
UCLA
UCLA Electronic Theses and Dissertations

Title
A Discrete Stochastic Method for Modeling Non-Conservative Plastic Dislocation 
Processes

Permalink
https://escholarship.org/uc/item/5362j02c

Author
McElfresh, Cameron Chisholm

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5362j02c
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Los Angeles

A Discrete Stochastic Method for Modeling

Non-Conservative Plastic Dislocation Processe

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Materials Science and Engineering

by

Cameron McElfresh

2022



© Copyright

Cameron McElfresh

2022



ABSTRACT OF THE DISSERTATION

A Discrete Stochastic Method for Modeling Non-Conservative Plastic Dislocation

Processes

by
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Professor Jaime Marian, Chair

Non-conservative processes play a fundamental role in plasticity and are behind

important macroscopic phenomena such as creep, dynamic strain aging, loop raft

formation, etc. In the most general case, vacancy-induced dislocation climb is

the operating unit mechanism. While dislocation/vacancy interactions have been

modeled in the literature using a variety of methods, the approaches developed rely

on continuum descriptions of both the vacancy population and its fluxes. However,

there are numerous situations in physics where point defect populations display

heterogeneous concentrations and/or non-smooth kinetics. With this in mind, in

this work we present a kinetic Monte Carlo model that discretely captures vacancy

generation and transport kinetics acting in conjunction with the evolving elas-

tic fields provided by discrete dislocation dynamics simulations. The two models

are coupled via the applied stresses and stress gradients generated by dislocation

structures at vacancy locations. To extend the coupled model to the treatment

of large systems, we cast the entire elasto-plastic-diffusive problem within a single

stochastic framework, taking advantage of a parallel kMC algorithm to evolve the

system as a single event-driven process. After introducing the numerical procedure

and validation, we compare the method to existing continuum formulations and

examine several macroscopic phenomena including non-conservative plastic bypass

of a precipitate, dipole coalescence, and vacancy trap formation.
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Chapter 1

Introduction

Non-conservative dislocation motion is responsible for important processes in

plasticity such as climb, jog-dragging, the closing of cross-kinks, among others,

with significant implications for mechanical behavior such as e.g. hardening, creep,

dynamic strain aging, or swelling in irradiated materials [5–13]. Generally speak-

ing, non-conservative motion refers to a point defect-assisted process that allows

a dislocation segment to leave its glide plane in the direction of its normal. This

normal n is uniquely defined as n ≡ s× t, where s = b/b is the slip direction (b is

the Burgers vector and b = ‖b‖) and t is the local tangent vector defining the local

direction of the dislocation line. The necessity of point defect intervention makes

processes like climb only feasible either at high temperatures (via vacancies, when

their thermal concentration and/or emission rate is sufficiently high), or under far-

from-equilibrium conditions as for example when irradiation is involved [9,14–16].

For a dislocation segment to undergo climb, net defect fluxes must establish

themselves, implying the presence of local sub or supersaturation. In its most

common manifestation, stress fields produce the concentration gradients that lead

to non-conservative dislocation climb. Also, dislocations are strong sinks in situ-

ations of supersaturated vacancy concentrations [14, 17, 18], so that climb can be

regarded as a process that acts to reconstitute thermal equilibrium. Due to its

non-conservative nature, dislocation climb is a process by which dislocations can

produce volumetric and dimensional changes in addition to slip.

Due to its intrinsically atomistic nature, studies of climb processes have been at-

1



tempted by direct molecular dynamics (MD) simulations (e.g. [19]) and/or lattice-

based kinetic Monte Carlo (kMC) [20,21]. However, apart from exceptionally rare

situations, vacancy transport at the lattice level is far too slow to be accessible

to atomistic simulations in a statistically meaningful manner. Instead, mean-field

continuum models, based on the adiabatic approximation, have been the preferred

choice in terms of theoretical implementations of climb processes in crystal plastic-

ity and/or dislocation dynamics models. Within these, the more popular approach

has been to superimpose a chemical force on the standard elastic forces due to ex-

ternal and internal stresses [1,22–27]. This force is obtained by matching the work

done when a dislocation segment climbs a certain distance with the free energy re-

quired to create the vacancies needed to climb that same distance. An alternative

approach is to formulate the climb velocity directly from the vacancy transport

equations in the presence of dislocations [28–32].

Implementations of climb in discrete dislocation dynamics (DDD) simulations

by way of suitable modifications to dislocation mobilities [33, 34] have been ap-

plied successfully in many scenarios [1, 29, 30, 32, 35, 36]. Several drag-based climb

approaches for DDD simulations have been developed and employed in the recent

years. Dislocation climb was coupled with bulk vacancy diffusion in a simplified

two-dimensional (2D) DDD investigation by Keralavarma et al. [29]. Rajaguru et

al. developed a 2D DDD model that considered both the simplified analytical so-

lution for the climb velocity of an infinite edge dislocation and a pipe-diffusion con-

tribution [31]. Ghoniem et al. developed a thermodynamically-consistent method

for interacting three-dimensional (3D) dislocation loops in which climb was further

facilitated via a point defect absorption contribution [37]. Bako et al. proposed an

expression for a segment’s climb velocity that incorporated the local vacancy con-

centration as the governing factor [1]. This approach has been used to study the

coarsening of vacancy loops in aluminum with respect to time and vacancy satura-

tion. Mordahei et al. implemented dislocation climb by bulk diffusion in aluminum

by solving for the local vacancy flux [25] and has since applied the approach to

study loop coarsening and annihilation in irradiated microstructures [38–40]. Re-

cently, Gu et al. demonstrated a Green’s function formulation for climb with a
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simplified numerical discretization for application in 3D DDD [26]. Gao et al.

introduced a climb approach using 3D DDD for a nickel-based superalloy with

a modified “local” and “mesoscale” vacancy concentrations to simulate γ-phase

channels [41]. Niu et al. developed a method to solve for the vacancy-driven

low-temperature climb velocity of curved dislocation segments in 3D DDD us-

ing a Robin boundary condition [42] and demonstrated its good agreement with

experiments and atomistic simulations [43]. Liu et al. introduced a model for

core-diffusion-based climb of curved dislocation segments in 3D DDD using a vari-

ational principle [44] and demonstrated the ability to accelerate it using a finite

element discretisation method [45]. Breidi et al. implemented a 3D DDD method

for climb of arbitrarily shaped dislocation segments that considers bulk diffusion

using a Green’s function formulation and the self-climb using the solution for a

pure prismatic loop [46].

These approaches are all formulated at the continuum level, which – while ther-

modynamically consistent and numerically efficient – disregard local fluctuations in

stress and defect concentrations. These fluctuations are especially important under

heterogeneous conditions, when spatially-complex dislocation structures and/or

defect distributions (e.g. as during irradiation [47, 48]) exist. Since vacancies are

discrete particles, they are highly sensitive to these local variations of stress and

presence of other defects. Thus, understanding how they evolve, taking into ac-

count such fluctuations, and studying how sensitive climb processes are to spatial

heterogeneities is of relevance in many cases.

Therefore, the objective of this work is to develop an efficient method to dis-

cretely simulate non-conservative creep processes. The document is divided into

sections that align with major bodies of work - followed by brief closing statements

on future extensions of the framework. In Chapter 2 we develop the underlying

theory for superimposing a kMC module tasked with simulating vacancy diffusion

onto a microstructural simulator based on DDD. The DDD module is tasked with

updating dislocation structure morphology and stress fields. As such, the kinetic

module and the DDD simulator are coupled together by the underlying stress fields

in the simulation volume. We apply the model to the simple case of a single edge
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dislocation to study effective climb rates as a function of temperature and vacancy

concentration for isolated dislocations, as well as to study a dislocation overcoming

a precipitate lock via climb.

In Chapter 3 we implement the kMC/DDD model in a massively-parallel com-

puting framework to enable large-scale simulations of the types of processes dis-

cussed above. First, we develop and implement modifications to parallelize the

kMC/DDD model, by recasting the elasto-plastic-diffusive problem within a single

stochastic framework. The new approach results in an efficient and scalable discrete

model amenable to perform large-scale simulations, e.g. for simulating loop raft

formation during recovery of damaged metals. Second, this new implementation is

used and its predictions compared to three existing DDD vacancy-coupled climb

methods, namely, (i) climb via balancing vacancy flux [25,49], (ii) Green’s function

formulation for climb [26], and (iii) discretized diffusion transport climb [50].

In Chapter 4, we employ the developed model to study dislocation loop coales-

cence in bcc Mo that requires a collaborative climb/glide response. Additionally,

we examine the interaction of vacancies and prismatic loops and discuss the for-

mation of vacancy traps and rings around the perimeter of the loops that affect

how coalescence takes place. We then show excellent agreement with in situ ex-

perimental observations of loop coalescence under irradiation.

In Chapter 5 we briefly discuss extensions to the developed DDD/kMC model

and highlight physical phenomena that could be cast in the same (or similar)

discretized elasto-plastic framework.
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Chapter 2

Discrete Stochastic Vacancy

Model

2.1 Underlying theory

2.1.1 Kinetic model for point defect diffusion

According to transition state theory [51, 52], the diffusion coefficient for va-

cancies hopping in an isotropic medium follows an Arrhenius expression of the

following type:

D(T ) = zfb2ν(T ) (2.1)

where z is the coordination number of the lattice in question (z = 8 for bcc

crystals), f is a correlation factor, b is the crystallographic jump distance (b =

a0

√
3/2 for bcc crystals, a0 is the lattice parameter) and ν(T ) is the temperature

dependent jump frequency of the form

ν(T ) = ν0 exp

(
−∆Hm

kT

)
(2.2)

where ν0 is an attempt frequency, k is Boltzmann’s constant, and ∆Hm is the

vacancy migration enthalpy. In the low-stress limit, ∆Hm depends on stress σ via

a mechanical work coupling:

∆Hm(σ) = ∆E0
m − σ : Ωact
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where ∆E0
m is the migration energy of a vacancy in a solid subjected to no stress,

and Ωact is the activation volume tensor defined as the difference between the re-

laxation volume tensors at the saddle point and at an equilibrium position. Param-

eters ν0, ∆E0
m, and Ωact are routinely computed using first principles methods [53].

Another, and often more significant, effect of stress on the diffusion of defects

results from the fact that the enthalpy of formation of a defect at an equilibrium

position in the lattice depends on the local stress through:

Hf (σ) = E0
f − σ : Ωf (2.3)

where E0
f is the defect formation energy and Ωf is the formation volume tensor

[53,54]. It must be noted, however, that in most cases it is the relaxation, and not

the formation, volume of a defect that enters the equations of elasticity, since it is

the relaxation of the lattice around a defect that determines its elastic interaction

with other defects and dislocations. As such, the relaxation volume tensor provides

a tensorial measure of global deformation of the material due to the presence of a

defect in it [55].

The relaxation and formation volume tensors, Ω and Ωf , are related to one

another via Ωf = ±1
3
ΩaI + Ω, where Ωa is the atomic volume, and the sign of Ωa

depends on the nature of the defect, vacancy (+) or self-interstitial (−) [56]. For

vacancies, the first term in the above relation is positive, since in order to form an

individual vacancy in the bulk of the crystal, it is necessary to deposit an atom

onto its surface, hence increasing the total volume of the material by one atomic

volume Ωa. Conversely, the formation of a self-interstitial atom involves punching

a surface atom into the bulk of the material, hence reducing the apparent total

volume by Ωa
1. The second term, Ω, entering the formula for Ωf , is the relaxation

volume tensor [53, 54], describing the lattice relaxation effects. Elements of the

relaxation volume tensor of a point defect can be readily evaluated using first-

principles calculations [53, 54].

Note that in the context of studies of radiation damage, the formation volumes

of defects rarely enter the equations for the experimentally observed quantities.

That is because, under irradiation, vacancies and self-interstitial defects are formed

1See for example Figure 14.10 from [57]
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in pairs, and this results in the cancellation of terms ±1
3
ΩaI in the definition [53]

of the formation volume tensor Ωf above. Also, one should recognize the difference

between the volumetric swelling of a material, which is a quantity given by the sum

of formation volumes of all the defects, and lattice strain, measured for example

by X-ray diffraction. Lattice strain is a measure of relaxation of the lattice, and it

therefore depends on the relaxation volumes of defects, as illustrated for example

by the observed negative lattice strain resulting from the accumulation of vacancies

in metals [58].

The trace of the relaxation volume tensor Tr (Ω) = Ωkk = Ω11 +Ω22 +Ω33 gives

the total relaxation volume of a defect Ωrel, which, depending on its sign (negative

or positive), provides a measure of the total elastic contraction or expansion of

the lattice due to the presence of the defect in the material [59]. For a vacancy,

the relaxation volume tensor is isotropic [59], namely Ωij = 1
3
δijΩrel, where δij is

Kronecker’s delta. Since the trace of the identity tensor Tr(I) = δkk = δ11 + δ22 +

δ33 = 3, we find Tr(Ω) = 1
3
ΩrelTr(I) = Ωrel. In terms of atomic volume, we can

express the relaxation volume tensor as [53, 54]:

Ω = Ωaεv (2.4)

where εv is a diagonal strain tensor with identical components εv = (εv)11 =

(εv)22 = (εv)33 equal to:

εv =
Ωrel

3Ωa

=
θv
3

with θv being the relative local lattice contraction around a vacancy (typically

around −20% [53,54]). With this, assuming that the relaxation volume of a defect

is isotropic, eq. (2.3) becomes:

Hf = E0
f −

1

3
σijδij (Ωrel ± Ωa) = E0

f − σjj (Ωrel ± Ωa) = E0
f + p (Ωrel ± Ωa) (2.5)

where, as above, ‘+’ refers to vacancies and ‘−’ to self-interstitials, and p =

−1
3
Tr (σ) = −1

3
σkk = −1

3
(σ11 + σ22 + σ33) is the hydrostatic pressure [60]. Note

that in the above equations we use the Einstein convention where repeated indeces

imply summation. The energy of a defect at an equilibrium position in the lattice

depends on the stress as follows [61,62]:

E = E0 − 1

3
σijδijΩrel = E0 − 1

3
σkkΩrel = E0 + pΩrel. (2.6)
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In the approximation where both the relaxation and activation volume tensors of

a defect are assumed to be isotropic, the diffusion tensor is also isotropic [62, 63].

This justifies the drift-diffusion equation approach developed below.

