1).

A.5.3 A local formula for �

Experimental and simulated defect sets presented in this work are color-coded by �,

the angle between rotation vector ⌦ and unit tangent t. The tangent vector is calculated

straightforwardly from the separation between neighboring points on the disclination

contour. We compute ⌦ and thus � from n in a circuit around the loop of interest as

described in Sec. A.4.3. The small measuring circuit makes this calculation non-local in

a mild way, which is feasible for individual loops but less practical for datasets of many

defects.

We also used an alternative, purely local calculation of ⌦ that agrees well with the

non-local calculation: The direction of ⌦ is estimated to be parallel to:

⌦̃ ⌘ r⇥ n� n(n ·r⇥ n) = n⇥ [(n ·r)n] (A.3)

wherever ⌦̃ has nonzero magnitude. The assumption ⌦ k ⌦̃ can be justified since

they are exactly parallel for a straight disclination along the z-axis with uniform ⌦, and

with an idealized director field profile given by

n = p̂1 cos(�/2) + p̂2 sin(�/2) (A.4)

which produces a ⇡ winding of n about an arbitrary ⌦̃. Here, � is the angle in the xy

plane, and {p̂1, p̂2, ⌦̂} is an orthonormal triad.

We therefore expect ⌦̃ to be a good approximation to the direction of ⌦ except

where the disclination is strongly curved, has a rapidly varying ⌦, or has � = ⇡/2

exactly (in which case ⌦̃ has zero length). In contrast to the non-local measurement of
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⌦ on a circuit, ⌦̃ is a local measurement depending only on neighboring voxels for finite

di↵erence calculations of first derivatives of n.

A separate measure is needed to choose between ⌦̃ and �⌦̃ for the direction of ⌦,

because Eq. A.3 is odd in n. We use the saddle-splay energy density expression:

f̃24 ⌘ r · [(n ·r)n� n(r · n)]. (A.5)

Applying this expression to the ideal disclination director field of Eq. A.4 shows that

f̃24 is positive at a +1/2 wedge profile, negative at a �1/2 wedge profile, and zero at a

twist profile [130]. We find that f̃24 alone is not a reliable measure of � in the data, but

that we can use the sign of f̃24 to fix the sign of ⌦̃ relative to the tangent. With this

combination of ⌦̃ and f̃24, we obtain an estimate of the direction of ⌦ with the correct

sign of ⌦ · t, from which we obtain the angle �.
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Figure A.1: Dynamics of disclination loops observed in hybrid lattice Boltz-
mann simulations. (A) Loop nucleation from a defect-free region. (B) Loop self-an-
nihilation leaves behind a defect-free nematic. (C) A disclination line self-intersects
and splits, emitting a loop. (D) A disclination loop merges with a disclination line.
Coloring of the disclinations indicates �.
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Figure A.2: Dynamics of disclination loops observed in finite di↵erence sim-
ulations. (A) Loop nucleation from a defect-free region. (B) Loop self-annihilation
leaves behind a defect-free nematic. (C) A disclination line self-intersects and splits,
emitting a loop. (D) A disclination loop merges with a disclination line. Coloring of
the disclinations indicates �.
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Figure A.3: Scale of the loops shown in Fig. 2. Bounding boxes are shown to
give the scale of the (A) nucleation event, (B) splitting event, (C) annihilation event
and (D) merging event. Coloring of the disclinations indicates �.

experiment simulation
A B

Figure A.4: Disclination loops have nearly uniform ⌦ and n0 Wider distri-
bution of | cos(�)| indicate more non-uniform loops. | cos(�)| is the locally calculated
angle between the loop normal and ⌦. Each standard deviation value pertains to one
loop, with ⌦ calculated at 8 to 12 approximately evenly spaced points along the loop
contour. N=268 for experimental loops and N=94 for simulated loops.
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Figure A.5: Fig. S5: Scale of the disclination loops. Bounding boxes show the
scale of the experimental wedge-twist (A) and pure twist loop (B) shown in Figure
4. Disclination coloring indicates �.
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Appendix for active LLPS

B.1 Material preparation

B.1.1 Dextran fractional precipitation.

Control of LLPS required low-polydispersity, high-molecular-weight dextran. Dextran

(1.5-2.8 MDa, Sigma-Aldrich) was separated into fractions of narrow molecular weight

distributions via ethanol precipitation. Ethanol was gradually added to a solution of 0.2%

dextran under vigorous stirring at 23 �C. After reaching 31% (w/w) ethanol, precipitates

were removed by centrifugation (20 min at 17,000g, Fiberlite F9-6 x 1000 LEX fixed angle

rotor, Thermo Scientific). Ethanol was then added to a concentration of 32% (w/w).

The precipitate was collected by centrifugation and resuspended in water. Solvent was

removed via lyophilization, and the powder was reconstituted in water to 20% (w/w)

dextran. This stock solution was used to make LLPS solutions.
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B.1.2 PEG-dextran LLPS.

Polymers of high molecular weight chosen to create mixtures that are both active and

phase separated. Inter-microtubule sliding occurs in a finite polymer concentration range,

where depletion forces are su�ciently strong to induce microtubule bundling without

friction [131]. Mixtures comprising 2.38% (w/w) fractionated dextran and 1.55% (w/w)

poly(ethylene glycol) (PEG) (35 kDa, EMD Millipore), reconstituted in M2B bu↵er

(80mM K-pipes, 2mM MgCl2, 1mM EGTA, pH 6.8), enabled both phase separation and

motor-driven inter-filament sliding. To distinguish the two phases, 2,000 kDa amino-

Dextran (Fina Biosolutions) was labeled with Alexa-Fluor 488 NHS Ester (ThermoFisher

Scientific) and was added at a final concentration of < 0.1% (w/w).

To characterize the LLPS, we let mixtures completely phase separate under gravity

for one day. Top (PEG-rich) and bottom (dextran-rich) phases were extracted, and their

densities were measured using a density meter (DMA 4100, Anton-Paar). The densities

of the dextran and the PEG phases were ⇢P = 1.0151g/mL and ⇢D = 1.024g/mL

respectively. The viscosity of each phase was determined by microrheology [132]. The

viscosities of the PEG-rich and the dextran-rich phases were ⌘P = 5mPa s and ⌘D =

25mPa s respectively. Interfacial tension between the two phases was determined from

the exponential decay length of the capillary rise next to a polyacrylamide coated wall.

At low KSA concentrations, the decay length was le = 45µm [Fig. 3.8C, inset]. The

relation le = lc =
p
�/�⇢g, where the density di↵erence is �⇢ = ⇢D � ⇢P , and g is the

acceleration of gravity, yields the interfacial tension � = 0.18µN/m.

B.1.3 Chamber preparation.

Chambers were constructed of glass slides that were coated with a PEG brush (mPEG

5k-silane, BiochemPEG) [133]. PEG-coating resulted in preferential wetting by the pas-
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sive PEG phase. Achieving a uniform coating was essential to prevent pinning of the

dextran phase to the chamber walls. Glass was cleaned by sonicating in 1% Hellmanex,

and then etched in 0.5 M NaOH for 30 minutes. Slides were dried at 90 �C in the presence

of a desiccant for 10 minutes. Silanized PEG, reconstituted in anhydrous DMSO to a

concentration of 5%, was sandwiched between glass slides and left to react for 30 minutes

at 90 �C. Slides were then rinsed in water and dried with a nitrogen stream. Chambers

were assembled immediately. For wetting experiments, #0 coverslips were coated with

polyacrylamide according to established protocol [134]. Chambers were constructed by

sandwiching two polyacrylamide coated coverslips between PEG-coated slides.

B.1.4 PEG-dextran active-LLPS.

We assembled active-LLPS by adding the phase-separating polymers to microtubules

and clusters of kinesin motors. Kinesin K401-streptavidin (KSA) motor clusters and

GMPCPP-stabilized microtubules were purified and prepared as described previously [135].

The active mixture was prepared in M2B bu↵er containing antioxidants (2 mM Trolox,

3.3 mg/mL glucose, 5 mM DTT, 200 µg/mL glucose oxidase and 35 µg/mL catalase)

to reduce photobleaching, ATP (1420 uM), an ATP regeneration system (26 mM phos-

phoenol pyruvate (Beantown Chemical, 129745) and 2.8% (v/v) pyruvate kinase/lactate

dehydrogenase enzymes (Sigma, P-0294)). We added microtubules to a final concentra-

tion of 0.67 mg/mL and KSA at variable concentration.
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B.2 Methods

B.2.1 Correlation length evolution in phase separation experi-

ments.

To quantify the phase separation dynamics, images of dextran fluorescence were

thresholded at each time point to produce a binary intensity map I(~r, t), where I = 1

for dextran-rich domains and I = �1 for PEG-rich domains, and the radius ~r = (x, y)

[Fig. B.3A,B]. The two-point correlation function C(�~r, t) = hI(~r + �~r, t)I(~r, t)i was

azimuthally averaged to produce the radial correlation function C(r, t). The correlation

length ⇠(t) was defined such that C(r = ⇠(t), t) = 0.5 [Fig. B.3C,D], and its evolution

was tracked [Fig. B.3E].

B.2.2 Evolution of correlation length and interface curvature

at 230nM KSA.

In samples approaching a steady state, increase in the interface curvature preceded

the decay of the correlation length. Local interface curvatures were computed as

 =
fxxf 2

y � 2fxyfxfy + fyyf 2
x

(f 2
x + f 2

y )
3/2

(B.1)

where f(x, y) is the dextran fluorescence intensity at pixel (x, y) and subscripts denote

partial derivatives [136].  was averaged over all interfaces in the field of view at each

time point. Initially, the average curvature increased before the correlation length started

to decay [Fig. B.5]. The correlation length evolution lagged by 30 min behind the

average interface curvature for the first 1.5 hours of the experiment. After 2 hours, both

correlation length and inverse curvature evolved synchronously as the system approached
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steady state.

B.2.3 Detection of bulk-phase-separated interfaces.

Interfaces were detected using a multi-step procedure:

(1) Dextran fluorescence images were divided by a background image, thresholded,

and numerically di↵erentiated to extract domain edges. Edges that straddle the image

horizontal axis were selected, skeletonized, and pruned to produce an initial contour at

single pixel resolution [Fig. B.6A-C].

