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In this paper, we investigate and develop scaling laws as a function of external nondimensional control
parameters for heat and momentum transport for nonrotating, slowly rotating, and rapidly rotating turbulent
convection systems, with the end goal of forging connections and bridging the various gaps between these
regimes. Two perspectives are considered, one where turbulent convection is viewed from the standpoint of
an applied temperature drop across the domain and the other with a viewpoint in terms of an applied heat
flux. While a straightforward transformation exists between the two perspectives, indicating equivalence, it
is found the former provides a clear set of connections that bridge between the three regimes. Our generic
convection scalings, based upon an inertial-Archimedean balance, produce the classic diffusion-free scalings
for the nonrotating limit and the slowly rotating limit. This is characterized by a free-falling fluid parcel on the
global scale possessing a thermal anomaly on par with the temperature drop across the domain. In the rapidly
rotating limit, the generic convection scalings are based on a Coriolis-inertial-Archimedean (CIA) balance, along
with a local fluctuating-mean advective temperature balance. This produces a scenario in which anisotropic fluid
parcels attain a thermal wind velocity and where the thermal anomalies are greatly attenuated compared to the
total temperature drop. We find that turbulent scalings may be deduced simply by consideration of the generic
nondimensional transport parameters—local Reynolds Re� = U�/ν; local Péclet Pe� = U�/κ; and Nusselt
number Nu = Uϑ/(κ�T/H )—through the selection of physically relevant estimates for length �, velocity U ,
and temperature scales ϑ in each regime. Emergent from the scaling analyses is a unified continuum based
on a single external control parameter, the convective Rossby number, RoC = √

gα�T/4�2H , that strikingly
appears in each regime by consideration of the local, convection-scale Rossby number Ro� = U/(2��). Thus
we show that RoC scales with the local Rossby number Ro� in both the slowly rotating and the rapidly rotating
regimes, explaining the ubiquity of RoC in rotating convection studies. We show in non-, slowly, and rapidly
rotating systems that the convective heat transport, parametrized via Pe�, scales with the total heat transport
parameterized via the Nusselt number Nu. Within the rapidly rotating limit, momentum transport arguments
generate a scaling for the system-scale Rossby number, RoH , that, recast in terms of the total heat flux through
the system, is shown to be synonymous with the classical flux-based CIA scaling, RoCIA. These, in turn, are
then shown to asymptote to RoH ∼ RoCIA ∼ Ro2

C , demonstrating that these momentum transport scalings are
identical in the limit of rapidly rotating turbulent heat transfer.

DOI: 10.1103/PhysRevResearch.2.043115

I. INTRODUCTION

Accurate parametrizations are ubiquituously sought for
the turbulent transport properties of fluid dynamical sys-
tems. In buoyancy-driven convection systems, the heat and
momentum transport properties are the main foci of such
investigations [1–4]. These transport estimates are essential
for understanding the possible behaviors of a given system
and for extrapolating these behaviors to extreme industrial,
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geophysical and astrophysical settings that are difficult to
simulate directly (e.g., Refs. [5–13]).

In the Rayleigh-Bénard convection systems considered
here, warmer fluid is maintained at the base of the fluid layer
and colder fluid is maintained at the top of the layer, defined
with respect to the gravity vector g that is parallel to the
background temperature gradient. In addition, our system is
rotating at angular velocity � that is oriented in the axial êz

direction. This system is gravitationally unstable and drives
buoyant convective flows across the fluid layer that advect
both heat and momentum. We describe this system generally
throughout this paper, but it can be thought of as an extended
plane layer [14], a finite cylinder [15], or a spherical shell of
fluid [16].

A scaling analysis is presented using generic scales for
the characteristic fluid properties occurring in the nonrotating,
slowly rotating, and rapidly rotating turbulent limits. This
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analysis generates a large-scale, free-fall flow regime in the
nonrotating (NRL) and slowly rotating limits (SRL), and a
small-scale, thermal wind flow in the rapidly rotating limit
(RRL). The generic nature of our scaling analysis allows us
to provide connections between the different regimes. For
instance, we show that the convective Rossby number, RoC ,
arises ubiquitously in scaling estimates for turbulent rotating
convection, both in the rapidly rotating and slowly rotating
end-member limits. Further, RoC is shown to be equivalent to
Ro�, which describes the Rossby number for the rotating flow
dynamics on the local convective scale. The rotating scalings
developed show how numerous heat and momemtum trans-
port laws can all be inter-related via integer powers of RoC

(or, synonymously, Ro�), thus providing novel ties between
the different scaling regimes.

II. GOVERNING EQUATIONS AND PARAMETERS

The governing equations of rotating thermal convection in
an Oberbeck-Boussinesq fluid are

∂t u + u · ∇u + 2� × u = −∇p + gαθ + ν∇2u, (1a)

∂tθ + (u · ∇θ )′ = (êg · u)∂gT + κ∇2θ, (1b)

∂t T + ∇ · (uθ ) = κ∇2T , (1c)

∇ · u = 0, (1d)

e.g., Refs. [17]. Other effects are not considered here, such as
those due to magnetic fields [18], centrifugal buoyancy [19],
and non-Oberbeck-Boussinesqness [20]. In the Navier-Stokes
Eq. (1a), the velocity vector is u, the angular rotation velocity
along the axial coordinate z is �, p is the modified pressure, α
is the thermal expansivity, g is the gravity vector, and ν is the
fluid’s kinematic viscosity.

Temperature is T = T + θ , where the overbar denotes
averaging over surfaces perpendicular to g. Thus, T is the
laterally averaged temperature and θ is the temperature
fluctuation. Equation (1b) is the fluctuating temperature evo-
lution equation and Eq. (1c) describes the evolution of the
laterally averaged temperature field. In the fluctuating temper-
ature Eq. (1b), we use the abbreviated notation (u · ∇θ )′ =
u · ∇θ − ∇ · (uθ ). Convective motions in this system are
driven by an unstable, system-scale temperature gradient
∂gT = O(�T/H ) measured in the direction of gravity êg,
where �T is the temperature drop across the fluid layer of
system depth H . Here �T is sustained either via fixed temper-
ature boundaries or via an applied heat flux Q [21]. Depending
on the setup, êg can be oriented in the axial direction êz [22],
the cylindrically radial direction ês [23], or the spherically
radial direction êr [16].

