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ABSTRACT OF THE DISSERTATION 

 

Optimal Longitudinal Cohort Designs and Variance Parameter Estimation 

by 

 

Lu Gan 

 

 

Doctor of Philosophy, Graduate Program in Applied Statistics 

University of California, Riverside, March 2012 

Dr. Subir Ghosh, Chairperson 

 

Many large scale longitudinal cohort studies have been carried out in different fields of 

science. Such studies need a careful planning at the design stage to achieve precise 

estimates of model parameters. This thesis presents the application of optimal design 

theory in a longitudinal study with two cohorts of n subjects each. For each subject, the 

observations are taken at three different time points denoted by (−1, ai, 1), where −1 < ai 

< 1 (i = 1, 2). Our class of longitudinal cohort designs is {(−1, a1, 1) (−1, a2, 1)}; −1 < a1 

≤ a2 < 1. Optimal cohort designs for linear mixed effects models with a random intercept 

and a random slope are computed analytically with respect to the D-, A-, and E-optimality 

criteria. The results are demonstrated by optimality regions. We also compare cohort 

designs with equidistant and non-equidistant time points. We have learned that when the 

covariance of the random effects satisfies certain conditions, the design with equidistant 

time points is preferred. However, in certain cases, for example, the third case stated in 

Theorem 3.1, the design with non-equidistant time points is better. We propose a new 

iterative method for computing the Restricted Maximum likelihood (REML) estimators 
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of the variance components in the linear mixed effects models using three criterion 

functions l
*
, Δ, and P. Two simulated data sets and one observed facial growth data set 

are used to illustrate our method. 
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Chapter 1 

Introduction  

 

 

1.1    Longitudinal Data 

A dataset is longitudinal if it tracks the same type of information on the same subjects at 

multiple time points. For example, part of a longitudinal dataset could contain the math 

test scores of some school children in three successive years.  

Table 1.1: School children math test scores 

Name 
Grade 1 

(1995) 

Grade 2  

(1996) 

Grade 3  

(1997) 

Jasmine  98 92 88 

Ben 78 69 81 

Bill 82 89 93 
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The primary advantage of longitudinal data is that they can be used to measure changes. 

Therefore, the main focus in longitudinal studies is usually on the modeling of responses 

as a function of time.  

Researchers in health science and medicine are often interested in estimating changes 

over time. In the past, many large-scale longitudinal cohort studies have been set up for 

this purpose. Some examples of such studies are the New York State cohort study [2], the 

longitudinal aging study of Amsterdam [9], and the national cancer prevention study [5]. 

These large-scale studies all have in common that different cohorts of subjects are 

measured several times over a long period of time.  

1.2    Cohort Designs 

Cohort designs are divided into three categories: purely longitudinal design, cross-

sectional design, and mixed longitudinal design (Tekle, Tan, and Berger, 2008 [28]). 

Here, cohort is defined as a group of subjects that have a common characteristic (birth 

year, geographic boundary, age, sex) in a selected time period. In a purely longitudinal 

design, a single cohort of subjects is measured over the study period. Instead, in a cross-

sectional design, two or more cohorts of subjects are selected and each of them is 

measured at one time point, that is, the number of cohorts is the same as the total number 

of time points at which the samples are taken. In a mixed longitudinal design, two or 

more cohorts of subjects are selected and measured at their corresponding time intervals, 

where the time intervals can be either overlapping or nonoverlapping. These three types 

of cohort designs are presented in Figure 1.1 to 1.3, respectively.  
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          Figure 1.1: Purely longitudinal design (C = 1 cohort) 

 

 

  

           

Figure 1.2: Cross-sectional design (C = 2 cohorts) 

 

 

 

 

         

  Figure 1.3: Mixed longitudinal design (C = 2 cohorts) 
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Additionally, a cohort design is characterized by the number of cohorts C, the number of 

repeated measurements in each cohort mi, and the number of subjects within each cohort 

ni (i = 1,…,C). Note that a purely longitudinal design is a special case of a mixed 

longitudinal design with C = 1 cohort. In this research, we consider fully overlapping 

cohorts in a mixed-longitudinal design, that is, the cohorts have the same beginning and 

ending time points. Moreover, we assume the number of repeated measurements in each 

cohort is the same and denoted as m.  

1.2.1    Notation 

The total number of subjects in C cohorts is N =
1

,
C

ii
n

  and the relative size of cohort i 

(i = 1,…,C) is ωi = in N  such that 
1

1
C

ii



 . The time points for the i

th
 cohort are 

1( ) ( )( ,..., ) .i i m it t t  In general, the cohort designs τ are expressed as 

1 2

1 2

      ...  
.

   ...  

C

C


  

 
  
 

t t t
 

Suppose that TCm is the design class of all cohort designs  with C cohorts and m 

repeated measures in each cohort. In chapter 2, design classes T22 and T23 will be 

discussed in great detail. 

1.3    Literature Review 

As we mentioned earlier that there have been many large-scale longitudinal cohort 

studies in health science and medicine. The objective of these longitudinal cohort studies 
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is to identify the change of responses over time. To achieve this objective, we need to 

estimate the model parameters efficiently. As a result, it is worthwhile to implement 

optimal design procedures to design these studies. The problems of optimal designs for 

longitudinal cohort studies have been studied in the literature. The following five papers 

are relevant to our work. 

1. Tan and Berger (1999):  

The model considered is a special case of the model (2.1) with C = 1 and 0 1  

1 0.p    The random effects model is then 

1

0 1 ( 1) ,q

kj j j k q j k kjy b b t b t 

    
 

where 
kjy is the k

th 
measurement (k = 1,…,m) taken on the j

th 
subject (j = 1,…,n) at time 

point kt . The above model can also be written in matrix notation as follows 

,j j j y Zb   

where 
1( , , )j j mjy y y is the m × 1 vector of repeated measurements taken on the j

th 

subject at m time points 1( , , ) ,mt t t  Z is the m × q matrix of explanatory variables of 

rank q which consists of polynomial coefficients based on t . The 
jb  is a (q × 1) column 

vector of random regression coefficients with mean vector b and covariance matrix D. 

The error 
j  

has mean vector 0 and covariance matrix . 

Tan and Berger numerically derived D-optimal designs for the next three cases.  
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Case I:  and ,D = I I  

Case II:  , i.e. a uniform matrix with constant off-diagonal elements,

( 0, 0),  and ,

a b

a

b a

a b

 
 
 
 
 
 

  

 D =

I

  

Case III:  and AR(1),D = I   i.e. the covariance between two measurement errors for 

the same subject at time kt  
and 'kt is '| |2 k kt t  

 and 0 <  < 1. 

Table 1.2 shows the D-optimal designs under Case I and Case II corresponding to linear 

(q = 2),  quadratic (q = 3), and cubic (q = 4) polynomial models. The results of D-optimal 

allocation of time points for Case III with serial correlation 0 < < 1 are illustrated in 

Table 1.3. 

Table 1.2: D-optimal designs for Case I and II in time interval [−1, 1] 

Degree 
Number of repeated  

measures (m) 

Optimal allocation of 

time points 

Linear: q = 2  2 −1, 1 

Quadratic: q = 3 3 −1, 0, 1 

Cubic: q = 4 4 −1, −0.44, 0.44, 1 
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Table 1.3: D-optimal designs for Case III with 0 <  < 1 in time interval [−1, 1] 

Degree 
Number of repeated  

measures (m) 

Optimal allocation of 

time points 

Linear:  

q = 2 

 

2 −1, 1 

3 −1, 0, 1 

4 −1, −0.4, 0.4, 1 

5 −1, −0.6, 0, 0.6, 1 

6 −1, −0.6, −0.2, 0.2, 0.6, 1 

Quadratic: 

q = 3 

3 −1, 0, 1 

4 −1, −0.3, 0.3, 1 

5 −1, −0.5, 0, 0.5, 1 

6 −1, −0.6, −0.2, 0.2, 0.6, 1 

 

Cubic: 

q = 4 

4 −1, −0.5, 0.5, 1 

5 −1, −0.65, 0, 0.6, 1 

6 −1, −0.7, −0.3, 0.3, 0.7, 1 

 

2. Ouwens, Tan, and Berger (2002): 

The model discussed is the same as the model (2.1) and is given by 

1 1

( ) 0 1 ( ) 1 ( ) 0 1 ( ) ( 1) ( ) ( ) ,
p q

kj i k i p k i j j k i q j k i kj iy t t b b t b t    

           

where ( )kj iy is the k
th
 (k = 1,…,m) measurement taken on the j

th 
subject (j = 1,…,ni) in the 

i
th
 cohort (i = 1,…,C) at the time point ( ).k it  For each subject j, the above model can be 

expressed in a more general matrix notation 

( ) ( ) ( ) ,j i i i j i j i  y X Z b   
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where
( ) 1 ( ) ( )( , , )j i j i mj iy y y is the m × 1 vector of repeated measurements of subject  j in 

cohort i, and
( ) 1( ) ( )( , , )i i m it t t  is the corresponding vector of time points, iX  is the m × 

p matrix of explanatory variables of rank p and iZ  is the m × 2 matrix of random effects. 

Both iX and iZ
 
consist of polynomial coefficients based on 

( )it . The p × 1 vector   is a 

vector of fixed regression coefficients. The 2 × 1 vector 
( ) 0 ( ) 1 ( )( , ) 'j i j i j ib bb  is the vector 

of random intercept and random slope with mean 0 and covariance D = 
11 12

12 22

d d

d d

 
 
 

. The 

error vector 
( )j i

 
has mean 0 and covariance ,i where i

 
has a first-order autoregressive 

serial correlation structure, i.e. the covariance between two measurement errors for the 

same subject at time ikt and 'ikt is '| |2 ik ikt t  
, where 2  is the common variance for error 

components and 0.0025 ≤  ≤ 1. The random vector 
( )j ib  and the error vector 

( )j i  are 

independent.  

Ouwens, Tan, and Berger defined the optimization parameter space as

 2 2

22 22 22: ( , , , , ),  [0.0025,1],  0.025 1,  0,  | | 1 .L d d L d              

Their numerical study found the maximin D-optimal designs corresponding to linear (p = 

2) and quadratic (p = 3) polynomial models with random intercepts and random slopes 

for the following two design classes shown in Table 1.4. 
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Table 1.4: maximin D-optimal designs in time interval [−1, 1] 

Degree Design class 
Optimal allocation  

of time point 

Linear: p = 2  
( 1, ,1)  ( 1, ,1)

0 1
     0.5          0.5 

a a
a

   
  

 
 

a = 0.55 

Quadratic: p = 3 a = 0 

Linear or quadratic: p = 2 or 3 a = 0.28 

Linear: p = 2  
( 1, , ,1)

0 1
        1     

a a
a

  
  

 
 

a = 0.57 

Quadratic: p = 3 a = 0.23 

Linear or quadratic: p = 2 or 3 a = 0.39 

 

3. Moerbeek (2005): 

Here, a fixed effects model is used to model the responses 
kjy  (k = 1,…,m, j = 1,…,n) of 

subject j at time points kt  

1

0 1 1 0 .p

kj k p k j kjy t t b   

    
 

The above fixed effects model is a special case of the model (2.1) with C = 1 and

0 1j jb b   ( 1) 0.q jb    In matrix notation, we have 

,j j j y X    

where 
1( , , )j j mjy y y  is an (m × 1) vector of repeated measurements taken on the j

th 

subject at m time points 1( , , ) .mt t t jX  is an (m × p) design matrix of explanatory 

variables which consists of polynomial coefficients based on t . The p × 1 vector   is a 
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vector of fixed regression coefficients. The error 
j  

has mean vector 0 and covariance 

matrix
j V

 , where matrix 
jV
 
has a first-order autoregressive serial correlation structure. 

The element (i, i') of 
jV  is equal to '| |i it t 

 and 0 ≤  ≤ 1.  

The optimal designs for polynomial models in time interval [0, 2] with m = p and 

uncorrelated errors, i.e. 
j V I , were computed numerically and shown in Table 1.5. 

Table 1.5: A-, D-, and E-optimal designs in time interval [0, 2] 

Degree A-optimal design  D-optimal design E-optimal design 

Linear: p = 2  0, 2 0, 2 0, 2 

Quadratic: p = 3 0, 1.057, 2 0, 1, 2 0, 1.069, 2 

Cubic: p = 4 0, 0.528, 1.572, 2 0, 0.553, 1.447, 2 0, 0.526, 1.582, 2 

 

In addition, Moerbeek discovered that the efficiency of a design is generally higher if the 

assumed order of polynomial is closer to the true order. He showed that the design with 

the number of time points equal to the number of regression coefficients is optimal. 

4. Winkens, Schouten, Breukelen, and Berger (2005): 

A mixed effects model with linearly divergent treatment effects is considered 

0 ,kj k k j kj kjy Gt b e      
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where 
kjy is the k

th 
measurement (k = 1,…,m) taken on the j

th 
subject (j = 1,…,n) at time 

point kt , G is an indicator of treatment, which is equal to 1 if subject j belongs to the 

treatment group, and 0 otherwise. There are two random error components:  and .kj kje

When k = 0 and G = 1, the above mixed effects model is a special case of the model (2.1) 

with C = 1, 0 0,   p = 2, and q = 1. For subject j, the model can be written as 

,j j j j j j   y X Z b e 
 

where 

1 1

0

1 0 0
1

0
 and ( ),

0
1

0 0 1

j j j j

m

m

G t

b

G t







  
   
        
 

    
   

X Z b  

1( , , )j j mjy y y is an (m × 1) vector of repeated measurements of subject j at time 

points
1( , , ) ,mt t t   is the treatment effect parameter. Moreover, 

j  
is a component 

of autocorrelation and 
je is an extra component of measurement error. The random vector 

jb  and the error vectors 
j  and 

je are independent, normally distributed with mean 0 and 

covariance matrices D, 2 2 and ,e H I respectively. An AR(1) correlation structure is 

considered for H, i.e. The element (i, i') of H is equal to '| |i it t 
 and 0 ≤  ≤ 1. The 

covariance of vector 
jy  is denoted as matrix .V They presented D-optimal designs in 

time interval [0, 1] for three covariance structures of V and three numerical values of 
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correlation 1m , where 1m  stands for the correlation between the first and last 

measurement taken from the same subject. 

Table 1.6: D-optimal designs for 1m = 0.3, 0.5, or 0.7 in time interval [0, 1] 

Covariance 

structure 

Number of repeated  

measures (m) 

Optimal allocation of 

time points 

‘Compound 

Symmetry’ or  

‘AR(1) + ME’  

3 0, 1, 1 

4 0, 1, 1, 1 

5 0, 0
+
, 1, 1, 1 

 ‘AR(1)’ 

3 0, 0.64, 1 

4 0, 0.5, 0.78, 1 

5 0, 0.42, 0.65, 0.84, 1 

+
The second time point is 1 when the correlation 1m  is 0.3. 

Note that ‘Compound Symmetry’ indicates a model with random intercept and 

measurement error ;je  ‘AR(1) + ME’ implies a fixed effects model with serial 

correlation 
j  and measurement error ;je  and ‘AR(1)’ represents a fixed effects model 

with only serial correlation .j  
It can be seen that a large gain in efficiency is obtained by 

adding repeated measures at the end of the study, if covariance structure is either 

‘Compound Symmetry’ or ‘AR(1) + ME’. 

5. Tekle, Tan and Berger (2008): 

The model considered is the same as the model (2.1) 

1 1

( ) 0 1 ( ) 1 ( ) 0 1 ( ) ( 1) ( ) ( ) ,
p q

kj i k i p k i j j k i q j k i kj iy t t b b t b t    

           
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where ( )kj iy is the k
th

 (k = 1,…,mi) measurement taken on the j
th 

subject (j = 1,…,ni) in the 

i
th
 cohort (i = 1,…,C) at the time point ( ).k it  For each subject j, the above model can be 

expressed in a more general matrix notation 

( ) ( ) ( ) ,j i i i j i j i  y X Z b   

where
( ) 1 ( ) ( )( , , )

ij i j i m j iy y y is the mi × 1 vector of repeated measurements for person j 

in cohort i observed at mi time points
 ( ) 1( ) ( )( , , ) .

ii i m it t t  The iX  is an mi × p matrix of 

explanatory variables and iZ  is the mi × 2 submatrix of iX . Both iX and iZ
 
consist of 

polynomial coefficients based on 
( )it . The p × 1 vector   is a vector of fixed regression 

coefficients. The 2 × 1 vector 
( ) 0 ( ) 1 ( )( , ) 'j i j i j ib bb  is the vector of random intercept and 

random slope with mean 0 and covariance D. The mi × 1 error vector 
( )j i

 
has mean 0 

and covariance 2 ,i R where 2  is the common variance for error components, iR
 
is the 

error correlation matrix which has an AR(1) structure, i.e. the element (s(i), s'(i)) of iR  is 

equal to ( ) '( )| |s i s it t



 and 0 ≤  ≤ 1.  

Taking into account the cost of the study, Tekle, Tan and Berger constructed D-optimal 

designs for a mixed longitudinal study with three nonoverlapping cohorts. The total 

number of repeated measurements is defined by
3

1

,i

i

M m


 and i  is the relative size of 

cohort i (i = 1, 2, 3) such that 
3

1

1.i

i




 The set of time points considered is {1, 2,…, 15}. 
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With D = 
1 0.25

0.25 0.25

 
 
 

, for a given value of M and serial correlation  , the optimal 

weights i  were derived numerically for each possible combination of time points using 

the Broyden-Fletcher-Goldfarb and Shanno (BFGS) algorithm, and then the D-optimal 

design was selected out of all those possible cohort designs. The results of D-optimal 

designs with optimal weights are shown in Table 1.7. 

Table 1.7: D-optimal designs for C = 3 cohorts in time interval [1, 15] 

Degree M Cohort 

Optimal  

allocation of 

time points 

Optimal weights 

0   0.4   0.8   

Linear:  

p = 2 
4 

1
st
  1, 13 0.9139 0.9131 0.9227 

2
nd

 14 0.0860 0.0868 0.0772 

3
rd

  15 0.0001 0.0001 0.0001 

 Quadratic:  

p = 3 
5 

1
st
  1, 7, 13 0.9059 0.9570 0.9575 

2
nd

 14 0.0940 0.0429 0.0424 

3
rd

  15 0.0001 0.0001 0.0001 

Cubic:  

p = 4 
6 

1
st
  1, 4, 10, 13 0.8826 0.9568 0.9846 

2
nd

 14 0.1173 0.0431 0.0153 

3
rd

  15 0.0001 0.0001 0.0001 

 

Notice that the time point in the third cohort has very little weight. Tekle, Tan and Berger 

also showed that for a given number of cohorts C ≤ 4 and number of fixed regression 

parameters p ≤ 4 in the polynomial models, the optimum number of time points per 

subject in most cases of the design is C + (p −1).  
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It should be pointed out that most the previous works have been focused on either purely 

longitudinal designs or mixed longitudinal designs with non-overlapping cohorts. Not 

much research, however, has been done on mixed longitudinal designs with overlapping 

cohorts. Moreover, in the literature the optimal designs were all found numerically. 

