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PREFACE

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California. The PIER Program strives to conduct the most promising public
interest energy research by partnering with RD&D entities, including individuals, businesses,
utilities, and public or private research institutions.

PIER funding efforts are focused on the following RD&D program areas:
e Buildings End-Use Energy Efficiency
e Energy Innovations Small Grants
e Energy-Related Environmental Research
e Energy Systems Integration
e Environmentally Preferred Advanced Generation
e Industrial/Agricultural/Water End-Use Energy Efficiency
e Renewable Energy Technologies
e Transportation

In 2003, the California Energy Commission’s PIER Program established the California Climate
Change Center to document climate change research relevant to the states. This center is a
virtual organization with core research activities at Scripps Institution of Oceanography and the
University of California, Berkeley, complemented by efforts at other research institutions.

For more information on the PIER Program, please visit the Energy Commission’s
website http://www.energy.ca.gov/research/index.html or contract the Energy Commission at
(916) 327-1551.
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ABSTRACT

This paper describes the development and analysis of over 21,000 scenarios for future
residential wildfire risk in California on a 1/8-degree latitude/longitude grid at a monthly time
step, using statistical models of wildfire activity and parameterizations of uncertainties related
to residential property losses from wildfire. This research explored interactions between
medium-high and low emissions scenarios, three global climate models, six spatially explicit
population growth scenarios derived from two growth models, and a range of values for
multiple parameters that define vulnerability of properties at risk of loss due to wildfire. These
are evaluated over two future time periods relative to a historic baseline. The study also
explored the effects of the spatial resolution used for calculating household exposure to wildfire
on changes in estimated future property losses. The goal was not to produce one single set of
authoritative future risk scenarios, but rather to understand what parameters are important for
robustly characterizing effects of climate and growth trajectories on future residential property
risks in California. Overall, by end of century, results showed that variation across development
scenarios accounts for far more variability in statewide residential wildfire risks than does
variation across climate scenarios. However, the most extreme increases in residential fire risks
result from the combination of high-growth/high-sprawl scenarios with the most extreme
climate scenarios considered here. Furthermore, this study shows that the sign of overall
statewide risk in the highest growth cases depends on key parameters describing how expected
losses vary with increasing housing value at the local level. The paper features case studies for
the Bay Area and the Sierra foothills to demonstrate that, while land use decisions can have a
profound effect on future residential wildfire risks, the effects of diverse growth and land use
strategies vary greatly around the state.

Keywords: Fire, wildfire, risk, climate, scenario, WUI, wildland-urban interface, spatial
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Section 1: Introduction
1.1 Climate Change and Residential Wildfire Risk

Wildfires in California routinely threaten people and property, destroy homes, force
evacuations, expose large populations to unhealthful air, and result in the death or injury of
some citizens and firefighters. Climate change may affect the size and frequency of wildfires in
California, and its impacts are likely to vary substantially across the state (Westerling et al.
2011a; Bowman et al. 2009; Krawchuk et al. 2009; Westerling and Bryant 2008; Westerling et al.
2006; and Lenihan et al. 2003). And while wildfire poses many hazards, its most direct impacts
on humans are fundamentally connected to how people are distributed over the landscape. In
previous work (Bryant and Westerling 2009), we considered how changes in the probability of
large fire events interact with changes in land use to affect residential property risks, drawing
on a small number of scenarios for future climate, land use, and growth. In this paper, we
expand the number of climate, land use, and growth scenarios considered, and also consider
additional uncertainties and a more sophisticated model of expected housing loss due to
wildfire, to more robustly characterize future changes in wildfire and wildfire-related
residential property risk in California. A complementary study (Hurteau et al. in preparation)
applies our results to assess changes in wildfire emissions of greenhouse gases and air
pollutants.

This paper’s primary aim is to describe how climate change and human development patterns
over California may interact to lead to differing levels of fire-caused risk to residential property,
with a greater focus on the relative impacts of different climate, population growth, and land
use scenarios, as well as parameters related to fire management. This study used climate
scenarios derived from three global climate models (GCMs) from the Intergovernmental Panel
on Climate Change (IPCC)’s Fourth Assessment forced with medium-high and low emissions
pathways (IPCC 2000, 2007). Our growth scenarios are derived from two different sets of
spatially explicit raster data sets, each describing different twenty-first century population
growth and land use scenarios. One set is based on work by Theobald (2005) and developed by
the U.S. Environmental Protection Agency (U.S. EPA 2008) as the Integrated Climate and Land
Use Scenarios (ICLUS) for the United States, and is provided at 100 meter (m) resolution. The
other set is provided at 50 m resolution and generated using the UPlan growth model,
developed for California by Thorne et al. (2012). As in Bryant and Westerling (2009), the
primary results of this study are in the form of statistics on aggregate statewide relative risk,
where the reference period is defined based on year 2000 development patterns and late
twentieth-century (1961-1990) simulated climate. This paper also presents spatial distributions
of changes in wildfire probabilities and expected losses to illustrate how these impacts can vary
throughout the state.

In the remainder of the paper, we first review some impacts of wildfires. In Section 2, we
develop our conceptual model and describe the data we have available for implementing such a
model. In Section 3, we build up a formal model for estimating changes in wildfire risk; in the
process clarifying our assumptions and how we handle the significant uncertainties inherent in



considering long-term scenarios of such risk.' Section 4 discusses the study’s primary findings,
including changes in aggregate statewide risk and also some sub-regional analysis, while
Section 5 summarizes the results and considers their policy implications.

1.2 Ecological Context of Human Interactions with Fire

While this work focuses on risks to residential property, there are many other less-obvious
impacts, both to humans and also to ecosystems, some of which are listed in Table 1. (See the
California Board of Forestry’s California Fire Plan [1996] for an extremely thorough attempt at
comprehensively assessing wildfire impacts of all sorts). This paper focuses only on quantifying
changes in direct damages to homes; therefore, when evaluating this study’s results, it is
important to remember that these impacts represent just a fraction of the total impacts from
wildfire. While monetization of many of the impacts listed in Table 1 is difficult and fraught
with uncertainty, the California Department of Forestry estimated that, for example, watershed
impacts of wildfire, in the form of soil erosion and potential required sediment removal from
water bodies, may easily average out to magnitudes on the order $100 per acre burned, possibly
even up to thousands of dollars per acres burned in some cases (California Forestry Board
1996). This translates to at least tens of millions of dollars of annual impacts from that source
alone. In addition, many of the environmental impacts have human consequences. The health
and viewshed impacts of reduced air quality are readily apparent, but there are other more
subtle and second-order effects, such as watershed impacts reducing desired fish populations
and reducing power generation ability from hydroelectric dams.

Table 1: Types of Wildfire Impacts

Direct Human Impacts Indirect Impacts

Structures burned/property value lost Watersheds-soil loss, deposits
Prevention and suppression expenditures Timber loss

Evacuation costs/lost productivity Habitat disruption

Lives lost and adverse health effects of smoke Species loss

Diminished recreational opportunities and viewsheds Non-native species invasion

Disruption to infrastructure availability

! In the interest of providing a relatively self-contained document, this paper incorporates a small amount
of text from a previous white paper by the same authors, also written for the California Energy
Commission (CEC-500-2009-048-F). These sections are primarily related to background material, while
methods have since been enhanced and all of the results are based on new modeling work.



When considering damages, it is important to acknowledge that wildfire is in principle a
natural phenomenon that serves a role in maintaining healthy ecosystems, but human presence
and action combine to make fire both a risk to humans, and also potentially a risk to
ecosystems. This is due to humans causing unnatural patterns of wildfire with intensities or
frequencies outside the range of natural variability (Dellasala et al. 2004). For example, Stephens
et al. (2007) estimate that fire suppression and land use changes reduced annual burned area in
California forests from pre-settlement levels by more than 90 percent in the twentieth century.
This long-term exclusion of wildfire may have led to increases in biomass and changes in fuel
structure in some California forests that in turn have fostered hotter, more-intense forest
wildfires that are harder to manage and may have had undesirable effects in forest ecosystems
that are not adapted to high-severity fire (Gruell 2001; Allen et al. 2002; Miller et al. 2009). For
another example, wildfire in chaparral ecosystems may not have been significantly affected by
fire suppression, but pressures from increased development and human ignitions may have
increased wildfire frequency and fostered invasion by exotic species (Keeley and Fotheringham
2003; Syphard, Radeloff et al. 2007). These changes can affect ecosystems in undesirable ways
that may or may not be proportional to the residential impacts addressed here. With the
importance of these ecological considerations in mind, we now turn to our focus on the risk of
housing destruction due to wildfires.



Section 2: Conceptual Model of Long-Range Wildfire
Risk and Available Scenario Data

Climate change impacts wildfire characteristics, as does human development on the landscape
(growth). In turn, changes in wildfire characteristics affect the risk posed to that same human
development. This section outlines these interactions at a high level, and discusses historical
and modeled data available to us for considering different futures in a more quantitative way.
The following section then formalizes these considerations into a quantitative risk model, in
which risk is framed as expected losses of residential housing units to wildfire.

2.1 Conceptual Linkages Between Growth, Fire, and Risk

On seasonal to interannual time scales, climate-fire relationships describe the response of
existing ecosystems to climate variability that affects fuel availability and flammability, with the
relative importance of each varying significantly with ecosystem characteristics (e.g., Girardin et
al. 2009; Krawchuk and Moritz 2011; Littell et al. 2009; Westerling 2010; Westerling et al. 2003).
Climatic effects that influence the availability of fine surface fuels (grasses, forbs) tend to
dominate in dry, sparsely vegetated ecosystems, while effects on flammability tend to dominate
in moister, more densely vegetated ecosystems, although there is often not a clear partition
between the two effects (Krawchuk and Moritz 2011; Littell et al. 2009; Westerling 2010;
Westerling et al. 2003). On decadal timescales, shifts in climate that affect the spatial ranges of
vegetation assemblages, and/or their productivity, have the potential to qualitatively alter fire
regime responses to shorter-term climate variability.

