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DEDICATION 
 
 

To my family and mentors



 

EPIGRAPH 
 

 
It is a well known experience that one and the same object seldom occasions precisely 

similar perceptions in the minds of different people. 
 

Of the same landscape the poet’s image would differ greatly from that of the botanist, the 
painter’s from that of the geologist or the farmer, the stranger’s from that of him who calls 
it home. In the same way, one and the same speech is often understood in as many different 

ways as there are hearers. What does not the child see in his toys, the devout mind in the 
objects of its devotions! What does not the experienced reader of human nature see in the 

wrinkles and folds, the wilted and weather-beaten features, of a human face! How much do 
the gestures, the play of features, the glowing or fading fire of the eye, tell him of the battles 

and storms of the soul! And the artist, does he not perceive in a work of art a thousand 
things that escape the closest attention of the ordinary observer? Has not each of us the 
sharpest kind of an eye for the objects with which our calling makes us best acquainted?  

 
There are as many different ideas of one and the same thing as there are observers. Whence 

this variation in apprehension, with otherwise similar sense apparatus? 
 
 

Carl Lange, 1894 
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ABSTRACT OF THE DISSERTATION 
 
 
 

Learning and Prior Knowledge Shape Cognitive Representations for Complex Images 
 
 
 

by  
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University of California San Diego, 2023  
 
 

Professor Timothy Brady, Chair 
 
 
 

 
 
 

Through navigating and interacting with the world, we develop knowledge that can 

be used to help guide future interactions or process similar information more efficiently. For 

example, as someone proceeds through medical school and residency to become a 

radiologist, they develop a deep understanding of medical images. This learned knowledge 

influences several cognitive processes, which allows them to find abnormalities quickly and 

efficiently. My dissertation examines factors that may drive how prior knowledge in 



  
 

perceptual domains influence cognitive processes such as memory and perception. I use a 

range of stimuli and methods that mimic real-world scenarios and require significant 

perceptual prior knowledge. In particular, I use medical imaging and face perception as two 

unique but strong indices of perceptual expertise. In chapter 1, I establish that radiologists 

have enhanced memory for abnormal compared to normal mammograms. I show evidence 

that this memory benefit appears to be driven by a unique role of distinctiveness, which 

emerges with significant prior knowledge in the expert’s domain. In chapter 2, I demonstrate 

that additional knowledge of an abnormality in a medical image not only shapes memory but 

also enhances experts’ perception of medical images themselves, a form of bias called visual 

hindsight bias. In chapter 3, I examine the impact of occlusions and feature learning on our 

ability to extract summary statistics of complex facial information. Overall, I highlight how 

learned knowledge shapes a range of cognitive processes including memory, visual 

perception, and ensemble perception, and touch on several avenues for future direction. 
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INTRODUCTION  
 

Whether you are a radiologist deciding whether an x-ray contains an abnormality, or 

a new professor trying to gauge your classes understanding behind a sea of masks, people 

encounter complex and incomplete information every day that they must process and make 

decisions about. The visual system has evolved to efficiently process these complexities and 

inconsistencies by quickly learning common occurrences and using that information to make 

inferences, extract summary statistics, or to guide attention when searching a complex scene 

(e.g., Kundel & La Follette, 1972). How learning influences the processing of new or related 

information is of interest to a wide array of both applied and basic fields, including medical 

image perception, educational psychology, and visual search, attention, and memory. This 

dissertation aims to answer a few outstanding questions related to learning and using 

perceptual information.  

Experts are an ideal population to study prior knowledge’s impact on cognitive 

processes, and the expertise literature has documented several ways in which prior 

knowledge allows us to maximize the efficiency of limited attentional and visual working 

memory systems (Curby, Glazek, & Gauthier, 2009; Ericsson & Kintsch, 1995). For 

instance, becoming an expert in a domain such as chess changes our memory for items in 

that domain of expertise (Chase & Simon, 1973; de Groot, 1946), allowing us to store more 

information as long as the information is consistent with the expectations we have formed as 

a result of our expertise (Gobet & Simon, 1996). Similarly, as medical trainees gain 

familiarity and expertise in reading medical images, they develop more efficient visual 

search strategies and use fewer fixations to find the abnormality in the image (Kundel & La 

Follette, 1972).  
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There have been several hypotheses proposed for how prior knowledge leads to 

enhanced cognitive processing for items related to that knowledge. Many authors posit that 

memory improvement occurs because existing knowledge allows experts to know what 

variation to expect, through organization of information into a schema, for information in an 

expert’s domain (e.g., Vincente & Want, 1988). Others have suggested that experts in some 

domains may have developed specialized perceptual processing strategies for objects of their 

expertise, allowing them to process more information about an item and leader to richer 

memory traces (Ericsson & Kintsch, 1995; Watson & Robins, 2014; Richler, Wong, & 

Gauthier, 2011). There is also research that argues that the critical driver of how memorable 

an item is in each context is its distinctiveness from other items currently being stored in 

memory (Rawson & Van Overschelde, 2008; Calkins, 1984; Hunt, 2006; Kundel & La 

Follette, 1972). The way these effects interact has rarely been studied, and many have been 

studied primarily in domains with limited or no perceptual expertise available (e.g., in word 

lists).  

 Chapter 1 and 2 focus on radiologists’ memory for mammograms for several 

reasons: First, search for signs of breast cancer involves a usefully specific perceptual 

expertise: only 2-3 kinds of local abnormalities are typically present in abnormal 

mammograms, and radiologists have significant perceptual expertise whether looking at 

normal or abnormal medical images. This unique prior knowledge is an ideal case study in 

which to examine the impact of schemas, perceptual processing, and distinctiveness on 

memory. Additionally, it has been known for decades that many routine errors in radiology 

are failures of visual perception (Tuddenham & Calvert, 1961; Kundel & Wright, 1969), 

which contributes to radiology’s place at the top of medical specialties sued for negligence 
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(Baker, 2014). Thus, using well controlled tasks and stimuli in an environment that 

maintains some of the complexity of real-world scenarios (e.g., seeing how expert 

perception of mammograms informs decisions) allows a more generalizable and applicable 

set of knowledge to emerge that speaks towards both theoretical and applied questions 

(Brady, Störmer, Shafer-Skelton, Williams, Chapman, & Schill, 2019).  

Chapter 1 examines memory performance by non-expert novices and expert 

radiologists for normal versus abnormal mammography images as a case study in 

understanding the role of schemas, distinctiveness, and expertise in memory. We find that 

radiologists have enhanced memory for abnormal mammograms, and that this benefit is 

consistent with a special role of distinctiveness. In other words, the additional knowledge 

that an expert has compared to a novice gives the expert a boost in memory for abnormal 

items because they have additional features (i.e., an abnormality), which makes them more 

distinct in radiologists’ memory compared to normal images. This finding is consistent with 

previous research arguing that the critical driver of how memorable an item is in a given 

context is its distinctiveness from other items currently being stored in memory (Calkins, 

1984; Hunt, 2006).  

In chapter 2, I show that additional knowledge of the presence of an abnormality 

shapes radiologists’ perception of medical images themselves, whereby increased 

knowledge enhances visual perception of known abnormalities compared to abnormal 

images without additional knowledge about the abnormality. This chapter expands on the 

results of chapter 1, showing that expertise not only makes the images more distinctive in 

memory, but also makes the images more distinctive during perception itself. This project 

has implications for when radiologists are sued for negligence, which is touched on in the 
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chapter as well as in the conclusion. Overall, chapters 1 and 2 compliment and extend 

research in expertise and visual memory, showing that memory in experts is enhanced by 

distinctiveness afforded to them with built up perceptual knowledge in their domain.  

Chapter 3 examines feature learning, expertise, and noisy information within a new 

complex stimulus domain: face processing. Face perception is commonly used as a case 

study in understanding perceptual expertise (Bukach, Gauthier, & Tarr, 2006; Tarr & 

Gauthier, 2000; Gauthier, Skudlarski, Gore, & Anderson, 2000). Despite being visually 

similar in pixel space, individual faces look distinctive to us in part because of significant 

built-up knowledge over time, which stretches their representational space and allows us to 

notice more minute differences. This learned knowledge results in processing faces 

holistically, in a similar way as domain experts develop holistic processing of images like 

mammograms (Kundel, Nodine, Conant, Weinstein, 2007). Indeed, individuals with 

prosopagnosia, who have lost the ability recognize faces due to damage in face specific 

areas of the brain, are used to study the loss of expertise (Bukach, Gauthier, & Tarr, 2006; 

Duchaine et al., 2004).  

Face processing, therefore, is a useful way to examine how prior knowledge impacts 

cognitive processing with even more control over variables than using specialized 

participant populations such as radiologists. In particular, chapter 3 explores the impact of 

feature learning and occlusions on our ability to extract summary statistics of faces wearing 

sunglasses or face masks. While research on face masks have been shown to disrupt holistic 

processing of individual face perception and lower recognition performance (Freud et al., 

2020; Carragher & Hancock, 2020), it is largely unknown how ensemble perception is 

impacted by incomplete facial information brought upon by more naturalistic occlusions.  
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Professional expert facial examiners, in a similar way as experts in other domains, 

are known to employ strategies that emphasize learning which features are most important to 

distinguishing complex images within their domain (Towler et al., 2021b). Recent research 

has suggested that individuals may also learn to counteract the disruption of masks in 

processing individual faces by putting more weight on the available features (Carragher et 

al., 2022). In addition to asking how naturalistic occlusions impact ensemble perception 

broadly, chapter 3 also examines the role of feature learning in deriving the ensemble 

representation for incomplete facial information. The results of chapter 3 not only enhance 

our understanding of ensemble perception, but also complement the findings of chapter’s 1 

and 2 by showing perceptual learning impacting a cognitive process in action.   

In three chapters, my thesis demonstrates several factors that play a role in how prior 

knowledge and learning shape our current visual experience. I show how building up 

knowledge as an expert affords radiologists enhanced memory for abnormal mammograms 

and found that meaningfulness or distinctiveness drives this benefit in expert’s memory. I 

also provide evidence that experts have a visual hindsight bias when presented with 

additional information that enhances their perception of medical images. Finally, I also show 

how adept we are at learning facial features over time, even when faces are partially 

occluded, and how that influences ensemble perception. This work has both theoretical and 

applied applications, which are touched on in the conclusion.   
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CHAPTER 1: Relationships Between Expertise and Distinctiveness: Abnormal Medical 
Images Lead to Enhanced Memory Performance Only in Experts.  
 
 
 
Abstract  

 Memories are encoded in a manner that depends on our knowledge and expectations 

(“Schemas”). Consistent with this, expertise tends to improve memory. Experts have 

elaborated schemas in their domains of expertise, allowing them to efficiently represent 

information in this domain (e.g., chess experts have enhanced memory for realistic chess 

layouts). On the other hand, in most situations people tend to remember abnormal or 

surprising items best – those that are also rare or out-of-the-ordinary occurrences (e.g., 

surprising – but not random – chess board configurations). This occurs, in part, because such 

images are distinctive relative to other images. In the current work, we ask how these factors 

interact in a particularly interesting case: the domain of radiology, where experts actively 

search for abnormalities. Abnormality in mammographs is typically focal but can be 

perceived in the global ‘gist’ of the image. We ask whether, relative to novices, expert 

radiologists show improved memory for mammograms. We also test for any additional 

advantage for abnormal mammograms that can be thought of as unexpected or rare stimuli 

in screening. We find that experts have enhanced memory for focally abnormal images 

relative to normal images. However, radiologists showed no memory benefit for images of 

the breast that were not focally abnormal, but were only abnormal in their gist. Our results 

speak to the role of schemas and abnormality in expertise; the necessity for spatially 

localized abnormalities vs. abnormalities in the gist in enhancing memory; and the nature of 

memory and decision making in radiologists.  
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Introduction  

 Our ability to remember information is deeply dependent on our existing knowledge 

structures, or schemas (Bartlett, 1932, Hintzman, 1986). Even superficially identical 

information is better remembered if it is integrated into a set of knowledge rather than 

simply seen as arbitrary. For example, people are better at remembering that someone is a 

baker than that someone’s name is Baker, because the profession baker activates a rich set of 

meaningful associations that the name Baker does not (McWeeny, young, Hay, & Ellis, 

1987); and people remember visual images better if they recognize them as face than if 

identical images are not recognized but seen as meaningless texture (e.g., Brady, Alvarez, & 

Störmer, 2019).  

 Different people have different knowledge and schemas, in part based on their 

expertise, and this has consequences for memory: Imagine after playing a round of chess, 

you are asked to recreate the board from some critical moment in the game. For most 

people, this task would prove very difficult. However, if you were a world-class chess 

player, this might be quite easy. Becoming an expert in a domain such as chess changes our 

memory for items in that domain of expertise (Chase & Simon, 1973; de Groot, 1946), 

allowing us to store more information as long as this information is consistent with the 

expectations we have formed as a result of our expertise (Gobet & Simon, 1996).   

 A large literature is devoted to quantifying memory benefits in experts compared to 

novices (e.g., Ericsson & Kintsch, 1995; Engle & Bukstel, 1978; Vincente & Want, 1998; 

Gobet & Sinon, 1996). For example, car experts can remember more car images in visual 

working memory (Curby, Glazek, & Gauthier, 2009); baseball experts can remember more 

baseball-related information in long-term memory (Voss, Vesonder & Spilich, 1980); and 
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expert radiologists have better long-term memory for mammograms – but not natural scenes 

or real-world objects – compared to controls (Evans, Cohen, Tambouret, Horowitz, 

Kreindel, & Wolfe, 2011).  

 Why do experts show this increase in memory performance for their domain of 

expertise? In the literature on expertise, many authors posit that memory improvement 

occurs because existing knowledge allows experts to know what variation to expect for 

information in an expert’s domain (e.g., Vincente & Want, 1988). That is, existing schemas 

make the relevant part of the information predictable and thus easier to encode and 

remember (Graesser & Nakamura, 1982). Thus, in many ways, memory benefits in experts 

may be considered a manifestation of a broader phenomenon where information that is 

understood as meaningful -- and thus integrated into a schema -- is easier to correctly 

recognize or recall (Bartlett, 1932). For experts, there may simply be a wider variety of 

meaningful concepts and schemas, resulting in a richer ability to understand and remember 

stimuli in their domain of expertise (e.g., Ericsson & Kintsch, 1995). This is sometimes 

know as an organizational processing account of expertise: that experts can have improved 

memory because they are better able to chunk this information and otherwise create 

effective knowledge structures (Ericsson & Kintsch, 1995; Rawson & Van Overschelde, 

2008).  

