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Membrane Protein Quantity Control at the Endoplasmic 
Reticulum

Ignat Printsev1, Daniel Curiel1, and Kermit L. Carraway III1

1Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer 
Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, 
Sacramento, CA 95817, USA

Abstract

The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to 

enforce quality control among membrane-associated proteins by targeting misfolded secreted, 

intra-organellar, and intramembrane proteins for degradation. However, increasing evidence 

suggests that ERAD additionally functions in maintaining appropriate levels of a subset of 

membrane-associated proteins. In this ‘quantity control’ capacity, ERAD responds to 

environmental cues to regulate the proteasomal degradation of specific ERAD substrates according 

to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD 

quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory 

feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 

3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control 

system plays roles in maintaining the proper stoichiometry of multi-protein complexes by 

mediating the degradation of components that are produced in excess of the limiting subunit. 

Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system 

also contributes to the regulation of plasma membrane-localized signaling receptors, including the 

ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a 

proportion of the newly synthesized yet properly folded receptors are diverted for degradation at 

the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or 

concentration within the plasma membrane plays key roles in determining signaling efficiency, 

these observations may point to a novel mechanism for modulating receptor-mediated cellular 

signaling.
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Introduction

Plasma Membrane Protein Degradation

Plasma membrane-embedded proteins serve as the interface of cells with their environment, 

playing critical roles in anchoring cells to their neighbors and extracellular matrix 

components, in partitioning ions, metabolites and macromolecules to the cell interior, and in 

receiving and interpreting extracellularly derived growth and homeostatic cues. To maintain 

the fidelity of these processes, the quantities of receptors and transporters within the plasma 

membrane must be very tightly regulated. While transcriptional control of the genes 

encoding plasma membrane proteins provides one level of regulation, over the last two 

decades it has become appreciated that protein degradation mechanisms can have a profound 

impact on the levels of plasma membrane proteins, and that disruptions in these mechanisms 

can lead to disease.

Liddle syndrome, a rare autosomal dominant genetic disorder characterized by early and 

often severe hypertension, illustrates the critical importance of the degradation of even a 

single plasma membrane protein in maintaining physiological homeostasis (Snyder 2002; 

Rotin and Kumar 2009). The epithelial sodium channel (ENaC) is localized to the apical 

plasma membrane of renal tubule epithelial cells, and plays key roles in sodium ion 

homeostasis and blood pressure maintenance by mediating sodium reabsorption. Liddle 

syndrome patients carry an allele encoding ENaC with alterations that decouple the channel 

from the protein degradation mechanisms that keep its levels in check. The resulting hyper-

accumulation of ENaC protein leads to excessive sodium reabsorption, increased 

extracellular volume, and elevated blood pressure. Similarly, dysregulated quantity control 

of specific cell surface proteins has been implicated in a variety of genetic and acquired 

disorders, from cystic fibrosis via the underproduction of cystic fibrosis transmembrane 

conductance regulator (CFTR; Lukacs and Verkman 2012) to cancer via the overproduction 

of receptor tyrosine kinases (Carraway 2010).

Canonically, plasma membrane and secreted proteins are degraded following their 

endocytosis and trafficking to the lysosome. However, increasing evidence points to the 

possibility that the levels of some plasma membrane proteins are normally regulated by 

degradation at the endoplasmic reticulum. Perhaps not surprisingly, the mechanisms 

underlying plasma membrane protein quantity control by the ER appear to involve the same 

ubiquitin–proteasome machinery as those that govern the quality control of newly 

synthesized plasma membrane proteins.

Ubiquitination and the ERAD Pathway

The ubiquitin–proteasome system (UPS) is a crucial eukaryotic pathway that recycles 

unwanted or misfolded proteins to regulate systems important to cell growth, survival, and 

cellular homeostasis. The events that commit a protein to degradation begin with the 

addition of the soluble 8.6 kDa protein ubiquitin to the target protein substrate to be 

degraded. Ubiquitin is first covalently linked to an E1 ubiquitin-activating enzyme in an 

ATP-dependent manner, passed on to an E2-conjugating enzyme, and lastly, via a substrate-

specific E3 ubiquitin ligase, the ubiquitin is covalently added to the substrate (Glickman and 
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Ciechanover 2002). Additional ubiquitin proteins (donor) modify the primary ubiquitin 

(recipient) via the recipient N-terminus or one of its seven lysine residues to form 

polyubiquitin chains (Komander and Rape 2012). The addition of a minimum of four linked 

ubiquitin molecules to a substrate, via the lysines at the 48th or 11th residues on the 

recipient ubiquitin, is a signal recognized by the 26 proteasome, thus leading the substrate to 

degradation (Finley 2009).