In this study, the statistical fire models used allow a focus on how fire in existing ecosystems
may respond to climate change, while the ecosystems themselves and their fire-climate
relationships are implicitly assumed to remain fixed (as in Westerling et al. 2011a). To the extent
that projected changes in climate and the resulting disturbance regimes may lead to qualitative
changes in ecosystem responses to climate variability, these models may exhibit potentially
significant biases, particularly for the warmest, driest scenarios toward the end of the century.

As with climatic variables, vegetation, and their attendant fire patterns, the distribution of
people over the landscape also changes with time, and impacts eventual expected losses due to
fires (fire risk). In fact, all of these changes are potentially linked to each other, though some
links are stronger than others. Furthermore, changes in one variable may increase risk through
one link while decreasing it through another. As an example of this phenomenon, development
in a given region decreases the vegetation footprint available for the ignition of wildfires, but
human presence may more than compensate by an increase in human-caused ignitions.
However, the increased presence of humans may sometimes decrease fire size in the region,
through early identification of fires and increased suppression efforts.2In general, the statistical

2 The relationships between human presence, ignitions, and fire size are quite complex. The fire history
data used here indicate that most large fires in coastal southern California are ignited by human
activities; whereas, lightning ignitions play a more important role in Northern California forests. The
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relationship between population density and the human-related “risk of fire” is some form of
inverted U (or even one having multiple maxima), being zero at zero human presence, and zero
at some saturated density (at an appropriately defined spatial scale), where everything is urban
and wildfires cannot exist (Guyette et al. 2002). However, the range of shapes possible in
between these extremes in our study area is not known, and likely highly contingent on many
other variables associated with the locality.

To capture this dynamic and others, our model of fire risk accounts for human impacts on
wildfire probabilities, and also allows for human development to act in ways that mitigate their
exposure to fire proportionally with the value at risk, where exposure describes the expected
losses entailed by the occurrence of a fire event. These relationships are shown conceptually
below (Figure 1). Global growth scenarios affect emissions that drive climate change. Local
growth scenarios, which are not necessarily coupled to global growth patterns, generate
spatially explicit population trajectories through time. As modeled by Westerling et al. (2011a),
this population distribution, together with climate change, affects wildfire occurrence and
burned area, both directly and through their joint impact on vegetation change.

However, understanding changes in wildfire risk in terms of the potential loss of homes
requires additional information beyond fire probabilities and burned areas: It requires an
estimate of how those spatially explicit fire patterns interact with spatially explicit changes in
housing across the state. Large increases in fire occurrence where there are no homes do not
increase risk of housing loss, while new growth in a fire-prone area may dramatically increase
risk even under unchanging fire behavior. Therefore, the focus of the present paper is on
transforming scenarios of spatially explicit population growth into estimates of value exposed
to loss from wildfire, and then linking those exposed value estimates to fire probabilities to
generate estimates of overall risk.

We next present the data available to us for this task. Our treatment of the data specific to
estimating fire probabilities is highly condensed, because there are many data sources (these are
summarized graphically in Figure 3, which follows the detailed model description), and their
use in generating fire probabilities and burned area has been described elsewhere, such as in
Westerling et al. (2011a).

large populations in coastal southern California and other areas of the state adjacent or easily accessible
to urban population centers may imply a saturation of potential ignition sources in many parts of the
state in recent decades (see Guyette et al. 2002). At the same time, only large fires (>200 hectares, ha) are
modeled here. The vast of majority of wildfires reported in the state are below that threshold and
excluded from analysis, while the vast majority of burned area is accounted for by the largest fires.
Climate exerts a strong influence on whether ignitions—human or natural —can spread into fires larger
than 200 ha. Consequently, the number of large fires may not be as sensitive to variability in human
ignitions as it is to other factors, including climate. More difficult issues for predicting burned area
accurately are clustering in lightning ignitions in northern California, such as in 1987 and 2008, and high
wind events that fatten the extreme tail of the fire size distribution but do not significantly affect the
number of ignitions.



Emission Scenario Growth Scenario

l |

Climate Change Population Growth

i

Vegetation change

N

Fire probabilities Exposed Houging Value

N

Risk

Figure 1: Conceptual Model of How Climate Change and Growth Affect Long-Term Fire Risk

2.2 Summary of Non-growth Scenario Data Used in the Fire
Probability Model

2.2.1 Historical Climatic, Hydrologic, and Land Surface Characteristics Data

A common set of historical climate data, including gridded maximum and minimum
temperature and precipitation and simulated hydrologic data, were assembled by the California
Climate Change Center at the Scripps Institution of Oceanography for the 2006 California
Scenarios project and the subsequent California Vulnerability and Adaptation project. Gridded
daily climate data (temperature, precipitation) derived from historical (1950-1999) station
observations were obtained online from Santa Clara University (see Maurer et al. 2002; Hamlet
and Lettenmaier 2005; http://www.engr.scu.edu/~emaurer/data.shtml). Westerling et al. (2011a)
then used these data with wind speed, topographic, and vegetation data to force the Variable
Infiltration Capacity (VIC) macroscale hydrologic model at a daily time step in full energy mode
with climatologic winds, producing hydroclimatic variables such as actual evapotranspiration,
surface temperature, and snow water equivalent (Liang et al. 1994). The VIC model solves for
water and energy balances given daily temperature, precipitation, and wind speed values as
inputs. Westerling et al. (2011a) used the Penman-Monteith equation to estimate potential
evapotranspiration (Penman 1948; Monteith 1965) and then calculated moisture deficit (potential
minus actual evapotranspiration).

For the VIC inputs, Westerling et al. (2011a) used coarse vegetation categories based on the
University of Maryland vegetation classification scheme with fractional vegetation adjustment
(Hansen et al. 2000) and topographic data on a 1/8-degree grid obtained from the North
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American Land Data Assimilation System (LDAS, see Mitchell et al. 2004; accessed online

at http://Idas.gsfc.nasa.gov/). The LDAS topographic layers are derived from the GTOPO30
Global 30 Arc Second (~1kilometer [km]) Elevation Data Set (Mitchell et al. 2004; Gesch and
Larson 1996; Verdin and Greenlee 1996). The LDAS data also provided inputs for the
(Westerling et al. 2011a) fire models used in this study, including gridded aspect and vegetation
fractions. Wind speed data for 1950-1999 were accessed online from the National Centers for
Environmental Prediction (NCEP) Reanalysis project
(http://www.esrl.noaa.gov/psd/data/reanalysis/) and used to calculate a monthly wind speed

climatology interpolated to the LDAS grid for use in the VIC hydrologic simulations. Relative
humidity and shortwave radiation values used in VIC were derived from the MT-CLIM
algorithm, version 4.2, using temperature and precipitation as inputs (see Kimball et al. 1997;
Thornton and Running 1999; Pierce and Westerling in review).

2.2.2 Projected Climate and Hydrologic Data

Cayan et al. (2009) obtained and downscaled twelve future climate scenarios for the California
Vulnerability and Adaptation project, and used temperature and precipitation from these
scenarios to force VIC hydrologic simulations, as described for the historical data above. A
subset of six of those future climate scenarios are used here, derived from three global climate
models (GCMs) (National Center for Atmospheric Research [NCAR] PCM 1, Centre National de
Recherches Météorologiques [CNRM] CM 3.0, and Geophysical Fluid Dynamics Laboratory
[GFDL] CM 2.1) from the Intergovernmental Panel on Climate Change’s (IPCC) Fourth
Assessment (AR4), forced with medium-high and low emissions pathways (the Special Report
on Emissions Scenarios SRES A2 and SRES Blscenarios). These scenarios were downscaled by
Cayan et al. (2009) using the bias-corrected constructed analogues method (Maurer et al. 2010.)

While the PCM 1 model from NCAR is an older-generation model that is not as up to date as
the others, it was included because it is an outlier among the IPCC models, with lower climate
sensitivity and smaller temperature increases over California than most other models. The
CNRM and GFDL model sensitivities span the middle of the range of temperature projections
available for California, but not the warmest scenarios that have been projected for the region.
The NCAR model used here tends to have insignificant changes in precipitation over California
by end of century, while the GFDL and CNRM models tend to project decreased precipitation
(Cayan et al. 2009). Even where precipitation does not change significantly, increased
temperatures can lead to drier fuels through increased evaporation and transpiration. Thus the
scenarios used here span the lower to intermediate range projections for warmer, mostly drier
conditions over California.

2.2.3 Fire History Data

While fire ignitions may be plentiful, most wildfires are too small to be consequential. Typically,
a small fraction of all fires generates the vast majority of the total area burned, suppression
costs, and damages (e.g., Strauss et al. 1989; Johnson 1992; Strategic Issues Panel on Fire
Suppression Costs 2004) . Documentary records of larger fires also tend to be more
comprehensive and higher quality, probably because of their greater economic and ecological
consequences, and focusing on the small subset of large fires results in data that are more
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tractable to quality assurance efforts (Westerling et al. 2006). Therefore, we restrict our analysis
to fires exceeding 200 hectares (ha) in size.3

Westerling et al. (2011a) used fire history (1980-1999) data to estimate the fire models employed
here and described in Section 3.2. Their data are an extension and update of the data sets used
in Westerling et al. (2006), with the data methodology described in the online supplementary
materials to Westerling et al. (2006). The portion of their fire history used here incorporates
documentary records from the California Department of Forestry and Fire Protection (CalFire),
county fire departments under contract with CalFire, U.S. Department of Interior agencies
(Bureau of Land Management, Bureau of Indian Affairs, National Park Service), and the U.S.
Department of Agriculture (Forest Service) to produce a comprehensive record of large fires
covering most of the state and federal protection responsibility areas in California.* These are
for wildfires that were classified as “action” or “suppression” fires, as opposed to prescribed or
natural fires used to meet vegetation management goals. These data were aggregated by month
on a 1/8-degree latitude and longitude grid, producing numbers of large fires and total area
burned in those fires by the month and grid cell in which the fires were reported to have
ignited. The fire probabilities simulated here reflect associations with historical climate and land
surface characteristics detected in these historical fire data for California.