 Is better organization the sole reason for better memory in experts? Beyond schemas 

and knowledge organization, experts in some domains – particularly those where the 

expertise is more perceptual, like radiologist looking at mammograms or car experts 

focusing on the details of cars – may have developed specialized processing mechanisms for 

their domain of expertise which take advantage of the way stimuli vary in that domain. For 
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example, experts in some domains employ more holistic processing strategies for objects of 

their expertise (Watson & Robbins, 2014; Richler, Wong, & Gauthier, 2011; Gauthier, 

Skudlarski, Gore, & Anderson, 2000; Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; 

Bilalic, Langner, Ulrich, & Grodd, 2011). Enhanced perceptual expertise may allow experts 

to process more information about an item even in the same amount of time, and lead to 

richer memory traces (Ericsson & Kintsch, 1995).  

 In addition to building richer knowledge structures and better perceptual encoding, 

there is a third factor that could explain experts’ improved memory performance in domains 

of expertise, which has often been overlooked in studies of memory: increased 

distinctiveness of items when they are items of expertise (Rawson & Van Overschelde, 

2008). In contrast to views that claim memorability is an intrinsic aspect of a stimulus (e.g., 

Bainbridge, Isola & Oliva, 2013), a significant literature argues instead that the critical 

driver of how memorable an item is in a given context is its distinctiveness from other items 

currently being stored in memory. Imagine, for example, you are given a list to remember 

that has 30 animal names and also the word ‘bread’ on it. People tend to remember this 

distinctive word (‘bread’) most accurately – and this is true even if it appears first on the list, 

so its unique status is not yet known and it is not differentially attended or processed 

(Calkins, 1984; Hunt, 2006). Memory models naturally predict this effect because most 

memory models propose that memory is strongly limited by interference at retrieval, and 

having more unique features allows easier retrieval (e.g., Shiffrin & Steyvers, 1997).  

 This is broadly consistent with the idea that abnormal or schema-inconsistent items 

tend to be better remembered than expected, schema-consistent items (Friedman, 1979, 

McDaniel & Einstein, 1986; Light, Kayra-Stuart, & Hollander, 1979; Pedzek, Whetstone, 
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Reynolds, Askari, & Dougherty, 1989; Hollingworth & Henderson, 2003). For example, 

people tend to better remember unexpected aspects of images (Friedman, 1979).  

 How does such distinctiveness interact with expertise? For experts, many items may 

be unique from other items in a set in a way that would not be noticed by non-experts, thus 

enhancing memory for those items as they would then be more unique in the set for experts 

than non-experts (Rawson & Van Overschelde, 2008).  

 In summary, experts are often better at accurately recognizing or recalling 

information in their domain of expertise. This can arise from at least 3 factors, each of which 

has been independently studied: experts may have changed perceptual processing strategies; 

may benefit from general usage of schemas to organize memory; or may benefit from 

increased distinctiveness of items in memory. However, the way these effects interact has 

rarely been studied, and many have been studied primarily in domains with limited or no 

perceptual expertise available (e.g., in word lists).  

The Current Experiments: Memory for Mammographs in Novices and Expert 

Radiologists  

 To understand how expertise effects memory, and how each of these three factors 

may play a role, the current experiments ask how expertise affects memory for 

mammograms (comparing novices and expert radiologists), and test whether expert 

radiologists have better memory for abnormal images (i.e., cancerous mammograms), when 

compared to normal images (i.e., noncancerous mammograms). While for normal 

mammograms, perceptual encoding benefits, schemas, and distinctiveness all likely plan a 

role in expert’s memory, abnormal mammograms provide a unique case study. Abnormal 

mammograms do not violate a radiologists’ schema (as they are trained to look for 
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abnormalities), but abnormal cases do provide distinctive retrieval cues (e.g., this 

mammogram has calcifications in this location) which would not be available to non-experts 

who have no idea that those little white spots are significant. Nor would these cues be 

available in normal mammograms. Abnormal mammograms therefore present an interesting 

case; they are schema-consistent, while also providing a unique window into the role of 

distinctiveness in expert’s memory.  

 To measure memory performance, we will use Receiver Operating Characteristic 

(ROC) analysis to take into account the possibility of differential false alarms and 

differential response criterion, which is critical to understand whether any effects we 

observe are truly changes in memory strength. We predict that experts will have improved 

performance compared to non-experts for both normal and abnormal mammograms because 

of their perceptual expertise and because they have developed schemas over time to 

represent these complex images. We also predict that abnormal items might show even more 

benefit for radiologists compared to non-experts because for radiologists and radiologists 

alone, these images have unique and distinctive retrieval cues available.  

 We focus on radiologists’ memory for mammograms for two reasons: First, search 

for signs of breast cancer involves a usefully specific perceptual expertise. For instance, only 

2-3 kinds of local abnormalities are typically present in abnormal mammograms, and 

radiologists have significant perceptual expertise whether looking at normal or abnormal 

medical images.  

 Second, there are two senses in which a mammogram might be considered 

"abnormal.” 1) It could contain a focal abnormality. In our study, these are masses or 

architectural distortions that are subsequently proven to be malignant. 2) Given a mass (for 
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example) in one breast, the other breast could be considered abnormal in the sense that the 

image comes from a patient with cancer. We assess the impact of each of these two kinds of 

abnormality on memory. Note that a mammogram might be considered ‘abnormal’ if it 

showed a benign mass. We did not use such stimuli in this study.  

 Radiologists are explicitly trained to recognize an image as abnormal if they detect 

the presence of a visible, localized abnormality like a mass or calcification. In addition, 

recent research has shown that, if asked in an experimental setting, radiologists have an 

ability to detect a “gist” of abnormality in the breast contralateral to the lesion. They 

perform at above chance levels when asked to categorize images as coming from normal or 

abnormal patients (Evans, Haygood, Cooper, Culpan, & Wolfe 2016). In other words, this 

study suggests that radiologists do not always need to see a localized physical lesion to 

know that an image is abnormal. This global signal of abnormality is relatively subtle. More 

importantly, for present purposes, work on this gist signal is new enough that most 

radiologists are unfamiliar with the concept. Thus, any impact on memorability could be 

considered to be the result of an implicit effect of abnormality.  

 Published studies of the gist of abnormality have involved giving radiologists only a 

brief (250-500ms) glance at the image. While this seems sufficient for expert radiologists to 

gain some evidence of abnormality, it remains unknown whether this ability impacts 

radiologists’ memory for normal versus abnormal images.  

 To summarize, the questions guiding this experiment are the following: Do 

radiologists show improved memory performance for abnormal images compared to normal 

images? If so, does global gist produce enhanced expert memory for images of the breast 

contralateral to the breast that contains focal signs of cancer? Alternatively, does any 
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abnormality advantage in memory depend upon having a focal abnormality that can draw 

spatial attention?  

 Experiment 1 is a baseline study with novice observers, whose performance can be 

compared to radiologist performance in Experiment 2. In addition, Experiment 1 allows us 

to determine whether our stimulus set contains images that are memorable regardless of 

expertise. Experiment 2 assess memory performance in expert radiologists. To anticipate our 

results, Experiment 1 reveals patterns in our image set that we take into account in 

Experiment 2. In Experiment 2, we find a large memory benefit for radiologists relative to 

novices as well as an abnormality advantage in radiologists for focal abnormalities. We find 

no evidence that experts make use of a non-focal gist of abnormality either in judgment or 

memory.  

Experiment 1: Novices  

 Experiment 1 was conducted using novice (non-radiologist) observers. The design, 

number of observers, exclusion and analysis plan for this experiment were preregistered 

(URL for this experiment: http://aspredicted.org/blind.pho?x=xr3843).  

 In this experiment, novice observers viewed a series of mammograms and judged 

whether each case was normal or abnormal and whether they remembered seeing the image 

earlier in the experiment. We would expect both judging whether an image is normal or 

abnormal as well as remembering the images to be difficult, as this task is designed for 

expert radiologists. However, novice performance provides a useful baseline for comparing 

radiologist performance, and provides a baseline of memory in novice observers. In 

particular, the results of this experiment can indicate if particular images are particularly 

distinctive in the absence of any mammographic expertise.  
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Method  

Sixty participants (23 female participants, mean age 38 years) were recruited for this 

experiment through Amazon’s Mechanical Turk, which offers monetary compensation for 

participation in online tasks. Mechanical Turk workers are reasonably representative of the 

American adult population (Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, & 

Gosling, 2011; Difallah, Filatova, & Ipeirotis, 2018), and provide data that is comparable to 

data obtained when participants are tested in experimental psychological laboratories (e.g., 

see Brady & Alvarez, 2011 for a comparison in a visual memory context). All participants 

gave informed consent, were compensated at a rate of approximately $10/hour, were located 

in the United States, and had a Hit Approval Rate greater than 95%. Informed consent 

procedures were approved by the Institutional Review Board of the University of California, 

San Diego. 

Participants viewed single breast mammograms in this study. The stimulus set 

consisted of 80 abnormal (cancerous) cases and 40 normal (non-cancerous) cases. All 

images were deidentified. All images were pre-classified by a group of trained radiologists 

who did not participate in the study. Normal images were noncancerous and did not contain 

benign lesions. Abnormal images consisted either of histologically verified malignant 

masses or architectural distortions (see Evans et al., 2016, for a more detailed description of 

this stimuli set). Half of the abnormal images contained a visible abnormality (i.e. a lesion 

was present) and half were images of the breast contralateral to the breast with the lesion 

(i.e. still an abnormal case, but with no focal indication of that abnormality). Thus, the entire 

set consisted of 40 normal images, 40 focal-abnormality images (herein referred to as 

abnormal) and 40 non-focal abnormality images (images contralateral to the breast with the 
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focal abnormality), herein and henceforth referred to as contralateral-abnormal. Each image 

subtended approximately 16 x 20 degrees of visual angle at an estimated viewing distance of 

approximately 60 cm from the screen.  

On each trial, one image was present for 3 seconds, followed by a new screen 

containing response questions. The mammogram was randomly chosen to be either normal, 

abnormal, or contralateral-abnormal. Critically, each image was also either a new image 

(presented for the first time in the experiment), or a repeated image from 3 trials back or 30 

trials back (3-back and 30-back, respectively). Of the images that were later repeated, 50% 

were repeated at 3-back, and 50% were repeated at 30-back. In total, with repetitions, there 

were 210 trials: 120 new images (40 per condition), plus 90 repeat images (30 per condition, 

split evenly between 3-back and 30-back).  

After being displayed for three seconds, each image was immediately followed by 

two response questions: (1) Was the image abnormal or normal? (2) Have you seen this 

image before? Using a standard computer mouse, participants were told to indicate their 

level of confidence on a six-point rating scale rating from confident yes/abnormal to 

confident no/normal (Figure 1.1). We collected confidence ratings instead of simple yes/no 

answers to allow for ROC analysis. There was no time constrained imposed on responding. 

The initiation of the next trial was contingent on answering both questions of the current 

trial.  
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Figure 1.1. Method. N=60 non-expert novice participants rated a sequence of 210 images on 
normal/abnormal and old/new. Images could repeat either after 3 or 30 subsequent images 
and be either normal, abnormal, or contralateral-abnormal.  

 

Before the experiment began, participants were presented with instructions and 

several demographic questions (Gender; Age; 'Are you a radiologist?'; 'Do you have a job 

where you read medical images, (i.e. tech, medical physicist)?'). Instructions were written 

for a novice population with no medical training. For novice participants, abnormal cases 

were broadly defined as “images that might contain lesions, or cancer, or otherwise might be 

something worthy of follow-up if you were a radiologist.” 

Our exclusion criteria and analyses were decided in advance (see preregistration, 

above). Individual trials were excluded if participants took less than 1500ms or more than 

15,000ms to respond (based on pilot data). Participants were excluded if they took less than 

15 minutes (0 excluded) or more than 1 hour to complete the study (3 excluded). 

Radiologists were excluded (1 excluded) as were those with other prior experience reading 

medical images (0 excluded). Participants were also excluded if they had more than 80% 

identical responses (e.g., picked the exact same answer on nearly every trial; 1 excluded) or 

had more than 30% of trials excluded on the basis of the reaction time criteria (1 excluded). 
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After applying these a priori exclusion criteria, 7 participants were excluded from analysis, 

leaving a final sample of 53 participants.  

We first analyzed the confidence ratings of classifying an image as abnormal or 

normal. We subsequently analyzed the confidence ratings representing memory for images. 

In order to do this, we conducted ROC analysis for the 3-back and 30-back as a function of 

image type (normal/abnormal/contralateral-abnormal). We also generated ROCs for the 

normal/abnormal judgments. ROCs were summarized by area under the curve (AUC) and 

compared using t-tests. As noted, we are interested in whether, within the group of novice 

participants, there is a benefit in memory performance for any type of image (e.g., as judged 

by normal vs. abnormal AUC). Since the novices lack medical experience, any such effect 

would give us insight into the nature of the image set (i.e., memorability or distinctiveness). 

Finally, we conducted image similarity analyses to quantify how image differences might be 

influencing these results.  

Image Similarity Comparison: Because normal, focally abnormal and contralateral-

abnormal images are necessarily different image sets, it is useful to compare how distinctive 

each set of images is from all the other images in order to look at the effect this has on 

memory. One way to accomplish this is to have individuals give similarity ratings between 

images. However, this would require 120*120 = 14,440 similarity ratings. Instead, to 

streamline the process, we relied on previously established computer vision techniques 

designed to give similarity measurements for natural scenes. Specifically, we conducted a 

gabor wavelet pyramid (GWP) analysis, which computes features of the images and 

compares them (Kay, Naselaris, Prenger, & Gallant, 2008; Greene, Baldassano, Esteva, 

Beck, & Fei-Fei, 2016). To assess the level of similarity in the different image types, the 
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GWP represents each image as the output of a bank of multi-scale Gabor filters. Prior work 

has shown that these features can successfully model object representation in early visual 

areas (Kay et al., 2008). Following the exact procedure and parameters provided by Greene 

et al. (2016), each image was converted to grayscale, down sampled to 128 by 128 pixels, 

and represented with a bank of Gabor filters at three spatial scales (2, 6, and 11 cycles per 

image with a luminance-only wavelet that covers the entire image), four orientations (0, 45, 

90 and 135 degrees) and two phases (0 and 90 degrees). This gave a set of features for each 

image, which we then compared to all 120 images to compute a distance / dissimilarity score 

by computing the dot product of each images features to each other images after subtracting 

the mean across images and normalizing the feature vectors to unit length.  

Results (Experiment 1: Novices)  

 Performance on the classification task: First, we looked at how confident novices 

were at classifying an image as either normal or abnormal (Figure 1.2). We found a 

significant difference between normal and abnormal images (t(52) = 4.78, p<0.001), but not 

between normal and contralateral-abnormal images (t(52) = 1.94, p>0.05).  
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Figure 1.2. Classification Task. Overall performance of novices on labeling an images as 
normal or abnormal. The confidence rating scale is now plotted on the y-axis. Each point in 
the plot represents the rating for a particular image. We found a significant difference in 
confidence in classifying normal vs. abnormal images, which seems to be driven by a few 
salient abnormal images. Novices are not confident in distinguishing between any image 
type (most responses tend to be in the middle of the confidence scale no matter the image 
type). Error bars represent standard error of the mean.  
 