2.1.2 The drift-diffusion equation

Vacancy transport is governed by the so-called the drift-diffusion (or advection-

diffusion) equation:
∂C

∂t
= D∇2C − u · ∇C (2.7)

where C is the defect concentration, u is the average drift velocity (a three-

dimensional vector), ∇ is the gradient operator, D is the diffusion coefficient,

and ∇2 is the Laplacian. The first term on the right-hand side of eq. (2.7) rep-

resents drift due to the bias in the probability of moving in a preferred direction

and the second term describes ordinary isotropic three-dimensional diffusion. For

walkers centered at the origin, the above equation has the following solution in one

dimension [64,65]

C(x, t) =
1

(4πDt)1/2
exp

{
−(x− ut)2

4Dt

}
(2.8)

where t is the time and x is the position vector. Useful time-dependent statistics of

this process are the mean location m(Xt) (first moment of the C(x, t) distribution)

and the mean squared displacement (MSD) m(R2
t ) (second moment, with Rt =

|Xt|), defined as:

m(Xt) =

∫
xC(x, t)dx (2.9)

m(R2
t ) =

∫
|x|2C(x, t)dx (2.10)

The solutions to the above integrals are m(Xt) = ut and:

m(R2
t ) = u2t2 + 6Dt

That is, the effect of the drift compared to a simple random walk process is to

shift the center of the Gaussian distribution from x = 0 to x = ut and to make

the MSD depend quadratically on time (for long times) instead of linearly.
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The drift term can be obtained by mapping eq. (2.7) to the general form of the

diffusion equation for isotropic cubic crystals [63]:

∂C(x, t)

∂t
= ∇ ·

[
D

(
∇C(x, t) +

C(x, t)

kT
∇E(x)

)]
(2.11)

where the energy gradient term reflects the variation of the energy of defects at

equilibrium lattice sites. Equation (2.11) is encountered in the treatment of diffu-

sion of particles in a potential energy field E(x), where the right-hand side of the

equation equals the divergence of the defect flux. Comparing the second terms in

the r.h.s. of eqs. (2.7) and (2.11) gives the expression for the drift velocity u is:

u = − D

kT
∇E(x) (2.12)

Inserting eq. (2.6) into the above expression results in the drift velocity being

proportional to the gradient of the pressure:

u =
DΩrel

3kT
∇Tr (σ(x)) = −DΩrel

kT
∇p(x) (2.13)

In the above expression, we have neglected the variation of the diffusion coefficient

with spatial coordinates. This variation is associated with the change of shape of

the strain field of a vacancy during its transition across a saddle point [53], and

it adds an extra term, quadratic in stress, to the right-hand side of eq. (2.13).

We have also neglected the dependence of the relaxation volume on stress, and

retained only the term linear in elastic field (see [66]). With this, equation (2.13)

can be expressed in explicit Cartesian form as:

ui =
DΩrel

3kT

∂σkk
∂xi

, (2.14)

where σkk ≡ Tr (σ).

It is important to note that eq. (2.13) is strictly valid only when u is inde-

pendent of the vacancy location, which is not the case here. However, as we

demonstrate in the Section B.1, the exact solution of eq. (2.7) (i.e., with spatially-

dependent u) can be satisfactorily approximated by eq. (2.13) within the timescales

of vacancy diffusion, thus justifying its use throughout the rest of the paper.
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2.1.3 Vacancy production/elimination mechanisms

Vacancy absorption

Once a vacancy or a number of vacancies Ni reaches a given dislocation segment

i of length `i, the following volume balance can be written:

NiΩa = `ihi (ti × bi) · ni

where hi is the climb distance along the normal direction ni, bi and bi = |b| are

the Burgers vector and its modulus, and ti is the segment direction. This results

in a climb jump of magnitude:

hi =
NiΩabi

`i |ti × bi|2
(2.15)

where we have used that n = (t× b) /b. Note that hi is undefined for screw

dislocations, as is commonly the case in this type of models [1, 23].

Thermal vacancy emission

After Friedel [67], the rate of emission of vacancies from dislocations can be

written as:

Ċ = qν(T )

(
1− C

C0

)
(2.16)

where q is a geometric factor, ν(T ) is the vacancy jump rate (refer to eq (2.2)),

and C0 = exp
(
−Hf

kT

)
is the equilibrium vacancy concentration (Hf is the vacancy

formation enthalpy, eq. (2.5)).

Expression (2.16) is nonlocal, i.e., it is enforced in a global sense (as defined

by C0). However, vacancy emission from a dislocation segment is highly local

in that it is strongly influenced by the local stress and vacancy concentration.

Consequently, the above equation can be adapted to give the local emission from a

given dislocation segment of length ` surrounded by a number of vacancies N in a

volume around the segment. Further, here we take the approach that the emission

rate is zero for purely screw segments and maximum for pure edge segments. With
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this, we can write:

Ṅi =

(
2π`i
bi

(
1− ti · bi

bi

))
ν(T )

1− Ni

ρaVi exp
(
−Hf

kT

)
 (2.17)

where Ni is the number of vacancies contained in a volume Vi = πR2`i around

dislocation segment i. The stress σ in this volume is taken to be the local stress

(from sources other than the self-stress) at the dislocation segment’s location, ri. In

principle, R is arbitrary but it should be sufficiently small for this approximation

to be valid. Note that in most cases, this will result in zero vacancies in this

volume, meaning that the rate of insertion will generally be positive2. To avoid

repeated emission/reabsorption cycles, we place the emitted vacancies at a random

location within the simulation box while displacing the dislocation segment along

the negative sense of ni by an amount consistent with the emitted volume of

vacancies (eq. (2.15)).

Instead of eq. (2.16), a more consistent expression of the vacancy emission rate

needed to maintain a global vacancy concentration is obtained by integrating eq.

(2.17) over the entire simulation volume V 3:

Ċv =
2πV ρd
b

ν(T )

1− Cv

exp
(
−Hf (σext)

kT

)
 (2.18)

where ρd is the total dislocation density and Cv is the global vacancy concentration.

Once a vacancy is emitted using this expression a random segment is selected

and displaced by one climb distance h. Emission-dominated conditions lead to

‘downward’ climb, i.e. along the direction of the tensile region of the stress field of

an edge dislocation, while absorption dominated climb takes place ‘upwards’, or

towards the compressive semi-plane.

2To introduce a stochastic variability in the insertion rate (accepting cases where the vacancy
concentration might be higher than the equilibrium concentration, or rejecting cases where the
vacancy concentration might be lower than the equilibrium concentration), the second ‘1’ in eq.
(2.17) is replaced with a Gaussian defined by N(1, kT/E0

f ).
3Summation of all segments over V yields:

∑
i `i = ρdV
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2.1.4 Connection to elasticity and climb mobilities

The climb velocity of a given segment vic points along the direction of ni and

is connected to the climb forces as:

vic = vic ni

vic = Mc

(
f el
i + f os

i

)
(2.19)

where Mc ≡ Mc(T, p, Cv) is a scalar-valued function representing the climb mo-

bility, f el
i = [(σi · bi)× ti]ni is the climb contribution of the Peach-Koehler force,

while f os
i is the chemical force, often referred to as ‘osmotic’ force, which in lin-

earized form can be expressed as [1, 25]:

f os =
bkT

Ωa

(
1− C0

Cv

)
(2.20)

We will use these expressions to reconcile the results obtained in Section 2.2.3 with

the elastic formulation of DDD.

2.1.5 Material parameters

We use bcc Fe as our model system in this work. Point defects in iron have

been extensively studied experimentally and computationally over the past sev-

eral decades and a very accurate numerical database exists from which to get the

parameters used here [53,54,68–76]. They are given in Table 2.1.

Table 2.1: Material parameters for bcc Fe employed in this work.

Parameter Symbol Value Units
Boltzmann’s constant k 8.615× 10−5 eV·K−1

Correlation factor f 0.78 -
Burgers vector’s modulus b 0.25 nm
Attempt frequency ν0 1012 Hz
Vacancy migration energy ∆E0

m 0.60 eV
Atomic volume Ωa 0.77 b3

Vacancy relaxation volume Ωrel θv Ωa

Vacancy formation volume Ωf 1 + θv Ωa

Vacancy volumetric strain θv −0.2 -
Vacancy formation energy E0

f 1.7 eV
Capture radius R 2.0 b
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2.2 Results

Next we apply the method described in the previous section to the calculation

of climb velocities for edge dislocations in Fe. The solution procedure and the

numerical details of the simulations are discussed in depth in B.2. First we carry

out a set of self-consistency verification checks to ensure the correctness of the

model, followed by production runs to calculate climb velocities as a function of

temperature, pressure, and global vacancy concentration.

2.2.1 Self-consistency checks

We begin by testing the evolution of the mean square displacement, 〈r2〉, of

vacancies diffusing in an isotropic medium versus vacancies moving in the stress

field near the core of an edge dislocation. The results for 200 independent tests (one

single vacancy placed at random in a 2D square box) are shown in Figure 2.1 with

error bars. The evolution of 〈r2〉 in each case displays the expected dependence

with time described in Sec. 2.1.2. The diffusivity used was 1.0×10−9 m2·s−1 (∼300

K in Fe), which correlates well with the values of 8.6×10−10 and 1.3×10−9 m2·s−1

displayed in Fig. 2.1 for biased and unbiased diffusion, respectively.
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Figure 2.1: Time evolution of the mean square displacement, 〈r2〉, of vacancies
diffusing in an isotropic medium undergoing an unbiased random walk (blue circles)
and for vacancies moving in the stress field of an edge dislocation (biased random
walk, red diamonds). Linear and quadratic least-squares fits are shown for each
case. The vacancy diffusivity employed corresponds to a temperature of 300 K.
The error bars originate from five independent stochastic runs.

While tracking the evolution of 〈r2〉 is useful to verify the solution of eq. (2.7),

the mean square displacement is an integrated measure that does not give infor-

mation about the trajectories of migrating vacancies. To check whether vacancy

trajectories are consistent with the drift velocity derived in Sec. 2.1.2, we plot

in Figure 2.2 the generic trajectories of vacancies against the backdrop of the

(isotropic elastic) stress field of an edge dislocation (shown as a color contour plot)

and vector (2.14). The figure contains results for the σxx and σyy components

of the stress, as well as for the ∂σkk
∂x

and ∂σkk
∂y

components of (2.14) (Figs. 2.2(a)

and 2.2(b)). The vacancy trajectories are clearly seen to follow a biased walk as

dictated by the existing stress gradients. The tests performed in Figs. 2.1 and 2.2

verify the model of Secs. 2.1.1 and 2.1.2 at the local level and gives us confidence

to apply it for calculations of dislocation climb in realistic line geometries.
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Figure 2.2: Stress and stress-gradient maps for an edge dislocation showing: (a)
a contour plot of σxx (red: tensile, blue: compressive, arbitrary units) and the
directional field of the ∂σkk

∂x
component of vector (2.14) (shown with arrows); (b)

Corresponding plot for σyy (red: tensile, blue: compressive, arbitrary units) and
∂σkk
∂y

. The trajectories of vacancies initially located at the point marked by the
white arrow are highlighted using circles. The vacancy paths are seen to follow the
direction of the stress gradient.

2.2.2 Dislocation climb calculations

Single dislocation behavior

Next, we systematically study dislocation climb in the ternary parametric space

of pressure p, temperature T , and vacancy concentration Cv. To obtain climb

velocities, we track the dislocation position normal to the glide plane as a function

of time until steady state is reached and a linear relation is established between the

two. We then calculate the climb velocity, vc, as the slope of this linear relationship,

as shown in the example in Figure 2.3. The graph shows the position of a 100-

nm edge dislocation segment obtained from two independent measurements: (i)

one according to eq. (2.15) (labeled ‘vacancies absorbed’) and (ii) another from the

overall dislocation position (‘center of mass’). As the figure shows, both approaches

are equivalent and result in a climb velocity of 4.62× 10−4 m·s−1. This value of vc

corresponds to a temperature of T =1000 K, a pressure of p = −100 MPa (tensile),
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with an equilibrium vacancy concentration Cv ≡ C0(p, T ). A direct feature of our

model is that h evolves with t in a discrete manner, with clear jumps (e.g. at 15,

26, 35, and 52 ns) correlating with vacancy absorption/emission events. This has a

manifestation in the dislocation line morphology. Figure 2.4 shows the dislocation

structure at the end of the simulation shown in Fig. 2.3. Vacancies are shown as

small cyan spheres. The dislocation line displays a number of jogs consistent with

the steps seen in Fig. 2.3. The shaded horizontal plane marks the original glide

plane, while the shaded region normal to the glide plane marks the slipped climb

area.

Figure 2.3: Dislocation position along the glide plane normal direction h as a func-
tion of time t at a temperature of 1000 K and a pressure of −100 MPa (tensile)
and equilibrium vacancy concentrations. The graph shows the position obtained
from two independent measurements: according to eq. (2.15) (labeled ‘vacancies
absorbed’) and from the overall dislocation position (‘center of mass’). The re-
sulting climb velocity is extracted from a linear fit to the data points in steady
state.
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Figure 2.4: Dislocation structure after one microsecond at 1000 K and a pressure
of −100 MPa with Cv = C0(T, p). Vacancies are shown as small spheres. The
dislocation line displays a number of jogs originating from local vacancy emission
(and/or absorption) events. The height of the jogs is commensurate with the
∆h jumps displayed in Fig. 2.3, which are approximately 0.1 Å(single vacancy
absorption/emission event). The shaded horizontal plane marks the original glide
plane. The shaded region normal to the glide plane marks the slipped climb area.A
scale marker for all three Cartesian directions is shown for reference.

Dislocation climb as a function of temperature, pressure, and vacancy

concentration

We repeat the procedure described in the previous to obtain the fundamental

climb velocity dependencies as a function of T , p, and Cv. The results are given

in Figure 2.5, where a sequence of plots is shown with the net climb velocities

of edge dislocation segments with lengths ranging between 50 to 500 nm under

different combinations of temperature, pressure, and vacancy concentration. The

temperature and the pressure set the equilibrium vacancy concentration C0 ac-

cording to eq. (2.16), which at, e.g., −100 MPa and 1000 K (conditions in Fig.
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2.3) is 2.45× 10−9. A multiplication factor is then applied to C0 as to artificially

increase the vacancy concentration to nonequilibrium levels to study its effect on

vc. Dislocation climb velocities are calculated as in Fig. 2.3, with each data point

representing the average of five statistically independent simulations. The error

bars displayed correspond to the standard deviations for each condition. Each row

of figures shows the climb velocity as a function of a primary variable and two sec-

ondary variables. In the top row, the primary dependency is on temperature, while

secondary dependencies are on pressure (colors) and global vacancy concentration

(left to right). In the middle row the primary dependency is on pressure, with

secondary dependencies on global vacancy concentration (colors) and temperature

(left to right). Finally, the bottom one contains the relationship of the climb ve-

locity with the global vacancy concentration, along with secondary dependencies

on temperature (colors) and pressure (left to right). In all curves, dashed lines

correspond to climb velocities using eq. (2.18) for vacancy emission, i.e. when the

vacancy concentration is enforced in a ‘global’ way irrespective of the stress state

at each of the dislocation segments. Conversely, continuous lines indicate that

the velocities have been calculated under local conditions (with vacancy emission

defined by eq. (2.17)).

Inspection of the results reveals the following general trends:

(i) As indicated earlier, velocities obtained enforcing global vacancy emission

tend to be positive (shaded gray region in Fig. 2.5’s plots), while local climb

velocities are strongly negative. This points to regimes governed by vacancy

absorption and emission, respectively.