(2) For each point on the contour (x, y), image intensity is interpolated at sub-pixel

resolution along the local interface normal (nx, ny) in a 5x5 pixel neighborhood of (x, y).

Sub-pixel interface position along the normal is defined so that the interpolated image

intensity equals the threshold [Fig. B.6D-H].

(3) The local tangent angle to the interface ✓ = tan(�y/�x) is found by finite

di↵erences, and the contour is re-parameterized with the arc-length parameter s.

(4) The total arc length of the interface is measured for each time point. Due to

interface deformations, the total arc length fluctuates in time. For computing correlations

and Fourier transforms, tangent angle data from a single experiment ✓(s, t) is trimmed

so that the interface at each time point has the same total arc length.

B.2.4 Power spectra of interface fluctuations.

Interface tangent angles ✓(s, t) were used to compute the spatiotemporal autocorre-

lation function R✓(�s,�t) = h✓(s+�s, t+�t)✓(s, t)i, where hi denotes averaging over

an arc-length interval of 3.1 mm and time interval of 2 hours. The power spectrum was

then computed as S(k) =
R
dse�iksR✓(s,�t = 0).
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B.2.5 Dynamic structure factor (DSF) of interface height.

Local interface height was sampled as a function of the horizontal coordinate x and

time t. The spatiotemporal autocorrelation function of interface height Rh(�x,�t) =

hh(x+�x, t+�t)h(x, t)i was calculated by cross correlating a rectangular window�xm <

x < X ��xm,�tm < t < T ��tm of h(x, t) with the complete sample, where X and T

denote the sample size and duration. �xm and �tm denote maximum lag distance and

time respectively. The values of the parameters were X = 10.7 mm,T = 2 hr,�xm =

1mm,�tm = 0.36hr for experiments; for simulations they were X = 2 mm,�xm =

0.67 mm, and T = 0.44, 0.22, 0.11 hr,�tm = 0.3, 0.15, 0.0755 hr for activity values

↵ = 10, 20, 40mPa respectively. The DSF was then computed by multiplying the result

of auto-correlation with a 2D Hanning window, and taking the Fourier transform of the

result in both space and time.

B.2.6 Extraction of the wave dispersion relation.

Wave dispersion !p(k) was extracted from the DSF in two ways. Above a wave-

number kmin, the DSF for a constant k exhibited a peak at a frequency ! = !p(k).

The peak position was detected by modelling the DSF with a sum of Lorentzians, one

centered at ! = 0 and the other at ! = !0:

F (!) = a ((1� c)/((!/b)2 + 1) + c/((!/!0)2 � 1)2 + (!�!/!2
0)

2), where a, b, c,!0 and

�! are adjustable parameters. The frequency peak was !p =
p
!2
0 ��!2/2. For k <

kmin, the dispersion relation was detected by finding the wave number at which the DSF

is at maximum for a constant frequency.
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B.2.7 Power spectra of active fluid velocity.

To find the velocity of the active phase, two-color fluorescent images were taken of

both the Alexa Fluor 488 labeled dextran and the Alexa Fluor 647 labeled microtubules.

A mask of the active phase was found by thresholding the dextran channel. This mask,

along with the accompanying microtubule images, were imported into the MATLAB

plugin PIVLab [137]. Particle Image Velocimetry was preformed on the microtubule

bundle images to find the velocity of the active phase.

Active bulk fluid velocity was calculated in a 2.5 mm X 2 mm window that was 100

microns below the interface. The vectorial velocity field v, sampled in 10 sec intervals

over 1.5 hours, 5 hours after the beginning of the experiment, was used to obtain the

spatiotemporal autocorrelation function Rv(�r,�t) = hv(r + �r, t + �t) · v(r, t)ir,t,

where the radius is r = (x, y). The autocorrelation was azimuthaly averaged to produce

the radial autocorrelation function Rv(r, t). Fig. S13 depicts sections of Rv(r, t) at t = 0

and r = 0 to extract correlation length and time scales.

B.2.8 Measuring the center-of-mass of active fluid capillary rise.

In wetting experiments and simulations, the center-of-mass height of the active fluid

that is adjacent to the wall is defined as follows: (1) Interface profile is detected using

thresholding as in Fig. B.6. The average height Y0 of the bulk interface far from the wall

(> 5le) is set as zero height. (2) Pixels above threshold whose height is greater than Y0,

and are within 5le of the wall are included in the center-of-mass height determination.

The center of mass is defined as Ycm = 1
N

P
i(Yi � Y0), where N is the total number of

pixels.
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B.3 Numerical model

B.3.1 Multiphase hydrodynamic model.

To simulate activity-powered interfaces, we use a VOF (Volume Of Fluid) multiphase

hydrodynamic theory to model the active-passive mixture [138, 139]. The two fluids are

described by three continuum fields: the volume fraction of the active phase � which is

referred to as the ‘color function’ in VOF, the velocity field v, and the nematic tensor

Q ⌘ S(n̂n̂ � I) describing the local orientation of microtubule bundles. Here, n̂ is

a unit vector indicating the local orientation of microtubules, and 0  S  1 is the

local nematic order parameter. I is the identity matrix. Since the experimental system

is quasi-two-dimensional, we implement the theoretical model in two dimensions. The

governing equations are [138, 139, 74, 84, 85]:

D�

Dt
=0, (B.2a)

DQ

Dt
=��u+Q · ! � ! ·Q+

1

�Q
H, (B.2b)

D⇢v

Dt
=⌘r2v�rP +r · (��)� �vv + fc + fg, (B.2c)

with D/Dt = @t + v ·r the material derivative.

The field � is set by the initial conditions to have constant value in the bulk of

either phase, with � = 1 in the active fluid and � = 0 in the passive one, and sharp

yet continuous variations between the two bulk values at the interface. The advection

of � by the flow then drives interface fluctuations. Unlike the more familiar phase field

model, the VOF model sets the right-hand-side of Eq. (B.2a) equal to zero, hence neglects

phase field di↵usion in the interfacial region. It is appropriate when phenomena such as

Ostwald ripening are much slower than other time scales, as appears to be the case in the
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active-LLPS. It is much more e�cient for simulating large interfaces as it only requires

interfacial widths of the order of 2-3 grid points.

The dynamics of the nematic tensor Q is governed by relaxation and coupling to

flow. The first term on the right hand side of Eq. (B.2b) describes alignment with

local flow gradients, with u = (rv + rvT )/2 and � the flow-alignment parameter.

The flow alignment term is known to drive nematic order even when the system is in

the isotropic state [140, 141]. To confine this e↵ect to the active phase, we weight the

flow-alignment term by the color function � such that flow alignment vanishes in the

passive phase. The second and third term describe co-rotation of the director with the

local vorticity ! = (rv � rvT )/2, and we neglect for simplicity other nonlinear flow

couplings. The relaxation ofQ, with �Q the rotational viscosity, is driven by the molecular

field H = ��FLdG/�Q that minimizes the Landau-de Gennes free energy [142, 74]

FLdG =
1

2

Z

r


aTrQ2 +

b

2

�
TrQ2

�2
+K(@jQik)

2

�
(B.3)

The first two terms in FLdG control the isotropic-nematic transition, and sets the equi-

librium value of order parameter to be S = 0 when a > 0 and S =
p
�2a/b if a < 0.

The last term describes the energy cost for spatial variation of the order parameter, with

isotropic sti↵ness K. Here we choose a > 0. This places the liquid crystal in the isotropic

state when passive, which is the experimentally relevant situation.

The velocity field is governed by the Navier-Stokes equation Eq. (B.2c), with viscous

dissipation controlled by viscosity ⌘, drag �v with the walls, gravitational force fg =

�⇢(�)gŷ, and a capillary force, fc = �r� [138, 139], where � is the interfacial tension

and  = �r · (r�/|r�|) the local curvature of the interface. Integrating such capillary

force along the interface normal N̂ = r�/|r�| gives a total force �N̂, which is what we

expected from Young-Laplace pressure. The pressure P serves as a Lagrange multiplier
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to incorporate the incompressibility constraint, r · v = 0. The additional stress from

the nematic degrees of freedom, � = �e +�a includes passive elastic and active stresses,

with

�e = ��H+Q ·H�H ·Q , �a = ↵Q , (B.4)

and ↵ < 0 the activity. Note that � is weighted by the color function � in Eq. (B.2c),

hence its contribution vanishes in the passive phase. Similarly, the capillary force fc is

nonzero only at the interface. For simplicity, we assume that the two phases have the

same viscosity and drag. Finally, the local density is related to the volume fraction � as

⇢ = �⇢a + (1� �)⇢p, where ⇢a and ⇢p are the densities of pure active and passive phase,

respectively.

B.4 Numerical simulations

B.4.1 General setting.

The continuum equations are solved with the Finite Volume Method using the open

source package OpenFOAM [143] (OpenFoam, https://openfoam.org/ ). Specifically, we

modify the InterFoam solver from OpenFOAM to include the dynamics of the nematic

tensor Q [144] (InterFoam, https://openfoamwiki.net/index.php/InterFoam). The simu-

lation is done on a square grid embedded in a rectangular box centered at the origin,

and we use the standard adaptive time step controller in OpenFOAM with a maximum

Courant number 0.3. Although OpenFOAM can only process three-dimensional simu-

lations, one can still use it to simulate two-dimensional systems by having a single grid

along the third dimension, and setting the two boundaries normal to the third dimension

to be empty (Openfoam user guide, https://cfd.direct/openfoam/user-guide/ ).
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The parameters used in the simulations are: ⇢a = 1027kg/m3, ⇢p = 1014kg/m3,

⌘ = 0.015Pa·S, �v = 25MPa·S/m2, � = 0.3µN/m, �Q = 0.1kg/(m·S), K = 5⇥10�14N ,

a = 0.001Pa, b = 0.1Pa, � = 0.1. Activity values range from 5 mPa to 80 mPa. The

boundary and initial conditions, box and grid sizes are varied depending on the specific

problem we study.

B.4.2 Simulations of interfacial fluctuations.