The UPS exists in the cytosol and nuclei of eukaryotic cells. However, membrane proteins 

and proteins existing within organelle lumens also become misfolded or unnecessary, thus 

requiring disposal by the UPS. This problem is solved in the endoplasmic reticulum (ER) by 

a pathway called endoplasmic reticulum-associated degradation (ERAD) in which misfolded 

ER luminal or transmembrane proteins are recognized by their hydrophobicity and 

glycosylation state by molecular chaperones, simultaneously ubiquitinated and withdrawn 

from the ER via a retrotranslocation mechanism, and degraded by the cytosolic proteasome 

(Meusser et al. 2005).

Newly synthesized proteins at the ER experience the addition of an N-linked oligosaccharide 

(Glc3Man9−GlcNAc2) during translation. The glycosylated protein is recognized by ER-

resident chaperones calnexin and calreticulin, which assist in ensuring the proper folding of 

their substrate. After the terminal glucose molecules are completely removed from the 

oligosaccharide by glucosidases that associate with the chaperones, the folded protein can 

exit the ER. However, if the protein is not appropriately folded, the enzyme UDP-

glucose:glycoprotein glucosyltransferase (UGGT) can add more glucose molecules to the 

oligosaccharide, and the protein is again incorporated into the calnexin/calreticulin folding 

cycle. If the misfolded substrate cannot reach its native conformation, degradation-

enhancing α-mannosidase-like lectins (EDEMs) shuttle the substrate to a retrotranslocon, a 

proteinaceous channel responsible for the formation of the pore necessary to allow ERAD 

substrates to exit from the ER. Once the substrates reach the retrotranslocon, their N-linked 

oligosaccharides are removed, and they are simultaneously ubiquitinated and withdrawn 

from the organelle. Ubiquitination is facilitated by ER-associated or membrane-bound E2 

ubiquitin-conjugating enzymes and E3 ubiquitin ligases. This ubiquitination allows the 

recognition of the substrate by the hexameric AAA-ATPase Cdc48p/p97/VCP, or by VCP-

associated cofactors Npl4 and Ufd1, and ATP is hydrolyzed to provide mechanical energy to 

remove the substrate from the organelle and facilitate its transfer to the cytosolic 26S 

proteasome (Meusser et al. 2005; Gregersen et al. 2006; Hegde and Ploegh 2010).

ERAD has often been described in a way that highlights its role in quality control of 

misfolded substrates (Gregersen et al. 2006); however, mounting evidence suggests that 

ERAD, or an auxiliary pathway that employs ERAD components, may play a role in the 

physiological quantity control of proteins (Hegde and Ploegh 2010). In this review, we 

define quantity control substrates of ERAD as those that are not constitutively misfolded, 

such as the variant chloride channel CFTRΔF508 (Lukacs and Verkman 2012) responsible 

for cystic fibrosis, not degraded as a result of infection, such as the T cell surface 

glycoprotein CD4 (Magadan et al. 2010), and are not themselves protein components of 

infectious organisms, such as the hepatitis C envelope protein (Saeed et al. 2011). We 

provide a comprehensive list of known quantity control substrates (Table 1), and delve into 
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the details and physiological context surrounding the degradation of well-studied proteins 

subject to this type of regulation. Our discussion will begin with ER-resident proteins whose 

quantities are governed by elements of the ERAD pathway, and then we will explore 

examples of plasma membrane residents that experience ER-localized quantity control.

ER-Resident Substrates

HMG-CoA Reductase

The most widely studied example of quantity control by ERAD is 3-hydroxy-3-methyl-

glutaryl-CoA reductase (HMGR). HMGR is an ER-localized enzyme that functions as the 

rate-limiting step of the mevalonate pathway, catalyzing the formation of mevalonate from 

3-hydroxy-3-methyl-glutaryl-CoA. Given its importance in the mevalonate pathway and the 

biosynthesis of a diverse collection of molecules such as prenyl groups, dolichol, 

ubiquinone, and sterols including cholesterol, it is of no surprise that HMGR is regulated at 

three different levels: transcription, translation, and protein degradation (Goldstein and 

Brown 1990; Petras et al. 1999; Jo and Debose-Boyd 2010).

Sterol and non-sterol signals can induce the ER-localized degradation of HMGR protein. 

Treatment of cells with mevalonic acid reduces HMGR protein levels independent of its exit 

from the ER. HMGR degradation occurs despite treatment with Brefeldin A, a fungal 

antibiotic that prevents ER to Golgi trafficking, and the deletion of genes involved in ER to 

Golgi transport (Chun et al. 1990; Hampton and Rine 1994). Proteasomal inhibition blocks 

mevalonate-induced degradation and stabilizes ER-localized HMGR (Lecureux and 

Wattenberg 1994). Treatment of cells with farnesol, a downstream product of the mevalonate 

pathway, induces HMGR protein degradation in a squalene synthase- and sterol-dependent 

manner (Meigs et al. 1996; Song et al. 2005a), and this sterol-dependent degradation has 

been shown to occur in vitro with ER membranes isolated from sterol-pretreated cells 

(Moriyama et al. 2001). HMGR degradation does not require the lysosome or the vacuole in 

yeast (Inoue et al. 1991; Hampton and Rine 1994), and in mammalian cells, sterol-

stimulated HMGR degradation is unaffected by lysosomal inhibition (Tanaka et al. 1986), 

reinforcing the notion that the degradation of physiologically active HMGR occurs at the 

ER.