Here we take the characteristic convective velocity to be U ,
the characteristic length scale to be �, and the characteristic
temperature anomaly to be ϑ . The SRL is defined such that
the inertial forces greatly exceed the Coriolis force:

u · ∇u � 2� × u −→ U 2

�
� 2 �U . (2)

The ratio of these terms, the so-called local Rossby number
defined with the characteristic scales of the convection, is

Ro� ≡ U

2��
� 1. (3)

In the RRL of Rayleigh-Bénard convection, the Coriolis
forces dominate over the inertial forces,

u · ∇u � 2� × u −→ U 2

�
� 2 �U . (4)

Thus,

Ro� ≡ U

2��
� 1. (5)

We note then that the local Rossby number estimates the
strength of inertial advection using the estimated convective
velocity and length scales considered, normalized by the Cori-
olis acceleration.

We are interested in ascertaining turbulent scaling laws for
the heat transported across the system scale H and for the local
momentum and heat transport carried by the fluid motions
occurring on the convective scale �. The system-scale heat
transport is measured by the Nusselt number,

Nu = QH

ρcPκ�T
∼ UϑH

κ�T
, (6)

where ρ is the fluid’s density and cP its specific heat capacity.
Here Q ∼ ρcPUϑ is the total (superadiabatic) heat flux per
unit area, which we assume is dominated by the turbulent con-
vective transport component (i.e., Nu � 1). The momentum
and heat transported on the characteristic convective scale is
estimated via the local Reynolds and Péclet numbers

Re� = U�

ν
, Pe� = U�

κ
. (7)

The Nu, Re�, and Pe� transport scalings will be formulated
in terms of Eqs. (1)’s nondimensional control parameters,
which are the Prandtl, Rayleigh, and Ekman numbers [4]. The
Prandtl number describes the fluid’s thermophysical proper-
ties,

Pr = ν

κ
, (8)

where κ and ν are the thermal diffusivity and kinematic
viscosity, respectively. The Ekman number, Ek, gives the esti-
mated ratio of system-scale viscous and Coriolis forces:

Ek = ν

2�H2
. (9)

The Rayleigh number estimates the strength of the buoyancy
forcing:

Ra = gα�T H3

νκ
. (10)

The nondimensional buoyancy forcing will also be presented
in three alternative forms. The first of these is in terms of
the flux Rayleigh number, based on the heat flux through the
system:

RaF = Ra Nu = gαQH4

ρcPνκ2
. (11)

Following Christensen [24] and Christensen and Aubert [25],
the second form is given in terms of the rotating, diffusivity-
free, so-called modified flux Rayleigh number,

Ra∗
F = RaF Ek3

Pr2 = gαQ

8ρcP�3H2
. (12)

043115-2



CONNECTIONS BETWEEN NONROTATING, SLOWLY … PHYSICAL REVIEW RESEARCH 2, 043115 (2020)

FIG. 1. Rotating convection heat transport surveys carried out in the slow rotating and rapidly rotating frameworks. (a) Slowly rotating
approach: Fixed Ra data shingles from the numerical study of Horn and Shishkina [50]. For each data shingle, the vertical temperature
difference �T (∝ Ra) is fixed and the angular rotation rate � (∝ Ek−1) is varied. (b) Rapidly rotating approach: Fixed Ek data shingles from
the laboratory-numerical study of Cheng et al. [52]. Here � is fixed and �T is varied along each data shingle. The colored x symbols mark
each Ek-shingle’s Racrit value. The corresponding nonrotating heat transfer efficiency is denoted by Nu0.

(The oceanic and atmospheric communities write these
flux-based parameters in terms of the buoyancy flux B =
gαQ/(ρcP ) and the Coriolis parameter f = 2� [26]. Then
RaF = BH4/νκ2 and Ra∗

F = B/ f 3H2.) The third form is the
convective supercriticality,

R̃a = Ra / Racrit, (13)

where Racrit is the critical Rayleigh number above which
buoyancy-driven fluid motions first onset in a given convec-
tion system [27–29]. Thermal convection is active whenever
R̃a � 1. No convection occurs for R̃a < 1, unless a subcritical
branch also exists, giving rise to a hysteretic bistable state.
This has been found in low Pr, rapidly rotating convection
studies in spheres, such as in Guervilly and Cardin [30] and
Kaplan et al. [31]. The critical Rayleigh number is approx-
imately 103 in nonrotating systems [32]. More specifically,
Racrit = 1708 for no-slip mechanical boundary conditions in a
nonrotating, horizontally infinite layer of fluid. In contrast, in
a rotating plane layer of Pr � 0.67 fluid, the critical Rayleigh
number is a strong function of the rotation rate and fluid
viscosity,

Racrit � 8.7 Ek−4/3, (14)

and convection onsets in the form of stationary modes. In
lower Prandtl number fluids such that Pr � 0.67, convection
first develops via oscillatory modes [27,33,34] and the critical
Rayleigh number in a plane layer is Racrit � 17.4 (Ek/Pr)−4/3

[35,36]. Thus, in plane-layer geometries, Racrit depends on the
rotation rate and the fluid’s thermal diffusivity in low Pr fluids.
In rotating spherical geometries, the onset is always to Pr-
dependent oscillatory convection [37]. Although Pr can affect
Racrit in rotating fluids [38], it does not affect the outcome
of our analyses, since all the diffusion coefficients drop out
of the final expressions. For simplicity, then, we will choose
to consider only the moderate Pr relationship Racrit ∼ Ek−4/3

from here onward.

