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Summary: 

 Variation in canopy water content (CWC) that can be detected from microwave remote 

sensing of vegetation optical depth (VOD) has been proposed as an important measure of 

vegetation water stress. However, the contribution of leaf surface water (LWs), arising from 

dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical 

forests and other high-humidity ecosystems.

 We compared the AMSR-E VOD and CWC predicted by a plant hydro-dynamics model at 

four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the 

relationship between VOD and CWC. 

 The analysis indicates that while CWC is strongly correlated with VOD (R2=0.62 across all 

sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being less than 10% 

of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and 

reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, 

however, decreases at longer, seasonal to interannual, time scales.

 Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be 

an important driver of diurnal variation in CWC and VOD over tropical ecosystems and 

therefore should be accounted for when inferring plant diurnal water stress from VOD 

measurements.

Key words: canopy water content, ED2, ecosystem modeling, leaf surface water, vegetation optical 

depth, X-band
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Introduction 

Climate change and the accompanying intensification of hydrological cycles are imposing strong and 

chronic stress on terrestrial ecosystems (Novick et al., 2016; McDowell et al., 2018). Enhancing our 

understanding of vegetation water dynamics is therefore critical to predictions of ecosystem 

sensitivity to global change (Fatichi et al., 2016; Schimel & Schneider, 2019). Recent work has 

shown that vegetation optical depth (VOD) estimated from microwave remote sensing observations is 

a reliable proxy for the canopy water content (CWC) and a promising source of data for monitoring 

and understanding vegetation water dynamics (Konings et al., 2019; Feldman et al., 2020). Changes 

in VOD can reflect vegetation diurnal water stress patterns (Konings & Gentine, 2017; Li et al., 2017; 

Anderegg et al., 2018; Zhang et al., 2019), seasonality in plant water potential and leaf area (Guan et 

al., 2014; Momen et al., 2017), and vegetation biomass changes at longer time scales (Liu et al., 2015; 

Fan et al., 2019). However, accurate and robust interpretation of VOD variability remains challenging 

because of the complex physiological and biophysical processes impacting vegetation water dynamics 

at a wide range of time scales (Grossiord et al., 2017). Variation in VOD can be driven by canopy 

water interception due to rainfall and dew formation, plant hydraulics, phenology, and structural 

changes from growth and mortality (Konings et al., 2019). These challenges have hindered direct use 

of VOD in understanding vegetation water dynamics.

Spatio-temporal variation in VOD have mostly been linked to changes in leaf and wood internal water 

content (Jackson & Schmugge, 1991; Cosh et al., 2010; Tian et al., 2016), but theoretically they are 

also sensitive to surface water arising from dew formation and intercepted rainfall. While a previous 

study at a temperate agricultural site found relatively little effect of dew on airborne X-band (10.7 

GHz) measurements (Du et al., 2012), diurnal changes in leaf surface water were found to modulate 

tower-based VOD measurements collected at a similar microwave frequency (11.4 GHz) in a tropical 

canopy in Panama (Schneebeli et al., 2011). This latter study was performed at the scale of a few 

meters, however, which may show sensitivities not detectable at the ecosystem-scales (Wigneron et 

al., 2017). 

At the ecosystem-scale, the contribution of leaf surface water to VOD signals remains largely 

unknown despite leaf surface water being an important component of the moisture budget, A
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particularly in rainforest ecosystems where significant diurnal and seasonal variation in CWC occurs 

because of frequent rainfall interception and dew formation (Junqueira Junior et al., 2019; Binks et al., 

2021) and where measurements of leaf surface water beyond qualitative leaf wetness data (Binks et al. 

2019) do not exist. Therefore, ignoring the contribution of leaf surface water to VOD can lead to 

overestimation of changes in leaf internal water, which potentially biases the interpretation of VOD 

data as a measure of vegetation water stress. On the other hand, the ability to separate leaf surface 

water from canopy water content in VOD data may provide additional information about plant water 

dynamics. Through its effects on stomatal conductance, leaf surface water influences key aspects of 

plant metabolism including carbon assimilation (Aparecido et al., 2017; Gerlein-Safdi et al., 2018a,b) 

and support several important, yet relatively unknown, eco-physiological processes such as leaf foliar 

water uptake (Eller et al., 2013; Binks et al., 2019) and epiphyte water use and survival (Lakatos et al., 

2012). 

Recent advances in mechanistic representation of plant hydrodynamics in terrestrial biosphere models 

(Mencuccini et al., 2019) provide a new avenue for interpreting VOD data: these models are now 

capable of explicit simulation of CWC dynamics from a set of biophysical descriptions and field-

based plant functional traits. In turn, VOD data can provide valuable ecosystem scale evaluation data 

to hydrodynamic models, which are usually benchmarked by individual-level plant hydraulic 

measurements within forest plots (Xu et al., 2016; Christoffersen et al., 2016; Kennedy et al., 2019; 

De Kauwe et al., 2020). However, no studies to date have compared simulated CWC from terrestrial 

biosphere models with satellite VOD data.

In this study, we compare terrestrial biosphere model predictions of CWC and satellite VOD, and 

quantify the contribution of leaf surface water to VOD variation across diurnal to seasonal and inter-

annual time scales. Specifically, we hypothesize:

(H1) CWC, summed over the representative penetration depth of VOD observations, scales 

linearly with VOD.

(H2) The contribution of leaf surface water to VOD is higher than leaf and wood internal 

water at diurnal time scale because leaf surface water usually accumulates at night and evaporates A
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during the day while VOD at longer time scales is more likely controlled by changes in plant water 

stress and canopy biomass.

(H3)   The contribution of leaf surface water to VOD is higher at moist sites than at dry sites 

because there is more rainfall interception and dew formation under humid conditions.

