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kpop: A kernel balancing approach for reducing
specification assumptions in survey weighting∗

Erin Hartman† Chad Hazlett‡ Ciara Sterbenz§

August 19, 2024

Abstract

With the precipitous decline in response rates, researchers and pollsters have been left
with highly non-representative samples, relying on constructed weights to make these samples
representative of the desired target population. Though practitioners employ valuable expert
knowledge to choose what variables X must be adjusted for, they rarely defend particular
functional forms relating these variables to the response process or the outcome. Unfortunately,
commonly-used calibration weights—which make the weighted mean of X in the sample equal
that of the population—only ensure correct adjustment when the portion of the outcome and
the response process left unexplained by linear functions of X are independent. To alleviate this
functional form dependency, we describe kernel balancing for population weighting (kpop). This
approach replaces the design matrix X with a kernel matrix, K encoding high-order information
about X. Weights are then found to make the weighted average row of K among sampled units
approximately equal that of the target population. This produces good calibration on a wide
range of smooth functions of X, without relying on the user to decide which X or what functions
of them to include. We describe the method and illustrate it by application to polling data from
the 2016 U.S. presidential election.
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1 Introduction

In an era of decreasing response rates, social scientists must rely on methods to adjust for the

non-representative nature of survey samples. For example, Pew Research Center saw response rates

to live-caller phone surveys decline from nearly one third of respondents in the late 1990s, to only

6% in 2018 (Kennedy and Hartig, 2019). The non-random nature of this “unit nonresponse” poses

serious challenges for survey researchers and has led to greater use of non-probability sampling

methods, such as panel, quota, or river sampling for online surveys (Mercer et al., 2017). The

concern, whether due to nonresponse or non-probability sampling, is that the resulting survey

respondents are not representative of the target population about which a researcher aims to draw

an inference, leaving the potential for significant bias in estimates of target outcomes.

Researchers are therefore often obligated to construct survey weights to address this bias. Construct-

ing these weights requires researchers to choose (1) what variables to account for in the weighting

procedure, and (2) how to incorporate these variables in the construction of survey weights. For

example, researchers have determined pollsters’ failure to account for educational attainment in

survey weighting resulted in inaccurate predictions leading up to the 2016 U.S. Presidential election.

Even those that did account for educational attainment often failed to account for low levels of

Midwestern, white voters with lower levels of educational attainment, i.e. the interaction of region,

race, and educational attainment (Kennedy et al., 2018). We return to this issue in our application,

demonstrating how our proposed method can address these concerns.

We begin with the observation that in practice, researchers seek to make the sample and target

population identical only on some summary of the characteristics, represented by the matrix X.

The variables taking the columns in X may include indicators for membership in intersectional

strata, and/or the values of other variables. In practice, X is typically (i) low-dimensional and

(ii) chosen or constructed by hand. Weights are then chosen to make the sample similar to the

target population in terms of the means of these X, thereby neglecting other moments of p(X) that,

unnoticed, can remain dissimilar between the weighted sample and target population.

Unfortunately, except in the case of full saturation (i.e. every combination of X values can be

represented by an indicator), investigators are not generally in a position to argue that the outcome

or response process are linear in such X, which is needed to achieve unbiasedness through this
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adjustment (see e.g. Särndal and Lundström, 2005; Kott and Chang, 2010, with analogous results in

the causal inference setting, see e.g. Zhao and Percival, 2016). Note that “response”, in this context,

means that a participant was both sampled and responded and thus appears in the observed data.

Further, leaving the choice of which variables and which higher-order terms to include in the hands

of investigators allows almost unlimited researcher degrees of freedom. As we show, even across a

set of seemingly reasonable choices, the resulting estimates can vary widely.

The question is then how researchers can choose what functions of covariates, φ(X), should be used

for constructing weights. We provide one reasoned answer to this question, aiming to require the

weakest workable assumptions and minimal user intervention. To do so first requires a clarification

of how the non-parametric identification assumptions invoked to handle non-response become

parametric assumptions once we are also constrained by estimation concerns. Specifically, we

formulate the “linear ignorability” assumption, which states that survey weights unbiasedly estimate

the desired outcome among the target population only when the part of the outcome not explained

by a linear combination of the φ(X) is independent of the part of the sampling process not explained

linearly by φ(X) within a suitable link function. As we detail below, this refines and weakens existing

results that call for both non-parametric ignorability of selection and linearity of the outcome (or

selection model) in φ(X) as separate matters.

Our main contribution is to propose a specific kernel-based weighting procedure (kpop) as a practical

estimation procedure that reduces bias by more nearly meeting the linear-ignorability assumption.

In short, this approach employs the kernel matrix, K, whose linear span captures a wide range of

smooth, non-linear functions of X. Weights are then chosen to make the weighted average row of

K in the sample approximately equal to the average row of K in the target population. Weights

chosen in this way approximately equate the (weighted) distribution of X in the survey with that of

the target group, as would be estimated by a kernel density estimator (Hazlett, 2020).

In what follows, Section 2 establishes our setting and notation. Section 3 reviews calibration

estimators and discusses identification, introducing a new minimal identification requirement.

Section 4 describes our proposed kernel based calibration estimator, while Section 5 demonstrates its

behavior in two simulated examples. We apply the technique to to the 2016 U.S. Presidential election

in Section 6, showing how kpop can be used to mitigate concerns due to limited foreknowledge of
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what interactions or intersectional strata are important. Section 7 concludes.

2 Setting and notation

Our setting considers two primary objects. The first is a sample of the form {Xi, Zi, Yi, Ri}Ns
i=1,

where Yi is the outcome of interest, and Xi is a collection of P auxiliary variables (covariates) that

will be adjusted for. The auxiliary data initially encoded as X may be mapped to a richer feature

expansion φ(X), with X 7→ φ(X) from RP 7→ RP
′ , potentially with P ′ >> P . In the survey setting,

typically many or all dimensions of X are categorical, as in education, party identification, etc.

We will consider such cases here, though the methods described are equally natural for continuous

variables. Ri is an indicator for selection into the sample with Ri = 1 for all units in the sample. Zi
is included in each tuple here to represent a potentially important unobserved factor, which will

become important when considering the conditions that will lead to biased estimates. Each tuple in

this sample is presumed to be drawn independently from an unknown joint density.

The second object of interest is a larger but still finite target group or population. This is a

collection {Xi, Zi, Yi, Ri}
Npop

i=1 , with Npop >> Ns. Critically, each tuple in this collection is drawn

from a common joint density p(X,Z, Y,R). Depending on field and custom, this common joint

density is sometimes referred to as the data generating process, the true population of interest,

or the super-population from which the target group or population was drawn but from which

many others could have in theory been drawn. Note that Xi must be observed for all units in both

groups to allow adjustment. However, Y is unobserved in this target group. The immediate target

of inference is the mean of Y in this larger group. In some cases, this target group is identical

with the ultimate target population of interest (e.g. when it is a census). In other cases, the

mean of Y over the larger group is of interest principally as an estimate of the expectation of

Y over p(). For example, the target may be a very large representative survey from a national

population, as in our application. While this poses no problem in terms of bias (provided the survey

is indeed representative of the referenced population), note that we do not consider here how one’s

uncertainty estimate would change when targeting the population mean rather than the mean over

the observed target group (though see Opsomer and Erciulescu, 2021). In addition, context will

determine whether the smaller survey sample is a subset of the larger, or if the smaller survey
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sample is independently or disjointly drawn. We proceed in the latter setting for congruence with

our applied example and for notational simplicity. However, the former is easily accommodated and

requires only small changes; see Appendix A.

The key problem to address is that, due to the nature of data collection—e.g. the possibility of

selective response to the survey—the finite sample is drawn from a different distribution than the

p(X,Z, Y,R) describing the target group, and the user has at best incomplete knowledge as to how

these distributions differ. Our goal is to estimate weights such that the weighted mean of Y in the

sample is the best possible estimate for the mean of Y in the target group.

3 Estimation and identification

3.1 Calibration estimators

Suppose researchers have only a few variables in X, and each is discrete with a small number of

categories. In such settings it is straightforward to adjust for X without any functional form or

specification commitments: one can take the sample data, average the Y within each stratum of X,

then re-average these strata-wise averages together according to how often each stratum appeared in

the target group. This is the post-stratification estimator, and it can provide an unbiased estimate

of the mean of Y in the target group under the non-parametric identification assumption that

conditional on X, Y is independent of R (conditional ignorability; see below).

Unfortunately, such an approach is often infeasible because X contains one or more continuous

variables, and/or some strata that may be non-empty in the target group are empty in the sample.

In such cases, investigators most often turn to calibration estimators, which construct weights on

the sampled units such that the weighted mean of φ(X) among the sample equals the mean of φ(X)

among the target population, where φ(X) represents some chosen transformation of the original X.

In general form, calibration weights w are estimated according to:

min
w

D(w, q) s.t.
∑

i:Ri=1
wiφ(Xi) = T,

∑
i:Ri=1

wi = 1, and 0 ≤ wi ≤ 1 (1)

where qi refers to a reference or base weight and D(·, ·) corresponds to a distance or divergence

metric, acting as a measure of how extremely the weights diverge from qi. In principle qi may
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be the design weights for the sampling strategy employed. However, these are often unknown or

unavailable, or far less influential after conditioning on the auxiliary variables. One may then let

qi = 1/Ns be the uniform base weight for units in the respondent sample. The vector T describes

target population moment constraints based on the mapping φ(X). Typically, and in our case,

this is an average of φ(X) in the target population, which we treat as known, but which may be

estimated, in which case that additional uncertainty should be propagated (Opsomer and Erciulescu,

2021). In other words, the constraint
∑
i:Ri=1wiφ(Xi) = T in (1) is the “balance condition” to be

satisfied, ∑
i:R=1

wiφ(Xi) = 1
Npop

Npop∑
j=1

φ(Xj) (2)

We note that meeting the conditions above, particularly the balance condition, is not always feasible,

and becomes less feasible as the dimensionality of φ(·) grows. Addressing this will require some

combination of relaxing the balance constraints (i.e. “approximate balance”), or reducing the

richness of φ(·). These tradeoffs must be managed by any practical proposal.

Common types of survey weighting correspond to different distance metrics D(·, ·), and are closely

related to generalized regression estimation (Särndal, 2007). We use D(w, q) =
∑
i:R=1wilog(wi/qi),

commonly employed in “raking” methods and variably known as exponential tilting (Wu and Lu,

2016), maximum-entropy weighting, or entropy balancing (Hainmueller, 2012). Other distance

metrics correspond to other common weighting estimators, although the choice of distance metric

matters far less than the choice of moment constraints (Deville and Särndal, 1992).

For broader reviews of calibration, see Särndal (2007), Caughey et al. (2020), or Wu and Lu (2016).

The constraints in (1) ensure the weights are non-negative and sum to one, ensuring they have

a probability-like interpretation. Relaxing this constraint, e.g. allowing negative weights, would

be to allow for “extrapolation” beyond the support of the respondent sample. This increases the

possibility of severe model dependency, but is employed in some techniques such as generalized

regression estimators (Deville and Särndal, 1992).

Finally, the average outcome among the target population, µ = 1
Npop

∑
i Yi, is then estimated as
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Estimator 1 (Calibration Estimator for Target Population Mean of Y )

µ̂ =
∑

i:Ri=1
wiYi

with weights chosen by Equation (1)

In principle, calibration is a general and powerful tool given the flexibility of the choice of φ(X).

In practice, however, most applications of calibration simply seek to match the means of X in the

sample to that of the population, i.e. φ(X) = X. We refer to this as mean calibration, understanding

that “mean” refers to the original X. Such an approach holds intuitive appeal since, at minimum,

pollsters and investigators seek to adjust a sample to closely match a target population on the

margins, particularly on variables such as the proportion falling in some demographic or descriptive

group. The risk, however, is that there is little reason to expect key identification assumption to

hold under mean calibration—a problem we turn to now.