2.3 Spatially Explicit Population Growth Scenarios

We use two sources of spatially explicit housing scenarios as inputs to several variables in our
model, and increase the richness of our explorations by considering variations derived from
each source. In both cases, the primary data source provides fine-resolution raster data, where
each raster cell holds an expected housing density and an expected population per housing
unit. We then use these data sources as inputs into the following:

e Population for the fire probability model
e Vegetation fractions used in both the fire probability model and the exposure model
e Initial vulnerable values in the exposure model

Appendices A.1 and A.2 describe our algorithmic transformations of the data to extract the
above model inputs from the raw scenario data. Here we simply describe the data sources as
they relate to our scenario modeling.

3 The arbitrary 200 ha threshold was selected for historical reasons: The Canadian Large Fire History uses
a 200 ha threshold (Stocks et al. 2002), so a consistent threshold was used to facilitate creation of a western
North American fire history. This threshold allows the creation of a comprehensive data set that captures
most of the burned area in the region, and meets statistical requirements for selecting a threshold value
for estimating generalized Pareto distributions (Holmes et al. 2008).

4 Local responsibility areas (LRAs) were excluded. LRAs are mostly urban and agricultural areas that
account for most of the population of the state, but very few of its large wildfires.



2.3.1 Integrated Climate and Land Use Scenarios

The Integrated Climate and Land Use Scenarios (ICLUS) were developed to create thematically
consistent land-use scenarios at high resolution across the United States (U.S. EPA 2008). They
link country-level population growth assumptions with the Spatially Explicit Regional Growth
Model (SERGoM) developed by Theobald (2005) to generate housing density projections at the
100 meter (m) level through the end of the twenty-first century. The ICLUS scenarios used for
this study provide three different growth trajectories, originally intended to correspond with
the SRES scenarios: A2 referred to a higher growth scenario relative to a base case (with a
higher population growth and higher population per housing unit), and B1 referred to a lower
growth population scenario. Because there need not be a strict correlation between the growth
path of California and the global population storyline driving global climate, we vary these
scenarios independently, and henceforth refer to ICLUS B1, base-case, and A2 scenarios as
“low” “mid” and “high” to avoid confusion with the climate-specific scenarios, which we still
refer to by their SRES labels of B1 and A2.

These projections were provided on a 100 m raster (where each cell is a “tract” as described in
Section 3.1, and in contrast with the much larger 1/8 degree “grid cell”). Because of the
sensitivity of our model to the density of tracts, and in turn the sensitivity of the density to the
scale at which density is defined,> we also aggregate the ICLUS data to higher levels—to cells
with 200 m, 400 m, and 800 m sides—and perform our loss calculations for each case.

2.3.2 UPlan Growth Scenarios for California

The UPlan scenarios were developed specifically for California by Thorne et al. (2012) and offer
a set of projections for how new growth is distributed spatially throughout California in the
year 2050, with the same amount of population growth in each scenario. They have numerous
strengths relative to ICLUS, but also possess some key drawbacks specific to modeling fire risk.
Like ICLUS, they offer three growth scenarios,é though unlike ICLUS they are not explicitly or
conceptually tied to the SRES scenarios. One scenario is a business-as-usual case (“bau”),
another refers to smart growth (“smart”), and another is premised on reducing development in
areas assigned moderate or higher fire hazard severity ratings by CalFire (“fire”). It should be
noted, however, that the fire hazard severity ratings are rather distinct from the risk measures
generated here in that they account for fuel characteristics directly and are generally provided
at a far finer spatial scale. Different hazard zones vary down to a minimum of 20 acres in size
for urban areas and 200 acres for wildland areas. By contrast, one grid cell in our model is on

5 As an example to illustrate the importance of spatial scale, consider an urban threshold of 10 households
per hectare, and a 200 m x 200 m cell, which is subdivided into four 100 m x 100 m cells. If three of the
100 m-scale cells contain nine households and one cell contains 17, one arrives at very different outcomes
dependent on the spatial scale: Using the 100 m spatial scale, three cells would be vulnerable and one
would be considered urban; whereas, at the 200 m scale the average density would be 11, and therefore
all 4 hectares would be considered urban.

¢ The study used scenarios and related spatial data made available in mid-2011. Additional scenarios
have since been developed, as described in Thorne et al. (2012).



the order of 30,000 acres. These discrepancies may contribute to some of the non-intuitive
results that are seen when comparing UPlan scenarios later on.

The UPlan data has a finer spatial resolution (50 m) compared to ICLUS, but the drawback of a
coarser-density resolution, allowing new growth to occur in only a small number of discrete
density classes (such as one housing unit per acre, five housing units per acre, and so on).
Unlike the version of ICLUS we rely on, UPlan also has the advantage of explicitly projecting
the future footprint of commercial and industrial growth and also allotting all new growth
based on attractors that include actual county zoning plans. Unfortunately, while UPlan may
better represent the processes of future growth, the drawback is that it does not rely on any
explicit representation of the base year housing distribution, beyond assuming an urban mask
in which new growth does not occur. This creates challenges when attempting to make valid
risk estimates relative to a base year, which is addressed in Section 3.7.
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Section 3: Formalizing and Implementing the
Residential Wildfire Risk Model

This section establishes an expected loss framework of wildfire risk that ties together fire
probabilities and expected losses contingent on fire events. We first briefly describe the
statistical model used to arrive at spatially explicit fire probabilities. We then focus in great
detail on how the study addressed the challenges of modeling expected losses when the joint
spatial distribution of housing development and vegetation landscape cannot be predicted with
any meaningful certainty at the fine spatial scales of our growth data.. We then discuss and
illuminate the many cross-linkages between climate, growth, fire, and exposure to wildfire risk,
and exactly how our model links many data sources and intermediate data products to produce
our ultimate risk estimates. Lastly, discusses how we created the computational experimental
design that specified our many thousands of scenarios.

3.1 A Nested Model of Residential Wildfire Risk

We focus first on the overall model of expected losses due to wildfire within a grid cell R, which
is composed of tracts of equal area that together partition R.” In this modeling effort, the region
Ris a 1/8 degree grid cell mentioned above, and each tract is a raster cell as provided by either
ICLUS or UPlan scenarios. Each region R is therefore approximately a rectangle with sides of
10-14 kilometers, and each tract is a square with sides between 50 and 400 meters (depending
on the data source and parameter settings). Each tract 7; (i € 1..N;) contains some value V;,
where value may be defined as monetary value, or, with increasing coarseness, the number of
housing units or structures. Our analysis assumes that value is described by number of housing
units, since that is how our growth scenario data was provided. To avoid spurious reliance on
the very fine-grained detail provided by the growth scenarios, the study does not assume exact
knowledge of the spatial distribution of housing units within the each cell, but instead uses that
detailed information to create frequency distributions of tract values for each grid cell.

Following prior work (Westerling et al. 2011a and 2011b; Preisler et al. 2011; Westerling and
Bryant 2008; and Preisler and Westerling 2007), we model a grid cell R as having a time-varying
probability P(F) of large fire occurrence, assumed to be a function fp (POP,VEG, C) of the
population within the region (POP), fraction of the region that is vegetated (VEG), and other
variables C, such as hydroclimate and diverse land surface characteristics. (Each of these sets of
variables includes time-varying elements, but for notational simplicity we do not include time
subscripts.) Any specific fire is associated with a perimeter that encompasses some subset of the
tracts within R. And while the spatially explicit distribution of fire events is difficult to estimate,
each tract can be considered to have some baseline probability of being encompassed by fire,

7 The equal area assumption is not necessary to implement our approach, but essentially holds true for
our raster-based growth scenario data and simplifies presentation and implementation of the method.
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conditional on a fire event within the region.® We denote this P(7; € 7¢|F), where 7 denotes the
set of tracts encompassed by a fire. Then, by breaking out conditional probabilities, we can
express the total expected loss within R as:

E(LOSS) = fp(POP,VEG,C) X 21iv=T1 [P(t; € Tp|F) X (L(V))|7; € T5)] (1)

This says that the expected loss in R is the probability of a fire within R multiplied by the sum of
expected losses in each tract, given that there is a fire in R. The expected loss in each tract is
similarly decomposed into the probability of that tract falling within a fire perimeter and the
expected loss L(V;) contingent on a tract falling within a fire perimeter. We refer to this
approach as nested because it identifies expected losses within each region by considering
expected losses within each tract, contingent on a fire event. While “grid cell level conditional
expected losses” would perhaps be the most accurate term to describe this latter concept, we
refer to the right half of Equation 1 as “exposure” or “exposed value.” It is slightly at odds with
some other definitions of exposure, but consistent with the idea that exposed value is what will
be lost in the event of the main hazard (wildfire in the region) coming to pass.