To evaluate these hypotheses, we compare VOD data derived from X-band (10.7 GHz) measurements 

by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) (Du et al., 2017) to 

predictions of CWC from a terrestrial biosphere model incorporating plant hydrodynamics, at four 

tropical forest and savanna sites in Brazil across a large rainfall gradient. AMSR-E VOD covers full 

annual cycles from 2003 to 2010 and has local bypassing times at 1:30AM and 1:30PM that can 

reasonably capture diurnal changes (Konings & Gentine, 2017; Li et al., 2017) in addition to seasonal 

and inter-annual variation in CWC. The terrestrial biosphere model used in the study is the Ecosystem 

Demography version 2 (ED2). It is an ideal model platform to evaluate the relationship between CWC 

and leaf surface water with VOD because the model explicitly incorporates plant hydraulics and leaf 

energy budget (Xu et al., 2016; Longo et al., 2019) enabling it to simulate the dynamics of all of leaf 

surface water, leaf internal water, and wood internal water, as well as their vertical and horizontal 

heterogeneity within canopy. 

Materials and Methods 

Model description

ED2 (Medvigy et al., 2009) is an individual-based terrestrial biosphere model that represents the 

dynamics of structurally and functionally-diverse plant canopies. The recent version of the model 

(ED-2.2, Longo et al., 2019) has explicit representation of the leaf water and energy budget at sub-

hourly resolution for each plant cohort. The model calculates changes of leaf surface water for each 

plant cohort as the balance of dew formation, evaporation, rainfall interception, and water shedding. 

Detailed description of the water fluxes that contribute to dynamics of leaf surface water in the model 

can be found in SI Notes 1. 
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ED2 is also one of the first models to couple trait-based plant hydraulics with vegetation demographic 

dynamics (Xu et al., 2016). The hydraulics-enabled version (ED2-hydro) separates plant internal 

water pools into leaf and stem water pools at the cohort-level, and estimates sub-hourly water 

exchanges between these two pools using water potential gradient and cohort-specific stem water 

conductance following Darcy’s law. The integration of plant hydraulics with stomatal conductance 

and rhizosphere water uptake enables cohort-level simulation of the dynamics of plant internal water 

content (see SI Notes 1 for details). ED2-hydro has been calibrated and evaluated in several 

neotropical forests across a large precipitation gradient (Xu et al., 2016; Powell et al., 2017, 2018). 

In this study, we used the functionality of ED-2.2-hydro to conduct mechanistic simulations of all 

major components of vegetation CWC. We updated key plant hydraulic parameters for tropical plant 

functional types (PFTs) based on a meta-analysis over tropical species (Christoffersen et al., 2016) to 

incorporate the effects of plant functional diversity. Since vertical structure of vegetation biomass can 

influence interpretation of VOD data due to the limited penetration depth of microwave signals 

(Chaparro et al., 2019), we also made several model updates in allometry, trait phenoplasticity, and 

mortality to improve simulated vegetation structure in tropical forests (details in SI Notes S1). The 

model parameterization (Table S1) used in this study are archived at 

https://github.com/xiangtaoxu/ED2/tree/VOD.

Model configuration and simulation setup 

We conducted simulations for two tropical moist forests (Manaus K34 and Reserva Jaru) that both 

receive more than 2000 mm yr-1 mean annual rainfall and two tropical savanna sites (Brasília and Pé-

de-Gigante) that both receive less than 1500 mm yr-1 mean annual rainfall (Table 1). These sites were 

selected based on the quality of AMSR-E VOD data available for these locations (in 

particular, minimal contamination from nearby rivers or other large water bodies), and the availability 

of in-situ meteorological data (Brasília: SONDA-INPE (2020); other sites: de Gonçalves et al 

(2013)).  

Since the temporal coverage of in-situ meteorological data ranges from 1999 to 2012 depending on 

the site (see Table 1 for details) but does not encompass the full length of AMSR-E VOD time series A
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(2003-2010), we integrated the ground measurements with climate reanalysis data from Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA2) (Gelaro et al., 2017). To 

avoid the known biases in MERRA2 precipitation over tropical regions (Beck et al., 2019), we used 

precipitation data from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 

(Funk et al., 2015). To minimize the systematic biases in the reanalysis meteorology relative to local 

climate, and preserve monthly values, we calculated the difference between the monthly average of 

the reanalysis data and in-situ data for each variable over the years when in-situ data is available. We 

then applied the difference to modify the whole reanalysis time series to get the meteorological 

forcing (Fig. S1). The difference for precipitation is in logarithm space so that no rainfall was added 

to dry days when we applied the difference. 

Simulations at each site consisted of a 400-year model spin-up to attain steady state vegetation 

structure and composition followed by a 30-year contemporary simulation (1981 to 2010) 

encompassing the AMSR-E measurements. For the spin-up simulation, we initialized the model with 

a small number of seedlings (0.1 individuals per m2) of all four PFTs and ran the model with a cycling 

meteorological forcing from 1981 to 2000. Following up the spin-up simulations, we ran the model 

forced by meteorology from 1981 to 2010. For both sets of simulations, we used a constant rate of 1% 

of forest area experiencing windthrow disturbance (i.e 0.01 ha ha-1 yr-1) and a constant atmospheric 

CO2 at 380 ppm.

VOD retrievals

We used X-band (10.7 GHz) VOD retrieved from observations of the Japanese Aerospace 

Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

instrument. Specifically, the VOD data were those retrieved by the Land Parameter Data Record 

(LPDR) version 2 (Jones & Kimball., 2012; Du et al., 2017). The LPDR uses a multi-step procedure 

to disentangle the contributions of VOD, vegetation scattering, soil moisture, temperature, 

atmospheric humidity, and open water bodies to the observed radiometric brightness temperatures 

(Jones et al., 2010).
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Although the Amazon rainforest remains among the most challenging ecosystems for accurate VOD 

retrieval due to the large heterogeneity in canopy structure and the associated biophysical properties, 

interpretation of microwave radiometry has proven feasible even in highly complex canopies: for 

example, Calvet et al (1994) used a site-specific model to determine the relationship between Ka-

band radiometry and stomatal resistance at Manaus. Nevertheless, the VOD retrievals are expected to 

be more accurate at the savanna sites than at the densely forested sites. 