1.4    Thesis Contribution 

In this thesis, we consider the linear mixed effects models for describing the data of 

longitudinal cohort studies. The optimal design approach is used in finding the optimal 

allocation of time points to maximize the information for the estimation of the parameters 

in the model. Three situations that have not been considered earlier are presented in this 

thesis. The first situation is that mixed longitudinal designs with two fully overlapping 

cohorts are considered. We are interested in finding the optimal cohort designs under 

certain structures of D and Ri (i = 1, 2). The second situation is that optimal designs for 

longitudinal cohort studies are derived analytically. The D-, A-, and E- optimal design for 

the design class T23 with Ri = I and D = I is the design with time points 0( 1, ,1)a   for 

the 1
st
 cohort and 0( 1, 1)a  for the 2

nd
 cohort, where 

2

0 0 (0 1),  1,  2.ia a a i     The 

third situation is that we present conditions on the covariance of the random effects so 

that the design with equidistant time points is better than the design with non-equidistant 

time points. We find that the D-optimal design for the design class T23(a) with Ri = I and a 

general D is the design with equidistant time points (−1, 0, 1) for both cohorts, if 
(1)D 0f  . 

We also find that the design class T23(−a, a) is preferred over T23(a) with respect to both D- 

and A-optimality criteria, if D is a diagonal matrix. Furthermore, we obtain the estimators 
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for the variance components using the restricted maximum likelihood estimation (REML) 

procedure. The standard REML procedure uses numerical methods for solving the 

estimation equations, for example, the SAS PROC MIXED procedure.  We propose a 

new method of estimating the variance components by using three criteria: function Δ, 

the log-likelihood l
*
, and function P. The most accurate final solution of REML is 

obtained when the numerical value of Δ is minimum, the numerical value of l
*
 is 

maximum, and the numerical value of P is relatively small. Our method is computer 

intensive and comparable with the standard methods of estimation used by SAS. 

1.5    Thesis Description 

In Chapter 2, we discuss the theory of the mixed effects models. We then introduce the 

random intercept and slope models and two design classes, T22 and T23. In Chapter 3, we 

go over the concepts of D- and A-optimality criteria and the relative efficiency. In 

addition, we present optimal cohort designs for the design class T23(a) with correlation 

matrix Ri = I ( i = 1, 2) under the D- and A-optimality criteria. The results of optimal 

designs are illustrated by optimality regions. However, we know repeated measurements 

from the same subject are often correlated. We then in Chapter 4 consider the first-order 

autoregressive correlation structure, i.e. AR(1), for the error correlation matrix .iR
 
We 

present general results with their applications in comparison of design classes T23(a) and 

T23(−a, a), with respect to D- and A-optimality criteria. Chapter 5 considers another error 

correlation structure: compound symmetric (CS). The D-optimal cohort designs are 

obtained for design class T23(a) under the linear mixed effects model (2.3) with Ri = CS. 

The comparison between cohort designs with equidistant and non-equidistant time points 
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is also presented. In Chapter 6, we obtain D-, A-, and E-optimal designs analytically for 

design class T23 with covariance matrix D = I and error correlation matrix Ri = I. In 

Chapter 7, we estimate the variance components using the restricted maximum likelihood 

estimation (REML) procedure and then present a method of solving REML estimation 

using three criterion functions. Conclusions and discussion are given in Chapter 8.  
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Chapter 2 

Linear Mixed Effects Model 

for Cohort Designs 

 

 

2.1    Introduction 

In this chapter, we present the general mixed effects model for longitudinal studies, 

followed by the introduction of random intercept and slope models and two design 

classes: T22 and T23. An illustrated example of cohort design is given. Longitudinal 

studies, often called repeated measurements in health science and medicine, arise when 

subjects provide responses on multiple time points. The objective of longitudinal studies 

is to identify the change of responses over time. There are several textbooks and research 

papers on the analysis of longitudinal studies, for example: Silvey (1980) [25], and Tekle, 

Tan, and Berger (2008) [28].  
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2.2    Mixed Effects Model 

We often assume that the observations are drawn independently from the populations 

considered. However, for longitudinal data the independence assumption is not generally 

true. Mixed effects models are used for analyzing longitudinal data with a complex and 

multilevel structure. Mixed effects models for longitudinal data have been discussed by 

Diggle, Liang and Zeger (1994) [8] and Verbeke and Molenberghs (2000) [31], among 

others. Mixed effects model for longitudinal data can be described as follows. 

Suppose a researcher is interested in studying the dependence of response over time. Let 

( )kj iy be the k
th
 (k = 1,…,m) measurement taken on the j

th 
subject (j = 1,…,ni) in the i

th
 

cohort (i = 1,…,C) at the time point ( )k it , where a cohort is defined as a group of subjects 

experiencing some event (birth, age, geographic boundary, sex) in a selected time period. 

The general mixed effects model is given by 

1 1

( ) 0 1 ( ) 1 ( ) 0 1 ( ) ( 1) ( ) ( ) ,          (2.1)p q

kj i k i p k i j j k i q j k i kj iy t t b b t b t    

           

where time point ( )k it is the explanatory variable, ( )kj iy  is the response variable, the p 

parameters 0 1 1, ,..., p     are fixed parameters that describe the overall effects, the q 

coefficients 0 1 ( 1), ,...,j j q jb b b   are random (subject-specific) parameters, which describe the 

variation between subjects.  

For subject j in cohort i, model (2.1) can be rewritten as 

( ) ( ) ( ) ,j i i i j i j i  y X Z b 
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where 
( ) 1 ( ) ( )( , , )j i j i mj iy y y is an (m × 1) vector of repeated measurements taken on the 

j
th 

subject in the i
th
 cohort, the corresponding time points are 

( ) 1( ) ( )( , , ) .i i m it t t
 
The 

 

is a (p × 1) vector of fixed regression coefficients. The iX  is an (m × p) matrix of 

explanatory variables of rank p and iZ  is an (m × q) submatrix of iX of random effect 

variables. For example, for mixed effects models with linear polynomials, p = 2. The iX  

and iZ  are design matrices that consist of polynomial coefficients on the vector of time 

points 
( ) 1( ) ( )( , , ) .i i m it t t  The m × 1 vector 

( )j i
 
has mean 0 and an (m × m) covariance 

matrix 2 ,i R  where 2  is the common variance for error components, iR  is an (m × m) 

correlation matrix of the error vector. The q × 1 vector 
( )j ib consists random regression 

coefficients of subject j within cohort i, with mean 0 and q × q covariance matrix 2 D. 

Furthermore, it is assumed that the vectors bj(i) and vector
( )j i are independent. Note that 

the m time points 
( )it  are assumed to be the same for each subject in the i

th
 cohort. 

Subjects are nested within cohorts. Observations taken from any two subjects either in the 

same or different cohorts are uncorrelated. In the next section, we focus on a special case 

of the general mixed effects model, namely the random intercept and slope model. 

2.2.1    Random intercept and slope model 

Consider, as an example, a longitudinal study to investigate the effect of daily calcium 

supplementation on bone gain in adolescent men and women. The response variable is 

the total bone mineral density (TBBMD, gr/cm
2
). The cohorts are defined by gender and 
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each cohort has n subjects. The total number of subjects is N = 2n. Suppose that m = 3 

repeated measurements are taken from each subject, the following table illustrates the 

observations taken on the n subjects in both cohorts.
 

Table 2.1: Observations
( )kj iy  (k = 1, 2, 3, j = 1,…,n, i = 1, 2) 

 
Subject 

Time Point 

  
Subject 

Time Point 

  t1(1) t2(1) t3(1)     t1(2) t2(2) t3(2) 

  1 y11(1) y21(1) y31(1)     1 y11(2) y21(2) y31(2) 

  : : : :     : : : : 

Cohort 1 j y1j(1) y2j(1) y3j(1)   Cohort 2 j y1j(2) y2j(2) y3j(2) 

(Male) : : : :   (Female) : : : : 

  n y1n(1) y2n(1) y3n(1)     n y1n(2) y2n(2) y3n(2) 

 

For fixed cohort i and subject j, suppose the TBBMD profile picture of the j
th
 subject 

within the i
th

 cohort indicates a linear trend as follows:   
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Moreover, suppose that both the intercept and trend due to time vary by individuals, that 

is, each TBBMD profile picture has its own intercept and slope, then a special case of 

model (2.1) is given by:  

( ) 0 1 ( ) 0 ( ) 1 ( ) ( ) ( ).kj i k i j i j i k i kj iy t b b t      
               

(2.2)
  

It should be noted that model (2.2) consists of two parts: one with a fixed intercept and 

fixed slope 1 , and the other with a random intercept and random slope. The random 

intercept ( )oj ib and random slope 1 ( )j ib  represent subject-specific variation from the overall 

population intercept 0 and the overall population slope 1 for the j
th 

subject (j = 1,…,n) in 

the i
th
 cohort (i = 1, 2), respectively.  

For each subject j in the i
th
 cohort, model (2.2) can be expressed in a more general matrix 

notation 

( ) ( ) ( ) ,                  (2.3)j i i i j i j i  y X Z b 
  

where 
( ) 1 ( ) 2 ( ) 3 ( )( , , ) ,j i j i j i j iy y y y i = 1, 2, j = 1,…,n,  

 

1( )

2( )

3( )

1    

1     ,

1    

i

i i i

i

t

t

t

 
 

   
 
 

X Z
                

(2.4) 

0 1( , )   , the (2 × 1) vector
 
bj(i) 0 ( ) 1 ( )( , )j i j ib b   is i.i.d with mean 0 and a covariance 

matrix 2 D = 
11 122

12 22

,
d d

d d


 
 
   ( ) 1 ( ) 2 ( ) 3 ( )( , , )j i j i j i j i     has mean 0 and a covariance 

matrix 2 ,i R
 
bj(i) and 

( )j i are independent.  
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The covariance matrix of 
( )j iy  is given by 

 
2

( )var( ) ( ) ,j i i i i i   Dy Z Z R 
               

(2.5)
 

which is determined by the structure of the correlation matrix of the error vector Ri, and 

by the covariance of the random effects D. In addition, the expectation of 
( )j iy  is  

         ( )E( ) .j i i y X
               

(2.6) 

2.2.2    Examples of D matrix 

The covariance matrix of the estimated fixed effects ̂  in (2.8) depends on the elements 

of the matrix ,i  namely the Ri and D matrices. For illustration, let us consider the 

following cases for D: 

(1) D = 0, which implies that there are no random effects. The model in (2.1) reduces to a 

fixed-effects model with the random error component.  

(2)
1    0

0  0.2

 
  
 

D , i.e., a random intercept and random slope model with variances for the 

random intercept d11 = 1 and random slope d22 = 0.2. The correlation between random 

intercept and random slope is assumed zero. 

(3)
      1         0.5 0.2

0.5 0.2         0.2

 
  
  

D , which indicates a random intercept and random slope 

model with correlation between the random intercept and random slope r = 0.5. Note that 

the covariance between the random intercept and random slope 12 11 22   .d r d d   
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2.2.3    Covariance matrix  

For the random intercept and slope model in (2.3), the vector of all observations are 

denoted by
1(1) (1) 1(2) (2)( ,..., , ,..., )n n
    y y y y y with its expectation and covariance as follows 

1 1

01 1

22 1

22

0 0 0

0 0 0
E( ) ,      Var( ) . 

0 0 0

0 0 0





   
   
   
    

       
    

   
   

     

X

X

X
y y

X

X












       
(2.7)  

 

We note that the (6n × 6n) covariance   has block-diagonal form. The i (i = 1, 2) is the 

covariance matrix of 
( )j iy  defined in (2.5).  

For known , the best linear unbiased estimator of   is 

1
2 2

1 1 1 1 1

( )

1 1 1 1

ˆ ( )
n n

i i i i i j i

i j i j



    

   

   
       

   
 X X X Y = X X X y     , 

which has the covariance matrix 

                     

1
2

1
1 1 1

1 1 1 2 2 2

1

ˆVar( ) .i i i

i

n n n




  



 
        

 
 X X X X X X   

               
(2.8) 

The ˆVar( )  is important for finding the optimal cohort designs that will be discussed in 

Section 3.2. For instance, the determinant of ˆVar( ),  which is often referred to as the 

generalized variance, will be used for finding the D-optimal cohort designs.  
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2.3    Design Class 

Now we present two design classes: one with two repeated measurements on each subject, 

and the other with three repeated measurements on each subject. 

2.3.1    Design class T22  

The response variable ( )kj iy  in (2.2) is a linear function of time, so the minimum number 

of repeated measurements required is two. One measurement is taken at the beginning of 

the study, and the other measurement is taken at the end of the study. If the time period 

[−1, 1] is used and C = 2 cohorts of equal sample size are considered, then the design 

class with m = 2 repeated measurements is given by 

                            

T22 = 
( 1,1)  ( 1,1)

.
   0.5       0.5

  
 
 

                 (2.9) 

In some cases, however, more than two repeated measurements are needed to accurately 

model the longitudinal trend of a continuous response variable over time and to detect 

any departure from the linear trend. Willett, Singer and Martin (1998) [34] gave a rule of 

thumb and recommended including at least one more time point (repeated measurement) 

than the number of fixed-effects parameters in the model. Vickers (2003) [32] argued that 

although increase the number of repeated measurements to three or four measurements, 

will increase the power of a test, the benefit of an additional repeated measurement 

rapidly decreases at the number of measurements rises. His results support the conclusion 

that it is not very efficient to include too many repeated measurements in a longitudinal 
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study. As a result, the design class T23 is considered in this dissertation and is defined in 

(2.10). 

2.3.2    Design class T23 

Considering cohort designs with m = 3 repeated measurements obtained from C = 2 

cohorts with n subjects each, define the class of cohort designs T23 such that 

                            

T23 = 
1 2

1 2

( 1, ,1)  ( 1, ,1)
1 1 ,

     0.5            0.5 

a a
a a

  
    

 

                 (2.10) 

and a cohort design 
1 2( 1, ,1)  ( 1, ,1)

     0.5            0.5

a a


  
  
 

 for some specified values of a1 and a2 

satisfying 1 21 1,a a   
 
where ( 1, ,1)ia  are the time points for the i

th
 cohort (i = 1, 2), 

and 0.5 on the second row is the relative sample size indicating that the two cohorts are 

equally sized. Note that the first measurement for each subject is taken at 
1( )it = −1, and 

the total duration of the study period is fixed and rescaled to [−1, 1], i.e. 
3( )it =1.  

2.4    Examples   

As a motivating example for illustrating some of the issues of cohort designs, let us 

consider the following longitudinal study. Suppose we are interested in describing 

children’s growth pattern over time, then it would be possible to design a study in which 

the height of a cohort of children is assessed at different time points. Here, cohorts can be 

defined by birth. For example, a group of children who were born in a particular period of 

year, say 1995, form a birth cohort. In our example, suppose there are children in two 

cohorts based on birth year. The study period is five years and three measures of height 
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are taken from each child. For the 1
st
 cohort (born in 1995), we take observations from 

those children at their years of age: 5 yrs, 6 yrs and 3 month (6.25), and 10 yrs. For the 

2
nd

 cohort (born in 2000), we take observations from those children at their years of age: 

5 yrs, 8 yrs and 9 month (8.75), and 10 yrs. We assume that we have complete data for 

our analysis. The objective of this study is to find how growth pattern changes over time 

within a cohort and whether growth pattern changes differently in the 1
st
 cohort compared 

with that in the 2
nd

 cohort. The following figure shows how the data look like. Each bar 

represents n measurements taken at a particular time point. The height of bars does not 

have any special meaning. 

 

The time interval [5, 10] is rescaled to [−1, 1] by applying a linear transformation: 

5 10
2( 7.5)2 , where  is the age of the child (5 10). 

10 5 5

2

  

x
x

x x





  


 

Now we can write the aforementioned cohort design as 
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1

( 1, 0.5,1) ( 1,0.5,1)
,

       0.5             0.5


   
  
 

              (2.11)

 
where 1 2( 1, 0.5,1)  and ( 1,0.5,1)     t t are the time points for the 1

st
 and 2

nd
 cohort, 

respectively. Note that 1 23T ,   and 1 + 2 = 0.5 + 0.5 = 1.  

Suppose we have n = 50 children in each cohort. For the j
th
 child (j = 1,…,50) within the 

i
th
 cohort (i = 1, 2), the model  is  

( ) ( ) ( ) ,j i i i j i j i  y X Z b 

 

where  

1 1 2 2

1   1 1   1

1   0.5 ,  1    0.5 .

1     1 1     1

    
   

    
   
      

X XZ Z

 

For illustration, assuming 
50 30

,
30 80

 
  
 

D i  IR (i = 1, 2), and 
2 1,  the covariance 

matrix of parameter estimators can be found as 

1

1
22 1

1

0.5035 0.3
ˆVar( ) { ( ) } ,

0.3 0.8046
i i i ii

n 






          
 D IX Z Z X  

with its determinant
1

ˆdet{Var( )} 0.3151,   where 
1

ˆ
  is the estimator of ̂  under the 

design 1.
 
Clearly, the numerical value of ˆdet{Var( )} varies across different cohort 

designs. Based on D-optimality criterion that we will explain in the next chapter, the 

smaller the numerical value of ˆdet{Var( )}, the more efficient the cohort design. Now 
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the following questions might be raised: (1) is 
1

ˆdet{Var( )} calculated under the cohort 

design 1  small enough? (2) Does 1  give the optimal allocation of time points? To 

answer those questions, the concept of optimal cohort designs is first discussed in 

Chapter 3.

   



30 
 

 

 

 

 

Chapter 3 

Optimal Cohort Designs for  

T23(a) with Ri = I 

 

3.1    Introduction 

To find optimal cohort designs that yield precise estimation of the fixed parameters in 

model (2.2), we have to decide on the optimal allocation of time points. The ‘optimal’ 

allocation of time points depends on the specified optimality criterion, which is a function 

of the covariance matrix in (2.8). In this chapter, we briefly introduce D- and A-

optimality criteria and the relative efficiency. Then D- and A-optimality criteria are used 

in finding the optimal cohort designs for the design class T23(a) defined in (3.1) with 

correlation matrix Ri = I. Moreover, we present conditions on the covariance matrix D so 

that the cohort design with equidistant time points is D-optimal. The results are illustrated 

by D-optimality regions.  
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3.2    Optimality Criteria   

The concept of optimal designs was introduced by Wald (1943) [33]. The optimal design 

*  is the design, among the design class T23 (2.10), for which ˆVar( )  in (2.8) is 

minimized. Since matrices cannot be minimized in a unique way, Kiefer (1959) [11] 

proposed several meaningful functions as optimality criteria for studying optimal designs. 

Two optimality criteria are used in this chapter, namely D- and A-optimality. The most 

often used D-optimality criterion seeks to minimize the determinant of the covariance 

matrix of the parameter estimates. This is equivalent to minimizing the volume of the 

confidence ellipsoid for the estimated regression parameters. Obviously, a smaller 

volume implies better estimation. The A-optimality seeks to minimize the trace of the 

covariance matrix, i.e. the average variance of the parameter estimates. So, A in the name 

of this criterion stands for average.  

In the present chapter, Ri = I correlation structure is considered, i.e. the errors are 

assumed to be uncorrelated. For simplicity, we first consider a special case of the design 

class T23 (2.10) by assuming the time points for both cohorts are identical, i.e. a1 = a2 = a. 