While participants did not have training to distinguish normal from abnormal 

medical images, a small number of images in the set are extremely saliently abnormal (i.e., a 

single bright white spot would look questionable even to novice viewers). Looking at ratings 

by image (Figure 1.3) reveals that these images are largely responsible for the significant 

difference between normal and abnormal ratings. In short, for at least a small subset of 

images, even novice participants can notice the abnormality, leading to above chance 

classification performance broadly. But for most images, novices seem to have little 

information about normality vs. abnormality.  
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Figure 1.3. Image ratings in the classification task. Example images and their confidence 
ratings for each participant in the classification task. As can be seen with the third pictured 
image, most participants rated this as abnormal with high confidence. Altogether, the two or 
three brightly striped vertical lines in the abnormal images set indicate that those and only 
those images were reliably rated as abnormal by a large majority of participants.  
 

Note that the y-axis in Figure 1.2 represents the confidence ratings for novices. It is 

clear that the novices are generally not confident in distinguishing any image type, with 

average responses tightly clustered near the middle of the rating scale for all conditions. 

Another way of visualizing this data is on an ROC curve (Figure 1.4), where novices fall 

almost on top of the dotted diagonal line indicative of chance performance, with an AUC of 

only 0.54 (where 0.50 is change and 1.0 is perfect). Although, as stated above, this 

difference from chance is highly reliable across participants (t(52) = 4.21, p<0.001), largely 
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because of the few images that participants could all reliably classify. 

 

Figure 1.4. ROC for normal/abnormal categorization. Novices are very close to the diagonal 
line representative of chance performance, indicating that they do not perceive a strong 
difference between normal and abnormal images. The significant effect is driven by a select 
few salient images (see Figure 1.3).  
 

Memory for abnormal images: Figure 1.5 shows the ROCs for the 3-back and 30-

back memory tasks. Since novices were not, for the most part, able to perceive contralateral-

abnormal images as different from normal images in the classification task, we focused 

exclusively on memory differences between normal and abnormal images. Overall, 

independent of image type, and as expected, novices have better 3-back memory (averaged 

AUC of 0.70 for detecting 3-backs) than 30-back memory (averaged AUC of 0.64 for 

detecting 30-backs), t(52)=6.59, p<0.001. Interestingly, breaking down performance across 

image conditions reveals that novices show a small normality benefit: they remember 

normal images better than abnormal images in both the 3-back condition and the 30-back 
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condition, with only the 3-back yielding a significant difference. We found an AUC benefit 

of 0.069 for normal images at 3-back (t(52)=5.48, p<0.001) compared to abnormal, and an 

AUC difference of 0.026 for normal images at 30-back (t(52)=1.70, p=0.096) compared to 

abnormal.  

 

Figure 1.5. Novice performance on the memory task. As noted, the gray dashed line 
indicates chance and more bowed out curves represent better memory performance. Novices 
had stronger memory for images in the 3-back condition than in the 30-back condition. 
Novices also show a small effect of normality, with memory for normal images being better 
than for abnormal images in both 3-back and 30-back conditions.  
 

Given the weak performance at discriminating normal from abnormal images, it is 

rather surprising that normality had any effect. Therefore, we examined the data for 

evidence of more basic effects of visual similarity. We found that the lower memory 

performance in the abnormal conditions was largely driven by an increased false alarm rate 

in the contralateral-abnormal and abnormal image sets. Here we are classifying as “new” all 
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images with a confidence rating > 3. This is consistent with an image similarity account in 

which novices would be more likely to false alarm to new images in the contralateral-

abnormal and abnormal conditions simply because these images are more similar to one 

another than images in the normal set (as predicted by summed similarity accounts of 

memory, e.g., Nosofsky, 1991). In other words, if the normal images were somewhat more 

dissimilar to each other compared to the other images, this could explain why novices have 

somewhat better memory for the normal condition (i.e., it is easier to determine if an image 

of a dog is new if that dog is presented in a series of different animals than if it is presented 

in a set of similar dogs. Obviously, the similarity effects in our stimuli are much smaller). 

We test this hypothesis next.   

 Similarity Matrix – Gabor Wavelet Pyramid Analysis: We tested this image 

similarity hypothesis by measuring similarity between our images as described in the 

Methods (Kay et al., 2008; Greene et al., 2016). We found increased dissimilarity among 

normal images relative to contralateral-abnormal and abnormal images (Normal = 0.174; 

Abnormal = 0.139; Contralateral-abnormal = 0.133). In other words, normal images were 

more different, on average, from one another (and thus more discriminable in memory) than 

either abnormal or contralateral-abnormal images. This is consistent with the hypothesis that 

the small differences in memory favoring normal images is driven by image similarity 

differences across sets. Thus, the small normality benefit found in the current study is likely 

a result of image similarity. Critically, this can provide a useful baseline for considering 

memory for the same images in expert radiologists in Experiment 2.  

Experiment 2: Radiologists  
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 Experiment 2 was the same as Experiment 1, except conducted on radiologist 

observers.  

Method  

 Thirty-two expert radiologists (14 female participants, average age = 49 years) were 

recruited during the 2018 Radiological Society of North America (RSNA) conference in 

Chicago, Illinois. All radiologists gave informed consent and were not compensated beyond 

being entered into a lottery for a $500 gift card. Informed consent procedures were approved 

by the Institutional Review Board of the University of California, San Diego.  

Data from participants would have been excluded if they took less than 15 minutes 

or more than 1 hour to complete the study, had more than 80% identical responses or had 

more than 20% of trials excluded. Under these guidelines, no radiologists were excluded 

from analysis, leaving a final sample of 32 participants.  

The stimuli and experimental design were the same as described in Experiment 1. 

The main procedural difference was that the experiment was conducted at the RSNA 

conference where the experimenter explained the instructions in person. Unlike in 

Experiment 1, in Experiment 2, we gave more general instructions, asking for any 

abnormality rather than specifically asking participants to look for focal lesions or cancer: 

"For each image, please judge whether the image is abnormal or normal, and whether you 

have previously seen it during the course of the experiment."  

Results 

 In this section, we compare the performance of expert radiologists to the 

performance of novice participants in Experiment 1. In particular, we investigate how non-

experts compare to experts’ judgments of image classification (i.e. normal vs. abnormal), 
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and critically, whether experts show differential memory for abnormal versus normal 

images. While analyzing expert performance, we take into account idiosyncrasies in our 

image set that we learned from Experiment 1, such as that our normal images are more 

dissimilar and therefore inherently slightly more memorable.  

 Performance on the classification task: Similar to Experiment 1, we first analyzed 

performance on the classification task by looking at the confidence ratings of classifying 

each image as either normal or abnormal. How good are radiologists at simply 

distinguishing abnormal from normal images? Unsurprisingly, radiologists are very good at 

distinguishing abnormality (Figure 1.6A). Radiologists were significantly more confident 

that an abnormal images was abnormal instead of normal (t(31) = 13.17, p < 0.001). Figure 

1.6B shows the ROC curve for distinguishing focal-abnormal images from normal images in 

radiologists. ROCs were summarized by area under the curve (radiologist AUC = 0.72; 

recall that novice AUC = 0.54). As noted in Experiment 1, controls are close to the diagonal 

line indicative of chance, whereas radiologists elicit a typical curvilinear ROC indicative of 

a perceived (and significant) difference between normal and abnormal images with an AUC 

well above chance (t(31) = 19.8, p<0.001).  

Next we looked at if radiologists could detect abnormality in the contralateral-

abnormal images. There was not a significant difference between the normal and 

contralateral-abnormal image conditions (t(31) = 0.43, p = 0.67). In the original study of 

Evans et al. (2016), they found an effect of abnormality in the gist information (i.e., in a 

very short presentation time of ~250ms). Our instructions and stimulus set may have biased 

participants against reporting contralateral images as abnormal. In a set of images that 

include visible lesions (the abnormal cases) and in the absence of an instruction to look for 
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asymptomatic images from symptomatic patients (the contralateral cases), it is, perhaps, not 

surprising that radiologists reserved their abnormal ratings for the abnormal cases with 

lesions. Furthermore, it is possible that our instructions could have primed radiologists to 

look for both benign and malignant lesions, although no benign lesions were present in the 

current study. Future studies could investigate the effects of instruction on this task. Recall, 

however, that our interest in the present experiment is in radiologists’ memory for these 

images. Contralateral- abnormal images, for instance, might still be remembered better if 

their vaguely suspicious appearance caused radiologists to devote more attention to them.  
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Figure 1.6A (top left): Classification task: Overall performance of radiologists on labeling 
an image as normal or abnormal. Once again, each point in the plot represents the average 
rating for a particular image. Radiologists clearly distinguished abnormal from normal 
images, but they did not distinguish between contralateral-abnormal and normal images. 
1.6B (top right): ROC depiction of performance for labeling an abnormal image as 
abnormal instead of normal (ignoring contralateral-abnormal images). 1.6B (bottom): 
Classification by image. Unlike novices, experts reliably classify most of the abnormal 
images as abnormal and most of the normal images as normal, with performance not largely 
driven by any particular subset of images.  
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 Figure 1.7 shows radiologist performance on the memory task. Radiologists have 

better memory for abnormal images in both memory conditions, but the advantage for 

abnormal images is only significant in the 30-back condition (t(31) = 2.86, p = 0.008, AUC 

difference – 0.051). We found an AUC advantage of 0.02 for abnormal images at 3-back. 

Although this was not significant (t(31) = 1.62, p = 0.12), it follows the same trend as the 

30-back condition.  

 

Figure 1.7. Radiologist performance on the memory task. Radiologists have better memory 
for abnormal images in both of the memory conditions. However, only memory at long 
delays (30-back) was significant.  

 

Radiologists showed no memory benefit for the contralateral-abnormal images, even 

at long delays (p=0.24). Since radiologists were not able to distinguish between 

contralateral-abnormal images and normal images in the classification task, this result might 

be expected; though, recall that we were looking for evidence that an implicitly recognized 

abnormal gist might enhance memory. That is not what we found. Overall, independent of 
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image type, radiologists have better memory at 3-back (averaged AUC of .852 for detecting 

3-backs) than 30-back (averaged AUC of .752 for detecting 30-backs) for medical images. 

Why are radiologists better at 3-back than at 30-back? While it seems clear that this 

difference largely reflects typical effects of forgetting and interference (e.g., Wixted, 2005), 

it is also possible that observers would be more likely to ‘catch on’ to the presence of 3-back 

rather than the 30-back repetitions. If so, they might adopt a strategy that prioritized the 3- 

back task. However, given that the 3-back and 30-back tests were equally likely and equally 

distributed throughout the task, and that observers consistently said they remembered seeing 

mammograms from 30 images back (and therefore were distinctly aware that 3-back wasn’t 

the only n-back test present), it seems unlikely that observers would transition to a strategy 

that only prioritized 3-back memory task. Taken together, these results suggest that experts 

have better memory overall at 3-back than at 30-back, but that a memory benefit for 

abnormal images compared to normal images is significant only at 30-back.  

In recognition memory studies, it is almost always found that ROCs are not 

consistent with an equal variance signal detection model (e.g., Egan, 1958; Wixted, 2007). 

One way to look at this is to convert the hit and false alarm rates to z-scores and to plot 

zROC functions. On a zROC graph, equal variance produces data with a zROC slope of 1.0. 

Instead, as is typical in recognition memory tasks, the slopes of our zROCs were reliably 

below 1.0 in 3 of the 4 memory conditions. We fit a linear mixed effect model with slope 

and intercept as random per subject factors (mean slope[M]=0.68 for 3-back for normal 

images, difference from 1.0: p<0.001; M=1.05 for 30 back for normal images, not different 

from 1, p=0.60; M=0.52 for 3 back for abnormal images, p<0.001; 0.82 for 30 back for 

abnormal images, p=0.005). Collapsing across all conditions, thus allowing the slope to be 
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more reliably estimated, the mean zROC slope was 0.68, significantly different from 1.0 

(p<0.00001). Taken together, then, the ROCs we observed in memory were inconsistent 

with an equal variance signal detection model and consistent with an unequal variance 

model, potentially due to variation in memory strength between different items. This is 

typical of recognition memory and the reason that collecting confidence judgments and 

performing ROC analysis is necessary in order to assess memory strength. Simple d’, in this 

context, does not properly account for response criteria differences (e.g., Dougal & Rotello 

2007).  

Recall from the similarity analysis in Experiment 1 that the normal images in our 

data set are less similar to each other than the abnormal images, and thus memory for normal 

images should be better than abnormal (as it was in novices). In fact, it is memory for the 

abnormal images that is better in radiologist observers. This suggests that the effect of 

expertise more than compensates for differences between the stimulus categories in image 

similarity. To see what the effect of abnormality is, independent of baseline image similarity 

differences, we can compare radiologists’ memory performance to novices’ performance 

with the same images. To do this, we compare the benefit – in terms of AUC of the ROC – 

for radiologists relative to controls in each condition. Doing so reveals a significant 

abnormality benefit at both 3-back (t(31) = 6.67, p < 0.001) and 30-back in expert 

radiologists (t(31) = 4.43, p < 0.001), where, taking performance after baselining relative to 

the performance of novice participants, radiologists were specifically better at remembering 

abnormal images (Figure 1.8).  
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Figure 1.8. Using novices as a baseline to account for image similarity, there were robust 
abnormality memory benefits for radiologists at both 3-back and 30-back.  
 

Due to the structure of this experiment, designed to probe memory, each item in the 

memory set has two classification ratings (for normal/abnormal). Thus, while we set out to 

probe memory, the experiment also makes it possible for us to combine both ratings in order 

to examine whether there is a “crowd-within” effect in this situation (Vul & Pashler, 2008). 

The authors proposed the crowd-within as a variant for the “wisdom of the crowd.” They 

found that averaging a single individual’s response to repetitions of the same question led to 

better performance than single responses alone. This is what one would expect if a single 

judgment did not incorporate all of the information people could possibly have about a 

question. If this is true for assessments of mammograms by expert radiologists, we would 

expect that averaging a radiologist’s ratings of abnormality from two exposures to the same 

mammogram should result in better accuracy than looking at either rating alone. Note that in 

this situation, however, unlike Vul and Pashler (2008), participants actually have additional 
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information the second time: they get to see the image again before the second judgment. 

They are not just asked again. Thus, in this case, the crowd-within effect here could arise 

from actual new information being incorporated (e.g., the observer might scrutinize different 

parts of the image), rather than internal sampling.  