The degradation of HMGR involves several proteins integral to the ERAD pathway. Hrd1 is 

a transmembrane ER-localized RING E3 ligase that promotes the ubiquitination and 

degradation of misfolded proteins in a quality control ERAD pathway (Vashist and Ng 2004; 

Carvalho et al. 2010). However, Hrd1, in conjunction with the Ubc7 E2 ubiquitin-

conjugating enzyme, also plays a role in eliminating HMGR in a Hrd1 RING domain-

dependent fashion (Kikkert et al. 2004). Interestingly, it has been suggested that on binding 

to sterols, HMGR undergoes a conformational shift from a stable to misfolded conformation, 

allowing its Hrd1-mediated ubiquitination and degradation to proceed, thus forcing quantity 

control to occur via a quality control mechanism (Gardner et al. 2001; Shearer and Hampton 

2005). However, from a lack of experiments showing endogenous HMGR to be sensitive to 

Hrd1 knockdown, some believe that the function of Hrd1 toward HMGR is non-specific, and 

that Gp78, an ER-localized E3 ligase bearing significant homology to Hrd1, is responsible 

for the physiological and specific control of HMGR protein levels (Song et al. 2005b; 
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DeBose-Boyd 2008). Sterol binding causes HMGR to associate with the transmembrane 

Insig-1/2 proteins that in turn recruit Gp78 (Song et al. 2005a, b; Leichner et al. 2009; Jo et 

al. 2011). After GP78-mediated ubiquitination, HMGR is recognized by VCP and the VCP 

cofactor Ufd1, which transfer HMGR to the proteasome (Song et al. 2005b; Cao et al. 2007) 

surprisingly in the absence of a protein channel (Garza et al. 2009), perhaps by enhancing 

ER exit through lipid droplets (Hartman et al. 2010; Jo et al. 2013).

Apolipoprotein B

Apolipoprotein B (ApoB) is an essential secreted protein component of triacylglycerol-rich 

lipoproteins such as the chylomicrons, VLDL, IDL, and LDL particles responsible for the 

extracellular transport of lipids, triglycerides, and cholesterol. The classification of ApoB 

particles depends on the type of ApoB protein present (either full length ApoB100 or the 

proteolytically cleaved ApoB48), particle size, and relative quantities of cholesterol and 

triglycerides (Sniderman et al. 2010; Olofsson and Boren 2012). LDL particles are 

composed of ApoB100, up to 75 % cholesterol, and are responsible for the initiation of 

plaques that are characteristic of atherosclerosis, created by the affinity of the basic amino 

acids in ApoB100 for the proteoglycans of artery walls (Boren et al. 1998).

The maturation of ApoB into lipoprotein particles requires the translocation of the protein 

during synthesis from the ER membrane into the lumen. However, up to half of membrane-

embedded ApoB is constitutively degraded at the ER during translocation (Ginsberg and 

Fisher 2009). Within 10 min of synthesis, ApoB is highly ubiquitinated (Chen et al. 1998). 

Blocking ER exit with Brefeldin A does not affect ApoB degradation, and once ApoB 

reaches the Golgi network, it is spared from destruction (Sato et al. 1990; Furukawa et al. 

1992), suggesting that the protein is degraded while it is localized at the ER. Furthermore, 

ApoB in isolated ER can still be degraded while ApoB in isolated Golgi cannot (Furukawa 

et al. 1992). ApoB degradation can be enhanced as a result of insulin and LDL treatment, 

while oleate, a component of LDL, decreases ER-localized ApoB degradation and enhances 

its secretion. None of the aforementioned stimuli affect ApoB mRNA levels (Sato et al. 

1990; Dixon et al.,1991; Furukawa et al. 1992; Qiu et al. 2005).

The translocation of ApoB is slow due to its large hydrophobic beta-sheets (Yamaguchi et al. 

2006), providing ApoB an opportunity to associate with cytoplasmic chaperones such as 

Hsp70 and Hsp90 that enhance degradation (Gusarova et al. 2001). Bip is an ER luminal 

chaperone that also contributes to the destruction of ER-localized ApoB, mostly targeting 

the protein when it is poorly lipidated (Qiu et al. 2005). On the other hand, luminal 

chaperone calnexin and cytosolic Hsp110 can protect ApoB from degradation (Chen et al. 

1998; Hrizo et al. 2007). Although ApoB co-immunoprecipitates with Hrd1 (Rutledge et al. 