We define 

23( )

( 1, ,1)  ( 1, ,1)
T  1 1 .             (3.1)

     0.5          0.5 
a

a a
a

  
    
 

 

We use the random intercept and slope model that we have discussed earlier in modeling 

the longitudinal data. For the j
th

 subject in the i
th

 cohort, the model is given by 

( ) ( ) ( ) ,j i i i j i j i  y X Z b 
     

 j = 1,…,n, i = 1, 2,
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where 

1   1

1     ,  

1     1

( 1, ,1) ,  and (1,1,1) .

i i a

a

 
          
  

   

X XZ Z j a

       a j

 

Therefore, the covariance matrix of 
( )j iy  is homogeneous across subjects and cohorts, i.e. 

i    for both i (i = 1, 2). It follows from (2.8) that the variance-covariance matrix of 

̂  is 

             

1
1 1

1 1

2 2
ˆVar( ) .

2 2

n n

n n


 

 

  
  

   


j j j a

j a a a

 


              (3.2)  

Consequently, the inverse of 
2

2 ˆVar( )
n


 is given by 

 

    

1 11

2 1 1

( ) ( )2 ˆVar( ) ,
( ) ( )

n



 

 

      
            

D I D I

D I D I


j Z Z j j Z Z a

j Z Z a a Z Z a

 

       
(3.3) 

which will be used for finding the D-optimal cohort designs in section 3.2.1. Here, the 

symmetric 2 × 2 matrix in (3.3) only depends on three model parameters: d11, d12, and d22 

and one design parameter a. The range of those parameters is shown in Table 3.1. 

Table 3.1: The range of parameters 

a d11 d22 d12 

(−1, 1)  > 0 > 0  11 22 11 22,d d d d  
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Notice that (1) since we are considering cohort designs with three distinct time points, we 

assume the additional measurement cannot be taken at the beginning (a ≠ −1) or at the 

end (a ≠ 1) of the study; (2) both d11 and d22 are greater than zero, as they are variances 

for the random intercept and random slope, respectively; (3) the absolute value of d12 is 

less than 11 22d d  to make sure that matrix D is positive-definite.  

3.2.1    D-optimality 

The D-optimality criterion minimizes the determinant of the covariance matrix ˆVar( )  by 

choosing a D-optimal cohort design D  such that, for each design
23( )T a  , 

   ˆ ˆdet Var( ) det Var( ) ,
D  

 

where ˆ
D

 and ˆ
 are estimators of ̂  under design D  

and ,
 
respectively. Minimizing 

 ˆdet Var( )  is equivalent to maximizing det 1ˆ[Var( )] .  

We denote  
1

2ˆdet 2 Var( )n 


 
 


 

as 1( )Q a , where 

       
    

2
1 1 1

1( ) ( ) ( ) ( ) .Q a            D I D I D Ij Z Z j a Z Z a j Z Z a             (3.4) 

Here, we divide by 2  to consider a criterion that is scale free. Of course, n is the 

number of subjects within each cohort. 

The design 
23( )TD a 

 
with the maximum value of 1( )Q a in (3.4) is considered D-optimal. 

Consider again, the example of longitudinal study on children’s growth pattern in Section 

2.4. For three repeated measurements taken at time points (−1, a, 1) from each child in 

both cohorts, the D-optimal cohort design is obtained by maximizing 1( )Q a as a function 
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of time point ‘a’, if the D matrix is assumed known. Suppose
1 0

0 8

 
  
 

D , numerical 

values of 1( )Q a are calculated and plotted against the time point a (−1 < a < 1) in Figure 

3.1.  

Figure 3.1: Plot of 1( )Q a given d11 = 1, d12 = 0, and d22 = 8 

 

It can be seen that 1( )Q a reaches its maximum 0.0882 when a is 0, which indicates that a 

= 0 is the best choice with respect to D-optimality criterion. Therefore, the D-optimal 

design among design class T23(a) 
is

 

( 1,0,1)  ( 1,0,1)

     0.5          0.5
D

  
  
 

given 
1 0

.
0 8

 
  
 

D  
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3.2.2    A-optimality 

The A-optimality minimizes sum of the variances of the estimated parameters, which is 

the sum of the diagonal elements of ˆVar( ) in (3.2). Denote tr{M} the trace of matrix M. 

An A-optimal design A  is a design such that, for each design
23( )T a  , 

   ˆ ˆtr Var( ) tr Var( ) ,
A  

 

where ˆ
A

 and ˆ
 are estimators of ̂  under design A  

and ,
 
respectively. Without loss 

of generality, A-optimal designs is found by minimizing  2ˆtr 2 Var( )n   where 

         

1
1 1

2 1 1

( ) ( )2 ˆVar( ) ,
( ) ( )

n




 

 

     
  

      

D I D I

D I D I


j Z Z j j Z Z a

j Z Z a a Z Z a

               

(3.5) 

Define tr 2ˆ2 Var( )n  as 2 ( ).Q a
 

It can be verified that 

                           

1 1

2

1

( ) ( )
( ) ,  

( )
Q a

Q a

      


D I D Ij Z Z j a Z Z a
              (3.6) 

where 1( )Q a has been defined in (3.4). The design 
23( )TA a  with the minimum value of 

2 ( )Q a in (3.6) is considered A-optimal. Revisit the example that we have talked about in 

Section 3.2.1. Under the same condition 
1 0

,
0 8

 
  
 

D  A-optimal designs are constructed 

by minimizing 2 ( ),Q a  where 2 ( )Q a is simplified to a function of a only and shown in 

Figure 3.2. 
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Figure 3.2: Plot of 2 ( )Q a given d11 = 1, d12 = 0, and d22 = 8 

 

In Figure 3.2, the curve represents the function 2 ( ).Q a  It can be observed that 2 ( )Q a

decreases as a moves further away from the center point ‘0’. If we put a threshold on a 

(−1 < a < 1) such that a
2
 ≤ 0.5 (Note: choosing a

2
 very close to 1 should be avoided, as 

design class T23(a)
 
involves three distinct time points), then the designs with a = 0.5  

are considered A-optimal. In other words, given 
1 0

,
0 8

 
  
 

D  the A-optimal designs are

( 1, 0.5,1)  ( 1, 0.5,1)

        0.5                   0.5
A

     
  
    

and
( 1, 0.5,1)  ( 1, 0.5,1)

.
       0.5                 0.5

A
   

  
  
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3.2.3    The Relative Efficiency  

To compare the efficiencies of two cohort designs 1  
and 2 , the relative efficiency can be 

used. The D- and A-relative efficiency of a design 2  
compared with a design 1  

are 

given by the ratio (Atkinson and Donev, 1992 [1]): 

2

1

2 1

ˆdet{Var( )}
-Eff( | ) ,

ˆdet{Var( )}
D





  



           (3.7) 

2

1

2 1

ˆtr{Var( )}
-Eff( | ) ,

ˆtr{Var( )}
A





  



           (3.8) 

respectively. 
1

ˆ
 and

2

ˆ
 are estimators of ̂  under design 1  

and 2 , correspondingly. If 

the ratio is less than 1, then design 2  
is more efficient than design 1.   

To illustrate, let us compare the efficiencies of D- and A-optimal cohort designs found in 

Section 3.2.1 and 3.2.2. We present the numerical values of D- and A-criterion functions 

for those three designs in Table 3.2.  

Table 3.2: Optimality criterion functions 

Design 
Determinant

2ˆdet{2 Var( ) }n   

Trace 
2ˆtr{2 Var( ) }n   

( 1,0,1)  ( 1,0,1)

     0.5          0.5
D

  
  
 

 11.3333 9.8333 

( 1, 0.5,1)  ( 1, 0.5,1)

        0.5                   0.5
A

     
  
  

 11.4286 9.7857 

( 1, 0.5,1)  ( 1, 0.5,1)

       0.5                 0.5
A

   
  
  

 11.4286 9.7857 

 



38 
 

It is not surprising to see that both the determinant and trace of 2ˆ2 Var( )n  remain the 

same for a = 0.5  and a = 0.5 , since from Figure 3.1 and Figure 3.2, respectively, we 

observe that 1( )Q a  and 1( )Q a are symmetric about a = 0 given
1 0

.
0 8

 
  
 

D  

The D-efficiencies of A-optimal designs A relative to the D-optimal design D is given 

by:
ˆdet{Var( )} 11.3333

-Eff( | ) 0.9917.
ˆ 11.4286det{Var( )}

D
D A

A

D     



 The result implies that, under D-

optimality criterion, adding the additional time point in the middle of the study (a = 0) 

reduces the variance of the parameter estimators by about 1%, compared to placing the 

time point at a distance of 0.5  away from 0. The reduction in variance is small due to 

the facts that the assumed D matrix has small numerical values for d11, d12, and d22, and 

the time interval [−1, 1] is short.  

3.3    D-optimal Designs   

The D-optimal design that we found in Section 3.2.1 indicates a = 0 is the best choice 

under the condition 
1 0

.
0 8

 
  
 

D  If a = 0, the time points are equally spaced. However, in 

reality, equidistant time points do not always yield efficient estimation of parameters. 

Therefore, we now raise the question as to which design, equidistant time points or non-

equidistant time points, should be implemented under what condition. 
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3.3.1    Comparison of Q1(0) with Q1(a)  

Recall that a D-optimal design is found by maximizing Q1(a) in (3.4). To evaluate the 

designs with a = 0 vs. a ≠ 0, we compare Q1(0) with Q1(a) for a ≠ 0 and −1 < a < 1.  

The exact expression of 1( )Q a  for −1 < a < 1 is 

4 2 4 2 2

22 11 22

3 2 2 4 2

12 12 1
1 2

2
111 22 12 11 22 22

2 2 2 2

12 12 11 22

(2 10 12) ( (4 24 36) 6 18)

(4 12 ) 2 (4 24 36) 6 Num ( )
( ) ,       (3.9)

Den ( )3 2 2 6

6 2 2 1

d a a d d a a a

d a a a d a a a
Q a

ad d ad d d a d

d a d a d d

       
         

 
    
      

which is a function of a, d11, d22, and d12. Notice that 1Den ( )a is positive for all a, d11, d22, 

and d12.  We consider the difference between 1 1(0) and ( )Q Q a as follows 

1 1
1 1

1 1

Num (0) Num ( )
(0) ( ) .

Den (0) Den ( )

a
Q Q a

a
  

           

(3.10)

 

1 1With Den (0) 0,  Den ( ) 0,  we knowa   

1 1 1 1 1 1(0) ( ) 0 Num (0)Den ( ) Num ( )Den (0) 0.Q Q a a a    

 
(1)

1 1 1 1Define D Num (0)Den ( ) Num ( )Den (0),  such thatf a a 

 (1) 2

12 11 22 11 12 22 11 22

2 2 2 2 2

11 22 12 11 22 22 12 12 11 22

D 2 ( 6 3 )(3 6 2 6 1)

                      (3 2 2 6 6 2 2 1). 

f a a d ad ad d d d d d

d d ad d d a d d a d a d d

        

       
 

Denote

 
(0) 2 ,c a                     
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(1)

12 11 22 11 22 126 3 (1 3 ) 6 ,  c a d ad ad a d d d       
              

 

(2) 2 2

11 22 11 22 12 11 22 11 22 123 2 6 6 1 3 2 6( ) 1 0,c d d d d d d d d d d          
              

 

(3) 2 2 2 2 2

11 22 12 11 22 22 12 12 11 22

2 2 2

11 22 11 22 12 22 11 22 12 12

2 2

11 22 11 22 12 11 22 11 22 12

22

3 2 2 6 6 2 2 1

     (3 2 6 6 1) ( 2 2 ) 2 ,    

where 3 2 6 6 1 3 2 1 6( ) 0,

           

c d d ad d d a d d a d a d d

d d d d d a d d d d ad

d d d d d d d d d d

d

        

        

         

2 2

11 22 12 22 11 22 122 2 2( ) 0.                                           (3.11)d d d d d d d     
   

Then, 
(1)D f  can be rewritten as the product of  

(0) (1) (2) (3),  ,  ,  and c c c c                

 

(1) (0) (1) (2) (3)D .f c c c c
            

(3.12) 

(0) (1)We note that when 0,  0 so that D 0.fa c  

 

Because it is unnecessary to compare 

1(0)Q with 1( 0),Q a   we evaluate the signs of 
(1)D f  for a ≠ 0 and −1 < a < 1 in the 

following nine cases.  

Table 3.3: Analysis of

 

(1)D f in nine cases 

 
(1) 0c 

 

(1) 0c 

 

(1) 0c 

 
12 0d 

 
I II III 

12 0d 

 
IV V VI 

12 0d 

 
VII VIII IX 

 

3.3.2    The Situation with −1 < a < 0 

We present the signs of (0) (1) (2) (3) (1),  ,  ,  ,  and D fc c c c  for the aforementioned nine cases in 

Table 3.4.  
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Table 3.4: Analysis of

 

(1)D f for −1 < a < 0

 

Case (0)c  (1)c  (2)c  (3)c  
(1)D f  

I > 0 > 0 > 0 > 0 > 0  

II > 0 < 0 > 0 

> 0, if 

2 2 2

11 22 12 11 22 12

2

11 22 22 12

6( ) 2 ( )

(1 3 2 ) 2 0

d d d a d d d

d d a d ad

   

     
 

< 0, if  

2 2 2

11 22 12 11 22 12

2

11 22 22 12

0 6( ) 2 ( )

(1 3 2 ) 2

d d d a d d d

d d a d ad

   

     
 

< 0 

> 0 

III > 0 = 0 > 0 > 0 = 0 

IV > 0 > 0 > 0 > 0 > 0 

V > 0 < 0 > 0 > 0 < 0 

VI > 0 = 0 > 0 > 0 = 0 

VII > 0 > 0 > 0 > 0 > 0 

VIII > 0 < 0 > 0 > 0 < 0 

IX > 0 = 0 > 0 > 0 = 0 

 

When 
(1)D f > 0, the design with a = 0 is a D-optimal design. When 

(1)D f = 0, the designs 

with a = 0 and a ≠ 0 are indistinguishable with respect to D-optimality criterion. 

Furthermore, when 
(1)D f < 0, the design with a = 0 is not a D-optimal design. 

Theorem 3.1 

When −1 < a < 0, we have 

1. (1)D 0f  for all a, d11, d22, and d12 satisfying 
(1) 0,c   

2. (1)D 0f  for all a, d11, d22, and d12 > 0 satisfying 
(1) (3)0 and 0,c c   
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3. (1)D 0f  for all a, d11, d22, and (i) d12 ≤ 0 or (ii) d12 > 0 and (3) 0c  satisfying 

(1) 0.c   

Proof. 

1. Suppose a, d11, d22, and d12 satisfying (1) 0.c   In (3.12), (1) (0) (1) (2) (3)D f c c c c = 0.                 

When a (−1 < a < 0), d11, d22, and d12 satisfying (1) 0c  , from (3.11) 

2
(1) 11 22

11 22 12 12

(1 3 )
(1 3 ) 6 0,  so 2  which implies

3

a d d
c a d d d ad

 
        

2 2 2

22 12 11

1 1
2 0.

3 3
a d ad a a d     Hence, from (3.11) 

(3) 2 2 2 2

11 22 12 11 22 12 11 22 22

2
1 6( ) 2 ( ) (3 2 )

3
c d d d a d d d d d a d       

2

22 12

1
      ( 2 ) 0.

3
a d ad  

 

Since (0) 4 (2) 2

11 22 11 22 122 0,  and 3 2 6( ) 1 0,c a c d d d d d          

(1) (0) (1) (2) (3)we have D 0f c c c c   and the result follows. 

2. Suppose a, d11, d22, and d12 > 0 satisfying (1) (3)0 and 0.c c   For −1 < a < 0, 

(0) 4 (2) 2

11 22 11 22 122 0 and 3 2 6( ) 1 0.c a c d d d d d         Then from (3.12),  

we have 
(1) (0) (1) (2) (3)D 0f c c c c   and the result follows. 

3. (i) Suppose a, d11, d22, and d12 ≤ 0 satisfying (1) 0.c   Then from (3.11),

2
(1) 11 22

11 22 12 12

(1 3 )
(1 3 ) 6 0,  so 2 0.

3

a d d
c a d d d ad

 
         

(3) 2 2 2

11 22 11 22 12 22 11 22 12 12(3 2 6 6 1) ( 2 2 ) 2 0.c d d d d d a d d d d ad         
 

Since (0) 4 (2) 2

11 22 11 22 122 0,  and 3 2 6( ) 1 0,c a c d d d d d          
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(1) (0) (1) (2) (3)we have D 0f c c c c   and the result follows. 

(ii) Suppose a, d11, d22, and d12 satisfying (1) (3)0 and 0.c c   For −1 < a < 0, 

(0) 4 (2) 2

11 22 11 22 122 0 and 3 2 6( ) 1 0.c a c d d d d d          

From (3.12), we have 
(1) (0) (1) (2) (3)D 0f c c c c   and the result follows. 

Theorem 3.2 

When −1 < a < 0, 

1. The condition that all a, d11, d22, and d12 satisfying (1) 0c  implies that d12 must 

satisfy  

              
11 22 12 11 22 11 22min ,  (1 3 )

6

a
d d d d d d d

 
     

 
for all a, d11, and d22. 

2. The condition that all a, d11, d22, and d12 > 0 satisfying (1) (3)0 and 0c c  implies

11 22 12 11 22

2 2 2 2

11 22 12 11 22 12 11 22 22 12

max 0,  (1 3 )  and
6

0 6( ) 2 ( ) (1 3 2 ) 2

a
d d d d d

d d d a d d d d d a d ad

 
    

 

         
 

             for all a, d11, and d22. 

3. (i) The condition that all a, d11, d22, and d12 ≤ 0 satisfying (1) 0c  implies that d12 

must satisfy  

             
11 22 11 22 12max ,  (1 3 ) 0

6

a
d d d d d

 
     
 

for all a, d11, and d22. 

              (ii)  The condition that all a, d11, d22, and d12 > 0 satisfying (1) (3)0 and 0c c   
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                 implies that  

              

11 22 12 11 22

2 2 2 2

11 22 12 11 22 12 11 22 22 12

max 0,  (1 3 )  and
6

6( ) 2 ( ) (1 3 2 ) 2 0

a
d d d d d

d d d a d d d d d a d ad

 
    

 

           

              for all a, d11, and d22. 

Proof. 

1. Suppose a, d11, d22, and d12 satisfying (1) 0c  . Then from (3.11),  

(1)

11 22 12 12 11 22(1 3 ) 6 0,  which implies (1 3 ). 
6

a
c a d d d d d d          

11 22 12 11 22Since ,d d d d d    we have 

11 22 12 11 22 11 22min ,  (1 3 )
6

a
d d d d d d d

 
     

 
and the result follows.

 

2. Suppose a, d11, d22, and d12 > 0 satisfying (1) (3)0 and 0.c c   Then from (3.11), 

(1)

11 22 12 11 22 12(1 3 ) 6 0,  which implies (1 3 ) . 
6

a
c a d d d d d d       

 

12 11 22Since 0 ,d d d   we have 
11 22 12 11 22max 0,  (1 3 ) .