3.2 Identification: From non-parametric ignorability to “linear ignorability”

Under what assumptions regarding the data generating process is it possible for the calibration

estimator to unbiasedly estimate the average Y in the target group? Typically this question is

answered by appealing to the ignorability of the response conditionally on the observed covariates

used for adjustment (Little and Rubin, 2019),

Assumption 1 (Non-parametric ignorability of response)

Y |= R | X

A shortcoming of this identification strategy is simply that investigators cannot typically invoke

non-parametric conditioning in practice, and alternatives such as calibration end up calling for

different or additional assumptions. That is, supposing the target group and sample are disjoint,

under non-parametric ignorability (Assumption 1) the target is given by

E[Y |R = 0] =
∑
x∈X

E[Y |X = x]p(X = x|R = 0) =
∑
x∈X

E[Y |X = x,R = 1]p(X = x|R = 0) (3)
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Note that the post-stratification estimator is simply the empirical analog to the right-hand side of

(3). Unfortunately, as noted above, these non-parametric assumptions and procedures are insufficient

in many practical cases because values of X can appear in the target group that don’t appear in the

sample. This is certain to happen with continuous valued X, but also likely to happen even with

discrete variables with more than a few dimensions and categorical values of discrete X. Turning to

calibration estimators, we must import additional or different assumptions to achieve identification.

We therefore rely on an assumption we term “linear ignorability”,

Assumption 2 (Linear ignorability in φ(X)) Without loss of generality, let Yi be written

φ(Xi)>β+ εi, and the probability of unit i being sampled generated by Pr(Ri = 1) = g(φ(Xi)>θ+ηi),

where g(·) : R 7→ [0, 1]. Linear ignorability holds when εi |= ηi.

In words, this requires the part of Y not linearly explainable by (i.e. orthogonal to) φ(X) to be

independent of the part of the response process not linearly explained by φ(X) via a suitable link

function. Under linear ignorability (with a given choice of φ(·)), a feasible calibration estimator

using that choice of φ(·) will be unbiased:

Proposition 1 (Unbiasedness of Calibration under Linear Ignorability) Under linear ignora-

bility in φ(X) (Assumption 2) the calibration estimator using weights chosen by Equation (1) will be

unbiased for the target population mean of Y .

Proof of Proposition 1 can be found in Appendix A. Linear ignorability’s connection to existing

thinking can be found in the two well-known special cases that it covers, each of which is sufficient but

neither of which is necessary to satisfy linear ignorability. At one extreme would be the assumption

that Y is truly linear in X without unobserved confounders of X, meaning ε is fully independent

of any other variable in the system, including the usual “conditional independence assumption”,

E[ε|X] = 0. It is important to note that to write “Y = φ(X)>β + ε” in Assumption 2 is not to

require this, but only to invoke the decomposition of Y into a component in the span of φ(X) and

a residual piece ε. Linear ignorability is slightly weaker as it requires only that the ε formed by

removing what is linearly-explainable by φ(X) is independent of η. That is, there can be unobserved

confounders of X and Y here, which would appear as ε values that are not independent of X, but

these are not problematic unless they are correlated with the unmodelled influences on selection,

found in η.
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At the other extreme, one could assume link-linearity of the response model, such that ηi is

independent of any variable in the system. Such assumptions are standard in prior work on

calibration such as Särndal and Lundström (2005); Kott and Chang (2010); Zhao and Percival

(2016), though the choice of link functions in these is sometimes more restrictive than the general case

we show here (see Appendix A.1). Linear ignorability is weaker than such an assumption, similarly,

in that it requires only the part of g−1(Pr(R = 1)) not in the span of φ(X) to be independent of ε.

That is, there may be systematic influences on selection that go unmodelled and appear in η, so

long as these are unrelated to the unmodelled influences of Y , found in ε.

3.3 Bias due to violating linear ignorability

To clarify the commitments one makes by subscribing to the linear ignorability assumption, we

illustrate how it might be violated. Consider the decomposition of Y as φ(X)>β + (Z + ν). The ε

invoked in Assumption 2 is composed here of Z + ν. Here, ν is entirely exogenous random noise;

Z is unobserved and, without loss of generality, orthogonal to φ(X) because it could equivalently

be replaced by the residual from projecting Z onto φ(X). Whether linear ignorability holds is

determined by Z’s role in the selection process. If Z was purely exogenous random noise (like ν)

then ε = Z + ν will be independent of η in the equation for R, satisfying Assumption 2. By contrast,

if this Z is associated with R (and thus η, since it is independent of X), then Z would cause a

violation of Assumption 2.

Problematic variables Z could take on two forms. First, there could be important omitted variables,

which would also violate non-parametric ignorability (Assumption 1). Unobserved factors outside

of φ(X) could be relevant to both R and to Y , thus entering into both ε and η, causing them

to be correlated. For example, an individual’s general level of interest in politics is predictive

of many policy positions, and the strength of those preferences, in American politics. It is also

highly predictive of response probability to political surveys, with those interested in politics over

represented in respondent samples. Because political interest is not measured in many datasets used

to define target populations, such as those defined by administrative records, it is an example of an

unmeasured confounder Z that could violate both non-parametric ignorability and linear ignorability.

No adjustment technique would eliminate bias in this scenario, but sensitivity analyses provide a

natural approach to addressing potential remaining bias from such confounders (e.g. Hartman and

8



Huang, 2023). We note that bias is generated only by the part of political interest orthogonal to

the linear relationship with the included auxiliary variables in φ(X).

The second form of problematic Z would be one that generates a “specification failure”. Suppose we

did not omit any variable “important to” R and Y , but Z is a nonlinear function of φ(X) (orthogonal

to what is in φ(X)), that is relevant to both Y and R. Z would then appear in both ε and η,

driving their association. This is of particular concern for the commonly used mean calibration in

which φ(X) = X. This form of Z is difficult to rule out: investigators may suspect the outcome

to “involve” an X corresponding to some concept, but can rarely make strong arguments for the

functional relationship to R and Y , or justify a particular link function for R. Such a problematic

form of Z is the main motivation for our approach. Examples of how such a Z emerges, the bias it

generates, and the kpop solution to it, are illustrated in first a simple reductive simulation and then

a more complex one in Section 5.

4 Proposal: kernel-based weighting (kpop)

In this section we present the technical details of our proposal, kpop. Readers who wish to work

from a more concrete example may prefer to look first to Section 5.1, then return to this section for

more formal details.

Many reasonable proposals are possible for how to choose φ(X) so as to mitigate violations of linear

ignorability and the consequent bias. In plain terms, we want φ(X) to capture any (potentially

non-linear) systematic relationship between Y and X and/or R and X. This would expunge

problematic “Z” variables from ε and/or η, so that such a Z can no longer drive an association of ε

with η, thereby achieving linear ignorability. kpop is designed to reduce the risk and magnitude

of violating linear ignorability, with minimal user-intervention, by replacing the design matrix X

with a kernel matrix K that represents a rich choice of φ(·). In this section we present the technical

details of our proposal, kpop.

4.1 Motivation for kernels through models

One way to motivate the use of kernels is through considering how they determine the choice of φ(·)

in the context of linear models. Consider linear functions of φ(X) that explain either the outcome
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or the response probability (transformed as g−1(Pr(R = 1))) to be linear in φ(X). For simplicity

we consider the outcome. Consider the regularized regression problem

arg min
θ∈RP ′

∑
i

(Yi − φ(Xi)>θ)2 + λθ>θ (4)

To be clear, this model will not actually be estimated in our setting. Rather, it describes an

assumption about the space in which the conditional expectation function for the outcome falls. In

doing so it calls for a set of basis functions, φ(X), in which the outcome is assumed to be linear.

The very same φ(X) are those on which mean balance will need to be achieved, as we describe

below.

Ideally our choice of φ(X) would be one that includes very general, high-dimensional, non-linear

expansions of X. Fortunately, certain choices of φ(X) can be high- or infinite-dimensional, yet admit

an Ns-dimensional representation of the data that can then be employed in calibration. Intuitively

kernel functions “compare” two observations, Xi and Xj by computing k(Xi, Xj) : RP ×RP 7→ R. A

kernel function k(·, ·) is positive semi-definite if the kernel matrix it creates, K, satisfies a>Ka ≥ 0

for all real vectors a. For such positive semi-definite kernels, the value of k(Xi, Xj) corresponds

to choices of φ(Xi) through the relationships k(Xi, Xj) = 〈φ(Xi), φ(Xj)〉. As is well known and

can readily be shown from first principles (see e.g. Hainmueller and Hazlett, 2014), the solution to

Equation 4 admits to the form θ =
∑
i ciφ(Xi), and consequently the predictions for Yi are then

given by φ(Xi)>θ =
∑
j cjk(Xi, Xj). Forming the kernel matrix K with entries Ki,j = k(Xi, Xj),

this can be rewritten as K>i c where Ki is the ith row of K, or the vector of predictions Ŷ is simply

Kc.

The vital feature of this result is simply that the functions linear in φ(Xi) have been replaced with

those linear in Ki, or equivalently, the linear span of φ(X) is covered by the linear span of K. This

holds regardless of the dimensionality of φ(·). Thus, to gain all the benefits of φ(X) – whether for

modeling or calibration purposes – one need only work with K.

Here we employ the Gaussian kernel,

k(Xi, Xj) = exp(−||Xi −Xj ||2/b)
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where ||Xi − Xj || is the Euclidean distance. While no single choice of kernel can rigorously be

established as optimal across settings or even in a particular application, the Gaussian kernel

typically serves as the “workhorse” kernel for a wide variety of kernel based procedures. One reason

for this is that the implicit φ(·) for the Gaussian kernel is infinite-dimensional and has the “universal

representation property”, such that as the number of sample points goes to infinity, every continuous

function will be linear in these features (Micchelli et al., 2006). The values of k(Xi, Xj) can readily

be interpreted as a distance or similarity measure between Xi and Xj , with k(Xi, Xj) = 1 only when

Xi = Xj , i.e. that the covariate profiles match exactly. The rate at which k(Xi, Xj) approaches zero

when Xi and Xj differ is dictated by the choice of b, which we discuss below. A linear combination

of the elements of Ki is thus a weighted sum of unit i’s similarity to every other unit j in the sample,

where similarity is measured by centering a Gaussian kernel over each Xj and measuring its height

at Xi. Hainmueller and Hazlett (2014) provides further description and illustration of this function

space.

4.2 The ideal kpop estimator

In this section we describe the “ideal” kpop estimator, which will be revised below to an approximate

version. Replacing φ(Xi) with Ki, we seek to satisfy Equation (2) by choosing weights that achieve,

∑
i:R=1

wiKi = 1
Npop

Npop∑
j=1

Kj , s.t.
∑
i

wi = 1, wi ≥ 0, ∀i (5)

Note that every Ki here is a transformation of Xi that compares unit i to each of the units in the

survey sample. The matrix K has a row for every unit in the sample and in the target population,

yielding dimensions Ns + Npop by Ns. The term on the right gives an (unweighted) average row

of Kj for units in the target population. Note that each Kj is an Ns-vector, with the ith element

indicating how similar unit j in the target population is to unit i in the survey sample, i.e. k(Xj , Xi).

The term on the left is a weighted average of Ki over the survey sample. Here too each Ki is an

Ns-vector, with the lth element indicating how similar unit i in the survey sample is to unit l in the

survey sample, i.e. k(Xi, Xl).