2009), Gp78 is the ligase responsible for ubiquitinating ApoB (Liang et al. 2003; Fisher et 

al. 2011). Knockdown of Gp78 decreases the cytosolic availability of ApoB and increases 

the secretion of VLDL particles from cells (Fisher et al. 2011), indicating that the ApoB 

spared from degradation is well folded and functional. The VCP ATPase interacts with 

ApoB; knockdown of VCP stabilizes intracellular ApoB protein and prevents its release into 

the cytosol (Fisher et al. 2008). It has also been shown that the putative ERAD 

retrotranslocon protein Derlin-1 and the UBXD8 cofactor are involved in the degradation of 
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a lipidated population of ApoB that resides in a hybrid ER/lipid droplet “crescent” (Suzuki 

et al. 2012).

A handful of other ApoB degradation mechanisms exist along its secretory route, including 

one that targets a population of ApoB that has already been translocated into the lumen of 

the ER. ApoB was shown to interact with ER-60, an ER luminal protein disulfide isomerase 

that also harbors cysteine protease activity (Adeli et al. 1997). The overexpression of ER-60 

can elicit ApoB degradation independently of both the proteasome and ER-60 isomerase 

function, but dependent on its innate protease function (Qiu et al. 2004; Rutledge et al. 

2013). Secondly, ApoB can experience increased degradation from ER stress, an event 

triggered by the increase of misfolded proteins at the ER. ER stress induces the unfolded 

protein response (UPR) which transcriptionally upregulates chaperones and components of 

the UPS and ERAD pathways (Hetz 2012). Glucosamine and high doses of oleate, 

surprisingly, can induce ER stress, thus affecting the ER-localized degradation of ApoB 

during and post-translocation (Pan et al. 2004; Qiu et al. 2005; Ota et al. 2008).

Cytochrome P450 3A4

Cytochrome P450 3A4 (CYP3A4) is part of the cytochrome P450 (CYP) superfamily of 

oxidizing enzymes, comprising as much as 30 % of all cytochrome P450 proteins in liver. Its 

primary cellular function is to remove endo- and xenobiotics such as drugs, atmospheric 

pollutants, smoke, and dietary compounds from the body (Shimada et al. 1994; Ortiz de 

Montellano 2005; Narjoz et al. 2009). With the N-terminus embedded in the cytosolic 

surface of the ER, the C-terminus of CYP3A4 is catalytically responsible for the metabolism 

and disposal of over 50 % of clinically relevant drugs, including widely prescribed 

anticancer agents such as tamoxifen, docetaxel, and imatinib (Ortiz de Montellano 2005; 

Rochat 2005), while also mediating many adverse food–drug and drug–drug interactions 

(Ogu and Maxa 2000; Fujita 2004).

Although reactivity with substrates can alter their conformation and stability, CYP proteins 

also undergo constitutive turnover via either proteasomal or lysosomal pathways, or a 

combination of both (Roberts 1997; Liao et al. 2006). CYP3A4 is degraded while localized 

at the endoplasmic reticulum by the 26S proteasome in the absence of external signals 

(Roberts 1997). However, in the presence of 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-

dihydropyridine (DDEP), which mimics a subset of cytochrome substrates by modifying the 

heme group of CYP3A4, turnover is enhanced regardless of blockage ER to Golgi 

trafficking with Brefeldin A or inhibition of the lysosome, thus indicating ER-localized 

degradation (Wang et al. 1999).

In yeast, vacuolar (lysosomal) ligases, Hrd1 and Ubc6, and the ER-localized yeast E3 ligases 

Doa10/TEB4 and Rsp5p [homolog of Nedd4 and Itch (Dunn and Hicke 2001)], are 

dispensable for CYP3A4 degradation. Ubc7, anchored to the ER by Cue1p, and VCP, with 

Ufd1 and Npl4 cofactors, are required (Murray and Correia 2001; Liao et al. 2006; Faouzi et 

al. 2007). An in vitro analysis using mammalian components indicates the involvement of 

Ubc7 and Gp78, but less of UbcH5a and CHIP, and not TEB4 or Hrd1, in the ubiquitination 

of CYP3A4 (Pabarcus et al. 2009). In cultured rat hepatocytes, both Gp78 and CHIP 

knockdowns lead to increases in basal CYP3A4 protein levels, correlating with decreased 
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ubiquitination. Gp78 knockdown abolishes DEPP-induced degradation, indicating that at 

least Gp78 is also responsible for stimulated CYP3A4 turnover (Kim et al. 2010). 

Additionally, the stabilized CYP3A4 is found to be functional as microsomes from cells 

treated with Gp78 or CHIP knockdown have increased capability to catalyze the 7-O-

debenzylation of 7-benzyloxy-4-trifluoromethylcoumarin (BFC), a diagnostic CYP3A 

functional probe, to 7-hydroxy-4-trifluoromethylcoumarin (HFC; Kim et al. 2010).