Model evaluation and comparison with VOD

We first evaluated the terrestrial biosphere model’s predictions of vegetation structure and plant 

hydraulics because both of these characteristics directly affect CWC. We compared vertical profiles 

of leaf area index (LAI) profiles derived from the Geoscience Laser Altimeter System (GLAS) aboard 

the Ice, Cloud, and the Elevation Satellite (ICESat), which has previously been shown to capture 

variation in tropical forest structure (Tang & Dubayah, 2017; Yang et al., 2018), with model 

simulated LAI profiles. Site-specific LAI profiles were derived from GLAS waveforms using a light-

extinction model based on the MacArthur and Horn (1969) approach (Ni-Meister et al., 2001; Tang et 

al., 2014) using measurements collected between 2003 to 2008 (Zwally et al., 2014) within a 50 km 

grid box centered around each study site. We extracted simulated average LAI profiles using model 

outputs from the same period of time for comparison. Both the GLAS and simulated LAI profiles 

were aggregated to a vertical resolution of 5 meters. LAI can show large seasonal changes especially 

in the two savanna sites. Therefore, we also compared the average seasonality of total LAI with 

Moderate Resolution Imaging Spectroradiometer (MODIS) LAI (Didan, 2015). 

Unlike vegetation structure, there are no high-resolution and long-term measurements of plant 

hydraulic properties (e.g. leaf water potential) over tropical forests. Limited field measurements 

suggest leaf water potential for tropical canopy trees normally varies between 0 and -1 MPa within a 

day at moist sites (Fontes et al., 2018) and can drop below -2 MPa at seasonally dry forest (Wu et al., 

2020) and cerrado sites (Bucci et al., 2005). We therefore tested whether the simulated diurnal 

variation showed a similar range of variation. 
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For leaf surface water, there are no direct measurements on its diurnal and seasonal cycles in the 

tropics to the best of our knowledge. Limited measurements report predawn values for top canopy 

leaves ranging from 0.02 to 0.11 kg H2O m-2 leaf in a tropical moist forest at Caxiuanã (personal 

communication with O. Binks) and from 0.02 to 0.08 kg H2O m2 leaf for five species in a tropical 

moist forest in Costa Rica (Aparecido et al., 2017). Our simulated leaf surface water at predawn 

(6:00AM) in top canopy leaves showed a consistent range at a similarly wet forest site and predicted 

top canopy leaves are frequently wet at predawn (Fig. S2), which is consistent with a recent report at 

Caxiuanã using leaf wetness sensors (Binks et al., 2021). Altogether, these consistencies suggest the 

model predictions on leaf surface water dynamics are realistic.

Following the model evaluation, we used daily AMSR-E VOD data at both 1:30AM and 1:30PM, and 

extracted the hourly average values of simulated leaf surface water (LWs), leaf internal water (LWi), 

and wood internal water (WWi), the three components of CWC in ED-2.2-hydro, at the same time of 

VOD observations. We averaged both VOD and simulated CWC values into bi-weekly values to 

reduce high-frequency variation and noise in VOD (Konings et al., 2016). In forests, X-band VOD is 

mostly sensitive to top canopy layers due to its high electromagnetic frequency (Macelloni et al., 

2001; Guglielmetti et al., 2007). The depth at which significant canopy attenuation occurs, commonly 

referred to as the penetration depth, depends on both canopy structure and water status, and thus is 

variable in both space and in time. Spatial and temporal variation in penetration depth is generally not 

accounted for in retrieval algorithms (Konings et al., 2016; Du et al., 2017). Recently, Chaparro et al 

(2019) showed that X-band VOD values saturate when aboveground biomass (AGB) is higher than 1 

kgC m-2. Therefore, we chose a conservative average penetration depth by only including LWs, LWi, 

and WWi for the top 1 kgC m-2 of biomass (leaf and wood, which corresponds to 2-10 meters 

depending on forest biomass vertical profiles) for each forest patch within site-level simulation results 

(Fig. S3) when comparing simulated CWC and AMSR-E VOD. Additionally, we also evaluated how 

VOD and CWC relationships vary with different assumptions of penetration depth.

We conducted analyses using the corresponding VOD data and CWC simulations across diurnal and 

bi-weekly time scales. First, we extracted the predicted diurnal cycle of LWs, LWi, and WWi to 

investigate the roles of each water pool in determining CWC dynamics that emerge from ED-2.2-A
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hydro. Specifically, we derived the contribution of LWs, LWi, and WWi to the variations in total 

CWC from the model at both diurnal and biweekly time scales by calculating the fractional 

contributions of each sub-component variance to the total CWC variance. For the diurnal-scale 

analysis, we quantified the variance as the value difference between 1:30AM and 1:30PM, since there 

are only two VOD observations within each diurnal cycle. For the biweekly-scale analysis, we 

calculated the variance of the mean of 1:30AM and 1:30PM for each biweekly (14 day) period. 

Second, we compared the VOD measurements and CWC and assessed the role of leaf surface water in 

their relationships. To test our first hypothesis on the scaling between VOD and CWC (H1), we 

quantified the linear relationship between VOD and CWC using ordinary least squares (OLS) 

regression for each site and all sites combined. To test our second and third hypothesis on the 

contribution of leaf surface water to CWC and VOD dynamics and its variation across sites (H2 and 

H3), we compared VOD and two metrics of CWC: (1) CWCint that only includes the internal water 

content of leaf and wood; and (2) CWCall that includes both leaf and wood internal water and leaf 

surface water. 

Specifically, we assessed the cross-site variation in isohydricity index, a widely-used metric to 

describe the diurnal behavior of plant water use (Martínez-Vilalta et al., 2014; Konings & Gentine, 

2017). This metric (σ) is calculated from the following regression equation:

, (eq 1)𝑋1:30𝑃𝑀 = 𝜎 × 𝑋1:30𝐴𝑀 +𝛬

where σ is the isohydricity index, Λ is the regression intercept, and X is a state variable describing 

canopy water status. Low σ implies vegetation is more isohydric because daytime water status is 

relatively insensitively to nighttime water status due to stomatal control while higher σ implies 

vegetation is more anisohydric. We calculated σ values for observed VOD, simulated CWC, and leaf 

water potential to investigate whether and how VOD-based isohydricity (generally assumed to reflect 

leaf internal water stress) is affected by leaf surface water dynamics. 

We then contrasted the average seasonality and deseasonalized multi-year variation of VOD and 

simulated CWC for each study site in terms of (1) absolute values at 1:30AM and (2) relative diurnal A
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range (100% – X1:30PM / X1:30AM × 100%). Together with variance decomposition of the simulated 

CWC, the evaluation of these two metrics enables quantification of the impacts of leaf and wood 

water content and leaf surface water on VOD.