(ii) The results are practically insensitive to pressures in the −100-to-100-MPa

range.

(iii) The climb velocities have a clear exponential dependence on temperature.

(iv) The total vacancy concentration has an incremental effect on climb velocities,

with higher vacancy concentrations resulting in higher values, both positive

and negative. In the case of global vacancy emission, a larger Cv results

in a higher rate of vacancy absorption and therefore faster positive climb
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velocities4. Enforcing the global vacancy concentration, however, also results

in an enhanced emission rate as the differential vacancy concentration around

dislocation segments (global minus local) remains positive, keeping eq. (2.18)

active for a longer time, leading to faster negative climb.

4Maintaining a constant vacancy supersaturation in globally acts as an inexhaustible vacancy
source, with vacancies constantly being replenished as they disappear due to their interactions
with dislocations.
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Figure 2.5: Sequence of plots showing the net climb velocities of edge dislocation
segments with lengths ranging between 50 to 500 nm under different combina-
tions of temperature, pressure, and vacancy concentration. The temperature and
the pressure set the equilibrium vacancy concentration C0 according to eq. (2.16).
Then a multiplication factor is applied to C0 so as to artificially increase the va-
cancy concentration to nonequilibrium levels. The average position of the entire
dislocation line is then tracked with time and a climb velocity is extracted. Each
row of figures shows the climb velocity as a function of a primary variable and
two secondary variables. Top row: the primary dependency is on temperature;
secondary dependencies are on pressure (colors) and global vacancy concentration
(left to right). Middle row: primary dependency on pressure; secondary depen-
dencies on global vacancy concentration (colors) and temperature (left to right).
Bottom row: primary dependency on global vacancy concentration; secondary de-
pendencies on temperature (colors) and pressure (left to right).

To further understand the processes that control the kinetic evolution in the

simulations, it is useful to analyze the time step distribution of events. A repre-

sentative set results is shown in Figure 2.6, where we have separated the histogram
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into a δt-spectrum associated with vacancy diffusion/absorption events (shown in

red), and another one corresponding to vacancy emission events (in blue). It can be

seen that diffusion/absorption is governed by much faster time scales than vacancy

emission. The average of the blue histogram is approximately 3.0 ps, while that of

the orange histogram is almost three orders of magnitude higher, ≈ 0.72 ns. These

averages are both consistent with eqs. (2.1)-(2.2) and (2.17) at the conditions of

the simulation.

Figure 2.6: Histogram of time steps in a general climb simulation at 1000 K. The
red histogram (shorter timescales) represents the spectrum of δt associated with
vacancy diffusion/absorption, while the blue one (longer time steps) represents
vacancy emission events. The large spread in the distributions gives an idea of the
range of stress spatial variations found in the computational domain.

The large spread in the vacancy emission distribution gives an idea of the

wide range of stress spatial variations found in the computational domain. In

contrast, vacancy diffusion is defined by a much narrower spectrum. The clear

separation of scales between both time distributions results in a numerically-stiff

system, which makes it amenable to certain speedup procedures that can increase
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the computational efficiency [77–80]. In fact, the histogram displayed in the figure

points to the causes behind the relatively high computational cost in some of the

studied cases. The actual CPU cost of the simulations in Fig. 2.5 is discussed in

B.2.3 and shown in Figure B.13.

2.2.3 Climb mobility functions

We can now use the results from Section 2.2.2 to parameterize climb mobility

functions to be used in parametric dislocation dynamics simulations. The climb

contribution to the mobility of a dislocation segment i in DDD is given by eqs.

(2.19) in Section 2.1.4. In those equations f el and f os represent two distinct driving

forces for dislocation climb:

(i) The existence of non-glide elastic forces, represented by f el, breaks the local

vacancy equilibrium at the nodal or segment level, resulting in an imbalance

that is resolved by stimulating vacancy diffusion into or out of the dislocation

core. As such, these forces can produce climb even in the absence of a global

vacancy supersaturation. A well-known example of this interaction is climb-

induced bypass of precipitates or inclusions blocking dislocations in hardened

alloys at high temperatures. While global thermodynamic equilibrium may

exist, hydrostatic elastic forces created by the precipitates on dislocations

distort local equilibrium facilitating vacancy-assisted climb.

(ii) Complementarily, dislocations can climb in the absence of elastic forces when

the global vacancy concentration is far-from-equilibrium e.g. as in quenched

metals or irradiation conditions, both of which can produce high vacancy

supersaturations. This driving force is represented by f os. Note that, as

shown in C.1, stress gradients confer a mechanical bias to the osmotic force

that is not captured in standard theories of dislocation climb.

The model presented here naturally captures both driving forces. Indeed, the so-

called ‘global’ emission model numerically represents f os, while the ‘local’ model

represents f el. Fortunately, emission-dominated conditions lead to ‘downward’

climb, i.e. along the direction of the tensile region of the stress field of an edge
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dislocation, while absorption dominated climb takes place ‘upwards’, or towards

the compressive semi-plane. As such, osmotic and stress-induced climb work in

opposite directions, which allows us to separate their contribution.

Next, we apply the data in Fig. 2.5 (dashed lines) to eq. (2.20). The ratio of

vc and f os gives the climb mobility, which we show in Figure 2.7(a) as a function

of inverse temperature and Cv
5.

Figure 2.7: Inverse temperature dependence of Mc for several nonequilibrium va-
cancy concentrations (given as a multiplier of the vacancy concentration C0(T, p)).
The lower and upper insets in both graphs show the activation energies and pre-
factors for each curve, respectively, assuming an Arrhenius expression.

The results show that even after accounting for the linear temperature depen-

dence of f os (eq. (2.20)) Mc consistently displays an Arrhenius form of the type:

Mc(T,Cv) = A

(
Cv
C0

)
exp

(
−∆Q

kT

)
(2.21)

where A is a pre-factor that depends on the Cv/C0 ratio and ∆Q is an activation

energy. The dependence of ∆Q on Cv is shown in the lower inset to Fig. 2.7(a),

where a weak decline from 1.7 to 1.2 eV can be appreciated. This correlates

well with vacancy nucleation –characterized by an activation energy of 1.7 eV–

playing a decreasingly important role as the global vacancy concentration increases.

The dependence on the ratio y = Cv/C0 is less clear (upper inset) but can be

5Note that no driving force exists when Cv = C0 and so the climb velocity is nominally zero.
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approximated reasonably well by a linear relation (shown as a dotted line on the

upper figure inset):

A(y) = 1.9× 105 − 1.5× 103y [Pa−1 s−1] (2.22)

The above mobilities pertain to simulations under the action of chemical forces

alone. When elastic forces act in conjunction with these chemical forces, we get

the (negative) climb velocities given in Fig. 2.5. From these, as in eq. (2.21), a

mobility can be extracted:

Mc =
vc

f el + f os

The only stress component conducive to climb is the diagonal component along the

glide direction (i.e. n×t, usually taken as σxx). However, while this component can

be prescribed via the applied stress, local stresses due to jogs in the dislocation line

can also contribute to the elastic climb force (recall Fig. 2.4). These are difficult

to quantify, however, due to their highly local and fluctuative nature, which means

that it is difficult to specify f el with precision. If we go strictly by the applied

force, the results of the analysis using the same tools as for eq. (2.20) are shown

in Figure 2.7(b). As in Fig. 2.7(a), the mobilities follow an Arrhenius evolution

with temperature, characterized by the corresponding activation energies and pre-

factors. The lower inset in Fig. 2.7(b) shows that the activation energies are not

unlike those for the case with no elastic forces, ranging between 1.5 and 1.3 eV. The

pre-factors (upper inset in Fig. 2.7(b)), however, are approximately one order of

magnitude higher than their ‘chemical’ counterparts. We attribute this difference

to localized and fluctuating elastic climb forces that develop owing to the discrete

nature of our model. These pre-factors do not exhibit a clear trend with Cv,

showing almost a concentration-independent behavior:

A(y) = 1.9× 106 − 5.7× 103y [Pa−1 s−1] (2.23)

Note that in the temperature range studied here, climb mobilities range from

approximately three to four orders of magnitude smaller than glide mobilities at

low temperatures, to comparable values at 1500 K (e.g., for Fe, refs. [81, 82]).
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2.2.4 Application: dislocation climb over a spherical pre-

cipitate

We finish the Results section with a more practical application of the method.

It is known that one of the mechanisms of dislocation-based creep is climb over

precipitates that exert a force on dislocations greater than the glide force. Here,

we simulate such a process by considering a spherical precipitate 4 nm in radius

with an associated volumetric field characterized by stresses σrr ∝ 1/r3 [83]. The

dislocation is then driven towards the precipitate by glide with a force insufficient

to cut or loop around it. Aided by the volumetric force and by temperature, the

dislocation can then climb by vacancy emission and circumvent the precipitate,

continuing its glide. The simulations are conducted with a modified version of the

DDLab code that includes spherical inclusions [83] and to which we add the kMC

module developed here. A sequence of snapshots showing this process, together

with the number and position of the emitted vacancies is shown in Figure 2.8.

Note the relative large local concentration of vacancies along the climb path.

Figure 2.8: Sequence of snapshots of an edge dislocation undergoing climb over a
spherical precipitate in equilibrium conditions. The applied stress produces a force
only along the glide direction that is insufficient to curve the dislocation around
the precipitate on the glide plane. The images show the vacancies emitted while
the dislocation climbs.

Additional analysis is given in Figure 2.9 where the dislocation configuration

at the point of maximum climb is provided. The color background in the figure

represents the intensity of the radial stress caused by the precipitate in the matrix

(in arbitrary units). The black dashed line represents the original glide plane (the

equatorial plane of the precipitate), while the superimposed curve gives the number
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of vacancies emitted as a function of distance to the precipitate’s outer radius. The

combined action of the line tension, the glide force, and the precipitate stress field

shape the dislocation line into an arced configuration as shown in the figure. Note

that the timescale is arbitrary but the glide mobilities are about four orders of

magnitude larger than climb mobilities.

Figure 2.9: Dislocation configuration at the point of maximum climb during simu-
lations of temperature-enabled precipitate bypassing by an edge dislocation. The
precipitate has spherical shape with a radius of 4 nm. The color background rep-
resents the intensity of the radial stress caused by the precipitate in the matrix
(in arbitrary units). The black dashed line represents the original glide plane (the
equatorial plane of the precipitate), while the superimposed curve gives the number
of vacancies emitted as a function of distance to the precipitate’s outer radius.

These can be regarded as direct simulations of elementary creep mechanisms

on time scales much longer than those associated with glide.
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2.3 Discussion

2.3.1 The need for discreticity and stochasticity

First we justify the need for works such as the present one. Vacancy emission

and diffusion are both thermally-activated processes, while dislocation network

evolution is driven by elastic forces. However, while dislocation climb involves the

conjunction of both phenomena, they typically act on very different length and

time scales. Moreover, point defect processes are intrinsically stochastic in that

they are driven by thermal fluctuations. As such, kMC is the pertinent method to

study them, whereas DDD is the preferred tool to simulate dislocation dynamics.

This work combines both techniques in a self-consistent way, i.e. (i) DDD resolves

the elastic fields created by the dislocation structure, (ii) the kMC module evolves

the vacancy subpopulation embedded in these fields, and (iii) dislocation-defect

processes alter the dislocation substructures, giving rise to updated elastic fields.

To our knowledge, the only prior work where kMC was linked to DDD was that by

Ghoniem et al. [84] to study defect decoration of dislocation loops. Our approach

considers a drift on vacancy diffusion created by stress fields, which leads to an

expression governed by stress gradients. This problem has been considered by

several authors in the past [62, 85], albeit using a different approach to the one

presented here.

Another thing worth emphasizing of this work is its discrete nature. Studies

where the point nature of defects is directly accounted for are rare in the plasticity

and DDD community. Direct atomistic calculations can only cover limited length

and time scales [20, 86], often too small or too short for steady state defect fluxes

to occur. Mesoscopic models are better equipped to deal with the combination

of small length scales and long time scales, but they can suffer from numerical

stiffness. A model of dislocation climb based on elementary jog kinetics has been

recently proposed [42]. These are examples that discreticity and elasticity can be

merged with relative high efficacy. Our method is a demonstration that defect

generation, absorption, and diffusion can be treated in a point-like manner in

conjunction with discrete dislocation dynamics.
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It is important to note, however, that some relevant vacancy-related mecha-

nisms are not captured by the present model. We do not consider pipe diffusion

(diffusion along the dislocation line), which is known to be of importance in cer-

tain cases [87–90]. As well, vacancy clustering is not a feature of our approach,

although atomistic studies have revealed conclusively that small vacancy clusters

are unstable and have a short lifetime in bcc metals at the high temperatures ex-

plored here [91–93]. Finally, our results pertain to bulk material grains, without

considering the effects of grain boundaries, which are known to be very effective

vacancy sources/sinks and could alter the local and global vacancy supersaturation

limits compared to those in ideal conditions.

2.3.2 Climb dynamics

Climb takes place under the action of two distinct forces, see eq. (2.19). The

osmotic force is characterized by vacancy absorption due to the existence of a va-

cancy supersaturation and, as such, results in ‘upwards’ climb (along the direction

of the compressive half-plane). Elastic climb, on the other hand, activates itself

via vacancy emission and thus leads to climb in the direction of the tensile half-

plane of the edge component of a dislocation. This elastic force clearly represents

a mechanical bias conveyed by the stress at each point. The osmotic force, while

in principle not a bias in the thermodynamic sense, is influenced by the stress

gradient via the drift term in eq. (2.14), which can also be regarded a mechanical

bias (although a second order one, see B.3). In this sense, our approach differs

from the classical one in that locality is a feature of both f el and f os, not just of

f el [1, 22–25,94].

Indeed, the classical treatment of dislocation climb suggests that the osmotic

force scales with the vacancy supersaturation level. However, as our approach

reveals, at the local level (near each dislocation segment), the local concentration

is often zero, so that the driving force for vacancy emission is almost independent

of the global vacancy concentration. As well, stress induced climb is seen to clearly

dominate over chemical climb because the mechanical bias that controls vacancy

emission (local stresses) is dominant over drift effects brought about by stress
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gradients that control vacancy absorption.

