UC San Diego

Technical Reports

Title
Learning the k in k-means

Permalink
https://escholarship.org/uc/item/535837t9

Authors

Hamerly, Greg
Elkan, Charles

Publication Date
2002-07-30

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/535837t9
https://escholarship.org
http://www.cdlib.org/

Learning the £ in k-means

Greg Hamerly Charles Elkan
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, California 92093-0114
{ghamerly,elkan} @cs.ucsd.edu

Abstract

When clustering a dataset, the right number k of clusters to use is often
not obvious, and choosing k automatically is a hard algorithmic problem.
In this paper we present a new algorithm for choosing & that is based on a
new statistical test for the hypothesis that a subset of data follows a Gaus-
sian distribution. The algorithm runs k-means with increasing & until the
test fails to reject the hypothesis that the data assigned to each k-means
center are Gaussian. We present results from experiments on synthetic
and real-world data showing that the algorithm works well, and better
than a recent method based on the BIC penalty for model complexity.

1 Introduction

Clustering is the task of dividing a set of data points into several subsets, where the points in
each subset are similar to each other, and different from points in other subsets. Clustering
algorithms are useful tools for data mining, compression, unsupervised learning, probabil-
ity estimation, and other tasks in machine learning and statistics. However, most clustering
algorithms require the user to provide the number of clusters (called k), and it is not always
clear what the best value for k is. Figure 1 shows examples where k£ has been improp-
erly chosen. In general, choosing k is often an ad hoc decision based on prior knowledge,
assumptions, and practical experience.

The most common center-based clustering algorithms (in particular k-means and Gaussian
expectation-maximization) are based on the assumption that true clusters have Gaussian
distributions. With these methods, only one center should be used to describe each subset
of data that follows a Gaussian distribution. If multiple centers are used to describe a
Gaussian subset, the centers are a needlessly complex description of the subset (see Figure
1(b)), and in fact the multiple centers capture the truth about the subset less well than one
center.

In this paper we present a new statistical test for deciding whether to split a k-means center
into two centers, and a simple algorithm called G-means based on the test for discovering
an appropriate k. We describe examples and present experimental results that show that the
new algorithm is successful.

(a) Three k-means centers in red (dark) (b) Two k-means centers (red) are used

are used to cluster four true clusters in to cluster one true cluster (distribution
yellow (light). The top center should be shown in blue). One center only should
split to cover the two clusters nearest it. be used.

Figure 1: Two poor-quality final clustering solutions. On the left, k is too small, while on
the right & is too big. One center should be used to represent one Gaussian cluster.

2 Related work

Several algorithms have been proposed previously to determine k& automatically. Like our
method, most previous methods are wrappers around k-means or some other clustering
algorithm for fixed k. Wrapper methods use splitting and/or merging rules for centers to
increase or decrease k as the algorithm proceeds. Other research on agglomerative clus-
tering suggests choosing k based on the “stability” of the merging tree (dendrogram) of
distances between points. Doing this usually requires prior knowledge about the data, and
using these methods often no easier than choosing & directly.

Pelleg and Moore [5] proposed a regularization framework for learning k, which they call
X-means. The algorithm scores each clustering model using the so-called Bayesian Infor-
mation Criterion

BIC(M) = L(D) — 1—2’ log R

where £(D) is the log-likelihood of the dataset according to model M, and p and R are the
model complexity parameters [3]. Then they choose the model with the best BIC score.

Bischof et al. [1] use a minimum description length (MDL) framework, where the descrip-
tion length is a measure of how well the data is fit by the model. Their algorithm starts with
a large value for k£ and removes centers (reduces k) whenever that choice reduces the de-
scription length. Between steps of reducing k, they use the k-means algorithm to optimize
the model fit to the data.

In hierarchical clustering algorithms, “cluster analysis” is used to determine the best num-
ber of clusters for a data set. One heuristic is to build a dendrogram of the data based on
a cluster distance metric, and to search for areas of the tree that are relatively stable with
respect to inter-cluster and intra-cluster distances. However, this method of finding the
number of clusters is best applied with domain-specific knowledge and human intuition.

3 The Gaussian-means (G-means) algorithm

The G-means algorithm starts with a small number of k-means centers, and grows the
number of centers. Each iteration of the algorithm splits into two those centers whose data
appears not to come from a Gaussian distribution. Between each round of splitting, we run
k-means on the entire data set and all the centers to refine the current solution. We can
initialize with just K = 1 or £ = 2, or we can choose some larger value of & if we have
some prior knowledge about the range of k.

G-means algorithm

1. Run k-means on all centers and data.

2. For each k-means center, use a statistical test to detect if the
data assigned to the center shows a Gaussian distribution.