 We find a modest, but significant advantage to incorporating both judgments: 

averaging radiologists’ responses from the first and second time that they saw an image 

resulted in slightly higher performance in the 30-back condition (AUC=0.745) compared to 

single item performance (AUC=0.716; t(31)=3.46, p=0.002) (Figure 1.9, left). The effect 

was not significant in the 3-back condition (Joint AUC = 0.712, single AUC = 0.705, 

t(31)=1.15, p=0.259). Unsurprisingly, this effect was not present in novices, since their 

performance was very poor on both responses (Figure 1.9, right; all p>0.10).  

 Thus, expert performance can be improved (albeit, rather modestly) by averaging 

more than one response. It remains to be seen whether this benefit would occur if 

radiologists were offered unlimited time to process each image, rather than the 3 seconds in 

the current study. The limited viewing time here may have particularly enhanced 

radiologists’ ability to extract new information in the second viewing of the mammogram.  
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Figure 1.9. Crowd-Within Analysis: Left, Radiologists (Experiment 2): The blue line is the 
ROC for distinguishing focally abnormal mammograms vs. normal mammograms when the 
radiologists first see the image. The red line is the average of the first time seeing it and their 
responses seeing it at 30-back. Right, Novices (Experiment 1): Once again, the blue line is 
the ROC for distinguishing focally abnormal mammograms vs. normal mammograms when 
novices first see the image. The red line is the average of the first time seeing it and their 
responses seeing it at 30-back.  
 
General Discussion  

 In the current study, we examined memory performance by non-expert novices and 

expert radiologists for normal versus abnormal mammography images as a case study in 

understanding the role of schemas, distinctiveness, and expertise in memory. To do so, we 

relied on ROC analysis, designed to properly measure memory independent of differences in 

response criteria and to take into account both enhanced memory for seen items as well as 

the possibility of false alarms.  

 First, we looked at how confident and how competent novice and expert observers 

were at classifying medical images as either normal or abnormal. Unsurprisingly, 

radiologists were much better than novices at this task. Novices did show some ability to 
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distinguish abnormality, although this appeared to be largely the result of a few salient 

images.  

 Second, we examined our main question of interest: memory for the images. In 

Experiment 1, we examined memory for mammograms n novices, who have none of the 

expertise or schemas needed to processes these images. We found poor performance overall, 

as well as a small normality. Benefit in novice participants’ memory, which could be 

explained by the greater image dissimilarity of normal images. Thus, Experiment 1 (on 

novices) gave us not only a baseline for memory performance, but also an understanding of 

the intricacies of our image set, showing that some abnormal images were quite salient, and 

that our normal images were more dissimilar from each other.  

 Even though the normal images in our set were more visually distinctive, in 

Experiment 2 we found that radiologists had better memory for abnormal images, and had 

far superior memory performance to novices. This gives insight into how expertise changes 

memory: not only enhancing the encoding of normal items, but also enhancing the 

distinctiveness of abnormal items. Thus, while experts might have access to perceptual 

encoding benefits, distinctiveness and/or schemas/chunking to enable them to outperform 

novices, our finding of an extra benefit of expertise for abnormal images is most consistent 

with a special role of distinctiveness. For experts, the abnormal images have unique features 

that make them distinct from other items in memory; whereas for novices, these features are 

not appreciated and so these images are just like any other image. For example, one 

possibility is that rather than encoding the entire image, in the case of abnormal images 

radiologists specifically encode the abnormality and not the rest of the image into memory. 
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This might reduce the load on memory for that image and might make the memory trace for 

that image more distinctive.  

 Broadly speaking, then, we find strong evidence for a role of schemas and 

distinctiveness in memory, even after taking into account false memory and the possibility 

of response criterion shifts: We find experts significantly outperform novices and that 

memory for abnormal cases with a visible, focal lesion is better than memory for other 

images. There was no evidence for a memory benefit for “abnormal” contralateral cases.  

Measuring Memory: False Alarms and ROC Analysis  

 In the current studies, we used ROC analysis to examine memory. This is because, in 

previous work, it has often been unclear if benefits for schema-consistent information like 

those reported in experts are, in fact, improvements in memory as opposed to changes in 

response criteria. To determine if memory has actually improved, it is not adequate to 

simply find a reliable increase in the rate with which observers correctly report having been 

exposed to some piece of information (the true positive or “hit” rate). The observer could 

simply be saying “yes, I have seen it” more often. This would produce an increase in false 

positive (or false alarm) errors. In the context of memory research these false positive errors 

can be seen as a form of false memory. In theory, signal detection models and measures like 

d' can distinguish between these two, but in practice, the prerequisites for d’ to properly 

adjust for response bias (equal variance; zROC slopes=1.0) are almost never present in 

recognition memory contexts, and were not present here. Thus, ROC analysis is needed to 

distinguish between the difference in the ability to remember as opposed to criterion shifts, 

which would reflect an increased tendency of observers to say that they remember (e.g., 

Wixted & Mickes, 2015).  
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Is false memory a true concern? In fact, previous work has found that organizing 

information in memory via schemas can have both positive and negative consequences – and 

in particular, does often increase false alarms, making it difficult to tell whether memory is 

genuinely improved. In particular, while greater understanding – as in expertise – may allow 

encoding of only the relevant details, reducing memory load, it may also cause us to falsely 

remember information that was not present (e.g., Owens, Bower & Black, 1979). For 

example, in recognition tests, people are more likely to false alarm to schema-consistent 

relative to schema-inconsistent lures. They would be more likely to falsely report seeing 

books in a graduate student’s office than inconsistent objects like a piece of tree bark or a 

pair of pliers (Brewer & Treyens, 1981; Lampinen, Copeland, & Neuschatz, 2001). And 

while participants are more likely to correctly remember schema-consistent information in a 

briefly presented scene (Biederman, Mezzanotte, & Rabinowitz, 1982; Brewer & Treyens, 

1981), they are also more likely to falsely remember such information (e.g., Pedzek et al. 

1989; Hollingworth & Henderson, 2003).  

Thus, measuring fully ROCs – rather than attempting to infer how response bias 

would change performance using measures like A’, d’ or hits minus false alarms – often 

reveals surprising answers about memory, particularly in situations like expertise and 

consistent/inconsistent items where it is known that both hit and false alarm rates are 

affected. For example, Dougal and Rotello (2007) used ROC analysis to show that the well-

known effect of “improved memory” for emotional words compared to neutral words is a 

response bias effect, not a true difference in memory between the words. Similarly, Mickes, 

Flowe and Wixted (2012) showed in the domain of eyewitness memory that sequential line-

ups, which reduce both false alarms and hit rates relative to simultaneous line- ups, are 
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actually inferior to simultaneous line-ups, contrary to a large literature suggesting the 

opposite (e.g. Wells, Steblay, & Dysart, 2011), as the major ‘benefit’ arises simply from a 

response criterion shift, not a change in memory strength.  

Thus, the current experiments provide unique evidence that expertise and 

distinctiveness that is apparent only to experts do, in fact, enhance memory – and that this is 

not just a response criterion shift.  

What Explains Radiologists Outperforming Novices  

Consistent with a wide variety of work on expertise, we find that expert radiologists 

outperform novices in remembering mammograms. One likely possibility is that this occurs 

because of experts knowledge about these images: they have relevant knowledge that allows 

them to understand these images in a way novices do not, and likely have perceptual 

expertise built into their visual system from years of experience (e.g., in the form of greater 

holistic processing; e.g. Richler, Wong, & Gauthier, 2011). In particular, for an expert, the 

abnormal images would have an added attribute (that mass, that calcification), learned over 

years of experience, that would help to distinguish the item in memory.  

However, in the current study, we did not attempt to directly match our experts to 

our novices. Our novice pool was sampled from the internet, which is much more broadly 

representative of the demographics of the United States than an undergraduate population 

(e.g., Difallah, Filatova, & Ipeirotis, 2018), but still likely differs in a number of ways from 

our radiologists (in demographic and socioeconomic factors, as well as motivation to focus 

on mammogram images). Thus, Experiment 1 should be taken as only an approximate 

baseline: it revealed important image features in our stimulus set, and points to the 
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possibility of strong expertise effects, but does not directly confirm these are based solely on 

knowledge rather than other factors.  

Memory and Abnormality Judgments in Radiologists  

Previous work has found mixed results when investigating memory improvements in 

radiologists. For example, Hardesty, Gannott, Hakim, Cohen, Clearfield, & Gur (2005) 

investigated radiologists’ long-term memory for medical images presented months later and 

found that none of the radiologists remembered cases that they had read previously. Evans et 

al. (2016) found mixed results when investigating whether abnormality improves memory in 

expert observers, including radiologists. Our results provide context to these ambiguities, as 

they suggest that expert radiologists do have stronger memory for abnormal images even in 

a long-term memory setting and even when response bias is properly taken into account 

using ROC analysis. However, our long delays were only on the order of minutes, not 

months, and so it remains unclear how such advantages would last over long durations.  

It is worth noting that in the classification task, radiologists performed on average 

much more poorly than would be expected of radiologists in the clinic with unlimited 

viewing time (d’ = 2.5-3.0, as in D’Orsi et al., 2013). One reason for this might be that each 

image in our study was only presented for 3 seconds each. For instance, Evans, Georgian-

Smith, Tambouret, Birdwell, & Wolfe (2013) showed radiologists only a brief glimpse of 

mammograms and varied timing from 250ms to 2000ms. The respective AUC’s for 

radiologists in their experiment for 500ms, 1000ms, and 2000ms viewing times was 0.65, 

0.66, and 0.72. In our experiment with a presentation time of 3000ms, we found an AUC of 

0.72. Thus, our 3000ms presentations resulted in a similar level of performance to the 

2000ms presentations of Evans et al. (2013), which, while well below what is expected with 
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unlimited viewing time, is consistent with other studies and consistent with viewing time 

being the main constraint that lead to lower performance.  

The “Crowd-Within” Effect in Radiologists 

Because our study had radiologists answer the same classification question about an 

image multiple times, we looked at whether averaging radiologists’ responses when they 

judge the same image twice resulted in better performance (a “crowd-within” effect, Vul & 

Pashler, 2008). We found that radiologist performance improved when averaged across the 

same image twice compared to either response alone, but only in the 30-back condition and 

only modestly even then. This indicates that by the time radiologists were presented with the 

same image 30 images later, they gave a response that is somewhat independent of their first 

response. This suggests that, under the current experimental conditions, there might be 

information the radiologists are not using the first time they see an image – and that the 

opportunity to see the image again allows the radiologist to glean additional useful 

information. Future studies might determine whether such benefits persist when experts are 

given unlimited time to process the images as well as whether this effect can be made larger 

with an even longer delay between the first and second presentation of an image (as found 

by Vul & Pashler, 2008).  

The “Gist” of Abnormality  

Given the Evans et al. (2016) finding that there is a “gist of abnormality” present in 

the contralateral breast when no localizable abnormality is present, we were interested to 

know if these contralateral- abnormal images had any advantage over normal images in 

expert memory. We found no such evidence. In our experiment, we also found no difference 

in the classification of abnormality between contralateral-abnormal images compared to 
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normal. While at first this might seem to contradict earlier work, there are a number of 

methodological differences that make it difficult to compare our results directly with Evans 

et al. (2016). It is possible that we did not find this result because we presented images for 

longer encoding time (3000ms). Typical stimulus exposure in mammogram “gist” studies 

has been less than a second; 500ms is typical. It is possible that presenting images for longer 

encoding times might actually obscure the gist information - overwriting an initial “gist” 

impression with more semantic or meaningful information. Recall, also, that our radiologists 

were not informed about gist and likely reserved their ‘abnormal’ ratings for cases where 

they could localize a lesion. It is possible that we would observe a contralateral- abnormal 

effect even at long encoding times if we explicitly directed participants to look for a more 

general abnormal texture or gist. Given these methodological differences, the current study 

cannot be readily compared to Evans et al. (2016). However, this seems to be a promising 

avenue for future work.  

Conclusion  

Using radiologists as a case study, we find an advantage for memory in experts as 

well as an advantage for abnormal images – even when properly measuring memory via 

ROC analysis. This is broadly consistent with the literature on schemas. Our findings have 

important implications for both applied fields that utilize expert intelligence in making 

inferential decisions as well as theoretical fields interested in how memory changes with 

expertise. In particular, understanding the structure of memory in experts is critical in 

situations where decisions need to be made by people who have significant expertise.  
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Chapter 1, in full, is a reprint of the material as it appears in Memory and Cognition, 

2021, co-authored with Dr. Jeremy M. Wolfe and Dr. Timothy F. Brady. The dissertation 

author was the primary author of this paper.  
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CHAPTER 2: Visual Hindsight Bias for Abnormal Mammograms in Expert Radiologists.  
 
Abstract  
 

Hindsight bias—where people falsely believe they can accurately predict something 

once they know about it—is a pervasive decision-making phenomenon, including in the 

interpretation of radiological images. Evidence suggests it is not only a decision-making 

phenome- non but also a visual perception one, where prior information about an image 

enhances our visual perception of the contents of that image. The current experiment 

investigates to what extent expert radiologists perceive mammograms with visual 

abnormalities differently when they know what the abnormality is (a visual hindsight bias), 

above and beyond being biased at a decision level. N = 40 experienced mammography 

readers were presented with a series of unilateral abnormal mammograms. After each case, 

they were asked to rate their confidence on a 6-point scale that ranged from confident mass 

to confident calcification. We used the random image structure evolution method, where the 

images repeated in an unpredictable order and with varied noise, to ensure any biases were 

visual, not cognitive. Radiologists who first saw an original image with no noise were more 

accurate in the max noise level condition [area under the curve (AUC) = 0.60] than those 

who first saw the degraded images (AUC = 0.55; difference: p = 0.005), suggesting that 

radiologists’ visual perception of medical images is enhanced by prior visual experience 

with the abnormality. Overall, these results provide evidence that expert radiologists 

experience not only decision level but also visual hindsight bias, and have potential 

implications for negligence lawsuits.  
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Introduction  

Hindsight bias is the tendency to misinterpret original convictions given new 

evidence (leading to the popular phrase, “hindsight is 20/20”). Sometimes referred to as the 

“I knew it all along,” effect, hindsight bias is a well-studied and robust psychological 

decision-making phenomenon, whereby people who know the outcome of an event both 

believe that they could have accurately predicted that outcome, when in fact they could not 

have, and are also unaware that they are biased by their additional knowledge (Wood, 1978; 

Fischhoff, 1974; Roese & Vohs, 2012; Guibault et al., 2004). Highlighting the robustness of 

this effect, Fischhoff (1974) found that participants in a study who received prior 

information about an event happening, relative to those that did not, “had roughly doubled 

the perceived odds that [the event] was going to occur.”  

Visual hindsight bias, the “we saw it all along” effect, is a perceptual subtype of 

hindsight bias in which prior information about an image enhances our perception of that 

image (Harley, Carlsen, & Loftus, 2004). This perceptual bias is often studied by presenting 

participants in an experiment with blurry (noisy) images that slowly resolve into clear 

images and vice versa (Harley, Carlsen, & Loftus, 2004; Bruner & Potter, 1964; Bernstein et 

al., 2004). Participants who start with the clear image have more information than those who 

start with the blurry image, allowing experimenters to test the effects of this knowledge on 

perception.  