We use a rectangular box of size 2mm ⇥ 1mm in the xy plane, with a uniform grid

spacing of 2.5µm. In the absence of active fluctuations, the interface separating the

top passive fluid from the bottom active fluid is flat and located at y = 0. The top

and bottom boundaries are solid walls with slip boundaries for the velocity field v, i.e.,

n̂ · v = 0 and @t̂vt̂ = 0 where n̂ and t̂ represent the normal and tangential directions

to the wall, and Neumann boundary for the color function � and the nematic tensor Q,

i.e., r�|wall = 0 and rQij|wall = 0. Although no-slip condition is typically used at solid

walls, our experiments have found obvious sliding of microtubules with respect to the

wall, hence justifying the slip boundary condition of velocity at the wall. At the left

and right boundaries we impose periodic boundary conditions by using the cyclicAMI

boundary in OpenFoam. All simulations start with a flat interface located at 65% of the

box height, with zero velocity and zero nematic order. We add small perturbations to

the initial Q field in the active phase. Activity then drives these initial perturbations to

grow and pushes the system into the chaotic state.
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B.4.3 Simulations of wetting.

For the wetting simulations, we use a smaller simulation box of size 0.5mm⇥ 0.5mm

since we need to use finer grids here. The boundary conditions at the top and bottom

boundaries are the same as used in the simulations of interfacial fluctuations. The left

and right boundaries are treated as solid walls, with slip boundary conditions for the

velocity field and zero-gradient boundary conditions for the color function (r�|wall = 0),

except at the interface contact point, where the gradient of � is set to prescribe the

contact angle of the passive system using the constantAlphaContactAngle function in

OpenFoam. The nematic tensor Q has a fixed value at the left and right walls. For

parallel anchoring of nematic director, we set Qxx = �0.5 and Qxy = 0 at the two walls,

and Qxx = 0.5 and Qxy = 0 for perpendicular wall anchoring. We use nonuniform grids

in the wetting simulations. The grid size in the bulk (|x| < 0.23mm) is set to be 2.5µm

as in the fluctuation simulations. To improve the spatial resolution at the contact point,

we refine the simulation grid close to the wall such that the grid size is 1.25µm for grids

within 0.23mm < |x| < 0.24mm and 0.625µm for grids at |x| > 0.24mm. The initial

condition is similar to that in the fluctuation simulations, except the flat interface is

located at 50% of the box height.

B.4.4 Extracting interface profiles.

The instantaneous interface profile h(x, t) is extracted from the spatial distribution

of color function � by using the isoSurface function in OpenFOAM. Specifically, Open-

FOAM first interpolates among discrete � values residing on grids to get a continuously

varying � field. Based on this, it is able to find numerically the positions where the con-

tinuous � field is exactly 0.5. The coordinates of the points with � = 0.5 then constitute
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the interface profiles we are looking for.

B.5 Theory of active interfacial fluctuations

As discussed in the main text, the non-monotonic power spectra of interfacial tangent

angle fluctuations is the result of a competition between passive relaxations and active

excitations [Fig. 3.5B, 3.7B]. Here, we provide the theoretical basis for this claim by

analytically deriving the height equation for fluctuating interfaces from continuum hy-

drodynamics and, based on that, calculate the fluctuation spectrum of passive and active

interface.

We begin by recalling the behavior of thermally driven interfaces.

B.6 Equilibrium interfacial fluctuations from the equipar-

tition theorem.

For a system in thermal equilibrium the equal-time spectrum of fluctuations is easily

obtained from the energy cost of distortions of the flat interface located at y = 0. We

expand the distortion h(x, t) in a Fourier series as h(x, t) = 1
L

P
k ĥ(k, t) eikx, with L

the system size along x and inverse transform ĥ(k, t) =
R L/2

�L/2 dx h(x, t) e�ikx. Assuming

small deformations, the energy cost of interface fluctuations is

F =
1

2L

X

k

(�k2 +�⇢g)|ĥ(k, t)|2 , (B.5)

where we have included the energy cost due to gravity. Here � is the interfacial ten-

sion and �⇢ is the di↵erence between the densities of the bottom and top fluid. The
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equipartition theorem states that the mean energy of each fluctuation mode is kBT/2. It

immediately follows
1

L
h|ĥ(k, t)|2i =

kBT

�(k2 + `�2
c )

. (B.6)

As is well known, the spectrum becomes constant in the gravity-dominated region k ⌧

`�1
c , and scales as k�2 at k � `�1

c where interfacial tension dominates [145].

B.6.1 Equilibrium interfacial fluctuations from interface dynam-

ics.

Active systems cannot be described by a free energy and require an approach based

on dynamics. To set the stage for the study of active interfacial fluctuations, it is useful to

first derive the thermal fluctuation spectrum from hydrodynamics for the case where fluid

dissipation is controlled by both friction with a substrate and fluid viscosity, as relevant

to our experimental system. This derivation, which is not available in the literature, will

inform the calculation of the active fluctuation spectrum.

We consider two passive fluids. For simplicity assume they have the same viscosity

and friction, and only di↵er in density. We consider the dynamics in the Stokes limit

which is appropriate for our experiments and follow the derivation of Refs. [146, 147,

148, 149, 150]. The Stokes equation for the two semi-infinite fluids in the presence of

thermal noise is given by

�vv = ⌘r2v�rP � ⇢gŷ+ f(r, t) , (B.7)

where

f(r, t) = r · �(r, t) + ⌘(r, t) (B.8)
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comprises the stochastic stress and force density describing the e↵ect of thermal noise,

with correlations determined by the fluctuation-dissipation theorem as

h�ik(r, t)�jl(r
0, t0)i =2kBT⌘(�ij�kl + �il�jk)�(r� r0)�(t� t0) ,

h⌘i(r, t)⌘j(r
0, t0)i =2kBT�v�ij�(r� r0)�(t� t0) ,

h�ik(r, t)⌘j(r
0, t0i =0 .

(B.9)

We assume the fluids to be incompressible, hence r · v = 0.

Continuity of velocity and stress at the interface requires

[v]0 = 0 ,

[⌘(@xvy + @yvx) + �xy]0 = 0 ,

[2⌘@yvy � P + �yy]0 = �@2xh��⇢gh ,

(B.10)

where for any function s(x, y) we have defined [s(x)]0 ⌘ s(x, y = 0�) � s(x, y = 0+) as

the change in s across the interface. The two terms on the RHS of the last equation

represent the Laplace pressure due to interfacial tension and gravity-induced pressure

di↵erence, respectively.

To linear order, the interface height is related to the local velocity through

@th(x, t) = vy(x, y = 0, t) . (B.11)

To obtain an equation for the dynamics of interface fluctuations, we need to solve for

vy(x, y, t) for given stochastic force f(r, t). Interface height correlations will then be

obtained by averaging over thermal noise.

By taking Fourier transforms of Eqs. (B.7)-(B.10) with respect to x and eliminating
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v̂x and P̂ in favor of v̂y, we obtain an equation for v̂y(k, y, t) as

(@2y � k2)(@2y � �2k2)v̂y(k, y, t) =
ik

⌘

⇣
@yf̂x � ikf̂y

⌘
, (B.12)

where � =
q

1 + 1/(`2⌘k
2), and `⌘ =

p
⌘/�v is the viscous screening length. We similarly

eliminate v̂x and P̂ from Eqs. (B.10) to express the boundary conditions in terms of v̂y,

with the result

[v̂y]0 = 0 ,

[@yv̂y]0 = 0 ,

[⌘(@2y + k2)v̂y � ik�̂xy]0 = 0 ,

⌘

k2
(@2y � 3k2

� `�2
⌘ )@yv̂y � �̂yy �

i

k
f̂x

�

0

= �(k2 + `�2
c )ĥ .

(B.13)

We write the solution to Eq. (B.12) with boundary conditions given by Eq. (B.13) as the

sum of the solution to the homogeneous equation with the required boundary conditions

and a particular solution to the inhomogeneous equation with homogeneous boundary

conditions,

v̂y(k, y, t) = v̂hy (k, y, t) + v̂0y(k, y, t) . (B.14)

The homogeneous solution v̂hy describes the flow induced by the stress discontinuity across

the interface and propagated by passive processes. It is given by

v̂hy (k, y, t) =�
|k|

2�v


�(k2 + `�2

c )ĥ+ [�̂yy +
i

k
f̂x]0

�✓
e�|ky|

�
1

�
e��|ky|

◆

+
ik�̂xy
2�v

sign(y)
�
e�|ky|

� e��|ky|
�
.
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The particular solution can be obtained in terms of Green’s function and describes in-

terfacial flows driven by stochastic stress and force in the bulk. It is given by

v̂0y(k, y, t) =
|k|

2�v

Z 0�

�1
dy0

✓
e�|k||y�y0|

�
1

�
e��|k||y�y0|

◆
f̂y(k, y

0, t) +
i

k
@y0 f̂x(k, y

0, t)

�

+
|k|

2�v

Z 1

0+
dy0

✓
e�|k||y�y0|

�
1

�
e��|k||y�y0|

◆
f̂y(k, y

0, t) +
i

k
@y0 f̂x(k, y

0, t)

�
.

(B.15)

Adding the two solutions v̂hy and v̂0y, and integrating by parts, it is easy to show that,

at the interface y = 0, the surface terms in v̂0y are cancelled by equal and opposite

contributions from v̂hy . The y velocity at the interface can then be written as

v̂y(k, y = 0, t) = v̂r(k, t) + v̂t(k, t) , (B.16)

where v̂r controls the passive relaxation of the interface due to surface tension and gravity

and v̂t represents the stochastic forcing arising from thermal noise that drives interface

fluctuations. The relaxation part has the form

v̂r(k, t) = �⌫(k)ĥ(k, t) , (B.17)

with

⌫(k) =
�(k2 + `�2

c )

2⌘|k|(�2 + �)
⌘
�(k2 + `�2

c )

⇣(k)
, (B.18)

where

⇣(k) = 2⌘|k|(�2 + �) (B.19)

has a natural interpretation as an e↵ective friction per unit length on the interface. The
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stochastic forcing has a rather lengthy expression

v̂t(k, t) =
k2

2�v
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i
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(B.20)

but it is easy to show using Eqs. (B.9) that it has zero mean and correlations

hv̂t(k, t)v̂t(k0, t0)i =
2kBT

⇣(k)
L�k,�k0 �(t� t0) . (B.21)

The dynamics of interface fluctuations is then governed by a Langevin equation

@tĥ(k, t) = �⌫(k)ĥ(k, t) + v̂t(k, t) . (B.22)

with noise correlations given by Eq. (B.21). We can now use the Langevin equation to

evaluate the equal time spectrum of interface fluctuations. After defining the temporal

Fourier transform, ĥ(k,!) =
R1
�1 dte�i!tĥ(k, t), we immediately obtain the dynamic

structure factor of the interface as

1

L
h|ĥ(k,!)|2i =

2kBT/⇣(k)

!2 + ⌫2(k)
. (B.23)
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The static or equal-time fluctuation spectrum is then given by

1

L
h|ĥ(k, t)|2i =

Z 1

�1

d!