CYP3A4 is phosphorylated by protein kinase A and protein kinase C, and this 

phosphorylation event enhances in vitro ubiquitination of the cytochrome. Serine/threonine 

mutants of CYP3A4 incapable of undergoing phosphorylation are more stable in yeast and 

mammalian cells (Wang et al. 2009a). The phosphorylation of CYP3A4 enhances the in 

vitro ubiquitination of the cytochrome by Gp78 and CHIP (Wang et al. 2012b), highlighting 

the importance of phosphorylation in the ER-localized degradation of CYP3A4.

IP3 Receptor

Inositol 1,4,5-trisphosphate receptor (IP3R) is an ER-localized, transmembrane protein that 

allows the release of Ca2+ from intracellular stores by binding its ligand, the second 

messenger inositol 1,4,5-trisphosphate (IP3). IP3R is conserved among many species and is 

expressed ubiquitously in animal tissues, although mammals have three different isoforms of 

IP3R which differ in their distribution (Higo et al. 2005). Due to the wide-reaching effects of 

Ca2+, the receptor regulates a variety of cellular processes such as division, proliferation, 

apoptosis, fertilization, development, behavior, memory, and learning (Furuichi and 

Mikoshiba 1995; Bosanac et al. 2002). Additionally, IP3R acts as a scaffold for a plethora of 

binding partners. Thus, it is said that the receptor participates in a “macro signal complex,” 

perhaps as the center of an ER-localized hub of cellular signaling (Mikoshiba 2007).

In addition to regulation of its activity by ATP, phosphorylation, and Ca2+, nascent IP3R is 

constitutively turned over at the ER (Khan and Joseph 2003). IP3R can also be degraded as a 

result of activation, for example, from treatment with carbachol which binds muscarinic 

acetylcholine receptors at the cell surface and stimulates phospholipase C and IP3 

production (Wojcikiewicz and Nahorski 1991). Stimulated increases in IP3 induce IP3R 

ubiquitination and degradation without changes in mRNA levels (Wojcikiewicz et al. 1994, 

1999). This downregulation requires luminal Ca2+, persistent elevation of IP3 levels, and 

occurs despite Brefeldin A treatment or disruption of the lysosome, indicating that 

degradation of IP3R occurs while it is localized at the ER (Wojcikiewicz et al. 1994; 

Wojcikiewicz and Oberdorf 1996; Alzayady and Wojcikiewicz 2005). Overexpression of 

dominant-negative Ubc7, but not dominant-negative Ubc6, prevents carbachol-stimulated 

ubiquitination and degradation of IP3R (Webster et al. 2003). IP3R stimulation induces the 

formation of a receptor complex with VCP and its cofactors Ufd1 and Npl4. Furthermore, 

knockdown of VCP prevents the carbachol-stimulated ubiquitination and degradation of 

IP3R, and overexpression of VCP in VCP-depleted cells rescues receptor degradation 

(Alzayady et al. 2005).

Almost immediately after activation, but necessarily prior to ubiquitination and degradation, 

IP3R forms a complex with the transmembrane proteins SPFH1 and SPFH2. SPFH1/2 exists 

in a complex with several ERAD components in carbachol-unstimulated cells, including 
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VCP. Knockdown of SPFH2 decreases IP3R ubiquitination and degradation, decreases IP3R 

interaction with VCP, and increases Ca2+ mobilization, indicating that the ERAD mediated 

by SPFH1/2 plays a physiological role in regulating IP3R levels after activation, and the 

IP3R spared from degradation is well folded and functional (Pearce et al. 2007, 2009; Wang 

et al. 2009b). In the absence of carbachol, the SPFH1/2 complex interacts with the 

transmembrane E3 ubiquitin ligase RNF170 which, after stimulation, is responsible for 

ubiquitinating IP3R in an RNF170 RING domain-dependent fashion (Lu et al. 2011). 

Knockdown of RNF170 spares endogenous IP3R from destruction in both resting and 

carbachol-stimulated cells (Lu et al. 2011).

Type II Iodothyronine Deiodinase

Type II iodothyronine deiodinase (D2) is a single-pass transmembrane, ER-localized 

selenoprotein whose catalytic activity converts thyroxine (T4) to the biologically active 

hormone triiodothyronine (T3). D2 also converts T4 and T3 to the biologically inactive 

molecules reverse triiodothyronine (rT3) and diiodothyronine (T2), respectively (Arrojo e 

Drigo and Bianco 2011; Arrojo e Drigo et al. 2013a). Out of the three iodothyronine 

deiodinase enzymes, D2 has the highest affinity for the T4 substrate and is the predominant 

form in adult tissues (Arrojo e Drigo and Bianco 2011). Once T4 is converted to T3 on the 

surface of the ER, it is able to diffuse into the nucleus to activate the thyroid hormone 

receptor (TR) that can act either as a homodimer or as the more potent TR/retinoid X 

receptor (RXR) heterodimer to induce transcriptional changes in genes involved in 

development, growth, neural differentiation, and metabolic regulation (Brent 2012; Kliewer 

et al. 1992).