Using a version of this technique, Harley, Carlsen, & Loftus (2004) showed that 

individuals tend to underestimate the influence that visual hindsight bias has on their own 

perception. Participants were asked to identify at which point they recognized the face of a 

celebrity, which started out blurry (non-recognizable) and slowly dissolved into the clear, 
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original image (Figure 2.1). When participants were subsequently asked to indicate the level 

of blurriness at which they themselves first recognized the celebrity’s face, they consistently 

overestimated the degree of blur at which they previously recognized the celebrity—

thinking they originally recognized the image when it was blurrier than they actually did. A 

similar study looked at how visual hindsight bias progresses from childhood through 

adulthood (Bernstein et al., 2004). They found that once children and adults know the 

identity of a blurry object, they consistently overestimate their peers’ ability to recognize the 

same blurry object. This expands the findings of the previous study and suggests that visual 

hindsight bias not only affects our own perception, but also our view of others’ perception as 

well, in addition to being present across the lifespan.  

Visual hindsight bias can be elicited in more controlled conditions that do not allow 

for the effects to arise solely from hysteresis as well. For example, using priming to bring an 

object to mind is sufficient to allow people to recognize images they would not otherwise, 

even when they images are presented in a random order so that participants cannot simply 

“hold” onto their previous interpretation (Sadr & Sinha, 2004). To show this, the authors 

introduced the random image structure evolution (RISE) method of object distortion, where 

stimuli are systematically transformed by emerging from noise and then dissolving back into 

noise (Sadr & Sinha, 2004). Right before viewing an object in some level of noise, 

participants were presented with a word that either matched the following objects’ name, or 

did not match the objects’ name (i.e., a completely unrelated word). The authors found that 

primed images that matched the prior word were recognized more easily than images that 

were primed by an unrelated word at matched noise levels. Furthermore, this enhanced 

recognition occurred even when stimuli were intermixed, where it could not arise from a 
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decision level bias. A similar study showed participants various celebrity’s faces 

transforming from blurry to clear or vice versa bias (Bernstein & Harley, 2007). They found 

that priming participants with the celebrity’s name beforehand increased the effects of visual 

hindsight bias (Bernstein & Harley, 2007). Taken together, these studies provide further 

evidence that knowledge of the identity of the blurred or distorted image (whether from 

seeing the clear image, hearing a sound, or simply being told what it is) leads to enhanced 

perception of the image compared to images that were not preceded by relevant prior 

information.  

Figure 2.1. Example stimuli used in Harley, Carlsen, & Loftus (2004). This paper provided 
a clear demonstration of hindsight bias in visual perception. In this example, knowing that 
the images are of Harrison Ford biases the viewer to recognize Harrison Ford on, say, the 
second image from the right, even though if you were shown the second image on the right 
by itself without already knowing its identity, it would be too blurry to recognize.  

 

Visual Hindsight Bias in Experts: Hindsight bias—of the more cognitive variety—

has been found in many applied settings and in experts, including in medicine (Muhm et al., 

1983), gambling (Toneatto, 1999), legal decision making (Wells & Bradfield, 1998), 

baseball (Knoll & Srkes, 2017), public policy (Schuett & Wagner, 2011), consumer 

satisfaction (Zwick, Pieters, & Baumgartner, 1995), and terrorist attacks (Fischhoff et al., 

2005). In professional gambling, for example, expert gamblers often reframe losses in 

hindsight as an event which in retrospect could have been avoided, or reframe wins as 
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confirmation of skill or ability (Toneatto, 1999). Looking at how this bias relates to 

eyewitness testimony, Wells & Bradfield (1998) showed participants a video of a crime and 

later asked the participants to identify the suspect. After identification, feedback was given 

to either confirm or disconfirm their choice. The authors found that confirming versus 

disconfirming the eyewitnesses’ choice had a significant impact on many judgment reports, 

including the eyewitnesses’ self-assessment of their visual experience of the perpetrator 

(e.g., view, ability to make out facial features, and ease of making identification) (Wells & 

Bradfield, 1998). These results suggest that the eyewitness is unable to accurately recall the 

witnessing experience because of this retrospective information. Wixted, Mickes, & Fisher 

(2018) and others have argued that this contamination of eyewitness memory has caused the 

prevailing view of the unreliability of eyewitness testimony and suggest that the original 

judgment, without feedback, is a reliable source of information—but simply one that can be 

easily corrupted by hindsight biases, new memory encoding, and more, after the initial 

identification has occurred.  

Medical experts are also not immune to cognitive forms of hindsight bias. In one 

study, neuropsychologists were asked to estimate the probability of three different diagnoses 

(Arkes et al., 1981). Half of the participants, labeled the hindsight group, were told one of 

the three diagnoses was correct. The other half of participants who did not receive this 

“correct” diagnosis were called the foresight group. Of the hindsight group, 58% of 

participants gave a higher probability estimate than the foresight group to the diagnosis they 

were told was correct (Arkes et al., 1981).  

What about the more visual form of hindsight bias, wherein people report being able 

to visually see information after they have knowledge of this information from an 
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independent source? In one such study, 82% of cases that had initially been deemed normal 

by 2 to 3 physicians were later discovered to contain tumors “visible in retrospect,” as far 

back as 53 months prior to diagnosis (Mumh et al., 1983). Another study looked at visual 

hindsight bias as it relates to radiologists’ perception of pulmonary nodules (Chen et al., 

2020). Radiologists were shown a series of abnormal chest images and asked to either 

manually add blur until they could no longer see the nodule (hindsight bias condition), or 

reduce the blur until they could see it (foresight condition). Their results suggest that 

radiologists are influenced by hindsight bias and that the extent of the bias seemed to be 

exacerbated with more difficult nodules. While participants report their visual perception, 

making this a form of visual hindsight bias, blur is manipulated continuously by participants. 

Thus, unlike the technique of Sadr & Sinha (2004), this result could potentially arise from 

decision-level biases rather than arising purely as an effect of visual recognition.  

The consequences of visual hindsight bias in radiology can be acute. One article 

describes this anecdotally (Berlin, 2000): when a radiologist looked at an elderly man’s 

chest x-ray, they concluded that it was normal. The man, however, later became sick and 

had an additional scan that showed a noticeable mass that eventually led to his death. The 

man’s family sued the radiologist for initially missing the mass earlier on, when a diagnosis 

could have prevented the man’s death. In the lawsuit, the case was sent to a second 

radiologist whose task was to assess and determine whether the mass could have been seen 

in the original scan. The second radiologist could indeed see the mass (Berlin, 2000). This 

sequence of events is common in radiology (Berlin & Berlin, 1995); Hugh & Dekker, 2009). 

When the case is sent to a second radiologist, this physician has additional information when 

they look at the image in question compared to what the first radiologist had. Depending on 
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the extent of visual hindsight bias in expert radiologists, this additional information could 

significantly bias their judgment. It could also bias the jury, thus having important legal 

implications for the radiologist in question. While mammography is one of the most 

common areas within radiology to be sued for negligence (Baker, 2014), there is relatively 

limited research on hindsight bias in expert radiologists, and even less research on the 

effects of visual hindsight bias in radiologists who specialize in mammography. 

Furthermore, many of the studies of visual hindsight bias allow for a more cognitive 

interpretation—adding blur in a continuous manner to an image could result in biases 

because of decision-level hysteresis, for example.  

The current study investigates to what extent expert radiologists demonstrate visual 

hindsight bias to mammograms with visible abnormalities. We use the RISE method (Sadr 

& Sinha, 2004) to ensure that our results do not arise from decision-level hindsight bias and 

instead are visual in nature. In order to take into account any response bias that may arise 

from asking radiologists to distinguish between these two abnormalities, we use receiver 

operating characteristic analysis to measure performance. To anticipate our results, we find 

evidence that radiologists are influenced by visual hindsight bias when looking at abnormal 

mammograms.  

Methods 

 Participants. Aiming for a minimum of 20 participants, we fortunately were able to 

collect data from 34 radiologists (12 female, 20 male, 2 preferred not to say; age ranged 28 

to 69; mean 40) who read an average of 2100 mammograms per year. All participants gave 

informed consent and were not compensated. The experiment was conducted at the 

Radiological Society of North America 2019 Conference in Chicago, Illinois, United States. 
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Informed consent procedures were approved by the Institutional Review Board of the 

University of California, San Diego.  

 Stimuli and Procedure: On each trial, radiologists viewed a unilateral mammogram 

for 3 s. The mammograms subtended ∼16 × 20 deg of visual angle at an estimated viewing 

distance of ∼60 cm from the screen. All of the mammograms were abnormal, with half of 

the mammograms containing a mass and half containing a calcification. All images had 

verified pathology information and were preclassified by independent radiologists who did 

not participate in this study.  

Each mammogram had five versions of itself with different levels of noise, which 

were created using a degradation process similar to the RISE procedure developed by Sadr 

& Sinha (2004). The five copies of each mammogram consisted of: 0% noise, 10% noise, 

25% noise, 35% noise, and 45% noise. Figure 2.2 is a visualization of these levels of noise 

for five example mammograms.  

The experimental structure consisted of 8 blocks (30 trials/block), where in each 

block participants viewed all 5 versions of 6 different mammograms. Blocks were organized 

by noise level; for example, the six mammograms might each start out presented at their 

most degraded level (e.g., all six images with 45% noise would be presented sequentially in 

a random order), and as the trials progressed the images would cycle through the noise 

levels until all of the images were shown with no noise. Other blocks would start with each 

image at the 0% noise level (no noise), and then each of the six images would cycle through 

each noise level to become increasingly degraded. While the noise levels for each block 

varied systematically—either becoming increasingly noisy or increasingly clear—the six 

images within each noise level were presented in a random order, ensuring participants 
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could not anticipate whether a given image had a mass or calcification purely based on the 

sequence itself, reducing cognitive/decision-level biases.  

Whether the block started with 0% or 45% noise levels was counterbalanced across 

blocks and participants. Participants were told when they moved on to the next block. While 

the images would repeat within a block (for each noise level), no images would repeat 

across blocks. There were a total of 280 trials across all 8 blocks. The six mammograms 

chosen for each block were manually categorized based on the structure of the breast outline 

to decrease the likelihood of participants recognizing repeating images within a block and 

using this to infer the mass versus calcification judgment.  

Immediately after each image was presented, participants were shown a screen 

containing a 6 point confidence scale ranging from (1) confident this image is a mass to (6) 

confident this image is a calcification. Using a standard computer mouse, participants were 

asked to indicate their diagnostic confidence. We used confidence ratings instead of yes/no 

answers to allow for ROC analysis and separate decision bias from performance. There was 

no time constraint imposed on responding. After participants indicated their confidence, they 

clicked a button to move on to the next trial.  

Before the experiment began, participants were told that each mammogram would 

contain either a mass or a calcification and that the task was to rate their confidence on 

which abnormality they thought was present using a rating scale. They were informed that 

the images would start out degraded and become more clear, or start out clear and become 

more degraded and were shown an example of a mammogram depicting the five levels of 

noise. Participants were not informed that the same image would repeat with a different 

level of degradation within a batch.  
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Figure 2.2. Example of the five levels of noise (columns) for five mammogram images 
(rows).  
 
 Analysis: Our main measure was the area under the curve (AUC), an atheoretical 

measure of discrimination ability. This measure collapses each conditions’ ROC to a single 

measure of performance. Our main hypothesis concerns visual hindsight bias: that is, 
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whether participants might benefit in seeing the abnormality in the noisiest images if they 

had previously been exposed to the less noisy versions of those images compared to if they 

had not been exposed to them. In these two situations, participants see the same images, and 

these are images that are not possible to recognize the abnormality in without previous 

experience. The highest noise levels provide the best test of hindsight bias because when 

perceptual information is strong, your “priors” should not play a strong role; however, when 

perceptual information is weak, visual priors—about how to organize the parts of the image, 

what objects are where, etc.—will play more of a role. Thus, the highest noise levels provide 

the core test of visual hindsight bias.  

Results 

 First, we show people’s confidence reports (1-6), collapsed across hindsight 

condition (Figure 2.3, left), with confidence reports shown separately for images that had 

masses versus images that had calcifications. Next, we show these converted to ROC curves 

for each noise level (Figure 2.3, right), separated by whether participants started in the 

hindsight condition (started with 0% noise level) or the no hindsight condition (started with 

45% noise level). The ROC is a measure of discrimination performance: The more bowed 

out the ROC curve is to the top left corner, the better participants were able to complete the 

task. To quantify these ROCs, the area under the ROC curve, we use AUC, which is an 

atheoretical measure of overall performance (Figure 2.4).  
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Figure 2.3. Fig. 3 Left: Confidence at different noise levels, collapsing across hindsight 
conditions. Blue bars show the proportion of responses at each confidence level for 
calcification images, whereas green bars show the proportion of responses at each 
confidence level for mass image. Accurate performance is to respond with high numbers if it 
is a calcification image and low numbers if it is a mass image. As can be seen visually in 
these data, participants sort the images more accurately when there is less noise. Right: 
ROCs per hindsight condition per noise level. The confidence data can be converted into an 
ROC, and then separated by hindsight versus no-hindsight blocks. The more the ROC bows 
toward the top left corner, the more accurate performance is. We plotted the ROCs in terms 
of detecting masses, but they are symmetric if you instead plot them in terms of detecting 
calcification, with no change in the area under the ROC, our measure of interest.  
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First, considering only how noise affected performance, we found the expected 

pattern: Collapsing across hindsight conditions, participants were much better at lower noise 

levels, with performance reliably dropping across noise levels (F(4,132) = 118.3, p < 0.001).  

Our main hypothesis concerned visual hindsight bias: that is, whether participants 

might benefit in seeing the abnormality in the noisiest images if they had previously been 

exposed to the less noisy versions of those images. To test this, we first did an ANOVA with 

hindsight condition and noise level as the two factors. We found a main effect of noise 

(F(4,132) = 117.9, p < 0.001), no main effect of hindsight condition (F(1,33) = 0.50, p = 

0.48), but a significant interaction (F(4,132) = 3.25, p = 0.01). This interaction is evidence in 

favor of our hypothesis that at higher noise levels in particular, there is a benefit to having 

seen the images previously in the block (hindsight).

 

Figure 2.4. AUC (area under the ROC curve) per subject per condition; error bars are 
within-subject standard error or the mean. An AUC of 0.5 indicates chance performance, 
and a higher AUC indicates more accurate discrimination of masses and calcifications. 
Overall, discrimination performance drops with increasing noise, but at the highest noise 
levels, the hindsight bias condition leads to higher performance.  
 