Lastly, we present the convective Rossby number, RoC ,
which arises ubiquitously in studies of rotating convection.
This nondimensional parameter estimates the ratio of buoy-
ancy and Coriolis forces and is commonly defined as

RoC ≡
√

gα�T

4�2H
=

√
RaEk2

Pr
. (15)

The convective Rossby number is taken to be the essential
control parameter in many studies of rotating convection
[13,39–44], and is also claimed to control numerous tran-
sitions in rotating convection behavior [45–51]. Further, in
many rotating convection and dynamo studies, the buoyancy
forcing is parameterized in terms of the square of the con-
vective Rossby number, although it is referred to there as the
modified Rayleigh number, Ra∗ = Ro2

C [24].

Parameter surveys

Within the fluid physics community, rotating convection
studies often take the NRL as their philosophical starting
point. This assumes an inertial velocity scale and then the
inertial turbulence is perturbed with increasing rotational ef-
fects. Within this buoyancy-dominated framework, surveys
are carried out at various fixed values of the buoyancy forcing,
e.g., fixed Ra ∝ �T , while the angular rotation rate of the
system � is systematically increased [42,44,53]. An exam-
ple of this approach is shown in Fig. 1(a), which is adapted
from the numerical investigation of Horn and Shishkina [50].
Six different cuts through parameter space are shown, with
each data “shingle” made at a fixed Ra value as shown
in the legend box [54]. The control parameter displayed
along the abscissa is 1/RoC , which in this case varies only
as a function of the nondimensional rotation rate of the sys-
tem Ek−1 ∝ �. The ordinate shows the Nusselt number, Nu,
normalized by its NRL value at each Ra value, Nu0(Ra).

In the geophysical and astrophysical fluid dynamics com-
munities, it is typically argued that convection occurs within
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FIG. 2. Nonrotating convective flows, which approximate the slowly rotating limit (SRL). (a) Temperature field image adapted from the
Ra = 108; Pr = 1; radius ratio χ = 0.6 spherical shell simulation of Gastine et al. [67], corresponding to Re f f = 104. Lighter (darker) shading
represents warmer (cooler) fluid. (b) Laboratory shadowgraph image courtesy of Jewel Abbate (UCLA) showing convection in 1.5 cSt silicone
oil for Ra � 4 × 1011 and Pr � 21, corresponding to Re f f � 105. The cylindrical tank is 40 cm high by 20 cm across, with shape distorted
and its left-hand side clipped by the shadowgraph technique. The horizontal line near the midplane and the dark region at the tank bottom are
further lighting artifacts.

the RRL [55]. With this guiding principle in mind, the Ekman
number is typically fixed at some low value whilst Ra is varied
along each data shingle. Figure 1(b), which is adapted from
the laboratory-based study of Cheng et al. [52], shows this
approach well. Three different fixed Ekman number shingles
are shown. Rayleigh number values are shown on the x axis
and the y axis denotes the Nusselt number values. [The solid
black line denotes the NRL scaling Nu0(Ra).] Small x’s on
the abscissa denote RaCrit = 8.7Ek−4/3, the critical Ra value
at which stationary planar rapidly rotating convection onsets
at a given Ek value. Such a survey uses R̃a = Ra/Racrit = 1 as
its philosophical starting point, and then perturbs the system
with ever-increasing values of R̃a. In these studies, RoC is not
used as a control parameter, but is often checked a posteriori
to see if it can collapse the data [22,46,52,56].

The two panels of Fig. 1 are qualitative mirror images
of one another. Starting from different ends of the inertially
versus rotationally dominated ranges, they show nearly iden-
tical data but harvested along different slices through the same
parameter spaces. Figure 1(a) assumes a high Ra, SRL dom-
inated by buoyancy effects, whereas Fig. 1(b) assumes a low
Ek, RRL dominated by Coriolis forces.

The goal of this paper is to develop transport scalings that
bridge the gaps between the NRL, SRL, and RRL convective
world views. A particularly important finding is the relative
importance of the free-fall terminal velocity in the NRLs and
SRLs and of the thermal wind terminal velocity in the RRL,
and how these velocities are related to one another via RoC .

III. THE NONROTATING AND SLOWLY ROTATING
LIMITS

In the limit of asymptotically high Ra, high Re, turbu-
lent convection, we presume that perfect power-law scaling
behaviors exist to describe the heat and momentum trans-
port in terms of the other relevant system parameters,
Nu(Ra, Pr) and Re(Ra, Pr) [43,57–59]. The demonstration of
such asymptotic scalings is still an active and frothy topic
of scientific debate [60–65]. We assume, further, that sim-
ilar transport scalings exist in the nonrotating and slowly
rotating regimes. Despite small differences due to sym-
metry breaking in slowly rotating systems [44,66], their
gross transport behaviors can be taken to be comparable
(e.g., Fig. 2).

For both nonrotating and slowly rotating convections, we
take the characteristic convection length scale to be the global
scale of the system in all directions, � ∼ H , based on the
superstructures that form at high Ra with vertical scales of
order H and lateral scales that are typically less than 10H
[68–72], which appear to be maintained even in extreme astro-
physical and geophysical systems [73]. In the turbulent limit,
the free-fall inertial balance is achieved:

u · ∇u ∼ gαθ −→ U 2

H
∼ gαϑ. (16)

Analytic estimations for the characteristic magnitude of ϑ in
the turbulent regime are nontrivial [1,59]. Here, following the
work of Grossmann and Lohse [74], we scale ϑ ∼ �T . In the
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NRL and SRL, it then follows that

� ∼ H, ϑ ∼ �T and U ∼
√

gα�T H ≡ Uf f . (17)

The dominant flows in these regimes are large scale; they are
driven by thermal fluctuations that are roughly comparable
to the temperature drop across the system (likely akin to
the characteristic boundary layer temperature variations); and
the convective flows will approach Uf f , the diffusivity-free,
inertial free-fall velocity [58,75,76]. Further, the characteristic
advective timescales are isotropic and are given by

τU = �

U
∼ H

Uf f
=

√
H/(gα�T ) ≡ τ f f , (18)

where τ f f is the inertial free-fall time across the system. We
note, following Spiegel [75], that our assumption that trans-
port processes are dominated by the large scale flows likely
best applies in low Pr fluids [71]. We will not probe this
assumption more deeply here, but direct readers to more fo-
cused treatments of nonrotating Rayleigh-Bénard convection
[1,59,77,78].