The D2 substrate T4 and the inactive product rT3 decrease the half life of endogenous D2 

protein, while proteasomal inhibition blocks rT3-induced D2 degradation (Steinsapir et al. 

1998). rT3 stimulation increases ectopic D2 ubiquitination in microsomes as opposed to 

cytosolic cellular fractions, suggesting that stimulated degradation occurs at the ER 

(Gereben et al. 2000). In yeast cells lacking Ubc6 and Ubc7, but not Ubc1, ectopic D2 

protein is less ubiquitinated, stabilized, and more active, pointing to a properly folded D2 

that was spared from degradation by ERAD (Botero et al. 2002). However, in HEK cells, 

dominant-negative Ubc6 and Ubc7 must be expressed together to stabilize ectopic D2 in 

rT3-treated and rT3-untreated cells, suggesting some functional redundancy between the E2 

ubiquitin-conjugating enzymes in the degradation of D2. Overexpressed wild-type E2s, 

either alone or in combination, do not have an effect on D2 (Dentice et al. 2005). 

Furthermore, D1 and D3 are unaffected by the expression of wild-type or dominant-negative 

E2s in combination, signifying the specificity of D2 as an ERAD substrate (Dentice et al. 

2005).

In mammalian cells, the Hedgehog-inducible ubiquitin E3 ligase WSB-1 contributes to the 

destruction of ectopic D2 by participating in a complex alongside elongin B, elongin C, 

Cul5, and Rbx1 (Dentice et al. 2005). Knockdown of WSB-1 increases D2 protein levels and 

activity, and overexpression of WSB-1 increases the ubiquitination of and destabilizes D2 

(Dentice et al. 2005). In yeast, the Hrd1 E3 ligase is dispensable in D2 regulation; however, 

deletion of the transmembrane E3 ligase Doa10/TEB4 stabilizes D2 levels comparably to 
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Ubc6 or Ubc7 deletion (Ravid et al. 2006). In T4-stimulated or unstimulated mammalian 

cells, the knockdown of TEB4 decreases ubiquitination of ectopic D2, correlating with 

increased D2 protein levels and activity, with D1 remaining unaffected (Zavacki et al. 2009). 

The activity of endogenous D2 also increases in the presence of TEB4 knockdown, 

signifying that the endogenous D2 is well folded and functional (Zavacki et al. 2009). The 

expression of TEB4 and WSB-1 differs somewhat between tissues, indicating that the E3 

ligase responsible for the degradation of D2 may be tissue specific (Zavacki et al. 2009). 

Lastly, VCP is responsible for retrotranslocating D2, making it available for cytosolic 

proteasomal degradation (Arrojo e Drigo et al. 2013b).

D2 is expressed in the brown adipose tissues (BAT) of small mammals and is responsible for 

generating a response to cold temperatures as the transcription of thermogenin, also known 

as uncoupling protein 1 (UCP1), is induced by T3. Once active, UCP1 is responsible for 

decreasing the proton gradient necessary for ATP generation during oxidative 

phosphorylation, thus dissipating the electrochemical proton potential as heat and 

uncoupling oxidation from ATP synthesis (Nedergaard et al. 2001; Cannon and Nedergaard 

2011; Borecky and Vercesi 2005). Interestingly, cold exposure of BAT rapidly induces 

transcription of ER-localized VDU1 deubiquitinase which is capable of deubiquitinating and 

stabilizing ectopic D2 but not D1, signifying that the sparing of D2 from ER-localized 

degradation is physiologically relevant (Curcio-Morelli et al. 2003).

Plasma Membrane Resident Substrates

ErbB3

The transmembrane ErbB3 receptor tyrosine kinase is essential for the proper development 

of neural, cardiac, and mammary tissues in addition to contributing to the maintenance of an 

array of tissues in the adult (Riethmacher et al. 1997; Erickson et al. 1997; Jackson-Fisher et 

al. 2008; Stern 2008). Overexpression of ErbB3 has been linked to hyperactivity of the 

receptor and increased downstream signaling, contributing to tumor malignancy and 

therapeutic resistance in a number of cancer types (Engelman and Cantley 2006; Stern 2008; 

Hamburger 2008; Baselga and Swain 2009). While the hyperactivity of ErbB family 

members HER2/ErbB2 and EGFR has been traced to genetic amplification, the same has not 

been found in the case of ErbB3 overexpression. ErbB3 transcript levels in tumor and 

normal tissues are equivalent despite tumors experiencing marked increases in ErbB3 

protein, this being indicative of a failure in a potent post-transcriptional mechanism of 

ErbB3-negative regulation (Lemoine et al. 1992; Sibilia et al. 2007; Baselga and Swain 

2009; Hynes and MacDonald 2009; Amin et al. 2010).