 

We also more specifically contrasted performance at the highest noise level between 

the two hindsight conditions, which was our a priori prediction of where we would expect 
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the largest difference in performance. We found a reliable difference (t(33) = 2.98, p = 

0.005, dz = 0.51).  

Overall, this data suggest that radiologists who had more information starting out 

performed better when viewing the most degraded image, compared to radiologists who did 

not have that prior visual experience: in blocks where radiologists first saw an image with no 

noise, they did significantly better when the image was maximally noisy, compared to the 

blocks where they started with a noisy image.  

Discussion 

The current study found evidence that expert radiologists are influenced by visual 

hindsight bias when reading mammography images. Our findings support previous research 

that has shown that hindsight bias is not only a cognitive, decision making bias but also one 

that affects perception, including expert’s perception of medical images. For instance, a 

recent study showed that radiologists experience visual hindsight bias when looking at 

pulmonary lung nodules (Chen et al., 2020). The current study expands on these results by 

providing evidence that expert radiologists who view abnormal mammograms are also not 

immune to this bias, and using a technique—where images are interleaved—that ensures the 

results arise from visual perception rather than decision making (Sadr & Sinha, 2004). This 

is especially pertinent as mammograph radiologists are one of the most commonly sued 

groups in medicine for negligence (Baker, 2014).  

Several potential mechanisms of visual hindsight bias have been proposed. One of 

the first was increased visual interference. For instance, Bruner & Potter (1964) showed 

participants a series of common objects that started out of focus and slowly came into focus. 

Participants who started with very distorted images had more difficulty recognizing the 



 63 
 

image compared to other groups, showing one of the first experimental instantiations of 

visual hindsight bias. The authors propose that more distorted visual displays increase the 

cognitive difficulty of rejecting incorrect hypotheses regarding the identity of the image (i.e., 

they guess at what it is, incorrectly, hindering later recognition as it gets clearer), whereas 

clearer images to start allow the observer to better come up with more accurate hypotheses 

to explain the identity of the image. Later studies support this “creeping determinism,” 

whereby upon receiving outcome knowledge, the subject immediately integrates this new 

knowledge with what is already known (Fischhoff, 1974). By testing visual hindsight bias at 

the highest noise level, we find evidence that when the perceptual input or signal is weak, 

available prior information—in this case, correct information based on a less noisy version 

of the image—is integrated into the radiologists knowledge, which allows them to come up 

with and rely on more accurate hypotheses about the image.  

Previous studies have suggested that the strength of hindsight bias varies depending 

on the difficulty of the perceived information (Chen et al., 2020; Hawkins & Hastie, 1990; 

Gray, Beilock, & Carr, 2007). For instance, one study found that radiologists had greater 

visual hindsight bias for more difficult lung nodule cases (Chen et al., 2020). Future research 

should analyze whether the extent of hindsight bias differs in radiologists depending on the 

lesion type (e.g., masses, calcifications, and architectural distortions), in addition to 

difficulty level. Masses and calcifications have very different visual properties (i.e., they 

vary in size, shape, contrast etc.), which might alter their respective influence on a 

perceptual bias. Because the task in our study was to indicate whether each image contained 

a mass or calcification, our study was not designed to address this question: radiologists 

being prone to say “mass” more often, or “calcification” more often (a response bias) is 
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indistinguishable from lower versus higher difficulty of the two kinds of abnormality in our 

data. Additionally, our results do not speak to whether radiologists can detect the 

abnormality better with hindsight (which would be about whether they can distinguish 

normal versus abnormal), but only whether they can identify particular characteristics of it 

(mass versus calcification).  

It is also unclear whether hindsight bias, whether cognitive or visual, is greater in 

experts than non-experts within their domain of expertise. Knoll & Arkes (2017) found that 

expertise exacerbated the bias, whereby baseball experts exhibited systematically greater 

hindsight bias as the level of the expertise in baseball rules and terminology increased. The 

authors attributed this effect to “feeling-of-knowing,” which they suggest arises only when 

expertise is acquired. Other studies have come to a similar conclusion, suggesting that the 

greater amount of relative knowledge accessible to experts results in an increase in hindsight 

bias (Musch & Wagner (2007). This is similar to a type of error known as Goldovsky errors, 

which are known to arise only with expertise. Other studies have shown that experts are less 

likely to experience hindsight bias (Gray, Beilock, & Carr, 2007; Calvillo & Rutchick, 

2014). Calvillo & Rutchick, 2014 show that political expertise was negatively correlated 

with hindsight bias of predictions made for the 2012 election. Other studies have shown no 

relationship between expertise and hindsight bias, or suggests that it depends on hypothetical 

versus actual predictions (Guibault et al., 2004; Calvillo & Rutchick, 2014). Roese & Vohs 

(2012) attributes many of these discrepancies in the literature to differential mechanisms that 

either reduce or increase hindsight bias in expertise. To speak towards this ambiguity in the 

literature, future studies should assess how hindsight bias develops as novices gain 

experience in their field of expertise. In the current work, naive participants would be unable 
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to accurately perform a mass versus calcification task at all without significant training, and 

so our task—which was designed solely for radiologists— cannot address this question.  

The literature on whether hindsight bias can be reduced is mixed. As suggested by 

Chen et al. (2020), warning radiologists of the effects of hindsight bias before being 

presented with the same images they saw earlier may decrease hindsight bias effects. 

Whether the perceptual bias was reduced or radiologists were adjusting their response to 

match what they thought the desired outcome was remains unclear. Alternatively, Harley, 

Carlsen, & Loftus (2004) found that warning participants about hindsight bias did not 

mitigate the effects of hindsight bias when viewing faces at varying degrees of distortion. 

Anderson et al. (2014) showed that attempts to eliminate or reduce hindsight bias in judges 

had no significant effect. The difference in effects across these studies could be attributed to 

differences in stimuli and experimental design. Given the importance of this bias to many 

applied fields, future research could expand the current literature on ways to reduce or 

eliminate this bias with a focus on expert populations. Addressing the malpractice lawsuits 

specifically, future research could contribute to an emerging field that looks at hindsight bias 

mitigation strategies for juries (Conklin, 2021).  

In summary, this study has provided evidence that expert radiologists are influenced 

by visual hindsight bias for abnormal mammograms. Future research could investigate 

whether and how visual hindsight bias changes as novices become experts and whether 

different categories of abnormalities have an impact on the strength of the bias. The answers 

to these questions will both expand the current literatures on perceptual biases and expertise, 

as well as have practical applications in the event a radiologist is sued for negligence. 
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Chapter 2, in full, is a reprint of the material as it appears in the Journal of Medical 

Imaging, 2023, co-authored with Samantha Gray and Dr. Timothy F. Brady. The dissertation 

author was the primary author of this paper.  
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CHAPTER 3: The Impact of Naturalistic Occlusions on Face Processing in Ensemble 
Perception 
 
Abstract 

 The visual system takes advantage of redundancy in the world by forming 

representations of summary statistics, a phenomenon known as ensemble perception. 

Ensemble representations are formed for low-level features like orientation and size and 

high level features such as facial identity and expression. While recent research has shown 

that the visual system forms intact ensemble representations even when faces are partially 

occluded via amodal bars, how ensemble perception is impacted with the addition of 

naturalistic objects such as face masks or sunglasses is largely unknown. To investigate this, 

we conducted a series of experiments using continuous report tasks in which faces (either 

varying in identity or expression, i.e., emotion) were partially occluded with a standard 

surgical mask or sunglasses. Similar to previous research showing that ensemble perception 

of faces is robust to incomplete information, we found evidence that participants could still 

extract the average face even when a significant portion of it was occluded with either face 

masks or sunglasses. We subsequently examined the role of learning and expectation in 

extracting the average in a group of partially occluded faces by interleaving stimulus sets 

together such that observers could not easily learn the features of any stimulus set. 

Performance was worse when participants were not able to learn the features of the set, 

suggesting not only that the visual system quickly learns the features of the face wheel being 

used, but that it uses those expectations to help form the ensemble statistic. Overall, our 

results suggest that the visual system is able to form robust ensemble representations for 

faces with naturalistic occlusions, but that robustness appears to be supported by learning 

information about the particular feature set being used.  
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Introduction 

As we move about the world, we are bombarded with far more information than our 

visual system can process at one time. Yet this fact is not detrimental to our ability to 

successfully navigate and process information, in part because the visual system has 

developed tools and heuristics to counter limited capacity systems. Research suggests 

ensemble perception serves as a catalyst to allow some information to bypass the severe 

capacity limitations of visual working memory and attentional systems (Haberman & 

Whitney, 2012; Whitney, Haberman, & Sweeny, 2014; Alvarez, 2011). Ensemble 

perception takes advantage of redundancy in the world (e.g., blades of grass, faces in a 

crowd) by computing the statistical average of visual information quickly and with minimal 

processing power (Haberman, Brady & Alvarez, 2015; Alvarez & Oliva, 2009). Increasing 

the number of items on the screen, for instance, has a detrimental impact on the number of 

individual items we can reliably process, but does not affect our ability to extract the mean 

(Chong & Treisman, 2003; Alvarez, Brady, & Haberman, 2015). The resulting average is 

often called the ensemble percept or ensemble representation, and is a useful heuristic to 

guide decisions and behavior without needing to process every individual instance of 

redundant visual information.  

Ensemble representations support our visual percept throughout all levels of visual 

processing, operating on simple features such as size, orientation, and motion, as well as for 

more complex features such as facial identity, expression, gender, and ethnicity (Haberman 

& Alvarez, 2015; Tanaka & Farah, 1993; Haberman & Whitney, 2007; Smith, Cottrell, 

Gosselin, & Schyns, 2005; Leib et al., 2014; Haberman, Lee, & Whitney, 2015). Even for 

high level, complex information such as faces, the ensemble percept can be extracted 
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without the need to fully process – or even be aware of – individual items (Wolfe, 

Kosovicheva, Leib, Wood, & Whitney, 2015). For instance, participants can still extract the 

average face even when failing to recognize individual changes driving the average 

(Haberman & Whitney, 2011), or when unable to recognize individual faces due to 

crowding or noise (Fischer & Whitney, 2011). Given the ubiquitousness of ensemble 

perception across many types of information and its ability to relay useful information 

without needing to process all of the information present, the ensemble heuristic is thought 

of as a fundamental mechanism supporting our visual experience.  

Incoming visual information is noisy and often partially intact, such as when objects 

are partially occluded by another object (e.g., your car partially obstructed by another parked 

vehicle), or the viewpoint masks relevant features (e.g., a face turned to the side). Given 

these real world complexities, there is growing work investigating how both perception of 

individual items as well as ensemble perception is impacted in the presence of incomplete or 

limited information. Several studies using amodal stimuli, which prompt the visual system 

to perceive the “whole”, despite part of the stimulus being absent or occluded, have found 

that ensemble representations of both low and high level information maintain precision and 

accuracy when presented with amodal (i.e., incomplete) information (Haberman & Ulrich, 

2019). In particular, Haberman & Ulrich (2019) found evidence that the ensemble 

representation of both facial identity and expression can still be derived when portions of 

faces are amodally covered with artificial black bars, preventing viewers from seeing all of 

the facial features. Interestingly, the researchers did not find evidence that individuals create 

and use a ‘completed’ face in their representation of the missing information; in other words, 

forming the ensemble percept was not contingent on representing the missing information 
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(Haberman & Ulrich, 2019). The current study expands on this work by investigating how 

ensemble perception is impacted by types of occluders that occur more naturally in the 

world – sunglasses and face masks.  

Since the COVID-19 pandemic, there has been a significant increase in research on 

how more ecologically valid or naturalistic occlusions impact perception of individual faces 

(Lander & Saunders, 2023). Work looking at face masks has found that face masks 

generally decrease our ability to recall or recognize the identity of a face (Carragher & 

Hancock, 2020; Freud et al., 2020), although some information such as a sense of familiarity 

for famous faces remains intact (Carlaw et al., 2022). Carlaw et al. (2022) also found that 

recognition impairment was greater when the faces were wearing sunglasses compared to 

masks, which aligns with a large body of research showing the importance of eyes in 

recognizing faces (McKelvie, 1976; Daview, Ellis, & Shepherd, 1977). 

The challenge that such occlusions pose to individual face recognition occurs at least 

in part because there is less evidence observers can amass in order to make a decision 

(Carragher et al., 2022; McKelvie, 1976), leading to masked faces recognition relying more 

heavily on individual features opposed to holistic processing (Freud et al. 2020). In light of 

this, Carragher et al. (2022) tested whether a training strategy designed to help observers 

maximize their awareness and use of available features (a strategy known to be used by 

professional face examiners) helps mitigate the impairment face masks cause on 

identification and communication. They found that even brief diagnostic feature training 

(i.e., telling participants to focus on the available information) improved recognition 

performance significantly (Carragher et al., 2022). This research suggests that for individual 

faces with naturalistic occlusions, observers learn to take advantage of available featural 
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information to help overcome the decrease in available usable information from the 

occluder. 

In the current series of experiments, we explore whether our ability to extract the 

ensemble holds for naturalistic occlusions, in a similar way it does for more artificial amodal 

bars. In Experiment 2, we interleave conditions and stimulus sets together in order to assess 

the impact of feature learning on ensemble perception, which has been shown to contribute 

to face processing of individual faces with masks or sunglasses. Finally, we include a single 

face condition, which serves as a baseline to determine if adding these occluders disrupts 

ensemble perception above and beyond any impact on perception of a single face. The 

results of the current experiments add to a growing literature that looks at how face masks 

impact face perception (Lander & Saunders, 2023), while also contributing to our 

understanding of ensemble perception broadly. To preview our results, we find that 

participants are able to derive the ensemble of faces despite added naturalistic occlusions, 

but that there is some cost and evidence of a significant role of feature learning.  

Experiment 1 

In Experiment 1, we explored the impact of face masks and sunglasses on the 

ensemble representation of facial identity and expression. While there is growing research 

on the impact of occlusions such as face masks on individual face perception (Lander & 

Saunders, 2023), the current study is one of the first to investigate the influence of 

naturalistic occlusions on ensemble perception. By examining both face masks and 

sunglasses, we can also begin to ascertain whether certain features are weighted differently 

in the process of extracting the ensemble of facial information.  
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Experiment 1 was broken down into four sub experiments (described more below) 

testing each of the four conditions separately: identity masks, identity sunglasses, expression 

masks, and expression sunglasses.  

Experiment 1 Methods  

 115 total participants completed Experiment 1 (39 in 1A, 18 in 1B, 39 in 1C, and 19 

in 1D). All participants were University of California San Diego undergraduate students 

who gave informed consent and were compensated with course credit. Informed consent 

procedures were approved by the Institutional Review Board of the University of California, 

San Diego.   