2⇡L
h|ĥ(k,!)|2i =

2kBT/⇣(k)

2⌫(k)
=

kBT

�(k2 + `�2
c )

, (B.24)

which is consistent with that obtained using the equipartition theorem. Importantly, the

dependence of the noise amplitude on the e↵ective friction is key for guaranteeing the

result obtained from equipartition.

B.6.2 Dynamics of activity-powered interfacial fluctuations.

In the previous section, we studied the dynamics of thermally driven interfaces. This is

characterized by the exponential relaxations with k dependent rates that are controlled

by interfacial tension and gravity. Now we will show how a non-monotonic tangent

angle spectrum arises in active interfaces from the competition of the passive relaxation

mechanisms delineated above and active processes. When the bottom fluid is active,

the main driving force of interfacial fluctuations is not thermal noise, but active stress.

Neglecting random thermal forces and stresses, the Stokes equation then takes the form

�vv = ⌘r2v�rP � ⇢gŷ+r · �a , (B.25)

where the active stress �a is specified below.

One can then carry out the same derivation as in the thermal case to obtain an

equation for the interfacial fluctuations as

@tĥ(k, t) = �⌫(k)ĥ(k, t) + v̂a(k, t) , (B.26)

where the passive relaxation rate ⌫(k) is given again by Eq. (B.18) and v̂a(k, t) is the
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active forcing (or active interfacial flow) due to bulk active stress, given by

v̂a(k, t) =
k2

2�v

Z 0

�1
dy e|k|y

⇥
2�̂a

xx(y) + 2ik|k|�1�̂a
xy(y)

⇤

�
k2

2�v

Z 0

�1
dy e�|k|y

⇥
2�̂a

xx(y) + ik|k|�1(� + ��1)�̂a
xy(y)

⇤
.

(B.27)

In this case, however, Eq. (B.26) is not a closed equation since the forcing v̂a is determined

by the dynamics of the active stress, which in turn couples back to the flow, as shown in

Eq. (B.2b). As discussed in the main text, this feedback is key for the onset of traveling

surface waves. On the other hand, as shown below, the form given in Eq. (B.26) o↵ers

a useful interpretation of the role of activity on the equal-time fluctuation spectrum.

To proceed, we treat the active stress as stochastic forcing correlated both in space

and time. This is justified by a large body of simulations of bulk active nematics [151]

that have quanified active stress correlations. For the purpose of modeling interfacial

fluctuations, we assume a simple form with exponential correlation in both space and

time, given by

h�a
xx(r, t)�

a
xx(r

0, t0)i = h�a
xy(r, t)�

a
xy(r

0, t0)i = �2
rmse

�|r�r0|/`ae�|t�t0|/⌧a , (B.28)

and h�a
xx(r, t)�

a
xy(r

0, t0)i = 0. The statistical properties of the active noise are then

completely determined by three quantities: the correlation length `a, the correlation

time ⌧a, and root mean square active stress �rms.

Using Eqs. (B.27)-(B.28), we can calculate the correlation function of the active

forcing va as

hv̂a(k, t)v̂a(k0, t0)i =
2E(k)

⇣(k)
L�k,�k0

e�|t�t0|/⌧a

⌧a
, (B.29)
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where

E(k) =
�2
rms`

2
a⌧a⇣(k)

8�2v

Z 1

�1
dkz

(� � 1)2k6

(k2 + k2
z) (�

2k2 + k2
z)

4 + (1 + ��1)2 + (1� ��1)2 k2
zk

�2

(1 + `2ak
2 + `2ak

2
z)

3/2
.

(B.30)

We can then readily obtain the equal-time spectrum of the active interfacial fluctuations

as
1

L
h|ĥ(k, t)|2i =

2E(k)

�(k2 + `�2
c )

1

1 + ⌧a⌫
. (B.31)

The equal-time spectrum of the active interface is well described by Eq. (B.31).

Figures B.10A,B show excellent agreement between the theoretical spectra (solid lines)

calculated using Eq. (B.31) and those measured from simulations and experiment (cir-

cles). The experiment, simulations, and theory, all suggest a crossover of the height

spectrum from h|ĥ(k, t)|2i ⇠ |k| at small wavenumber to h|ĥ(k, t)|2i ⇠ k�6 at large

wavenumber, which is very di↵erent from the equilibrium spectrum in Eq. (B.24). This

can be attributed to the scale dependence of energy injection in the active fluid.

To understand this, note that E(k) has the dimension of energy. Comparing Eq.

(B.29) to (B.21), we see that E(k) can be used to characterize the energy scale of active

fluctuations, to be compared to kBT in thermal equilibrium. We have calculated E(k)

numerically using Eq. (B.30) and the results are shown in Figs. B.10C,D. Both simu-

lations and experiments show energy scale of the order 10�13
⇠ 10�11J , which is much

larger than the thermal energy scale kBT ⇠ 10�21J . This explains the giant interfacial

fluctuations found in both experiments and simulations. Furthermore, E(k) has a strong

dependence on wavenumber k: it crosses over from E(k) ⇠ k at small k where dissipa-

tion is dominated by friction to E(k) ⇠ k�3 where dissipation is dominated by viscosity.

The crossover length scale is essentially independent of activity and is controlled by the

typical size of flow vortices, which in our system is determined by the screening length
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`⌘. This behavior is consistent with the energy spectrum reported for bulk active liquid

crystal in the regime of active turbulence [89].

The scale dependence of the active energy injection determines the fluctuation spec-

trum of active interface. At small wavenumber or large scales,

we find h|ĥ(k, t)|2i ⇠ E(k) ⇠ k, in agreement with the interfacial spectra shown

in Figs. B.10A,B from both simulations and experiments. At large wavenumber where

⌧a⌫(k) � 1, we find h|ĥ(k, t)|2i ⇠ E(k)/(k2⌫(k)) ⇠ k�6, where we have assumed k �

`�1
c , `�1

⌘ and used ⌫(k) ⇠ k. The scale-dependence of active energy injection distinguishes

the active interfacial spectra from their equilibrium counterparts.

B.6.3 Estimating active stress using interfacial fluctuations.

Equation (B.31) allows us to estimate the magnitude of the active stress �rms from

the interface spectrum. This is best done using the interface’s tilting angle ✓ instead of

the height since the former is well defined even at high activity. Using ✓̂(k, t) ' ikĥ(k, t),

we find

1

L
h|✓̂(k, t)|2i =

2k2
E(k)

�(k2 + `�2
c )

1

1 + ⌧a⌫
, (B.32)

and the root mean square value of ✓

✓rms ⌘ L�1

sX

k

h|✓̂(k, t)|2i. (B.33)

Clearly ✓rms is proportional to the amplitude of the active stress �rms,

✓rms = �rms/p, (B.34)
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(B.35)

Measuring ✓rms and calculating p numerically allows us to estimate the magnitude of

active stress �rms.

We use this method to measure the active stress in the experiment. Taking advantage

of the fact that `a and ⌧a barely change with the KSA concentration, p is essentially

independent of the KSA concentration. Using p ⇡ 8.4 mPa/rad estimated from one

set of data, we obtain that the active stress varies between 2.5 mPa and 6 mPa in

the experiment [Fig. 3.10B], close to the values obtained from activity-induced wetting

below 300 nM KSA. The lowest active stress value coincides with the yield stress of

passive kinesin-crosslinked bundled microtubule gels [152].

B.7 Theory of activity-induced wetting: from active

stress to active tension

The enhanced wetting in the presence of activity originates from directed active

stresses in the region near the wall that persistently lift the interface, e↵ectively in-

creasing wall adhesion of the active phase. Both experiment and simulation show that

nematic director preferentially aligns with the wall [Fig. 3.8B, 3.9A inset]. Such an

alignment is expected even for passive rigid filaments due to steric interaction with the

wall [142, 153]. It is enhanced by active forces, resulting in so-called active anchoring,

as demonstrated in recent simulations [85, 154, 155]. Since the active stress is extensile,

these vertically aligned domains exert, on average, a lifting force on the interface, driving
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it upwards. Activity then changes both the height of the contact point and the apparent

wetting angle, as shown below.

B.7.1 Force balance at a passive interface.

We first summarize the force balance that determines the interface profile and the

wetting angle of a passive interface in the presence of gravity [156]. For a passive interface,

the profile of the interface height h(x, t) is governed by the Young-Laplace equation that

expresses normal force balance across the interface as

�
h00

(1 + h02)3/2
��⇢gh = 0 , (B.36)

where primes denote derivatives with respect to x and � is the interfacial tension. This

equation needs to be solved with the contact boundary condition at the wall

h0(0) = � cot ✓e , (B.37)

where the wetting angle ✓e (shown in Fig. B.7.3A) is determined by balancing the wall

tension �w and the interfacial tension �

� cos ✓e = �w . (B.38)

Assuming the slope of the interface remains small, i.e., h0
⌧ 1, Eq. (B.36) can be lin-

earized and solved, resulting in an exponential interface profile, given by

h(x) = `c cot ✓e e
�x/`c , (B.39)
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with `c =
p
�/�⇢g the capillary length.

B.7.2 Force balance at an active interface.

In the active liquid crystal there is a region close to the wall where MT bundles align

parallel to the wall [Figs. 3.8B, 3.9A inset, B.7.3B]. We assume that the thickness `w

of this wall-aligned region is `w ⌧ `c. Outside this region (x > `w), the average active

stress vanishes due to the chaotic dynamics, and we expect the average interface profile

to be governed again by the Young-Laplace equation, but with an apparent wetting angle

✓a di↵erent from the equilibrium wetting angle ✓e [Fig. B.7.3B]. The profile is therefore

given by Eq. (B.39), with ✓e ! ✓a.

To determine ✓a, we examine force balance within the thin wall-aligned region where

four forces per unit chamber thickness are at play (inset Fig. B.7.3B):

1. coherent active stresses lifting the interface Fa ⇡ �↵`w, where ↵ < 0;

2. vertical downward gravitaional force resulting from density di↵erence, Fg = �⇢gh0`w,

where h0 is the height of the contact point;

3. interfacial tension away from the wall aligned domain at x > `w, drags the interface

downward Fi = � cos ✓a in the y direction;

4. wall adhesion contributes to a vertical lifting force per unit length Fw = �w.