6

a
d d d d d

 
    

   

(3) 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 0.c d d d a d d d d d a d ad           

Hence, 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2d d d a d d d d d a d ad          

and the result follows. 
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3. (i) Suppose a, d11, d22, and d12 ≤ 0 satisfying (1) 0.c   From (3.11),

(1)

11 22 12 11 22 12(1 3 ) 6 0,  which implies (1 3 ) . 
6

a
c a d d d d d d         

11 22 12Since 0,d d d    we have 
11 22 11 22 12max ,  (1 3 ) 0

6

a
d d d d d

 
     
   

and the result follows. 

(ii) Suppose a, d11, d22, and d12 > 0 satisfying (1) (3)0 and 0.c c   From (3.11), 

(1)

11 22 12 11 22 12(1 3 ) 6 0,  which implies that (1 3 ) . 
6

a
c a d d d d d d       

 

12 11 22Since 0 ,d d d   we have 
11 22 12 11 22max 0,  (1 3 ) .

6

a
d d d d d

 
    

   

(3) 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 0.c d d d a d d d d d a d ad           

Hence, 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2d d d a d d d d d a d ad          

and the result follows. 

Theorem 3.3 

When −1 < a < 0, we have 

1. (1)D 0f  for all a, d11, d22, and d12 satisfying 

11 22 12 11 22 11 22min ,  (1 3 ) ,
6

a
d d d d d d d

 
     

 
 

2. (1)D 0f  for all a, d11, d22, and d12 satisfying 

11 22 12 11 22max 0,  (1 3 )
6

a
d d d d d

 
    

 
2 2 2 2

11 22 12 11 22 12 11 22 22 12and 0 6( ) 2 ( ) (1 3 2 ) 2 ,d d d a d d d d d a d ad           



46 
 

3. (1)D 0f  for all a, d11, d22, and d12 satisfying  

(i) 
11 22 11 22 12max ,  (1 3 ) 0,

6

a
d d d d d

 
     
   

(ii) 
11 22 12 11 22max 0,  (1 3 )  and

6

a
d d d d d

 
    

 
 

                 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 0.d d d a d d d d d a d ad         
 

Proof.  

1. Suppose a, d11, d22, and d12 satisfying

11 22 12 11 22 11 22min ,  (1 3 ) .
6

a
d d d d d d d

 
     

 
  

Then, (1)

12 11 22(1 3 ) which implies 0
6

a
d d d c   

 
so, by part 1 of Theorem 3.1, 

(1)D 0f   and the result follows. 

2. Suppose a, d11, d22, and d12 satisfying 
11 22 12 11 22max 0,  (1 3 ) ,

6

a
d d d d d

 
    

 
 

2 2 2 2

11 22 12 11 22 12 11 22 22 12and 0 6( ) 2 ( ) (1 3 2 ) 2 .d d d a d d d d d a d ad           

Since (1)

11 22 12(1 3 ) ,  we have 0. From (3.11),
6

a
d d d c   

2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 ,d d d a d d d d d a d ad        
 

which implies that (3) 0.c   Thus, by part 2 of Theorem 3.1, 
(1)D 0f 

 

and the result follows. 
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3. (i) Suppose a, d11, d22, and d12 ≤ 0 satisfying 

11 22 11 22 12max ,  (1 3 ) 0.
6

a
d d d d d

 
     
 

  

Then (1)

11 22 12(1 3 ) ,  so that 0.
6

a
d d d c   

 

Hence, by part 3(i) of Theorem 3.1, we have 
(1)D 0f   and the result follows. 

            (ii) Suppose a, d11, d22, and d12 satisfying   

            
11 22 12 11 22max 0,  (1 3 )  and

6

a
d d d d d

 
    

 
 

            2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 0.d d d a d d d d d a d ad         
 

Since (1)

11 22 12(1 3 ) ,  we have 0.
6

a
d d d c   

  

2 2 2 2

11 22 12 11 22 12 11 22 22 12From (3.11), 6( ) 2 ( ) (1 3 2 ) 2d d d a d d d d d a d ad        
 

implies that (3) 0.c   Hence, by part 3(ii) of Theorem 3.1, 
(1)D 0f  and the result 

follows. 

3.3.3    The Situation with 0 < a < 1 

Now we are considering the nine cases shown in Table 3.3 for 0 < a < 1. We present the 

signs of (0) (1) (2) (3) (1),  ,  ,  ,  and D fc c c c  in Table 3.5. It can be seen that 
(1)D f  is always 

positive for case II, V, and VIII. 
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Table 3.5: Analysis of

 

(1)D f for 0 < a < 1

 

Case (0)c  (1)c  (2)c  (3)c  
(1)D f  

I < 0 > 0 > 0 > 0 < 0  

II < 0 < 0 > 0 > 0 > 0 

III < 0 = 0 > 0 > 0 = 0 

IV < 0 > 0 > 0 

> 0, if 

2 2 2

11 22 12 11 22 12

2

11 22 22 12

6( ) 2 ( )

(1 3 2 ) 2 0

d d d a d d d

d d a d ad

   

     
 

< 0, if  

2 2 2

11 22 12 11 22 12

2

11 22 22 12

0 6( ) 2 ( )

(1 3 2 ) 2

d d d a d d d

d d a d ad

   

     
 

< 0 

> 0 

V < 0 < 0 > 0 > 0 > 0 

VI < 0 = 0 > 0 > 0  = 0 

VII < 0 > 0 > 0 > 0 < 0 

VIII < 0 < 0 > 0 > 0 > 0 

IX < 0 = 0 > 0 > 0 = 0 

 

Theorem 3.4 

When 0 < a < 1, we have 

1. (1)D 0f  for all a, d11, d22, and d12 satisfying 
(1) 0,c   

2. (1)D 0f  for all a, d11, d22, and d12 < 0 satisfying 
(1) (3)0 and 0,c c   

3. (1)D 0f  for all a, d11, d22, and (i) d12 ≥ 0 or (ii) d12 < 0 and (3) 0c  satisfying 

(1) 0.c   

Proof.  Similar to proofs of Theorem 3.1. 
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Theorem 3.5 

When 0 < a < 1, 

1. The condition that all a, d11, d22, and d12 satisfying (1) 0c  implies that d12 must 

satisfy  

              
11 22 11 22 12 11 22max ,  (1 3 )

6

a
d d d d d d d

 
     
 

for all a, d11, and d22. 

2. The condition that all a, d11, d22, and d12 < 0 satisfying (1) (3)0 and 0c c  implies

11 22 12 11 22 11 22

2 2 2 2

11 22 12 11 22 12 11 22 22 12

min ,  (1 3 )  and
6

0 6( ) 2 ( ) (1 3 2 ) 2

a
d d d d d d d

d d d a d d d d d a d ad

 
     

 

           

             for all a, d11, and d22. 

3.  (i) The condition that all a, d11, d22, and d12 ≥ 0 satisfying (1) 0c  implies that d12 

must satisfy  

             
12 11 22 11 220 min ,  (1 3 )

6

a
d d d d d

 
    

 
for all a, d11, and d22. 

              (ii)  The condition that all a, d11, d22, and d12 < 0 satisfying (1) (3)0 and 0c c   

                 implies that  

              

11 22 12 11 22

2 2 2 2

11 22 12 11 22 12 11 22 22 12

min 0,  (1 3 )  and
6

6( ) 2 ( ) (1 3 2 ) 2 0

a
d d d d d

d d d a d d d d d a d ad

 
     

 

           
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              for all a, d11, and d22. 

Proof.  Similar to proofs of Theorem 3.2. 

Theorem 3.6 

When 0 < a < 1, we have 

1. (1)D 0f  for all a, d11, d22, and d12 satisfying 

11 22 11 22 12 11 22max ,  (1 3 ) ,
6

a
d d d d d d d

 
     
 

 

2. (1)D 0f  for all a, d11, d22, and d12 satisfying 

11 22 12 11 22 11 22min ,  (1 3 )
6

a
d d d d d d d

 
     

 
 

2 2 2 2

11 22 12 11 22 12 11 22 22 12and 0 6( ) 2 ( ) (1 3 2 ) 2 ,d d d a d d d d d a d ad           

3. (1)D 0f  for all a, d11, d22, and d12 satisfying  

(i) 
12 11 22 11 220 min ,  (1 3 )

6

a
d d d d d

 
    

   

(ii) 
11 22 12 11 22min 0,  (1 3 )  and

6

a
d d d d d

 
     

 
 

                 2 2 2 2

11 22 12 11 22 12 11 22 22 126( ) 2 ( ) (1 3 2 ) 2 0.d d d a d d d d d a d ad         
 

Proof.  Similar to proofs of Theorem 3.3. 

Theorem 3.1 to 3.6 state the general results of comparing 1(0)Q with 1( )Q a  for a ≠ 0 and 

−1 < a < 1. For d11, d12, and d22 satisfying certain conditions so that
(1)D 0,f   we find that 

Q1(a) is maximized at a = 0 and the design with equidistant time points is D-optimal.  
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3.3.4    D-optimality Region 

To demonstrate how results from the previous two sections can be used, we apply 

Theorem 3.1 and 3.4 for determining the optimality region within which a = 0 is the D-

optimal design. Table 3.6 presents such region with conditions on a, d11, d12, and d22. 

Table 3.6: D-optimality region 

 

a d11 d12 d22 

(−1, 1) d11 > 0   11 22 11 22,d d d d  12
22 11

6
max 0,1 3

d
d d

a

 
   

 
 

 

From Table 3.6, we know that the design with a = 0 is D-optimal for all −1 < a < 1, d11 > 

0, 11 22d d < d12 < 11 22 ,d d and 12
22 11

6
max 0,1 3 .

d
d d

a

 
   

 
  

We can examine the D-optimality regions using 3-D plots. However, one parameter 

needs to be fixed first. For illustration, we choose an arbitrary value between −1 and 1 for 

a, i.e. a = −0.5. Then, for d11 and d12 bounded by 0 < d11 < 8 and −2 < d12 < 2, 

respectively, the region within which the design with a = 0 is D-optimal is the area such 

that 
2

12 12
22 11

11

6
max ,  1 3 .

0.5

d d
d d

d

 
   

 
 Figure 3.3 demonstrates the region of d22 >

2

12 11d d  

by the area above the surface. Furthermore, the area above the flat surface in Figure 3.4 

illustrates the region of 12
22 11

6
1 3 .

0.5

d
d d   The intersection of the preceding two regions 

is the D-optimality region where choosing a = 0 is D-optimal and such region is shown in 
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Figure 3.5. Note that in the following three 3-D plots, X-axis is d11 ranged from 0 to 8, Y-

axis is d12 ranged from −2 to 2, and Z-axis is d22. 

 

Figure 3.3: Plot of d22 >
2

12 11d d for 0 < d11 < 8 and −2 < d12 < 2
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Figure 3.4: Plot of 12
22 11

6
1 3

0.5

d
d d  

 

for 0 < d11 < 8 and −2 < d12 < 2

 
 

 

Note that the bottom part of the graph shows the contour line. 
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Figure 3.5: Comparison between cohort designs with a = 0 and a = −0.5   

 

In Figure 3.5, all points {d11, d12, d22} satisfying 12
22 11

6
1 3  and

0.5

d
d d


  


2

12
22

11

d
d

d


 


are 

in the region above the flat quadrangle surface. For the points within such region, design 

with a = 0 is D-optimal. Hence, the design with a = 0 is better over the design with a = 

−0.5. For all points on the flat surface, the designs with a = 0 and a = −0.5 are 

comparable. Moreover, for points beneath the surface, the design with a = −0.5 is better 

than the design with a = 0. Therefore, picking up any point above the flat surface 
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generates a matrix D=
11 12

12 22

d d

d d

 
 
 

. For this given D, the cohort design with equidistant 

time points, i.e. a = 0, is more efficient than the design with non-equidistant time points, 

i.e. a = −0.5. For example, for the point located above the surface with d11 = 2, d12 = 1, 

and d22 = 20, the design with a = 0 is better according to the D-optimality criterion. 

 

3.3.5    D-optimal designs with a ≠ 0 

As we have discussed earlier, in longitudinal studies, designs with non-equidistant time 

points are more efficient in certain cases. The design with a ≠ 0 is D-optimal when d11, 

d12, and d22 are under certain conditions so that 
(1)D f < 0. For instance, by part 3(i) of 

Theorem 3.3, 
(1)D 0f  for d11, d12, and d22 satisfying 

11 22 11 22max ,  (1 3 )
6

a
d d d d

 
    
 

12 0,d  where −1 < a < 0. Suppose we choose a matrix D satisfying such condition, i.e. D 

= 
15 1

.
1 10

 
 
 

 By Theorem 3.1, we know given this matrix D, choosing a = 0 is not D-

optimal. To find the D-optimal design 
23( )T ,D a  we should maximize 1( )Q a in (3.4). 

The numerical values of 1( )Q a are calculated and plotted against the time point a (−1 < a 

< 1) in Figure 3.6. It can be observed that 1( )Q a  moves toward its maximum when a 

approaches to 1.
 
If researchers can put a threshold on a (−1 < a < 1) such that a ≤ 0.8 

(Note: here 0.8 is chosen arbitrarily), then the design with a = 0.8 is D-optimal. 

Consequently, the D-optimal design is

 

( 1,0.8,1)  ( 1,0.8,1)
.

      0.5              0.5
D

  
  
 
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Figure 3.6: Plot of 1( )Q a given d11 = 15, d12 = −1, and d22 = 10 

 

3.4    A-optimal Designs 

Now we are using A-optimality criterion to determine whether or not the ‘best’ allocation 

of repeated measurements is achieved by choosing equally spaced time points, i.e. (−1, 0, 

1). Recall that the design 
23( )TA a  with the minimum value of 2 ( )Q a  is considered A-

optimal. The exact expression of 2 ( )Q a is given by 

2 2

11 22 11 11 22 22 12

2 2 2 2

22 11 22 12 2
2 2 4 2 2

211 22

4 2 2 3

11 22 12 12

6 6 2 3 2 2 1

2 5 (6 2 )( ) Num ( )
( ) .       (

Den ( )(6 18) (2 10 12) 2 6

(4 24 36)( ) (4 12 )

d d a d d d a d ad

a d a a d d d a
Q a

aa d a a d a

a a d d d a a d

       
            
      
        

3.13)
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It should be noted that 2Den ( )a is exactly the same as 1Num ( )a defined in (3.9).  

3.4.1    Comparison of Q2(0) with Q2(a) 

For a ≠ 0 and −1 < a < 1, the comparison of Q2(a) with Q2(0) has the ability to 

discriminate between the design with non-equidistant time points (−1, a, 1) and the 

design with equidistant time points (−1, 0, 1), with respect to A-optimality criterion. To 

check if designs with a = 0 are better than the designs with a ≠ 0, we consider 

2 2 2 2
2 2

2 2

Num ( )Den (0) Num (0)Den ( )
( ) (0) ,

Den ( )Den (0)

a a
Q a Q

a


 

           

(3.14) 

where 

 

 

2 2 2 2

2 2 2 2 2 2

11 22 11 22 22 11 22 12 12 12

2

11 22 11 22 12

Num ( )Den (0) Num (0)Den ( )

                 4 3 2 2 6( ) 1 2 2

                                                     3 2 6( ) 1 ,              

a a

a d d a d d a d d d d ad a d

d d d d d



         

            

 

 

2 2 2 2 2

2 2 11 22 11 22 22 11 22 12 12 12

2 2

11 22 11 22 12

Den ( )Den (0) 12 3 2 2 6( ) 1 2 2

                     ( 3) 3 2 6( ) 1 .

a d d a d d a d d d d ad a d

a d d d d d

        

    
 

Consequently, 2 2( ) (0)Q a Q can be simplified to 

                           2 2 2

1 1
( ) (0) ,

 3 3
Q a Q

a
  


                 (3.15) 

which is independent of d11, d22, and d12. Notice that (1) when a = 0, 2 2(0) ( )Q Q a and 

obviously 2 2(0) ( )Q Q a 0; (2) when a ≠ 0 and −1 < a < 1, 2 2( ) (0)Q a Q < 0, which 

implies that design with a = 0 is not an A-optimal design for all d11, d22, and d12.
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Since choosing a = 0 is not the best allocation of time point in regard to A-optimality, 

now we consider two time points that are different from zero: a1 and a2 such that 

1 21 , 1.a a    We have 

   2 1 2 2 2 1 2 2 2 2

2 2

2 1

2 2 2 2

1 2 1 2

( ) ( ) ( ) (0) ( ) (0)

1 1
                        .

3 3 ( 3)( 3)

Q a Q a Q a Q Q a Q

a a

a a a a

    


  

             (3.16)

 

Theorem 3.7  

We have 

1. 2 1 2 2( ) ( )Q a Q a when  2 2

1 2 ,a a  

2. 2 1 2 2( ) ( )Q a Q a when  2 2

1 2 ,a a  

where the equality holds if and only if a1 = a2.  

Proof.  Clear from (3.16). 

By Theorem 3.7, we can draw the following conclusions: (1) the design with a ≠ 0 is 

better than the design with a = 0 with respect to A-optimality; (2) for a ≠ 0 and −1 < a < 1, 

the design 1

( 1, ,1)  ( 1, ,1)

     0.5          0.5

a a


  
  
 

 and the design 2

( 1, ,1)  ( 1, ,1)

      0.5             0.5

a a


    
  
 

 are 

indistinguishable under A-optimality; (3) If we could put a threshold on a such that a
2
 ≤ 

a0, where a0 is an arbitrary value between 0 and 1 (Note: choosing a
2
 very close to 1 

should be avoided, as design class T23(a)
 
involves three distinct time points), then the 

designs 0 0( 1, ,1)  ( 1, ,1)

         0.5                 0.5
A

a a


     
  
  

 and 0 0( 1, ,1)  ( 1, ,1)

       0.5               0.5
A

a a


   
  
  

are A-

optimal for all d11, d22, and d12. 
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Chapter 4 

Comparison of Two Design Classes: 

T23(a) and T23(−a, a) 

 

4.1    Introduction 

In chapter 3, we consider a special situation T23(a) for the design class T23 where both 

cohorts share the same time points (−1, a, 1). In practice, for a longitudinal study in two 

cohorts with three repeated measurements, the time points may vary from cohort to 

cohort. In this chapter, we consider a design class T23(−a, a) within T23 by assuming time 

points (−1, −a, 1) for the 1
st
 cohort and time points (−1, a, 1) for the 2

nd
 cohort (−1 < a < 

1). Since longitudinal data are often correlated, AR(1) structure for the error correlation 

matrix  ( 1,  2)i i R  is considered. We present some general results with their applications 

in comparison of design classes T23(a) and T23(−a, a), with respect to D- and A-optimality 

criteria.  
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4.2    Design Class T23(−a, a) 

Consider cohort designs with m = 3 repeated measurements obtained from C = 2 cohorts 

with n subjects each. We define the class of cohort designs T23(−a,a) as 

                        

T23(−a,a)  = 
( 1, ,1)  ( 1, ,1)

1 1 ,
     0.5            0.5 

a a
a

   
   

 

                 (4.1) 

and a cohort design 
( 1, ,1)  ( 1, ,1)

      0.5            0.5

a a


   
  
 

 for some specified values of a satisfying 

1 1,a  
 
where 0.5 on the second row is the relative sample size indicating that the two 

cohorts are equally sized. It should be noted that the time point ‘−a’ from the 1
st
 cohort 

and the time point ‘a’ from the 2
nd

 cohort are both located at the same distance of |a| from 

the middle point ‘0’, but in different directions. 