Stimuli and design. Participants were presented with a single face or groups of four 

faces varying in either identity (Experiments 1A and 1B) or expression (Experiments 1C and 

1D). Our stimulus sets were the same as those used in the Haberman and Ulrich (2019) from 

the Harvard Face Database, which consist of 360 linearly interpolated face morphs based on 

three male faces. Face morphs were separated in either identity or expression “units,” 

corresponding to approximately equal steps in a 360 degree circular stimulus space. For 

Experiment’s 1A and 1C (mask occluders), we made a copy of each face wheel (identity and 

expression) and added standard white surgical masks onto the faces, which covered the 

lower half of the face. For Experiments 1B and 1D, we added opaque black sunglasses onto 

a copy of both wheels. Taken together, Experiment 1 had six face wheels – identity wheel 

with no occlusion, identity wheel with masks, identity wheel with sunglasses, expression 

wheel with no occlusion, expression wheel with masks, and expression wheel with 

sunglasses.  
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Figure 3.1: A selection of trial types in Experiment 1. The top left shows an unoccluded 
ensemble identity trial. The top right shows an ensemble identity trial with masks. The 
bottom left shows an ensemble expression trial with sunglasses. The bottom right shows a 
single face unoccluded expression trial.   
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Figure 3.2: A depiction of the test face: participants were told to move their mouse around 
the wheel until the middle test face matched what they felt represented the ensemble of the 
previous trial. The test face had the same occlusion as the previous set (i.e., if the face(s) 
shown in the trial were masked, then the test face was masked). 
 

In each sub-experiment, we tested performance on a single face vs. the ensemble and 

occlusion vs. no occlusion. This led to each sub-experiment consisting of four 

counterbalanced blocks: single face (occluded, unoccluded) and ensemble (occluded, 

unoccluded). The unoccluded conditions serve as a baseline or control to examine the extent 

to which adding naturalistic occlusions impacts our ability to accurately represent the 

identity or expression of a single or average of a group of faces. Each face was presented in 

grayscale and approximately 125 x 125 pixels in size. The mean of each set was chosen 

randomly on each trial. The spacing of the four faces around the mean is discussed in detail 

below.  

Procedure. The same procedure was followed for experiments 1A, 1B, 1C, and 1D. 

On each trial in an ensemble block, participants were told to report the average identity or 

expression of a set of faces. Four faces would appear on the screen for 1 second, followed by 

a 250-ms interstimulus interval (ISI), and then a single test face appeared on the center of 
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the screen (Figures 3.1 and 3.2). The test face always matched the condition of the previous 

set (e.g., if four faces with masks were shown, the test face had a mask; if four faces with 

sunglasses were shown, the test face wore sunglasses, etc.). As participants moved their 

mouse along the face wheel surrounding the test face (see Figure 3.2), the identity or 

expression of the test face morphed to match the corresponding location on the wheel. Each 

degree of change on the circle corresponded to a degree of change in either the identity or 

expression of the face. Once participants clicked on the location on the wheel that best 

matched their perceived average of the four preceding faces, they were shown a blank screen 

and told to click a small black cross in the middle of the screen to initiate the next trial. 

Performance was measured as the distance in degrees on the circle from where the 

participant clicked indicating their perceived average to the actual mean of the set.   

Single face trials were largely the same as the ensemble trials, except only one face 

appeared on the screen on each trial. The location of the presented face was randomly 

chosen to appear in one of the four locations the ensemble set appeared in. Participants were 

told to replicate their perception of the single face on the test face.  

Each of the four blocks contained 80 trials. The total time for each sub-experiment 

was approximately 40 minutes. Participants were given instructions prior to each block, 

noting whether they would be viewing a single face or ensemble block, and whether the 

faces would have masks, sunglasses, or no occlusions.  

Experiment 1 Results  

Analysis & Data Clustering: In each sub-experiment, error was used as an index of 

performance, calculated as the circular standard deviation of the distance (in degrees) 

between the face the participant chose as the average with the true average. Smaller error 
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(i.e., less distance between the true average and the perceived average) indicates a stronger 

or more precise representation of the ensemble percept or single face. We looked at whether 

error changed with the addition of naturalistic occluders, both in the single face and 

ensemble conditions.  

When analyzing the results of Experiment 1, we discovered something unintentional 

about the experimental design: the four faces presented at encoding in ensemble blocks were 

chosen at varying distances from the mean for each trial. This means that sometimes the four 

faces presented on a given trial might be clustered closer to the average (an easier trial), 

maximally separated along the wheel (a nearly impossible trial), or somewhere in between. 

In typical ensemble perception experiments, group members are all chosen to be an exact 

number of degrees apart around a random true mean so that difficulty level is controlled for. 

While unintentional, this organization of the data offered us an opportunity to parse the data 

by how clustered the faces were on the wheel (i.e., how difficult the ensemble trials were) 

and examine the impact of clustering distance on ensemble performance. While there has 

been some research looking at set similarity in ensemble perception for faces (Cabeza, 

Bruce, Kato, & Oda, 1999), none has assessed this with naturalistic occlusions.  
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Figure 3.3. Histogram distribution of error from Experiment 1A as an illustration of 
performance in the individual item condition and the three levels of clustering in the 
ensemble task. Top row shows non-masked faces and bottom shows masked faces. Errors 
near 0 are indicative of good performance.  
 

We parsed the data based on the additive vector of the four faces along the wheel. 

For example, if all four faces were chosen to be the same as the mean (which never 

occurred, but just as an example), the additive vector would be 1. If the four faces were as 

far apart as they could be, the vector would be zero. When the four faces are clustered close 

together on the wheel – such that the additive vector of the four faces along the wheel is 0.8 

or greater, for example – we expect error to be reduced. When the four faces are located 

further apart from the mean, we anticipate the error to be greater as it is almost impossible to 

choose a spot on the wheel that averages four almost equidistant locations. We parsed the 

data into thirds, which correspond to vector lengths of 0-0.25, 0.25-0.5, and 0.5-1. See figure 

3.3 for a visualization of the error distributions based on the three clusters, using Experiment 

1A’s data as a case study.  In each of the four sub-experiments below, we utilized trials 
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where the ensemble vector was greater than 0.5, which corresponds to a moderate cluster 

and is reflected by the thickest and lowest red line in Figure 3.4.       

 

 

 

 
Figure 3.4. Each yellow bar represents performance for the single face trials and the red 
bars represent performance for the ensemble trials and are broken down by the 3 cluster 
levels. The thin dotted line corresponds to a vector length of <0.25, medium dashed line 
corresponds to a vector length of 0.25-0.5, and the thick dashed line corresponds to the 
vector length of >0.5. Top left: The results of Experiment 1A showing the impact of adding 
a mask on extracting the average identity of a group of faces. Top right: Results of 
Experiment 1B showing the impact of adding sunglasses on extracting the average identity 
of a group of faces. Bottom left: Results of Experiment 1C showing the impact of adding a 
mask on extracting the average expression of a group of faces. Bottom right: Results of 
Experiment 1D showing the impact of adding sunglasses on extracting the average 
expression of a group of faces. 
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Experiment 1A Results - Identity Masks: Experiment 1A examined the impact of 

masks on ensemble perception for facial identity and followed the procedure described 

above. This experiment had four blocks, counterbalanced across participants: single face 

(masked, no mask) and ensemble (masked, no mask). 

 We first analyzed the impact of adding face masks on our perception of a single face. 

We found that our ability to accurately represent a single face was not impacted by the 

addition of a mask (t(38)=-0.76, p=0.453, dz=0.12). Next we asked whether the addition of 

face masks hurt our ability to extract the average facial identity of the group of four faces 

varying in identity. We found that our ability to extract the statistical average of facial 

identity was not impacted by the additional mask (t(38)=-0.78, p=0.440, dz=0.13), which 

suggests that the ensemble heuristic is robust to the added occlusion.  

Experiment 1B Results - Identity Sunglasses: Experiment 1B examined the impact of 

sunglasses on identity ensemble perception and followed the procedure described above. 

This experiment had four blocks, counterbalanced across participants: single face 

(sunglasses, no sunglasses,) and ensemble (sunglasses, no sunglasses). 

Similar to Experiment 1A, we first analyzed the impact of adding sunglasses on our 

perception of a single face. We found that, similar to masks, our ability to accurately 

represent a single face was not significantly impacted by the addition of sunglasses (t(38)=-

0.99, p=0.327, dz=0.16). Next we asked whether the addition of sunglasses hurt our ability 

to extract the average identity of a set of four faces varying in identity. Similar to 

Experiment 1A, our ability to extract the statistical average of facial identity was not 

impacted by the additional pair of sunglasses (t(38)=-1.66, p=0.106, dz=0.27), which 

provides additional evidence that the ensemble heuristic is robust to the added occlusion.  
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Experiment 1C Results - Expression Masks: Experiment 1C examined the impact of 

face masks on expression ensemble perception and followed the procedure described above. 

This experiment had four blocks, counterbalanced across participants: single face (masked, 

no mask) and ensemble (masked, no mask). 

Our findings were consistent with Experiment 1A and 1B. In analyzing the impact of 

face masks on our perception of a single face, we found no significant change in 

performance with the addition of a mask (t(38)=-1.45, p=0.154, dz=0.23). Next we asked 

whether the addition of face masks hurt our ability to extract the average facial expression of 

the set. Similar to previous experiments, we found that our ability to extract the statistical 

average of facial expression was not impacted by the additional mask (t(38)=-1.02, p=0.314, 

dz=0.16).  

Experiment 1D Results - Expression Sunglasses: Experiment 1D examined the 

impact of sunglasses on expression ensemble perception and followed the procedure 

described. This experiment had four blocks, counterbalanced across participants: single face 

(sunglasses, no sunglasses) and ensemble (sunglasses, no sunglasses). 

The findings of Experiment 1D were consistent with 1A-1C. We first analyzed the 

impact of adding sunglasses on our perception of a single face. We found that our ability to 

accurately represent a single face was not impacted by the addition of a pair of sunglasses 

(t(38)=-0.18, p=0.860, dz=0.03). Critically, we next asked whether the addition of 

sunglasses hurt our ability to extract the average facial expression of the set. Similar to the 

experiments above, we once again found that our ability to extract the statistical average of 

facial expression was not impacted by the additional pair of sunglasses (t(35)=0.26, 
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p=0.796, dz=0.04). Taken together, these results suggest that ensemble perception is not 

impacted significantly by the addition of face masks or sunglasses.   

Experiment 2: Feature Learning  

In Experiment 1, we found evidence that ensemble perception is quite robust: despite 

a significant drop in available information when faces are occluded, participants can still 

extract the average identity and expression of the group. However, Experiment 1 does not 

speak towards any strategies that participants may be using to derive the ensemble 

representation in these non ideal environments.  

Experiment 2 has two goals: to replicate Experiment 1 in blocked conditions using 

controlled stimulus clustering, and to assess feature learning as a potential strategy used to 

extract the average despite incomplete facial information. Research looking explicitly at 

ensemble perception of faces has suggested that missing information is not represented and 

averaged, or at least not well (Haberman & Ulrich, 2019). In addition, recent work looking 

at how individual masked faces are processed provide evidence that people focus on the 

available information (i.e., maximize the evidence gained from the visible features) and rely 

on that information to make decisions (Carragher et al., 2022). Experiment 2 tests these 

ideas in ensemble perception using naturalistic occlusions.  

Methods  

143 participants completed the blocked experiment, and 28 participants completed 

the interleaved experiment. Participants were University of California San Diego 

undergraduate students. All participants gave informed consent and were compensated with 

course credit. Informed consent procedures were approved by the Institutional Review 

Board of the University of California, San Diego.  
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Stimuli, design, & procedure: Similar to Experiment 1, participants were presented 

with sets of faces varying in either emotion or identity and either wearing a mask, 

sunglasses, or no occlusion. As we primarily wanted to compare blocked vs. interleaved 

designs to assess the impact of feature learning, we did not include a single face condition in 

Experiment 2. Similar to Experiment 1, participants completed 2 conditions out of 8 possible 

conditions in the blocked experiment, such that the only difference in was the controlled 

clustering of the set of faces: ensemble identity (masked and unmasked, or sunglasses and 

no sunglasses) and ensemble expression (masked and unmasked, or sunglasses and no 

sunglasses).  

In the interleaved experiment, all of the trials from the blocked experiment were 

interleaved together, such that participants did not know which type of trial type came next. 

Each participant in the interleaved experiment completed all six trial types. A participant 

might have a trial asking them to average four faces with masks varying in identity, 

followed by four faces wearing sunglasses varying in expression, followed by four faces 

varying in expression with no occlusion, etc. This design discouraged participants from 

learning the features of any particular stimulus wheel as they did not know whether that 

information would be useful on any given trial. We predict that if participants are 

maximizing their use of knowledge about the available features to create the ensemble 

percept, then by disrupting their ability to as easily learn the stimulus features will lead to a 

drop in performance. 

The procedure for each trial was largely the same as in Experiment 1, where 

participants were shown an ensemble of four faces for one second followed by a 250 ms ISI 

and test face, where participants indicated the best representation of the perceived average of 
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the four previous faces. Unlike in Experiment 1, all of the presented faces varied 

consistently in -45, -15, +15 and +45 units from the mean, which is in line with previous 

experiments and corresponds to a circular vector length of 0.84.  

Results 

 The results for Experiment 2 are displayed in Figure 3.5. We first analyzed the data 

from the blocked experiment, asking whether face masks or sunglasses hurt ensemble 

performance. Note the only difference in the blocked version of Experiment 2 and 

Experiment 1 was that the clustering of faces presented was controlled in all conditions. We 

subsequently analyzed data from the interleaved experiment, and then compared blocked 

versus interleaved designs.  

We first analyzed how the addition of face masks or sunglasses impacted our ability 

to extract the average expression. We found that both types of occlusions hurt performance 

significantly, with sunglasses having a greater negative impact on performance (Adding 

masks: t(35)=2.25, p=0.029; adding sunglasses: t(36)=6.10, p<0.001). While these 

differences are significant, performance is still relatively strong. For instance, a one sample 

t-test indicates that ensemble expression performance with either masks or sunglasses is still 

reliably different from chance, which was simulated as 81 degrees (Masks v chance: 

t(35)=11.7, p <0.001; sunglasses v chance: t(36)=13.8, p<0.001).  

 Next we analyzed whether the added occlusions impacted our ability to extract the 

average identity in the blocked experiment. Similar to Experiment 1, we found that adding 

masks did not significantly harm our ability to extract the average identity of a group of 

faces (t(31)=1.08, p=0.286). Adding sunglasses, however, did hurt our ability to extract the 

average identity (t(37)=4.61, p<0.001). Similar to the expression trials, adding face masks or 
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sunglasses did not impact performance so much so that it was anywhere near chance (masks 

v chance: t(31)=11.0, p<0.001; sunglasses v chance: t(37)=8.32, p<0.001).  

