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A joint estimation detection of Glaucoma progression in 3D 
spectral domain optical coherence tomography optic nerve head 
images

Akram Belghith, Christopher Bowd, Robert N. Weinreb, and Linda M. Zangwill
Hamilton Glaucoma Center, University of California San Diego, La Jolla, California

Abstract

Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) 

and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without 

treatment. Therefore, early disease detection is important so that treatment can be initiated and 

blindness prevented. In this context, important advances in technology for non-invasive imaging 

of the eye have been made providing quantitative tools to measure structural changes in ONH 

topography, an essential element for glaucoma detection and monitoring. 3D spectral domain 

optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used 

to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework 

for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works 

that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially 

available spectral-domain optical coherence tomograph, we consider the whole 3D volume for 

change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in 

the change detection map, we propose the use of the Markov Random Field to handle a such 

dependency. To accommodate the presence of false positive detection, the estimated change 

detection map is then used to classify a 3D SDOCT image into the “non-progressing” and 

“progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic 

performance of the proposed framework to existing methods of progression detection.
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1. INTRODUCTION

Glaucoma is an optic neuropathy in which the eye’s internal pressure increases and causes 

nerve fiber damage in the optic nerve. The increase in intraocular pressure (IOP) is generally 

due to either a malformation or a malfunction of the eye’s drainage system.1

Initially asymptomatic for several years, the glaucoma develops gradually and painlessly. 

Untreated, elevated IOP causes loss of peripheral vision and, in an advanced state, 
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irreversible blindness. However, early detection and treatment can slow, or even halt the 

progression of the disease. Hence, it is important to develop clinical routines for progression 

detection in order to avoid permanent damage to the optic nerve head.

Since Hermann von Helmholtz invented the ophthalmoscope in 1851, physicians were able 

to visualize damages in the optic nerve head associated with glaucoma. However, clinical 

examination of the ONH remains subjective, qualitative and variably reproducible.2

Over the past two decades, innovations in computer-based ocular imaging technologies 

using the optical properties of the optic nerve and retinal nerve fiber RNFL layer have 

gained widespread use in the diagnosis and management of glaucoma patients. Specifically, 

the advent of optical coherence tomography (OCT) provided a noninvasive optical imaging 

technique that has been used to evaluate structural changes in the ONH and RNFL layer in 

vivo. Recently, spectral domain OCT (SD OCT) advances have brought a significant 

improvement in image capture speed and resolution and exhibit some of the characteristics 

of a good diagnostic tool such as high sensitivity and specificity, good reproducibility, 

ability to detect change over time, simplicity in usage and interpretation and convenience for 

both patient and physician.3

In this context, automatic image processing methods are regularly proposed to assist the 

expert in the qualitative and quantitative analysis. These methods aim to facilitate the 

interpretation of the obtained images by objectively measuring the ONH structure and 

detecting changes between a reference image (a baseline exam) and other images (follow-up 

exams).

A numerous studies have been published on glaucoma detection using SD-OCT images. 

Most of the studies use the RNFL measurements to discriminate glaucomatous from healthy 

subjects.4–6 RNFL thickness measurements are assigned to categorical classes such as 

‘glaucomatous’, ‘borderline’, or ‘normal’ classes based on a comparison with a normative 

database. This classification allows clinicians to assess the structural status of glaucoma 

objectively and conveniently. However, although this method has been successfully applied 

to SD-OCT images, its use is constrained by a specific pre-requisite: it requires an accurate 

estimation of the RNFL layer thickness. However, authors of7 showed that poor quality 

images affects the accuracy of the RNFL layer thickness estimation. Moreover, the RNFL-

feature based methods do not exploit additional constraints often available, such as voxel 

spatial dependency (i.e, the status of a voxel will depend on the status of its neighborhood) 

and noise characteristics. We show in this paper that glaucoma detection can be more robust, 

more accurate and more efficient if such information is integrated and correctly modeled 

within the change detection method.

In this paper, we propose a new strategy for glaucoma progression detection using the 3D 

SD-OCT images. This strategy is divided into two steps:

1. Change detection: it consists of detecting changes between a baseline image and a 

follow-up image and a classification step which consists in classifying the detected 

changes into random changes or true changes due to glaucoma progression. For the 

first task, we propose a fully Bayesian framework for change detection. Bayesian 

Belghith et al. Page 2

Proc SPIE. Author manuscript; available in PMC 2015 January 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



methods are relatively simple and offer efficient tools to include priori through a 

posteriori probability density function PDF. In particular, we propose the use of the 

Markov Random Field (MRF) to exploit the statistical correlation of intensities 

among the neighborhood voxels.8 In order to develop a noise robust algorithm, we 

propose consideration of the change detection problem as a missing data problem 

where we jointly estimate the noise hyperparameters and the change detection map. 