In cases where (known) weights w(pop) are used to adjust the target population itself—as in our

application below—then kpop would instead seek weights that bring the weighted means of Ki
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among the sampled units to approximately equal the w(pop)-weighted means of Ki in the target

population. Thus the weighting condition in (5) becomes

∑
i:R=1

wiKi =
Npop∑
j=1

w
(pop)
j Kj , s.t.

∑
i

wi = 1, wi ≥ 0, ∀i (6)

This formulation is thus more general. We also include wpop in describing the bias bound and

approximation routine below to accommodate cases where it is required.

Calibrating through this kernel transformation achieves balance on a wide range of non-linear

functions of X, without requiring the researcher to pre-specify them. For example, as we will

show in Section 6, kpop achieves balance on the interaction of educational attainment, region,

and race/ethnicity in a 2016 U.S. Presidential survey without requiring the researcher to have

foreknowledge of its importance, much less requiring specific knowledge that Midwestern, white

voters with lower levels of educational attainment must be accounted for in the survey weights to

yield accurate national predictions.

Another view of what these weights achieved, discussed in Hazlett (2020), is that approximate

balance on a kernel transformation approximately equates the multivariate distribution of X in

the two groups, as it would be estimated by a corresponding kernel density estimator. We also

note closely related work on kernel-based balancing and imbalance metrics including Wong and

Chan (2018); Yeying et al. (2018); Kallus (2020). Tarr and Imai (2021) consider a related approach

implemented by interpreting the Lagrange coefficients estimated in a support vector machine with

such a kernel as weights.

4.3 The necessity of approximate balance

Weights that achieve equal means on every column of K, are often infeasible. Even where this can

be achieved within numerical tolerance, such calibration could lead to extreme weights. Instead,

we use approximate calibration weights designed to minimize the worst-case bias due to remaining

miscalibration. While numerous approximation approaches are possible, we use a spectral approxi-

mation. Specifically, we use singular value decomposition (SVD) to decompose K into the matrix

product VAU>. SVD is similar to eigendecomposition, but works for non-square matrices. In this

arrangement, each column V is orthogonal to all others and is a linear combination of the original
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columns of K, similar to the role eigenvectors. The columns of V are also closely related to the

principal components in principal component analysis (PCA). A is a diagonal matrix whose entries

(the “singular values”) indicate the “importance” of each singular vector, akin to the eigenvalues.

Even granting that the linear ignorability assumption holds, approximate balance means the

calibration step is not complete, which can introduce additional bias, referred to here as the

approximation bias. The worst-case bound on this approximation bias is given by Hazlett (2020)

√
γ||(w(pop)>Vpop − w>s Vs)A1/2||2 (7)

where Vpop is the matrix containing the rows of V corresponding to target population units, Vs

contains the rows of V corresponding to sampled units, and A is the diagonal matrix of singular

values. In this bias bound, w(pop) denotes the (optional) known weights for adjusting the target

population itself. The scalar γ is the (reproducing kernel Hilbert) norm on the function, equal to

c>Kc effectively describing how complicated or “wiggly” the chosen function is. This is an unknown

constant that need not be estimated during the optimization we describe below.

We make three remarks on the form of this worst case approximation bias in Equation (7). First,

the L2 norm of the regression function (√γ) controls the overall scale of potential bias. Second,

the imbalance on the left singular vectors of K after weighting, (w(pop)>Vpop − w>s Vs), enters

directly. Third, the impact of imbalance on each singular vector is scaled by the square root of the

corresponding singular value.

The third point in particular suggests the approximate balancing approach we use: calibrate to

obtain nearly exact balance on the first r singular vectors (columns of V), leaving the remaining

(r + 1 to Ns) columns uncalibrated. The choice of r is then chosen to minimize the bias bound

(Equation (7)). In practice, the singular values of a typical matrix K decrease very rapidly (see

Appendix B.1 for an illustration from the application below). Thus, balance on relatively few

singular vectors achieves much of the goal, though the procedure continues beyond this to minimize

the worst-case bias bound in Equation 7 directly.

“Mean-first” kpop A “no-worse” solution. Achieving approximate balance on K will typically

yield good, but not perfect balance on the means of the original variables, X. In practice a visible
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difference in means or proportions on a given variable can be unsettling: researchers and pollsters

may reasonably hope for nearly exact mean calibration on variables of known importance to the

outcome of interest, even if the means are in fact no more important to balance than unseen

higher-order moments. Further, it may be useful to know that a given estimator achieves balance on

the same moments as conventional raking or mean calibration, in addition to possibly calibrating

higher-order moments.

To this end, we advocate for using a “mean first” procedure, in which the weights are constrained to

obtain equal means (within a set tolerance) on a chosen set of variables X, in addition to calibrating

on r singular vectors of K chosen so as to minimize the bias bound described above. The cost

of enforcing mean balance is that there may be fewer dimensions of K that can additionally be

balanced on within feasibility constraints. Nevertheless, the virtue of this approach—at least as a

transitional methodology—is that in terms of balance and anticipated bias it is arguably “no worse”

than the conventional approach of calibrating on the means of X alone. For improved stability

and performance in practice, we recommend an approximate balancing approach that appends the

left-singular vectors of the chosen set of X, choosing the number to balance on by minimizing the

worst case bias bound in Equation (7). We refer to this as kpop+mf below.

Inference. Following the calibration weighting literature, we use a linearized variance estimator

(Fuller, 1975; Kott, 2016). Due to the often large number of dimensions of K chosen by the method

described in Section 4.3 for the kpop calibration constraints, we use a ridge regularized regression of

the outcome on the r selected columns of K, leaving any columns corresponding to “mean first”

constraints unregularized if they are included. In Appendix D.3.3 we show performance of these

standard errors, which accurately estimate the empirical standard error and achieve near nominal

coverage rates in our simulations.

4.4 Choice of kernel, data scaling, and b

One obstacle to adopting kernel-based methods is that while they can greatly reduce researcher-

degrees-of-freedom in terms of selecting φ(·), they do still require choosing the kernel function and

the value of any of its hyperparameters. In this work we employ the Gaussian kernel, which we

regard as reasonable on account of its universal representation property (Micchelli et al., 2006).

14



There are important considerations regarding how X is scaled, and relatedly, the choice of the

Gaussian kernel bandwidth, b.

Data scaling. Prior to constructing the kernel, continuous-valued X are scaled to have a variance

of one. Such a choice is convenient as it ensures no “unit of measure” choice will affect the results.

Under this standardization, a one-standard-deviation difference on a given continuous covariate

will add one to the squared Euclidean distance that forms the numerator of the exponents in the

kernel function. For categorical variables, there is no added distance between two observations

that have the same value of a given variable. However, if two units have different values on a

categorical variable, we scale the data such that it adds a distance of one to the numerator of the

exponent in the kernel function. This is one choice that keeps categorical and continuous variables

on reasonable relative scales in terms of their influence in the kernel function. We can achieve this

scaling numerically simply by (i) one-hot encoding all binary and categorical variables (without

dropping a level), (ii) rescaling those one-hot encoded indicators by 1/
√

2.

Kernel sampling and feasibility In the present setting we rely only on the observations in

the sample to formulate the columns of a kernel matrix. This is because (i) if there are millions

of observations in the target population, constructing a matrix with that many rows would be

infeasible, and (ii) the representation of each unit based on its similarly to other units in the sample

is most relevant to how we reweight members of the sample; if there were members of the population

that are very different from members of the sample, then no weighting of the sample will account

for this.

Kernel bandwidth. The choice of b in the kernel definition scales the similarity measure and is

thus effectively a feature extraction choice, constrained by feasibility. Too small a choice of b makes

each observation appear “too unique,” pushing the kernel distance, exp(−||Xi −Xj ||2/b), to zero

for any given pair of units; on the other hand, too large a choice of b makes each observation seem

“too similar,” producing a kernel distance approaching one for all pairs. A choice of b is therefore

desirable when it yields a K with meaningful variability in the similarity measure among different

pairs of units. We use the variance of K as a measure of the useful information available at a given

choice of b and turn to this metric to motivate our choice of bandwidth, selecting the value which
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produces maximal variance in K. We make no claim as to the optimality of this result, but it offers

a reasonable choice that can be established without looking at the result. In our simulations and

applications, this choice produces consistently good performance, though the results are shown to

be stable across a wide range of b regardless (see Appendix C.5). Further discussion of the kernel

bandwidth, as well as details on data pre-processing and scaling decisions appropriate for categorical,

continuous, or mixed variable settings can be found in Appendix B.

4.5 Practice and diagnostics

We recommend several diagnostics that can be used to better understand the resulting weights and

what they achieve or fail to achieve. First, the number of dimensions of K optimally selected for

calibration (r) should be checked. If this is very small (e.g. 1 or 2), the user should be aware that

balance improvements were minimal. Next, researchers should compare the weighted sample and

target population margins on the original X and explicitly chosen functions of these variables that

may be of concern, such as interactions. We illustrate this below. Third, we suggest two summary

statistics to assess the degree to which multivariate balance has been improved. The first is an L1

measure of the distance between the distribution of X for the survey and the population, summed

over the units of the survey. This can be obtained both before and after weights are applied to assess

the reduction in multivariate imbalance (Hazlett, 2020). The second is the ratio of the bias bound

(Equation (7)), calculated with and without the weights, to determine the proportional improvement

in the degree of potential bias due to remaining imbalances on K. Both serve to indicate to the

user whether substantial improvements in multivariate balance were achieved by the weights.

Finally, it is often valuable to understand how extreme the weights are and thus how heavily the

solution depends on a small number of observations. This can be done by the investigator’s preferred

means, such as inspecting the distribution of weights visually, or constructing statistics such as

the effective sample size or the number of observations (working from the most heavily weighted

towards the least) that one needs to sum to achieve 90% of the total sum of weights. We present

these diagnostics for our application in Appendix C.4.
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5 Illustration and Simulation

5.1 An illustration

We provide here an example to illustrate how easily bias can emerge in a simple case with just two

variables and with mean balance holding perfectly by construction. Suppose a target population

of interest consists of four groups in equal shares: college-educated females, college-educated

non-females, non-college-educated females, and non-college-educated non-females. A given policy

happens to be supported by 80% of college-educated females and only 20% of those in the other three

groups. Thus, the mean level of support in the target population would be 1
4(0.8) + 3

4(0.2) = 35%.

Further, suppose the sample is designed to carefully quota on gender and education, obtaining 50%

female and 50% college-educated respondents. We use quota sampling in this example for simplicity

as it allows us to have a sample already matched to the target population on the margins. The

same considerations would apply, however, in a convenience sample or more generally if weighting

were required to achieve mean calibration.

While this sampling procedure seems reasonable and includes the right variables in principle, it

neglects intersectional strata. Suppose that, among females, the sample drew a higher proportion

of college-educated respondents (three-quarters, as opposed to half in the target population).

Conversely among non-females, suppose that fewer respondents were college-educated (one-quarter,

instead of half). The average level of support for this policy in the unweighted sample would then

be 3
8(0.8) + 5

8(.2) = 42.5%, rather than the 35% in the target population. In other words, a key

interaction term (female×college), or the indicator for being in that intersectional stratum, has

a different mean in the sample and the target population, and it influences the outcome. It is

thus an example of an omitted variable, Z, that drives an association between ε and η, violating

Assumption 2 unless Z was included.

Table 1 summarizes this situation, and describes a set of “ideal weights” that would correct the

proportions of each intersectional stratum, thus producing the correct answer. The weights would

downweight the strata that the sample overemphasized and upweight the strata that the sample

underemphasizes. The correction using these weights can be verified by multiplying the sample

proportions (3
8 or 1

8) by the proposed ideal weights (2
3 or 2, respectively), always producing 1

4 as the

effective post-weighting sample proportion. Note that in this simple setting with just two binary
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variables, this would be feasibly and perfectly achieved by using post-stratification. However, this is

an artefact of working with a simple illustration; the challenge will be in more complex examples,

where post-stratification is infeasible, as shown in our next example and application.