3. If the data look Gaussian, keep the center. Otherwise, split the
center into two centers.

4. Repeat from step 1 until no more centers are added.

This algorithm repeatedly makes decisions based on a statistical test for the data assigned
to each center. If the data currently assigned to a k-means center appear to be Gaussian,
then we want to represent that data with only one center. However, if the same data does
not appear to be Gaussian, then we want to use multiple centers to model it properly.

The k-means algorithm implicitly assumes that the data points in each cluster are dis-
tributed spherically around the center. Less restrictively, the Gaussian expectation-
maximization algorithm assumes that the data points in each cluster have a multidimen-
sional Gaussian distribution with a covariance matrix that may or may not be a unit matrix.
The Gaussian distribution test that we present below is valid for any covariance matrix.
The test also accounts for the number of data points involved, which prevents the G-means
algorithm from making bad decisions about small clusters.

4 A distortion-based test for normality

To specify the G-means algorithm fully we need a test to detect whether the data assigned
to a center are sampled from a Gaussian. The alternative hypotheses are:

e Hy: The data around the center are sampled from a Gaussian.

e H;: The data around the center are not sampled from a Gaussian.

If we accept the null hypothesis Hy, then we believe that that center is sufficient to model
its data, and we should not split the cluster into two subclusters. If we reject Hp and accept
H,, then we want to split the cluster.

We actually perform two tests of the null hypothesis Hy. For each test we must compute
a statistic and fix a significance level a. We use statistics that measure the distortion of
the data around two centers. Under Hj the distribution of these distortion statistics is a
scaled version of the standard X2 distribution, which can therefore be used to perform the
hypothesis tests.

Let X = {z;} for 1 < i < |X]| be any set of w-dimensional data points and let ¢ be a
center. The distortion (X, ¢) is the sum of the squared Euclidean distances between x;

and c:
| X

r(X,e) =Y ||z —cl”,
i=1

The test of Hy for center ¢ and the data X which is assigned to ¢ proceeds as follows:

e Find the covariance ¥ of X, and the eigenvectors v; and eigenvalues \; of X,
where 1 < j <w. Let p = argmax; ;.

e Create two centers ¢; and ¢o with initial locations

12X\ 2\
C1 =C—Up P C2:C+Up v
™ ™

Run k-means on X with centers ¢; and c2. Let X7 (X2) be the partition of X that
is assigned to ¢; (¢2).

e Calculate the distortions 7y = (X1, ¢1) and 7o = 7(X5, ¢2). Then ry and ro are
the two distortion statistics.

e Formulate the x? statistics m1 = f(r1,{\;}) and ms = f(r2,{)\;}). The func-
tion f is defined below.

e Perform two hypothesis tests: if m; < x3, 4, ormz < xj 4, then reject Ho and
keep the split centers ¢; and ¢, in place of ¢. Otherwise, we accept Hy and keep
the center c. Here d; = | X;| — 1 and similarly for do.

The initial center locations for ¢; and ¢, are the locations that give the minimum variance
when Hj is true, which is along the axis (eigenvector v,,) of the largest spread (the largest
eigenvalue A\p). We omit the proof due to the limited space. Placing the initial center
locations at the location of minimum variance means that k-means has to use very few
update iterations, since the initial locations are near the correct locations (assuming Hy is
true and the data is sampled from a Gaussian).

Under the null hypothesis Hy, r; and ry are each distributed according to a scaled 2
distribution. The mean and variance of the random variable r; (similarly for r5) are:

pm = Eri|Ho, {)\;}]
d 2
= (Ta-2 ()
Jj=1
o = Var[ri|Ho,{\;}]

d 9 2
= d 2§:A?+AZ(<;> —2> ©)
j=1

where J; is the jth eigenvalue of the covariance matrix of X, A, is the largest eigenvalue,
and d; = |X1| — 1 is the degrees of freedom. We omit the proofs for these properties due
to space limitations; they will appear in a longer version of this paper.

The probability density function of the distortion statistic is linearly related to the PDF of
the x? distribution. We transform from the distortion statistic to the x? statistic to perform
the significance test with the function f, which is defined as

Flr, {0} = “\/‘é‘l V2d; + dy.

Here 2d; is the variance and d; is the mean of the y? distribution with d; degrees of
freedom.

(a) Initialization. Before
running G-means, k = 1
and the center is located
at the centroid of the data.
The distortion around the
centeris r = 12.71.

(b) Iteration 1. After one
split, k = 2. The distor-
tions around each center
r = (0.97,0.87) are sig-
nificant, so we reject Hy.
This will be the final solu-
tion for this data.

(c) Iteration 2. After
two more splits, k = 4.
The distortions r =
(0.36,0.27,0.26, 0.31).
are not significant, so we
do not accept the new
splits.

Figure 2: An example of running G-means for three iterations on a 2-dimensional dataset
with two true clusters and n = 1000 points.