Using the SRL scales given in (17), the local Rossby num-
ber can be recast as

Ro� = U

2��
∼ Uf f

2�H
=

√
gα�T

4�2H
≡ RoC, (19)

which demonstrates that the local Rossby number, Ro� �
1, is equivalent to the convective Rossby number, RoC , in
the SRL. Further, from Eq. (19), we arrive at the standard,
timescale-based description of the convective Rossby num-
ber, RoC = τ�/τ f f , as the ratio of the rotational time, τ� =
1/(2�), and the free-fall time across the system scale.

The scales in Eq. (17) lead to the following NRL and SRL
transport estimates:

Re� = U�

ν
∼ Uf f H

ν
=

√
gα�T H3

ν

=
(

Ra

Pr

)1/2

≡ Re f f , (20a)

Pe� = U�

κ
∼ Uf f H

κ
=

√
gα�T H3

κ

= (Ra Pr)1/2 ≡ Pe f f , (20b)

Nu ∼ UϑH

κ�T
∼ Uf f H

κ
= (Ra Pr)1/2 ≡ Pe f f . (20c)

Dimensional analysis can be used, independently, to solve
for the exponents ζ and χ that yield diffusivity-free expres-
sions for the characteristic transport parameters [4], yielding

ReH ∼ R̃a
ζ
Prχ = (Ra/Pr)1/2 ≡ Re f f

(ζ = −χ = 1/2), (21a)

PeH ∼ R̃a
ζ
Prχ = (Ra Pr)1/2 ≡ Pe f f

(ζ = χ = 1/2), (21b)

Nu ∼ R̃a
ζ
Prχ = (Ra Pr)1/2 ≡ Pe f f

(ζ = χ = 1/2), (21c)

where R̃a �→ Ra in the dimensional analysis, since Racrit is
effectively constant in the nonrotating and SRLs. Because it is
being assumed that the convection is highly supercritical and
turbulence dominated, we take (Nu − 1) ≈ Nu, (Re − 1) ≈
Re, and (R̃a − 1) ≈ R̃a in all our dimensional analyses,
cf. Ref. [79].

The dimensional analytical transport estimates in Eqs. (21)
are consistent with the dynamical scaling estimates given in
Eqs. (20) and also agree with the classic dimensional analysis
predictions for nonrotating convection in the limit of zero
diffusive effects [76]. The agreement between the indepen-
dent scalings Eqs. (20) and (21) shows that Re� ∼ ReH and
Pe� ∼ PeH , consistent with our assumption that � ∼ H in
NRL and SRL. Lastly, multiplying by Ek, the momentum
transport scalings Eqs. (20a) and (21a) require that

Ro� ∼ RoH ∼ RoC (22)

in the slowly rotating regime, consistent with Eq. (19).

IV. THE RAPIDLY ROTATING LIMIT

Just as angular momentum is the key dynamical variable
in rapidly rotating solid mechanics problems, vorticity, ω =
∇ × u, is the essential dynamical variable in rapidly rotating
fluid systems in which rotational inertia dominates the physics
[80]. The evolution equation for fluid vorticity, ∇× (1a), is

∂tω + u · ∇ω − ω · ∇u = 2� · ∇u

+∇ × (gαθ ) + ν∇2ω. (23)

In the turbulent RRL, a balance is achieved in Eq. (23) be-
tween the inertial (I), Coriolis (C), and buoyancy (A, for
Archimedean) terms [81,82]. This is typically referred to as
the CIA balance [2,83],

u · ∇ω ∼ 2�∂zu ∼ ∇ × (gαθ )

U 2

�2
∼ 2�U

H
∼ gαϑ

�
, (24)

in which the first term is inertial advection of vorticity (I),
the second is the axial stretching of planetary (or background)
vorticity (C), and the third is the buoyancy torque (A).

Rapidly rotating convective motions are strongly
anisotropic, as shown in Fig. 3, with small scales perpendi-
cular to � and much longer scales parallel to �. Therefore,
it is essential in (24) to distinguish between the characteristic
convection scale � measured perpendicular to � and the
system scale H measured parallel �. Only the stretching of
the background vorticity, 2�∂zu, can occur on the system
scale. The other two terms, I and A, operate on the local
convective scale. Although the length scales � and H differ
greatly in rapidly rotating convection, the kinetic energies
measured along these different directions remain comparable,
even in the supercritical regime [17,50,85,86]. Thus, we
assume that the characteristic velocity magnitudes are
approximately isotropic |ui| ∼ U in RRL.

The balance between the C and I terms in (24) then gives

�

H
∼ U

2��
≡ Ro� = τ�

τ �
U

, (25)
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FIG. 3. Anisotropic flows in rapidly rotating convection with longer characteristic axial scales than horizontal scales � (measured
perpendicular to the rotation axis). (a) Temperature field image from the Ra = 2.5 × 109; Ek = 10−6; Pr = 1; radius ratio χ = 0.6 spherical
shell simulation of Gastine et al. [84], corresponding to RoC = 5 × 10−2 and ReTW � 1.3 × 102. Lighter (darker) shading represents warmer
(cooler) fluid. (b) Laboratory shadowgraph image courtesy of Jewel Abbate (UCLA) showing rotating convection in 1.5 cSt silicone oil for
Ra � 5 × 1011; Ek � 6 × 10−7; Pr � 21, corresponding to RoC � 9 × 10−2 and ReTW � 1.3 × 103. The cylindrical tank is 40 cm high by
20 cm across, with its shape distorted and clipped around the midplane by the shadowgraph imaging technique. The horizontal line near the
midplane and the dark region at the tank bottom are further lighting artifacts.