The most widely used procedure to estimate the different problem parameters is the 

Expectation-Maximization EM algorithm.9 However, since we used the MRF 

model with the change detection map as the prior for the change detection map, the 

optimization step is intractable. Hence, we propose the use of a Monte Carlo 

Markov Chain (MCMC) technique.10

2. Classification: once the change detection map is estimated, we propose the use of a 

new fuzzy classifier which aims at classifying a SD-OCT image into the “non-

progressing” and the “progressing” glaucoma classes based on the estimated 

change detection map. What adds difficulty to automating this process is that stable 

or normal non-progressing SD-OCT images may present with some detectable 

changes. The primary causes of non-progressing eye changes are image registration 

errors and variation in the diameter of retinal vessel.11 To overcome this drawback, 

a threshold-based classification method may be used to accommodate the presence 

of false positive detection.12 However, the choice of the threshold (usually 5% of 

the number of voxels) may affect the robustness of the classification method. If we 

decrease the threshold value, the risk of false negative classifications increases and 

similarly if we increase the threshold value, the risk of having false positive 

classifications will increase. To circumvent this problem, we will use the fuzzy set 

theory which is well suited to model such ambiguity. Specifically, the importance 

of fuzzy set theory stems from the fact that much of the information on which 

human decisions are based, in our case glaucoma progression detection, is 

possibilistic rather then deterministic.13

The paper is divided into two sections. In section 2, the proposed glaucoma change detection 

scheme is presented. We describe in section 3 the classification scheme. Then, in section 4 

results obtained by applying the proposed scheme to real data are presented. We then 

compare the diagnostic accuracy, robustness and efficiency of this novel proposed approach 

compared to two existing progression detection RNFL based approaches: the Artificial 

Neural Network classifier (ANN) and the Support vectors Machine classifier.14

2. CHANGE DETECTION

2.1 Direct model

Let us consider the detection of changes in a pair of amplitude images. We denote by I0 and 

I1 two images acquired over the same eye at times t0 and t1, respectively (t1 > t0), and 

coregistered. In this work, we assume that the noise is additive, white and normally 

distributed. In addition, the gamma distribution is used to model the a priori knowledge we 

have on the free noise SD-OCT images. Indeed, the gamma distribution has been 

successfully used to fit spectral data that may present a background.15 The direct model for 
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both images I0 and I1 is then given by: I0 = X0 + N0 and I1 = X1 + N1 where X0 ~ (α0, β0) 

and X1 ~ (α1, β1) are the noise free 3D SD-OCT ONH images:

(1)

and N0 ~ (0, σ0) and N1 ~ (0, σ1) are additive, white and normally distributed noises. 

Change-detection can be formulated as a binary hypothesis testing problem where the null 

hypothesis of “H0: No change” is tested against the alternative hypothesis of “H1: Change”

In this work, we consider the following direct model: . However, this model is 

intractable. To overcome this problem, we propose a hierarchical change detection 

framework which consists of estimating the noise free SD-OCT images X̂0 and X̂1 and then 

use the image ratio approach for change detection. The direct model is then given by . 

The gamma ratio distribution is expressed as:

(2)

In case where α0 = α1 = α and , p(r(i); α, β) is given by;

(3)

Finally, the change detection is handled through the introduction of change class 

assignments Q. To introduce a spatial a priori knowledge on (Q = (qi)i=1:M), we used the 

Markov model so that the change status q(i) of a voxel r(i) depends on the change status of 

its neighborhood.

2.2 The estimation scheme

The Bayesian model aims at estimating the model parameters (X0, X1, Q) and 

hyperparameters Θ. This requires defining of the likelihood and prior distributions. We now 

present each term of the hierarchical Bayesian model.

Likelihood—The definition of the likelihood depends on the noise model. As we assumed 

that the noise in both images I0 and I1 is white and normally distributed with standard 

deviations σ0 and σ1 respectively, the likelihood is then given by:

(4)

Model prior—The prior on X0 and X1 is given by the gamma density :
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(5)

To describe the marginal distribution of R conditioned to Hl,l∈{1,2,3}, we used the ratio 

gamma distribution:

(6)

Concerning the change variable, we assume that p(Q; Θ) is a spatial Markov prior. In this 

study we adopt the Potts model with interaction parameter ζ:

(7)

where Z is the normalization constant and δ the delta Kroneker function. Note that we have 

opted for the 6-connexity 3D neighboring system. By combining the likelihood and the prior 

knowledge using the Bayes’ rule and giving our hierarchical approach we adopted, the 

obtained posterior distribution p(Q, Θ|R) is intractable for our model. Hence, we propose the 

use of a Monte Carlo Markov Chain (MCMC) procedure to estimate the model parameters 

and hyperparameters. As in,16 we use a Gibbs sampler based on a stationary ergodic Markov 

chain allowing to draw samples whose distribution asymptotically follows the a posteriori 

densities.

3. CLASSIFICATION

Once the change detection maps are estimated, we now tackle the glaucoma progressor 

image classification problem. This step aims at assigning an image to the non-progressor or 

the progressor classes. To this end, a two-layer fuzzy classifier is proposed. In contrast to,12 

no threshold is required. In our case, the fuzzy set theory is used to quantify the membership 

degrees of a given image to each class (i.e; progressor and non-progressor). It’s important to 

note that the fuzzy classifier we propose can be trained using only the control data (non-

progressor eyes) as in some cases, no prior knowledge of the changes due to glaucoma 

progression is available.