While theoretically consistent, we do not necessarily have historical or modeled data to support
the identification of every element of the above equation. The next section discusses each
component of the above equation and the strategies used to estimate changes in risk while
accounting for the uncertainty and data limitations.

3.2 Fire Probability Model

This study used Westerling et al.’s (2011a) logistic regression models and data (summarized in
Sections 2.2.1-2.2.3) to estimate monthly probabilities of fires in state and federal protection
responsibility areas in California that exceed 200 ha and 8500 ha occurring in a region R. These
probabilities are described as functions of climate, simulated hydrology, land surface
characteristics, population, and growth footprint; and R is a cell on a 1/8 degree
latitude/longitude grid (see also Preisler et al. 2004). Area burned in these fires is estimated
using generalized Pareto distributions (GPDs) fit to fires between 200 ha to 8500 ha and to fires
> 8500 ha, assuming that the fire size distributions are stationary over time and space. Monthly
estimates produced are then averaged over time periods 1961-1990, 2035-2064, and 2070-2099
to produce expected annual fires and expected annual areas burned for each region within
those periods.

8 While somewhat cumbersome, we generally use the terminology of a tract “falling within a fire
perimeter” rather than the far shorter “burning.” This is in recognition of the fact that modern fire
protection approaches mean that sometimes housing structures may be encompassed within a fire
perimeter but not actually burn, due to the successful creation of defensible space and appropriate
construction techniques, among other factors. Our terminology is therefore a conceptual distinction and
also one that is formally represented in our model.
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Formally, the probability of a fire greater than 200 ha occurring in region R for a given month,
denoted P(F), is estimated using a logistic regression model of the form:

Logit(P(F)) = log(P/(1-P))
= B X[1 + D30 + D01 + D02 + PCP + @)
G(D30,AET30) x (1 + TMP + CDO) +
G(TMP) + G(RH) + G(POP) x (1 + D30) + G(VEG) + FRA]

where:

p is a vector of parameters estimated from the data,

G( ¢) are matrices describing semi-parametric smooth transformations of the data as
described in Preisler and Westerling (2007),

G(D30,AET30) is a thin-plate spine that estimates a spatial surface as a function of
30-year average cumulative Oct.-Sep. moisture deficit (D30) and actual evapotranspiration
(AET30) (Preisler and Westerling 2007; Preisler et al. 2011; we relied on modules for fitting thin-
plate splines within R provided by the Geophysical Statistical Project
(http://www.cgd.ucar.edu/stats/Software/Fields) that serves as a proxy for coarse vegetation
characteristics (Westerling et al. 2011a online supplement),

D01 and D02 are the 1- and 2-year leading cumulative Oct.—Sep. moisture deficit,

CDO is the cumulative Oct.—current month moisture deficit,

PCP is the 2-month cumulative precipitation through the current month,

G(TMP) is the second-order polynomial transformation of monthly average surface air
temperature,

G(RH) is the second-order polynomial transformation of RH = log((x+.002)/(1-x+.002)),
where x is monthly average relative humidity,

G(VEG) is a degree 3 basis spline transformation of VEG = log((x+.002)/(1-x+.002)), where
x is the vegetation fraction,

G(POP) is the second-order polynomial transformation of total population,

and FRA is log((x+.002)/(1-x+.002)) where x is federal protection responsibility area as a
fraction of total area,

The expected area burned, given that a fire greater than 200 ha occurs, is:

E(A(F)) = E(A(F) | A(F) <8500)) + P(FI A(F)>8500) * E(A(F) | A(F)>8500))

where E(A(F) | A(F) <8500)) is the expected area burned by fires in the range of 200 to
8,500 ha, conditional on a fire greater than 200 ha occurring in the grid cell. This area is
estimated from a truncated GPD fit to historical fires observed in California. Similarly,

E(A(F) | A(F)>8500)) is the expected area burned given that at least 8500 ha burned, and
P(FIA(F)>8500) is derived from the logistic regression:

Logit(P(F)| A(F)>8500)) = B x [1+ RH + Aspect + USFS]

where Aspect is the north/south component of aspect computed as cos(mt/2+aspect*t/180)

and USFS is log((x+.002)/(1-x+.002)) where x is U.S. Forest Service protection
responsibility area as a fraction of total area.
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Because the GPD models are assumed to be stationary, E(A(F)| A(F)<8500)) and

E(A(F) 1 A(F)>8500)) are constants. Climate affects expected area burned through its effects on
P(F) and P(F| A(F)>8500), which then determine area burned linearly. Similarly, changes in
population affect estimates of P(F) directly, as well as indirectly through the effects of
population growth and its spatial footprint on the vegetation fraction, VEG (see Appendix A.2).

As described in Westerling et al. (2011a), future fire probabilities are produced by feeding to the
statistical models described above the temperature and precipitation values from downscaled
GCM outputs, as well as variables derived from VIC hydrologic simulations forced by
downscaled GCM outputs. The methodology used here projects fire-vegetation-climate
interactions of present day ecosystems as they are currently managed onto simulated future
climates.

3.3 Conditional Probability of Tract Falling Within a Fire Perimeter

Issues of scale and data availability present a significant challenge when it comes to estimating
the probability of a given tract being encompassed by fire (the P(r; € t¢|F) of Equation 1). In
reality, this probability is influenced by many factors, such as the location of the tract with
respect to vegetation in the region, the location of the tract with respect to boundaries that fire
cannot cross, and also induced protective efforts due to value within the tract. While such
factors can be somewhat precisely identified or estimated for near-term risk assessments, we
cannot possibly know these relationships for multitudes of tracts decades into the future;
therefore, we attempt to bound the impact of such uncertainty.

The basic strategy is to decompose the probability of a given tract falling within a fire perimeter
into three components that we can better estimate, confidently bound, or identify as irrelevant.
These are:

* Py(1; € Tp|T; € Typg), the baseline probability a generic vegetated tract will fall within a
wildfire perimeter under the assumption that there is nothing of high value to induce
greater protection of that tract,

¢ s(V;), a scaling adjustment to the above probability, to account for value-induced
protective efforts that reduce the probability that a given tract will burn, and

* P(7; € typg), the probability that a given tract (with associated value V;) is vegetated and
therefore has a nonzero probability of being encompassed by a wildfire.

Note that we have dropped the conditionality on F for convenience, as all equations for the
remainder of this section assume a fire event.

Using the above expressions, the probability of a tract burning can be decomposed as follows:

P(t; € Tp) = Py(1; € 1p|T; € Type) X s(V}) X P(T; € Tygg) 3)
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Note also that the above equation makes the assumption that non-vegetated tracts are not at
risk for loss due to wildfire, i.e., Py(t; € Tx|7; £ Tygs) = 0. In reality, homes near the boundary of
vegetated areas may be at risk due to firebrands, house-to-house spread, and ignition from
direct heat (Cohen 2008). With access to highly reliable fine-scale predictions for both housing
development and vegetation patterns, one could utilize such data to include structures lying
within some distance of urban/vegetation boundaries as vulnerable. We unfortunately cannot
rely on such data due to the long-term nature of our scenario investigation. Instead, we consider
multiple definitions for defining vegetated and urban areas that attempt to bound the value in
tracts truly at risk. These are discussed next.

3.3.1 Baseline Probability of Vegetated Area Burning

We assume that, prior to adjusting for the existence of valuable structures on a tract, there is a
common baseline probability that a given vegetated tract will fall within a wildfire perimeter
during a large fire event: Py (7; € 1¢|t; € Typs). That is, given a fire that starts in a hypothetical
region covered with some vegetated tracts and some non-vegetated tracts, all of which have no
housing value, what is the probability that any given vegetated tract will fall within the fire
perimeter? Rather than attempt to estimate this probability, we make the assumption that it
stays constant across time and scenarios, and that it therefore becomes irrelevant when
considering relative risk across time periods and scenarios. This is one of two elements of our
model that we do not explicitly bound or estimate, as it is both challenging to do, and also
unnecessary in order to arrive at relative risk estimates.

However, we emphasize that this assumption is not as strong as it may appear. First, it only
applies to the baseline probability assuming all else is equal, and is adjusted later based on
exposure at the tract level (discussed in Section 3.3.2) —thus it is not the case that we assume all
tracts have equal likelihood of falling within a fire perimeter.® Second, expected housing losses
are driven by the structures in the tract, rather than simply by the number of tracts burned
(though area burned is more strongly associated with other impacts of interest, and is given
more focus in Westerling et al. 2011a). The variations in our scenarios for mapping exposed
structures (in Section 3.3.3) should far outweigh any error or bias introduced by assuming
constant baseline probabilities.

We did investigate a possible avenue for relaxing the assumption that Py (t; € F|1; € Tygg) stays
constant over time and scenarios, which is to assume as a limiting case that the probability of a
vegetated tract burning in a fire event is directly proportional to the expected size of a fire
relative to the vegetated area. Mathematically, this would assume that:

. (E(A(F)
Py(t; € T¢|T; € Tygg) = min (m, 1), 4)

9 Formally, this assumption may be considered equivalent to the assumption of a uniform prior
distribution in the Bayesian sense.
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where A(. )denotes area of the fire or vegetated area. While perhaps valid for small
perturbations around large vegetated areas, this method drastically exaggerates the impact of
reducing vegetated area in future periods, and does so in a way that is discordant with the
theory behind how the fire probability model is estimated.