Table 1: Illustration of sample weighting and ideal weights.

characteristics proportions outcome weights (times Ns)
female college target population sample Pr(support) unweighted mean cal. ideal

1 1 1/4 3/8 0.80 1 1 2/3
1 0 1/4 1/8 0.20 1 1 2
0 0 1/4 3/8 0.20 1 1 2/3
0 1 1/4 1/8 0.20 1 1 2

target population mean: 0.35
weighted mean: 0.425 0.425 0.35

Note: Quota sampling ensured the sample was representative on the means of college and female.
Mean calibration weights will thus be uniform. College-educated females respondents are over-
represented in the sample, however, as are non-college educated non-females. Because the outcome
also varies based on this interaction, these mean calibration weights fail to balance on all important
strata of X, producing bias. The “ideal” weights represent the choice that would bring the sample
proportion of each stratum to match that in the target population.

Table 2 is similar, but reveals what kpop does to achieve the same weights. The middle portion of the

table shows the first four columns of the kernel matrix, K, corresponding to the same four types of

observations. For any two units i and j with the same values on the covariates, k(Xi, Xj) = e0 = 1.

Thus, the diagonal of the kernel matrix will always be one. Choosing the exponential denominator b

conveniently as 1 for illustrative purposes, individuals that differ on one trait but not the other will

have k(Xi, Xj) = e−((1−0)2+(0−0)2) = e−1 ≈ 0.37. Individuals who differ on both characteristics will

have k(Xi, Xj) = e−((1−0)2+(1−0)2) = e−2 ≈ 0.14. All values in K will be one of these three values

in this simple example.

Weights must then be found that will multiply each row of the data, including the four shown here.

In short, because there are “too many” female college graduates relative to the target group, the

average “similarity” of observations in the sample to the female college graduate group will be too

high. Specifically, the sample mean of column one (k(, 1)) will be 0.52, whereas in the target group

it would have been only 0.47. Likewise the average similarity of observations to the non-female
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Table 2: Illustration: Kernel balancing to adjust sample to target

characteristics (X) kernel matrix (K) outcome weights
female college sample % k(,1) k(,2) k(,3) k(,4) (repeats) Pr(support) (kpop)

1 1 3/8 k(1,) 1 .37 .14 .37 . . . 0.80 2/3
1 0 1/8 k(2,) .37 1 .37 .14 . . . 0.20 2
0 0 3/8 k(3,) .14 .37 1 .37 . . . 0.20 2/3
0 1 1/8 k(4,) .37 .14 .37 1 . . . 0.20 2

...
...

...
...

...
...

target mean: 0.47 0.47 0.47 0.47 0.35
sample mean: 0.52 0.42 0.52 0.42 0.425

kpop-weighted mean: 0.47 0.47 0.47 0.47 0.35
Note: Kernel matrix representing each of four unique types of individuals in the sample. Each
element k(Xi, Xj) is equal to exp(−||Xi −Xj ||2/1), where the numerator in the exponent will be
equal to two times the number of features on which i and j differ and the denominator b is chosen
as 1 for convenience. The columns provide new bases for representing the data

non-college graduate group will be too high, as they too are over-represented. On the other hand,

the average similarities to the other two groups will be too low because they are under-represented in

the sample drawn. kpop exploits the idea that the weights that would reproduce the right proportion

of each type of observation would also reproduce the average similarity to each of these types that

we see in the target group. The explicit process of choosing these weights involves an optimization

step, simply minimizing the difference between the weighted mean of each column of K in the

sample and the (unweighted) column averages of K in the target group.

The weights that achieve this are shown in the final column. The final row in Table 2 verifies that

these weights achieve the desired weighted average similarities (columns of K). For example, after

weighting, the average similarity of observation to the female college graduate type (first column of

K) will be 3
8(2

3)(1) + 1
8(2)(.37) + 3

8(2
3)(.14) + 1

8(2)(.37) = 0.47, as it is in the target group. The same

holds true for the average similarity of the weighted sample to each of the other three intersectional

strata. As expected, the solution down-weights units in the over-sampled groups (female×college

and non-female×non-college) and upweights those in the remaining two, under-sampled groups.

Further, these weights are numerically equal to the “ideal” weights in Table 1, and, when multiplied

by the sample proportions of each group, all produce the intended value of 1
4 , matching the target

group proportions.
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Consequently, with only the matrix X for the sample and target population and no further

information about the importance of the interaction, the kpop weighted estimate of the mean level

of support matches that in the target population (35%).

5.2 Realistic simulation setting

The above example was made as simple as possible for purposes of clarifying the method. In practice,

however, methods such as post-stratification would have also worked in that setting. We next

consider a more complicated setting to demonstrate, first, the approach in a context where other

methods will encounter difficulties, and, second, to more fully illustrate performance on both bias

and variability. We design our semisynthetic simulation to closely match the application below, while

allowing us to specify models governing the selection and outcome processes. This type of calibrated

simulation helps to assess the performance of kpop in a realistic setting, with a data structure,

selection process, and outcome more similar to those encountered by applied researchers (e.g. Dorie

et al., 2019). We construct the selection and outcome models based on observed relationships in the

original data, so that the mean in the target population is known (see Kern et al., 2016; Hill, 2011

for related examples). We emphasize that while this allows us to assess the performance of kpop

under known misspecification, we do not consider a range of conditions for the data structure, size,

or severity of the selection process.

We first construct a sample model through which respondents in the smaller sample are drawn from

the larger target population. In our case, the target population is given by the post-election wave of

the 2016 Congressional Cooperative Election Study (CCES) (Ansolabehere and Schaffner, 2017). We

specify our selection model p(S = 1) = logit−1 (Xβ) and construct new samples by taking Bernoulli

draws from the CCES population according to this model. Our outcome model is linear in the same

set of covariates, p(V ote = Dem) = Xγ, allowing us to directly control the mechanism of bias by

specifying the correlation of β and γ. In the following simulation, this correlation is about -0.75,

producing negative bias of about -3.5 p.p. in the unweighted sample.

Both models are (link) linear in the same, fairly simplistic set of covariates X: party identification,

age (4-way), gender, educational attainment (3-way), race/ethnicity (4-way), born-again Christian

status, and a subset of two-way interactions between party identification and age as well as born-

again status and age. Coefficients in the selection model are chosen to produce roughly realistic
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samples comparable to the observed Pew survey and scaled to produce a sample size of roughly

500. For the outcome model, coefficients are adjusted through an automated procedure to produce

values in probability scale. Below, we present results across 1000 iterations. Further details can be

found in Appendix D.

Table 3: Simulation Results

Bias (p.p.) MSE Abs Bias Reduction (%)

unweighted -3.510 12.603 0.000
mean calibration (demos) -1.618 2.893 0.539
mean calibration (demos+edu) -1.296 1.961 0.631
mean calibration (all) -0.029 0.226 0.992
kpop -0.272 0.357 0.923
kpop+mf (demos) -0.165 0.297 0.953
kpop+mf (demos+edu) -0.150 0.268 0.957
kpop+mf (all) 0.012 0.244 0.997

Horvitz-Thompson (true) -0.160 10.229 0.954
post-stratification (true) -1.120 1.571 0.681
mean calibration (true) -0.010 0.214 0.997

Note: Bias, mean squared error, and absolute bias reduction by weighting method across 1000
simulations wherein the outcome and selection model are specified using the same set of variables
to directly control the mechanism of bias. The models above the line represent specifications that
investigators might realistically attempt without access to the unknowable, true selection model. For
comparison, those below the line demonstrate the performance of estimators given “true” information
about the correct selection model that would be unknown to investigators

We compare several kpop and kpop+mf specifications to a range of approaches that we anticipate

thoughtful investigators might attempt, as well as three approaches that exploit the true specification

or selection probability for comparison. These include raking on just the basic demographic variables

(mean calibration (demos)), on demographics and education (mean calibration (demos+edu), and

on all available variables (mean calibration (all)). See Appendix C.1 for additional information on

these variables. We motivate these specifications and why investigators might choose them in the

context of the application (Section 6).

Finally, for benchmarking purposes we compare kpop as it would be implemented (without access
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to true information about the model or variables to include) with three methods that do have

access to this information: (i) post-stratification on the correct (minimal) set of intersectional

variables described (post-stratification (true)); (ii) the Horvitz-Thompson estimator employing the

true (unknown) sampling probability (Horvitz-Thompson (true)); and (iii) mean calibration on just

the variables required for linear ignorability (mean calibration (true)).

Table 3 shows the resulting estimates in terms of bias, mean squared error, and absolute bias

reduction. We find that the four kpop specifications all significantly reduce the bias (by 92-99.9%)

and have MSEs roughly an order of magnitude smaller than those of mean calibration (demos)

and mean calibration (demos+edu), both of which reduce bias only by about half. By contrast

mean calibration (all) happens to perform very well, highlighting the specification sensitivity of

this approach as compared to the stability of kpop. Further, kpop performs well even compared

to estimators that are given access to the true model or set of variables to include. Even with

our fairly simplistic selection model, Post-stratification (true) still struggles with the “empty cell”

problem, dropping on average 23% of population units and reducing bias only by 68%. Notably, the

Horvitz-Thompson estimator is roughly unbiased as expected, but has an MSE almost as large as

the unweighted estimator and over 30 times larger than any kpop estimator. Mean calibration (true)

performs well here, but is still comparable to the more naive kpop estimators.

6 Application: 2016 U.S. Presidential Election

In the 2016 United States Presidential election, state-level polls in key states were severely biased,

with polling aggregators making over-confident predictions that Donald Trump would lose. National

polls correctly predicted that Hillary Clinton would lead the national popular vote, while many

overstated the margin. The challenges of correctly weighting a highly non-random sample to match

the national electorate likely contributed to these errors. As Kennedy et al. (2018) note, existing

polls were especially likely to over-represent college-educated whites.

We test whether weighting with kpop would have improved on this, absent foreknowledge of what

functions of covariates and intersectional strata are essential to address sources of bias. Because

voters may have changed their mind between a given pre-election survey and the day of their

vote, simply checking whether weighting the outcome of a pre-election survey produces an estimate
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close to the true election result would not provide a meaningful test of weighting techniques. We

instead estimate what the average “retrospective vote choice”, measured post-election, would have

been among voters in the 2016 election. This involves (1) training a model that predicts stated

retrospective vote choice as a function of X using a large post-election survey which we define as

the target population; (2) applying this model to predict the “retrospective vote choice” of each

individual in a pre-election survey using their covariates X; (3) constructing weights to calibrate

the pre-election sample to the target population; then (4) comparing the weighted average of the

predicted “retrospective vote choice” in the pre-election sample to the stated vote choice the target

population. We emphasize that, were it not for the dynamic nature of vote intention in pre-election

surveys, using this modeling outcome would not be necessary in settings where we can directly

estimate the outcome, Y , of interest.

6.1 Data and details

Survey sample. For the respondent sample, we use survey data from the final poll conducted

by the Pew Research Center before the general election in November 2016. Pew is a high-quality,

non-partisan public opinion firm. The survey was conducted from October 20-25, 2016 using

telephone interviews among a national sample of 2,583 adults. On landline phone numbers, the

interviewer asked for the youngest adult currently home (647), and cell phone interviews (1,936) were

done with the adult who answered the phone (Pew Research Center, 2016). Random-digit dialing

was used, combined with a self-reported voter registration screen. We keep only the Ns = 2, 052

respondents who report that they plan to vote or have already voted. The publicly available data

do not include survey design weights, and we use qi = 1 for all respondents, although researchers

could let q be defined using design weights or previous calibration weights. The survey includes

proprietary multistage calibration weights, where the first-stage accounts for differential sampling

probabilities due to the random-digit-dialing procedure, and the second-stage conducts a calibration

procedure to match the U.S. population on many of the same auxiliary variables as we include. We

do not include these weights as our base weights because we are weighting to a different target

population, namely one defined by verified voters from a national survey, the CCES (discussed

below), and under Assumption (2), our estimator is unbiased even starting from equal weights.