The wetting angle ✓a is determined by the balance of these four terms through

Fw + Fa = Fi + Fg , (B.40)
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�↵`w > 0 has the dimension of interfacial tension which defines an “active tension”

�a ⌘ |↵|`w.

Prior to complete wetting, the interface profile for x � `w is governed by the Young-

Laplace law with wetting angle ✓a. The interface profile must be obtained from the

solution of the nonlinear equation, Eq. (B.36) [156]. The maximum height h0 is obtained

by setting h(x = 0) ' h(x = `w), with the result

h0 ⇡ `c
p
2(1� sin ✓a). (B.41)

Equation (B.40) then becomes

� cos ✓a +�⇢g`w`c
p
2(1� sin ✓a) = �w + |↵|`w . (B.42)

This shows that increase in activity results in a decrease of the active wetting angle ✓a,

and associated increase of the maximum height h0.

The onset of complete wetting corresponds to ✓a = 0. Inserting this in Eq. (B.42)

gives the critical activity for complete wetting as

↵c =
� � �w
`w

+
p

2�⇢g`c . (B.43)

Beyond complete wetting,

✓a = 0. For x  `w, the interface height keeps growing until the active stress is

balanced by gravity and interfacial tension. Setting ✓a = 0 in Eq. (B.40), we obtain the

maximum height as

h0 =
1

�⇢g`w
(�w � � � ↵`w) =

p

2`c +
1

�⇢g
(|↵|� ↵c) . (B.44)
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When |↵| � ↵c, i.e., at values of activity well above the onset of complete wetting,

h0 '
|↵|
�⇢g and one can infer the active stress directly by measuring h0. In experiments,

we use the center-of-mass of the capillary rise to determine the active stress, as it is

challenging to consistently define h0, e.g. when the wetting layer splits from the bulk

fluid.

Numerical simulations allowed us to examine the dynamics of active wetting starting

from a flat interface. For all activities, the contact point climbed up the wall, saturating

at a maximum value determined by force balance [Fig. B.12A]. We compare the steady

state maximum height obtained from simulations (circles) to Eq (B.40) [Fig. B.12B]. The

theory provides an excellent prediction for the height prior to complete wetting, as well

as the transition to complete wetting. Beyond complete wetting, the maximum height h0

increases linearly with activity |↵|, suggesting that measuring the height of the contact

point estimates active stresss. The rate of growth of the height with activity is, however,

slightly larger than the expected value 1/�⇢g (dashed line in Fig. B.12B). This could

be due to the fact that at high activity, the contact point has a sharp geometry and the

fields are varying violently in space, which significantly reduces the numerical accuracy

of OpenFOAM.

To summarize, the presence of a wall-aligned layer gives rise to an active tension

�a = |↵|`w that changes the apparent wetting angle from the passive value ✓e to ✓a given

by Eq. (B.42). Importantly, we show that it is possible to infer the active stress by

comparing measurement of wetting of interfaces in passive and active samples.
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B.7.3 Converting maximum height to center of mass.

In experiments it is di�cult to determine the maximum height of the wetting layer.

A more convenient and directly measurable quantity for quantifying activity-induced

wetting is the center of mass of the region of the interface that is lifted above its flat

value, defined as

hc =
1

2A

Z 1

0

h2(x)dx , (B.45)

where

A =

Z 1

0

h(x)dx (B.46)

is the area of the lifted region. To compare with experiments we therefore evaluate the

center of mass hc as follows. By requiring that the total gravitational force exerted on

the lifted region, �⇢gAd, balance the sum of wall adhesion Fw and active lifting force

Fa, we obtain the area A as

A =
�w � ↵`w

�⇢g
. (B.47)

To evaluate the integral in Eq. (B.45). We separate the wall-aligned layer from the

bulk part of the interface. Within the aligning layer x < `w, we assume h(x) ' h0, so

that the thin layer contributes h2
0`w/2 to the integral. For x � `w, we assume the average

interface profile satisfies the nonlinear Young-Laplace equation.Since no explicit solution

is available, we first evaluate the interface profile numerically by solving the Young-

Laplace equation with contact angle ✓a, then calculate the bulk part of the integral in

Eq. (B.45) numerically.
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Figure B.1: Three-dimensional visualization of coarsening sample at 275
nM KSA. (A) Active droplets (cyan) confined to a 30 µm chamber. (B) Magnified
image of an isolated droplet. (C) Cross sections views of the droplet. In 30 µm thick
chambers, droplets span the entire chamber, and have a nearly flat vertical profile.

Figure B.2: Area fraction of dextran over time. The area fraction initially
increases rapidly, then remains nearly constant 2 hours after sample preparation.
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Figure B.3: Measurement of the correlation length. (A) Dextran fluorescence
image 1.5 hr after the start of the experiment. Only part of the field of view is shown.
Scale bar 300 µm. (B) Pixels in dextran-rich regions are assigned a value of 1, and
those in the PEG-rich regions are assigned a value of �1. (C) The autocorrelation
matrix of (B). (D) The radial autocorrelation at 6 time points, obtained from (C)
by azimuthal averaging around the origin. The correlation length ⇠ is defined as the
distance at which the autocorrelation function equals 0.5. (E) Evolution of ⇠ in time.
KSA concentration 235nM.
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Figure B.4: Time evolution of average PEG-rich droplet size. At each time
point, all PEG droplets in a dextran-fluorescence image were identified. Then, their
areas were averaged and the average droplet size was defined as the square root of the
average area. At 130 nM KSA, droplet coarsening was enhanced. At 230 nM KSA,
the mean droplet size peaked around 2 hours, and then entered a dynamic steady
state characterized by constant average droplet size.
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30 min lag

Figure B.5: Early evolution of correlation length and inverse curvature for
230 nM KSA. In the first 2 hours of the experiment, correlation length development
lagged behind that of the average interface curvature. Subsequently, the rate of change
of both quantities coincided as the system approached the steady state.
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Figure B.6: Detection of bulk-phase-separated interfaces. (A) Dextran fluo-
rescence image. (B) The thresholded image, with edges detected using the Sobel filter
shown in red. (C) After skeletonizing and pruning the largest component, the edge
roughly contours the interface. (D) A small section of the interface. (E) A magnified
region surrounding a point (x, y) on the interface. (F) Image intensity in (E) is inter-
polated using a 2D spline (grayscale). Red line is parallel to the local normal (nx, ny)
to the interface. (G) Interpolated image intensity along the local normal. The dis-
tance d along the normal is defined where the intensity is equal to the threshold. (H)
The interface position is defined to be (x, y) + d(nx, ny)

Figure B.7: Tangent angle power spectrum as a function of time, averaged
over one-hour intervals after sample preparation. Although the amplitude of
fluctuations increases over time, after ⇡ 6 hours, the shape of the fluctuation spectrum
remains nearly constant.
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Figure B.8: Experimental tangent angle spectra extended to k = 103 mm�1.
Tangent angle measurement noise increases as ⇠ k2, resulting in a secondary peak at
k ⇠ 8 · 102 mm�1 where all spectra overlap. Legend denotes KSA concentrations in
units of nM.

Figure B.9: Root-mean-square velocity of active phase as a function of
kinesin concentration averaged from 6 to 8 hours after sample preparation.
Below 200 nM KSA, the speed decreases significantly. Above 200 nM KSA, the speed
is approximately constant. Error bars show standard deviation.
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Figure B.10: Fluctuation of active interfaces at di↵erent activities. (A-B)
Fluctuation spectra of interfaces from (A) simulations and (B) experiment. Solid lines
are theoretical values calculated using Eq. (B.31), while circles are height spectra
extracted from either simulations or experiments. For simulations, �2

rms = ↵2S̄2/8,
where S̄ is the mean nematic order parameter at the steady state. The correlation
legnth `a, correlation time ⌧a, and S̄ were measured from simulations. Since all other
parameters are known, no fitting parameter is used here. (C-D) Energy spectra E(k)
calculated using (B.30) with parameters from (C) simulations and (D) experiment.
The 200 nM KSA data set is used to obtain results in panels B and D. We used
the following parameters to calculate the energy and interface fluctuation spectra:
interfacial tension � = 0.177 µN/m, density di↵erence �⇢ = 8.9 kg/m3, viscosity
⌘ = 25 mPa·S, friction �v = 100 MPa. The correlation length and time of active
stress `a = 50 µm and ⌧a = 80 sec were used in (B) and (D). Magnitude of active
stress �rms is used as a fitting parameter, and the best fit gives �rms = 2.47 mPa.
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Figure B.11: (A) Sketch of the wetting profile of a passive liquid-air interface defined
by y = h(x). The wall tension �w is determined by �w = �wall�air � �wall�liquid. (B)
Sketch of activity-induced wetting. The inset shows the geometry and force balance
close to the contact point.
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Figure B.12: Evolution of height of interface contact point with activity.
(A) Height of contact point as a function of time at di↵erent activities obtained from
numerical simulations of the continuum model. Since there are two vertical walls, we
use the average height of the contact points at the two walls. (B) Steady state height
of contact point h0 as a function of activity. The circles are obtained from simulations
as h0 = (ts � t0)�1

R ts
t0

h(0, t)dt, with t0 = 7200S and ts = 20000S. The solid line
shows the theoretical value given in Eq. (B.40) with `w = 2.5µm. The dashed line
shows the predicted slope 1/�⇢g. In both figures we have used a passive contact angle
✓e = 10 degree.
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Figure B.13: Measurement of bulk spatiotemporal autocorrelations in sim-
ulations and experiments. (A) Normalized time correlation of active stresses in
numerical simulations. Inset: Correlation time decreases with increasing activity. (B)
Normalized space correlation of active stress in numerical simulation. Inset: Corre-
lation length decreases with increasing activity. (C) Normalized time correlation of
velocity in experiment. Inset: Correlation time shows little variation with activity.
(D) Normalized space correlation of velocity in experiment. Inset: Correlation length
shows little variation with activity. Velocity (stress) autocorrelations were computed
by averaging the scalar products of bulk velocity (stress) fields with their displace-
ment in time �t and space �x. Correlation times and length were defined where the
correlation curve reaches 1/e.
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Appendix for colloidal vesicles

C.1 Experimental Materials and Methods

C.1.1 Phage production

Litmus is a phagemid, meaning that its DNA does not containing the necessary code

to produce viral proteins. Producing litmus requires the addition of a helper phage to

generate the necessary viral proteins. M13K07 is a standard helper phage, and was

grown following previously established protocols[157]. The E. coli strain ER2738 was

infected with M13K07 and incubated in LB media at 37 C. After viral proliferation, it

was separated from the bacteria via multiple rounds of centrifugation. To purify the virus,

20 g/L PEG 8 kDa and 20 g/L NaCl were added to the solution, causing viruses to form

a dense precipitate. The virus was then pelleted in an ultracentrifuge and resuspended

in 20 mM Tris-HCl bu↵er to form the M13K07 stock solution for infecting cells.