2.3.3 Mobility functions

Mobility functions relate forces (stresses) and dislocation velocities and thus

are an essential constitutive input to DDD simulations. For climb, it is generally

impractical to simulate vacancy-dislocation coevolution in the manner done here,

or as in molecular dynamics simulations. Hence, the present simulations should be

seen as an intermediate step linking vacancy kinetics with dislocation dynamics,

providing a general-purpose mobility functions with dependencies on the relevant

state variables of the problem. Several authors have derived climb mobilities of

the type [1, 25,94,95]:

Mc =
2πDvΩaC0

kTb2 sin2 θ ln(r∞/r0)
(2.24)

obtained by linearizing the exponential term containing the mechanical work done

by the elastic force (Dv is the vacancy diffusivity, and r∞ and r0 are the standard

elastic integration limits around a dislocation). θ represents the dislocation charac-

ter, with sin θ = 1 for edge dislocations. The application of this expression in DDD

simulations has been tested in depth [96] showing that it can work qualitatively

for situations such as prismatic loop expansion and ‘raft’ microstructure forma-

tion. Our expression, by contrast, emanates from elementary vacancy processes

such as lattice diffusion, emission, and absorption, and includes spatial and time

fluctuations intrinsically. A comparison of both mobilities in the 800 < T < 1500

K interval is provided in Figure 2.10. An obvious difference is that, in our treat-

ment, the mobility function itself depends on the vacancy supersaturation Cv/C0,

whereas eq. (2.24) does not. The most important difference to note, however, is

how much faster the present mobilities are compared to the classical ones repre-

sented by eq. (2.24) (between two to three orders of magnitude, respectively, at

high and low temperatures). We again rationalize this in terms of the local nature

of vacancy absorption/emission, which is not captured by classical models based

on homogeneous vacancy concentrations and smooth defect fluxes into or out of

dislocation segments. Further studies are recommended to establish the correct

time scale of climb in bcc metals.
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Figure 2.10: Comparison between eqs. (2.21) (present climb mobility expression,
dashed blue) and (2.24) (expression by Bako et al. [1], red continuous).

The final expression for the climb velocity for general use in DDD simulations

is:

vc = A(y) exp

(
−∆Q(y)

kT

)[
kT

Ωa

(
y − 1

y

)
− σxx

]
b sin θ (2.25)

where y = C0

Cv
, ∆Q(y) ≈ 1.3 eV and A(y) given by eqs. (2.22) and (2.23), σxx is

the corresponding component of the local stress tensor at segment i, σ(ri), and

θ = cos−1
(
b·t
b

)
.

2.4 Conclusions

We separate our conclusions into those relevant for the theory of plasticity and

those that are technical in nature. Our main physical conclusions are:

• Stress gradients control vacancy diffusion in the presence of dislocation elastic

fields. This results in a drift on vacancy transport that steers defects towards

dislocation cores, conferring a mechanical bias to an otherwise ‘chemical’

process.
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• Climb is dominated by vacancy emission even when the background vacancy

concentration is much higher than the equilibrium one. This is because local

vacancy conditions control the overall kinetics, as captured in our approach,

whereas classical treatments assume smooth vacancy fluxes from homoge-

neous defect concentrations.

• Climb velocities might be much faster than otherwise believed when one

uses the classical theory of climb. Again, a consequence of local vacancy-

dislocation interactions.

Our main technical conclusions are:

• We have developed a discrete stochastic model of vacancy evolution in the

presence of arbitrary elastic fields furnished by DDD methods. Vacancy

kinetics include emission, diffusion, and absorption, rigorously coupled to

underlying dislocation fields, while absorption/emission events change the

dislocation microstructure which is updated in time and, with it, the elastic

fields.

• The method enables the calculation of dislocation climb mobility functions as

a function of temperature, pressure, and vacancy concentration, to be directly

used in parametric DDD simulations. The calculated climb mobilities are

over 100× larger than those from previous derivations.

• Preliminary calculations of dislocation bypassing of spherical precipitates

demonstrate that the method is capable of simulating physical processes

conducive to high-temperature creep.

B.1 Validation of the Drift-Diffusion Expression

via convergence to the Classical Analytical

Vacancy Concentration Solution

In this section, we carry out a numerical analysis of the spatially-dependent

drift-diffusion equation and compare its solutions with the spatially-independent
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analytical solution employed to obtain the results shown in the main body of this

work.

B.1.1 Derivation of the vacancy diffusion equation

We start from Fick’s second law applied to the field-dependent vacancy con-

centration c(r):
∂c(r)

∂t
= ∇r · (Dv(r) ∇rc(r)) (B.26)

where Dv(r) is the position-dependent vacancy diffusivity, r = (x, y, z), and ∇r =(
∂
∂x
i, ∂

∂y
j, ∂

∂z
k
)

. Expanding the above equation:

∂c

∂t
= ∇rDv · ∇rc+Dv∇2

rc (B.27)

where we have dropped the explicit dependence on r for ease of notation. We

consider thermally-activated vacancy diffusion, i.e.:

Dv(r, T ) = D0 exp

(
−Em(r)

kT

)
where the spatial dependence of Dv is implicit in the migration energy Em (D0 is a

temperature independent pre-factor). In fact, Em can be unfolded into a constant

part and a spatially-dependent part:

Em(r) = E0
m + E(r)

from which we can rewrite the diffusivity Dv(r, T ) as:

Dv(r, T ) = D0 exp

(
−E

0
m

kT

)
exp

(
−E(r)

kT

)
= D0

v(T ) exp

(
−E(r)

kT

)
(B.28)

Inserting this expression into eq. (B.27), we arrive at:

∂c

∂t
= D0

v

(
∇2
rc−

∇rE(r)

kT
∇rc

)
(B.29)

Equation (B.29) can be regarded as a drift-diffusion equation, ∂c/∂t = Dv∇2
rc −

u · ∇rc, with drift velocity:

u = D0
v

∇rE(r)

kT
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Assuming that vacancies interact only with the hydrostatic part of the stress

field, we can write:

E(r) = −Ω0

3
σkk(r) = p(r)Ω0 (B.30)

where p(r) = −1
3
Tr (σ(r)) is the local pressure. Given that the relaxation volume

of a vacancy is negative Ω0 < 0, equation (B.30) shows that vacancies prefer

segregating towards points in a material where hydrostatic pressure is high.

Substituting the pertinent terms in equation (B.29) leads to the final governing

equation:
∂c

∂t
= D0

v

(
∇2
rc−

Ω0

kT
∇rp(r) · ∇rc

)
(B.31)

where we recall that D0
v is a the temperature-dependent part of the vacancy diffu-

sivity.

B.1.2 Elastic stresses

Assuming isotropic elasticity, the pressure created by a perfect edge dislocation

segment i with Burgers vector be lying on glide plane n at a point r′ is:

pi(r
′) =

µbe

3π

(
1 + ν

1− ν

)
n · r′

|n · r′|2 + |r′ · s′|2
=
µbe

3π

(
1 + ν

1− ν

)
sin θ′

r′
(B.32)

where s = be/be (slip direction) and n are unit vectors, and be = ‖be‖. Here

r′ = r − ri, r′ = ‖r′‖, θ′ = arctan
x′

y′

where ri indicates the edge dislocation position and r is a generic spatial point.

The spatial gradient of pi in cylindrical coordinates is:

∇r′pi(r′) =
µbe

3π

(
1 + ν

1− ν

)[
−sin θ′

r′2
,
cos θ′

r′
, 0

]
(B.33)

Next, we assume for simplicity only a radial dependence of c, i.e., c(r). We

simplify eq. (B.31) to:

∂c

∂t
= D0

v

(
∂2c

∂r2
+
µbeΩ0

3πkT

∑
i

f(θi)

(r − ri)2

∂c

∂r

)
(B.34)
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where f(θ′) is an intensity factor (≤ 1) due to each dislocation segment. Further,

we take f(θ) = 1 for convenience and assume that the summation is dominated by

the term defined by ri ≈ 0 (i.e., very close to the dislocation segments):

∂c

∂t
≈ D0

v

(
∂2c

∂r2
+
µbeΩ0

3πkT

1

r2

∂c

∂r

)
(B.35)

B.1.3 Finite difference solution in one dimension

The discretized version of eq. (B.35) taking finite differences is:

cn+1
j = a1c

n
j+1 + a2c

n
j + a2c

n
j−1 (B.36)

with:

a3 =
D0
vδt

δx2
, a2 = a3

(
µbeΩ0

3πkT

δx

x2
j

− 2

)
, a1 = a3

(
1− µbeΩ0

3πkT

δx

x2
j

)
In eq. (B.36) j and n are sub(super) indices representing spatial and temporal

points on a x-t grid with resolution δx and δt, respectively. For structured meshes,

where xj = jδx, the coefficients a1 and 2 can be simplified to:

a1 = a3

(
1− µbeΩ0

3πkT

1

jxj

)
, a2 = a3

(
µbeΩ0

3πkT

1

jxj
− 2

)
where j represents a position in the spatial mesh.

parameter units value

µ eV Å−3 0.749
be Å 2.73
Ω0 Ωa -0.37
Ωa Å3 15.7
k eV K−1 8.615× 10−5

E0
m eV 1.6
D0 m2 s−1 10−6

T K 1400

Table B.2: Material parameters for Mo. The value of the shear modulus in GPa
is 120.

The relevant solutions are found for a 1D spatial grid subjected to a ‘left’

boundary condition represented by a concentration delta:

c(0; 0) = c0
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We use iron as model material, described by the properties in Table B.2.

Next, we aim to check whether the standard solution for constant drift velocity

used in the main text can be taken as a satisfactory approximation of the exact

solution for a spatially-drift given by eq. (B.36). The standard solution in one

dimension is written as:

c(x, t) =
1√

4πD0
v t

exp

(
−(x− ut)2

4D0
vt

)
(B.37)

where t is the time elapsed. The approximation between both is considered to

be satisfactory if the two solutions are sufficiently close to one another within the

timescale of vacancy jumps. Figure B.11 shows realizations of eqs. (B.36) and

(B.37) at 1400 K at the firs point of substantial overlap, which takes place at a

time of 1.4× 10−15 s. Thereon, both profiles maintain a substantial level of spatial

overlap, which can be used to justify the use of the analytical solution. Figure

B.12 shows a histogram of the sampled time steps from the coupled DDD/kMC

technique, revealing simulated δt in the range of 10−13 to 10−10 s, i.e., several orders

of magnitude greater than the ≈ 10−15 s necessary to converge. We take this as

direct verification that eq. (B.37) represents a good approximation to the exact

solution of the vacancy diffusion equation with spatially-dependent drift over the

timescale of vacancy jumps.
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Figure B.11: Convergence of the finite difference (solid black line) and the analyt-
ical solution (dashed blue line) at 1400 K and t = 1.4× 10−15 s.
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Figure B.12: Histogram of sampled timesteps from the DDD/kMC coupled method
at 1400 K.

B.2 Numerical solution procedure

The challenge in solving eq. (2.14) using expression (2.8) is that δxi and ui have

an implicit relationship. That is, to compute ui one needs to know δxi, which itself

is sampled from the solution to the drift-diffusion equation (2.8) which requires ui

as an input. Solving this requires running a self-consistent iterative procedure until

the values of δxi and ui self-consistently converge.

B.2.1 The Box-Müller sampling

To sample from eq. (2.8) we use the Box-Müller approach [97], by which two

random samplings z1 and z2 are generated using:

z1 =
√
−2 ln ξ1 cos(2πξ2)

z2 =
√
−2 ln ξ1 sin(2πξ2)
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where ξ1 and ξ2 are two uniformly distributed random numbers in the (0, 1] interval.

From this, the jump steps obtained are:

(δxi)1,2 = uiδt+ z1,2

√
2Dδt (B.38)

Note that δt is an input to the sampling procedure, but it is a priori unknown.

This means that it also should be determined self-consistently (iteratively).

B.2.2 Numerical algorithm

Next, we present the recursive algorithm used to integrate the transport equa-

tions.
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where N and M are, respectively, the number of vacancies and dislocation segments

in the simulation box at any give time step. In this fashion, the DDD method acts

as a library linked to the main workflow loop, from which information is passed

bidirectionally. These links are highlighted in red color in the algorithm. Basically,

algorithm (1) consists of two for loops nested within a do-while loop. Each of

the for loops is tasked with computing event rates due to vacancy diffusion (first

loop) and vacancy emission (second loop), respectively. As such, one runs over all

vacancies while the other runs over all dislocation segments. The do-while loop

ensures the self-consistency of the δx ≡ δx′ condition.

B.2.3 Computational cost

To assess the computational cost of the simulations conducted here (which fol-

low algorithm (1)), we calculate the ratio of CPU time to simulated (physical)

time as a function of pressure, temperature, and vacancy concentration. We find

that temperature is overwhelmingly the dominant parameter, with pressure and

vacancy concentration having only a minor impact on CPU time. An example is

shown in Figure B.13, where the ratio of CPU time to simulated time for local

and global vacancy emission implementations is given as a function of simulated

temperature and pressure (with Cv = C0). Temperature is seen to exponentially

increase the CPU cost, while pressures up to ±100 MPa have little to no effect

on the computational efficiency. The local treatment of vacancy emission adds a

cost factor of approximately 100× to the simulations compared to the global im-

plementation. This approximately scales with the number of dislocation segments

in the simulation box, so that a local treatment of emission incurs in an extra cost

associated with a linear sweeping over all dislocation segments. This knowledge

can guide further simulation campaigns when CPU time is of the essence.

39



Figure B.13: Ratio of CPU time to simulated time for local and global vacancy
emission implementations as a function of simulated temperature and pressure
(with Cv = C0).

B.3 Second-order stress effects on the osmotic

force

Starting from the general expression for the osmotic force in eq. (2.20):

f os =
bkT

Ωa

log
Cv
C0

(B.39)

one can refer Cv and C0 to the local and remote concentrations near a dislocation

core, such that the logarithmic term is expressed as log (Clocal/Cremote). This con-

verts the spatial uniformity of Cv and C0 to the level of proximity to a dislocation

where stress gradients can be felt by vacancies.

Clocal and Cremote can be replaced by their time dependent solutions (see eq.

(2.8)):

Clocal(x, t) =
1

(4πDt)1/2
exp

{
−(x− ut)2

4Dt

}
and

Cremote(x, t) =
1

(4πDt)1/2
exp

{
− x

2

4Dt

}
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Here we have assumed that vacancies near dislocations cores feel stress gradients

and are subjected to a drift, while far away from them they do not. Inserting the

above expressions into eq. (B.39) and operating:

f os =
bkT

Ωa

log
Clocal

Cremote

=
bkT

Ωa

log
exp

{
− (x−ut)2

4Dt

}
exp

{
− x2

4Dt

} =
bkT

Ωa

[
− (x− ut)2 + x2

4Dt

]
=
bkT

Ωa

ux

2D

(B.40)

where second order terms in time have been discarded. Replacing u by its expres-

sion in eq. (2.14), and assuming that ‖x‖ ≈ δx:

u ≈ DΩa

3kT
∇Tr(σ) (B.41)

leads to:

f os ≈ b2

3

∂σ

∂x
(B.42)

where it has been further assumed that the vacancy diffusion length is on the order

of the Burgers vector’s modulus.