where the lateral advective timescale τ �
U = �/U characterizes

rapidly rotating convection. Thus, rapidly rotating convection
is highly anisotropic with � � H , since � ∼ Ro�H in (25) and
Ro� � 1 in the definition of the RRL. Unlike in the NRL and
SRL, where the bulk fluid tends to be isothermalized by strong
turbulence, in rapidly rotating convection, an unstable mean
temperature gradient tends to be sustained in the fluid bulk,
∂gT ∼ �T/H [40,52,86,87]. The fluctuating thermal energy
Eq. (1b) thus scales as

(u · ∇θ )′ ∼ (êg · u)∂gT −→ Uϑ

�
∼ U�T

H
. (26)

This implies, in the RRL, that

ϑ

�T
∼ �

H
∼ Ro�. (27)

Balancing the C and A terms in (24) yields

U ∼ gα�T

2�

(
ϑ

�T

H

�

)
∼ gα�T

2�
≡ UTW, (28)

where UTW, the thermal wind velocity, is the diffusivity-free
velocity scale in the rapidly rotating convection regime [88].
(This thermal wind scaling is similarly found by balancing
the I and A terms in (24).) From (28), we see that the local
advection time scale in RRL is the thermal wind timescale:

τ �
U = �/UTW ≡ τTW . (29)

The rapidly rotating local Rossby number then becomes

Ro� ∼ UTW

2��
= τ�

τTW
= gα�T

(2�)2H

1

Ro�

−→ Ro� ∼
√

RaEk2

Pr
≡ RoC . (30)

Thus, the a posteriori local Rossby number, Ro�, is equiv-
alent to the a priori convective Rossby number, RoC , in both
the SRL Eq. (19) and in the RRL Eq. (30). At closer in-
spection, this holds because the local advective timescales,
τ f f = H/Uf f in SRL and τTW = �/UTW in RRL, are similar.
Thus, their ratio yields

τ f f

τTW
∼ H

�

UTW

Uf f
∼ 1

RoC

gα�T/(2�)√
gα�T H

= O(1). (31)

This similarity between the SRL and the RRL local advective
timescales explains why the convective Rossby number turns
up so ubiquitously in rotating convection dynamics: Even
though Uf f and H in SRL both greatly exceed UTW and � in
RRL, their ratios, Uf f /H and UTW/� have equivalent scaled
values. Expression (31) demonstrates, further, that the con-
vective Rossby number can be cast, alternatively, as

RoC ≡ UTW

Uf f
. (32)

This velocity-based definition of RoC holds in both slowly
rotating and rapidly rotating regimes, and differs in its
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interpretation in comparison to the standard (slowly rotating)
definition in which RoC = τ�/τ f f , as will be discussed further
in Sec. VI.

In the limit of rapidly rotating convective turbulence, the
CIA balance gives

� ∼ RoCH, ϑ ∼ RoC�T, (33)

U ∼ RoCUf f = gα�T

2�
≡ UTW, (34)

with all three turbulent RRL scales differing by RoC relative
to their corresponding SRL scales. Following the same steps
as in Eq. (17) but employing the rapidly rotating scales in
Eq. (34) then leads to the following RRL transport estimates:

Re� = UTW�

ν
∼ gα�T

2�

�

ν
=

(
Ra

Pr

)3/2

Ek2

= RoC
2Re f f ≡ ReTW, (35a)

Pe� = UTW�

κ
∼ gα�T

2�

�

κ
=

(
Ra3/2

Pr1/2

)
Ek2

= RoC
2Pe f f ≡ PeTW, (35b)

Nu ∼ UTW

κ

(
ϑH

�T

)
= UTW�

κ
=

(
Ra3/2

Pr1/2

)
Ek2

= RoC
2Pe f f ≡ PeTW, (35c)

where ReTW and PeTW are the thermal wind Reynolds and
thermal wind Péclet numbers, respectively.

The scaling analysis in Eq. (35) is consistent with rapidly
rotating, diffusivity-free dimensional analysis, which yields

Re� ∼ R̃a
ζ
Prχ = (Ra/Pr)3/2Ek2 ≡ ReTW

(ζ = −χ = 3/2), (36a)

Pe� ∼ R̃a
ζ
Prχ =

(
Ra3/2

Pr1/2

)
Ek2 ≡ PeTW

(ζ = −3χ = 3/2), (36b)

Nu ∼ R̃a
ζ
Prχ =

(
Ra3/2

Pr1/2

)
Ek2 ≡ PeTW

(ζ = −3χ = 3/2), (36c)

where the critical Rayleigh number varies strongly here
with the system’s rotation, R̃a ∼ RaEk4/3. Consistency be-
tween Eq. (35) and (36) requires that the pertinent velocity
and length scales must be UTW and � in RRL. Thus,
Re ∼ Re� ≡ ReTW and Pe ∼ Pe� ≡ PeTW in the rapidly ro-
tating regime. Multiplying Eq. (35a) by the local Ekman
number, Ek� = ν/(2��2), yields Ro� = Re�Ek� ∼ RoC , con-
sistent with Eq. (30). Further, the RRL heat transport scaling
Eq. (35c) is also consistent with asympotically reduced theory
and diffusivity-free formulations [4,89–91]. Recent studies,
such as Plumley et al. [92,93], suggest that it is possible
to reach the RRL scalings Eq. (35) at far lower R̃a values
than are necessary to reach their diffusivity-free nonrotating
counterparts, cf. Ref. [78].

The rapidly rotating thermal wind transport scalings in
Eq. (35) differ from the slowly rotating free-fall scalings by
a factor of RoC

2. This creates a clean and novel link between

the two sets of scaling predictions. We can alternatively cast
the RRL expressions as

Re� ∼ RoC
3 Ek−1, (37a)

Pe� ∼ Nu ∼ RoC
3 (Ek/Pr)−1. (37b)

From (24), we predict that rapidly rotating turbulent transport
data acquired with approximately fixed rotation rate and mate-
rial properties will be collapsed when normalized by the cube
of the convective Rossby number.