Litmus requires a di↵erent growth protocol than M13K07 due to its nature as a

phagemid [101, 157]. The Litmus plasmid was transformed into competent cells (NEB

5-alpha F’), and grown in liquid media in overnight starter cultures. 2 µL of 60 mg/mL
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M13KO7 stocks were added to the bacterial stocks to begin phage production. M13KO7

confers kanamycin resistance to the cells. The cells are cultured in 2XYT media with

100 µg/mL ampicilin, 25 µg/mL kanamycin, 1 mM MgCl2 and 1mM MgSO4 [18]. Both

Litmus and M13KO7 are exuded from infected bacteria throughout growth.

We started purification by separating the bacteria from the phage via several rounds

of centrifugation. First, most bacteria was removed through a low-speed round of cen-

trifugation (10 min at 4,000xg, Fiberlite F9-6 x 1000 LEX fixed angle rotor, Thermo

Scientific) followed by a second high-speed round (15 min, 12,000xg), collecting the su-

pernatant which contained the phage. The supernatant was then filtered through a 0.22

µm filter, which allowed th phage to pass through, while removing any remaining bac-

teria. The phage was then condensed out of solution by adding 50 g/L PEG 8 kDa

(Sigma-Aldrich) and 30 g/L NaCl. The condensed phage was centrifuged out of solution

(30 min at 12,000 xg), and resuspended in 20 mM tris-HCl, pH 8 bu↵er. To increase the

phage purity, we preformed two additional cycles of centrifugation, where the solution

was first spun at 45,000 xg for 15 minutes to remove bacterial debris, followed by the

addition of 50 g/L PEG 8 kDa and 30 g/L NaCl to precipitate the phage with a 45,000

xg spin for 15 minutes to pellet the phage. These rounds further separated the phage

from the supernatant which contained bacterial debris.

After puification, the virus suspension contained both M13K07 and Litmus, requiring

phase separation to obtain a monodisperse sample of Litmus. Dextran was added to the

mixed growth product which, at critical concentration, induced the isotropic to nematic

phase transition in M13KO7 but not the Litmus. After one round of centrifugation at

21,000 xg for 15 minutes, the condensed nematic phase containing primarily M13KO7 set-

tles to the bottom of the centrifuge tube, while the Litmus remains in the upper isotropic

phase. The isotropic phase was collected to create litmus stock. Gel electrophoresis was

used to confirm separation of M13KO7 and litmus. An optional purification step to fur-
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ther clean the phages using an anion exchange column (POROS, GoPure XQ 0.5 cmD x

5 cmL COLUMN) using an established protocol [Monjezi2010]. The additional rounds of

purification increased membrane size and the frequency of vesicle formation from a few

vesicles per sample, to many hundreds [Fig. C.3].

C.1.2 Sample preparation

Each experiment required a multi-day preparation to form membranes. Vesicle sam-

ples were composed of DyLight-550 fluorescently-labeled phage and 500 kDa dextran in

a 125 mM NaCl, 20 mM Tris-HCl, pH8 bu↵er. At pH 8, Viral particles are negatively

charged, producing electrostatic repulsion that prevents membrane formation. Salt acts

to screen the electrostatic repulsion, and dextran acts as a polymer depletant, inducing

an entropically-driven attraction between the phages [14, 96, 158]. The balance between

the screened electrostatic force and the depletion force leads to the alignment of phages

and, ultimately, the self-assembly of colloidal membranes.

Low-polydispersity dextran was found to produce significantly cleaner and larger

membranes, resulting in more frequent vesicles. Dextran (Mr 500,000 Da, Sigma-Aldrich)

was separated into fractions with narrow molecular weight distributions via Ethanol

precipitation. Ethanol was gradually added to a solution of 0.2% dextran under vigorous

stirring at 23 �C. After reaching 31% (w/w) ethanol, dextran precipitates were removed

by centrifugation (20 min at 17,000g, Fiberlite F9-6 x 1000 LEX fixed angle rotor, Thermo

Scientific). Ethanol was then added to a concentration of 32% (w/w). The precipitate

was collected by centrifugation and resuspended in water. Solvent was removed by freeze-

dry lyophilization, and the powder was reconstituted in water to 100 mg/mL dextran.

This stock solution was used to make vesicle samples.

Samples were confined to a glass chamber that was coated with an Acrylamide poly-
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mer brush to prevent adsorption following established protocols [159]. Chambers were

made using a microscope slide and coverslip, separated by parafilm spacers. The number

of layers of parafilm was chosen to set the desired thickness of the chamber. Chambers

made using at least three layers of parafilm for a thickness of > 500 µm consistently

formed closed isolated vesicles, while in thinner chambers, vesicles were rarely able to

tear away from the top surface. Chambers up to 3 mm thick were used to take data for

the pendent vesicles. Samples were prepared using at variable concentration, depending

on the thickness of the chamber. Since membranes sediment to the bottom of the cham-

ber, 3 mm chambers needed to have lower final phage concentration (0.4 mg/mL) than in

500 µm chambers (1 mg/mL) to achieve the same density of membranes at the surface.

Samples were prepared at a final concentration of 54 mg/mL fractionated 500 kDa

dextran, in a 125 mM NaCl 20 mM tris-HCl bu↵er at pH 8. Directly after sample

preparation samples were loaded into the chamber, and then sealed with NOA glue.

The sample was then stored overnight with the microscope slide facing downward. One

day after sample preparation, Litmus membranes layered the bottom of the chamber and

began to curve upward against gravity [Fig. C.2]. The sample chamber was then inverted

so that the coverslip faced downward. To image membrane extension and tearing, samples

were immediately placed on a spinning disk confocal microscope and imaged with a 40x

water immersion objective (N40XLWD-NIR), to limit axial distortion. To image fully

formed vesicles, the chamber was left inverted for a day or more, and the resulting vesicles

were imaged as before.

C.1.3 Dialysis chamber

The bu↵er exchange experiments took place in a dialysis device as is shown in [Fig.

C.5]. Holes were drilled into standard microscope glass slides, which were then coated
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with an Acrylimide brush, following standard protocol [159]. Following this coating, slides

were cleaned and dried. A 20 kDa dialysis membrane was glued on the top surface of the

slide, covering the drilled holes. A PDMS bu↵er exchange chamber was then glued over

top of the dialysis membrane. On the opposing side of the microscope slide, a chamber

was formed using a coverslip with 600 µm of parafilm as a spacer. An assembled view

of the chamber is shown in [Fig. C.5a]. The bottom chamber was filled with the sample

(0.5 mg/mL phage, 54 mg/mL dextran in 125 mM NaCl 20 mM tris-HCl, pH 8), and

sealed with NOA glue. The top bu↵er-exchange chamber was filled with Litmus bu↵er

(125 mM NaCl 20 mM Tris-HCl, pH 8), and sealed with a flexible epoxy. The sample

was stored overnight with the coverslip facing up to form membranes on the microscope

glass side of the chamber. The chamber was then inverted so that the coverslide faced

downward and was stored for an additional day, to form vesicles on the bottom coverslip.

The flexible epoxy was peeled o↵ the PDMS chamber, the dialysis chamber was flushed

with air, and filled it with 0 mM NaCl 20 mM Tris-HCl bu↵er. The salt in the sample

di↵used out of the chamber over the course of several hours, while the resulting vesicle

shape change was recorded using a confocal microscope.

C.1.4 Contouring vesicles

To contour the vesicles, the 3D confocal images were imported into Fiji. Initial rough

contours of fluorescent objects in each image were found using the Ridge Detector plugin

[160]. This generated a mask that roughly contoured the vesicle, but included noise other

membrane objects which did not belong to the vesicle of interest. To further filter the

images, we recognize that the z-scans of the membranes are composed of roughly-circular

cross sections. We then fit each image in the z-scan with a circle using a RANSAC

algorithm. This picked out pendent-membrane-like objects, while rejecting line-like cross
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sections that make up other membranes. The Z-stacks of the circular fits acted as an

initial point cloud which was converted into a mesh using MeshLab [161]. This point

cloud was cleaned from outliers using the filters ”simplify point cloud” and ”Compute

Normal for Point Set”. These points were then used to construct a surface using the

filter ”Ball Pivoting”. Each mesh was then visually inspected, and manually repaired

wherever meshes contained self-intersections or holes.

The cleaned meshes were then put through a final round of processing. In the above-

described contouring scheme, vesicles were assumed to have a perfectly circular cross

section, and were manually inspected and repaired, both of which introduce artifacts

to the final vesicle contour. To remedy this, we developed an iterative algorithm to

evolve the initial mesh by attracting it toward regions of high intensity. To begin, First-

order directional derivatives of the image were taken using a di↵erence-of-Gaussian filter.

Each point on the mesh is acted on by a force,
�!
F = ↵

�!
rI, where ↵ is an arbitrary

constant and I is the image intensity. This acts to draw each point comprising the

mesh up the gradient. This algorithm was iterated until it converged on the region of

highest intensity. In practice, each point moved several pixels, settling within roughly

one hundred iterations. This method provided a consistent technique for detecting the

vesicle contour, given an accurate initial guess for the mesh.

C.2 Estimating membrane properties

C.2.1 Membrane relaxation time

To estimate the rate of membrane relaxation, we will use the known result [162, 93]

�(l) =
c
⌘R3

0

(l � 1)l2(l + 1)2(l + 2)

(2l + 1)(2l2 + 2l � 1)
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for bending dominated energy. The longest time scale is at l = 2, which is given by

⌧ =
55

144

⌘R3
0

c

Which, for c = 11, 000kBT , R0 ⇡ 100µm and the viscosity of the solute is ⌘ ⇡ 5mPas =

1.2kBTs/µm3, we get ⌧ = 41s.