The test we perform is one-tailed since the goal of k-means is to minimize within-cluster
distortion. Using a one-tailed test checks if either subcluster improves the distortion signif-
icantly. If it does, then we reject Hy and accept the split centers.

We must choose the significance level of the test, a, which is the probability with which
we will make a type 2 error (i.e. reject Hy when we should not reject it). Since the algo-
rithm performs many statistical tests while learning k, it is appropriate to use a Bonferroni
adjustment to reduce the chance of making type 2 errors over multiple tests. For example,
if we want a 0.01 chance of making a type 2 error in 10 tests, we should apply a Bonferroni
adjustment to make each test use &« = 0.05/10 = 0.005. The G-means algorithm makes
2(2k — 1) statistical tests if it finds & final centers, which is not a large number of tests if
k is small, so the Bonferroni correction does not need to be extreme. In the experiments
below we use o = 0.0001, which corresponds for example to a 0.3% chance of an incorrect
split overall when k£ = 8.

A benefit of using the statistical test above (over simply comparing the values of two vari-
ances) is that when the number of sample points is small, the test tends to accept the null
hypothesis. In other words, the test can find cluster structure at many levels of resolution
in the data, but when a cluster is too small (too few data points), the test becomes less
confident. Therefore it will not split clusters with a small number of points, which would
happen if we were simply comparing two variances.

An example with two true clusters. Figure 2 shows a run of the G-means algorithm on a
synthetic dataset with two true clusters and 1000 points, using & = 0.0001. The distortion
of the data around the initial center at the middle of the dataset is r = 12.71. After one
iteration of G-means, we have k = 2 centers and statistics of:

C1 C2
n 509 491
r 0.97 0.87
m || 195.7 | 176.5
2.1 113979713820

0o *
08 4 0.05F
o7
06 4 w
o5}
0.4 4 -01r
03f
02l 1 * *

o1r * 1 P

(a) G-means finds the correct number of cen-
ters K = 11 and places them in the right
locations in this synthetic dataset. Search
started from k£ = 1, with o = 0.0001.

(b) G-means finds £ = 8 clusters here, in
a real-world dataset with 2 dimensions and
1037 data points. Search started from k =
1, with « = 0.0001.

Figure 3: G-means finds the correct number of clusters in the synthetic dataset on the left,
and discovers 8 genuine clusters in the real-world gz ip dataset on the right.

Here r represents the distortion statistic, and m = f(r,{);}) is the equivalent scaled
statistic to compare with the x? distribution. Both values of m are smaller than their corre-
sponding Xé,n—l values, so we reject Hy and accept the split.

Next we split each of the previous two centers, giving k£ = 4 total centers. Now the statistics
are:

C11 C12 C21 C22
n 263 246 235 256
r 0.36 0.27 0.26 0.31
m || 289.8 | 198.9 || 216.5 | 264.9
X2 .1 111853 [171.1 || 162.0 | 179.4

Here, the empirical values m are all larger than their corresponding ximfl values, so we
accept Hy and reject both splits.

S Experimental results

Figure 3(a) shows an example of the G-means algorithm correctly finding 11 true clusters,
starting with one center and using o = 0.0001.

Figure 3(b) shows the results on a dataset of 1,037 data points in 2 dimensions which
represents a trace of the execution of the program gzip. The original dataset had 8,163
dimensions. Each dimension represents a basic block of execution from the program’s bi-
nary image. A value z in dimension y means that basic block y was executed y times in a
given time-slice of execution. Each data point represents a time-slice of 100 million exe-
cuted instructions. This dataset is an important one used in current research on optimizing
processor architecture [?].

We reduce the dimension of the gz ip data drastically by using a random linear projection
to 2 dimensions, as in [2]. After this random projection, we use the G-means algorithm to

num_splits [1 |2 |3 (4]5] 6 7 8 9 |10
kfoundby X-means | 1 [2 |3 |59 |14]24 |36 |50 50

Table 1: Number of centers found by X -means in the 2-dimensional dataset gzip, as a
function of the parameter num_splits. k = 50 appears to be a hard limit in the X -means
software. It is not clear how to set num_splits based on this table.

a | 0.00001 | 0.0001 | 0.001 | 0.01
k found by G-means 6 8 8 11

Table 2: Number of centers found by G-means in the same dataset. Results are robust over
a wide range of values for a. See the text for why a = 0.0001 is a reasonable a priori
choice.

dimension | 2 6 10 14 18 22
average k | 9.0 | 12.3 | 14.1 | 158 | 15.1 | 15.2
standard deviation of £ | 3.4 | 3.6 3.8 4.2 3.2 4.5

Table 3: Mean and standard deviation of the number of clusters found by G-means on the
gzip dataset. For each test we randomly project the data down to the dimension shown
and run G-means on the projected data with o = 0.0001. We do this 30 times for each
dimension.

cluster the data and to find k.