4.3    Auto-Correlatoin Structure  

For longitudinal data, each subject is observed on multiple occasions over time. The 

repeated measurements taken on the same subject are typically correlated. Because 

correlations among repeated measurements tend to decrease when measurements are 

taken further apart in time, one often assumes that the error correlation matrix iR
 follows a 

first-order autoregressive correlation structure, i.e. AR(1). This structure has been used in 

many longitudinal studies, for example, Tekle, Tan, and Berger (2008), Winkens, 

Schouten, Breukelen, and Berger (2005). Other types of error correlation matrix and their 

uses were studies by Verbeke and Molenberghs (2000).  
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The auto-correlation between errors from two time points tj(i) and tj’(i) (j, j’ = 1,…,n, j ≠ j’, 

i = 1,2)  in cohort i has the form ( ) '( )| |j i j it t



, where  is a correlation parameter (0 <  < 1) 

and  |tj(i) − tj’(i)| refers to the absolute time separation between measurements j and j’ made 

on subjects from the i
th
 cohort. Consequently, the correlations between the errors depend 

on how far apart they are in time. The correlation between the errors decreases as the 

time points lie farther apart. For the time points it  1( ) 2( ) 3( )( , , ),i i it t t 1,  2,i   iR  with AR(1) 

structure is given by 

1( ) 2( ) 1( ) 3( )

1( ) 2( ) 2( ) 3( )

1( ) 3( ) 2( ) 3( )

| | | |

| | | |

| | | |

1

1 .

1

i i i i

i i i i

i i i i

t t t t

t t t t

i

t t t t

 

 

 

 

 

 

 
 

  
 
  

R                      (4.2) 

4.4    Comparison of T23(a) and T23(−a, a) 

Design class T23(a):  

( 1, ,1)  ( 1, ,1)
1 1 .

     0.5          0.5 

a a
a

  
   

 

 

Design class T23(−a,a):  

( 1, ,1)  ( 1, ,1)
1 1 .

     0.5            0.5 

a a
a

   
   

 

 

We now compare the above two design classes under the linear mixed effects model 

stated in (2.3) with AR(1) correlated errors. The D- and A-optimality criteria are used in 

finding a better design class that gives precise estimation of the model parameters. As 

previously mentioned in Chapter 2, the variance-covariance matrix of ̂  is 

             

1
1 1

1 1 1 2 2 2
ˆVar( ) ,n


      X X X X                (4.3)  
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where the variance-covariance matrix of 
( ) ,j iy i  (i = 1, 2), is  

2( ).i i i i  DZ Z R
           

(4.4) 

We note that ˆVar( )n   in (4.3) depends on five model parameters: d11, d12, d22, 
2 , and 

  and one design parameter a. We assume the following range of those parameters in the 

current chapter.  

Table 4.1: The range of parameters 

a d11 d22 d12   2  

(−1, 1)  > 0 > 0 0
 

(0, 1) > 0 

 

The matrices ,iX ,iR and i (i = 1, 2) play an important role in our analysis. Therefore, 

we list five important properties of these matrices below. 

For design class T23(−a,a) under the model (2.3), we have 

1 2

0 0 1
1 0

Property 1: 0 1 0 ,
0 1

1 0 0

 
  

      

X X   (4.5) 

2 1

0 0 1 0 0 1

Property 2: 0 1 0 0 1 0 ,

1 0 0 1 0 0

   
   


   
      

R R               (4.6)

1

1

2 2

0 0 1 0 0 1 0 0 1 0 0 1

Property 3: 0 1 0 0 1 0 0 1 0 0 1 0 ,

1 0 0 1 0 0 1 0 0 1 0 0





        
        

         
                

                (4.7)

11

2 1

22

0 0 1 0 0 1
0

Property 4: If ,  then 0 1 0 0 1 0 ,
0

1 0 0 1 0 0

d

d

   
     

      
        

D                 (4.8) 
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11 1 1

2 2 2 1 1 1

22

0 1 0 1 0
Property 5: If ,  then .

0 0 1 0 1

d

d

      
       

     
D  X X X X               (4.9) 

4.4.1    D-optimality criterion  

Between T23(a) and T23(−a, a), we are interested in identifying a design class with a smaller 

generalized variance of the estimators of 0 1( , ) '  , ˆdet{Var( )}.  

Theorem 4.1. If d12 = 0, then    
23( , ) 23( )T T

ˆ ˆdet Var( ) det Var( )
a a a

   for all d11, d22, 
2 ,  

  and a. 

Proof. For design class T23(−a,a),  we denote  

   

11 121

1 1 1

12 22

w w

w w

  
   

 
X X .               (4.10) 

By Property 5 in (4.9) we get 

                                          

11 121

2 2 2

12 22

,
w w

w w


 

   
 

X X

 

                                          
23( , )

1
11

T

22

0
ˆVar( ) 2 ,

0a a

w
n

w

  
     

 
  

                                          
 

23( , )

1

11 22
T

ˆdet 2 Var( )
a a

n w w




  
 

 .              (4.11) 

For design class T23(a),  we have from (4.3) that 

                                          

1

1 1 1

 X X
11 121

2 2 2

12 22

w w

w w


 

   
 

X X ,  
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23( )

1
11 12

T

12 22

ˆVar( ) 2 ,
a

w w
n

w w

  
       

  

                                          
 

23( )

1
2

11 22 12
T

ˆdet 2 Var( ) .
a

n w w w


   
 



              

(4.12)   

From (4.11) and (4.12), we obtain 

   
   

23( , ) 23( )T T
ˆ ˆdet 2 Var( ) det 2 Var( ) .

a a a
n n


   

The equality holds if and only if 12w = 0 and the rest is clear.        
 

We note that T23(−a,a) and T23(a) are indistinguishable with respect to D-optimality 

criterion when d12 = 0 and w12 = 0. So we investigate when w12 is zero. We consider first 

a special situation where a = 0. 

4.4.2    The Situation when a = 0  

If we assume the additional time point is placed in the middle of the study period [−1, 1], 

i.e. a = 0, for both design classes T23(−a,a) and T23(a), then obviously 

T23(−a,a) = T23(a) =  

( 1,0,1)  ( 1,0,1)

     0.5           0.5

  
 
 

.   (Given a = 0) 

As a result, T23(a) and T23(−a,a)  become two identical designs and they have the same D-

efficiency. In other words, we have    
23( , ) 23( )T T

ˆ ˆdet Var( ) det Var( )
a a a

   when a = 0. 

The relationship between a, d12, and w12 is presented in the following theorem. 

Theorem 4.2. For design classes T23(a) and T23(−a, a), if a = d12 = 0, then w12 = 0. 
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Proof.  If d12 = 0, D is a diagonal matrix such that 
11

22

0
.

0

d

d

 
  
 

D  When a = 0, we have  

  1

12 1

1

1 0 1 1 ,

1

w 

 
 

   
 
 

               (4.12) 

2

1 22

1 1

and  0 2 (1 ) 0 .  

1 1

d 

    
   

       
   
   



             

(4.13)  

From (4.12), we get    
1

1 2

1 221 0 1 1 0 1 2 (1 )d 


        .  

From (4.13), we have    
1

1 2

12 1 22

1 1

1 0 1 1 1 0 1 2 (1 ) 1 0

1 1

w d 




   
   

           
   
   

  

and the result follows.  

Notice that when w12 = 0, the matrices ˆVar( )  for design classes T23(−a,a) and T23(a) are 

diagonal. Based on Theorem 4.2, we conclude that if both cohorts have equidistant time 

points (−1, 0, 1) and the random interpret 
0 ( )j ib and the random slope 

1 ( )j ib  are 

uncorrelated, then the estimated parameters of β0 and β1 are also uncorrelated.

 

 

4.4.3    A-optimality criterion 

In this section, A-optimality criterion is applied in finding a better design class out of 

T23(−a,a) and T23(a). Recall that A-optimality minimizes sum of the diagonal elements of

ˆVar( ) . We obtain the results below. 
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Theorem 4.3. If d12 = 0, then    
23( , ) 23( )T T

ˆ ˆtr Var( ) tr Var( )
a a a

   for all d11, d22, 
2 ,   

and a. 

Proof. For design class T23(−a,a),  from (4.11) we have 

23( , )

1

11

T

22

0
ˆ2 Var( ) .

0a a

w
n

w



 
  
 

  

For design class T23(a), from (4.12) we have 

23( )

1

11 12

T

12 22

ˆ2 Var( ) .
a

w w
n

w w


 

  
 

  

Hence, the trace of ˆ2 Var( )n  calculated for T23(−a,a) and T23(a)  are:   

 
23( , )

11 22
T

11 22

ˆtr 2 Var( ) ,
a a

w w
n

w w


  

23( )

11 22
T 2

11 22 12

ˆtr 2 Var( ) .
a

w w
n

w w w







 

Since 2

12w ≥ 0, we have    
23( , ) 23( )T T

ˆ ˆtr 2 Var( ) tr 2 Var( )
a a a

n n


  and the equality holds if 

and only if 12w = 0. The rest is clear. 
 

Theorem 4.3 states that the design class T23(−a,a) is as efficient as or more efficient than 

the design class T23(a) in terms of A-optimality criterion with d12 = 0. As a result, given 

d12 is zero, the design class T23(−a,a) is preferred over T23(a) with respect to both D- and A-

optimality criteria.  
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4.5    Numerical Study and Results 

The findings in this chapter are illustrated by the example of longitudinal study on 

children’s growth pattern in Section 2.4. The study period is five years and three 

measures of height are taken from each child. There two cohorts defined by birth year 

and we assume n subjects in each cohort. For model parameters, we assume
5 0

0 10

 
  
 

D , 

2 1,   and 0.5.    

T23(−a,a) T23(a) 

  1
st 

cohort: (−1, −a, 1) 1
st
 cohort: (−1, a, 1) 

2
nd

 cohort: (−1, a, 1) 2
nd

 cohort: (−1, a, 1) 

(−1 < a <1) 

Suppose we have two sets of data: one set is collected under design class T23(−a,a), and the 

other is collected under T23(a) shown in the table above. To examine the D-efficiencies of 

design classes T23(a) and T23(−a,a) graphically, the numerical values of  ˆdet 2 Var( )n 
 
are 

calculated for both design classes and graphed against a (−1 < a <1) in Figure 4.1.  

From Figure 4.1, we observe that  

(1) At time point a = 0, two curves reach the same maximum and are indistinguishable. 

This phenomenon indicates that given the aforementioned model parameters, a = 0 is the 

worst choice for both T23(a) and T23(−a,a)  under D-optimality.  
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Figure 4.1:  ˆdet 2 Var( )n  for T23(a) and T23(−a,a) against a 

 

Table 4.2: The numerical value of  ˆdet 2 Var( )n  for T23(a) and T23(−a,a) 

a 
Value of  ˆdet 2 Var( )n   

T23(a) T23(−a,a) 

 0.9  13.94685 13.94336 

 0.7   13.96490 13.96239 

 0.5   13.98077 13.97929 

 0.3 13.99272 13.99213 

 0.1 13.99917 13.99910 

0.0  14.00000 14.00000 
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(2) As the value of |a| increases, the two curves move further apart and become 

distinguishable. Moreover, the curve for T23(a) is always on top of the curve for T23(−a,a)  

when a ≠ 0 and −1 < a <1. Therefore, we conclude that design class T23(−a,a)  is more 

efficient in this case.  From Table 4.2, the difference in  ˆdet 2 Var( )n 
 
between these 

two designs is small due to the facts that the assumed D matrix has small numerical 

values for d11, d12, and d22, and the time interval [−1, 1] is short.  

We now perform the analysis using A-optimality. We compute the numerical values of

 ˆtr 2 Var( )n   for design classes T23(a) and T23(−a,a), respectively. After fixing model 

parameters, the function  ˆtr 2 Var( )n   depends on only one design parameter, namely a.  

Figure 4.2:  ˆtr 2 Var( )n  for T23(a) and T23(−a,a) against a 
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The trace of ˆ2 Var( )n  is plotted against a (−1 < a <1) in Figure 4.2. It can be seen that 

the pattern of trace resembles that of the determinant. For a ≠ 0 and −1 < a <1, the A-

efficiency of design class T23(−a,a) is slightly higher than that of design class T23(a). The 

design classes T23(−a,a) and T23(a) become identical when a = 0.  

Table 4.3: The numerical value of  ˆtr 2 Var( )n  for T23(a) and T23(−a,a) 

a 
Value of  ˆtr 2 Var( )n   

T23(a) T23(−a,a) 

 0.9  7.881234 7.879263 

 0.7   7.893266 7.891846 

 0.5   7.903846 7.903010 

 0.3 7.911812 7.911479 

 0.1 7.916113 7.916074 

0.0  7.916667 7.916667 

 

In conclusion, design class T23(−a,a) performs as well as or better than design class T23(a), if 

there is no correlation between the random effects. Therefore, when planning a 

longitudinal cohort design, if it is known before data collection that the random intercept 

and random slope are uncorrelated, and the error correlation has AR(1) structure, then 

design class T23(−a,a) should be implemented. 
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Chapter 5 

D-Optimal Cohort Designs for 

T23(a) with Ri ≠ I 

 

 

5.1    Introduction 

The covariance matrix of repeated measurements (2.5) for the linear mixed effects model 

is composed of two sources of variation, namely, the within-subject variation and the 

between-subject variation. The within-subject variation is determined by matrix D, 

whereas the between-subject variation depends on the structure of the error correlation 

matrix Ri (i = 1, 2). The form of error correlation matrix Ri is important in finding D-

optimal cohort designs for linear mixed models. In this chapter, we consider a popular 

error correlation structure: compound symmetric (CS). The D-optimal cohort designs are 

obtained for design class T23(a) under the linear mixed effects model (2.3) with compound 
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symmetric error correlation matrix. The comparison between cohort designs with a = 0 

and a ≠ 0 is also discussed. 

5.2    Compound Symmetric (CS) 

Historically, compound symmetric structure is one of the first structures used for the 

analysis of repeated measurements data. The correlation between errors from two time 

points tj(i) and tj’(i), (j = 1,…,n, i = 1,2)  in the i
th

 cohort is   (−1 ≤ ≤ 1). That is, there is 

a correlation between two separate measurements on the same subject, but it is assumed 

that the correlation is constant regardless of how far apart the measurements are. For time 

points 
1( ) 2( ) 3( )( , , ) ,i i i it t t t matrix Ri with compound symmetric structure is  

1 2

1

1

1

 

 

 

 
 

 
 
  

R R R =
,              

(5.1)             
 

where
 
 represents the correlation among the repeated measurements from the same 

subject. Note that because R in (5.1) must be positive-definite, i.e.
3 2| | 2 3 1 0,    R  

the range of   is restricted to −0.5 <  < 1. 

5.3    D-optimal Designs  

The D-optimal designs for mixed effects models were studied in the literature. Atkins and 

Cheng (1999) investigated optimal designs for an random intercept quadratic polynomial 

model with independent errors. Bischoff (1993) studied D-optimal designs for linear 
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models with correlated errors. In this section, we are interested in finding D-optimal 

cohort designs for design  class  

23( )

( 1, ,1)  ( 1, ,1)
T  1 1

     0.5          0.5 
a

a a
a

  
    
 

 

corresponding to the random intercept and random slope model described in (2.3):  

( ) ( ) ( ) ,j i i i j i j i  y X Z b 
 
 
 

where
( ) 1 ( ) 2 ( ) 3 ( )( , , )j i j i j i j iy y y y is the 3 × 1 vector of repeated measurements taken on the 

j
th 

subject (j = 1,…,n) at time points 
1( ) 2( ) 3( )( , , )i i i it t t t

 
in the i

th
 cohort (i = 1, 2),  

1   1

1     ,  with ( 1, ,1)  and (1,1,1) .

1     1

i i a a

 
              
  

X XZ Z j a a j  

From (3.3), we compute det 2 1ˆ[2 Var( ) ]n   and denote it as 
1 ( )Q a such that 

       
    

2
1 1 1

1 ( ) ( ) ( ) ( ) ,Q a            D D Dj Z Z R j a Z Z R a j Z Z R a          (5.2)              

where  is defined in (5.1) andR  

1

11 12 22 11 12 12 22 11 22

2

11 12 12 22 11 12 22 11 12 12 22

11 22 11 12 12 22 11 12 22

( )

2 1 ( )

    ( ) 2 1 ( ) .

( ) 2 1

d d d d d a d d d d

d d a d d d ad a d d d a d d

d d d d a d d d d d

 

 

  

 

         
 

            
           

DZ Z R

 

In terms of D-optimality, the design D  
with the minimum value of det

2ˆ[2 Var( ) ]n 

which is equivalent to the maximum value of 
1 ( ),Q a is considered D-optimal.
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5.3.1    Equidistant time points 

We identify D-optimal designs within the design class 
23( )T a

by maximizing 
1 ( ).Q a

 
In 

certain cases, 
1 ( )Q a is maximized at a = 0, which indicates that the design with 

equidistant time points (−1, 0, 1) is D-optimal. Those certain cases are presented in the 

following two tables. 

Table 5.1: D-optimality region for non-positive a 

a d11 d22 d12   

(−1, 0] > 0  > 0 
11 22 12 11 22

12 11 22

 and 

(1 3 2 )
6

d d d d d

a
d d d 

  

   
 (−0.5, 1) 

 

Table 5.2: D-optimality region for non-negative a 

a d11 d22 d12   

[0, 1) > 0  > 0 
11 22 12 11 22

12 11 22

 and 

(1 3 2 )
6

d d d d d

a
d d d 

  

   
 (−0.5, 1) 

 

When we search for optimal solutions over −1 < a ≤ 0, the design with a = 0 is the most 

efficient design, if matrix D and  satisfy the conditions shown in Table 5.1. On the other 

hand, when 0 ≤ a < 1, the design with a = 0 is D-optimal provided that matrix D and 

are in the optimality region illustrated by Table 5.2. The above two D-optimality regions 

follow directly from Theorem 5.3 and 5.6 that we will discuss in next three sections. 
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Because ‘0’ is the center of the study period, the comparison between cohort designs with 

a = 0 and a ≠ 0 is in fact the comparison between two types of designs, namely the design 

with equidistant time points and the design with non-equidistant time points. As we have 

already mentioned, if matrix D and  fall into the optimality region listed in Table 5.1 or 

Table 5.2, then the design with equidistant time points (−1, 0, 1) is preferred.  

For example, consider the cohort designs with a = 0 and a = 0.2, respectively. For the 

linear mixed effects model in (2.3) with serial correlation 0.6,   we evaluate the 

efficiency of those two cohort designs graphically by the 3-D plot in Figure 5.1.                                                                                                                                                                                                                                             

Figure 5.1: Comparison between cohort designs with a = 0 and a = 0.2 

 

It should be noted that X-axis represents d11 ranged from 0 to 8, Y-axis represents d22 

ranged from 0 to 8, and the vertical axis is d12. Based on Theorem 5.3 in Section 5.3.4, 
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the region above the flat surface is defined by two inequalities
11 22 12 11 22d d d d d  

and
12 11 22

0.2
(2.2 3 ).

6
d d d  

 

For any point {d11, d12, d22} in this region, D-efficiency of the design with a = 0 is higher 

than that of the design with a = 0.2. In this case, the design with equidistant time points is 

favored. Moreover, for points located on the flat surface in Figure 5.1, the designs with a 

= 0 and a = 0.2 are indistinguishable with respect to D-optimality.  