Results 

Predictions of vegetation structure and plant water potentials

The long-term model equilibrium yielded LAI profiles that were generally consistent with GLAS 

estimates at the four evaluation sites (Fig. 1a-d). Individual-level competition in the model led to a 

general demographic size structure of a few big trees and many small trees, yielding decreasing leaf 

area density (LAD) from forest understory to canopy top that largely fall into the uncertainty of lidar-

based estimates. At the two forest sites (M34 and RJA), top canopy height reached 35-40 meters 

while LAD became very small (<0.01 m2/m3) above 20 meters at the two savanna sites (PDG and 

BSB). However, the model tended to overestimate the total LAI at the sites by 0.3-0.5 m2 m-2 (Fig. 

1a-d), with the excess LAI arising mainly from overestimates of LAD in upper canopy layers. The 

model simulations also tended to underestimate LAD in the lowest (<5m) canopy layer at the two 

forest sites. 

Seasonal changes of predawn leaf water potential govern the seasonal dynamics of canopy leaf 

phenology the model. As a result, seasonality of total leaf area was minimal at M34 where total 

rainfall is high and rainfall seasonality is mild. There were slight decreases of LAI at RJA (~0.2 m2 m-

2), and larger (0.5-1 m2 m-2) decreases at PDG and BSB toward the end of the dry season (Fig. 1e-f). 

MODIS LAI exhibited qualitatively similar patterns of LAI seasonality between the wet and dry 

sites. However, at M34, the MODIS LAI estimates exhibit increases in LAI during the wet season, 

and earlier onset of leaf shedding around the start of dry season at PDG and BSB, compared to the 

model simulations. Overall, ED-2.2-hydro generated canopy vertical structure and increasing seasonal 

magnitude in canopy phenology from wet sites to dry sites, which are largely consistent with remote 

sensing observations. 

The biosphere model simulations imply significant spatio-temporal variation in leaf water potential 

(Ψleaf) across all four sites (Fig. 2). For upper canopy leaves, the average maximum Ψleaf was close to A
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zero for wet sites and for the wet season at dry sites (Fig. 2e-f), implying a full recharge of daytime 

water loss in the model. In the dry season at PDG and BSB, maximum Ψleaf dropped below -1 MPa, 

triggering leaf shedding in the model. The daily minimum Ψleaf of canopy leaves were generally 1-1.5 

MPa lower than maximum values depending on moisture supply. These average patterns in leaf 

hydrodynamics are consistent with observed variation in leaf water potentials over tropical forests 

(Bucci et al., 2005; Fontes et al., 2018; Wu et al., 2020). Wood water potential at the base of stems 

(Ψstem) had similar diurnal cycles and seasonality as Ψleaf (Fig. S4). However, the simulated Ψstem was 

always close to zero at M34, the wettest site in our study (Fig. S4a), whereas at the two drier sites 

ψstem showed reduced diurnal variation during the wet season (Fig. S4c-d), but similar seasonal 

variation as Ψleaf. 

While observations of diurnal and seasonal variation in plant water potential were not available, the 

model’s predictions of evapotranspiration (ET) matched observed patterns of ET seasonality that were 

available from flux tower measurements at M34, RJA, and PDG (Fig. S5), providing additional 

support for the model’s ability to capture key characteristics of vegetation hydrodynamics in our study 

sites.

Spatio-temporal variation in simulated CWC and VOD observations

The model simulations indicate that LWs dominates the diurnal cycles of CWC, despite being less 

than 10% of total CWC of upper canopy layers on average (Fig. 3). Generally, LWs accumulated from 

late afternoon, reached peak values in early morning, then declined to near zero by midday. In 

contrast, LWi varied by only 10-15% within a day and WWi had even smaller diurnal variation (Fig. 

3a-d). As a result, LWs showed substantial contribution to CWC diurnal variability (Fig. 3e-h), 

accounting for 76% of CWC differences between 1:30AM and 1:30PM at M34 (wettest site) and 61% 

at BSB (driest site). LWi generally accounted for more of the remaining CWC diurnal variances than 

WWi. At the biweekly timescale, the contribution of LWs was considerably lower (18%-36% for RJA, 

PDG, and BSB), except for M34 where LWs still drove seasonal and inter-annual variations in the 

simulated CWC. In addition, at this time scale, WWi became the dominant driver of CWC variation 

except for the wettest site (M34). Increasing the penetration depth to 10 kgC m−2 of AGB did not 

qualitatively change these general cross-site and cross-time-scale patterns; it did however, increase A
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the contribution of wood internal water pools to patterns of diurnal and seasonal patterns of CWC 

variability (Fig. S6).

We found a strong linear relationship between VOD and simulated CWCall (top 1 kgC m−2 of AGB) 

with an R2 of 0.62 (Fig. 4a). The relationship remained significant at site-level, but the regression R2 

and slopes varied: simulated CWCall explained less than 20% of variance in VOD at the two moist 

forest sites M34 and RJA, but accounted for about 50% of variance at the two savanna sites PDG and 

BSB (Fig, 4c,d). At the same time, the sensitivity of VOD to CWCall (indicated by the slope of the 

VOD regressed against CWCall) increased by approximately 300% from the wettest site (M34; slope = 

0.55) to the driest site (BSB; slope = 2.15), whereas the regression slope of data from all sites 

combined fell in-between these values (slope = 0.86). The relationship between CWCint (CWC 

excluding leaf surface water) and VOD was weaker (R2 = 0.60 for all data combined) and the site-

specific R2 values declined by 5-10% for M34, BSB, and PDG while RJA showed little change (Fig. 

4b,c). The site-specific regression slopes of the VOD-CWCint relationship all steepened due to 

increasing nonlinearity of the relationship while the cross-site variations did not change much (Fig. 

4b). As a result, the VOD-CWCint regression slope using data from all sites combined (0.96, black 

line in Fig. 4) became lower than site-specific regression slopes (1.2 – 2.8, colored lines in Fig. 4). 

