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Modeling Infectious Disease Spread: Comparison of the 

Agent-Based-Modeling and Differential-Equation Approaches
EunSang Park, Changho Kim, PhD

School of Natural Sciences, University of California, Merced

• In epidemiology, the SIR model is commonly used to describe the 
population dynamics of infectious diseases. 

• It divides the population into three categories: Susceptible (S), 
Infected (I), and Recovered (R). 

• We consider two approaches to describe its population dynamics.

Figure 3. Contact number

Introduction

Figure 1. ODE of SIR model

ODE has two model 
parameters, 
infection strength (b)
and recovery rate (k).

2. Agent-Based Model (ABM)
A grid simulation where each cell represents an 
individual, allowing us to capture local interactions and 
spatial effects that ODEs can't model. This helps us 
understand how individual behavior influences disease 
spread. ABM has three model parameters, recovery rate 
(α), infection rate (β), and diffusion rate (γ).

Figure 2. Example image of ABM

Each color represents: Susceptible, infected, recovered, empty site

Research Aims: To compare the two approaches by establishing 
relationships between the ODE and ABM parameters, bridging the gap 
between population-level predictions and individual-based simulations.

• ODE: To numerically solve the ODE, we used the Runge-Kutta method.

• ABM: We used SPPARKS (Stochastic Parallel PARticle Kinetic 
Simulator), a kinetic Monte Carlo simulator, to simulate the ABM. 

• To compare the two parameters, we first run the simulation with fixed 
ABM parameters. We then find the optimal ODE parameters that would 
produce the most similar result (SIR graph) as the ABM. 

• We use two methods when determining whether an ODE parameter is 
producing the most similar result as the ABM. 

Method 1: Least Squares
Using the differential evolution method, we find optimal ODE parameters, b 
and k values that minimize the least squared difference between ODE and 
ABM results. 

Method 2: Contact Number
Contact number is the number of close contacts per infected individual. 
• Using SPPARKS, we find the proportion of the population that stayed 

susceptible during the epidemic (        ).
• We obtain contact number (c) using         , 
     then find b value when k is known.

SIR Graph of epidemic that has an infectious period of 14 days and contact 
number of 2, generated using ABM parameters below.
b =     , k =      , γ = 30

As γ increases, we find that optimal b value from both methods getting 
closer to β, which is 0.6 in this case. α were set to 0.3.

Figure 5. SIR graph with ABM results and optimal ODE using Methods 1 and 2. The soft lines represent the individual simulation that are 
used to generate the averaged raw data. 

Figure 4. Image of ABM, at different time T.

Figure 6. This plot was obtained using Method 1.

T = 0 T = 50 T = 100 T = 150

Optimized parameter using ​
Method 1: b = 0.453768, k = 0.0719541​
Method 2: b = 0.486128, assuming k as 0.714285​
The two methods give very similar number for b and k.

Figure 7. Plot of Relationship between γ and optimal b value using two methods.

Results

Conclusion
Key Parameter Relationships:
• Discovered one-to-one relationship between recovery parameters, (α = k)

• Established relationship between: ABM diffusion rate (γ), ABM infection rate (β), and ODE 
infection strength (b).

• As diffusion rate (γ) increases (greater mobility in the model):
o ODE infection strength (b) approaches ABM infection rate (β)
o This convergence reflects how increased mobility bridges the gap between spatial 

(ABM) and non-spatial (ODE) disease spread dynamics. 

• Our findings reveal a fundamental connection between microscopic (ABM) and macroscopic 
(ODE) descriptions of epidemic dynamics, despite their distinct modeling approaches: 

o These relationships provide guidance for modelers choosing between or transitioning 
between ABM and ODE approaches, enabling more informed parameter selection 
based on the desired scale of analysis. 
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1. Ordinary Differential Equation (ODE) 
Mathematical equations tracking population-level changes, ideal for predicting 
large-scale trends and getting quick insights into disease spread patterns. 

Methods and Materials

This graph shows 
that  α and k has 
one-to-one 
correspondence.

We ran multiple sets 
of SPPARKS 
simulations using 
various values for α, 
and obtained 
corresponding k 
values. b and γ were 
set to 0.3 and 50, 
respectively.

Visualization of ABM at different times (T, days)