5.3.2    Non-equidistant time points  

Sometimes, however, the cohort designs with a ≠ 0 yield more efficient estimators of 

model parameters. Now we present the situations where the design with non-equidistant 

time points is preferred as follows. 

11 22 11 22 12 11 22 12 11 22

11 22 11 22 12 11 22 12 11 22

When ( 1,0) : 0, 0,  and (1 3 2 ).
6

When (0,1) : 0, 0,  and (1 3 2 ).
6

a
a d d d d d d d d d d

a
a d d d d d d d d d d





          

         

As an example, consider the comparison between cohort designs with a = 0 and a = 0.2 

again. In Figure 5.1, for all points {d11, d12, d22} under the flat surface, the design with a 

= 0.2 is more efficient than the design with a = 0. For instance, consider a point such that 

d11 = 8, d12 = 0.5, and d22 = 5. Since this points falls beneath the surface, we know a = 0 

is not D-optimal. In fact, given D =
8 0.5

,
0.5 5

 
 
 

 the D-optimal design 
23( )TD a 

 
can be 

computed by maximizing det
2 1ˆ[2 Var( ) ] ,n  

1i.e. ( ),Q a

 
with respect to a. The 

numerical values of 
1 ( )Q a are calculated and graphed against a (0 < a < 1) in Figure 5.2. 
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We observe that 
1 ( )Q a  approaches its maximum when a gets closer to −1.

 
If one can put 

a threshold on the lower bound of a such that −0.8 ≤ a, then the design with a = −0.8 is 

D-optimal. In other words, the D-optimal design is
( 1, 0.8,1)  ( 1, 0.8,1)

.
       0.5                 0.5

D
    

  
 

 

Figure 5.2: Plot of 
1 ( )Q a given d11 = 8, d12 = 0.5, d22 = 5, and  = 0.6 

 

5.3.3    Comparison of Q1
* 
(0) with Q1

*
 (a)  

The evaluation of designs with equidistant and non-equidistant time points in terms of D-

optimality leads to the comparison of 
1 (0)Q with 

1 ( )Q a  for a ≠ 0 and −1 < a < 1. 

The function in (5.2) can be rewritten as 
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2

1
1 2 2 2

111 22 11 22 12 22 12

2

22 11 22 12

Num ( )2( 3)
( ) ,

Den ( )3 2 (6 2 )( ) 2 1

( 1 3 4 2 2 )

aa
Q a

ad d a d d d a d ad

a d d d ad 







 
       
                     

(5.3)  

where
1Num ( )a > 0 and 

1Den ( )a > 0 for all a (−1 < a < 1). In addition, 
1 ( )Q a is a 

function of four model parameters d11, d12, d22,  and one design parameter a. In our 

analysis, we assume the following conditions on those five parameters. 

Table 5.3: The parameter conditions 

a d11 d22 d12   

(−1, 1)  > 0 > 0  11 22 11 22,d d d d  (−0.5, 1)  

 

As we mentioned earlier in Chapter 3, we assume the additional measurement cannot be 

taken at the beginning (a ≠ −1) or at the end (a ≠ 1) of the study. Here, both d11 and d22 

are greater than zero, because they are variances for the random intercept and random 

slope, respectively. To make sure that matrix D is positive-definite, i.e. | | D 2

11 22 12d d d

0, we restrict the absolute value of d12 to be less than 11 22 .d d   

We consider the difference between 
1 (0)Q and 

1 ( )Q a   

(1)1 1
1 1

1 1 1 1

Num (0) Num ( )
(0) ( ) ,

Den (0) Den ( ) Den (0)Den ( )

fa
Q Q a

a a

 
 

   
   

           

(5.4) 

     

where
  

(1) 1 1 1 1Num (0)Den ( ) Num ( )Den (0).f a a    
 

1 1Since Den (0) 0,  Den ( ) 0,a   we have
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1 1 (1)(0) ( ) 0 0,Q Q a f    

 where
(1)f is further written as

 

         
(1) 12 11 222 ( 1)( 6 3 2 ).f a a d ad ad a      

                  

(5.5)

 
Denote

 

(0) 2 ,g a                     

(1) 1 0,g   
               

(2)

12 11 22 11 22 126 3 2 (1 3 2 ) 6 . g a d ad ad a a d d d          
              

(5.6)

 
Then, 

(1)f  can be rewritten as the product of  
(0) (1) (2),  ,  and g g g  such that               

 

(0) (1) (2)

(1) .f g g g
            

(5.7) 

It should be pointed out that when 
(0)

(1)0,  0 and  0.a g f    Thus, the designs with a = 

0 and a ≠ 0 are indistinguishable with respect to D-optimality criterion. When 
(1)f > 0, the 

cohort design with a = 0 is D-optimal. However, when
(1)f < 0, the cohort design with a ≠ 

0 is D-optimal. Since the comparison of 
1 (0)Q with 

1 ( 0)Q a   is unnecessary, we 

perform our analysis on 
(1)f  for a ≠ 0 and −1 < a < 1 through the three cases in Table 5.4.  

Table 5.4: Analysis of

 
(1)f in three cases 

(2) 0g 

 

(2) 0g 

 

(2) 0g 

 
I II III 
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5.3.4    The Situation with −1 < a < 0 

We evaluate 
1 1(0) ( )Q Q a  over the region −1 < a < 0 by analyzing the sign of

(1)f  under 

the aforementioned three cases. Table 5.5 shows the signs of (0) (1) (2),  ,   ,g g g (1)and  .f  

Notice that the function 
(2)g  is important in determining the sign of

(1).f  

Table 5.5: Analysis of

 
(1)f  for −1 < a < 0 

Case 
(0)g  

(1)g  
(2)g  (1)f  

I < 0 < 0 > 0 > 0 

II < 0 < 0 < 0 < 0 

III < 0 < 0 = 0 = 0 

 

We present results comparing 
1 (0)Q  with 

1 ( )Q a  in the next three theorems. 

Theorem 5.1 

When −1 < a < 0, we have 

1. (1) 0f  for all a, d11, d22, d12, and  satisfying 
(2) 0,g   

2. (1) 0f  for all a, d11, d22, d12, and  satisfying 
(2) 0.g   

Proof. 

1. First note that
(0) (1)0 and 0.g g  Suppose a, d11, d22, d12, and  satisfying

(2) 0,g   it is clear from (5.7) that 
(0) (1) (2)

(1)f g g g
 
≥ 0, and the result follows. 

2. Suppose a, d11, d22, d12, and  satisfying
(2) 0,g   we know

(0) (1)0 and 0.g g      

Then it is clear from (5.7), 
(0) (1) (2)

(1)f g g g
 
< 0, and the result follows. 
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Theorem 5.2 

When −1 < a < 0, 

1. The condition all a, d11, d22, d12, and  satisfying 
(2) 0g  implies that d12 must 

satisfy  

          

11 22
11 22 12 11 22

(1 3 2 )
min ,

6

a d d
d d d d d

   
    

 
for all a, d11, d22, d12, and  . 

2. The condition all a, d11, d22, d12, and  satisfying 
(2) 0g  implies that d12 must 

satisfy  

          

11 22
11 22 12 11 22

(1 3 2 )
max ,

6

a d d
d d d d d

   
   
 

for all a, d11, d22, d12, and  .

 

Proof. 

1. Suppose a, d11, d22, d12, and  satisfying
(2) 0,g   then from (5.6), 

(2) 11 22
11 22 12 12

(1 3 2 )
(1 3 2 ) 6 0,  which implies . 

6

a d d
g a d d d d




  
      

11 22 12 11 22Since ,d d d d d    we have 

11 22
11 22 12 11 22

(1 3 2 )
min ,

6

a d d
d d d d d

   
    

 
 and the result follows. 

2. Suppose a, d11, d22, d12, and  satisfying
(2) 0,g   then from (5.6), 

(2) 11 22
11 22 12 12

(1 3 2 )
(1 3 2 ) 6 0,  which implies . 

6

a d d
g a d d d d




  
        
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11 22 12 11 22Since ,d d d d d    we have 

11 22
11 22 12 11 22

(1 3 2 )
max ,

6

a d d
d d d d d

   
   
 

 and the result follows. 

Theorem 5.3 

When −1 < a < 0, we have 

1. (1) 0f  for all a, d11, d22, d12, and  satisfying

 

11 22
11 22 12 11 22

(1 3 2 )
min , ,

6

a d d
d d d d d

   
    

 
 

2. (1) 0f  for all a, d11, d22, d12, and  satisfying 

11 22
11 22 12 11 22

(1 3 2 )
max , .

6

a d d
d d d d d

   
   
   

Proof. Clear from Theorem 5.1 and Theorem 5.2. 

5.3.5    The Situation with 0 < a < 1 

Now we analyze 
(1)f  via the three cases shown in Table 5.4 for 0 < a < 1. The sign of 

(1)f  depends on three functions, namely 
(0) (1) (2),  ,  and .g g g  It can be seen that 

(1)f  is 

negative for case I, positive for case II, and zero for case III. 

Table 5.6: Analysis of

 
(1)f  for 0 < a < 1 

Case 
(0)g  

(1)g  
(2)g  (1)f  

I > 0 < 0 > 0 < 0 

II > 0 < 0 < 0 > 0 

III > 0 < 0 = 0 = 0 
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Theorem 5.4 

When 0 < a < 1, we have 

1. (1) 0f  for all a, d11, d22, d12, and  satisfying 
(2) 0,g   

2. (1) 0f  for all a, d11, d22, d12, and  satisfying 
(2) 0.g   

Proof.  Similar to proofs of Theorem 5.1. 

Theorem 5.5 

When 0 < a < 1, 

1. The condition all a, d11, d22, d12, and  satisfying 
(2) 0g  implies that d12 must 

satisfy  

11 22
11 22 12 11 22

(1 3 2 )
max ,

6

a d d
d d d d d

   
   
 

for all a, d11, d22, d12, and  . 

2. The condition all a, d11, d22, d12, and  satisfying 
(2) 0g  implies that d12 must 

satisfy  

          

11 22
11 22 12 11 22

(1 3 2 )
min ,

6

a d d
d d d d d

   
    

 
for all a, d11, d22, d12, and  .

 

Proof.  Similar to proofs of Theorem 5.2. 

Theorem 5.6 

When 0 < a < 1, we have 

1. (1) 0f  for all a, d11, d22, d12, and  satisfying

 

11 22
11 22 12 11 22

(1 3 2 )
max , ,

6

a d d
d d d d d

   
   
 
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2. (1) 0f  for all a, d11, d22, d12, and  satisfying 

11 22
11 22 12 11 22

(1 3 2 )
min , .

6

a d d
d d d d d

   
    

   

Proof. Clear from Theorem 5.4 and Theorem 5.5. 

Theorems 5.1 − 5.6 state the general results of the comparison between 
1 (0)Q  and

1 ( )Q a  

for a ≠ 0 and −1 < a < 1. These theorems provide us with analytical solutions to the 

comparison between cohort designs with equidistant time points and non-equidistant time 

points. To be specific, for a, d11, d12, d22,   satisfying certain conditions so that (1) 0,f   

we find that designs with a = 0 is preferred. On the other hand, for a, d11, d12, d22,   

satisfying certain conditions so that (1) 0,f   optimal allocation of time points is achieved 

by choosing a ≠ 0.  
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Chapter 6 

Optimal Cohort Designs for 

T23 with Ri = I and D = I 

 

 

6.1    Introduction 

Finding optimal cohort designs analytically for longitudinal studies when a1 ≠ a2 is very 

difficult because of the complexity of ˆVar( ) . In fact, in the literature [4], [16], [27-30], 

all optimal cohort designs have been computed numerically. In this chapter, we introduce 

and describe our approach for deriving D-, A-, and E-optimal cohort designs analytically 

for the design class T23 in (2.10) under the linear mixed effects model in (2.3) with the 

covariance of random effects D = I and uncorrelated errors, i.e. Ri = I. Finally, the 

findings of optimal designs are summarized. 
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6.2    Optimal Cohort Designs 

The class of cohort designs T23 is given by 

                            

T23 = 
1 2

1 2

( 1, ,1)  ( 1, ,1)
1 1 .

     0.5            0.5 

a a
a a

  
    

 

                  

As we have mentioned earlier, a longitudinal cohort study models the responses as a 

function of time for groups (cohorts) of subjects. The precision of estimates of model 

parameters is measured by their covariance matrix.  

Consider the linear mixed effects model described in (2.3) with D = I and Ri = I 

( ) ( ) ( ) ,       1,2, 1,..., ,j i i i j i j i i j n     y X Z b
  

where 

1     1

1     .

1  1

i i ia

 
 

   
  

X Z  

The covariance matrix can be expressed as 

              

1
1 1 1

1 1 1 2 2 2 1 22

1
2 2

1 2 1 2

2 2 2 2

1 2 1 2

2 2

1 2 1 2

2 2 2 2

1 2 1 2

ˆVar( )
[V( ) V( )]

2 9 2 9

12 3 12 3 12 3 12 3
               ,         (6.1)

3 8 3 8

12 3 12 3 12 3 12 3

n
a a

a a a a

a a a a

a a a a

a a a a




  



      

  
  

   
 
  

  
    


X X X X 

  

which is a function of two design parameters, namely a1 and a2. Here, we divide by

 

2

 

in 

order to consider an optimality criterion that is scale free, and n represents the sample 

size of each cohort. In the following sections, three optimality criteria will be used in 

finding the optimal allocation of time points for design class T23. First, we will consider 



87 
 

these three optimality criteria separately, and then we will describe how to apply the 

combination of these three criteria to identity the optimal designs.  

6.2.1    D-optimality  

A D-optimal cohort design is the one among all possible cohort designs in T23 for which 

 2ˆdet Var( )n  is minimized. To simplify the computation procedure, we consider 

det[V(a1) + V(a2)] and denote it by DV(a1, a2)  

2
2 2 2 2

1 2 1 2 1 2
1 2 2 2 2 2 2 2

1 2 1 2 1 2

2 9 2 9 3 8 3 8
DV( , ) .

12 3 12 3 12 3 12 3 12 3 12 3

a a a a a a
a a

a a a a a a

       
        

         
 

We write 

            DV(a1, a2) = DV1(a1, a2) – DV2(a1, a2),         (6.2) 

where  

        DV1(a1, a2) = 
2 2 2 2

1 2 1 2

2 2 2 2

1 2 1 2

2 9 2 9 3 8 3 8
,

12 3 12 3 12 3 12 3

a a a a

a a a a

     
   

     
         (6.3) 

      DV2(a1, a2) = 

2

1 2

2 2

1 2

.
12 3 12 3

a a

a a

 
 

  
         (6.4) 

Property 1. For 1 21 1a a    , DV2(a1, a2) attains its minimum when a1 = −a2.

 

   

2 2

1 2 1 21 2
2 1 2 2 22 2 2 2

1 2 1 2

9 (4 )( )
Proof. DV ( , ) .

12 3 12 3 12 3 12 3

a a a aa a
a a

a a a a

  
   

    
 For 1 21 1a a    , 
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   
2 2

2 2

1 212 3 12 3a a   > 0,  
2

1 2 1 29 (4 )( )a a a a   ≥ 0, and 1 24 0a a  . Therefore, the 

minimum value of DV2(a1, a2) is zero, and this is attained when 1 2 0a a  1 2 ,a a   

and the rest is clear. 

Property 2. For 1 21 1a a    , min{DV2(a1, a2)} = 0.  

Proof. Clear from Property 1. 

Now we denote  

             DV3(a) = 
2

2

2 9

12 3

a

a




, DV4(a) = 

2

2

1

12 3

a

a

 


.           (6.5) 

It follows that 

       DV3(a1, a2) = DV3(a1) + DV3(a2) =
2 2

1 2

2 2

1 2

2 9 2 9

12 3 12 3

a a

a a

 


 
,           (6.6) 

      DV4(a1, a2) = DV4(a1) + DV4(a2) =
2 2

1 2

2 2

1 2

1 1

12 3 12 3

a a

a a

   


 
.           (6.7)    

Property 3. DV1(a1, a2) = DV3(a1, a2) [DV3(a1, a2) − DV4(a1, a2)]. 

Proof. Clear from (6.3), (6.6), and (6.7). 

Property 4. For 1 21 1a a    , DV3(a1, a2) > 0 and 
2 2
1 21, 1

lim
a a 

DV4(a1, a2) = 0. 

Proof. From (6.6), DV3(a1, a2) = 
2 2 2 2

1 2 1 2

2 2

1 2

51( ) 12 216
.

(12 3 )(12 3 )

a a a a

a a

  

 
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For 1 21 1a a    , 2

1a  ≥ 0 and 2

2a  ≥ 0, so both the numerator and the denominator are 

positive and hence DV3(a1, a2) > 0. 
2 2
1 21, 1

lim
a a 

DV4(a1, a2) = 
2
1 1
lim
a 

DV4(a1) + 
2
2 1

lim
a 

DV4(a2). It 

is clear that 
2
1 1
lim
a 

2

1 1a   = 0 and 
2
1 1
lim
a 

2

112 3a = 15. Therefore, 
2
1 1
lim
a 

DV4(a1) = 0. 

Equivalently, we can show that 
2
2 1

lim
a 

DV4(a2) = 0. The rest is clear. 

Property 5. For 1 21 1,a a     
2

2 2

1 1 2 1 2

22
max DV ( , ) , as 1 and 1.

15
a a a a

 
   

 
 

 Proof. We have
3 1 2 4 1 2

22 3
DV ( , ) DV ( , )

15 15
a a a a  . From Property 3,   

 

 

1 1 2 3 1 2 3 1 2 4 1 2

2
2

4 1 2 4 1 22 2

DV ( , ) DV ( , ) DV ( , ) DV ( , )

22 22 9 3 12
                  DV ( , ) DV ( , ) .

15 15 15

a a a a a a a a

a a a a

 

  
   
 

 

From Property 4,
2 2
1 21, 1

lim
a a 

DV4(a1, a2) = 0. Consequently, 
2 2
1 21, 1

lim
a a 

DV1(a1, a2) = 

2
22

15

 
 
 

. 

The rest is clear.  

According to D-optimality criterion, we can obtain the D-optimal cohort design by 

maximizing the function DV(a1, a2) in (6.2). Based on Property 1 to 5, we know 

min{DV2(a1, a2)} = 0, when a1 = – a2.  If users could put a threshold on ai (i = 1, 2) such 

that 2

ia  ≤ a0, where a0 is an arbitrary value between 0 and 1, then the value of DV1(a1, a2) 

is maximized at 2 2

1 2 0.a a a   It can be checked that for 1 21 1,a a     the time points 

(a1, a2) that maximize DV1(a1, a2) and minimize DV2(a1, a2) simultaneously are 
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 0 0, ,a a  which are presented graphically in Figure 6.1. Therefore, the D-optimal 

cohort design for design class T23 is 0 0( 1, ,1)  ( 1, 1)

        0.5                0.5
D

a a


    
  
  

, given D = I, Ri = I.  

Figure 6.1: The plot of DV(a1, a2) for 11 1a    and 21 1a    

 

6.2.2    A-optimality  

The A-optimality criterion is based on the sum of the diagonal elements of 2ˆVar( )n 

in (6.1).  