Local scale parametrizations naturally arise in our anal-
ysis of rapidly rotating transport phenomena. However, the
system-scale transport parameters, ReH and PeH , are most
often reported in the literature [30]. Thus, we rescale our local
rapidly rotating transport scalings to provide the equivalent,
system-scale counterparts:

ReH = Re�

H

�
∼ UTWH

ν
= RaEk

Pr

= RoC
−1 ReTW = RoCRe f f (38a)

PeH = Pe�

H

�
∼ UTWH

κ
= RaEk

= RoC
−1 PeTW = RoCPe f f . (38b)

In addition, the system-scale Rossby number scales as

RoH = ReH Ek ∼ RoC
2, (39)

in agreement with the low-Ek, quasigeostrophic convection
models of Guervilly et al. [94] and the three-dimensional
asymptotically-reduced models of Maffei et al. [91]. This
system-scale RRL Rossby number scaling (39) differs by a
factor of RoC relative to the slowly rotating scaling (22) in
which RoH ∼ Ro� ∼ RoC .

V. FLUX-BASED SCALINGS

A. Nonrotating and slowly rotating flux-based scalings

When considering a planetary or stellar convection system,
it is far easier to estimate the outward thermal flux than to infer
a temperature drop across a given fluid layer. Therefore, it is
of great utility to recast the scalings developed above in terms
of the (superadiabatic) heat flux, Q, instead of the temperature
difference, �T . Nondimensionally, this simply corresponds
to replacing the Rayleigh number, Ra ∝ �T , with the flux
Rayleigh number, RaF = RaNu ∝ Q. To recast the NRL and
SRL scalings in terms of RaF , we manipulate Eq. (20c) into
the form

Ra ∼ [RaNuPr−1/2]2/3 ∼ Ra2/3
F Pr−1/3, (40)

and substitute this into Eqs. (20a) and (20b), giving the flux-
based free-fall scalings

Re f f ∼
[

RaF

Pr2

]1/3

and Pe f f ∼ [RaF Pr]1/3. (41)

The SRL flux-based expression for the Rossby number is then
[26]

Ro� ∼ RoH ∼
[

RaF Ek3

Pr2

]1/3

= Ra∗
F

1/3
. (42)
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The respective dimensional forms of the length, uncon-
trolled temperature drop (which is assumed here to be
proportional to ϑ in NRL and SRL) and free-fall velocity scale
in the slowly rotating regime are

� ∼ H, (43a)

�T ∼ Q/ρcPUf f ∼
(

Q2

gαρ2c2
PH

)1/3

, (43b)

U ∼ Uf f ∼
√

gα�T H ∼
[

gαQH

ρcP

]1/3

. (43c)

Equations (43) correspond to the free-fall balance expressed
in terms of an applied heat flux Q [95]. Further, by inserting
Eq. (43b) into Eq. (15), we find that the flux-based SRL
expression for RoC = Ra∗

F
1/3, which is identical to Ro� in

(42). Thus, Ro� ≈ RoC in the flux-based framework as well,
as must be the case since this result is framework independent.

B. Rapidly rotating flux-based scalings

To formulate the flux-based, system-scale, rapidly rotating
momentum transport scaling, we recast the RRL heat trans-
port scaling (35c) as

Ra = (RaNuPr1/2Ek−2)2/5 = Ra2/5
F Pr1/5Ek−4/5. (44)

Substituting Eq. (44) into Eq. (35) leads to the local, flux-
based, rapidly rotating transport scalings:

ReTW ∼
[

RaF Ek4/3

Pr2

]3/5

= Ra∗
F

3/5Ek−1 = RoC
3Ek−1,

(45a)

PeTW ∼
[

RaF Ek4/3

Pr1/3

]3/5

= Ra∗
F

3/5(/Pr)−1 = RoC
3(Ek/Pr)−1,

(45b)

with the local scale, RRL flux-based Rossby number

Ro� ∼
[

RaF Ek3

Pr2

]1/5

= Ra∗
F

1/5 = RoC . (46)

Note, using the flux-based expression for UTW [given in
Eqs. (50) below], one finds again that Ro� ≈ RoC . However,
in contrast to the fixed temperature configuration, the flux-
based local Rossby numbers, Eq. (42) in SRL and Eq. (46)
in RRL, are no longer identical. Instead, both flux-based Ro�

expressions depend on the modified flux Rayleigh number, but
in the SRL Ra∗

F is raised to the one-third power, whereas it
is raised to the one-fifth power in the RRL. This difference
in the flux-based Ro� expressions stems from the different
Ra(RaF , Ek, Pr) scalings given in Eqs. (40) and (44).

The system-scale, flux-based, rapidly rotating transport
scalings are often used in the geophysical and astrophysical
literature [23,96]. These are found by substituting Eq. (44)

into Eq. (38a), which leads to

ReH ∼
[

RaF

Pr2

]2/5

Ek1/5 ≡ ReCIA, (47a)

PeH ∼ Ra2/5
F (Ek Pr)1/5 = ReCIAPr. (47b)

The flux-based ReH expression Eq. (47a) is referred to as the
CIA scaling velocity, ReCIA, since it is indeed derived from
the CIA triple balance [2,81–83]. This flux-based momentum
transport scaling is easily converted back into a temperature-
based scaling by substituting RaF = RaNu into ReCIA and
then further substituting in Nu ∼ Ra3/2Ek2/Pr1/2 = PeTW.
Doing so yields

ReCIA ∼
[

Ra

Pr2

(
Ra3/2Ek2

Pr1/2

)]2/5

Ek1/5 = RoCRe f f , (48)

in agreement with Eqs. (35a) and (38a). Multiplying (48) by
Ek then demonstrates that

RoCIA ∼ RoC
2 (when Nu → PeTW). (49)

This shows that the classical, flux-based CIA theory is syn-
onymous with the temperature-based rapidly rotating velocity
scalings given in Eqs. (38a) and (39).