Using the steady-state solution of the drift-diffusion equation leads to the same

expression, assuming perfect vacancy absorbance at the dislocation core, and a

uniform remote vacancy concentration of C0, i.e. [61]:

Ccore(x) = C0

(
exp

{
ux
D

}
− 1

exp
{
u`
D

}
− 1

)

Accordingly, the osmotic force becomes:

f os =
bkT

Ωa

(1− Ccore/C0) ≈ bkT

Ωrel

(
exp

{
ux
D

}
− 1

exp
{
u`
D

}
− 1

)
=
bkT

Ωa

(
1− ux/D

exp
{
u`
D

}
− 1

)
(B.43)

where we have used a first-order expansion of the exponential, x ≡ δx ≈ 0, and `

is a screening distance. This results in the expression:

f os =
bkT

Ωa

u

D
(`− δx) (B.44)

which is identically equivalent to eq. (B.42) when δx ≈ b and ` ≈ 2b, both rea-

sonable values for both parameters. This shows that when stress gradients are

operative, the osmotic force is also subjected to a mechanical bias.
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Chapter 3

Parallelization of Discrete

Stochatic Vacancy Model

The basis for the method developed here is the model for dislocation climb

proposed by McElfresh et al. [50], which relies on the coupling of a discrete vacancy

kinetic model with standard DDD. Below, we provide a brief description of the

vacancy diffusion model and the dislocation-vacancy coupling approach. Vacancy

transport is governed by the drift-diffusion equation:

∂C

∂t
= Dv∇2C − u · ∇C , (3.1)

where C is the vacancy concentration at position x and time t, u is the drift

velocity vector, Dv is the vacancy diffusivity, and ∇2 is the Laplacian. The general

solution to the above expression in 3D can be shown to be:

C(x, t) = (6πDvt)
− 1

2 exp

{
−(x− ut)2

4Dvt

}
, (3.2)

which can be used as a ‘wave function’ (spatial probability distribution function) of

the vacancies and sampled accordingly to generate point-wise vacancy distributions

in the system. The general expression for the drift velocity of a point defect in an

isotropic medium can be shown to be:

u = −Dv

kT
∇E(x) , (3.3)
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where the term∇E(x) reflects the spatial variation of the defect’s formation energy

in the presence of elastic fields. For vacancies, which introduce hydrostatic lattice

distortions only, the expression can be simplified to:

u =
Dv

kT

Ωrel

3
∇Tr(σ) , (3.4)

where Ωrel is the vacancy relaxation volume, k is the Boltzmann constant, and

Tr (σ(x)) = σkk. Thus, when embedded in an elastic medium containing dislo-

cations, the stress tensor σ(x) provides the local driving force in the form of a

diffusion drift that depends on the gradient of its hydrostatic components. The

evolution of the vacancy subsystem is then simulated by a kinetic Monte Carlo

(kMC) algorithm that accounts for elastic drift effects on vacancy diffusion. In this

way the vacancy transport module is self-consistently linked to the DDD module.

Note however that the present kMC module does not account for vacancy-vacancy

interactions, so it is not intended to capture vacancy clustering or vacancy cluster

dissociation.

Diffusion of the discrete vacancies is governed by the expression in eq. (3.4). We

define the vacancy diffusivity as Dv = zfb2ν(T ), where z = 8 is the coordination

number of the bcc lattice, f ≈ 0.8 is a correlation factor, and b is the jump distance,

which is identical to the Burgers vector magnitude. The temperature dependent

jump frequency is defined as ν(T ) = ν0 exp (−Em/kT ), where ν0 and Em are the

attempt frequency and vacancy migration energy, k is Boltzmann’s constant, and T

is the absolute temperature. Here it is worth emphasizing that eq. (3.4) represents

an implicit problem that necessitates a self-consistent solution for the vacancy jump

distance because of the influence of the local stress gradient on the drift velocity.

To solve this we set a maximum jump distance, δxmax
vac , and randomly sample jumps

until the appropriate timestep distribution conditions are met (δxmax
vac must satisfy

a shifted Gaussian random walk) [50]. The δxmax
vac parameter is on the order of the

Burgers vector magnitude b and is discussed in more detail in Section 3.1.3.

In addition to diffusion, vacancies can be removed from or inserted into the

system by absorption and emission processes, respectively. The rates of absorption

or emission of vacancies are calculated by considering a cylindrical volume around

a dislocation segment i of size Vi = πb2
i li, where bi = ‖bi‖ and li are the magnitude
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of the Burgers vector bi and the segment length, respectively. The integer-valued

expression for the local rate of emission of vacancies can then be adapted from the

standard expression given by Friedel [98] as:

Ṅi =

(
2πli
bi

(
1− ti · bi

bi

))
ν(T )

1− Ni

ρaVi exp
(
−Hf

kT

)
 , (3.5)

where Ni is the number of vacancies emitted, ti is the segment’s normalized line

tangent, ρa is the atomic density, and Hf = Eo
f − 1

3
Tr(σ)Ωrel is the stress-sensitive

vacancy formation enthalpy. During the kMC evolution, each dislocation segment

has a unique emission rate that is added to the list of event rates to sample in

each kMC iteration. For a complete derivation of these expressions, the reader is

referred to the original work [50].

Absorption (emission) of vacancies by a dislocation segment i results in climb

along its normal direction by an amount:

hi = ± NiΩabi
li|ti × bi|2

, (3.6)

where Ωa is the atomic volume. hi is positive (negative) if vacancies are absorbed

(emitted), hence the ‘±’ sign. Absorption occurs once a vacancy diffuses within

the capture radius, Rcapt, of a segment.

As indicated in Section 1, we will compare the predictions furnished by our

discrete kMC/DDD approach with other existing climb formulations. These are

briefly described in C.1. It is also useful to emphasize that physical constants such

as temperature and Burgers vector magnitude are shared between the vacancy and

DDD procedures for physical consistency.

3.1 Parallelization of the kMC/DDD coupled ap-

proach

The vacancy-transport and emission module described in Section 3 can be di-

rectly applied to any serial three-dimensional DDD code to carry out climb-enabled
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simulations. However, many modern DDD codes have been improved to take ad-

vantage of the time efficiency and scale benefits of parallelized computing [99–101].

Accessibility to large-scale simulations has the obvious benefit of exploring near-

bulk systems and large-network phenomena such as strain hardening [102–104].

Thus, modifications are required to parallelize the discrete kMC vacancy transport

module so that it can operate in a parallel DDD environment. The developments

undertaken to achieve such an extension are explained in the following subsections.

3.1.1 Parallelization of the kMC module

Rejection-free Monte Carlo methods such as the kMC model used here are

efficient algorithms for carrying out discrete event simulations. However, they

are inherently serial because time evolves in a stochastic manner that makes the

determination of the next timestep unpredictable. For that reason, a direct im-

plementation of the kMC method into a parallel environment based on a spatial

decomposition results in asynchronous kinetics. This presents a number of chal-

lenges associated with processor-processor communication and with event causal-

ity [105, 106]. To solve these intrinsic difficulties, Martinez et al. developed the

synchronous parallel kMC (spkMC) method [78,107] that makes use of ‘null’ events

that can be used to equalize the total rates in each spatial domain. Null events

represent system ‘inactivity’ and thus have no effect on the kinetic evolution. For

that reason, they can be flexibly used to synchronize time by defining an iden-

tical rate in all domains and advancing time by the average of the exponential

distribution defined by such rate.

With this a global timestep dtspkMC is thus obtained for the parallel kMC

module, which can then be made consistent with the timestep in DDD in a manner

that will be described later. Because the spkMC system is only handling vacancies

in this application we will refer to dtspkMC as δtvac. The implementation of the

spkMC method to evolve the vacancy climb module in ParaDiS is described below.

1. First, we calculate the total rate for each subdomain k as the sum of the

individual vacancy diffusion, rik, and vacancy emission, rjk, rates in the

corresponding simulation subvolume Vk containing nk and lk vacancies and
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dislocation segments, respectively:

Rk =

nk∑
i

rki +

lk∑
j

rkj . (3.7)

This is subjected to the mass and volume conservation rules:

N =
K∑
i

ni, L =
K∑
i

li, V =
K∑
k

Vk ,

where N , L are the total number of vacancies and dislocation segments in the

simulation volume V , and K is the total number of subdomains (processors).

2. The maximum rate, Rmax, is then defined for all subdomains as:

Rmax = max
k=1,..,K

{Rk} . (3.8)

3. The null-rate for each subdomain can be calculated as:

rk0 = Rmax −Rk . (3.9)

Thus, a null event is added to the event list in each subdomain and sampled

with a probability rk0/Rmax.

4. If a vacancy event is sampled, time is advanced by an amount δtvac ≡ R−1
max

and the corresponding event is executed. Else, if a null event is sampled, the

configuration of the system is left untouched but time is still evolved by the

same amount R−1
max.

3.1.2 DDD and kMC timestep alignment

Instead of using a standard ‘master/slave’ approach to couple the DDD and

kMC modules, here we opted for treating a DDD relaxation as an independent

stochastic event. To do this, a priori knowledge of the DDD timestep is necessary

as a rate input for the stochastic selector. We adopted a Heun multi-stepping time

integration scheme inspired from the subcyling approach introduced in [108], and

which utilizes a pre-defined timestep size, δtDDD. During time-integration, dislo-

cation nodes are evolved with no change of the topology via subsequent iterations
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of size smaller than δtDDD (determined by the specified error tolerance) until the

full timestep is reached, after which dislocation collisions are handled using the

retroactive collision algorithm [108]. The impact of δtDDD on the simulations will

be studied in Section 3.1.3.

The basic kMC time synchronization algorithm operates as follows:

1. Retrieve the timesteps for both the DDD and vacancy modules. Find δtvac

using the procedure described in Section 3.1.1. For DDD use the a priori

assigned δtDDD.

2. Convert the timesteps to rates such that RDDD
t = δt−1

DDD and Rvac
t = δt−1

vac.

Select either a DDD step or a vacancy step with probabilities given by:

pDDD =
RDDD
t

RDDD
t +Rvac

t

, (3.10)

pvac = 1− pDDD . (3.11)

3. Execute the action that was selected to evolve the state of the system. For

example, if the vacancy module was selected then each domain executes a

vacancy migration, vacancy emission, or null-event (no change of state). If

a DDD step is selected then evolve the positions of the dislocation segments

according to the multi-stepping algorithm. Calculate all outputs for both

the vacancy and DDD modules.

4. Increment the system clock by a global timestep given by:

δtglobal = − ln ζ

RDDD
t +Rvac

t

, (3.12)

where ζ ∈ (0, 1] is a uniform random number. The procedure then returns

to step 1 and repeats until the maximum number of iterations is reached.

A general process flow outline for the execution of DDD-coupled discretized

climb model is illustrated in Figure 3.1.

47



Figure 3.1: Process flow of the implementation of the parallel kMC/DDD method
for discrete vacancy transport and dislocation climb.
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3.1.3 Numerical analysis of the kMC/DDD coupled ap-

proach

Relationship between the DDD and kMC timesteps

The integration timestep in a DDD simulation, δtDDD, is typically limited by

the maximum admissible displacement distance traveled by a dislocation segment

in order to properly treat dislocation segment collisions and reduce the truncation

error [109]. Discussion of δtDDD has a particular importance in this study because

the DDD timestep must be assigned a priori such that during each simulation iter-

ation it may be used as an input to the global kMC selection algorithm. To assess

the consistency of our coupling approach and the effects of the magnitude of δtDDD,

simulations with identical starting conditions, consisting of two 40b prismatic loops

contained in a simulation box 100b in size, were run for 40,000 iterations using fixed

δtDDD values of 10−6, 10−8, 10−10, and 10−12 s. The median vacancy rate Rvac
t for

all simulations was 5.8× 106 s−1. An artificially high drag coefficient was used for

glide to ensure the stability of the loops during the use of the larger timesteps.

Histograms with normalized frequency counts of the simulation timesteps are pre-

sented in Figure 3.2(a). As expected, all timestep distributions have a log-normal

distribution. The modes of the first three distributions (δtDDD ≤ 10−8 s) appear to

be equispaced in the figure, suggesting a linear correlation between the DDD and

the global timesteps as corroborated by eq. (3.12). The subsequent decrease in

average global timestep above δtDDD = 10−8 s can be attributed to the fact that,

as the DDD timestep approaches the value given by the inverse of the vacancy

rate, the global timestep converges to the latter (which is unaffected by the DDD

timestep). This effect is captured in Figure 3.2(b) (with an additional data point

for δtDDD = 10−5 s). A linear correlation between the global and DDD timesteps is

clearly established up to δtDDD = 10−8 s, after which the global timestep converges

to the value set by the inverse of Rvac
t , i.e., ≈ 1.7 × 10−7 s. These results show

that vacancy events (diffusion/emission events) effectively set an upper limit on

the timestep of the entire simulation with a value equal to the inverse of Rvac
t .

It is important to emphasize that while δtDDD influences the frequency of se-
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lection between the dislocation dynamics and vacancy steps, the overall kinetics of

simulation remains the same. In other words, given the same total simulation time,

we expect, on average, the same microstructural evolution for reasonable values

of δtDDD. To demonstrate this, simulations using two 20b loops in a 100b cube

were evolved to 2.0 ms of simulation time using δtDDD values of 10−6, 10−8, and

10−10 s. Figure 3.2(c) gives a histogram of the vacancy event rates in each case,

demonstrating the absence of any kinetic bias when δtDDD is varied. Moreover, the

total number of vacancy events (integral of each histogram) executed is roughly

the same in all cases. In the graph, the Rvac
t values have been partitioned between

diffusion dominated and emission dominated events to illustrate that the emission

rates are typically orders of magnitude larger than the diffusion rates.
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Figure 3.2: (a) Relative frequency of the global timestep selected in the joint
kMC/DDD model for various δtDDD

max values. (b) Average simulation timestep as a
function of δtDDD. The blue dashed line illustrates the convergence of the timestep
to being vacancy-dominated. The green dotted line illustrates the kMC timestep
progression if no vacancies were present. Each simulation was run for 40,000 it-
erations with two 40b loops in a 100b cubic box. The gray shaded box indicates
the typical range of acceptable δtDDD to avoid collision and truncation errors. (c)
Histogram displaying the frequency in occurrence of different Rvac

t values when a
vacancy step is selected for δtDDD values of 10−6 s (blue), 10−8 s (green), and 10−12

s (orange). All simulations we performed using an identical starting condition of
two loops in a 100b cubic box at 1200 K. All simulations were run for an equivalent
simulation time length of 2.0 ms.

As well, by virtue of eq. (3.10), it is expected that, as δtDDD increases, the

likelihood of sampling and executing vacancy events will grow accordingly. This

increase can be quantified in terms of the vacancy event ratio (i.e., the proportion

of iterations in which a vacancy event is selected rather than a DDD event) and

51



its dependence on δtDDD. The results are given in Figure 3.2(b) (on the right-

side axis). The exponential relationship displayed by the ratio of vacancy events

as a function of δtDDD is a consequence of eq. (3.10) gradually converging to the

expression pvac = 1
1+1/δtDDD

, i.e., by reducing Rvac
t to unity.

Vacancy population subevolution

Similarly to how δtDDD determines the upper limit of the kinetics for the dis-

location evolution, the jump parameter δxmax
vac and the vacancy concentration set

the upper limit of the kinetics for vacancy diffusion. Mathematically:

Rvac
t <

Dv

(δxmax
vac )2 .