Finally, we code vote choice as being for “Republican Donald Trump”, “Democrat Hillary Clinton”,
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or “Other/Don’t Know”, and we include voters who “lean” towards one of the two major party

candidates.

Defining the target population. Ideally we would define the target population using verified

voter records from the Secretaries of State. However, we do not have access to such an administrative

file. Instead, following Caughey et al. (2020), we define our target population using the common

content from the post-election wave of the 2016 Congressional Cooperative Election Study (CCES)

(Ansolabehere and Schaffner, 2017). The CCES is a large survey that aims to be representative of

all voters, and the survey weights for the post-election wave lead to an estimate of the popular vote

margin between the two major parties (2.48 percentage points, D - R) that is very close to the truth

(2.3 percentage points). Second, the CCES includes a number of demographic survey questions

that overlap with those asked in the Pew study which we can use for calibration. We incorporate

the weights provided by the CCES (“commonweight_vv_post”) into the definition of our target

population. Limiting the data to voters for whom the outcome variable was not missing, and who

stated that they “definitely voted” leaves a total of Npop = 44,932 units.

Our auxiliary data, X, are defined using all of the overlapping variables in our data sets: age,

reported gender, race/ethnicity, geographic region, educational attainment, party identification,

income, born-again Christian status, church attendance, and religion. All variables are self-reported

except for region. Appendix Table C.1 summarizes the distributions of these variables and how

they differ in the target population (CCES) compared to the survey sample (Pew). For example,

those with higher levels of educational attainment and higher income are over-represented in the

Pew sample, as are older voters and Independents. By contrast Black voters and women are

under-represented in the sample relative to the target population.

Modeled outcome. As noted above, the outcome variable to be weighted in this example is itself

a modeled quantity representing the difference in probability of voting Democratic vs. Republican

given one’s covariates (p(Di − Ri|Xi)). We use a multinomial logit model (see e.g. Long, 1997)

to estimate the relationship between X and three-way “retrospective vote choice” (Republican,

Democrat, and Other) measured by asking respondents who they voted for in the post-election

CCES survey. We use regularization in doing so, to mitigate over-fitting concerns (see e.g. Hastie

et al., 2009). This model includes gender, 3-way party identification, race/ethnicity, 6-way education,
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region, 6-way income, 5-way religion, 4-way church attendance, born-again status, continuous age,

age2, gender × party identification, and age (continuous) × party identification.

Recall that our goal is to find weights for the Pew observations (sample) such that the weighted

average value of predicted p(Di − Ri|Xi) matches that in the CCES data, here 2.48 percentage

points. None of the subsequent weighting methods are aware this particular choice of φ(X) has

been made. Using this specification, the outcome can be modeled quite effectively. For example,

choosing the highest-probability outcome as an individual’s final vote choice leads to an 85-86%

correct classification rate for non-independents. This fitted post-election outcome model is then

used to predict p(Di−Ri|Xi) using the X data from the Pew pre-election survey. Additional details

can be found in Appendix C.2.

Weighting methods. We compare kpop estimators to the two common methods researchers use

for constructing survey weights discussed above, mean calibration and post-stratification. For mean

calibration, we consider four specifications that represent a range of choices thoughtful researchers

might attempt: (i) basic demographic variables only mean calibration (demos), including: age

(4way), gender, race/ethnicity, geographic region, and party identification; (ii) those variables plus

educational attainment (mean calibration, (demos + edu)); all available data (mean calibration,

(all)), adding adding income, religion, born-again Christian status, and church attendance (see

Table C.1). Finally, we include one model that is given retrospective benefit, based on the analysis

of Kennedy et al. (2018): mean calibration (retrospective), which includes the interaction of party

identification with age (4way) and, separately, with gender. It additionally addresses the importance

of low-education white voters in the 2016 election, particularly in Midwestern states, by also including

party identification × region × race/ethnicity for all voters. Among white respondents, this is

expanded to also interact with educational attainment (6way). We include this model to evaluate

the question of whether our proposed kpop method can perform as well as a retrospective-informed

model that serves as a best-case for what expert knowledge could hope to achieve.

Turning to post-stratification, using all 10 available variables results in highly complex cross-sectional

strata which, in turn, make missing cells a significant hurdle when reweighting the survey sample,

with nearly 92% of population units representing strata not present in the sample. To bring the

number of empty cells to a reasonable level, we coarsen age and income into 3- and 4-category
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variables respectively and do not include religion or church attendance. In order to give post-

stratification the best advantage possible, we omit full 6-way education and instead stratify on a

coarsened version of the above mentioned important, retrospectively-informed interaction among

race/ethnicity and educational attainment, namely, coarsened 3-way education among white with

no stratification by education among non-white voters. The resulting estimator stratifies on gender,

race/ethnicity, region, party identification, born-again status, 3-way income, 3-way age, and the

3-way educational attainment and white interaction. Unfortunately, this still results in dropping

around 30% of units due to empty strata.

We compare the models described above against kpop, applying our proposed kernel-balancing

method with all the available categorical variables available as described in Table C.1. For comparison

with the preceding raking specifications, we also include three models, kpop + mf (demos), kpop +

mf (demos + edu), and kpop + mf (all) that first conduct mean calibration before proceeding to

balance on the kernel matrix, as discussed in section 4.3.

6.2 Results

Balance. We first consider the balance achieved by each method on the observed covariates.

Table 4 presents the absolute error, weighted by the target population proportion for each level, for

each auxiliary variable (rows 1-10) and a set of interactions (11-17). By construction, the mean

calibration methods, as well as the kpop + mf methods, perfectly match the marginal distributions

for any variables that are included in the model.

All methods greatly improve representativeness in the respondent sample as indicated by the

reduction in error across variables and interactions relative to the unweighted sample. As expected,

kpop (without “mean first”) achieves good but imperfect balance on the included covariates and

interactions, despite not being directly constrained to achieve balance on them. Though we should

expect post-stratification to produce perfect balance on the included terms, we see that, even with

significant variable coarsening, empty cells pose a significant problem. As a result, post-stratification

fails to get the correct margins, much less produce the non-parametric adjustment one hopes for

under Assumption 1.

In the lower rows of Table 4, we investigate the balance on important interactions, including one

26



Table 4: Weighted Mean Absolute Error on Auxiliary Variables (percentage points)

Pew
Orig kpop kpop+mf

(demos)
mean calib
(demos)

kpop+mf
(d+edu)

mean calib
(d+edu)

kpop+mf
(all)

mean calib
(all)

mean calib
(retro)

post-strat
(reduc)

female 3.65 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
pid (3way) 2.53 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45
age (4way) 4.85 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.95
race/ethnicity (4way) 1.54 0.16 0.00 0.00 0.00 0.00 0.00 0.00 1.25 3.50
region (4way) 1.50 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.58 2.51
educ (6way) 8.64 0.32 0.12 8.68 0.00 0.00 0.00 0.00 1.67 2.09
income (6way) 4.35 0.35 0.21 4.04 0.15 3.35 0.00 0.00 3.12 1.78
born-again (bin) 1.72 0.14 0.01 2.95 0.10 0.18 0.00 0.00 0.62 4.95
religion (5way) 6.42 0.48 0.34 5.24 0.19 6.66 0.00 0.00 7.77 6.17
church attnd. (4way) 12.88 0.44 0.17 12.13 0.16 11.92 0.00 0.00 12.61 12.11
pid×race/ethnicity 0.71 0.50 0.34 0.86 0.15 0.68 0.63 1.15 0.42 1.20
educ×pid 6.22 0.36 0.21 6.25 0.29 0.45 0.39 0.57 1.56 1.49
educ×pid×race/ethnicity 3.81 0.45 0.48 3.87 0.34 0.44 0.67 0.58 0.46 0.90
race/ethnicity×educ×reg 2.91 0.24 0.44 2.97 0.27 0.48 0.70 0.49 0.32 0.87
educ×white 10.80 0.28 0.51 10.64 0.21 0.25 0.09 0.42 1.00 2.69
midwest×white×educ 1.54 0.44 0.52 0.96 0.38 0.47 0.36 0.27 0.35 0.56
midwest×edu×race/ethnicity 1.68 0.10 0.07 0.69 0.04 0.06 0.04 0.05 0.88 1.01

Note: Absolute error in the distribution of categorical variables, weighted by the target population
proportion for each level. Gray numbers indicate the variable was included as a calibration constraint,
and so imbalances very near zero are expected. Note that all interactions with education use a
three-way education coding.
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that Kennedy et al. (2018) deemed important: midwest × educational attainment × race/ethnicity

(bottom row). Without explicitly incorporating knowledge about the importance of these variables,

kpop significantly improves balance on this interaction, reducing the mean absolute error from

the initial value of 1.68 down to 0.1 percentage point - a much greater reduction than any of the

non-kpop estimators. When incorporating the mean first requirements kpop + mf also effectively

addresses this interaction, reducing absolute bias to between 0.04 to 0.07 percentage points. We see

similar patterns of improvements in performance of the kpop methods across a number of important

interactions. Notably, in each case, the kpop + mf method outperforms its mean calibration

counterpart, emphasizing the “no worse” nature of the mean-first approach. Additionally, balance is

achieved regardless of the specified mean first constraints, highlighting the robustness of kpop to

standard user-specified constraints.

Weight severity. The additional constraints solved by kpop weights can lead to reduced effective

sample sizes compared to other approaches. To calculate effective sample size, we use the Kish

formulation of (
∑

i
wi)2∑

i
w2

i

. Here, post-stratification and mean calibration (all) have effective sample

sizes of 983 and 1101, respectively, while kpop and kpop + mf (all) have effective sample sizes of 789

and 749 respectively. Similarly, the (minimum) number of observations required to arrive at 90% of

the total weight is 1235 and 1362 for post-stratification and mean calibration (all) respectively, but

1193 and 1223 for kpop and kpop + mf (all). Thus, a price is paid for the kpop’s ability to balance

on more general functions of X, but it is a fairly modest one here.

Weighting diagnostics. Improvements in balance on K can be assessed using the diagnostics

described above in section 4.5. The L1 gap between the kernel-based estimates of multivariate

density fell from 0.0318 prior to weighting to 0.0011 or below under all kpop estimates, roughly a

29-fold improvement. Similarly the bias bound showed 5-6 fold improvements under each set of

weights as compared to the unweighted bias bound. Additional diagnostic and descriptive results

can be found in Appendix C.4.

Estimates. Results are shown in Figure 1. Recall that our target is a two-way vote difference

on reported vote choice (D-R) of 2.48 percentage points and that, for each weighting model, we

evaluate the average of the predicted “retrospective vote choice.” The Pew survey, without weights,
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is extremely non-representative, with an unweighted average Clinton two-party vote margin of

-0.194 [-3.24, 2.85] percentage points (95% confidence interval in brackets). Mean calibration on

basic demographics, excluding educational attainment, flips the signs of the estimate, producing an

estimated margin to 6.49 [5.71, 7.28] percentage points. Mean calibration including educational

attainment performs well, with an estimate of 3.04 [2.26, 3.82]. This is consistent with the findings of

Kennedy et al. (2018) that educational attainment was a significant driver of both nonresponse and

voting for Donald Trump, especially among white voters. Moving to mean calibration on all auxiliary

variables, the estimate moves farther from the truth to 4.31 [3.72, 4.91]. Finally, mean calibration

on the retrospectively informed choice of variables and the potentially important interaction of

region and education among white voters generated an improved point estimate of 3.30 [2.66, 3.93]

substantially closer to the truth.