C.2.2 Density Estimate

To estimate the arial density of the membrane, we measured the density of virus rod

suspensions in a concentrated solution using an oscillating U-tube density meter (DMA

4100, Anton-Paar). We found that the density of the tris bu↵er is ⇢tris = 0.9994g/cm3

and the density of the virus solution at 41 mg/mL is ⇢litmus(41mg/mL) = 1.0130g/cm3.

Previous work used small-angle x-ray scattering measured fd-wt membranes at 56

mg/mL dextran were condensed to 290mg/mL [16]. Because the length of the rod

should not change the membrane density, since the change per unit length and the osmotic

pressure both scale with the length of the rod, we can assume that the Litmus membranes

will be nearly 290 mg/mL. We can then extrapolate the density di↵erence to be:

�⇢litmus(260mg/mL) =
1.0130g/cm3

� 0.9994g/cm3

41mg/mL
(290mg/mL) = 0.096g/cm3

So the arial density is:

�� = (368nm)(
1cm

107nm
)0.096g/cm3 = 3.7 ⇤ 10�6g/cm2

From which we find that:
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��g = (3.7 ⇤ 10�6g/cm2) ⇤ (980cm/s2) = 3.6 ⇤ 10�3 g

cms2
= 0.075

kBT

µm3

C.2.3 Out of plane fluctuation spectrum

The bending energy, c was experimentally measured by imaging out-of-plane fluctu-

ations of small flat membranes suspended from the top of the chamber [Fig. C.4A]. The

center cross-section perpendicular to the plane of the membrane was imaged at 20 ms

intervals [Fig. C.4B,C]. The initial contour of this cross section was found by determining

the maximum intensity along each vertical line, h(x), using a first order Savitzky-Golay

filter. This contour was refined to subpixel accuracy along each point on the contour

by interpolating a 5x5 pixel neighborhood around each point (x, y). Gradients of this

interpolated regions were used to find the normal. We then determinined the sub-pixel

interface position along this normal that is equal to a predefined intensity value.

To process the data, the mean contour was subtracted from each timepoint. To

account for non-periodicity, the signal was first multiplied by a Hanning function and

rescaled to preserve the fluctuation amplitude before the power spectrum was calculated.

The power spectrum was fitted with the equation

h|A2(q)|i = h✏2i+
kBTq

�

�
1�

1p
1 + �/cq2

�
(C.1)

where h✏2i is a fitting parameter for the noise and � is the lateral tension. This

equation is appropriate for fitting the fluctuations of a one-dimensional cut along a two

dimensional sheet [97]. This was done for three separate membranes, to measure an

average of � = 370± 90kBT/µm2, c = 11000± 1000kBT and h✏2i = 3.5± 0.2 ⇤ 10�4µm

[Fig. C.4D].
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C.2.4 In plane fluctuation spectrum

Flat Litmus membranes at the bottom of the chamber were imaged using DIC mi-

croscopy, at 20 ms intervals [Fig. C.6A]. Edges were contoured by first finding the

maximum value h(x) for each point along x in the image, and then refined to subpixel

accuracy for each point on the contour by interpolating a 5x5 pixel neighborhood around

each point (x, y). Gradients of this interpolated regions were used to find the normal.

Sub-pixel interface position along the normal is defined so that the interpolated image

intensity equals a predefined threshold value along the entire interface. The power spec-

trum was calculated and fitted with the equation

h|A2(q)|i = h✏2i+
kBT

�q2 + Bq4

where h✏2i is a fitting parameter for the noise and B is the edge bending energy [Fig.

C.6B] [163]. This was done for nine separate membranes, to measure an average of

� = 350± 20kBT/µm and B = 1000± 100kBTµm [Fig. C.6C].

C.3 Numerical methods for shape analysis

C.3.1 Energy and coordinate system

For shape analysis, we will focus on axisymmetric membranes. Here, we use the

coordinates

es =

0

BBBB@

r0(s)

z0(s)

0

1

CCCCA
=

0

BBBB@

cos (s)

sin (s)

0

1

CCCCA
, e� =

0

BBBB@

�r(s) sin(�)

r(s) cos(�)

0

1

CCCCA
. (C.2)

where  (s) is the local tangent angle parameterized by the arclength and � is the az-
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imuthal angle, as shown in figure C.1.

For the most general case, we have to consider the gravitational energy, curvature

energy and edge terms

E =

Z hc
2

�
2H

�2
+ ̄KG + �gz + µ]dA+

Z
q(rs � cos )

+

Z
⌘(zs + sin ) + �

Z
dL+ P

Z
dV (C.3)

with the Lagrange multipliers µ to keep the surface area constant, q(s) to account for

rs = cos , ⌘(s) to account for zs = � sin and P to account for the constant volume.

In this parameterization, the energy can be written as

E = 2⇡

Z hc
2

�
 s +

sin 

r

�2
+  s

sin 

r
+ �gz + µ

i
rds+

Z
q(rs � cos )ds

+

Z
⌘(zs + sin )ds+ �

Z
dL+ P

Z
r2 sin ds (C.4)

From this general case, we solve for experimentally relevant examples:

C.3.2 Closed vesicles

For closed vesicles, we do not need the line tension term, leaving

E = 2⇡

Z hc
2

�
 s +

sin 

r

�2
+  s

sin 

r
+ �gz + µ

i
rds+

Z
q(rs � cos )ds

+

Z
⌘(zs + sin )ds+ P

Z
r2 sin ds (C.5)
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To solve these equations we first take the variation along  to get the Euler-Lagrange

equation

�cr ss � c cos  s + c
sin cos 

r + q sin + Pr2 cos = 0

Next, can take the variation along r to get the equation

c
2  

2
s �

c
2

sin2  
r2 + µ� qs + �gz + 2Pr sin = 0

Taking variation in V gives

Ps = 0

Taking the variation in z gives

⌘s = �gr

Lastly, we have the equations

rs = cos 

zs = � sin .

We can then define the arclength in terms of the reduced arclength, so that t = s/L,

where L is the arclength of the curve. These equations can be recast into the system of

first-order ODE’s
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d 

dt
= L s

d 0

dt
= �L

cos  s

r
+ L

sin cos 

r2
+ L

q

rc
sin + L

⌘

rc
cos ⇡ + Pr2 cos 

dr

dt
= L cos 

dz

dt
= �L sin 

dq

dt
= L

c
2
 02

� L
c
2

sin2  

r2
+ Lµ+ L�gz + 2Pr sin 

dA

dt
= 2⇡rL

dµ

dt
= 0

d⌘

dt
= L�gr

dL

dt
= 0

dP

dt
= 0

dV

dt
= Lr2 sin .

(C.6)

We need eleven boundary conditions to solve this system. To begin with, we enforce

five boundary condition at the top center of the vesicle where the tangent angle is zero,

the radius is zero, the height is zero, the integrated area is zero and the integrated volume

is zero, leading to the five conditions:

(1)  (0) = 0

(2) r(0) = 0

(3) z(0) = 0

(4) A(t = 0) = 0

(5) V (t = 0) = 0

We also have that at the bottom of the vesicle, the radius in contact with the floor is
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set to R and the integrated area is A0�⇡R2 the integrated volume is V0 and the tangent

angle is ⇡, giving the four conditions:

(6) r(t = 1) = R

(7) A(t = 1) = A0 � ⇡R2

(8)  (t = 1) = ⇡

(9) V (t = 1) = V0

We also have two additional condition. The first is that the Hamiltonian is zero at

the bottom by the transversality condition [164]. This gives

H(0) =  0 @L
@ 0 + r0 @L@r0 � L = 0

= cr
2 ( 2

s � sin( )2/r2)� µr + qcos( )� ⌘sin( )� �grz|s=0

which reduces to

(10) q(0) = 0

The final boundary condition comes from having zero gravitational force at the bottom

(11) ⌘(0) = 0

This system of equations can then be solved in any ODE solver, and requires only

the radius of the contact with the bottom surface, the total surface area and the total

volume as free parameters, which can each be experimentally measured.

C.3.3 Pendent vesicle

To model pendent membranes, the only major di↵erence energetically is the presence

of an open pore at the top. However, this term is Eedge = �
R
dL. Since the width of

the top opening will be a fixed radius measured experimentally, this term will not enter

into the Euler-Lagrange equations. Therefore, the energy is identical to C.5, and the the

Euler-Lagrange equations will be identical to C.6. However, the boundary conditions will

be changed.
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To begin with, we enforce the four boundary condition at the top of the pendent

vesicle, the radius is fixed at a constant R, the integrated area is A0 the integrated

volume is V0, the height is zero and the tangent angle is fixed to ensure a vanishing

bending moment such that  s = �(1 + sin 
r ), giving the five conditions:

(1) r(t =) = R

(2) A(t = 1) = A0

(3)  s(t = 1) = �(1 + sin 
r )

(4) V (t = 1) = V0

(5) z(0) = 0

At the bottom of the pendent vesicle, the tangent angle is zero, the radius is zero, the

integrated area is zero and the integrated volume is zero, leading to the four conditions:

(6)  (0) = 0

(7) r(0) = 0

(8) A(t = 0) = 0

(9) V (t = 0) = 0

We retain the two additional condition from the previous section:

(10) q(t = 0) = 0

(11) ⌘(t = 0) = 0

These can again be solved using any ODE solver, with experimentally measured values

as inputs.

C.3.4 Single pores vesicles

To model the single pore evaporating vesicles, we will use the energy functional above,

with minor modifications. First, since the vesicle has an open pore, we will assume that

the volume is equilibrated to the minimum energy (P = 0). We also assume that the
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gravitational energy does not contribute, since the vesicles we are describing are generally

small. This gives the energy functional:

E = 2⇡

Z hc
2

�
 s +

sin 

r

�2
+  s

sin 

r
+ µ

i
rds+

Z
q(rs � cos )ds+ �

Z
dL (C.7)

By construction:

d 
ds = L 0

dr
ds = L cos 

dz
ds = �L sin 

dA
ds = 2⇡rL

dL
ds = 0

dµ
ds = 0

Taking variation in  gives

d s

ds = �L cos  0

r + L sin cos 
r2 + L q

rc
sin .