Using a much deeper penetration depth that included the top 10 kgC m−2 of AGB yielded similarly 

high R2 values (0.61 for both CWCall and CWCint), but the R2 values were far lower (<10%) for the 

two moist forest sites, and the cross-site regression slope was much lower than all site-level regression 

slopes regardless of whether or not LWs was included (Fig. S7). Overall, the model predictions of 

CWC that includes all forms of canopy water showed robust linear relationships with VOD, but the 

relationships were stronger at drier sites and across sites along a rainfall gradient.

We calculated isohydricity (σ) values from the variability in biweekly VOD estimates and calculated 

a similar metric from model simulations of bi-weekly variability in CWCall, CWCint, and canopy Ψleaf. 

Our VOD-based isohydricity values were comparable to the values estimated by Konings & Gentine, 

(2017) and Li et al., (2017) from daily VOD observations. As seen in Fig. 5a-d, the VOD-based σ 

was low at the two wet sites (0.44 for M34 and 0.59 for RJA respectively) and higher at two dry sites 

(0.71 for PDG and 0.72 for BSB respectively). The largest difference between VOD-based and A
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CWCall-based isohydricity occurred at M34, where the simulated isohydricity was considerably lower 

than the VOD-derived estimate (σ =0.18 and 0.44 respectively). However, the isohydricity values 

from the model predictions of CWCall and VOD observations were very close at the other three sites 

(Fig. 5a-h). In contrast, dynamics of CWCint and Ψleaf implied almost perfect to extreme anisohydric 

behavior across all sites with σ values very close to or larger than one (Fig. 5i-p), highlighting the 

significant contribution of LWs to the diurnal variation in simulated CWCall, and, by inference, to 

VOD measures of isohydricity. 

We also compared the average seasonality of simulated CWC and observed VOD with respect to both 

their values at 1:30AM and their diurnal ranges (Fig. 6). At the two moist forest sites, 1:30AM VOD 

showed seasonal patterns that peaked in the middle of the dry season with a seasonal amplitude of 

~10% at M34 and 20% at RJA (black lines in Fig. 6, panels a and b, respectively). Simulated CWCall 

did not reproduce these patterns, however, showing minimal seasonality at M34 and a small and short 

decline in late dry season at RJA (green lines in Fig. 6, panels a and b, respectively). At the two 

savanna sites, 1:30AM VOD showed 20-25% seasonal variations, peaking in the late wet season, and 

reaching its lowest values in the late dry season (black lines in Fig. 6, panels c and d respectively). 

The simulated 1:30AM CWCall showed similar seasonal patterns and amplitude (green lines in Fig. 6c 

and d respectively). As a result, the correlation between VOD and simulated CWCall increased from 

around zero at wet sites to ~0.8 at the dry sites. Interestingly, CWCint, which excludes the highly 

seasonal (vary by 30%-100%) LWs that follows the seasonality of rainfall (Fig. S8a-d), exhibited 

stronger correlation with VOD seasonality particularly at the two wet sites (Pearson’s r increased 

from ~0 to 0.4-0.5), but a reduction of seasonal amplitude by 5-10% at all sites. 

The comparison of the seasonality in the diurnal range showed similar patterns with the model-data 

correlation increasing from wetter sites to drier sites (Fig. 6e-h). However, the influence of LWs was 

more prominent at the savanna sites. At these two drier sites, the simulated diurnal range of CWCint 

peaked in mid to late dry season when daytime atmospheric water demand was high and soil water 

supply was low. Inclusion of LWs, whose diurnal range could reach 80-100% (Fig. S8e-h), resulted in 

shifts of the peak to late wet season for CWCall, which is consistent with VOD seasonality, and 

resulted in comparable average diurnal range values (5-10%) as VOD data. At the two forest sites, the A
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inclusion of LWs reduced the temporal correlation of the diurnal range between VOD and CWCall at 

M34 and reversed the correlation at RJA; however, it increased the average diurnal range to be closer 

with the VOD observations. The model-predicted diurnal range may bias low because WWi is 

calculated from water potential at the base of the stem, which may have smaller diurnal range than 

branch water potential in nature. A post-hoc correction by assuming wood water potential is the same 

as leaf water potential increased the average diurnal range in CWC for 2-3% but did not change the 

seasonal patterns or the impact of LWs (Fig. S9). Overall, these results suggest the ED-2.2-hydro did 

not capture the seasonality in canopy hydrodynamics and phenology at the forest sites; however, it 

performed well at the two savanna sites, where consideration of LWs significantly improved the 

agreement between simulated CWC and VOD observations.

At the inter-annual timescale, VOD showed substantial variability relative to its average seasonality in 

both 1:30AM values and diurnal ranges (Fig. 7) due to changes in hydroclimatic conditions. 

Simulated anomalies of both CWCall and CWCint at 1:30AM were more correlated with anomalies of 

1:30AM VOD at the drier sites (significant positive correlation with Pearson’s r ranging from 0.36 to 

0.53 for PDG and BSB) than at the wet sites (no significant correlations). While including LWs 

increased the correlation coefficients by 0.05 to 0.2, it did not change the general cross-site pattern. 

The simulated diurnal range anomalies in CWC were not correlated with the diurnal range anomalies 

in VOD at inter-annual time scales no matter whether LWs was included or not (Fig. 7e-h). The 

simulated diurnal range in CWC generally showed less inter-annual variability with standard 

deviation of 1.0-1.7% (CWCall) and 0.19-0.37% (CWCint) than the diurnal range in VOD, which had 

standard deviations ranging from 1.9% to 2.2%. Similar to the seasonal scale analysis, correcting for 

wood internal water did not change the simulated patterns of inter-annual variations in CWC (Fig. 

S10).

Discussion 

Predicted Canopy Water Content (CWC) and its relationship with Vegetation Optical Depth (VOD)

The increasing use of Vegetation Optical Depth (VOD) to infer large-scale patterns of vegetation 

water stress builds on the mechanistic proportionality between VOD and Canopy Water Content A
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(CWC) (Konings et al., 2019). However, quantitative assessments of this relationship have been 

lacking at the ecosystem scale – the scale at which remote sensing VOD measurements are made (tens 

of kilometers) – particularly in humid, high-biomass ecosystems such as tropical forests. This is 

mostly because ground-based measurements of CWC are generally made at the level of leaves or tree 

branches (Powers & Tiffin, 2010; Chavana-Bryant et al., 2016; Martin et al., 2018). Consequently, 

previous VOD field evaluation studies (Liu et al., 2015; Fan et al., 2019; Chaparro et al., 2019) only 

examined the statistical associations between spatial variation in VOD and above-ground biomass, a 

quantity that is easier to measure at larger spatial scales via forest inventory and LiDAR 

measurements.  