3.3.2 Value-Based Probability Scaling

We assume that, all else equal, the more housing units there are within a tract of given area, the
less likely it is to succumb to wildfire. This is partly due to the physical characteristics of fire
spread, but also due to the induced protection: Firefighters and managers of wildfire risk may
be more likely to direct effort to protecting clusters of many homes; whereas, fewer resources
may be directed to protecting a lone, difficult-to-access cabin amid many acres of trees. In the
limit, large, densely developed areas of land are physically incapable of supporting wildfires
and are deemed urban. Together, these dynamics suggest that, at some sufficient level of
statistical averaging, the probability that a tract falls within a fire perimeter (P(t; € 7)) should
be reasonably modeled as decreasing monotonically as V; increases, until the tract reaches some
threshold density value (which we label the wildland-urban interface [WUI]/urban threshold),
beyond which it is equal to zero. We also treat the WUI/urban threshold as the threshold
beyond which a tract cannot be considered vegetated.! (Vegetation allocation is discussed in
Section 3.6).

To capture the dynamics described above, we further adjust the probability of a tract being
within a fire perimeter by a scaling function s(V;, D, k, @), where D, k, and a are parameters. (We
sometimes omit the parameters for convenient when referencing s(Vi)). Here D is the
WUI/urban density threshold introduced above, « is the area or resolution over which value is
considered when evaluating density, and k is a dimensionless shape parameter that controls the
concavity of the function as V;/a varies between 0 and D. While many functions could
potentially capture the qualitative relationship, we use the following scaling function for s:

( N 3T
1- ;/ D if <D
s(Vi,D, k,a) = a ©®)
0 otherwise

10 We recognize that these two concepts are not necessarily captured by the same exact density, and we
also recognize that the assumption that a density alone can be used to define a threshold between urban
WUI does not account for different WUI classifications such as intermix and interface. However, we
believe that by exploring significant variation in both the density threshold and the spatial scale at which
density is evaluated, we capture the range of impacts that a more detailed (and infeasible) treatment of the
WUI might yield.
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High values of k lead to overall greater exposure (as we define it), in that a rise in value within a
tract does not significantly reduce the likelihood of that tract burning until that value nears the
WUI/urban threshold, while low values of k (below one) imply that even a little value within
the tract induces significant protection efforts.!

Figure 2 illustrates some possible shapes captured in this framework. The location where the
curves meet the X-axis is determined by D (with two different thresholds shown at the two
vertical red lines), while their curvature is determined by k. Curves 1 (D = 147 households per
square kilometer [HH/km?], k =.333) and 2 (D = 147 HH/km?, k=3) represent cases in which only
relatively low-density tracts are considered vulnerable to wildfire, and 3 (D = 1000 HH/km?, k =
1) and 4 (D = 1000 HH/km?, k=3) correspond to an assumption that tracts remain vulnerable up
to a higher density (the densities shown are the values applied to the ICLUS data set). All else
equal, an assumption that Curve 1 best described how probability of tracts burning is reduced
as density increases would lead to the lowest expected losses, while Curve 4 would lead to the
highest expected losses, since it considers a wider range of densities as vulnerable to wildfire,
and value within the vulnerable range is not appreciably scaled down until very close to the
high-density threshold.

If we let s(V;, D, k, @) range from zero to unity, then it can only decrease the likelihood of tracts
burning. However, we do not have sufficient empirical knowledge to say whether a value-
induced reduction in probability on a given tract lowers the probability of only that tract falling
within the fire perimeter, or whether it lowers it in part by increasing the probability that other
tracts will succumb to wildfire instead. One might imagine that in circumstances where fire-
fighting resources are constrained, protecting certain tracts may leave other low-value tracts
more vulnerable than they were otherwise, and so the total number of tracts encompassed by
fire does not diminish significantly. Therefore we explore both possibilities by considering the
full reduction case in which the output of s(V;, D, k, a) ranges between zero and unity, but we
also consider a case in which the total probability of tracts burning is fully conserved within the
region R. In this case s(V;, D, k, @) is used to identify initial weights on probabilities within [0,1],
which are then normalized to sum to the total number of vegetated tracts. Specifically, under
the assumption of normalization, we scale by § instead of s, as follows:

Nyegs(Vi,D,k,a)

S(Vi,D,k,a) = Sieryge SViDka)

(6)

11 For reasons of numerical convenience related to ensuring consistency between urban, vegetated, and
vulnerable tracts, we consider scaling values for V;/a < D to be bounded from below at a small positive
value (10%), while values strictly above the threshold receive a scaling value of zero.
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Figure 2: Different plausible relationships for how tract density influences the likelihood of a tract

falling within a fire perimeter, as captured by the scaling function s(V, D, k, a). The x-intercept is

defined by D (located at the two vertical red lines in this plot), while curvature is described by the
shape parameter k.

Later, when discussing the set of model runs we perform, we refer to whether or not we are
assuming “protection normalization,” which refers to whether we are using s or §. When
protection normalization is not assumed, the probability of a tract burning always goes down
with increasing tract density, though the overall expected loss within the region may or may not
go down depending on the value of the concavity parameter k. When protection normalization
is assumed, the probability of any given tract burning will go up if other tracts in the region
gain housing units.

While each aspect of the scaling function (D, k, «, and whether to normalize) represents an
uncertainty, changes in these parameters may be thought of as manifestations of fire
management policies. For example, currently there exists some (possibly regionally distinct)
best values for each parameter. Whatever those may be, lowering the WUI/urban threshold D or
decreasing expected losses within the vulnerable density range by decreasing the concavity
parameter k would correspond to increased fire exclusion in areas below the current density.
Such an exclusion might be achieved by suppression resources or vegetaton management or fire
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prevention activities. If it is the case that fire policy today is better described by the protection
normalization feature, moving the the strict-reduction case could (perhaps) be achieved by
increased fire suppression resources, since protection normalization is based on the assumption
that those resources are simultaneously effective and constrained. However, as we will
emphasize later, the discussion in this subsection is about likelihood of tracts falling in a fire
perimeter, and not the losses that occur when a tract does fall within a perimeter —an equally
important factor.

When performing our set of model runs, we run all our ICLUS cases using a low value of D
(147 HH/km?) and a high value of D (1000 HH/km?) in an attempt to bound the possible range
of this variable. For ICLUS, these bounds derive from the the bounds of the “suburban” density
range used in ICLUS: Higher than 1000 HH/km? is deemed “urban,” while lower than

147 HH/km? is deemed “exurban.” The lower threshold that we use UPlan for falls halfway
between the R1 and R5 residential classes in UPlan (one and five housing units per acre,
respectively), and is therefore equivalent to 741 in HH/km? and second is 10 percent above R5
(equivalent to 1359 HH/km?). We consider this upper threshold to be somewhat unrealistically
high (approximately 35 percent above our ICLUS high threshold), but chose it based on a desire
to encompass most plausible outcomes, which would not be accomplished using the ICLUS
thresholds due to the interaction of two particular features of the UPlan data: One is its coarsely
spaced discrete density classes, and the other is that UPlan results show approximately

90 percent of new growth in all scenarios occurs at or above R5. Using all thresholds below R5
(which we explored) would convey artificially low sensitivity, while using thresholds above R5
will overestimate it somewhat, and since our emphasis is more on bounding, we chose to use
the higher threshold. It is also worth noting that higher thresholds may be more appropriate
when using smaller tracts. If density is evaluated at, say, the individual plot level, a single
house may have extremely high density, but if amid other densely spaced houses, would
certainly remain susceptible to being encompassed by wildfire.

3.3.3 Scenarios to Vary Exposure Within Grid Cells

Here we are interested in identifying P(7; € ty5), the probability that a given tract (and its
associated housing) lies within a vegetated area. While Py (7; € T¢|1; € Tygs) and s(V;) describe
probabilities contingent on how value (number of housing units) is distributed within a
vegetated area, this element focuses on the distribution of tracts among vegetated areas. For our
long-term scenarios, we know only the distribution of tract values within the region, R, along
with the fractions taken up by various land uses. Therefore, to bound the changes in exposure,
we would like to consider different scenarios for how housing values in the vulnerable density
range are distributed over the vegetated area. This essentially involves specifying the joint
distribution of V; and vegetation status within the grid cell. In some sense, this may be
considered equivalent to mapping the wildland-urban interface, though at an abstract level,
since we do not consider actual geographic relationships within the grid cell. This is a
simplification of the multifaced wildland-urban interface concept, which describes in general
how development at the urban fringe transitions to wildlands, including the spatial
relationships between vegetation and housing (Radeloff et al. 2005).
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For near-term fire-planning efforts in small areas, this is actually a distribution that can be
estimated by linking land cover data with geographic information on the location of housing
structures. For our long-term scenario-based work, we do not attempt to actually estimate this
relationship, but instead bound it by considering different cases for the prevalence of vulnerable
tracts within the vegetated area of the region.

As discussed in Section 3.3, we assume that only vegetated tracts can support wildfires.
Housing in the middle of an urban area or desert or amid cropland are not threatened by large
wildfires of the sort modeled here. Vegetated tracts may still have housing structures on them,
but not above a the WUI/urban density threshold D, otherwise the tract would be considered
urban rather than vegetated. Therefore, we refer to tracts in this density range as “potentially
exposed.” Potentially exposed tracts are deemed actually exposed (i.e., at risk for loss due to
wildfire) if they are on vegetated land, while those located on bare land are excluded, as are
tracts with densities above the WUI/urban density threshold .

In this modeling effort, we have a set of tract values V; within each region, and we know the
total number of vegetated tracts (Ny ;) within each region, in additional to total number of
urban, nonvegetated, and water tracts. However, we do not know how the tract values map to
vegetation status of each tract, which will significantly affect the expected value lost in a fire
event. Therefore, to explore the range of possible expected losses that could arise depending on
how value is distributed across vegetated and non-vegetated tracts, we consider three limiting
distributions for the relationship between tract values and vegetated areas, which we frame in
terms of the exposed value contained in the WUI. (Technically, these schemes allocate growth in
all vegetated areas, but most exposed value lies within the WUI, so we use WUI as a shorthand
and a conceptual focus when describing our exposure scenarios.)