Thus, decreasing δxmax
vac enforces smaller vacancy jumps, and as such, higher Rvac

t

values. It then follows that, all else being equal, δxmax
vac decreases as the vacancy

event ratio increases. This trend is displayed in Figure 3.3(a). As well, increasing

the vacancy concentration has a direct positive correlation on Rvac
t , as shown in

Figure 3.3(b).

Lastly, the effect of simulation conditions on the null event ratio (fraction of

null events relative to total events) is worth studying. This is because one would

ideally want to limit this ratio in order to maintain a high simulation efficiency.

As Figure 3.3(c) shows, the null event ratio naturally decreases with δxmax
vac due to

a higher ratio of diffusion to emission events. A more thorough study of how the

null event ratio is affected by other simulation variables is provided in C.2.

Figure 3.3: The (a) vacancy event ratio, (b) total vacancy rate, and (c) null event
ratio, as a function of the maximum allowed jump distance.
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3.1.4 Serial/parallel cross-verification

A demonstration of defect evolution dynamics is necessary to verify the imple-

mentation of the serial kMC algorithm [50] in a parallel setting. To this end, a

simulation with five 20b loops in a 100b box was evolved using the serial method as

well as the parallel code with 2, 4, 8, 16, and 27 processors. The vacancy absorption

and emission rates as a function of the simulation time are given in Figure 3.4(a)

and 3.4(b), respectively. Beyond an initial transient, all rates gradually converge

to values within 25% of one another. This is consistent with the intrinsic accuracy

furnished by the spkMC algorithm [78] of the parallel method compared to the

serial (n = 1) case.

Figure 3.4: Evolving average (a) absorption and (b) emission rate as a function
of time using an increasing number of processors. Both emission and absorption
rates show good agreement across the serial and parallel runs. Simulations were
performed with five 20b loops in a 100b cubic volume.
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3.1.5 Parellel scalability

First, we examine the strong scaling behavior (i.e., same problem size simulated

with increasing numbers of processors) of the kMC module as implemented here.

For this test the computation time for ParaDiS was ignored because the scalability

for the ParaDiS library has been well-documented elsewhere [99]. For this, a

simulation was run with with 9000 vacancies and 200 loops that were 200b in

diameter. The simulation was contained in a 200b×200b×200b cube. A snapshot of

the simulated volume is given in Figure 3.5(a). The speedup, measured as n times

the CPU time of the serial case relative to the CPU time of a case with n processors

is plotted in Figure 3.5(b). The speedup follows a logarithmic increase typical

of communication-limited algorithms so common in MPI-type implementations.

The speedup gained by parallelization is sufficient to study larger scale samples

in dislocation dynamics. A more thorough discussion of the scalability data is

provided in C.2.3. It is also worth noting that the introduction of vacancies in

DDD undermines ParaDiS’s native load-balancing scheme whereby subdomains

are dynamically re-balanced as a function of computation time. A more rigorous

load balancing procedure may need to be developed for the combined kMC/DDD

model that considers both dislocations and vacancies (or Rt, depending on the

optimization goal) of each subdomain. These improvements will be considered in

future work.
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Figure 3.5: (a) Snapshot of the configuration used to measure strong scaling with
both dislocation segments (in blue) and vacancies (in red) shown. (b) Speedup of
the vacancy module as a function of the number of processors for a fixed simulation
cubic volume 200b in size containing 200 dislocation loops of size 200b and 10,000
vacancies. The temperature was 1300 K. δtDDD was set to 10−3s to ensure that we
were primarily probing the vacancy module execution time.
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3.2 Applications and results

The approach presented in Sections 3, 3.1.1, and 3.1.2 was implemented in the

ParaDiS code [34, 99]. All simulations were performed using bcc iron as model

material. The relevant material constants used here are given in Table 3.1. Next

we apply the method to a few selected scenarios that serve to demonstrate its

robustness and generality. We start by comparing calculations of climb velocities

with the present approach and existing models published in the literature.

Table 3.1: Material parameters for bcc Fe employed in this work.

Parameter Symbol Value Units
Boltzmann’s constant k 8.615× 10−5 eV ·K−1

Correlation factor f 0.78 –
Burgers vector magnitude b 0.25 nm
Atomic density ρa 8.46× 1022 atoms/cm3

Shear modulus µ 52 GPa
Poisson’s ratio ν 0.29 –
Attempt frequency ν0 1012 Hz
Vacancy formation energy Eo

f 1.7 eV
Vacancy migration energy Em 0.66 eV
Atomic volume Ωa 0.77 b3

Vacancy relaxation volume Ωrel θv Ωa

Vacancy formation volume Ωf 1 + θv Ωa

Vacancy volumetric strain θv -0.2 –
Capture radius Rcapt 3 b

3.2.1 Comparison of climb simulations with existing con-

tinuum methods

Here we compare calculations of climb velocities from several continuum ap-

proaches [25, 26]. These include the non-local Green’s function formulation devel-

oped by Gu et al. [26], the analytical solutions by Mordehai et al. [25], and, when

applicable, the simplified climb velocity of a circular prismatic loop under its own

self stress [110] (labeled as “Numerical Solution” in the plots):

vcl ≈
µDvC0Ωa

2(1− ν)RloopkT
, (3.13)
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where µ and ν are the shear modulus and Poisson’s ratio, Rloop is the radius of

the loop, and C0 = exp
(
−Eo

f/kT
)

is the vacancy concentration. The climb veloc-

ities calculated for a single prismatic loop as a function of temperature are given

in Figure 3.6 at four different vacancy concentrations. As the figure shows, the

data obtained with the present method is consistently two orders of magnitude

lower than for the numerical and analytical cases. As well, the discrete method

(this work) displays a slightly weaker temperature dependence than the continuum

methods, but agrees with what was previously observed in ref. [50]. At this point,

we do not judge the correctness of either approach based on this gap in quantitative

agreement. Indeed, part of the purpose of this work is to demonstrate the differ-

ences in climb velocities between continuum models of vacancy diffusion and our

discrete approach where fluctuations control vacancy kinetics. Interestingly, the

method based on the Green’s function also consistently underpredicts the results

by the other continuum models. This may be also due to its nonlocal formulation,

which admits fluctuations in vacancy fluxes dictated by the stress field of the dis-

location configuration. We will get back to some of these issues in the Discussion

section.
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Figure 3.6: Climb velocity of a single prismatic loop obtained using the analytical
method, the Green’s function method, and the present discrete method. The
estimation of the climb velocity given the numerical solution is also shown. The
equilibrium vacancy concentration, C0, was varied by (a) 1×, (b) 10×, (c) 50×,
and (d) 100×. All simulations were performed for loops with a 30b radius at
temperatures in the range of 800 to 1400 K.
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3.2.2 Computational cost

Next we study the computational cost of the present approach relative to the

continuum methods. To this end, we calculated the ratio of CPU time to simu-

lated time, tCPU/tsim, for a fixed dislocation configuration of forty 30b loops in a

200b × 200b × 200b simulation box with varying temperatures and vacancy con-

centrations. A snapshot of the simulation volume at 1200 K is shown in Figure

3.7(a) along with the computational costs as a function of temperature (Figure

3.7(b)) and vacancy concentration (Figure 3.7(c)). For the discrete method, tem-

perature has an exponential effect on computational cost while the vacancy con-

centration multiplier has a linear effect. Relative to the discrete method both

continuum methods are temperature insensitive. The computational cost of the

discrete method is comparable to that of the Green’s function method at low tem-

peratures (≤ 1300 K) and low vacancy concentrations (≤ ×100). However, for the

problem size in question, the CPU overhead of the discrete method increases two

to three-fold at the highest temperatures and vacancy concentrations.

The direct correlation between the computational cost and the number of va-

cancies can be attributed to the non-trivial calculations necessary for each ad-

ditional vacancy including the overall rate contribution and absorption criterion

(i.e., checking if vacancies are within the absorption distance). The breakdown of

the normalized computational cost with increasing temperature is given in Figure

3.8. At low temperatures (fewer vacancies) inter-subdomain communication dom-

inates the computation time. At higher temperatures the rate calculations and

absorption events become the most computational intensive components.
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Figure 3.7: (a) Snapshot of the ParaDiS simulation volume with forty 30b dislo-
cation loops (in blue) and vacancies (in red) at 1400 K. Ratio of CPU time to
simulated time as a function of (b) temperature and (c) vacancy concentration
for DDD simulations using the three climb methods along with a standard DDD
simulation (no climb). Simulations were performed with 40 loops with a 30b radius
and a vacancy concentration of 10 × C0 for (b) and a temperature of 1000 K for
(c).
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Figure 3.8: Normalized computation profile as a function of temperature. Tests
were performed using 8 processors. “Other” refers to processes include initializa-
tion, null event calculations, and inter-domain vacancy transfers.

3.2.3 Applications of the discrete climb method to prob-

lems of interest in dynamic recovery

The full benefit of a discretized method of climb can be realized by applica-

tion to highly local, stochastic, or spatially heterogeneous phenomena. Indeed,

locally evolving point defects-dislocations structures are often dominated by jerky,

stochastic movement that is difficult to capture using standard continuum solu-

tions. To illustrate this, here we present two examples of deviation in behavior

from the discrete and continuum methods that are of interest to the dynamic re-

covery of microstructures featuring prismatic loops. Additional areas to apply and

expand the coupled defect model are discussed in Section 3.3.
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Closing of a single prismatic loop

The closing of a prismatic loop provides one of the most basic, yet informative

processes that can be used to compare the behavior in the discrete and continuum

climb methods. An isolated prismatic loop will close via climb under its own

self stress without the addition of a balancing osmotic force. Figure 3.9 shows

the progress of an hexagonal 40b-prismatic loop using both the Green’s function

continuum method and the discrete method. In this numerical experiment, the

balancing force opposing shrinkage has been disabled: directly by explicitly turning

off the osmotic forces in the continuum model, and by restricting vacancy emission

in the discrete kMC/DDD method.

As the figures show, the continuum method (Figures 3.9(a)-(d)) demonstrates

symmetric, smooth closure of the loop with a stable rate of change for the loop size.

By contrast, the discrete method (Figures 3.9(e)-(h) results in a loop that is slightly

contorted, with different sides climbing faster than others due to local variations

in the vacancy population (the locations of the vacancies are shown in the figures

to give a spatial reference). As well, the faster climb predicted by the continuum

method agrees with what was previously observed in Section 3.2.1. To achieve the

same amount of loop closure the discrete method is evolved for approximately 4

orders of magnitude longer in terms of simulated time – indicating that, in this

case, the discrete approach predicts climb as a much slower physical phenomenon

than in the continuum method. We note however that the discrete kMC approach

only requires 16× the number of iterations of the continuum method to simulate

the same amount of closure. This shows that the spkMC time integration method

efficiently evolves the coupled DDD system such that large computational costs

are not incurred to cover large time spans.
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Figure 3.9: The closing of a single 40b prismatic loop using the (a)-(d) continuum
and (e)-(h) discrete climb methods.

Discontinuous climb dynamics

The treatment of point defects as individual, discrete components of the simu-

lation system requires that absorption and emission events are similarly executed

as discrete events. Because of this, dislocation advancement through discretized

climb does not necessarily occur in a smooth manner, as is modeled in the con-

tinuum methods. To further demonstrate this, Figure 3.10 provides the total area

swept due to climb as a function of simulation time for an isolated loop under dis-

crete and Green’s function climb methods with a vacancy concentration of 50C0.

The stochastic behavior of the discrete climb method are reflective of the natural

local fluctuations in vacancy emission and absorption. Moreover, unlike the con-

tinuum method the discrete method can work ‘against’ the global driving force

in the short term (i.e., by lowering the area swept out) while still satisfying the

long-term thermodynamic bias of the system.

It is also useful to note that the discretized treatment of climb leads to a much

higher instantaneous climb velocity during individual climb events when compared

to the continuum approaches. This is visualized as the many small, yet steep fluc-
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tuations in the ‘distance climbed’ evolution shown in Figure 3.10. The difference

can be as high as 5∼6 orders of magnitude. For the most basic configurations

(e.g., single loop) the continuum methods advance segments with smooth steps

in space such that the instantaneous climb velocity (i.e., climb velocity measured

at each simulation iteration) and long-term average climb velocity are essentially

equivalent. The instantaneous metrics for discrete climb, on the other hand, can be

substantially larger than the long-term average because each emission/absorption

event is an instantaneous trigger associated with a discrete local jump in a segment

position. This behavior is, of course, averaged out when calculating the effective

climb velocity because the vast majority of simulation iterations do not involve

any absorption/emission events (see Figure 3.2).

Figure 3.10: Distance climbed using the discrete method (black) and the Green’s
function method (blue).

Another phenomenon that is observed during discrete climb is localized burst-

like events during which a segment, or neighboring segments, traverse a relatively

large distance in a short period of time. An example is given in Figure 3.11, where
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a segment rapidly absorbs 12 vacancies and displaces a commensurate amount.

This behavior is typically driven by a segment moving in a region with a high

localized concentration of vacancies and immediately absorbing them and climb-

ing. Spatially heterogeneous point defect distributions can result from extrinsic

mechanisms (e.g., irradiation damage cascades) or internal elastic/concentration

gradients such that fluctuations in local plasticity can be expected. This is some-

thing that is not captured by continuum methods due to the prescribed smooth

fluxes.

Figure 3.11: Dislocation segment before (blue,left) and after (red,right) absorbing
12 vacancies during a climb “burst” caused by a pocket of vacancies. The climb
direction for the segment is denoted as n.

Vacancy decoration of dislocation loops

The treatment of vacancies as individual point defects has the benefit of being

able to observe collective vacancy motion as a response to dislocation structures.

The local stress fields created by dislocations are spatially complex and highly
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directional such that point defect motion responds to certain dislocation features.

This behavior is not captured in smooth-flux continuum approaches. By way of

example, time-evolved snapshots of the vacancy population around isolated and

immobilized vacancy and self-interstitial prismatic loops are given in Figures 3.12

and 3.13, respectively. A contour map of the hydrostatic stress is overlaid on the

figures for reference.

For the vacancy loop, the vacancies approach the center loop on a path perpen-

dicular to the habit plane, avoiding the tensile pressure regions around the edge

of the loop. Conversely, as vacancies approach the interstitial loop they arrange

themselves along a path perpendicular to the habit plane, avoiding the compressive

pressure regions above and below the loop. To the best of our knowledge, spatial

defect information has not been accessible through defect-coupled dislocation dy-

namics studies. Preferential diffusion pathways of point defects as a function of

large, complex dislocation networks is a largely untapped area of study now acces-

sible through this scalable approach. A follow-up study will purely focus on the

spatial distribution and decoration of vacancies on prismatic loops.

Figure 3.12: Snapshots of vacancy positions for a 20b immobilized vacancy loop
from tsim = 0 s to tsim = 8 × 10−3 s. The vacancies preferentially approach the
loop in a path perpendicular to the habit plane by forming a ‘cone’ above and
below the loop.
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Figure 3.13: Snapshots of vacancy positions for a 20b immobilized interstitial loop
from tsim = 0 s to tsim = 8× 10−3 s. Images with a viewing angle along the habit
plane.