Since most laboratory and numerical simulations cannot
reach the diffusivity-free PeTW heat transfer trend, the RoH ∼
RoC

2 scaling is difficult to attain, cf. Refs. [91,94,97]. For ex-
ample, in the seminal planetary dynamo survey of Christensen
and Aubert [25], it was found that RoH ∼ Ra∗

F
2/5, which,

comparing to Eq. (47a), shows that the bulk flow had attained
the turbulent CIA scaling. Their heat transfer data was best
fit as Nu ∼ RaEk, which differs from the PeTW scaling likely
because it was controlled by diffusive, boundary layer physics
[54,98]. This corresponds to RoH ∼ RoC

8/5. However, if we
substitute Nu = Ra3/2Ek2/Pr1/2 in place of their Nu ∼ Ra Ek
scaling, then the system-scale Rossby number scaling neces-
sarily transforms to RoH ∼ RoC

2.
Our flux-based momentum transport scalings help to tie the

proverbial room together by showing that the RRL transport
Eq. (38a) is formally identical to the classical, flux-based
CIA velocity scaling Eq. (47a) when Nu ≈ PeTW. However,
this PeTW heat transfer scaling is not often found in stan-
dard experiments or direct numerical simulations, because
the heat transfer rarely reaches the RRL trend [89,90,92,93].
This is an important physical point, as the flux-based ReH

scaling in Eq. (47a) can be applied for any Nu value and,
accordingly, is often considered to be fundamentally different
from, and to conflict with, the local scale prediction Eq. (35a)
and the system-scale prediction Eq. (38a) that both naturally
arise in the Nu ≈ PeTW rapidly rotating scaling turbulent
arguments given here and in rapidly rotating asymptotic anal-
ysis [17,55,91,99]. Directly comparing the Reynolds numbers
scalings in Eqs. (35a) and (47a) is, however, incorrect since
they are defined on different length scales. In contrast, it is
appropriate to compare Eqs. (38a) and (35a) since they are
both system-scale quantities, and we have shown, in fact,
that these scalings are identical in the turbulent RRL where
Nu → PeTW.
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TABLE I. Summary of applied �T , turbulent scaling estimates for characteristic convective scales and transports in the slowly rotating
limit (SRL) and the rapidly rotating limit (RRL). The free fall velocity is defined here as Uf f ∼ √

gα�T H and Ro� ∼ RoC =
√

RaEk2/Pr in
both SRL and RRL. The nonrotating (NRL) scalings are identical to SRL in our treatment, excepting that RoC = ∞ in the nonrotating regime.

Regime Ro� � ϑ U Re� Pe� Nu ReH PeH RoH

(�T based) ≈RoC

SRL �1 H �T Uf f Re f f Pe f f Pe f f Re f f Pe f f RoC

RRL �1 RoCH RoC�T RoCUf f RoC
2Re f f RoC

2Pe f f RoC
2Pe f f RoCRe f f RoCRe f f RoC

2

The respective dimensional forms of the rapidly rotating
length, temperature fluctuation, temperature drop, and veloc-
ity scales are

� ∼ RoCH ∼
(

gαQH3

8ρcp�3

)1/5

, (50a)

ϑ ∼ Q

ρcPUTW
∼

(
2�

g2α2H

)1/5( Q

ρcp

)3/5

, (50b)

�T ∼ ϑH

�
∼ (2�)4/5H1/5

(gα)3/5

(
Q

ρcp

)2/5

, (50c)

U ∼ UTW ∼
√

gαϑ� ∼ gαϑ

2�

H

�

∼
(

gαQ

ρcp

)2/5( H

2�

)1/5

. (50d)

In this section, we have transformed the scaling results pro-
duced in the �T -based framework to the Q-based framework
via the definition of the flux Rayleigh number RaF = RaNu.
In the flux-based scalings, we find a lack of equivalence be-
tween the SRL and RRL local Rossby numbers. Nevertheless,
exploration of the flux-based framework has shown that the
classical, flux-based CIA scalings produced in many prior
works are formally synonymous with the temperature-based
scalings developed herein [cf. Eqs. (39) and (49)].

VI. DISCUSSION

The convective scaling relationships presented here are
generated via exactly parallel constructions, first made
within the nonrotating and SRLs and then secondarily made
within the RRL. Starting from the generic nondimensional
transport parameters, Re = U�/ν, Pe = U�/κ , and Nu =
Uϑ/(κ�T/H ), we select the dynamically relevant estimates
for �, ϑ , and U that characterize a given convection system.
Two configurations of thermal driving are considered: the

fixed-temperature regime (Table I), popular for its ease of ap-
plication and interpretation in modeling studies, and the fixed
heat flux regime (Table II), popular for its ease of application
in geophysical and astrophysical settings.

The fixed-temperature configuration is particularly elegant,
and we will focus on the fixed temperature scalings in this
discussion. First, our analyses show that the local Rossby
number is equivalent to the convective Rossby number,

Ro� � RoC,

in both the slowly and the rapidly rotating frameworks,
where Ro� ≡ U/(2��) is estimated using the characteristic
convective length �, the velocity scale U for each limit, and
RoC ≡

√
RaEk2Pr−1.