* High-exposure WUI. Of potentially exposed tracts (i.e., those that are not so dense as to
be considered urban), we assign those with the highest probability-adjusted values (that
is, the highest values of s(V;) x L(V;) to the vegetated area). If there are more potentially
exposed tracts than vegetated tracts, the first Ny highest value tracts among all
potentially exposed tracts are assigned to the vegetated area, with the remainder
assigned to bare or agricultural land and considered not at risk to wildfire loss. If there
are fewer potentially exposed tracts than vegetated tracts, all potentially exposed tracts
are assumed vulnerable. If we let 75 be the set of the first Ny tracts with the highest
probability-adjusted loss potential (i.e., s(V;) X L(V;), then in this scenario we can
formally express our probability rules as follows:

1 ift; ety

P(7; € tygg) = {0 otherwise

@)

¢ Low-exposure WUL This is simply the reverse of the above: Of potentially exposed
tracts, we assign the those with the highest probability-adjusted loss values to bare areas
first. If there are sufficient bare tracts in a region to hold all potentially exposed tracts,
then there is no risk of housing loss in this scenario and in that region R; otherwise the
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vegetated region is assigned the lower-valued tracts. If we let 7, be the set of the first
Nygg tracts with the lowest probability-adjusted loss potential, then in this scenario we
can formally express our probability rules as follows:

1 lf (Ti € TL)
0 otherwise

P(t; € Tyge) = | ()

¢ Neutral WUL In this case, we consider the chance of a tract falling within the vegetated
area of R to be independent of the value in the tract. Specifically, it is “neutral” in the
sense that there is no bias for development in or outside vegetated areas, but instead we
assume that the likelihood of being within a vegetated area is simply equal to the
fraction of open land taken up by vegetated area: Ny /Nopgy, Where Nopgy is the
number of non-urban and non-water areas. Therefore, every potentially exposed tract is
considered vulnerable with a fractional expectation, rather than some tracts being
completely safe and some being completely vulnerable. Formally:

NveGc
fv, D
P(t; € Typg) = {NOPEN ifVi/a <
0 otherwise

The first two schemes respectively maximize and minimize the value that will be lost in the
event of a fire within the WUI, by adjusting what tract values are assumed to lie within
vegetated areas. The third, neutral, scheme provides a middle case that assumes each tract and
its value Vi has an equal chance of being within a vegetated area, and therefore an equal chance
of being encompassed by a wildfire perimeter. Our model runs include each of these three
WUI-exposure cases for every other parameter combination considered.

3.4 Loss Conditional on Tract in Fire Perimeter

The expected damages contingent on a tract falling within a fire perimeter are a function of the
value on that land, decreased by some scalar that captures protection efforts at the micro-level:
Factors such as defensible space, construction material, ratio of land value to improved value,
and others—it is not necessarily the case that a structure falling within the perimeter of a large
fire is destroyed. In our present model considering long-term scenarios, this scalar is assumed
to be some constant parameter so that L(V;): = AV;. In principle A could be tract-specific and
time-specific, but for this analysis we assume it is constant statewide, in which case it falls out in
our relative risk calculations (described later). As noted earlier, for value units V we use number
of housing units, though a more sophisticated future analysis may attempt predicting monetary
housing values based on projections from the present day combined with regional
characteristics. However, at present such detail is unlikely to contribute much useful
information for a scenario exercise with the timescale we are considering. Additionally, A does
not act in some complicated fashion and instead merely scales expected losses directly, so the
value gained by incorporating variations in A into our scenarios is minimal.
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3.5 Calculation of Aggregate Relative Risk

The output of our model lies at the end of a cascading chain of uncertainty, and we do not
consider our results to be predictions, but rather view this work as exploring the implications of
different plausible assumptions about how long-term fire risk is best described. However, we
can still take steps to reduce error and increase the validity of our findings by careful
consideration of our output measures. In particular, to the extent that our individual model
results can be considered a statistical product, we can reduce variance of our results by
considering aggregate relative risk at larger spatial scales, rather than placing great stock in the
absolute outcomes within individual grid cells. Aggregating to larger geographic areas
(specifically, the whole state) helps reduce the effects of variance among individual grid cells,
because the impact of random error will be reduced relative to our outcomes of interest. To the
extent that any systematic bias in our model scales with the magnitude of impacts, the ratio of
future losses to present losses evaluated under common assumptions will be a more reliable
outcome measure. Most of our results are therefore presented as aggregate statewide relative
risk, using common assumptions except where explicitly stated. Specifically, for each
combination of scenarios and model uncertainties, we assess the sum of grid cell-level expected
losses according to the following formula:

_ ZjE(LOSS)]'T

RRr = ¥ E(LOSS) jo

(10)

where RR is relative risk, j indexes over grid cells within the state, T references two future time
periods (30 years centered around 2050 and around 2085), and E(LOSS) is defined as in
Equation 1. The base period in the denominator references losses simulated for 1961-1990 using
climate simulated for 1961-1990 and estimated year 2000 population and vegetation fractions.

While aggregation can be useful, identifying the most appropriate spatial scale to use is actually
not a trivial issue, because aggregation is not always better—in particular, it allows the most
heavily weighted areas to mask what may be legitimate subregional effects. Therefore we
consider maps that show grid cell spatial patterns, and we show statewide aggregates. We also
added some summary statistics for UPlan performance aggregated for the Bay Area and Sierra
foothills as an intermediate level.

3.6 Growth Patterns as Multi-faceted Driver of Fire Probabilities and
Exposure

A unique contribution of our model is that fire probabilities and exposure are explicitly linked
contingent on different development patterns throughout the state. Specifically, as mentioned in
Section 3.2, population and the fraction of vegetated area within a given region is a significant
predictor of wildfire probability. Of course, as development takes place across a landscape, the
amount of vegetated area will change depending on the development pattern— as dense
development occurs in previously vegetated areas, those areas will no longer be considered
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vegetated or susceptible to wildfire. On the other hand, sparse development amid vegetated
areas may not appreciably diminish the vegetated fraction of a region, but instead puts large
amounts of housing at risk.

In our model, residential housing growth affects wildfire housing risk in multiple ways. First,
new housing growth above the WUI/urban threshold density (D) is assumed to reduce the
vegetated area if that growth occurs on a vegetated land. Therefore, under different growth
scenarios of where high density growth occurs, vegetation may be more or less reduced.
Second, as mentioned above, values above D are assumed not to be at risk for loss due to
wildfire, which means that even without altering vegetated area, different values will be
exposed to loss depending on different density distributions. Third, in protection normalization
cases (Equation 6), the vegetated fraction factors into §.

Thus the fire probabilities themselves are a function of the spatial distribution of new growth
(and its density), and the value that may be lost depends on how densely it is distributed over
the landscape. Figure 3 summarizes all the dependencies in the model, along with the data
sources and algorithmic procedures. The algorithmic details of these linkages are described
above, and in the appendices describing how we process the growth scenario inputs.

One aspect of Figure 3 that we have not paid much attention to is the vegetation allocation
algorithm, which is also described in previous work (Westerling et al. 2011a; Bryant and
Westerling 2009]), with an edited version reproduced in Appendix A.2 here. The key feature of
the algorithm is that, because we do not know where dense development (development above
the WUI/urban threshold) will be placed within a grid cell relative to vegetation in the grid cell,
we again consider three bounding scenarios:

e All new growth above the WUI/urban threshold (high-density growth) is placed in
existing vegetated areas, thereby reducing the vegetation footprint (dubbed the “min”
scenario because it minimizes vegetation)

e Allnew high-density growth is preferentially allocated to non-vegetated areas (the
“max” scenario)

e All new high-density growth is assigned to vegetated area in accordance with what
fraction of available land is vegetated (the “neutral” scenario)

These scenarios share conceptual similarity with the WUI exposure scenarios of Section 3.3.3,
except that those focus on value below the WUI/urban density threshold, and these focus on the
value above it.
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Figure 3: The implementation and detailed dependencies of the conceptual model in Figure 2. With the exception of initial UPlan and

ICLUS data, all data sources and final outputs are at the level of the 1/8 degree grid cell, with the final product aggregated to the state
level for most of our results. Grey boxes indicate external data products used as inputs, rounded boxes are functions or algorithms,
rectangles are data products we produced, and rectangles with diagonal corners indicate parameters or scenario input we developed.
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3.7 Integrating UPlan and ICLUS Data Sets for Scenario Runs

There are two related issues for the UPlan outputs that prohibit us from performing model runs
that rely exclusively on UPlan data for our modeling inputs. The first, mentioned above, is that
UPlan does not begin with or require a spatially explicit housing density map for the base year
(2000). Rather, it utilizes a “pre-existing urban” layer that does not resolve residential density
classes in developed areas, nor distinguish them from commercial and industrial land use.
Rather, it assesses only whether each tract was deemed “urban” according to the criteria used
by National Land Cover Database (NLCD: http://www.mrlc.gov/nlcd2001.php) or the
California Augmented Multisource Landuse (CAML) map (http://cain.ice.ucdavis.edu/caml).
The second issue is that all population in the base year is assumed to exist within this urban
mask, which is problematic for wildfire risk analysis because both wildfire probabilities and
wildfire-contingent damages are heavily influenced by the characteristics and population
within the wildland-urban interface. This implies that without supplemental information, we
cannot develop spatially explicit population estimates to drive the statistical model of wildfires.
Furthermore, because our model assumes that housing within urban areas is not at risk for loss
due to wildfire, relying only on the UPlan data would lead to zero risk for the base year.
Essentially, UPlan’s assumptions are incompatible with our assumptions for modeling fire risk
in the base year. To handle this, we use the ICLUS year 2000 data, with the value at risk in the
base year lying only where ICLUS has densities below the WUI/urban threshold D, and not
masked out by the UPlan pre-existing urban map.