Nrdp1 is a RING-type E3 ubiquitin ligase that was discovered in a yeast 2-hybrid screen, 

pulled out by the intracellular domain of ErbB3 (Diamonti et al. 2002), and provides an 

essential avenue for steady-state maintenance of ErbB3 protein levels (Yen et al. 2006; 

Printsev et al. 2014). Nrdp1 co-localizes and physically associates with newly synthesized 

ErbB3 at the ER, affecting the ubiquitination and degradation of the nascent receptor. 

Disruption of ErbB3 exit from the ER with Brefeldin A does not disrupt Nrdp1-mediated 

ectopic receptor ubiquitination or degradation. Nrdp1 knockdown stabilizes the nascent form 

of endogenous ErbB3, and overexpression of Nrdp1 decreases the protein levels of the 
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endogenous receptor during Brefeldin A treatment. Furthermore, the stabilized ErbB3 

resulting from Nrdp1 knockdown enhances the ability of cells to bind and respond to 

neuregulin (NRG1) growth factor, indicating that the receptor spared from degradation by 

Nrdp1 is properly folded and fully functional (Yen et al. 2006; Fry et al. 2011).

The canonical ERAD substrate CFTRΔF508 has been shown to be rapidly degraded at the 

ER shortly after translation due to its improperly folded state (Lukacs and Verkman 2012). 

After recognition by the Hsp70 chaperone, CFTRΔF508 is ubiquitinated by the E3 ligases 

Gp78 and CHIP, prior to withdrawal from the membrane by VCP (Meacham et al. 2001; 

Morito et al. 2008; Brodsky and Skach 2011). However, CFTRΔF508 is unaffected by 

Nrdp1 overexpression, signifying that Nrdp1 is specific to ErbB3 in an ERAD-like quantity 

control pathway. On the other hand, the dominant-negative form of VCP blocks the ability of 

Nrdp1 to induce ErbB3 degradation while leaving ubiquitination of ErbB3 unaffected. This 

signifies that VCP functions downstream of Nrdp1 to transfer ubiquitinated ErbB3 from the 

ER to the proteasome as a shared component between quantity and quality control ERAD 

(Fry et al. 2011).

GABA Receptors

The neurotransmitter γ-Aminobutyric acid (GABA) is responsible for the reduction of 

neuronal excitability by binding GABA receptors, an action that prevents further action 

potentials and neurotransmitter release. GABA induces neuronal chloride uptake and 

potassium release, resulting in a net negative charge in the transmembrane potential usually 

associated with membrane hyperpolarization. GABAA receptor (GABAAR), the major site 

of action of barbiturates and benzodiazepines, is a fast-acting ligand-gated ion channel; 

GABA binding to GABAAR induces the opening of its chloride ion-selective pore to allow 

neuronal chloride uptake. GABAB receptor (GABABR) is slower acting and engages second 

messenger systems via Gαi/o-type GTP-binding proteins (Gassmann and Bettler 2012); 

GABA binding to presynaptic GABABR represses Ca2+ influx, and binding to postsynaptic 

GABABR opens K+ channels, creating a hyperpolarized postsynaptic neuron and an 

inhibitory postsynaptic potential (Bettler et al. 2004). The GABA receptors are widely 

expressed in the central nervous system, and have been implicated in a variety of disorders 

including epilepsy, anxiety, depression, insomnia, spasticity, stress, schizophrenia, obsessive 

compulsive disorder, addiction, and pain (Gassmann and Bettler 2012; Bettler et al. 2004; 

Bowery et al. 2002).

Regulation of neuronal cell surface levels of both GABAAR and GABAAR appears 

important to their function, and evidence has accumulated that each is post-translationally 

regulated at the endoplasmic reticulum. It has been demonstrated that chronic blockade of 

neuronal activity increases GABAAR ubiquitination and proteasome-dependent degradation 

at the endoplasmic reticulum, while increasing neuronal activity has the opposite effect 

(Saliba et al. 2007, 2008). The net result is the activity-dependent augmentation of cell 

surface receptor levels to regulate the efficacy of synaptic inhibition and contribute to 

homeostatic synaptic plasticity.