 Apart from the impact of masks on extracting the average identity, adding occlusions 

in all other conditions hurt performance, unlike in Experiment 1. This difference between 

experiments is likely due to the difference in clustering: by controlling the spacing between 

the ensemble set members and thus being a more targeted test, Experiment 2 is able to reveal 

some reliable cost to adding the occlusions. However, this cost is far from chance 

performance in all conditions, suggesting that ensemble perception is still a powerful 

heuristic despite being influenced by the disruption in information. 

Next, we analyzed the results from the interleaved experiment. All participants 

completed blocks that had all 8 trial types intermixed together, in order to discourage the 

ability to learn the particular features of any stimulus wheel. A one-way repeated-measures 

ANOVA revealed a significant effect of condition (F(1,40)=16.0, p<0.001). We first looked 

at the impact of occlusions on the ability to extract the average identity. Pairwise t tests 

revealed that both masks and sunglasses had a significantly detrimental effect on ensemble 

performance for facial identity (adding masks: t(40)=2.91, p=0.006; adding sunglasses: 

t(40)=5.10, p<0.001. However, similar to the blocked experiments, performance in the 

occluded conditions were still reliably different from chance (masks v chance: t(40)=9.79, 

p<0.001; sunglasses v chance: t(40)=10.1, p<0.001).  

Next we looked at the impact of occlusions on the ability to extract the average 

expression. Similar to identity, pairwise t tests revealed that both masks and sunglasses had 

a significantly detrimental effect on ensemble performance for facial expression (adding 

masks: t(40)=4.85, p<0.001; adding sunglasses: t(40)=4.81, p<0.001. However, similar to 
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the blocked experiments, performance in the occluded conditions were still reliably different 

from chance (masks v chance: t(40)=10.6, p<0.001; sunglasses v chance: t(40)=11.6, 

p<0.001).  

Taken together, we find a reliable cost to adding the occlusion, but that we are still 
effectively able to extract the ensemble nonetheless. This leads to our final analysis looking 
at the difference between blocked and interleaved conditions.  

 

 
 
Figure 3.5. Above: Results within the identity wheels. Below: Results from expression face 
wheels. The yellow bars are the results from the interleaved experiment and the red bars are 
the results of the blocked experiments.   
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To compare blocked vs interleaved experiments, we conducted a 2x2 mixed effect 

ANOVA for each of the four condition pairs. Comparing blocked vs. interleaved conditions 

for extracting the average identity of faces with or without masks, we found a main effect of 

masks (F(1,71)=4.94, p=0.029) as well as a main effect of condition (i.e., blocked vs. 

interleaved) (F(1,71)=5.96, p=0.017). Comparing blocked vs. interleaved conditions for 

extracting the average identity of faces with or without sunglasses, we found a main effect 

of sunglasses (F(1.77)=46.36, p<0.001), but no main effect of condition.  

Next we assessed the expression blocks. Compared blocked vs. interleaved 

conditions for extracting the average expression of faces with or without masks, we found a 

main effect of masks (F(1,75)=23.88, p<0.001) as well as a main effect of condition 

(F(1,75)=10.6, p=0.002). Comparing blocked vs. interleaved conditions for extracting the 

average expression of faces with or without sunglasses, we found a main effect of sunglasses 

(F(1,76)=60.92, p<0.001), as well as a main effect of condition (F(1,76)=4.65, p=0.034).  

Overall, we find that one of the biggest effects is that of the interleaved design: 

subjects had greater error in all conditions compared to the blocked design, which was 

significant in all but the identity sunglasses condition. These results may suggest, at least in 

part, that participants are learning feature information about the set in the blocked case and 

those expectations help them in the blocked conditions.  

General Discussion 

The present study examines whether the ability to extract the average facial identity 

or expression is impacted when faces have naturalistic occlusions such as face masks or 

sunglasses, and what strategies participants might employ to combat the added occlusion. 

We found that while there is some cost to adding either type of occlusion, it is not enough to 
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push observers to chance performance. Taken together, our results suggest that ensemble 

perception for faces can still operate despite the obstruction of information.  

In Experiment 1, we found the spacing of the individual items in the ensemble set 

varied around the mean on each trial, such that the individual items of the ensemble might 

be more or less clustered around the mean. To account for this, we parsed the data into 

thirds, corresponding to how far apart the items were from the mean. We used the top third 

cluster (the third of the data corresponding to the most clustered trials) to compare occluded 

vs unoccluded ensemble performance in our analysis. It is established that ensembles with 

less variance lead to better performance. For example, ensembles with less color variation 

makes it easier to extract the average color (Maule & Franklin, 2015), and extracting the 

mean face is easier when the faces of the set are more similar to the average (Cabeza, Bruce, 

Kato, & Oda, 1999). Figure 3.3 is a visualization of a similar pattern in our experiment: the 

more clustered the faces were towards the mean, the more performance tended to be closer 

to the true average.  

Experiment 2 was designed to 1) replicate Experiment 1 with controlled ensemble 

spacing, and 2) to test whether participants rely on a feature learning strategy to form the 

ensemble percept in situations with limited available information. In the blocked condition, 

and unlike in Experiment 1, we found that adding sunglasses or face masks hurt participants' 

ability to extract the average expression or identity of the set compared to unoccluded 

ensembles. However, in all cases, the decrease in performance did not push participants to 

chance, or even close to it. Thus, although there is some cost, the blocked condition in 

Experiment 2 still provides strong evidence that ensemble perception remains a powerful 

and flexible heuristic despite the added occlusion. This finding expands work by Haberman 
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and Ulrich (2019), who showed that observers can still extract the average facial expression 

and identity from a group of faces occluded amodally with black bars. 

Experiment 2 also examined feature learning by interleaving trial types together, 

which discourages participants from learning the features of each stimulus wheel by making 

that information less predictive or useful. This design allowed us to assess whether 

participants are maximizing information coming from the available information, a strategy 

known to be employed by expert face examiners (Carragher et al., 2022), by learning the 

features of the stimulus set. As illustrated in Figure 3.5, our results indicate that interleaving 

hurts performance more than adding masks or glasses hurt performance in blocked 

conditions. In other words, whatever is making ensemble perception robust to the added 

occlusions is strongly impacted by the interleaved design (i.e., ensemble perception is least 

resistant to interleaving). This suggests that participants are learning information about the 

features in the blocked conditions and using those expectations to help form the ensemble 

statistic. This has implications for how we understand and interpret results from studies 

using similar face wheels, and would be an interesting area to explore more in future 

research.  

While there has recently been a significant expansion of work looking at the impact 

of face masks on our ability to process individual faces, very little work has looked at how 

naturalistic occlusions impact ensemble perception, despite its known role in supporting our 

visual experience. Future studies, for instance, could incorporate neuroimaging in order to 

assess whether and how holistic processing is disrupted by the addition of naturalistic 

occlusions during ensemble perception, as the fusiform face area (FFA) is paramount in 

holistic face processing while the occipital face area (OFA) plays a greater role in 
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processing facial features rather than whole faces (Tsantani et al., 2021; Liu, Harris, & 

Kanwisher, 2010). 

The results of the current study provide evidence that our visual system is able to 

extract the ensemble regardless of whether an added occlusion covers the top half or the 

bottom half of the face. However, further research needs to be done to determine the relative 

importance of individual facial features in the successful creation of an ensemble percept for 

faces. Such research would expand a significant literature investigating which facial features 

are most important for recognition or communication of individual faces (Smith, Cottrell, 

Gosselin, & Schyns, 2005; McKelvie, 1976; Daview, Ellis, & Shepherd, 1977). It is also 

unclear whether naturalistic occlusions – which often are objects and have associated 

meaning themselves – impact ensemble perception for faces in a different way than artificial 

occlusions like black bars. Future studies could examine the impact of adding naturalistic 

objects that do not obscure facial features such as hats, tattoos, earrings, etc. on ensemble 

performance, or strategies observers might use if only half of the ensemble had an added 

occlusion.   

Given its ubiquitousness across many categories of visual information, ensemble 

perception is widely thought to serve as an important mechanism underlying visual 

perception and considered a key process used to bypass limited processing bottlenecks. The 

current study adds to our understanding of ensemble perception by showing its robustness to 

naturalistic occlusions and highlighting feature learning as a potential mechanism behind 

extracting the ensemble of faces with limited information. Our findings expand research 

showing that observers can learn to maximize awareness and use of available features to 

overcome the impairment face masks cause on single face recognition (Carragher et al., 
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2022), and contributes to a growing research field examining how ensemble perception for 

faces is impacted in incomplete or noisy environments (Haberman & Ulrich, 2019).  

Chapter 3 is co-authored with Natalia Pallis-Hassani and Timothy F. Brady. The 

dissertation author was the primary author of this chapter.  
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Conclusion  
 

In this dissertation, I investigate the impact of prior knowledge on cognitive 

processes such as memory and perception. The results contribute to the literatures of 

medical image perception, ensemble perception, and visual working and long-term memory, 

and open several avenues for future directions in both theoretical and applied domains.  

Chapter 1 examined memory performance by non-expert novices and expert 

radiologists for normal versus abnormal mammography images as a case study in 

understanding the role of schemas, distinctiveness, and expertise in memory (Schill, Wolfe, 

& Brady, 2021). We relied on ROC analysis, designed to properly measure memory 

independent of differences in response criteria and to consider both enhanced memory for 

seen items as well as the possibility of false alarms. We found that while experts might have 

access to perceptual encoding benefits, distinctiveness and/or schemas/chunking to enable 

them to outperform novices, our finding of an extra benefit of expertise for abnormal images 

is most consistent with a special role of distinctiveness. In other words, the additional 

knowledge that an expert has compared to a novice gives the expert a boost in memory for 

abnormal items because they have additional features (i.e., an abnormality), which makes 

them more distinct in radiologists’ memory compared to normal images.  

The findings in Chapter 1 open several interesting avenues for future direction. First, 

future research should expand on the crowd-within effect found in expert populations. For 

instance, does the crowd-within benefit persist when experts are given unlimited time to 

process the images? It is also worth noting that long-term memory in this study was tested 

via a 30-back condition; however, radiologists may be asked to read the same case again up 

to several months or years later. Thus, it would be interested to see whether the memory 
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advantages for abnormal mammograms found in this study hole true over longer durations 

or even whether they can be made larger with an even longer delay between the first and 

second presentation of an image (as found by Vul & Pashler, 2008). Relatedly, continuing to 

investigate how expertise within a perceptual domain such as radiology develops over time 

will lead to advancements in both applied and basic literatures of memory, as well as new 

methods to enhance performance in real-world tasks (Brady et al., 2019; Kundel & La 

Follette, 1972).   

Chapter 2 investigated whether expert’s prior knowledge influences their visual 

perception of images within their domain of expertise (Schill, Gray, & Brady, 2023). We 

found evidence that radiologists’ added knowledge about abnormalities in certain images led 

to enhanced perception of those images compared to images that did not have the same 

associated knowledge about an abnormality. Our findings support previous research that has 

shown that hindsight bias is not only a cognitive, decision-making bias but also one that 

affects perception (Chen et al., 2020), and is the first to show evidence of a perceptual 

cognitive bias in expert radiologists reading mammograms.  

The presence of a visual hindsight bias in expert radiologists has implications for the 

legal system and radiologists sued for negligence. Mammography is one of the most 

common areas within radiology to be sued for negligence (Baker, 2014), and yet there is 

relatively limited research the effects of visual hindsight bias in radiologists who specialize 

in mammography. Future research should analyze whether the extent of this bias differs in 

radiologists depending on the lesion type (e.g., masses, calcifications, and architectural 

distortions), in addition to difficulty level. Masses and calcifications have very different 

visual properties (i.e., they vary in size, shape, contrast etc.), which might alter their 
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respective influence on a perceptual bias. It is also unclear whether hindsight bias, whether 

cognitive or visual, is greater in experts than non-experts within their domain of expertise. 

To speak towards this ambiguity in the literature, future studies should assess how hindsight 

bias develops as novices gain experience in their field of expertise. Finally, given the 

importance of this bias to many applied fields, future research could expand the current 

literature on ways to reduce or eliminate this bias with a focus on expert populations. 

Addressing the malpractice lawsuits specifically, future research could contribute to an 

emerging field that looks at hindsight bias mitigation strategies for juries (Conklin, 2021).  

Chapter 3 examined how ensemble perception of faces is impacted when some of the 

information is obstructed by naturalistic occlusions. Face perception is a useful case study to 

examine prior knowledge and learning, and face processing is largely considered an area 

where everyone is a perceptual expert (Tarr & Gauthier, 2000). For instance, we process 

faces holistically, in a similar way domain expert like radiologists comes to process medical 

images holistically as they build expertise (Kundel, Nodine, Conant, Weinstein, 2007). 

Specifically, we asked whether the ability to extract the average facial identity or expression 

was impacted when the faces had naturalistic occlusions – either face masks or sunglasses, 

and what strategies participants might employ to combat the added occlusion. The results 

suggest that while there is some cost, ensemble perception is robust to added occlusions and 

we can still relatively efficiently extract the mean of a group of faces either varying in 

identity or expression despite some information being occluded. We also found that that 

participants appear to be using a strategy that maximizes evidence from the available 

features to extract the average. Overall, our results appear to be consistent with recent 

research on how face masks impact perception of individual faces (Carragher et al., 2022) 
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and serve to expand our understanding ensemble perception in circumstances where 

information is partially obstructed.   

The results in Chapter 3 contribute to an expanding literature on how naturalistic 

occlusions impact face processing and open several interesting avenues for future direction. 

While the current study could not speak towards whether facial features are weighted 

differently in their use in creating the ensemble percept, future studies could determine the 

relative importance of individual facial features in the successful creation of the ensemble 

representation of faces. It is also unclear how naturalistic occlusions themselves – which 

often are objects and have associated meaning – impact ensemble perception for faces. For 

instance, future studies could examine the impact of adding naturalistic objects that do not 

obscure facial features such as hats, tattoos, earrings, etc. Related to the applied realm, there 

are several disorders that result in a disruption of holistic face processing. Research that can 

intentionally disrupt holistic face processing may have the opportunity to investigate why 

that occurs and strategies individuals can use to combat the inability to process faces 

holistically.  

Medical imaging and face perception are both strong indices of perceptual expertise. 

Each of these domains has interesting real-world applications, and asking a question from 

more than one perspective allows more generalizable results to emerge. Research in 

cognitive psychology has an integral part to play in understanding how individuals and 

populations make decisions that range from making sustainable choices, diagnosing cancer, 

to teaching in the classroom. By applying the rigor and control of experimental 

psychology’s methods within more realistic contexts, we can begin to not only speak 



 100 
 

towards real-world interactions, decisions, and unsolved problems, but also open new 

avenues to expand our current understanding of cognition.  

To conclude, the research program outlined in this dissertation took a deep dive into 

how experts learn and use learned information to process and perceive complex images. The 

projects in this dissertation also highlight the applicability of theoretical questions about the 

nature of perception and memory to our everyday experiences and decisions.  
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