The kpop estimates are both stable and close to the truth across different specifications. Using kpop

alone results in a weighted estimate of 2.50 [1.96, 3.04] percentage points, the closest to the truth of

all nine methods tested. kpop+mf with additional mean first calibration produces point estimates

of 2.95 [2.45, 3.44] (demos), 3.09 [2.51, 3.67] (with education), and 3.19 [2.59, 3.79] percentage points

for (all), all close to the target margin in the CCES. Appendix Table C.3 summarizes these results

across all weighting methods.

We note that the standard errors (and thus confidence intervals) for kpop are not necessarily larger

than, and in fact are often smaller than, those of other methods. On the one hand, kpop may lead

to more variable weights than other approaches, which can contribute to larger variance estimates.

Simultaneously, however, the linearization/residualization standard errors we employ (Fuller, 1975;

Kott, 2016) remove from the outcome any signal that can be explained linearly by the φ(X) that

were calibrated upon. Thus, when a significant component of the outcome variance can be explained

by φ(X), this leads to a substantial reduction in the estimated standard error. This reduction

may be more than sufficient to make up for potentially higher variance weights, resulting in overall

shorter intervals. As demonstrated in Appendix D.3.3, these estimated standard errors have nominal

coverage under simulation and closely reproduce the empirical standard deviation of estimates under

resampling.
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Figure 1: Comparison of approaches for weighting Pew survey data weighted to CCES target
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Note: Comparison of weighting methods on Pew survey data to weighted CCES Target. Points represent the
estimated vote margin from the predicted “retrospective vote choice” using Pew survey data and corresponding
weighting scheme. The dashed black line indicates the target, the reported two-way vote margin in the
weighted CCES. The dashed grey line indicates the true values from national vote returns.

7 Conclusions

The challenges we seek to manage regarding common survey weighting techniques, particularly

post-stratification and mean calibration, are well-known in the survey weighting literature (e.g. see

Kalton and Flores-Cervantes, 2003, Berinsky, 2006, Hartman and Levin, 2019). Recent methods aim

to address trade-offs between these approaches, as well as the relationship between mean calibration

and inverse propensity score weighting (Linzer, 2011; Ben-Michael et al., 2021). Variable selection

for weighting has addressed one aspect of feature selection (Chen et al., 2019; McConville et al., 2017;

Caughey and Hartman, 2017). Here we describe an approach that helps to reduce user discretion in

the related problem of deciding what features and functions of observed covariates must be made to

look similar in the sample and target population.

We note several limitations and areas for future work. First, the implementation described here

makes no use of outcome data when constructing weights. This allows users to choose weights blind
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to the outcome to protect themselves against data “snooping”. Further, these weights would be

appropriate for estimating any outcome, as several are often of interest in a given survey. The

downside, however, is that this leaves possible gains in efficiency and bias reduction on the table if

there are functions of X that predict response (and are thus imbalanced) but that do not predict

the outcome and so need not be calibrated to achieve linear ignorability. Still, recognizing such

variables and choosing not to calibrate on them could lead to improved calibration on the remaining

variables, possibly resulting in less extreme weights. Such an approach remains an option worth

exploring in future work.

While we suggest the use of the Gaussian kernel with a variance maximizing choice of b, optimal

selection of b remains an area of ongoing research. Fortunately, our empirical results are not sensitive

to the choice of b (see Appendix C.5), but this may not always be the case. Further, while the present

example focused on discrete X for comparability to other approaches, a benefit of our approach,

and the Gaussian kernel, is that it applies well—and perhaps more naturally—with continuous X.

Nevertheless, other choices of kernels, and a means of choosing among them, is a fruitful area of

future work.

Next, in our implementation, we use only the sample observations to form the columns of K, a

decision driven by feasibility constraints. Since the number of units in the target population is

typically very large, using all sample and population units to form the columns of K is typically

infeasible. Future work could consider ways of augmenting the columns of K by selecting population

units that are poorly represented by sample units and using these additionally in the formation

of the bases for calibration. Finally, our method relies on individual level population data, either

from administrative data or a high-quality representative survey, which may not be accessible to all

researchers.

In summary, kpop is a kernel-based approach for weighting samples to be representative of target

populations, while reducing reliance on user discretion and domain expertise to determine what

covariates—and functions of those covariates—should be used for calibration. It does so by estimating

a flexible, non-linear set of basis functions through a kernel transformation and achieving approximate

balance on this representation of the covariates. As shown in our application to the 2016 U.S.

Presidential election, this method has great promise for reducing bias in non-representative samples.
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Supplementary Materials for “kpop: A kernel balancing approach for
reducing specification assumptions in survey weighting”

A Proofs
To first review notation, we consider covariates Xi, the outcome of interest, Yi, and an indicator
for having completed data on Yi, Ri ∈ {0, 1}, accounting for both unit i being in a sample and
completing the question. In addition, we consider an unobserved factor Zi. Independent observations
of the form {Xi, Zi, Yi, Ri} are realized from a common joint density p(Xi, Zi, Yi, Ri). Investigators
also have a smaller survey respondent sample, consisting only of Ns units. We consider first the case
where these Ns sampled units are drawn, with bias, from the Npop units in the target population
data, with Ri = 1 indicating sampled units, who thus have non-missing values of Yi. Below we also
consider the case when the sample is drawn disjointly from the target population.

A.1 Outcome linearity

While the full linear ignorability assumption defined in the paper regards the independence of (link)
linear residuals from both the outcome and response models, to develop the underlying ideas we
will first consider only the residual in the outcome model and how it relates to the full response
process, not just the residual in the response process.

The decomposition of Y into φ(X)>β + ε is always possible, and so the assumptions embodied by
this decomposition are borne out by further assumptions on ε. Here, unlike in many regression
settings, the concern is not the relationship between φ(X) and an ε defined as other causes of Y ,
but rather between the ε that is constructed simply to be orthogonal to X, and the sample-presence
indicator, R.

While non-parametric ignorability asserts that Y |= R | X, suppose we replace this with the notion
that the variation in Y not explained linearly by φ(X), namely ε, is independent of R: ε |= R. Note
that (i) the non-parametric conditioning on X has been replaced here by a specific parametric
adjustment, Y −φ(X)>β, and (ii) we have not yet removed the linear relationship between φ(X) and
R, and doing so is complicated by R’s potential link-linear relationship to φ(X), but will consider
that shortly.

Without loss of generality, consider the decomposition of Y as

Y = φ(X)>β + Z + ν

in which Z can take various forms that will affect whether linear ignorability holds and such that ν
contains merely idiosyncratic noise independent of φ(X), Z, and R. The ε above is now composed
of Z + ν. Note we can assume Z is orthogonal to φ(X) because, if it wasn’t, one could replace the
original Z with the component not in the span of φ(X), Z − (φ(X)>φ(X))−1φ(X)>Z. This will
change the β of the best fitting model, but that is not a concern here.

The weighted average outcome in the sample will then be,
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µs(w) = 1
Ns

∑
Yi = 1

Ns

∑
wiφ(X)>i β + 1

Ns

∑
wiZi + 1

Ns

∑
wiνi

while the mean outcome in the target population is

µ = φ(X)>popβ + 1
Npop

∑
Zi + νi

which will not equal E[Y ] exactly, but p(·) is constructed such that E[µ] = E[Y ]. The bias under
exact mean calibration on X is then

bias = E[µs(w)− µ]

= E

[
1
Ns

∑
wφ(Xi)>β + 1

Ns

∑
wiZi + 1

Ns

∑
wiνi −

(
φ(X)>popβ + 1

Npop

∑
Zi + 1

Npop

∑
νi

)]

= E

[
φ(X)>popβ + 1

Ns

∑
wiZi + 1

Ns

∑
wiνi −

(
φ(X)>popβ + 1

Npop

∑
Z + 1

Npop

∑
νi

)]

= E

[
1
Ns

∑
wiZi −

(
1

Npop

∑
Zi

)]
+E

[
1
Ns

∑
wiνi −

1
Npop

∑
νi

]
= E[wZ | R = 1]−E[Z] + 0

Hence if Z (and thus ε = Z + ν) is not orthogonal to R, the bias is simply the difference between the
weighted average of Z in the sample and the average of Z in the target population. Note that while
E[·] here integrates over p (the full data-generating process), this is an expectation of the bias as
defined by the difference between a fixed target population mean, i.e. the µ we would have versus
our estimate of it from a smaller weighted sample, µs(w).

So far this result does not depend on whether the sample units (i : Ri = 1) are a subset of the target
population units. Note that the term

[
1
Ns

∑
i:R=1wiνi − 1

Npop

∑
i νi
]
equals zero in expectation so

disappears from the bias but is one source of error in a finite sample. In the case where the sample
is a subset of the target population, the second term in this expression can be rewritten as a
combination of the sample units and the units in the sample not in the population, leaving us with
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= 1
Ns

∑
i:R=1

wiνi −
(
Ns

Npop

)
1
Ns

∑
i:R=1

wiνi +
(
Npop −Ns

Npop

)
1

Npop −Ns

∑
i:Ri=0

νi (8)

= 1
Ns

∑
i:R=1

wiνi −
1
Ns

∑
i:R=1

wiνi + 1
Npop

∑
i:R=0

νi (9)

= 1
Npop

∑
i:R=0

νi (10)

Hence, this particular source of finite sample error is smaller when the sample is a subset of the
target population: because the sample and population share units, they differ on ν only for the
observations that are in the target population and not the sample.

When we consider a Z |= R then ε = Z + ν is independent of R. Accordingly, when Z |= R,
E[Z|R = 1] = E[Z]. Further, as the weights depend upon only R and X, Z |= X and Z |= R
implies Z |= w. Hence, when Assumption 2 holds, the final line above becomes E[w|R = 1]E[Z|R =
1]−E[Z] = E[Z]−E[Z] = 0, concluding our proof.

A.2 Link-linearity in the sampling process

The full linear ignorability assumption (2) is met not only when ε |= R, but more weakly when ε |= η,
where η is the part of the sampling probability that cannot be explained (link) linearly by φ(X).
Derivations working with η are complicated by the fact that, as a binary variable, we do not expect
to model R directly as a linear function of φ(X) but rather through a link function. Suppose we
impose a general link-linear decomposition, Pr(R = 1|X) = g(φ(X)>θ + η), where g(·) is some
(inverse) link function g : R 7→ [0, 1]. We now consider the assumption of independence only between
the linear residual of the outcome and “link-linear” residual for the selection, are independent, i.e.
that ε |= η.