In Tables 1 and 2 we see that depending on the parameter given to the algorithms (for X -
means it is num_splits, for G-means it is a)), we can obtain a different number for k.
However, it is far more intuitive how to choose a than how to choose num_splits, since
the former is the standard statistical test parameter, while the latter is a heuristic which must
reflect some notion of previous knowledge of the data. As for most real-world datasets, for
this dataset there is no objectively correct value of k. However the plot in Figure 3(b)
indicates that any number of clusters much smaller or larger than 8 is implausible.

Table 3 shows the average and standard deviation of the number of clusters G-means found
in the gz ip dataset as a function of the data dimension. For each test we randomly project
the data down to the dimension shown in the table and run G-means with o« = 0.0001.
These results show that G-means works well in higher-dimensional data, and is relatively
stable at finding the same number of clusters despite the dimension of the data. Extreme
dimension reduction (e.g. down to 2 dimensions) can collapse clusters together, thus we
expect to see the trend that G-means finds fewer clusters in lower dimensions. However, at
14 dimensions the average number of clusters found levels off, indicating that there are 15
genuine clusters in this dataset which are revealed in >= 14 dimensions.

6 Discussion and conclusions

We have introduced a new statistical test for determining whether data points are a random
sample from a Gaussian distribution with arbitrary dimension and covariance matrix. The
new test uses a distortion statistic with a scaled x? distribution, making the test easy to
implement. Our new G-means algorithm uses this statistical test as a wrapper around k-
means to discover the number of clusters k& automatically. The only parameter supplied to
the algorithm is a, the significance level of the statistical test, which can easily be set in a
standard way. Empirically, the G-means algorithm works well at finding the correct number

of clusters and the locations of genuine cluster centers, and we have shown it works well
in moderately high dimensions. The statistical test used by G-means could also be used as
a test to merge centers rather than split them.

The G-means algorithm takes linear time and space in the number of data points n and the
dimension w, since k-means is O(nw) in time and space. The computation of the covari-
ance matrix ¥ is also O(nw), and the computation of the eigenvectors and eigenvalues of
¥ is O(w?), which is reasonable if the dimension w is small.

The G-means algorithm is described above as a wrapper around standard k-means. How-
ever the same idea can be applied with other center-based clustering algorithms, including
expectation-maximization for mixtures of Gaussians, and harmonic k-means [?, 8].

Clustering in high dimensions has been an open problem for many years. Recent research
has shown that it may be preferable to use dimensionality reduction techniques before clus-
tering, and then use a low-dimensional clustering algorithm such as k-means, rather than
clustering in the high dimension directly. In [2] the author shows that using a simple,
inexpensive linear projection preserves much of the properties of data (such as cluster dis-
tances), while making it easier to find the clusters. Thus there is a need for good-quality,
fast clustering algorithms for low-dimensional data. The work reported here is a step in
this direction.

Additionally, recent image segmentation algorithms such as normalized cut [7, 4] are based
on eigenvector computations on distance matrices. These “spectral” clustering algorithms
still use k-means as a post-processing step to find the actual segmentation (usually in a
lower-dimensional space than the original input) and they require k to be specified exter-
nally. Thus the G-means algorithm will be useful in combination with spectral clustering.

Thanks to Sameer Agarwal and Kristin Branson for fruitful discussions, and to Brad Calder
for the use of the gz ip dataset.

References

[1] Horst Bischof, Ale§ Leonardis, and Alexander Selb. MDL principle for robust vector quantisa-
tion. Pattern analysis and applications, 2:59-72, 1999.

[2] Sanjoy Dasgupta. Experiments with random projection. In Uncertainty in Artificial Intelligence:
Proceedings of the Sixteenth Conference (UAI-2000), pages 143—151, San Francisco, CA, 2000.
Morgan Kaufmann Publishers.

[3] Robert E. Kass and Larry Wasserman. A reference Bayesian test for nested hypotheses and its re-
lationship to the schwarz criterion. Journal of the American Statistical Association, 90(431):928—
934, 1995.

[4] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Neural Information Processing Systems, 14, 2002.

[5] Dan Pelleg and Andrew Moore. X-means: Extending K -means with efficient estimation of the
number of clusters. In Proceedings of the 17th International Conf. on Machine Learning, pages
727-734. Morgan Kaufmann, San Francisco, CA, 2000.

[6] Peter Sand and Andrew Moore. Repairing faulty mixture models using density estimation. In
Proceedings of the 18th International Conf. on Machine Learning. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

[7] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

[8] Bin Zhang. Generalized k-harmonic means — boosting in unsupervised learning. Technical
Report HPL-2000-137, Hewlett-Packard Labs, 2000.