3.3 Discussion

3.3.1 General summary of the method

The two main objectives of the present work can be summarized as follows:

1. The first is a ‘numerical’ objective that aims at augmenting the capabilities

of parallel DDD approaches (the ParaDiS code in particular) by introducing

a recently-developed discrete point-defect kMC module capturing vacancy

diffusion in the presence of arbitrary dislocation structures. Thus, our ap-

proach is an additional step towards incorporating more complex physics

within the parallel DDD framework [111], as a way to extend its range of

applicability and its ability to be meaningfully connected to and calibrated

against lower-scale approaches [112].

2. The second objective is ‘physical’ in nature, namely to demonstrate that,

when applied to realistic scenarios (enabled by the numerical implementa-

tion of the method in the DDD code), discrete defect kinetics coupled to

dislocation network subevolution lead to fluctuations in the vacancy event

occurrences and their spatial distribution that have a crucial impact on the
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system’s evolution. Such considerations are merely absent from continuum

methods for climb in which vacancies are represented as a smooth, continuous

concentration field.

With the completion of these two objectives, we have implemented the original

method developed by McElfresh et al. [50] into a massively parallel code platform

that will allow us to explore vacancy-dislocation interactions on scales represen-

tative of real microstructures. By the same token, the implementation opens the

door to non-traditional applications for large-scale DDD codes such as ParaDiS.

We will discuss these in more depth below.

3.3.2 Comparison of discrete versus continuum vacancy-

dislocation methods

It is of interest to cross-compare the present method of kMC/DDD with generic

continuum treatments of elasto-diffusion, such as those discussed in C.1. From a

qualitative perspective, results presented in Section 3.2 show a markedly different

behavior in the evolution of the dislocation structures between both approaches.

Not surprisingly, the kMC/DDD approach leads to rougher dislocation line con-

figurations, which is a direct consequence of the discrete nature of absorption and

emission events and the highly localized associated climb. The presence of these

line features (i.e., jogs) which are not captured in continuum methods may have

important consequences on the subsequent glide mobility of the dislocations.

From a quantitative perspective, here again significant differences are observed

even for the relatively simple cases involving prismatic loops examined in this work.

As best illustrated in Figure 3.10, we find that the discrete method systematically

predicts average climb velocities that are several orders of magnitude lower than

predictions from the continuum approaches under the same conditions. While

other simulation methods may ultimately be required, it is nevertheless impor-

tant to pinpoint key differences between the approaches that could explain such

quantitative differences in climb velocities. One of the major differences is that

continuum-based approaches rely on the assumption that the vacancy concentra-
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tion is always at equilibrium with the dislocation network, i.e. that the vacancies

respond instantly to the network evolution while the bulk provides an infinite

and instantaneous supply of vacancies to maintain the global concentration at its

equilibrium value. In contrast, the discrete approach explicitly accounts for the

finite-speed diffusion of the vacancies, which must migrate through the bulk before

being absorbed at the dislocation cores. As well, often times in real situations,

dislocation line configurations and vacancy distributions change too fast for equi-

librium even to be established. Discrete changes in line shape immediately result

in a new stress distribution around the affected segments, which changes altogether

the equilibrium conditions relative to other parts of the system. In those cases,

a steady state may be established -understood as an average behavior taken over

many local out-of-equilibrium situations, an effect which continuum methods fail

to capture as well. As a result the kinetic of the defect-dislocation co-evolution is

likely to be much slower than when assuming instantaneous equilibrium, which is

consistent with our observations. The discrete nature of the kMC/DDD approach

also allows our model to capture more subtle behaviors associated with spatially

resolved discrete point defects, such as the fact that several vacancies may compete

for absorption by the same dislocation segment, which may also tend to reduce the

average climb velocity.

Finally, a list comparing the main features of each class of methods is provided

in Table 3.2. The features perceived to be advantageous in either case (from the

point of view of the findings in this work) are highlighted in red.

Table 3.2: Relation of features of defect-dislocation co-evolution methods. The
features perceived to be advantageous in either case (from the point of view of the
findings in this work) are highlighted in red.

Feature Continuum Discrete
Homogeneous defect diffusion Yes Yes

Fluctuations in defect concentrations No Yes
Fluctuations in climb dynamics No Yes

Treatment of emission/absorption continuous discrete events
Dislocation climb solver Yes (with FEM) Yes (stochastic)

Parallel scalable Yes Yes
Numerical stiffness No Yes [50]

69



3.4 Conclusion

In this work we have introduced a parallel kinetic Monte Carlo method for

dislocation climb based on discretized defect diffusion coupled with discrete dis-

location dynamics. The method explicitly incorporates point defects as discrete

particles co-evolving in a complex dislocation network environment, whereby the

local dislocation-induced stress fields dictate the vacancy diffusion while emission

and absorption events are treated as discrete events governed by detailed reaction

rates. We developed a global, parallel kMC time-stepping method that unifies

timesteps associated with the multi-stepped dislocation dynamics and the vacancy

kMC modules in a consistent fashion while maintaining the physicality of the

simulations. By examining several relevant test cases of the concurrent evolu-

tion of vacancies and prismatic dislocation loop configurations, we found that our

discrete approach yields markedly slower climb velocity predictions compared to

existing continuum-based approaches, suggesting a strong sensitivity of the dislo-

cation/vacancy climb kinetics to the underlying spatial distribution of the vacancy

population.

C.1 Brief description of existing climb models

C.1.1 Analytical solution : Climb via balancing vacancy

flux

The classical vacancy flux field J associated with a vacancy concentration c is

given by Fick’s first law:

J = −Dv∇c , (C.14)

where Dv is the vacancy diffusion coefficient and ∇ is the gradient operator. The

time-dependent vacancy concentration can then be determined using Fick’s second

law:
∂c(r, t)

∂t
= ∇ · J , (C.15)

where c(r, t) is the vacancy concentration field. We assume that dislocations climb

slowly compared to diffusion so there is always enough time to equilibrate the local
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vacancy concentration such that ∂c/∂t = 0. As a result, it holds that:

∆c = 0 , (C.16)

where ∆ is the Laplacian. We can then consider a cylindrical tube around a straight

dislocation segment with an inner radius rd that is approximately the size of the

dislocation core region and an outer radius r∞ that is large enough to be assumed

to represent the bulk [25]. These assumptions lead to the vacancy concentration

boundary conditions:

c(r∞) = c∞ , (C.17)

cd = c0e
FclΩa/bkT , (C.18)

where c0 is the equilibrium vacancy concentration, Fcl is the mechanical climb force,

Ωa is the atomic volume, b is the Burgers vector magnitude, T is the temperature,

and k is Boltzmann’s constant. The analytical solution of eq. (C.16) that satisfies

the boundary conditions is

cr = c∞ +
c∞ − cd

ln (r∞/rd)
ln

(
r

r∞

)
. (C.19)

The climb velocity for a single straight edge dislocation can then be obtained by

assuming that each segment is a perfect vacancy sink and there is no pipe diffusion:

vcl =
2πDv

b ln (r∞/rd)

(
c∞ − coe−FclΩa/bkT

)
. (C.20)

The climb velocity is accessible once the vacancy flux into each segment’s cylindri-

cal volume has been appropriately solved for. Further explanation of this approach

is detailed in refs. [25] and [49]. This formulation is of course only valid for in-

finite straight dislocations, a limitation which served as a motivating factor for

the development of the Green’s function approach to handle arbitrary dislocation

configurations [26].

C.1.2 Green’s function formulation

A brief description of the vacancy-coupled climb solution proposed by Gu et al.

is provided here. The authors refer the reader to work outlined in refs. [15,26] for
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further detail. The Green’s function formulation originates from a similar treat-

ment of a dislocation as a vacancy source or sink coupled with climb in an infinite

medium, in which the time-dependent vacancy concentration can be described as:

∂c

∂t
= Dv∆c− hδ(Γ) , (C.21)

where the climb parameter h corresponds to the product bvcl, δ(Γ) is the Dirac

delta function, and Γ represents all dislocation segments in the system. Boundary

conditions can be set by assuming a fixed vacancy concentration at an infinite

distance in the bulk and slow climb relative to diffusion (i.e., ∂c/∂t = 0), resulting

in:

Dv∆c = hδ(Γ) , (C.22)

c(r∞, t) = c∞ . (C.23)

It is then assumed that the vacancy concentration remains constant across all

emission and absorption fluxes in the system (i.e., vacancies are not created or

destroyed). This can be demonstrated by integrating eq. (C.21) across the entire

simulation volume V :

d

dt

∫
V

c dV = Dv

∫
∂V

∂c

∂n
dS −

∫
Γ

hdl = 0 , (C.24)

where the right hand side of the expression originates from the inclusion of eq. (C.22).

The application of Green’s function formalism provides the solution to the eq. (C.22)

boundary value problem as:

c(x, y, z) = − 1

4πDv

∫
Γ

h(x1, y1, z1)√
(x− x1)2 + (y − y1)2 + (z − z1)2

dl + c∞ . (C.25)

To further simplify the solution, it is assumed that the local vacancy distribution

at the tube of radius rd satisfies local conditions consistent with eq. (C.18) and a

cutoff angle is employed that considers screw and near-screw effects, resulting in

an integral equation for all points along a dislocation:

− 1

4πDv

∫
Γ

h(x1, y1, z1)√
(x− x1)2 + (y − y1)2 + (z − z1)2 + r2

d

dl + c∞ = c0e
gΩa/bkT |x,y,z ,

(C.26)

72



where g is the mechanical climb force that considers the dislocation character. The

expression can be solved numerically for the segment climb velocity by evaluating

the right-hand side of the equation with respect to each DDD node and expressing

the left-hand side as a function of the climb velocity, using a quadrature formula

[15]. This gives a final system of equations as:

N∑
j=1

αijh
j = 4πDv

(
c∞ − coe−g

iΩa/kT
)
, (C.27)

where αij is a matrix of quadrature coefficients that depends on the nodes positions.

Ultimately, climb velocity for all segments can be extracted by first solving the

system of equations laid out in eq. (C.27) for each segment’s h value and then

compensating for dislocation character, vcl = h/be, where be is the edge component

of the Burgers vector.

C.2 Additional model validation data

C.2.1 Effect of temperature on null event ratio

Figure C.14 shows the null event ratio as a function of simulation time for

four different simulation temperatures. All simulations begin with a transitory

period during which segments emit vacancies to equilibrate their local volumes

with the equilibrium vacancy concentration. The null event ratio then stabilizes

to a value that is inversely dependent on temperature. The reason behind this

inverse temperature dependence is that at higher temperatures, there are more

vacancies in the simulations (C0 increases exponentially with T ). As such, the

fluctuations in the number of vacancies in a given subdomain (as a result of inter-

domain diffusion) are smaller, which does not result in large imbalances in vacancy

count across subdomains.
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Figure C.14: The cumulative average frequency of null-rate events for a simulation
with a single 50b loop and 8 subdomains.

C.2.2 Evolution of the vacancy population across parallel

domains

Figure C.15 shows a series of plots illustrating the evolution of Rvac
t from each

subdomain as simulations progress (left column of plots), and the normalized va-

cancy concentration of each subdomain as a function of time (right column). Con-

sistent with Figure C.14, increasing the temperature clearly results in smaller rel-

ative fluctuations in Rvac
t across subdomains, leading also to a decrease in the null

event ratio. It is useful to note that in this study the subdomain volumes are fixed

and identical for all processors.
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Figure C.15: The total rate (Rt) and normalized vacancy concenrtation in each
subdomain as a function of simulation time at 800 K (a) (b), 1000 K (c) (d),
1200 K (e) (f), and 1400 K (g) (h). The inter-domain variation in Rt decreases
with temperature which agrees with the correlation of null rate frequency and
temperature shown in Figure C.14.
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C.2.3 Additional scalability data

Additional details of the scalability test for a configuration made of 200 loops of

200b diameter and 10,000 vacancies are provided here. The system was simulated

for 100 iterations during which we recorded the execution time of the different pro-

cesses of the DDD and vacancy modules. The total and normalized computation

times of each of the processes are shown in Figure C.16(a) and C.16(b), respec-

tively. Figure C.16(c) shows the percentage time allocation between the DDD code

and vacancy code. For this system we find that the communication processes in

ParaDiS take up an increasingly large portion of the total computation time as

the number of processors are increased. Within the DDD communication processes

the most costly functionalities were found to be the dispatch of the nodal veloc-

ities and ghost nodes. Ghost nodes are dislocation nodes that are not native to

a subprocessor’s physical domain but are in its immediate surrounding domains.

The ParaDiS DDD code overall takes up an increasingly large portion of the total

computation time, increasing from 35% with the serial implementation to to 90%

when using 288 processors. The normalized computational cost of the subprocesses

in the vacancy code are shown in Figure C.16(d). Within the vacancy code, the

rate calculation is the most computationally intensive process due to the querying

of the local stress gradient using ParaDiS’s native stress calculation functions. The

calculation of the local stress gradient consumes roughly 90%-99% of the processes

time. These results indicate that in large-scale simulations the scalability of the

coupled kMC/DDD approach is likely to be limited by the scalability of the DDD

module.

The strong scaling behavior of the combined kMC/DDD module as imple-

mented in this study is also provided for completeness. For this, two simulation

sizes were examined in serial and with then with 2 to 52 processors in parallel. Case

#1 consisted of 3000 vacancies and 128 loops and case #2 consisted of 9000 vacan-

cies and 200 loops. All loops were 200b in size and contained in a 200b×200b×200b

volume. The speedup as a function of the number of processors is plotted in Figure

C.17. The speedup deteriorated rapidly after 52 processors for this magnitude of

problem size.
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Figure C.16: (a) Total computation time for all vacancy and DDD processes. (b)
Normalized computation time for all DDD and vacancy module processes. (c)
Percentage of total computation time between the DDD and vacancy related code.
(d) Normalized computation time for the subprocesses in the vacancy code only.
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Figure C.17: Speedup of the vacancy module as a function of the number of
processors for a fixed simulation cubic volume of 200b in size. Case #1 contains
3000 vacancies and 128 dislocation loops while case #2 contains 9000 vacancies
and 200 dislocation loops. All loops were of size 200b. The temperature was set to
1200 K. δtDDD was set to 10−3 s to ensure that the that we were primarily probing
the vacancy module.
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Chapter 4

Coalescence dynamics of

prismatic dislocation loops due to

vacancy supersaturation

4.1 Theory and Models

In the following examples, we simulate Mo single crystals defined by the mate-

rial parameters listed in Table 4.1. To avoid numerical incompatibilities associated

Table 4.1: Material parameters for Mo used in the present simulations [3, 4].