We have  

 

1

2

ˆVar( )n  

 



   
   
  


,            (6.8) 
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where  

α = 
2 2

1 2

2 2

1 2

2 9 2 9

12 3 12 3

a a

a a

 


 
, β = 

2 2

1 2

2 2

1 2

3 8 3 8

12 3 12 3

a a

a a

 


 
, and γ = 1 2

2 2

1 2

.
12 3 12 3

a a

a a


        

(6.9) 

It can be checked that  

       
2

ˆVar( )
tr

n



  
 
  


=

2 2 2 2

1 2 1 2

2 2 2 2 2

1 2 1 2 1 2

3(10 37 37 136)

24 85 85 2 288

a a a a

a a a a a a

 

 

  


    
.         (6.10) 

In order to find the A-optimal design, we search for time points (a1, a2) that minimize 

equation (6.10) over the region of 1 21 1a a     indicated in Figure 6.2.  

Figure 6.2: Region of 1 21 1a a     

 

Property 6. Denote 
2

ˆVar( )
tr

n



  
 
  


by 1 2( , ).f a a We have  1 2min ( , ) 1.364,f a a 

1as 1a  and 2 1.a    
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Proof. By solving 1 2

1

( , )
0

f a a

a


 and 1 2

2

( , )
0

f a a

a


 , we find a1 = a2 = 0, which is the 

critical point inside the above region. At this critical point, (0,0)f = 1.417. We then 

examine the minimum on the boundary. We observe that 
1 1

1 2
1, 1

lim ( , )
a a

f a a
 

= 1.364, 

1 1
1 2

1, 1
lim ( , )

a a
f a a

 
= 1.375, and

1 1
1 2

1, 1
lim ( , )

a a
f a a

 
= 1.375. Therefore, the minimum value 

of 1 2( , )f a a  approaches 1.364 when 1 1a  and 2 1.a   The rest is clear. 

Figure 6.3: The plot of tr{ 2ˆVar( )n  } for 11 1a    and 21 1a    

 

Figure 6.3 presents the values of tr{ 2ˆVar( )n  }, where X-axis is a1 ( 11 1a   ) and 

Y-axis is a2 ( 21 1a   ). Notice that tr{ 2ˆVar( )n  } is getting close to the minimum 

as 1 1a  and 2 1.a   
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As we have discussed earlier, if one can put a threshold on ai (i = 1, 2) such that 2

ia  ≤ a0, 

(0 < a0 < 1), then tr{ 2ˆVar( )n  } is minimized at the time points  0 0,a a  based on 

Property 6 and Figure 6.3. Consequently, with respect to A-optimality criterion, the 

optimal cohort design for design class T23 is 0 0( 1, ,1)  ( 1, 1)

        0.5                0.5
A

a a


    
  
  

as well, 

given D = I, and Ri = I.  

6.2.3    E-optimality  

Another popular optimality criterion is E-optimality, which minimizes the maximum 

eigenvalue (characteristic root) of the covariance matrix 2ˆVar( )n  in (6.1). This is 

equal to minimizing the variance of the least well-estimated contrast  , subject to 

1  . Hence, E in the name of the criterion stands for extreme.  

It can be shown that the maximum characteristic root for 2ˆVar( )n   is 21  , where 

2 2

2

2 2
2 2 2 2

1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

( ) ( ) 4

2

5 17 5 17 1 11
   .

2 12 3 12 3 12 3 12 3 12 3 12 3

a a a a a a

a a a a a a

    


   


 
               

         
 

 

Define   

                      DV5(a1, a2) = DV5(a1) + DV5(a2) =
2 2

1 2

2 2

1 2

5 17 5 17
,

12 3 12 3

a a

a a

 


 
        (6.11) 
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        DV6(a1, a2)  = 

2 2
2 2

1 2 1 2

2 2 2 2

1 2 1 2

1 1
.

12 3 12 3 12 3 12 3

a a a a

a a a a

    
     

      
         (6.12) 

Combining (6.10) and (6.11), 2 can be expressed as  

                2 =
1

2
[ DV5(a1, a2) – DV6(a1, a2)].          (6.13) 

The design 
23TE  with the maximum value of 2  

in (6.13) is E-optimal.  

Property 7. For 1 21 1,a a      2 2

5 1 2 1 2

44
max DV ( , )  as 1 and 1.

15
a a a a    

Proof. For DV5(a1) = 

 

2

5 11 1

22 2
1 1 1

DV ( )5 17 18
,  set 0,

12 3 12 3

aa a

a a a


 

  
we have a1 = 0. When a1

  (−1, 0), 5 1

1

DV ( )a

a




 is negative and when a1  (0, 1), 5 1

1

DV ( )a

a




 is positive. Since 

5 1

1

DV ( )a

a




changes from negative to positive at 0,  5 1

17
min DV ( )

12
a  at a1 = 0, and 

5 1

22
max{DV ( )}

15
a  when 2

1 1.a   Equivalently, we can prove  5 2

22
max{DV ( )}

15
a   as 

2

2 1.a   The rest is clear. 

Property 8. For 1 21 1,a a     6 1 2 1 2min DV ( , ) 0,  as 1 and 1.a a a a    

Proof. Based on (6.12), 1 2when ,a a  DV6(a1, a2)  is simplified to 
2 2

1 2

2 2

1 2

1 1

12 3 12 3

a a

a a

 


 
> 

0. Clearly, 
1 11, 1

lim
a a 

DV6(a1, a2) = 0 and the rest is clear. 
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Figure 6.4: The plot of max characteristic root ( 21  )  

for 11 1a    and 21 1a    

 

 

In Figure 6.4, we observe that the value of 21   becomes smaller as 1a  approaches −1 

and 2a  approaches 1. To compute E-optimal cohort designs analytically, we apply 

Property 7 and 8 in determining the time points (a1, a2) that lead to the maximum value of 

2  
in (6.13). For 1 21 1,a a    we notice that (a1, a2) that maximize DV5(a1, a2) and 

minimize DV6(a1, a2) concurrently are: a1 = 0a  and a2 = 0 ,a where a0 (0 < a0 < 1) is 

the limit on ai (i = 1, 2) such that 2

ia  ≤ a0. As a result, the E-optimal cohort design in 

design class T23 is 0 0( 1, ,1)  ( 1, 1)

        0.5                0.5
E

a a


    
  
  

, given D = I, Ri = I.  
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6.2.4    Combination  

In this section, we would like to consider the situations where D-, A- and E-optimality 

criteria are used at the same time in identifying an optimal cohort design in design class 

T23 with D = I, Ri = I. 

The DV(a1, a2) in (6.2) has two eigenvalues, namely 

2 2 2 2

1 2

( ) ( ) 4 ( ) ( ) 4
 and ,

2 2

         
 

       
   

where , ,and  are defined in (6.9).    

Instead of deriving optimal designs with respect to determinant, maximum characteristic 

root, and trace of the covariance matrix separately, we can find an optimal cohort design 

which takes into account of these three criteria simultaneously by considering the next 

three conditions: 

Condition 1: max{ 1 2  } = max{
2  } 

Condition 2: min
2

1 2

1 1
min ,

 

   

   
    

  
   

Condition 3: min{max( 1 2,    )} = 

2 2( ) ( ) 4
min .

2

         
 
  

 

These three conditions can be satisfied simultaneously if  
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2 0  , and α = β.           (6.14) 

Substituting 
2 0   and β = α into Condition 1 to 3, we get max{ 1 2  } = 2α, min

1 2

1 1 2

  

 
  

 
, and min{max( 1 2,    )} =  . 

Property 9. For 1 21 1,a a     if 
2 0  , then a1 = −a2.

  

Proof. Clear from (6.9). 

Property 10. For 1 21 1,a a     
2 2
1 21, 1

lim
a a 

(α – β) = 0.
 

Proof. Clear from (6.9). 

Our objective is to identify a cohort design that has a maximum precision for the 

parameter estimators in the model (2.3) with D = I, Ri = I. We set a threshold on ai (i = 1, 

2) such that 2

ia  ≤ a0 (0 < a0 < 1). According to Property 10, we have α  β, when 2

ia  = a0. 

By Property 9, 
2 0  when a1 = 0a  and a2 = 0a .  

Therefore, under D-, A-, and E-optimality criteria, the optimal design for T23 = 

1 2

1 2

( 1, ,1)  ( 1, ,1)
1 1

     0.5            0.5 

a a
a a

  
    

 

 is 

* 0 0( 1, ,1)  ( 1, 1)

        0.5                0.5

a a


    
  
  

.        (6.15) 
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In other words, for designs of two equally sized cohorts with three time points, given D = 

I, Ri = I, the optimal design is selected by placing the 2
nd

 time point close to the beginnig 

of the study period for the 1
st
 cohort, and placing the 2

nd
 time point close to the end of the 

study period for the 2
nd

 cohort.  

In fact, the optimal design * (6.15) is a special case of the designs with non-equidistant 

time points discussed in Chapter 3. When D = I, d12 = 0, by Theorems 3.1 and 3.4 we 

know 
(1)D 0,f 

 
and thus given D = I, Ri = I, the D-optimal design for T23 is the design 

with non-equidistant time points. 
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Chapter 7 

Restricted Maximum Likelihood 

Estimation of Variance Components 

 

 

7.1    Introduction 

In a linear mixed effects model, there are two types of parameters: the fixed-effect 

parameters β, and the variance component parameters in D, Ri (i =1, 2), and 2 . 

Maximum likelihood (ML) and restricted maximum likelihood (REML) estimation are 

methods commonly used to estimate these parameters.  

The maximum likelihood (ML) estimation is a method of obtaining estimates of unknown 

parameters by optimizing a likelihood function. The maximum likelihood estimates of the 

parameters are the values of the parameters that maximize the likelihood function. The 

restricted maximum likelihood (REML) estimates the variance parameters by 
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maximizing the likelihood function of the transformed observations Ay , where A is a (6n 

− 2) × 6n matrix such that E( ) 0.Ay  

In this chapter, we first discuss the theory of REML estimation of variance components 

in linear mixed effects models. We then introduce our method of finding the REML 

estimate using three criterion functions: function Δ, the log-likelihood l
*
, and function P. 

We also present three numerical examples to illustrate our proposed method.  

7.2    Restricted Maximum Likelihood Estimation 

We have discussed optimal cohort designs in previous chapters and demonstrated that 

such optimal designs depend on the variance component parameters in D, Ri (i =1, 2), 

and 2 . To estimate these unknown variance components, the restricted maximum 

likelihood (REML) estimation procedure is now illustrated for the mixed effects model 

below.  

7.2.1    Model and design class  

We consider the linear mixed effects model described in (2.3)  

( ) ( ) ( ) , j i i i j i j i  y X Z b 
  

where 
( ) 1 ( ) 2 ( ) 3 ( )( , , )j i j i j i j iy y y y is the vector of repeated measurements for subject j in 

the i
th
 cohort (i = 1, 2, j = 1,…,n), 0 1( , )  are fixed unknown parameters,    

( )j ib is the 

vector of random regression coefficients of subject j within cohort i, with mean 0 and a 
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covariance matrix 2 D =
11 122

12 22

d d

d d


 
 
 

 . The 3 × 1 random error vector 
( )j i

 
has mean 0 

and a covariance matrix 2 ,i R  where 2  is the common variance for error components 

and for simplicity we assume i  IR

 

in this chapter. 

We consider the design class T23(a) which is given by 

23( )

( 1, ,1)  ( 1, ,1)
T  1 1 .

     0.5          0.5 
a

a a
a

  
    
 

 

We have 

1   1

1     .          (7.1)

1     1

i i a

 
 

 
 
  

X Z  

As we mentioned in Chapter 2, we denote the vector of all observations
1(1) (1)( ,..., ,n
 y y y  

1(2) (2),..., )n
  y y . Its expectation and covariance are  

1 1

01 12 2

22 1

22

0 0 0

0 0 0
E( ) ,      Var( ) ,        (7.2)

0 0 0

0 0 0


 



   
   
   
    

       
    

   
   

     

V

V
X V

V

V

X

X
y y

X

X


 

where i i i
 V D IZ Z

 
(i = 1, 2). 
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7.2.2    REML estimators  

As we discussed earlier, the restricted maximum likelihood (REML) estimators for the 

variance components are obtained by maximizing the likelihood function of the 

transformed observations Ay , where A is a (6n − 2) × 6n matrix such that  

rank(A) = 6n – 2,
  

E( ) 0.Ay
       

(7.3) 

A possible matrix A that satisfy the above condition is 

3 3
3 3 3 3 3 3

3 3
3 3 3 3 3 3

3 3
3 3 3 3 3 3

1 1 1 1 1

1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1

1 2 ( 1) 1 2 ( 1) ( 1) 1 2 ( 1)

   

a a a a a a a

  

  

  

 
 


 
 

  
 
 
             









    

A

I I 0 0 0

0 I I 0 0

0 0 0 I I

a a a a a

,


 
 
 
 
 
 
 



 

where  11 1 2 ( 1) .a a    a  

It should be pointed out that the choice of A is not unique. An alternative transforming 

matrix may be obtained as B = TA, where T is any (6n – 2) × (6n – 2) matrix with rank(T) 

= 6n – 2. Moreover, the REML estimators, in fact, do not depend on the choice of A.  

We use the vector   to denote all parameters contained in matrix D. In this case,  
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11

12

22

.

d

d

d

 
 


 
  


        

(7.4)
 

We write  At y . The  2 is distributed N ,   0 AVAt
 
with mean known and thus free of 

the fixed effects. The likelihood function is given by 

2 2 1

3 1 2 1/2

1 3 2 1 3 1/2 1

2

1 1
( , ) exp ( )

(2 ) | | 2

1
              (2 ) ( ) | | exp ( ) .

2

n

n n

L  
 

 






   

 
   

  

 
    

 

AVA
AVA

AVA AVA

 t t

t t

 

The corresponding log-likelihood function expressed in terms of y  is given by 

2 2 1

2

1 1
( , ) (1 3 ) log 2 (1 3 ) log log | | ( ) .

2 2
l n n  



        AVA A AVA A y y
 

After eliminating terms not involving 
2  and ,   we have 

                  

* 2 1

2

1 1
(1 3 ) log log | | ( ) .

2 2
l n 



      AVA A AVA Ay y           (7.5)
 

As we mentioned, the REML estimators are obtained by maximizing the log-likelihood 

function *l  in (7.5). We need the estimation equations for maximizing *.l  The estimation 

equations can be found by taking the partial derivative of *l  with respect to unknown 

variance parameters: 
2

11 12 22 and ( , , ) .d d d   

Differentiating the log-likelihood *l , we obtain 
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*
1

2 2 4

1 3 1
( ) ,

2

l n

  

 
   


A AVA Ay y             

*
1 1 1

2

1 1
tr ( ) ( ) ( ) ,   

2 2i i i

l



     
         

   

V V
A AVA A A AVA A A AVA A

  
y y

      

(7.6) 

where i  (i = 1, 2, 3) is the i
th
 component of vector   in (7.4). 

Equating (7.6) to zero gives the REML estimators: 

1

2
( )

ˆ ,
6 2n



  




A AVA Ay y
            (7.7)       

1 1 1

2

1
tr ( ) ( ) ( ) .

i i

    
       

  

V V
A AVA A A AVA A A AVA A

 
y y           (7.8)

 

The REML estimators are defined as the maximizers of the log-likelihood function *l  in 

(7.5). Clearly, the REML equation (7.8) has no closed form solutions and has to be 

solved numerically. The most common iterative algorithms used for solving nonlinear 

equations are the expectation-maximization (EM) algorithm, the Newton-Raphson (N-R) 

algorithm, and the Fisher scoring algorithm.  

The EM algorithm is an iterative method which alternates between performing an 

expectation (E) step, which computes the expectation of the log-likelihood evaluated 

using the current estimate for the parameters, and a maximization (M) step, which 

computes parameters maximizing the expected log-likelihood found on the E step. These 

parameter-estimates are then used to determine the distribution of the latent variables in 

the next E step. General descriptions of the EM algorithm can be found in Dempster et al. 

(1977) and Laird et al. (1987). EM algorithm is often used to maximize complicated 

http://en.wikipedia.org/wiki/Iterative_method
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likelihood functions or to find good starting values of the parameters. The EM approach 

is currently used by the procedures in software R and Stata. 

The Newton-Raphson (N-R) algorithm minimizes an objective function defined as −2 

times the log-likelihood function *l  in (7.5). It does so by computing the Jacobian 

linearization of the objective function around an initial guess point, and using this 

linearization to move closer to the nearest zero. Analytical formulas for N-R algorithm 

are given in Lindstrom and Bates (1988). The N-R algorithm and its variations are the 

most commonly used algorithms in REML estimation of linear mixed effects models. In 

fact, the N-R algorithm is the iterative method used by SAS PROC MIXED procedure. 

The Fisher scoring algorithm can be considered as a modification of the N-R algorithm. 

The only difference is that Fisher scoring uses the expected Hessian matrix (square 

matrix of second-order partial derivatives of l
* 

with respect to unknown variance 

parameters), whereas the N-R algorithm uses the observed one. The softwares SAS and 

SPSS use the Fisher scoring. 

7.2.3    Our iterative method  

We now present our iterative method for i = 1, 2, 3. 

From (7.8), we write 

1 1 1

( ) ( ) 2

1
tr ( ) ,      ( ) ( ) .i i

i i

L R


    
        

  

V V
A AVA A A AVA A A AVA Ay y

 
 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Partial_derivative
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In addition to the log-likelihood function *l  in (7.5) as a criterion function, we define 

other two criterion functions for finding the accurate final solution of REML estimators 

based on the above concept. The criterion functions are  

Δ = |L(1) – R(1)| + |L(2) – R(2)| + |L(3) – R(3)|,         (7.9) 

P = | 2 − 2̂ | + |d22− 22d̂ | + |d11− 11d̂ | + |d12− 12d̂ |.          (7.10) 

We want to maximize the log-likelihood function *l  while minimize the criterion 

functions Δ and P. 

Our iterative method requires the following steps: 

(i) Assign initial values to the variance parameters d11, d22, and d12. 

(ii) Estimate 2  by solving (7.7).  

(iii) Use the initial values of d11, d22, and d12 and updated 2̂  value from step (ii) 

to calculate new estimates: 11d̂ , 22d̂ , and 12d̂  that make
 
|L(i) – R(i)| (i = 1, 2, 3) 

close to zero.  

(iv) Repetition of (ii) and (iii), ending at (ii), is continued until Δ is small, *l is 

large, and two consecutive Δ values as well as two consecutive *l  values 

simultaneously become less than or equal to 10
−6

, that is,  

| Δs – Δs−1| ≤ 10
−6

 and | * *

1s sl l  | ≤ 10
−6

, 

where Δs  and Δs−1 are the values of criterion function Δ in (7.9) at the s and (s 

− 1) stages of iteration respectively. Similarly, 
*

sl  and 
*

sl are the values of *l  in 

(7.5) at the s and (s − 1) stages of iteration respectively. 
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We obtain the most accurate final solution of REML estimators when the numerical value 

of Δ is minimum, the numerical value of l
*
 in (7.5) is maximum, and the numerical value 

of P is relatively small. The smaller numerical value of Δ, or the larger value of l
*
, or the 

smaller numerical value of P achieves the better accuracy on the final solutions of REML 

estimators. The criterion function P is proposed in (7.10) because we want our REML 

estimators be close to the true variance parameter values. 