Our study evaluates, for the first time, the VOD-CWC relationship in both the spatial and temporal 

domains through novel application of a terrestrial biosphere model. Our analyses support the first 

hypothesis (H1) that VOD scales approximately linearly with CWC across space and time; however, 

it also reveals important sources of complexity in this relationship: the slope of VOD-CWC 

relationship varied across sites with different moisture conditions and vegetation structures (Fig. 4). 

While some variation in the slope with vegetation type is expected, a three-fold increase in the slope 

from savanna to forest sites (Fig. 4d) is far greater than previously estimated from radiometric 

experiments in non-forested ecosystems (Van De Griend & Wigneron, 2004) and leads to a relatively 

sigmoidal or saturating VOD-CWC relationship for cross-site variations.  

VOD saturation at high aboveground biomass density (Chaparro et al., 2019) should not be the 

primary factor driving variation in the VOD-CWC slopes because cross-site variation in penetration 

depth is explicitly considered in our analysis (Fig. S3) although our approach might not fully capture 

small seasonal changes of penetration depth within each site. The larger-than-expected variation in the 

VOD-CWC slope may reflect deficiencies in the model formulation: most notably, the model’s 

drought-driven phenology scheme generated smaller-than-observed seasonal amplitudes in CWC at 

the two wet sites, compared to the seasonality in VOD (Fig. 6), which may explain the low regression 

R2 and slope at M34 and RJA. The cross-site variation in the slopes of the VOD-CWC relationships 

could also be due to uncertainty in the VOD retrievals, particularly the uncertainty associated with 

surface temperature and single-scattering albedo in the densely forested M34 and RJA sites (Du et al., A
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2017) or due to multiple scattering (Schwank et al., 2018). Both explanations call for additional 

calibration of VOD with in-situ measurements of CWC, especially in moist, high-humidity 

ecosystems such as tropical forests.

The role of leaf surface water (LWs) in CWC and VOD variation across different time scales

Our simulations explicitly consider dew formation, rainfall interception, and the resulting dynamics of 

LWs. While no direct measurements of canopy LWs temporal dynamics are available to evaluate the 

model’s predictions, the simulated range of LWs is consistent with sparse sampling from an Amazon 

moist forest (Fig. S2). In addition, a rare ground-based radiometer study in a Panamanian tropical 

moist forest (Schneebeli et al., 2011) estimated that whole canopy LWs could regularly reach 0.17 

kgH2O m−2 (ground) at pre-dawn from dew formation and intensive rainfall events occasionally 

increased LWs to 0.4-1 kgH2O m−2. The model generated comparable average predawn LWs values of 

0.21-0.23 kgH2O m−2 at the two tropical forest sites (Fig. S6). The simulated average predawn LWs is 

close to the observed dew-driven value, but lower than the observed rainfall-driven values likely 

because reanalysis rainfall underestimates the diurnal cycle (Fig. S11).

In our model simulations, LWs accounts for more than 50% of diurnal variation in CWC at all four of 

the study sites (Fig. 3). The large diurnal contribution from the relatively small LWs pool (< 10% of 

total CWC) stems from its fast turn-over rate: by midday almost all LWs accumulated during the night 

evaporates away (Fig. 3). In contrast, simulated LWi varied by only 10-15% within a day and WWi by 

even less. In nature and in the model, this occurs because plant stomatal control constrains daily 

minimum leaf water potential to be above, or not far below, the leaf turgor loss point (Brodribb & 

Holbrook, 2003; Fontes et al., 2018), whose corresponding relative water content is approximately 90% 

for tropical wet forests (Bartlett et al., 2012). 

Consequently, our results call into question the ability to correctly infer spatial and temporal patterns 

of plant water stress from diurnal measurements of VOD in humid forest ecosystems such as tropical 

rainforests, as illustrated in our isohydricity analysis (Fig. 5).  First, leaf surface water dynamics 

might contribute most to the VOD-based isohydricity. Second, isohydricity index based on water 

content is influenced by both leaf internal water stress and the seasonal variation in vegetation A
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structure, and thus can deviate from the isohydricity index based on leaf water potential and converge 

to one (Fig. 5i-p). In addition, if VOD diurnal range reflects diurnal water stress, it should peak in the 

dry season in tropical forests when plant diurnal water stress is generally the highest -- as shown in 

both observations (Brodribb & Holbrook, 2004; Fisher et al., 2006) and the biosphere model 

simulations conducted in this study (Fig. 2). However, at the two savanna sites, VOD diurnal range 

peaked in late wet season, which can only be explained by including LWs (Fig. 6). Excluding rainy 

days (Konings & Gentine, 2017; Li et al., 2017) is likely not enough to eliminate the effects because 

dew formation can also significantly contribute to LWs and the simulated importance of LWs only 

drops to a low level in months with both low rainfall and humidity (Fig. S12). Hence, the influence of 

LWs on VOD retrievals may also be important in other humid ecosystems such as those found along 

the North American Pacific coast (Burgess & Dawson, 2004) and montane forests (Berry et al., 

2014). 

The importance of LWs decreases, however, at the seasonal and inter-annual time scales (Fig. 6&7), 

implying that failing to consider LWs will have less effect in VOD-based inference of canopy 

phenology (Guan et al., 2014; Wang et al., 2020) and vegetation mortality (Rao et al., 2019; 

Wigneron et al., 2020). Therefore, our results support our second hypothesis (H2) that the 

contribution of leaf surface water is highest at the diurnal time scale. 