Finally, there is one more challenge to using the UPlan data for fire risk assessment, which is
that it utilizes different criteria for the base-year urban layer depending on county. The default
is to use the CAML urban layer, but in counties where there is insufficient open space to
allocate all new required growth for 2050, the pre-existing urban layer is reduced to the NLCD
boundaries (classes 22-24 based on impervious surface cover), which has equal or smaller cover
than CAML. This was done as a method of modeling in-growth or urban redevelopment in
counties that were already highly urbanized. However, if used as-is within our fire loss
modeling framework, it would introduce significant inconsistencies into our calculation of
vegetation fractions when we compare future years to base years, because it would involve
making assumptions about tract vulnerability that would vary in ways wholly unrelated to
their actual vulnerability.

To address this situation, we calculate vegetation fractions for the baseline year and 2050 year in
three different ways: One is using UPlan's pre-existing urban layer, (a mix of NLCD and CAML
as described above), and we also consider a full CAML and a full NLCD layer. In all cases we
also count baseline ICLUS 2000 cells that are marked as commercial or lie above the WUI/urban
threshold. We run these three layers for all our scenarios so we can assess the impact of the
base-urban layer assumption and bound our estimates. We use a similar masking when
identifying exposed values.
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The detailed procedure for generating ICLUS and UPlan vegetation fractions is described at the
algorithmic level in Appendix A.2.

3.8 Design of Computational Experiments

For our study design we produced two different full factorials of our emissions, climate, and
growth scenarios crossed with various parameters designed to explore uncertainties in
exposure: one for ICLUS and one for UPlan, as shown in Tables 2 and 3, respectively. In each
table, the right two columns identify whether each factor has an influence on the probability of
tires (P(F)), or the exposure, or both, reflecting the relationships shown in Figure 3.

Table 2: ICLUS Scenarios Factorial Study Design

Affects Affects
Variable/Scenario Levels
P(F) Exposure
Emissions scenario {B1, A2} X
Growth scenario {low, mid, high} X X

{NCAR PCM 1, CNRM

Climate model CM 3.0, GFDL CM 2.1} X

Vegetation allocation method {min, neutral, max} X
WUI exposure {low, neutral, high} X
WUI/urban threshold (D) {147,1000} HH/km"2 X X
Scaling function concavity (333 1,3 X

parameter (k)

Protection normalization {no, yes} X
Tract Spatial Scale* {100, 200, 400, 800} (m) X

*This refers to the level at which the density and spatial scale functions are evaluated—essentially the raster size
to which the ICLUS data is aggregated. It applies to calculations of housing exposure to wildfire risk only—it does

not affect calculations of vegetation fractions.
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Table 3: UPlan Scenarios Factorial Study Design

Variable/Scenario Levels Affects Affects

P(F) Exposure

Emissions scenario {B1, A2} X
Growth scenario {bau, smart, fire} X X
Climate model {NCAR PCM 1, CNRM X
CM 3.0, GFDLCM 2.1}
Vegetation allocation {min, neutral, max} X X
method
WUI exposure {low, neutral, high} X
WUl/urban threshold (D) {741, 1359} HH/km"2 X
Scaling function concavity {333, 1, 3}
parameter (k)
Protection normalization {no, yes}
Base urban layer {NLCD, UPlan, CAML} X

For ICLUS, we only consider different tract spatial scales for the exposure side, not for the fire
probability side, even though that ignores the potential for tract resolution effects on vegetation
fraction. We conducted a sensitivity analysis which revealed that in this framework the risk of
property loss was relatively insensitive to the effects of tract resolution on vegetation fraction,
though the tract spatial scale does play a bigger role in determining exposure.

Finally, for results describing wildfire frequency and burned area, we also estimate scenarios
where ICLUS populations and vegetation fractions are held constant at their year 2000 values,
in order to see the effects of climate change and the various other parameters independent of
population growth. Future work will include additional decomposition to assess driving
factors.
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Section 4: Results

As in Westerling et al. (2011a), wildfire burned area increases substantially statewide (Figure 4)
under the A2 emissions scenarios by end of century. End-of-century B1 emissions scenarios and
all mid-century scenarios have similar, lower-median increases. Note also that all of the A2
scenarios do pose higher tail risks, with greater spread above the median. Burned area in the
UPlan and constant population scenarios do not differ appreciably in the statewide totals from
the ICLUS scenarios. As in Westerling et al. (2011a, not shown), large increases in burned area
are for the most part concentrated in forest areas in the Sierra Nevada, southern Cascades, and
northern Coast Ranges, with lesser increases in mountain forest areas throughout the rest of the
state.

4.1 Statewide Wildfire Area Burned under Varying Climate and Growth
Scenarios

Wildfire Scenarios for California
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Figure 4: Statewide Wildfire Burned Area Scenarios for 2035-2064 and 2070-2099 Expressed as a
Ratio to the Average Modeled for 1961-1990 (with Year 2000 Population and Land Use). Each
UPlan boxplot summarizes 729 scenarios, while each ICLUS boxplot summarizes 162 scenarios.
Constant (CNST) scenarios hold population and footprint constant at year 2000 levels; each CNST
boxplot summarizes 54 scenarios.
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4.2 Statewide Changes in Expected Losses under Varying Climate and
Growth Scenarios
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Notes: 28 ICLUS and 53 UPlan outliers between 8.5 and 12.09 are not shown; ICLUS and UPlan results capture different parameter
assumptions. Vegetation fractions and WUI exposure held at “neutral” for the base year.

Figure 5: Statewide Relative Risk by Period, Broken Out by Growth Scenarios, Assumed
WUl/Urban Thresholds, and Climate. Dashed red line represents no change in risk.

Figure 5 captures the range of results produced by the nearly 35,000 cases considered as part of
our experimental design. Unlike Figure 4, which describes changes in area burned, Figure 5
shows the distributions of relative risk (RR as described in Equation 10) in each period of the
twenty-first century, broken out by emissions and growth scenarios for two different housing
density thresholds used to define the boundary between vegetated and urban (D). The variation
associated with each individual box arises from different values for the remainder of our
modeling parameters and other assumptions (e.g., scaling parameters, climate model used,
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vegetation allocation scheme, and WUI exposure scenario). In this figure, each ICLUS box is
capturing the variation of 648 individual parameter combinations and each UPlan box is
capturing 486.

Even though there is wide variation within many emissions and growth combinations, the
figure still identifies several clear trends. First, expected losses of housing units increase in
future years under the vast majority of climate and growth scenarios and parameter uncertainty
combinations. We can also see that the WUI/urban threshold (D) plays an important role in
affecting both the magnitude and qualitative nature of the results. High threshold cases are
associated with significantly higher relative risk in future periods, with medians between two
and three in the 2070-2099 period, though ranging from below one to as high as ten. Low-
threshold cases see almost all relative risks between one and two, with a small percentage
negative. Qualitatively, high threshold cases follow the trend that scenarios with higher growth
produce higher relative risk, while for the low threshold, the higher growth actually may
reduce overall risk in some cases. This can be seen in the lower right panel, where the ICLUS
high-growth case has a lower distribution than the ICLUS mid case. This can be explained by a
combination of two factors: First, a lower threshold implies higher urban development, which
implies smaller vegetated areas, which can reduce the probability of large fires. Second, lower
thresholds exclude more value being considered exposed, via the action value-based scaling
function s(Vi).

4.3 Sources of Variation: Climate, Growth, and Land Use

Figure 5 also provides information about the relative importance of climate and growth
scenarios in determining changes in residential wildfire risk, which we explore in more detail in
this section. In particular, Figure 5 suggests that, at the state level, variation across growth
scenarios is responsible for a greater variation in residential wildfire risk than changes across
climate scenarios. This is indeed the case at the state level: A2 scenarios typically lead to greater
wildfire risk over Bl scenarios in the 2070-2099 period, but the difference between them is
small: 90 percent of cases lead to a relative increase in the range of -1 to 19 percent for A2
relative to B1. By contrast, the corresponding statistics when comparing ICLUS high growth to
ICLUS low growth are: -24 percent and +72 percent. Note that these are statements about what
the impact on risk could be when considering alternative futures, rather than parsing out
responsibility for future increases in risk between climate and growth. Furthermore, because
growth and fire management decisions are made on regional and smaller scales, it is also
important to consider regional impacts, which do not necessarily represent statewide trends.
We focus on these two aspects next.

4.3.1 Climate and Growth Impacts

Figure 6 and Figure 7 show spatial variation in relative residential wildfire risk for the San
Francisco Bay and Sierra foothills under varying climate, growth, and model parameters;
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comparing end-of-century climate and ICLUS growth scenarios to historical baselines.’2 In each
case the values shown are ratios between expected losses for end-of-century scenarios and
corresponding historical baseline scenarios. Growth and WUI exposure scenarios are held
constant within each row, while climate scenarios are held constant in each column, with a Bl
NCAR PCM1 climate scenario in the left column and an A2 GFDL CM2.1 climate scenario in the
right column, and low growth in the first row and high growth in the second row. Thus,
moving across columns shows the effect of climate holding everything else constant, while
moving across the first two rows shows the effect of growth in the number of households. We
can see that in the San Francisco Bay Area, the spatially explicit changes in wildfire risk mirror
the larger statewide trends discussed above. The impact of climate is noticeable, but a more
drastic change can be seen when moving from low growth to high growth. However, looking at
the Sierra foothills, such trends are less clear. In fact, moving from A to B (low-growth/ low-
climate change to low-growth/moderate-high-climate change) appears to increase risk in many
places by as much or more than moving from A to C (low-growth/low-climate to a high-
growth/low-climate). Though in both regions, their interaction in D produces the most dramatic
changes.