The degradation of GABABR has largely been described as activation-induced lysosomal 

degradation after internalization at the plasma membrane (Benke 2010). However, there is 
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some evidence that there is also post-translational, physiologically relevant regulation that 

occurs at the ER. In neurons, proteasomal inhibition and the inhibition of VCP cause an 

accumulation of endogenous GABABR. Correspondingly, a decrease of GABABR is 

observed with the proteasome activator betulinic acid and the inhibition of a deubiquitinase 

implicated in ERAD (Nagai et al. 2009; Zemoura et al. 2013). The overexpression of 

dominant-negative VCP increases GABABR protein levels and their presence and activity at 

the plasma membrane (Zemoura et al. 2013). The degradation of GABABR is thought to be 

accomplished via its interactions with Hrd1 and VCP (Zemoura et al. 2013). However, the 

receptor also interacts with Rpt6, an ATPase component of the 19S regulatory particle of the 

proteasome required for the ER-localized degradation of GABABR (Zemoura and Benke 

2014). Enhancing neuronal activity causes decreases in GABABR levels, corresponding with 

the receptor’s increased association with Rpt6, which can be reversed by inhibiting VCP 

(Zemoura and Benke 2014), indicating a physiological role for the ERAD of GABABR.

Quantity Control in the Maintenance of Protein Complex Stoichiometry

There exists a subset of ERAD substrates that are efficiently synthesized but are degraded 

when there is a dearth of interaction partners that would form a functional complex with the 

substrate. These substrates qualify as quantity control regulated for the reason that if their 

numbers exceed than the correct stoichiometry, they are considered by the cell to be in 

excess. Despite the possibility that these substrates are being engaged by ERAD due to 

misfolding or exposed hydrophobic domains in the absence of their interaction partners, 

their undesirable presence implies that degradation fulfills cellular quantity control.

The transmembrane major histocompatibility complex (MHC) class I heavy chain 

complexes with β2-microglobulin and an 8–10 amino acid peptide generated by the 

proteasome from the degradation of endogenous and foreign proteins. Once complete, the 

MHC complex is trafficked to the plasma membrane to present the peptide antigen to T 

cells. MHC-I heavy chain is degraded as a result of viral infection in order to suppress the 

recognition of infected cells (Barel et al. 2006; Wang et al. 2013). However, in the absence 

of β2-microglobulin and peptide, without participation in a fully formed MHC, the class I 

heavy chain is degraded by the proteasome in an Ubc6- and Hrd1-dependent manner 

(Hughes et al. 1997; Burr et al. 2011). Likewise, the yeast Matα2 transcriptional repressor 

(Johnson et al. 1998; Laney and Hochstrasser 2003; Ravid et al. 2006), yeast SREBP1 

transcription factor (Hughes et al. 2009), pTα and CD3δ subunits of the T cell receptor 

complex (Ishikura et al. 2010; Lerner et al. 2007), and the monocarboxylate transporter 

targeting protein CD147 (Tyler et al. 2012) are downregulated by ERAD in the absence of 

their oligomerization partners.

Conclusions

In this review, we have delved into the details surrounding the degradation of several well-

known quantity control substrates of ERAD, underscoring the molecular mechanisms by 

which environmental conditions engage ERAD to target proteins for degradation. In 

addition, we have attempted to create a comprehensive list of such substrates characterized 

thus far; it is likely that this list will expand dramatically in the future. Given how little is 
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known about the degradation of many of these substrates—identities of the proteins that 

constitute the destruction complexes, which substrate-specific adapter proteins mediate the 

connection to ERAD, and what cellular or environmental signals can induce degradation—

many potential future research avenues are possible. As the list of quantity control ERAD 

substrates continues to grow, and the underlying mechanisms become discerned, these 

pathways may become targets for those aiming to alter protein stability in order to achieve a 

therapeutic or otherwise physiologically relevant outcome.

A key point that has begun to emerge over the last several years is that ER-based degradation 

mechanisms can play substantial roles in dictating the quantities of membrane-associated 

proteins at a variety of organelles, including those involved in cellular signaling and 

homeostasis. It makes a lot of sense that the engagement of ERAD contributes to the 

quantity control ER-localized proteins, and even to the maintenance of proper 

stoichiometries of non-ER protein complexes. But why might it be advantageous for a cell to 

have ERAD govern the quantities of monomeric plasma membrane proteins, for example, 

the ErbB3 receptor tyrosine kinase? One possibility is that in some cases appearance of 

receptors at the cell surface at an inappropriate time may compromise cell function. Growth 

factor ligands for many receptor tyrosine kinases are frequently deposited on the 

extracellular matrix, and hence are constitutively present. Thus, to regulate signaling, access 

of the receptor to the cell surface must be restricted when signaling is not needed, and 

enhanced upon cellular stress where growth signaling might promote cell survival under 

adverse conditions. Nrdp1 could carry out this function by efficiently coupling ErbB3 to the 

ERAD machinery under conditions where growth factor signaling is either not needed or is 

deleterious, while its suppression by stressors could allow ErbB3 accumulation and survival 

signaling (Carraway 2010). Overall, it is likely that the few examples given here are just the 

tip of the iceberg; in the future, the notion of limiting receptor access to the cell surface via 

ERAD-mediated proteolytic degradation could become a predominant theme in signal 

transduction.
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