In the “nested” case used in the text, where the sample contains a subset of the units in the target
population, mean calibration weights solve the moment conditions,∑

x∈X
φ(x)w(x)p(X = x | R = 1) =

∑
x∈X

φ(x)p(X = x) (11)

where p(X = x) is the distribution among the target population. Note that though φ(X) has
an infinite-dimensional representation in the case of the Gaussian kernel, the virtue of the kernel
representation is that this can be achieved by calibrating on Ki instead of φ(Xi). The number
of constraints to be solved (neglecting the approximation) is thus the number of dimensions of
Ki, namely Ns. Further, the same moment conditions would be solved were we to choose weights
according to the function w(x) = p(X=x)

p(X=x|R=1) . We thus assume the empirical weights solving
Equation 11 converge to those described by w(x) and can thus be expressed as

w(x) = p(x)
p(x | R = 1) = p(x)p(R = 1)

p(R = 1|x)p(x) = p(R = 1)
p(R = 1|x) (12)
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producing the well-known “inverse probability of selection” weights. In particular the sample weights
become

wi = Ns/Npop

g(φ(Xi)>θ + ηi)
(13)

The “non-nested’ case, where the sample (R = 1) is drawn not as a subset of the target population
but as a separate group, is similar. Here, mean calibration for φ(x) solves∑

x∈X
φ(x)w(x)p(X = x | R = 1) =

∑
x∈X

φ(x)p(X = x | R = 0)

where R = 0 designates units in the target population alone and R = 1 are those in the sample
alone. Expression (12) is then replaced by

w(x) = p(x | R = 0)
p(x | R = 1) = p(R = 0|x)p(R = 1)

p(R = 1|x)p(R = 0) = p(R = 0|x)
p(R = 1|x)

Ns

Npop
(14)

so that w(Xi) is just a rescaling of 1−g(φ(Xi)>θ+ηi)
g(φ(Xi)>θ+ηi)

, i.e. the inverse “odds of selection” rather than
probability of selection. In either case, the weights are a function of X>i θ + ηi, which we rename
h(X>i θ + ηi). For example, supposing g(·) was the inverse link function for the logit, then in the
non-nested case,

wi = h(φ(Xi)>θ + ηi) = 1− g(φ(Xi)>θ + ηi)
g(φ(Xi)>θ + ηi)

Ns

Npop
= e−(φ(Xi)>θ+ηi) Ns

Npop

However the logit link is just one example; we can proceed for any choice of g(·) : R 7→ [0, 1]. As
derived above, the bias from using any weights w to approximate the mean outcome in the target
population is given by E [

∑
iwiZi]−E[Z]. Under linear ignorability, this is

bias = E

[∑
i

wiZi

]
−E[Z] (15)

= E

[∑
i

h(φ(Xi)>θ + ηi)Zi

]
−E[Z] (16)

= E[Z]NsE

[
h(φ(Xi)>θ + ηi)

]
−E[Z] (17)

= E[Z]NsE[wi]−E[Z] (18)
= 0 (19)

where (17) follows from the prior line because (i) Z is orthogonal to φ(X) and thus any function
φ(X)>θ, and (ii) linear ignorability ensures that Z |= η.
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B Detailed choices of kernel and data scaling
We employ the Gaussian kernel throughout and in our software implementation. Users could reason-
ably choose other kernels that form function spaces more suitable to their purposes. The Gaussian
kernel, however, is a useful default choice for several reasons. The choice of φ(·) corresponding to
the Gaussian kernel is infinite dimensional, and the Gaussian is one of several “universal” kernels,
able to fit any continuous function given enough observations (see e.g. Micchelli et al., 2006).
More importantly, in a given finite sample scenario, the functions that are fitted by Gaussian
kernels—those that can be built by rescaling and adding Gaussian curves over all the observations
in the sample—form an appealing range of smooth, flexible functions suitable for many applications.

In estimating survey weights using kpop, several data pre-processing decisions must be made. We
provide default recommendations to reduce the number of user-driven decisions. For continuous
variables, we recommend rescaling so that all variables have variance one. This avoids unit-of-
measure decisions from affecting the relative influence of different variables in the similarity measure
between units. In our application, however, for comparability to other survey weighting approaches,
we focus on categorical variables. Gaussian kernels remain appropriate with categorical variables, as
demonstrated in the minimal example in 5.1, but require different data pre-processing decisions.
Differences between units in a categorical setting are binary: two units are either an exact match
or not. We therefore use dummy or “one-hot encoding” of categorical variables without dropping
any levels and do not rescale the resulting binary variables by their standard deviations. Under
these choices, the numerator of the Gaussian kernel ||Xi −Xj ||2 is simply two times the number of
variables on which units Xi and Xj differ, regardless of the number of levels attached to each of
those variables.

This brings us to the choice of b in the kernel definition. This is effectively a feature extraction
choice, constrained by feasibility. Obtaining balance on a kernel matrix formed with a small b
implies finer balance and less interpolation, but at the cost of more extreme weights (and eventually,
infeasibility). To see how b affects the information in the kernel matrix in more detail, see the
following section which displays various scree plots by the choice of b.

We propose a new approach to selecting b. In related kernel methods, a common default choice for b
is often b = D or b = 2D where D is the number of dimensions of X used to form K. One reason is
that, for standardized data, the expectation of the numerator in the exponent grows proportionally
to D (Hainmueller and Hazlett, 2014). Hence scaling proportionally to D is reasonable, keeping the
magnitude of the exponent stable as D grows. However the best constant of proportionality remains
unclear. Recall that b scales the similarly measure ||Xi −Xj ||2. There is no clear optimal value of b,
without further assumption. Instead, we seek a reasonable choice that is computationally convenient
and avoids researcher intervention. A choice of b is reasonable, we argue, if it produces a range of
values in each column of K, encoding meaningful variability in the similarity/difference between
different pairs of units. Given that this measure is bounded between 0 and 1, we use the variance of
K (disregarding the diagonal, which is unchanging) as a measure of the useful information available
at a given choice of b. We then choose the variance-maximizing value of b. We make no claim as
to the optimality of this result, but it does guarantee a reasonable choice is made, without user
intervention and without inspecting Y . In our simulations and applications, this choice produces
consistently good performance, though the results are shown to be stable across a wide range of b
regardless (see appendix C.5).
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B.1 Singular value decomposition of kernel matrix

The following plot displays the first 50 singular vectors and their corresponding scaled singular
values. Singular values are scaled by the largest singular value to facilitate comparisons across
different K matrices. As can be seen in the plot, smaller choice of b, the denominator in the
Gaussian exponent, correspond to a larger number of meaningful singular vectors while larger values
lead to fewer. This helps to illuminate how the choice of b represents a feature extraction choice.
Larger b values smooth over smaller differences between units, resulting in a kernel matrix which
contains fewer dimensions of meaningful variance. This can be seen in the sharp drop of in the
magnitude of singular values by even the 10th singular vector. Smaller choice of b on the other
hand, maintained more fine-grained information regarding the difference between units. Accordingly,
we see a less precipitous decline in meaningful singular values the smaller the choice of b, with even
the 50th singular vector still corresponding to a non-zero singular value. In this way, the choice of
b represents a feature extraction choice. As b grows increasingly small, this choice also becomes
constrained by feasibility challenges as kpop must seek balance on a larger and larger number of
meaningful singular vectors of K.
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Figure B.1: Screeplot of first 50 singular values of kernel matrix for different choices of b (scaled by
maximum singular value for comparability across matrices).
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C Application: Additional Details

C.1 Description of target population

Table C.1: Marginal distribution, in percentage points, of important demographics for the target
population and the unweighted sample

Target unweighted
(CCES) Pew

Party Identification
Dem 38.1 34.5
Ind 32.3 35.0
Rep 29.5 30.5

4-way Age Bucket
18 to 35 28.7 19.1
36 to 50 21.3 21.4
51 to 64 29.9 31.0
65+ 20.1 28.5

Gender
Female 50.9 47.2
Male 49.1 52.8

Race/Ethnicity
Black 11.7 8.8
Hispanic 6.5 7.6
Other 6.8 7.1
White 75.0 76.5

Region
Midwest 23.4 22.1
Northeast 19.7 18.3
South 35.4 37.9
West 21.4 21.7

Education Level
No HS 6.8 2.6
High school 30.6 19.7
Some college 23.0 15.2
2-year 10.6 11.4
4-year 18.7 29.1
Post-grad 10.4 22.1

Income
Less than 20k 10.5 9.2
20-50k 29.9 25.3
50-100k 32.5 27.2
100-150k 11.5 15.2
More than 150k 5.5 14.8
Prefer not to say 10.1 8.3
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Table C.1: Marginal distribution in percentage points (Cont.)

Target Unweighted
(CCES) Pew

Religious Affiliation
Catholic 21.3 21.6
Jewish 2.3 3.5
Not religious 32.4 22.2
Other 3.4 4.9
Protestant 40.5 47.8

born-again Christian
No 67.4 69.1
Yes 32.6 30.9

Church Attendance
Never 49.6 30.3
Weekly 27.9 34.9
Monthly 8.2 15.7
Yearly 14.3 19.2
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C.2 Details of predictive outcome model

We run a regularized multinomial logistic model run on the CCES data to predict (weighted)
three-way vote choice and include all variables in Table C.1 and a handful of interactions among
them. Specifically, the model includes gender, 3-way party id, race/ethnicity, 6-way education,
region, 6-way income, 5-way religion, 4-way church attendance, born-again status, continuous age,
age2, gender × party id, and finally age (cont.) × party id. We train this model on an 80% sample
of the CCES target population. We use 10-fold cross-validation to select λ, the regularization
parameter, choosing the value which produces cross-validation error that is within one standard error
of the the minimum. When we classify vote choice as the highest predicted probability outcome for
an individual, this model accurately classifies 79% of vote choice in the test set with the following
confusion matrix (in percent):

Reference
Democrat Other Republican

Predicted

Democrat 86.530 47.098 14.049
Other 0.067 0.792 0.000
Republican 13.403 52.111 85.951

Table C.2: Lasso multinomial model confusion matrix (in percent) for test set observations when
classifying their predicted outcome among Democrat, Republican and Other by the highest modeled
probability.

When we classify test observations by their outcome with highest modeled probability, we have the
most trouble accurately predicting those who choose “Other” which make up only 9% of responses.
This is of minimal concern, however, because we focus on outcomes which consider only the vote
share between “Democrat” and “Republican.” In particular, we focus on the weighted average
individual vote margin defined simply as the difference between the model’s predicted probability of
voting Democrat and Republican, p(D)− p(R). We project this model onto the Pew sample data to
predict three-way retrospective vote choice and subsequently compare the performance of different
methods in weighting the sample’s projected outcomes to our target. Recall that our target is the
reported retrospective vote choice reported by respondents to the CCES.
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C.3 Numerical Performance on Modeled Retrospective Vote Difference in Ap-
plication

Table C.3: Performance on Modeled p(D) - p(R) Vote Difference among Various Weighting Methods

Estimate SE CI Lower CI Upper

CCES Target 2.68 0.51 1.68 3.67
Pew unweighted -0.19 1.55 -3.24 2.85
mean calibration (demos) 6.49 0.40 5.71 7.28
mean calibration (d+edu) 3.04 0.40 2.26 3.82
mean calibration (all) 4.31 0.30 3.72 4.91
mean calibration retrospective 3.30 0.32 2.66 3.93
post-stratification (reduced) 1.00 0.17 0.66 1.34
post-strat (all) -6.81 0.02 -6.84 -6.78
kpop 2.50 0.27 1.96 3.04
kpop+mf (demos) 2.95 0.25 2.45 3.44
kpop+mf (d+edu) 3.09 0.30 2.51 3.67
kpop+mf (all) 3.19 0.31 2.59 3.79

Note: Standard Error estimators differ across estimates: for the CCES Target and the unweighted
Pew estimate, the Horvitz-Thompson estimator is used; for all other estimates, the linearization SE
estimator is used.
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C.4 Distribution of Weights and Diagnostic Measures

Note that for ease of interpretability, all of the following use weights that sum to Ns. In this
application that corresponds to 2052 pew units.
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Figure C.2: Distribution of weights (for Pew sample) across the various weighting methods discussed
in Section 6, focusing on a smaller range of weight magnitudes (horizontal axis). Vertical lines
indicate where 90% of the total sum of the weights ordered from largest to smallest occurs. Thus,
the area to the right of these lines accounts for 90% of the mass of the weights.
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Table C.4: Numerical Summary of Distribution of Survey Weights