In contrast, there is only partial support for our third hypothesis (H3) that the contribution of leaf 

surface water to diurnal VOD dynamics increases as precipitation increases: variance decomposition 

implies an increasing contribution from LWs along the gradient from dry to wet sites (Fig. 3) and 

from wet to dry months (Fig. S12) is consistent with H3. However, it is difficult to draw strong 

conclusions regarding H3 given the large uncertainties in VOD retrievals and low level of seasonality 

in the model simulations compared to the observed seasonality of VOD values and diurnal ranges at 

the two moist forest sites (Fig. 6). In addition, the simulated cross-site variations in LWs contribution 

might be biased because ED-2.2-hydro does not represent possible leaf trait adaptation across 

moisture gradients such as changes in leaf texture and trichome abundance that could regulate leaf 

surface water retention (Aparecido et al., 2017) and thus influence LWs dynamics. Further in situ data 
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collection and model improvement and benchmark are necessary to accurately evaluate how LWs 

contribution vary across moisture gradients.

Implications for tropical phenology in vegetation models

Our model-data analysis also provides a useful evaluation of the plant hydrodynamics and leaf 

phenology formulations in the ED-2.2-hydro terrestrial biosphere model. As anticipated, there was 

better agreement between the model predictions and the VOD measurements at the two drier sites 

where abiotic moisture conditions exhibit large variability that significantly affects canopy water 

content. However, the predicted seasonal decline of LAI is later than in MODIS LAI estimates (Fig. 

1), and the relative magnitude of the seasonal decline in CWC was smaller than VOD observations 

(Fig. 6), suggesting that the model’s drought-deciduous leaf phenology scheme may not be 

sufficiently responsive to seasonal water stress. In the current model formulation, leaf-drop is 

triggered when pre-dawn water potential falls below turgor loss point, whereas drought experiments 

on tropical seedlings suggest the average of pre-dawn and midday water potential can best predict leaf 

shedding (Wolfe et al., 2016). Incorporating midday water potential into the drought-deciduous 

phenology scheme might therefore improve the seasonality at drier savanna sites.

Similarly, at the two wet sites, the predicted seasonality in canopy water content was lower than the 

seasonality in VOD (Fig. 6). This may be because the VOD seasonality is partially attributable to 

unknown retrieval errors caused by seasonally varying properties (e.g. changes in canopy structure) in 

densely vegetated areas (Konings et al., 2016; Du et al., 2017). Another possible explanation is that 

biotic factors, such as leaf ontogeny, can influence seasonal variation in canopy water content under 

moist conditions. For instance, leaf relative water content can change substantially with leaf age in 

tropical wet forests (Chavana-Bryant et al., 2016) therefore seasonal changes in leaf demography at 

tropical moist forests (Wu et al., 2016) may contribute to seasonal variation in CWC and resulting 

VOD measurements. A simple calculation of CWC changes based on published leaf demography and 

leaf ontogeny data at Manaus (Chavana-Bryant et al., 2016; Wu et al., 2016) suggests that seasonal 

variation in leaf age could explain the seasonal amplitude of VOD at M34, albeit with a 1-2 month lag 

in timing (Fig. S13).  A
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Conclusions

Our analyses indicate a large contribution of leaf surface water to diurnal variation in landscape-scale 

canopy water content (CWC) and AMSR-E Vegetation Optical Depth (VOD) signals over tropical 

forests. This is important because diurnal variation in VOD has been proposed as a measure of canopy 

isohydricity, a metric widely used to diagnose the water status of plant canopies. Our analysis shows 

that leaf surface water also influences seasonal variation in VOD, but to a far lesser extent. In this 

analysis, we examined VOD measurements from X-band microwave instruments that have relatively 

low penetration into the dense canopies of tropical forests; however, our findings also apply to VOD 

measurements from lower (L-band) electromagnetic frequencies (e.g. SMAP and SMOS) because the 

simulated LWs contributions remain high even when we evaluated deeper canopy penetration depth 

(Fig. S6). Therefore, future applications of microwave band measurements, as well as and other 

imaging spectroscopy-based estimates of canopy water content (Asner et al., 2016) should carefully 

consider the effects of variation in leaf surface water, particularly during rainy and humid periods. In 

turn, the sensitivity of VOD to leaf surface water newly identified in this study provides new 

opportunities to understand leaf surface water dynamics and its impact on plant water use.

Our analyses also highlight the value of explicitly representing plant hydrodynamics in terrestrial 

biosphere model formulations. The consistency between VOD and model predicted CWC across 

diurnal, seasonal, and inter-annual timescales at the two tropical savanna sites suggests that the 

current model structure is able to capture important processes governing plant hydrodynamics; 

however, capturing diurnal and seasonal patterns of VOD in wet tropical forests is likely to require 

consideration of phenological processes affecting canopy water content, such as seasonal leaf 

demography and ontogeny. 
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Supporting Information Legends

Fig. S1 Average monthly seasonality of the meteorological forcing used to drive the model 

simulations. 

Fig. S2 Distribution of predawn leaf surface water (LWs) in top canopy compared with observed 

ranges.

Fig. S3 Schematic diagram on penetration depth for CWC in ED-2.2-hydro.

Fig. S4 Vertical profile and average seasonality of simulated wood water potential at the base of tree 

stems. 

Fig. S5 Average seasonality of evapotranspiration from ED-2.2-hydro simulations (red line) and flux 

tower data.

Fig. S6 Contribution of leaf surface water to canopy water content in model simulations using 10 kgC 

m-2 as penetration depth.

Fig. S7 Relationship between VOD and simulated CWCall (including LWs) and CWCint (excluding LWs) 

using 10 kgC m-2 as penetration depth.

Fig. S8 Average seasonality of simulated leaf surface water.

Fig. S9 Average seasonality of VOD and CWC corrected by leaf water potential.

Fig. S10 Deseasoned multi-year variability of VOD and CWC corrected by leaf water potential.

Fig. S11 Average diurnal cycles of precipitation rainfall from ground-observation (GRND) and 

reanalysis data (REAN) used in our simulations.

Fig. S12 Relative contribution of variance in LWs to the diurnal variance in CWCall as a function of 

precipitation and vapor pressure deficit.

Fig. S13 Average seasonality of midnight VOD at M34 compared with seasonality of leaf water 

concentration estimated from leaf demography data.