Parameter Symbol Units Value
Lattice parameter a0 nm 0.317

Atomic density ρa m−3 6.45× 1028

Atomic volume Ωa b3 0.77
Relaxation volume Ωrel Ωa −0.37

Vac formation energy Hf eV 3.0
Vac migration energy E0

m eV 1.6
Attempt frequency ν0 Hz 1012

Burgers vector b nm 0.27

with merging deterministic (DD) and stochastic (kMC) integration algorithms, we

cast the entire elasto-plastic-diffusive problem within a single stochastic frame-

work, taking advantage of a parallel kMC algorithm to evolve the system as a

single event-driven process. The coupled model has been implemented into the
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massively-parallel ParaDiS code [99–101] using a synchronous parallel kMC algo-

rithm [78,107].

4.2 Results: vacancy ring formation

Our first finding of significance is that vacancies flowing into a hexagonal pris-

matic loop1 do not get immediately absorbed but instead become trapped at an

offset distance from the dislocation segments. This is illustrated in Figure 4.1,

which shows three instantaneous time snapshots (at t = 0, 40, and 80 ms) of the

interaction between vacancies and a 40b hexagonal dislocation loop at 1400 K in

thermal conditions (no vacancy supersaturation).

Figure 4.1: Snapshots of vacancy clusters forming around an immobilized vacancy
prismatic loop with a core width of 4b. The simulation was performed with a 40b
loop at 1400 K.

As the figure shows, vacancies are seen to form a ring outside the loop’s perime-

ter, eventually clustering along the edges of the hexagon. Indeed, inspection of the

radial stress field of the loop reveals the existence of a barrier against point de-

fect absorption at an offset distance from the loop segments. This barrier is an

intrinsic feature of the stress field of an isolated prismatic loop, and is shown in

1In bcc metals, prismatic loops adopt a hexagonal shape whose edges are oriented along 〈112〉
directions [113].
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Figure 4.2 by a continuous black line. The near-core local hydrostatic stress min-

ima exist as a result of the use of the non-singular elasticity theory in the DD

implementation employed here [114]. More details on this implementation can be

found in refs. [34, 114, 115]. It is important to note that this type of structure

is not fully-relaxed because our method does not capture inelastic effects such as

vacancy clustering and/or interactions with dislocation cores that might disrupt

it and take it towards more stable configurations. Thus, it is more appropriate to

refer to these trapped clusters as being in a transient configuration that may not

be representative of the ground state of the loops.
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Figure 4.2: Hydrostatic stress as a function of x-coordinate between two 40b-
diameter vacancy loops at various loop separations. The x = 0 value corresponds
to the midpoint between the loops’ closest points. The two loops drawn above
the figure correspond to a separation of 10b. Also shown overlaid in black is the
hydrostatic stress profile of an isolated loop.

Additionally, we have discovered that, rather than approaching the loop from

outside the glide cylinder 2, vacancies are funneled through the inner boundaries

of the compressive stress cone created by the loop, thereby avoiding encountering

the barrier altogether. This is shown in Figure 4.4, which includes three snapshots

of the spatial distribution of thermal vacancies around a stationary 40b-diameter

2The glide cylinder or glide prism is the quadric surface created by extending each of the
loop’s edges (or the entire perimeter in the case of a circular loop) to infinity along the Burgers
vector’s direction.
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loop at 1400 K, where the color map indicates the value of Tr(σ)) in GPa. In

this fashion, vacancies can become trapped without having to overcome the stress

barrier for the isolated loop shown in Figure 4.2. Indeed, vacancies are accelerated

into the loop’s perimeter due to the extremely-high pressure gradient indicated in

the figure. Climb is thus made feasible only after vacancies are able to escape this

trap, which is itself and thermally activated process. For completeness, similar

evidence of vacancy clustering behavior on the inside of interstitial prismatic loops

is provided in the Figure 4.3.

Figure 4.3: Snapshots of vacancy clusters forming around an immobilized intersti-
tial prismatic loop with a core width of 4b. The simulation was performed with a
40b loop at 1400 K.
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Figure 4.4: Kinetic evolution of the vacancies around a 40b-diameter loop at 1400
K. The initial vacancy distribution is shown in (a). The color bar indicates the
value of Tr(σ) in GPa. The vacancies approach the loop in the fashion indicated by
the red arrows in (b) and (c), i.e., following the inner boundaries of the compressive
stress lobes created by the loop.

4.3 Results: loop coalescence mechanism

The stress profile shown in Figure 4.2 substantiates the behavior observed in

Figure 4.1, i.e., that vacancies can arrange themselves into a ring outside an isolated

loop’s perimeter. As mentioned earlier, this actually hinders climb, as vacancies are

thermodynamically trapped at an offset distance from the actual loop segments.

However, when two prismatic dislocation loops approach one another, whether

by climb or glide, the situation drastically changes. As Figure 4.2 illustrates for a

pair of 40b-diameter circular loops, the two stress minima corresponding to the two

isolated defects gradually merge with one another, giving rise to a single combined

pressure minimum. Most importantly, however, this joint minimum results in an

abundance of vacancies trapped in the gap between the loops. Figure 4.2 shows the

shape of the pressure profile at various distances between the two defects. As the

loops approach, the shared stress minimum deepens as it is sandwiched between

the opposing segments. The stress gradient associated with such process is seen

to increase as well, leading to a strong driving force for vacancy agglomeration

in that region, as illustrated in Figure 4.5. Furthermore, we have seen that an
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enhanced accumulation of vacancies in the common interaction zone intensifies

the attractive force between the loops, resulting in coalescence even in conditions

where both glide and climb are required to bring the process to completion.

Figure 4.5: (a) Hydrostatic stress map for two 60b-diameter vacancy loops sepa-
rated by 10b. The color bar indicates the value of Tr(σ) in GPa. Local vacancy
concentration at (b) t = 0 and (c) 0.002 s. Red dashed arrows mark the vacancy
approach path to the pressure trap shared between the loops.

The coalescence process is studied in the simulations presented in Figure 4.6,
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where two elongated interstitial loops with non-overlapping glide cylinders are

placed at an offset distance of 10b from one another. While the loops here are

simulated with Fe as the base material for direct comparison to experimental results

of irradiated Fe in ref. [2], we expect the simulated behavior to be qualitative the

same in other bcc metals. The relevant physical parameters that were used for

Fe were a0 = 0.286 nm, Hf = 1.7 eV, E0
m = 0.68 eV, b = 0.25 nm, Ωa = 0.80b3,

and Ωrel = −0.2. The offset separation, dv, is along the ‘vertical’ direction in the

figure and is overcome by glide, while the glide cylinders are brought into contact

by climb along the ‘horizontal’ direction, dh. We then let the loops evolve under

no external applied stress and we track dv and dh. The results are shown in Figure

4.6(a) where both distances are seen to decrease monotonically to zero. The angle

θ representing the ratio of the glide and climb distances (as θ = tan−1 (dh/dv)) is

also included in the figure. The process is eminently elastic, as demonstrated by the

good agreement between our time-dependent evolution and Kroupa’s expression

to describe climb-mediated annihilation of two pure edge dislocations [116]:

1

2

(
h

bK

)2

≈ 1

2

(
h0

bK

)2

− 2Dvcj
b2K

t (4.1)

where h is the dipole width (here equivalent to dh), K is a temperature-dependent

material parameter, cj is the density of jogs on the dislocation, t is time, and h0

is the initial climb offset at t = 0. As the figure shows, the offset angle remains

practically constant during the coalescence process.
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Figure 4.6: (a) Horizontal (in blue, solid) and vertical separation (in blue, dashed)
between an interstitial prismatic loop dipole and the corresponding dipole angle (in
red, dotted, right axis) as a function of simulation time. The dipole angle remains
relatively constant as the loops climb and glide towards one another and eventu-
ally annihilate the dipole. (b) Snapshots of the interstitial loop dipole shrinking
and eventually coalescing under combined climb-glide mechanics. (c) Coalescence
process of two irradiation loops in pure Fe at 300oC (from ref. [2], reproduced with
permission). 25 nm equals approximately 100b in Fe.

Figure 4.6(b) shows several snapshots of the coalescence simulations. The loops

expand via climb while also gliding towards one another to bridge the separation

dv. However, climb outpaces glide and in the end a jog of magnitude ≈ dv is

left in the coalesced structure. The simulated process is remarkably similar to

in situ transmission electron microscopy (TEM) observations of prismatic loop

coalescence in irradiated Fe at 300◦C [2], as displayed in Figure 4.6(a). While

the origin of the loops differs, once formed the kinetics of coalescence seen in the

experiments matches what our simulations predict. This is a very encouraging

sign that adds confidence to our models. Additionally, we note that the loop

configuration in Figure 4.6(b) was constructed as an arbitrary dipole but allowed

to evolve freely. Both the kinetics and final configuration may strongly depend on

the type of multiloop metastable configuration that the dislocations adopt, but a

detailed examination is reserved for future work [117].

87



4.4 Summary

Our first finding of significance is the existence of a stress minimum around a

prismatic loop that can create an elastic trap for point defects at an offset distance

on the order of 2-5b from the actual loop segments. This trap is located outside

the perimeter for vacancy loops (inside for self-interstitial loops). While a sizable

kinetic barrier exists to access this minimum when approaching the loop from its

habit plane, we find that vacancies take advantage of a ‘cone’ of favorable (com-

pressive) stress gradients to approach the loops and become trapped there. The

significance of this is that, for isolated loops, vacancies are not immediately ab-

sorbed by the dislocation segments, which is the common assumption to formulate

osmotic forces that balance prismatic loops against climb. A more detailed in-

vestigation of the influence of vacancy cluster formation and inelastic interactions

between the vacancies and dislocation cores is needed to capture the ultimate fate

of these structures, but is presently beyond the scope of this paper.

Second, we find that in a coalescence process between two prismatic loops be-

longing to non-overlapping glide cylinders, the stress traps belonging to each loop

merge and intensify. This actually favors climb, as a relatively large concentration

of vacancies is funneled to that region, creating extra chemical force for absorp-

tion. Coalescence is thus directly driven by elastic forces that bring the loops in

line via glide, and indirectly through climb (chemical) forces that expand their

glide cylinders until contact is established and coalescence takes place. We find a

remarkable qualitative agreement with in situ TEM observations of similar pro-

cesses in irradiated Fe. None of these effects can be practically studied via direct

atomistic simulations –as the configurational space and the relevant timescales are

simply far too large to be explored rigorously–, or with continuum methods be-

cause they fail to capture the fine details of the interactions between point defects

and dislocation segments, including fluctuations.
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Chapter 5

Future Work

Though this method was originally developed for modeling vacancies, the frame-

work developed can be easily generalized to explore other point defect phenomena

that are difficult to capture with continuum solutions. As formulated and imple-

mented, the method provides a great deal of flexibility. For instance, a first order

approach to model self-interstitial atoms (SIA) kinetics would be to simply adjust

the defect parameters Dv, Em, Ωrel and capture radius accordingly. Since SIA are

known to display peculiar migration behavior, however, such as non-isotropic diffu-

sivity and being sensitive to trigonal stresses, some physics adjustments would be

needed in order to correctly formulate the diffusion-drift equation and the defect-

dislocation interaction criteria (emission, absorption, pinning, etc.). Pipe diffusion

could similarly be explored through careful treatment of the degrees of freedom of

the defects near segments. Though the physics of the point defect transport and

interaction may change, the underlying backbone of the parallelized defect-coupled

dislocation dynamics model would remain similar.

As well, the extension of the method to substitutional solute-dislocation effects

is attainable through some slight modifications in the treatment of the diffusion

behavior and defect-dislocation relationships. Most notably, by the addition of a

pinning and de-pinning mechanic for gliding dislocation segments as they become

locked by solute atoms. A similar kMC method was demonstrated by Zhao et

al. [118], however, by applying the developed kMC/DDD framework here we would

immediately have access large-scale simulations of complex dislocation networks.
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Such modifications would enable the study of solute hardening and dynamic strain

ageing, for example.

Another interesting application of the framework would be the inclusion of

multi-atom formation mechanics for bi-,and tri-vacancy or interstitial clusters.

The formation and dissolution of multi-atom clusters has been explored using

first-principle techniques [91,119–121] and the representative energetic parameters,

EV1+V1−>V2
f and EV2−>V1+V1

f for instance, could serve as additional actions that va-

cancies/interstitials could taken given close proximity to a like atom. Moreover,

the multi-vacancy/interstitial clusters have modified migration energies that can

be applied from first-principle investigations [119].

Finally, one could physically describe the evolution of defect populations during

irradiation damage in the presence of realistic dislocation microstructures. Dam-

age introduced during irradiation via collision cascades is known to result in high

concentrations of point defects distributed in a highly heterogeneous way, which

invalidates continuum methods for their study.

90



Bibliography
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[70] P. Söderlind, L. Yang, J. A. Moriarty, J. Wills, First-principles formation
energies of monovacancies in bcc transition metals, Physical Review B 61 (4)
(2000) 2579.

[71] C. Domain, C. Becquart, Ab initio calculations of defects in fe and dilute
fe-cu alloys, Physical Review B 65 (2) (2001) 024103.

[72] M. Mendelev, S. Han, D. Srolovitz, G. Ackland, D. Sun, M. Asta, Devel-
opment of new interatomic potentials appropriate for crystalline and liquid
iron, Philosophical magazine 83 (35) (2003) 3977–3994.

96

https://doi.org/10.1088/1741-4326/aadb48
https://doi.org/10.1088/1741-4326/aadb48
https://doi.org/10.1088/1741-4326/aadb48
https://doi.org/10.1088/1741-4326/aadb48
https://doi.org/10.1088/1741-4326/aadb48
https://doi.org/10.1088/1741-4326/aadb48


[73] J. Marian, B. Wirth, G. Odette, J. Perlado, Cu diffusion in α-fe: determi-
nation of solute diffusivities using atomic-scale simulations, Computational
materials science 31 (3-4) (2004) 347–367.

[74] C.-C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Multiscale
modelling of defect kinetics in irradiated iron, Nature materials 4 (1) (2005)
68.

[75] A. Souidi, C. S. Becquart, C. Domain, D. Terentyev, L. Malerba, A. Calder,
D. Bacon, R. Stoller, Y. N. Osetsky, M. Hou, Dependence of radiation dam-
age accumulation in iron on underlying models of displacement cascades and
subsequent defect migration, Journal of nuclear materials 355 (1-3) (2006)
89–103.

[76] C. C. Fu, F. Willaime, First principles calculations in iron: structure and mo-
bility of defect clusters and defect complexes for kinetic modelling, Comptes
Rendus Physique 9 (3-4) (2008) 335–342.

[77] M. Snyder, A. Chatterjee, D. Vlachos, Net-event kinetic monte carlo for over-
coming stiffness in spatially homogeneous and distributed systems, Comput-
ers & Chemical Engineering 29 (4) (2005) 701 – 712.

[78] E. Mart́ınez, J. Marian, M. H. Kalos, J. M. Perlado, Synchronous Parallel
kinetic Monte Carlo for Continuum Diffusion-reaction Systems, Journal of
Computational Physics 227 (8) (2008) 3804–3823.
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