As in,12 we considered two features as input for the classifier: 1) feature1: the number of 

changed sites and 2) feature2: the residual image intensity R of changed sites. Note that only 

the loss of retinal height in neighboring areas is considered change due to glaucomatous 

progression because an increase in retinal height is considered improvement (possibly due to 

treatment or tissue rearrangement).

We now calculate the elementary membership degree to the non-progressor class given each 

feature γnor,o∈{feature1,feature2} using a S-membership function f whose expression is given in 

Eq. 8. Note that the range [a, c] defines the fuzzy region.
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(8)

where a < b < c.

(9)

where γnor,feature1 = f(Nc; a1, b1, c1), γnor,feature2 = f(Σi∈C Ri; a2, b2, c2), Nc and C stand for 

the number of changed sites and the changed site class respectively and (a1, b1, c1, a2, b2, 

c2) are the hyperparameters of the S-membership functions. The hyperparameters (a1, b1, c1, 

a2, b2, c2) are estimated with the Genetic algorithms17 using longitudinal SD-OCT data from 

a training dataset which contains 10 normal eyes, 5 non-progressing eyes and 10 progressing 

eyes. Note that the training dataset is independent of the test dataset described in section 4. 

The membership degree to the glaucoma class γglau is given by:

(10)

To decide if a given SD-OCT image belongs to the glaucoma progressor class, another 

membership function is used. We opted for the trapezoidal function denoted by g as a 

membership function. The expression of g is given by:

(11)

where a3 < b3 < c3 < d3. Alternately, the Genetic algorithm was used to estimate this 

quadruple. The decision to classify an image into the glaucoma class depends on the output 

of the function g(γglau). As can be observed, g function depends on the quadruple (a3, b3, c3, 

d3) as well as on (a2, b2, c2) and (a1, b1, c1). If g(γglau) = 1 the image is assigned to the 

glaucoma progressor class.

4. RESULTS

This section describes the glaucoma progression detection results obtained with the 

proposed scheme. A summary of the method is presented in Fig. 1.

In order to perform the classification evaluation, we have retained the sensitivity and the 

specificity measurements:
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where TP stands for the number of true positive identifications, FN the number of false 

negative identifications and FP the number of false positive identifications.

The proposed framework was experimentally validated with real datasets. Diagnostic 

accuracy was estimated using 117 eyes of 75 participants. Sensitivity was estimated in 27 

eyes classified as progressing by standardized assessment of stereophotographs by 2 

independent graders and/or by designation as ‘likely progression’ based on visual field 

Guided Progression Analysis (Humphrey Visual Fields, Carl Zeiss Meditec, Dublin, CA) 

(mean follow-up 4 years, 4 tests). Specificity was estimated using 50 stable glaucoma eyes 

(imaged once a week for 5 consecutive weeks) and using 40 healthy eyes (mean follow-up 3 

years, 3 tests). It is important to note that we used independent training and test sets to 

estimate the diagnostic accuracy of the methods. In order to emphasize the benefit of the 

proposed glaucoma progression detection scheme, we have compared the proposed 

framework called as Fuzzy Baysian detection scheme (FBDS) to:

1. The SVM classifier of the RNFL thickness. As in,14 we used the radial basis 

function as kernel. The SVM was trained by a variation of Platt’s sequential 

minimal optimization algorithm.18 The SVM hyperparameters were determined by 

a global optimization technique based on simulated annealing19 (RNFL-SVM).

2. The ANN classifier of the RNFL thickness. As in,14 we used the Multiayer 

perceptrons version of the ANN20 (RNFL-ANN).

3. The proposed method without the MRF a priori on the change detection map 

(FDS).

4. The proposed method with a threshold classifier (T-DS).

Results are presented in Tab. 1. The FBDS method with the use of the whole 3D SD-OCT 

volume instead of the RNFL measurements results in high specificity in both normal and 

stable glaucoma eyes (94% and 92% respectively) while maintaining good sensitivity (64%) 

in the progressing eyes. Moreover, one can see that the use of the MRF a priori and the 

fuzzy classifier increases both specificity and sensitivity.

5. CONCLUSION

In this paper, a new framework for glaucoma progression detection has been proposed. We 

particularly focus on the formulation of the change problem as a missing data problem. The 

task of inferring the glaucomatous changes is tackled with a hierarchical MCMC algorithm 

that is used for the first time to our knowledge in the glaucoma diagnosis framework. The 

validation of the proposed approach with real data has shown better diagnosis accuracy for 

glaucoma detection compared to existing methods.
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Figure 1. 
Overview diagram of glaucoma progression detection scheme
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Table 1

Diagnostic Accuracy of different methods.

Progressor group sensitivity Normal group specificity Stable group specificity

FBDS 64 % 92 % 94 %

FDS 55 % 82 % 85 %

T-DS 58 % 85 % 87 %

RNFL-ANN 49 % 71 % 78 %

RNFL-SVM 52 % 68 % 79 %
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