Second, by taking the ratios of the rapidly rotating and
slowly rotating characteristic scales, we find that they are all
related via powers of RoC

1,

�

H
∼ ϑ

�T
∼ UTW

Uf f
∼ RoC . (51)

Third, we have shown that the RRL thermal wind transports
and the SRL free-fall transports differ from one another via
powers of RoC

2,

ReTW

Re f f
∼ PeTW

Pe f f
∼ RoC

2. (52)

Further, our generic scalings predict that the system-scale
Rossby number, RoH , scales as RoC in the slowly rotating
regime and as RoC

2 in the rapidly rotating regime. Thus,
the convective Rossby number is shown to explain the local-
scale convection dynamics, Ro� ≈ RoC , and is essential for
relating the slowly rotating convection behaviors to those of
the rapidly rotating regime. RoC , and synonymously Ro�,
arise ubiquitously in describing rotating convective flows.
Furthermore, the theoretical framework we have developed
here provides a remarkably straightforward set of experimen-
tally testable interconnections between the slowly rotating
and rapidly rotating convective regimes. As summarized in

TABLE II. Summary of applied Q, turbulent scaling estimates for characteristic convective scales and transports in the slowly rotating
limit (SRL) and the rapidly rotating limit (RRL). The free fall velocity is defined here as Uf f ∼ (gαQH/ρcP )1/3 = (BH )1/3. Note in the
flux based framework that Ro� ∼ RoC ∼ Ra∗

F
1/3 in the SRL, whereas Ro� ∼ RoC ∼ Ra∗

F
1/5 in the RRL. Thus, in the rapidly rotating regime

RoH ∼ RoC
2 ∼ Ra∗

F
2/5, consistent with �T ∼ Q2/5 in Eq. (50c).

Regime Ro� � ϑ U Re� Pe� Nu ReH PeH RoH

(Q-based) ≈RoC

SRL �1 H �T Uf f Re f f Pe f f Pe f f Re f f Pe f f RoC

RRL �1 RoCH RoC�T RoC
1/3Uf f RoC

4/3Re f f RoC
4/3Pe f f RoC

4/3Pe f f RoC
1/3Re f f RoC

1/3Re f f RoC
2
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Tables I and II, these scalings all depend rather simply on the
relevant free-fall transport parameter and on Ro� ≈ RoC .

We have shown that when Ro� is defined using the appro-
priate slowly rotating characteristic scales is equivalent to the
convective Rossby number RoC :

Ro� = Uf f

2�H
= τ�

τ f f
=

√
RaEk2

Pr
≡ RoC (SRL). (53)

Following from this, RoC is often interpreted as the ratio
between freely falling convective inertia and the system’s
rotational inertia [20,39,40,45]. This interpretation is accurate
in the slowly rotating regime [44,46,66]. In contrast, this Uf f -
based interpretation is not accurate in rapidly rotating cases,
where the length and velocities scales are far smaller than in
the slowly rotating regime (Table I).

Surprisingly, though, we have shown that the Ro� also
scales equivalently to RoC in the RRL:

Ro� = UTW

2��
= τ�

τTW
=

√
RaEk2

Pr
≡ RoC (RRL). (54)

This equivalence holds since the free-fall timescale in the
slowly rotating regime scales similarly to the thermal wind
timescale in the rapidly rotating regime:

τ f f = H

Uf f
∼ �

UTW
= τTW.

The Rossby number based on the dominant dynamical
scale is equivalent to the convective Rossby number in both
end member rotational regimes, Ro� � RoC . This makes clear
that the convective Rossby number is, in fact, an appropri-
ate descriptor of rapidly rotating convection dynamics, but
it should always be cast as RoC = UTW/(2��) in the RRL.
Further, since Ro� � RoC in both regimes, RoC can be further
interpreted as the descriptor of the local scale rotating convec-
tion dynamics, irrespective of its value. We conclude then that
the convective Rossby number is rather aptly named.

The fixed heat flux configuration can be deduced from the
fixed-temperature configuration through the relation RaF =
RaNu. We again find that Ro� � RoC in both the slow rotating
and RRLs. However, they no longer have a common defi-
nition: RoC ∼ Ra∗1/3

F in the SRL regime and RoC ∼ Ra∗1/5
F

in the RRL regime. The relationships between the various
flux-based scalings are given in Table II.

Irrespective of the configuration, a clear interpretation of
RoC arises from our scaling analyses. The two characteristic
velocities in rotating convection are Uf f and UTW. In slowly
rotating convection, U ∼ Uf f � UTW, since all the fluid’s
buoyant potential energy is converted to kinetic energy well
before it reaches UTW. (Alternatively stated, UTW becomes
singularly large as � becomes small.) In rapidly rotating con-
vection, U ∼ UTW � Uf f since the vortex stretching term in
Eq. (23) greatly limits the distance through which a rotating

parcel of buoyant fluid can actually freely fall [83]. The se-
lection between Uf f and UTW is based on the more restrictive
value between the two:

U � min(Uf f ,UTW). (55)

Since RoC = UTW/Uf f , it can be validly interpreted as the
essential control parameter that picks between the two char-
acteristic velocitites:

RoC � 1 ⇒ min(Uf f ,UTW) = Uf f , (56a)

RoC ∼ 1 ⇒ min(Uf f ,UTW) = U, (57b)

RoC � 1 ⇒ min(Uf f ,UTW) = UTW. (57c)

The relative ordering of the characteristic time scales is also,
therefore, set by RoC :

RoC � 1 ⇒ τ� � (
τ f f ∼ τH

U

)
, (57a)

RoC ∼ 1 ⇒ τ� ∼ τ f f ∼ τ �
U ∼ τH

U , (58b)

RoC � 1 ⇒ τ� � (
τ f f ∼ τ �

U

) � τH
U . (58c)

The intermediate RoC ∼ 1 regime has not been consid-
ered here. There is, however, a great deal of laboratory
data [22,41,42,80,100–102] and numerical simulation data
[25,39,40,45–47,51,84,103–106] in the RoC = O(1) regime.
Thus, its scaling behaviors are of broad interest and should be
considered in future studies.

An array of new convection and rotating convection de-
vices have been recently built at research centers worldwide
[15,63,107]. These next-generation laboratory devices and
associated state-of-the-art numerical simulations, will allow
investigations into the efficacy and applicability ranges of
the turbulent scaling predictions presented here (Tables I and
II). Our goal will then be to test, possibly validate, and dis-
ambiguate between these differing scaling laws given high
fidelity measurements, and thereby deduce accurate, robust
relations for nonrotating, slowly rotating, and rapidly rotating
convective heat and momentum transport, as is necessary to
explain and interpret industrial, astrophysical and geophysical
convection phenomena.
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