Notes S1 Additional model description for ED-2.2-hydroA
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Table S1 Key plant photosynthetic, structural, and hydraulic traits for the three tree plant functional 

types (PFTs) used in our simulations.
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Tables and Figure Legends

Table 1 Description of climate and soil conditions used for ED-2.2-hydro simulations at the four 

study sites.

Site name Location 

(lon, lat)

MAT (oC) MAP 

(mm)

Soil Texture 

(% of sand 

and clay)*

Temporal 

coverage of in 

situ 

meteorology**

Manaus K34

(M34)

-60.21,-2.61 25.7 2673 0.2,0.68 1999-2006

Reserva Jaru

(RJA)

-61.93,-10.08 25.0 2069 0.8,0.1 1999-2002

Pé-de-Gigante

(PDG)

-47.65,-21.62 22.8 1453 0.85,0.03 2001-2003

Brasília

(BSB)

-47.71,-15.60 21.7 1344 0.13,0.53 2010-2012

*We used the best estimates of soil texture following previous ED2 simulations (Longo, 2014; 

Restrepo-Coupe et al., 2017) and we used the same soil depth of 10 meters.

** Meteorological variables necessary to drive the model include incoming shortwave and longwave 

radiation, temperature, humidity, pressure, precipitation, and wind speed
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Figure 1 Evaluation of vegetation structure in ED-2.2-hydro across four study sites along a rainfall 

gradient. (a-d) The average profile of leaf area index (LAI) within forest canopy from the Geoscience 

Laser Altimeter System (GLAS) lidar inversion (red) and model simulations (black). Red error bars 

represent standard deviation of GLAS data within the 50km grid cell around each site. The x-axis 

represents leaf area density (LAD) for each 5 meter band from 0m to 50m above ground while the y-

axis represents height of each band. Inset plots within each panel compare the total LAI from model 

and GLAS data. (e-h) Seasonality of monthly average canopy total LAI from model simulation (black) 

and observations from Moderate Resolution Imaging Spectroradiometer (MODIS, blue). Grey bars 

denote the average monthly rainfall in millimeters. Each column displays results for a study site with 

site acronym and mean annual rainfall at the top of each column. 

Figure 2 Simulated leaf hydrodynamics in ED-2.2-hydro. (a-d) vertical distribution of daily 

maximum (blue) and minimum (red) leaf water potential. We averaged cohort-level leaf water 

potential for every 5 meter height bands, using cohort leaf area index as weighting factors. (e-h) 

seasonality of average daily maximum and minimum leaf water potential for upper canopy leaves. We 

define upper canopy as the top 1kgC m-2 biomass. 

Figure 3 Contribution of leaf surface water to canopy water content (CWC) in model simulations. (a-

d) Average diurnal cycles of CWC partitioned into wood internal water (WWi, brown), leaf internal 

water (LWi, green), and leaf surface water (LWs, blue) for our four study sites. The vertical dashed 

lines represent the local bypassing time of vegetation optical depth (VOD) measurements (1:30AM 

and 1:30PM). (e-h) Variance decomposition of CWC temporal variations into the three sub-

components at both the diurnal scale (black bars) and biweekly scale (red bars). We only used the 

simulated CWC at the same time as VOD measurements (dashed lines in panels a-d) for this analysis.

Figure 4 Relationship between vegetation optical depth (VOD) and (a) simulated CWCall (canopy 

water content including leaf surface water) and (b) CWCint (canopy water content excluding leaf 

surface water). Each dot represents bi-weekly average of 1:30AM or 1:30PM values, with the colors 

indicating the different study sites, M34 (brown), RJA (red), PDG (purple), and BSB (blue). Solid 

black lines represent ordinary least square linear regression between VOD and CWC using all data 

combined while solid color lines represent regressions for each site. Regression R2 (c) and slopes (d) A
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are also shown for each site and all sites combined. We only include CWC dynamics from the top 

1kgC m-2 biomass in the simulations.

Figure 5 Isohydricity index (σ) from vegetation optical depth (VOD, a-d), canopy water content 

including leaf surface water (CWCall, e-h), canopy water content excluding leaf surface water (CWCint, 

i-l), and leaf water potential (m-p, Ψ in MPa). Each column represents results from one study site. 

Each dot represents a biweekly average of VOD, CWCall, CWCint or Ψ. CWC and Ψ values represent 

water contents and average leaf water potential of the upper canopy layers (top 1 kgC m-2). Red lines 

represent linear regression results with σ values shown on top of each panel. All regressions are 

significant.

Figure 6 Comparison of average seasonality between vegetation optical depth (VOD) and simulated 

canopy water content (CWC) across four study sites. (a-d) seasonality of 1:30AM VOD (black), 

CWCall (including leaf surface water, green), and CWCint (excluding leaf surface water, purple). To 

facilitate comparison, we normalized the seasonality by dividing the maximum seasonal values for 

each variable. (e-h) similar to a-d but for diurnal ranges calculated as (1 – X1:30PM / X1:30AM) × 100%, 

where X denotes either VOD or CWC. We calculated Pearson’s r between the average seasonality in 

VOD and the simulated CWC (with and without leaf surface water) and showed the correlation 

coefficients using the same color as the different CWC lines. Significant correlation (p < 0.05) was 

marked with *. In all panels, we only included water from the top 1 kgC m-2 biomass within the 

canopy and gray bars represent average monthly rainfall.

Figure 7 Comparison of interannual -year variability between vegetation optical depth (VOD) and 

simulated canopy water content (CWC) after removing average seasonality across four study sites. (a-

d) variability of 1:30AM VOD (black), CWCall (including leaf surface water, green), and CWCint 

(excluding leaf surface water, purple). We normalized the time series by dividing the maximum as in 

Figure 6. (e-h) similar to a-d but for diurnal ranges calculated as (1 – X1:30PM / X1:30AM)  × 100%, 

where X denotes either VOD or CWC. We calculated Pearson’s r between the average seasonality in 

VOD and the simulated CWC (with and without leaf surface water) and showed the correlation A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

coefficients using the same color as the different CWC lines. Significant correlation (p < 0.05) was 

marked with *. In all panels, we only included water from the top 1 kgC m-2 biomass. Due to high-

frequency variation in the simulated CWC, we averaged the biweekly data into bimonthly values to 

facilitate comparison.
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