7.3    Numerical Examples  

We now illustrate our proposed iterative method in details. 

7.3.1    Estimation of variance components for n = 1 

First, we consider the situation that each cohort consists of a single subject. For the three 

observations on the subject in the i
th
  (i = 1, 2) cohort, the model is  

, i i i i i  y X Z b 
 

which is a special case of the model (2.3) with j = 1.   

For design class T23(a),  we have 

1(1)

2(1)

3(1)1 1 1

1 1 1

1(2)2 1 1

2(2)

3(2)

1 1

1

01 1
, ,  where .        (7.11)

01 1

1

1 1

y

y a

y

y

y a

y

   
   
   
        

              
        

   
   
    

V
X V V D I

V

y X
y X X

y X
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As we have discussed earlier, to estimate the variance components without dealing with 

the fixed effects, we apply a transformation to the data through a matrix A that satisfies 

the condition in (7.3) with n = 1 . A feasible matrix A in this case is 

1 1

1 0 0 1 0 0

0 1 0 0 1 0
,

0 0 1 0 0 1

1 2 ( 1) 1 2 ( 1)a a a a

 
 

          
 

      

I I
A

a a

 

 1where 1 2 ( 1) .a a    a

  

We denote

 

 

 

     

   

 

2

2 22 2 2

11 22 12 11 1 2 11 22 12 22 2 1 2

2

11 22 12 12 1 2 2 1 2

2

1 1 2

1 2 1 2

11

1 1 1 ,  

1 1 ,

(2 )( ) ( ) 3( ) ( )
K ,

                     2 ( ) ( ) ( )

( )
T ( ) '( ) .            

a

a d d d d d d d d

a d d d d

 

  

         
 
       
 

 
   



j

a

j y y a y y

j y y a y y

a y y
y y y y

a a
  (7.12)

 

It can be checked that the log-likelihood function l
*
 ignoring the part not dependent on 

the variance parameters is 

* 2

12 2

1

T 1 K
2log log .

4 2 4
l 

 
    V

V
         

(7.13)

               

 

Differentiating *l in (7.13) with respect to 2 and equating it to zero gives 
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2

1

ˆ1 K
ˆ T .

ˆ8


 
  
 
 

V
 

The REML estimation functions regarding the variance parameters 11 22,  ,d d 12and d

respectively are 

    

  
 

2 22

22 1 2 22 2 1 2 2 2

22

22 1 2 2 1 2

ˆ ˆ(2 ) 1 ( ) 3 ( )
ˆ ˆ3 (6 2 ) 6 T ,

ˆ2 ( ) ( )

a d d
a d

ad



      
       

       

j y y a y y

j y y a y y

   

  
 

2 22

11 1 2 11 2 1 2 2 2 2

11

11 1 2 2 1 2

ˆ ˆ(2 ) ( ) (3 1) ( )
ˆ ˆ( 2) (6 2 ) 6 T ,

ˆ2 ( ) ( )

a d d
a a d

ad


      
        

     
 

j y y a y y

j y y a y y

   

  
 

2 22

12 1 2 12 2 1 2 2 2

12

12 1 2 2 1 2

ˆ ˆ(2 ) ( ) 3 ( )
ˆ ˆ(6 2 ) 6 T .

ˆ(2 1) ( ) ( )

a d d
a a d

ad


      
       

      
 

j y y a y y

j y y a y y
    (7.14)

 

The exact expression for solutions of (7.14) does not exist since the equations are non-

linear in variables. We denote the left-hand side of equations in (7.14) as L(1), L(2), and 

L(3), respectively, and expressions on the right-hand side of (7.14) are R(1), R(2), R(3), 

respectively.  

To further demonstrate our iterative method, we simulate a data set with n = 1 subject per 

cohort assuming the following parameter values:  

11 122

0 1

12 22

0.05 0.0005
0.0005,  ,  , 1,  and 5.        (7.15)

0.0005 0.10
i

d d

d d
  

  
     

  
D IR  
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Table 7.1: The simulated data with n = 1 

Cohort 

(i) 

Subject 

(j) 
Observations 

1  1 −3.9925 1.0388
 

5.9497 

2  1 −3.9826 1.0250
 

6.0084 

 

The simulated data set is shown in Table 7.1. We use the Optimization Tool in MATLAB 

with ‘fmincon’ function and ‘active set’ algorithm to perform our iterative procedure. We 

present the numerical values of REML estimators obtained by our method as well as by 

SAS in Table 7.2.   

Table 7.2: Solution of REML estimators with values of Δ, l
*
, and P for n = 1  

Parameter σ
2
 d11 d22 d12 Δ l

*
 P 

True  0.0005 0.05 0.10 0.0005 20.2157 11.5953 - 

Our Estimate 0.0008 0.0465 0.1120 0.0560 0.0097 14.6862 0.0713 

SAS Estimate 0.0008 0.0465 0.0835 0.0621 0.0098 14.6848 0.0819 

 

We can see that our estimates of variance parameters are fairly close to the true values. 

The REML estimates of σ
2
 and d11 of our method are identical up to at least four decimal 

places compared with SAS results. In addition, our REML estimates lead to smaller 

numerical value of Δ, larger numerical value of l
*
, and smaller numerical value of P. 

Therefore, our iterative method is showing favorable results for this simulated data. 
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7.3.2    Estimation of variance components for n = 2 

In this section, demonstration of our iterative procedure is given in terms of a simulated 

data set with n = 2 subjects per cohort shown in Table 7.3. This data set is generated 

using the parameter values in (7.15) under the cohort design   from the design class T23(a) 

with a = 0: 

( 1,0,1)  ( 1,0,1)
.

    0.5           0.5 


  
  
 

 

Notice that the data in Table 7.1 are used as the observations for the first subject (j =1) in 

the i
th
 (i = 1, 2) cohort. 

Table 7.3: The simulated data with n = 2 

Cohort 

(i) 

Subject 

(j) 
Observations 

1  1 −3.9925 1.0388
 

5.9497 

1  2 −4.0413 1.0672 6.0261 

2  1 −3.9826 1.0250
 

6.0084 

2 2 −4.0045 1.0230 6.0126 

 

For the three measurements taken on the j
th 

subject in cohort i, the assumed model is  

( ) ( ) ( ) ,       1,2, 1,2,j i i i j i j i i j    y X Z b 
  

where 0 1( , )    are the fixed parameters, 
( ) 0 ( ) 1 ( )( , )j i j i j ib b b  are random parameters,

( ) 1 ( ) 2 ( ) 3 ( )( , , )j i j i j i j i    is the random error vector with mean 0 and the covariance 2 I , 

bj(i) and 
( )j i are independent. The design matrices Xi and Zi are given by
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1 1

1 0 .

1 1

i i

 
 

 
 
  

X Z

 

The vector of all observations is denoted by 
1(1) 2(1) 1(2) 2(2)( , , , )y y y y y  with its 

covariance Var( )y = 2 2

1( )diag V V
 
where      

11 12 22 11 12 11 22

1 1 1 11 12 11 11 12

11 22 11 12 11 12 22

2 1

1 .

2 1

d d d d d d d

d d d d d

d d d d d d d

     
     
 
      

V D I =X X         (7.16) 

For finding the REML estimators, matrix A that satisfies the condition in (7.3) with n = 2 

is given by 

3 3
3 3 3 3

3 3
3 3 3 3

10 12
3 3

3 3 3 3

1 1 1 1

,

 

 



 

 
 

 
  

 
 
     

I I 0 0

0 I I 0
A

0 0 I I

a a a a

 

where  1 1 2 1 .   a
 

Define the transformed data as
* * * * *

1 2 3 4( , , , ) , Ay y y y y y  then the l
*
 can be rewritten as 

* 2

1 2

3 E
5log log ,

2 2
l 


   V         (7.17) 

where 

*2

4 * 1 * * 1 * * 1 * * 1 * * 1 * * 1 *

1 1 1 2 1 2 3 1 3 1 1 2 2 1 3 1 1 3

3 3 1
E ,

24 4 4 2

                V V V V V V
y

y y y y y y y y y y y y  

2

1 11 22 12 11 223 2 6 6 1.           (7.18)d d d d d    V  
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Differentiating *l in (7.17) with respect to 2 and equating it to zero, we have 

2 E
ˆ .

5
   

Now we take the partial derivative of *l with respect to variance parameters: d11, d22, and 

d12 respectively and set those REML equations equal to zero, we obtain  

* * * * * * * * * * * * 2

1 1 2 2 3 3 1 2 2 3 1 3 22 1

3 3 1
W W W W W W (9 18 ) ,

4 4 2
d 

             
 

Vy y y y y y y y y y y y

* * * * * * * * * * * * 2

1 1 2 2 3 3 1 2 2 3 1 3 11 1

3 3 1
G G G G G G (6 18 ) ,

4 4 2
d 

             
 

Vy y y y y y y y y y y y

* * * * * * * * * * * * 2

1 1 2 2 3 3 1 2 2 3 1 3 12 1

3 3 1
F F F F F F 36 ,         (7.19)

4 4 2
d 

             
 

Vy y y y y y y y y y y y
      

 

where 

1 1 1

2 2 2

3 3 3

W ,

w w w

w w w

w w w

 
 


 
  

 

 
2 2

1 12 22 12 22 11 12 12 22

2 2

2 22 12 22

2 2

3 12 22 12 22 11 12 12 22

6 4 6 4 9 6 1,

4 6 4 1,

6 4 6 4 9 6 1,

w d d d d d d d d

w d d d

w d d d d d d d d

      

   

       

 

11 11

21 21

31 31

0

G 0 ,               (7.20)

0

g g

g g

g g

 
 

 
 
  

 

2 2

11 11 12 11 12 12 22 11 12

21 12 11 22

2 2

31 11 12 11 12 12 22 11 12

6 4 6 4 9 6 1,

2 (3 2 2),

6 4 6 4 9 6 1,

g d d d d d d d d

g d d d

g d d d d d d d d

      

  

       
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11 12 13

21 22 23

31 32 33

F ,               (7.21)

f f f

f f f

f f f

 
 


 
  

 

2 2 2

11 11 11 22 11 12 12 22 12 22 22

2 2

12 11 12 11 12 12 22 11 12

13 12 11 22 11 22

2 2

21 12 22 11 12 12 22 12 22

22 12 11

9 15 6 12 10 10 4 4 2,

6 4 6 4 9 6 1,

( 3 2 )(3 2 2),

4 4 6 4 6 4 1,

2 (3 2

f d d d d d d d d d d

f d d d d d d d d

f d d d d d

f d d d d d d d d

f d d d

         

       

    

       

   22

2 2

23 12 22 11 12 12 22 12 22

31 12 11 22 11 22

2 2

32 11 12 11 12 12 22 11 12

2 2 2

33 11 11 22 11 12 12 22 12 22 22

2),

4 4 6 4 6 4 1,

( 3 2 )(3 2 2),

6 4 6 4 9 6 1,

9 15 6 12 10 10 4 4 2.             

f d d d d d d d d

f d d d d d

f d d d d d d d d

f d d d d d d d d d d



       

    

      

            (7.22)

 

The close form expressions of REML estimators are impossible to obtain. We have to 

compute such REML estimators numerically by iterative methods. Let L(1), L(2), and L(3) 

denote the left-hand side of equations in (7.19). Define the right-hand side of equations in 

(7.19) as R(1), R(2), and R(3), respectively. A criterion function Δ is defined as 

3

( ) ( )

1

| | .i i

i

L R


  

Table 7.4: Solution of REML estimators with values of Δ, l
*
, and P for n = 2 

Parameter σ
2
 d11 d22 d12 Δ l

*
 P 

True 0.0005 0.05 0.10 0.0005 0.0466 27.0389 -- 

Our Estimate 0.0009 0.0198 0.2580 0.0720 0.0446 29.0532 0.2600 

SAS Estimate 0.0010 0.0198 0.2586 0.0720 0.0461 29.0636 0.2607 
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For the data presented in Table 7.3, using the criterion functions l
* 
in (7.17) and Δ in (7.9), 

we have obtained the REML estimates of the variance parameters shown in Table 7.4. 

The estimation procedures are performed using the Optimization Toolbox in MATLAB 

with ‘fmincon’ as the solver, ‘active set’ as the search algorithm. The estimates generated 

by SAS using PROC MIXED are also presented in Table 7.4. 

It can be seen that, with P = 0.26, our estimates of variance components are relatively 

close to the true values. The REML estimates found by our method are identical up to at 

least three decimal places compared with SAS results. Furthermore, our REML estimates 

perform better than SAS estimates with respect to the criterion P. However, SAS 

estimates are slightly better than ours in terms of Δ and l
*
 criteria. In the next section, we 

will take one real data set to illustrate our described method. 

7.3.3    Estimation of variance components for a real data set 

Consider, as an example, a longitudinal study on facial growth made on 11 girls and 16 

boys (Potthoff and Roy, 1964 [20]). For each subject, the distance from the center of the 

pituitary to the maxillary fissure was recorded at age 8, 10, 12, and 14 years. Here, cohort 

is defined by gender. The 1
st
 cohort consists of girls and the 2

nd
 cohort consists of boys. 

For illustration purpose, we randomly select 6 girls and 6 boys. For any chosen subject, 

the measurements observed at age 8, 10, and 12 are used. The facial growth data are 

shown in Table 7.5.  
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Table 7.5: The facial growth data with n = 6 

Cohort 

(i) 

Subject 

(j) 
Observations 

1  1 21.0 21.5
 

24.0 

1  2 20.5 24.0 24.5 

1  3 23.5 24.5
 

25.0 

1 4 20.0 21.0 22.0 

1  5 16.5 19.0
 

19.0 

1  6 24.5 25.0 28.0 

2  1 24.5 25.5
 

27.0 

2 2 27.5 28.0 31.0 

2  3 21.5 23.5
 

24.0 

2  4 22.5 25.5 25.5 

2  5 23.0 24.5
 

26.0 

2 6 21.5 22.5 23.0 
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Figure 7.1: Plots of individual profiles for Cohort 1 and Cohort 2 
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In Figure 7.1, the individual facial growth profiles of six girls and six boys are displayed. 

The plots seem to indicate that the linear mixed effects model in (2.3) would summarize 

both the individual development of facial growth in those subjects and their average 
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profile as well. For the three measurements taken on the j
th 

subject in cohort i, the model 

is given by 

( ) ( ) ( ) ,       1,2, 1,...6,j i i i j i j i i j    y X Z b 
  

where 0 1( , )    is the vector of fixed intercept and fixed slope. Since the subjects 

differ in baseline facial measurement and in facial growth speed, 
( ) ( ) 1 ( )( , )j i oj i j ib b b is the 

vector of random intercept and slope with mean 0 and a covariance matrix 2 D =

11 122

12 22

d d

d d


 
 
 

 . The 3 × 1 random error vector 
( )j i

 
has mean 0 and a covariance 2 , I  

where 2  is the common variance for error components.
 
The design matrices Xi and Zi 

are  

1( )

2( )

3( )

1 1 1

1 1 0 .

1 1 1

i

i i i

i

t

t

t

   
   

     
     

X Z

 

Note that for simplicity the time interval [8, 12] is rescaled to [−1, 1] by applying a linear 

transformation: 

8 12
102 , where  is the age of the subject (8 12). 

12 8 2

2

  

x
x

x x





  


 

The logarithm of the restricted likelihood function expressed in terms of all observations

1(1) 6(1)( ,..., , y y y 1(2) 6(2),..., )  y y  is simplified to 

* 2 1

1 2

11 1
17log log ( ) ,

2 2
l 



     V A AVA Ay y   
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where 1V
 
represents the determinant of V1

 
and it is defined in (7.18), the 36 × 36 matrix 

V = diag(V1). A matrix A satisfying rank(A) = 34 and AX = 0 is 

3 3
3 3 3 3 3 3

3 3
3 3 3 3 3 3

34 36

3 3
3 3 3 3 3 3

1 1 1 1 1

  

  



  

 
 

 
 

  
 
 
      

I I 0 0 0

0 I I 0 0

A

0 0 0 I I

a a a a a
 

with  11 1 2 1 .   a
 

Using the estimation equations in (7.7) and (7.8), the REML estimates are computed via 

our iterative method and are displayed in Table 7.6 with values of Δ and l
*
. SAS results 

are also presented for comparison. 

Table 7.6: Solution of REML estimators with values of Δ and l
*
 for facial growth data 

Parameter σ
2
 d11 d22 d12 Δ l

*
 

Our Estimate 0.4430 15.9736 0.0474 0.8704 0.0021 59.2016 

SAS Estimate 0.4430 15.9736 0.0474 0.8704 0.0021 59.2016 

 

It should be noticed that the criterion function P cannot be applied to this observed facial 

growth data, because the true variance component values are unknown. The REML 

estimates found by our method are identical up to at least four decimal places compared 

with SAS results. We conclude that our proposed method is equally good as the SAS 

PROC MIXED procedure. 
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Chapter 8 

Conclusions  

 

 

In this dissertation, we address the design problem for longitudinal cohort studies and 

propose an iterative method for computing the REML estimators of the variance 

components in the linear mixed effects models. The mixed longitudinal designs with two 

fully overlapping cohorts are considered. The D-, A-, and E-optimality criteria are used in 

finding the optimal allocation of time points to maximize the information for the 

estimation of the fixed parameters in the model.  

We find optimal cohort designs for the design class T23(a) with correlation matrix Ri = I (i 

= 1, 2) and a general matrix D under the D- and A-optimality criteria. The D-optimal 

design for T23(a) with Ri = I and a general D is the design with equidistant time points (−1, 

0, 1) for both cohorts, if 
(1)D 0f  . We compute optimal cohort designs analytically for the 

design class T23 with covariance matrix D = I and error correlation matrix Ri = I. The D-, 
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A-, and E- optimal design for the design class T23 with Ri = I and D = I is the design with 

time points 
0( 1, ,1)a   for the 1

st
 cohort and 

0( 1, 1)a  for the 2
nd

 cohort, where 

2

0 0 (0 1),  1,  2.ia a a i     We compare between cohort designs with equidistant and 

non-equidistant time points. We have learned that when the covariance of the random 

effects satisfies certain conditions, the design with equidistant time points is preferred. 

For instance, the D-optimal design for T23(a) with Ri = CS and a general D is the design 

with equidistant time points (−1, 0, 1) for both cohorts, if 11 22 12d d d  

11 22
11 22

(1 3 2 )
min ,

6

a d d
d d

   
 
 

. However, under certain cases, for example, the 

second case in Theorem 5.4, the design with non-equidistant time points is better. In 

addition, we present general results with their applications in comparison of design 

classes T23(a) and T23(−a, a), with respect to D- and A-optimality criteria. The design class 

T23(−a, a) is preferred over T23(a) with respect to both D- and A-optimality criteria, if D is a 

diagonal matrix. 

The Restricted Maximum likelihood (REML) estimators for the variance components are 

also obtained using three criterion functions l
*
, Δ, and P. We have compared our 

estimates with the SAS estimates for two simulated data sets and one observed facial 

growth data set. Our estimates are comparable with the SAS estimates with respect to l
*
, 

Δ, and P.  
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