Taking variation in r gives

dq
ds = +Lc

2  
02
� Lc

2
sin2  
r2 + Lµ.

To solve these equations, we need eight boundary conditions. The radii of the single pore

is:

(1) r(0) = r1

and the position of hole is set by

(2) z(0) = 0

The surface area of the contour gives the conditions

(3) A(t = 0) = 0

(4) A(t = 1) = A

We also have zero bending moment on the open boundary
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(5)  s(t = 0) = �(1 +  
r )

At the opposite pole of the membrane we have that

(6) r(t = 1) = 0

(7)  (t = 1) = 0

And finally, we have that the Hamiltonian is zero by the transversality condition:

(8) H(0) = 0

This now requires r1 and the total surface area as input parameters, both of which can

be measured experimentally. We find the predicted cross sections of single pore vesicles

fit well with the experimental data [Fig. 4.11A,B].

C.3.5 Two pores vesicles

To model the two pore system, we use the energy functional as the single pore mem-

brane C.7, with altered boundary conditions. Six of the boundary conditions are un-

changed:

(1) r(0) = r1

(2) z(0) = 0

(3) A(t = 0) = 0

(4) A(t = 1) = A

(5) H(0) = 0

(6)  s(t = 0) = �(1 +  
r )

The two altered boundary conditions account for the second open pore:

(7) r(t = 1) = r2

(8)  s(t = 1) = �(1 + sin 
r )

This now requires r1, r2 and the total surface area as input parameters, which can

each be measured experimentally.
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Figure C.1: Coordinate system used to solve Euler-Lagrange equations and to predict
vesicle shape.

Figure C.2: Typical membrane seen a the bottom of the chamber, just before inversion.
The membrane is curving upward but has not closed into a vesicle.
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Figure C.3: Dense grouping of vesicles seen in experiment. Over an imaging
area of 2 mm x 2.3 mm, 72 closed vesicles were densely packed together. (A) 3D
rendering of the entire patch of vesicles (B) and a higher resolution image showing a
880 µm x 880 µm area.

Figure C.4: Out-of-plane fluctuation analysis to measure material proper-
ties. (A) A flat Litmus membrane suspended from the chamber top. (B) Center-slice
of the membrane. Direction of out-of-plane fluctuations indicted by arrow. (C) Typi-
cal fluctuations seen in experiment. (D) The fluctuation spectrum for three samples.
Black and blue contours were taken with 100x magnification and the red contour at
150x magnification.
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Figure C.5: Schematic of dialysis chamber. (A) An exploded view of the dialysis
device with key components labeled. (B) View of the top bu↵er exchange chamber,
showing the shape of the channel. (C) The assembled chamber.

Figure C.6: In-plane fluctuation analysis to measure material properties. (A)
An example of a typical DIC microscopy image seen in experiment. (B) Fluctuation
spectrum of three membranes, fitted with the expected functional form. (C) Table
showing the measures of � and B for each of the nine samples analyzed.
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[7] A. Buka, P. Pal↵y-Muhoray, , and Z. Rácz, Viscous fingering in liquid crystals,
Physical Review A 36 (1987).

[8] Q. Zhang, S. Zhou, R. Zhang, and I. Bischofberger, Dendritic patterns from
shear-enhanced anisotropy in nematic liquid crystals, Science Advances 9 (2023).

[9] T. Hirose, K. Ninomiya, S. Nakagawa, and T. Yamazaki, A guide to
membraneless organelles and their various roles in gene regulation, Nature
Reviews Mollecular Cell Biology 24 (2023).

[10] D. Bracha, M. T. Walls, and C. P. Brangwynne, Probing and engineering
liquid-phase organelles, Nature Biotechnology 37 (2019).

[11] J. E. Lee, P. I. Cathey, H. Wu, R. Parker, and G. K. Voeltz, Endoplasmic
reticulum contact sites regulate the dynamics of membraneless organelles, Science
367 (2020), no. 6477 eaay7108.

[12] E. Barry, D. Beller, and Z. Dogic, A model liquid crystalline system based on
rodlike viruses with variable chirality and persistence length, Soft Matter 5 (2009).

132



[13] Z. Dogic and S. Fraden, Smectic phase in a colloidal suspension of semiflexible
virus particles, Physical Review Letters 78 (1997).

[14] E. Barry and Z. Dogic, Entropy driven self-assembly of nonamphiphilic colloidal
membranes, Proceedings of the National Academy of Sciences of the United States
of America 107 (2010).

[15] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments,
Zeitschrift fur Naturforschung - Section C Journal of Biosciences 28 (1973).

[16] A. J. Balchunas, R. A. Cabanas, M. J. Zakhary, T. Gibaud, S. Fraden,
P. Sharma, M. F. Hagan, and Z. Dogic, Equation of state of colloidal membranes,
Soft Matter 15 (2019).

[17] A. Khanra, L. L. Jia, N. P. Mitchell, A. Balchunas, R. A. Pelcovits, T. R. Powers,
Z. Dogic, , and P. Sharma, Controlling the shape and topology of two-component
colloidal membranes, Proceedings of the National Academy of Sciences 119 (2022).

[18] J. M. Miller, C. Joshi, P. Sharma, A. Baskaran, A. Baskaran, G. M. Grason,
M. F. Hagan, and Z. Dogic, Conformational switching of chiral colloidal rafts
regulates raft–raft attractions and repulsions., Proceedings of the National
Academy of Sciences 116 (2019).

[19] C. Blanch-Mercader, V. Yashunsky, S. Garcia, G. Duclos, L. Giomi, and
P. Silberzan, Turbulent dynamics of epithelial cell cultures, Physical Review
Letters 120 (2018).

[20] J. Toner, Y. Tu, and S. Ramaswamy, Hydrodynamics and phases of flocks.,
Annals of Physics 318 (2005).

[21] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler,
Self-concentration and large-scale coherence in bacterial dynamics, Physical
Review Letters 93 (2004).

[22] W. Wang, X. Lv, J. L. Moran, S. Duana, and C. Zhoua, A practical guide to
active colloids: choosing synthetic model systems for soft matter physics research,
Soft Matter 16 (2020).

[23] A. Cavagna and I. Giardina, Bird flocks as condensed matter, Annual Review of
Condensed Matter Physics 5 (2014).

[24] I. Aoki, A simulation study on the schooling mechanism in fish., Nippon Suisan
Gakkaishi 48 (1982).

[25] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo, M. J. Shelley, and
W. T. Irvine, The odd free surface flows of a colloidal chiral fluid, Nature Physics
15 (2019), no. 11 1188–1194.

133



[26] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaiken, Living
crystals of light-activated colloidal surfers, Science 339 (2013).

[27] N. Kumar, R. Zhang, J. J. D. Pablo, and M. L. Gardel, Tunable structure and
dynamics of active liquid crystals, Science Advances 4 (2018).

[28] P. J. Foster, S. Furthauer, M. J. Shelley, and D. J. Needleman, Active contraction
of microtubule networks., eLife 4 (2015).

[29] T. Sanchez, D. T. Chen, S. J. Decamp, M. Heymann, and Z. Dogic, Spontaneous
motion in hierarchically assembled active matter, Nature 491 (2012), no. 7424
431–434.

[30] P. M. Bendix, G. H. Koenderink, D. Cuvelier, Z. Dogic, B. N. Koeleman, W. M.
Brieher, C. M. Field, L. Mahadevan, and D. A. Weitz, A quantitative analysis of
contractility in active cytoskeletal protein networks, Biophysical Journal 94
(2008).

[31] A. Hunt, F. Gittes, , and J. Howard., The force exerted by a single kinesin
molecule against a viscous load., Biophysical Journal, 67 (1994).

[32] J. Howard, A. J. Hudspeth, and R. D. Vale, Movement of microtubules by single
kinesin molecules., Nature 342 (1989).

[33] S. M. Block, L. S. Goldstein, and B. J. Schnapp., Bead movement by single
kinesin molecules studied with optical tweezers., Nature 348 (1990).

[34] C. L. Asbury, A. N. Fehr, and S. M. Block., Kinesin moves by an asymmetric
hand-over-hand mechanism., Science 302 (2003).

[35] F. J. Nedelec, T. Surrey, A. C. Maggs, and S. Leibler., Self-organization of
microtubules and motors., Nature 389 (1997).

[36] L. Giomi, Geometry and Topology of Turbulence in Active Nematics, Physical
Review X 5 (jul, 2015) 31003.

[37] T. Gao, R. Blackwell, M. A. Glaser, M. D. Betterton, and M. J. Shelley,
Multiscale polar theory of microtubule and motor-protein assemblies, Physical
Review Letters 114 (2015).

[38] G. Duclos, R. Adkins, D. Banerjee, M. S. E. Peterson, M. Varghese, I. Kolvin,
A. Baskaran, R. A. Pelcovits, T. R. Powers, A. Baskaran, F. Toschi, M. F. Hagan,
S. J. Streichan, V. Vitelli, D. A. Beller, and Z. Dogic, Topological structure and
dynamics of three dimensional active nematics, Science 367 (2020).

[39] U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, Multiview
light-sheet microscope for rapid in toto imaging, Nature Methods 9 (2012).

134



[40] R. Adkins, I. Kolvin, Z. You, S. Witthaus, M. C. Marchetti, and Z. Dogic,
Dynamics of active liquid interfaces, Science 376 (2022).

[41] S. Galtier, Introduction to Modern Magnetohydrodynamics. Cambridge University
Press, 2016.

[42] M. J. Bowick, L. Chandar, E. A. Schi↵, and A. M. Srivastava, The cosmological
kibble mechanism in the laboratory: String formation in liquid crystals, Science
263 (1994).

[43] P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Novel colloidal interactions
in anisotropic fluids, Science 275 (1997).

[44] A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M. F. Hsu, D. R.
Nelson, M. G. Nikolaides, A. Travesset, and D. A. Weitz, Grain boundary scars
and spherical crystallography, Science 299 (2003).

[45] W. T. Irvine, V. Vitelli, and P. M. Chaikin, Pleats in crystals on curved surfaces,
Nature 468 (2010).

[46] M. W. Scheeler, W. M. V. Rees, H. Kedia, D. Kleckner, and W. T. Irvine,
Complete measurement of helicity and its dynamics in vortex tubes, Science 357
(2017).

[47] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer, and I. I.
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