Variance Max Min IQR Effective No. Units to
SS 90% Sum of

(Kish) Total (2052)

kpop 1.60 15.23 0.0103 0.92 789 1193
kpop+mf: (demos) 1.98 28.82 0.0005 0.93 689 1183
kpop+mf: (d+edu) 2.99 24.22 0.0001 1.01 515 901
kpop+mf: (all) 1.74 23.29 0.0230 0.91 749 1223
mean calibration: (demos) 0.11 2.49 0.4367 0.42 1852 1721
mean calibration: (d+edu) 0.44 5.28 0.1515 0.78 1425 1535
mean calibration: (all) 0.86 7.32 0.0516 0.88 1101 1362
post-stratification: (reduced) 1.09 9.52 0.0050 0.96 983 1235

Table C.5: L1 and Biasbound Results for all kpop Methods in 2016 Election Application

L1 L1 Biasbound Biasbound Biasbound
Original Optimal Original Optimal Ratio

kpop 0.0318 0.0011 0.0446 0.0069 6.4236
kpop+mf: (demos) 0.0318 0.0006 0.0446 0.0079 5.6577
kpop+mf: (d+edu) 0.0318 0.0005 0.0446 0.0078 5.7173
kpop+mf: (all) 0.0318 0.0010 0.0446 0.0085 5.2345

Note: Original refers to the L1 and biasbound before any balancing is conducted. Optimal refers to
the final L1 and biasbound after balance is conducted on the optimal number of dimensions of the
left singular vectors of K. The biasbound ratio reports the proportion of the original biasbound to
the final optimal biasbound.
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C.5 Performance Across a Range of b
Examining results across a range of values of b, we first observe that kpop results are highly consistent
across a wide range of values for b. Notably, at smaller values of b, we see how feasibility constraints
directly lead to a trade off between achieving calibration on the mean first constraints and seeking
balance on the left singular vectors of K. Because these mean first results prioritize mean calibration
on all available variables, for small values of b, kpop + mf struggles to find weights that additionally
balance on more than the first handful of left singular vectors of K. This can be seen directly in
Table C.6. The resulting estimates therefore perform similarly to mean calibration approaches.
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Figure C.3: Performance of kpop across a range of choices of b with and without mean first (all)
constraints. Note that mean first results append columns of the svd of the raw data and prioritize
first achieving mean calibration on these columns before proceeding to balance on the left singular
vectors of K.
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Table C.6: Number of Left Singular Vectors of K Balanced on by choice of Gaussian Kernel
Bandwidth b

b kpop kpop+mf (all)

2.00 39 8
4.00 159 7

argmax V(K): 5.66 159 52
8.00 168 52

16.00 189 101
32.00 200 105
64.00 203 106
128.00 189 50

Note: kpop+mf (all) balances first on 31 dimensions of svd(X) then seeks additional balance on the
the number of left singular vectors of K indicated. With small choices of b, kpop struggles to find
feasible balance on many dimensions of svd(K) particularly when also seeking balance on svd(X)
in the meanfirst approach.
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D Simulation Details
In Section 5.2 we briefly described our simulation study. While kpop achieves good balance and
low bias estimates in our application, we employ a simulation setting to more fully investigate
performance on both bias and variability. To construct a realistic simulation, we employ the
same setting above, but specify the selection and outcome models to have direct control over the
mechanism of bias.

D.1 Probability Sample Selection Model:

First, we specify a simplistic but non-linear selection model as follows:

p(S = 1) = logit−1
(
PID(3way) +Age(4way) +Gender + educ(3way) +Race(4way)

+BornAgain+ PID(3way) ∗Age(4way) +BornAgain ∗Age(4way)
)

Coefficients are chosen to be roughly similar to a fitted model to pew that yields a sample size
around 500. Namely:

This yields the following sampling probabilities:

D.2 Outcome Model:

To keep things straight forward, the outcome model is identical to the selection model. In other
words, again we have:

p(V ote = D) = PID(3way) +Age(4way) +Gender + educ(3way) +Race(4way)
+BornAgain+ PID(3way) ∗Age(4way) +BornAgain ∗Age(4way)

We add normally distributed noise to this outcome with mean zero and standard deviation σ =
sd(Y ) ∗ 1, yielding an R2 ≈ .5. To yield negative bias, the coefficients in the outcome model start as
the inverse of the coefficients in the selection model, then through an automated procedure they
are adjusted until they produce ŷ’s that lie within a probability range. This yields a population
target in percentage points of Ȳ = 49.14%. The correlation between selection probability and the
probability of voting democratic is ≈ −0.6. This induces a bias in the unweighted sample around
-3.5%.
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Table D.7: Non-Linear Selection Model

Coefficient Value

(Intercept) -2.00
pid_3wayInd 2.00
pid_3wayRep 2.00
femaleMale 0.50
age_bucket36 to 50 0.15

age_bucket51 to 64 0.20
age_bucket65+ 0.20
educ_3wayCollege 0.70
educ_3wayPost-grad -1.00
raceHispanic 0.50

raceOther 0.30
raceWhite 0.70
bornYes 2.00
age_bucket36 to 50:recode_bornYes 1.00
age_bucket51 to 64:recode_bornYes 1.50

age_bucket65+:recode_bornYes 2.00
pid_3wayInd:recode_age_bucket36 to 50 0.30
pid_3wayRep:recode_age_bucket36 to 50 0.50
pid_3wayInd:recode_age_bucket51 to 64 1.00
pid_3wayRep:recode_age_bucket51 to 64 1.00

pid_3wayInd:recode_age_bucket65+ -0.20
pid_3wayRep:recode_age_bucket65+ 2.00

Table D.8: Sample Inclusion Probabilities

Selection Probability

Min 0.0008
25% 0.0065
Mean 0.0134
75% 0.0158
Max 0.0167

Sum 513.1844
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Table D.9: Non-Linear Selection Mode with R2= 0.5 Outcome Model

Coefficient Value

(Intercept) 0.6250
pid_3wayInd -0.0750
pid_3wayRep -0.0750
femaleMale -0.0188
age_bucket36 to 50 -0.0056

age_bucket51 to 64 -0.0075
age_bucket65+ -0.0075
educ_3wayCollege -0.0262
educ_3wayPost-grad 0.0375
raceHispanic -0.0188

raceOther -0.0112
raceWhite -0.0262
bornYes -0.0750
age_bucket36 to 50:recode_bornYes -0.0375
age_bucket51 to 64:recode_bornYes -0.0562

age_bucket65+:recode_bornYes -0.0750
pid_3wayInd:recode_age_bucket36 to 50 -0.0112
pid_3wayRep:recode_age_bucket36 to 50 -0.0188
pid_3wayInd:recode_age_bucket51 to 64 -0.0375
pid_3wayRep:recode_age_bucket51 to 64 -0.0375

pid_3wayInd:recode_age_bucket65+ 0.0075
pid_3wayRep:recode_age_bucket65+ -0.0750
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D.3 Simulation Results:

We compare kpop and kpop+mf against the same set of mean calibration specifications discussed at
length in the application in section 6.1. This including raking demographics, demographics with
education and raking on all variables. We also compare performance against post stratification,
stratifying on the true sample selection model. Notably, even though our model is fairly simplistic,
the complexity of the full cross-sectional strata is such that empty cells post a challenge for post-
stratification. On average, post-stratification must drop around 22.7% of population units due to
missing strata in the sample. Finally, we include mean calibration on the true selection model
which meats the (link) linear ignorability assumption as well as the canonical Horvitz-Thompson
estimator.

D.3.1 Bias and MSE

The resulting bias across a full range of methods is displayed in the table below.

Table D.10: Simulation Results (arranged by MSE)

Bias (p.p.) MSE Abs Bias Reduction

Unweighted -3.510 12.603 0.000
mean calibration (demos) -1.618 2.893 0.539
mean calibration (demos+edu) -1.296 1.961 0.631
mean calibration (all) -0.029 0.226 0.992
kpop -0.272 0.357 0.923

kpop+mf (demos) -0.165 0.297 0.953
kpop+mf (demos+edu) -0.150 0.268 0.957
kpop+mf (all) 0.012 0.244 0.997
Horvitz-Thompson (true) -0.160 10.229 0.954
post-stratification (true) -1.120 1.571 0.681

mean calibration (true) -0.010 0.214 0.997

D.3.2 Box Plot of Estimates by Method

To see these results visually, we can examine a box plot.

18



Tr
ue

 T
ar

ge
t

P
op

ul
at

io
n

M
ar

gi
n

40

45

50

55

60

Unw
eig

ht
ed

m
ea

n 
ca

lib
ra

tio
n

 (d
em

os
)

m
ea

n 
ca

lib
ra

tio
n

 (d
em

os
+e

du
)

m
ea

n 
ca

lib
ra

tio
n

 (a
ll)

po
st−

str
at

ific
at

ion

 tr
ue

 se
lec

tio
n

m
od

el kp
op

kp
op

+m
f

 (d
em

os
)

kp
op

+m
f

 (d
em

os
+e

du
)

kp
op

+m
f

 (a
ll)

m
ea

n 
ca

lib
ra

tio
n

 tr
ue

 se
lec

tio
n

m
od

el

Hor
vit

z−
Tho

m
ps

on

M
od

el
ed

 V
ot

e 
M

ar
gi

n

D.3.3 Standard Errors

The following table present both the empirical standard errors across a number of estimators that
are reviewed and can be easily referenced in Kott, Phillip S. “Calibration weighting in survey
sampling.” Wiley Interdisciplinary Reviews: Computational Statistics 8.1 (2016): 39-53. These
include including SEs that assume fixed weights, SEs that us linearization variance estimation (eqn
15), and SEs that assume a quasi-probability sampling process (eqn 14).

Table D.11: Empirical SE Results in Percent for kpop Methods 1000 sims R2 on Outcome = 0.497

kpop kpop+mf
(demos)

kpop+mf
(d+edu)

kpop+mf
(all)

SE fixed 0.533 0.532 0.528 0.524
SE linear 0.521 0.522 0.500 0.476
SE quasi 0.522 0.520 0.499 0.474
sd(y hat) 0.533 0.520 0.496 0.494

Next, we evaluate the coverage of these various SE estimators and see all have about nominal or
higher coverage.
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Table D.12: Bias-Adjusted SE Coverage Results for kpop Methods 1000 sims R2 on Outcome =
0.497

kpop kpop+mf
(demos)

kpop+mf
(d+edu)

kpop+mf
(all)

SE fixed 0.951 0.955 0.957 0.964
SE linear 0.943 0.954 0.948 0.946
SE quasi 0.943 0.954 0.947 0.943

D.3.4 Weights Diagnostics

The following table shows the average moments of the weights by method across 1000 simulations.
Note that "Effective SS" refers to the effective sample size calculated using Kish’s expression (

∑
i
wi)2∑

i
w2

i

,
but is not well referenced against a set sample size since we this varied across simulutions because
we used bernoulli draws. The average sample size should be

∑
(p(S = 1)) (printed below). "No.

Units to 90% Sum of Total" is the number of units required to sum to 90 of the total sum of the
weights when weights are ordered from largest to smallest. In other words, summing from the largest
weights to the smallest, we require this number of units to get to 90 of the total sum of the weights.

Table D.13: Average Moments of Weights by kpop Method across 1000 simulations

Estimator Variance Max Min IQR Effective SS
(Kish)

No. Units to 90%
Sum of Total

kpop 0.590 6.033 0.167 0.688 327.670 379.044
kpop+mf (d+edu) 0.516 5.904 0.126 0.641 341.601 387.453
kpop+mf (demos) 0.626 6.631 0.105 0.661 319.682 379.743
kpop+mf (all) 0.505 5.310 0.142 0.708 341.974 380.999

D.3.5 Dimensions of K

Table D.14: Average Dimensions of K w/ R2= 0.5 Outcome Model

Average SD

kpop 47.120 23.659
kpop+mf (demos) 28.360 12.292
kpop+mf (demos+edu) 16.035 7.870
kpop+mf (all) 1.365 1.547
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