12 The change between low climate change and moderate-high climate change bounds the climate
scenarios explored here. For a low climate scenario a run was used from the NCAR PCM1 model, which
is less sensitive to forcing from greenhouse gases, forced with the lower SRES B1 emissions scenario. For
the moderate-high climate change scenario, the GFDL CM2.1 model, which is more sensitive to
greenhouse gases, was forced with the higher A2 emissions scenario. The term “moderate-high climate
change” was used instead of “high climate change” because the warmest scenario explored here does not
span the high range of potential scenarios available for California. This terminology is consistent with
what has been used for the 2008 California Scenarios Project
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Figure 6: Spatial Variation in Wildfire Risk for the San Francisco Bay Area Using the Ratio of
ICLUS 2070-2099 Scenarios to Risk Estimated for the Base Period. Six scenarios illustrate the
effects of climate change, growth scenario, and WUI exposure on residential property risk. A
relative risk of 1 is equal to no change; therefore, green cells represent reductions in risk. White
cells are not modeled. Other parameters are fixed across all six scenarios: WUI/Urban threshold:
1000 HH/km~ 2, Vegetation allocation method (VEG): Neutral, Scaling function concavity parameter
(k): 0.333, Protection normalization: yes, Resolution: 100 m.
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Figure 7: Spatial Variation in Wildfire Risk for the Sierra foothills Using the Ratio of ICLUS 2070-
2099 Growth Scenarios to Risk Estimated for the Base Period: Six scenarios illustrate the effects
of climate change, growth scenario, and WUI exposure on residential property risk. A relative risk
of 1is equal to no change; therefore, green cells represent reductions in risk. White cells are not
modeled. Other parameters are fixed across all six scenarios: WUI/Urban threshold:
1000 HH/km~ 2, Vegetation allocation method (VEG): Neutral, Scaling function concavity parameter
(k): 0.333, Protection normalization: yes, Resolution: 100 m.
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4.3.2 Impact of Land Use Decisions

The first two rows of Figure illuminate how the relative impact of climate and growth may vary
in diverse parts of the state. However, by considering the differences between the second row
and the third row, we can see the marginal impact of development decisions on wildfire risk
still holding all other parameters constant. Panels E and F describe the same high-growth
situation as panels C and D, but consider different WUI housing allocations within each grid
cell, with E and F representing cases in which more development occurs at highly exposed
density levels within the vegetated areas of the wildland-urban interface. One can see that such
a development pattern exacerbates the effects of more extreme climate and growth scenarios. In
the Bay Area, the effects of greater high-exposure WUI development are particularly large in
eastern Alameda and Santa Clara counties. (See Appendix A.3 for a county map of California
with relevant counties labeled.) In the foothills on the west side of the Sierra Nevada, these
effects are greatest in southern Sierra foothill counties of Madera, Fresno, and Tulare. On the
east side of the Sierra Nevada, effects of high-exposure WUI development are particularly
notable in Alpine county and northern Mono county under the warmer, drier SRES A2 GFDL
CM2.1 scenario (B,D,F).

The UPlan scenarios for mid-century are able to more clearly illustrate the impact of different
growth strategies, because population is held constant across the business-as-usual, smart
growth, and fire threat avoidance scenarios. Therefore the only change is due to changes in
growth patterns across the various UPlan development scenarios. The impact of the changes is
summarized in Table 4, which shows how well each UPlan development scenario performed
relative to the other scenarios, in the two regions mapped above. A few trends emerge: In
general, “smart growth” outperforms “fire threat avoidance,” which in turn outperforms the
“business-as-usual” case. Additionally, the relative impact of each scenario varies notably in
both regions. In the San Francisco Bay area, the smart case can reduce expected losses by up to
nearly 35 percent, while its strongest effect is less than half that in the Sierra foothills. We also
see that, in the Sierra foothills, “smart growth” still shows the lowest expected losses, but that
the “fire threat avoidance” scenario has many more positive scenarios relative to the San
Francisco Bay area. For examples, it outperforms the “business-as-usual” scenario in only about
one third of cases in the Bay Area, while it bests “business-as-usual” cases in 58 percent of
scenarios in the Sierra foothills.
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Table 4: Pairwise Performance of UPlan Scenarios for the San Francisco Bay Area and the Sierra
Nevada Foothills

Bay Area % cases | Maximum | Maximum Sierra % cases | Maximum | Maximum
with reduction increase Foothills with reduction increase in
lower risk | in risk (%) | in risk (%) lower risk | inrisk (%) | risk (%)

smart relative | 99.6 34 0.5 smart relative | 100 15.7 NA

to bau to bau

fire relative to | 33.5 2.3 5.3 fire relative to | 58.3 7.3 2.2

bau bau

fire relative to | 0.1 0.4 58.1 fire relative to | 10.3 1.2 11.6

smart

smart

Table 4 supports two conclusions: Land use decisions matter, but the details of their

implementation can (and do) vary across the state. Our model will generally show lower risk
for scenarios that place more growth at higher densities, which the smart growth scenario does.

However, because our model is highly sensitive to the threshold density, more robust

conclusions would require an analysis using scenario data that features more finely resolved
density classes, rather than the small number of discrete density classes used in the current

UPlan scenarios.

In general, the residential wildfire risk scenarios are imposing a scaled household weighting on

projected changes in wildfire. While all scenarios show the greatest increase in the expected

area burned by large fires is projected to occur in mountain forests of northern California, the
part of the Sierra Nevada that currently is given a high fire threat index by the California
Department of Forestry and Fire protection is concentrated in the Sierra foothills, since much of
the higher elevations are federal land. This is the same area where we see greater increases in
risk, both area burned and expected losses, but also a relatively greater effect of the UPlan fire

threat avoidance scenarios. It is also unfortunate that the UPlan scenarios do not extend to end

of century, since the much larger increases in fire under end of century SRES A2 scenarios
would provide a better test of the utility of the fire threat avoidance UPlan scenario.

By contrast, in the wildland-urban interface around the periphery of the San Francisco Bay
Area, projected changes in large fire occurrence and burned area are much more modest, while
proximity to large population centers guarantees rapid growth in households under the various
population growth scenarios. Consequently, the changes in exposure are likely to drive the risk

increases, and the density effects of smart growth have a much more noticeable effect.

4.4 Impact of Fire Risk Parameters

From a policy and management perspective, it is important to understand which factors impact
magnitudes in a qualitatively important way. In particular, it is the case that under some
parameter combinations, higher-growth scenarios lead to a decrease in expected fire losses,
while in others it leads to an increase. What explains the difference?
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Figure 8: Relative Marginal Effect of High-Growth Compared to Low-Growth Scenario in 2070-
2099, Grouped by Different Scaling Function Parameters. The interaction of the two has a strong
influence on whether future growth increases or decreases expected losses statewide.

Figure 8 shows the impact of moving to a high-growth ICLUS scenario from a low-growth
ICLUS scenario in 2070-2099, grouped by different combinations of the WUI/urban threshold
(D) and the scaling concavity parameter k. In this figure, the y-axis represents the percentage
change in 2070-2099 expected losses in a high-growth scenario relative to a low-growth
scenario. For example, under the assumption that vulnerability to fire is best described by a low
WUI/urban threshold and a small shape parameter (k=1/3), a high-growth scenario is likely to
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lead to a 20 to 25 percent decrease in statewide expected losses relative to a low-growth
scenario. By contrast, for a high threshold and large scaling parameter (k = 3), a high-growth
scenario would lead to a 50-60 percent increase in expected losses.

Figure 8 clearly illustrates that those two parameters alone can determine the sign of the impact.
If we think that fire behavior is accurately characterized by a low-threshold and a low-concavity
parameter (the lower left), then we can expect a higher-growth scenario to lead to overall lower
residential wildfire risk (i.e., paving over the risk), while high values for both implies that a
high-growth scenario will lead to a large increase in fire risk. This suggests that, to the extent
that the parameters describing exposure to wildfire are exogenous, it is important to learn about
their true values in order to understand the impact that different growth scenarios are likely to
have. Conversely, to the extent that these values can be affected by management, it provides an
estimate of the importance of changing management schemes in ways that are reflected by
lower thresholds and scaling parameters. Of course, policy levers in fire management and
regional planning are far removed from simply adjusting the parameters of our scaling
function. Rather, these are statistical-level descriptors of how the system may reflect different
policies.

4.5 Discussion of Uncertainties and Caveats

While we go to great lengths to capture variation in outcomes due to different plausible
modeling assumptions, there are nevertheless some that remain difficult to account for.

One issue we consider to be of concern is the construction of a fair base period at the grid cell
level, due to compatibility of data sources. When we present relative risk compared to the year
2000 development crossed with 1961-1990 climate, our year 2000 data also rely on some
modeling assumptions about land use, rather than drawing directly from a data set. In
particular, our initial vegetation and urban fraction data rely on LDAS information, which was
based on imagery collected in the early 1990s. For the maps presented here, we assume that
growth happens according to the same rules between the time of LDAS data collection and the
year 2000, as it does between LDAS and future years. But this need not be the case in reality.
Growth may have proceeded under high-value WUI and high-vegetation-fraction conditions
between LDAS and 2000, but could then plausibly shift to a low-value WUI case that also
minimizes vegetation fractions in the future. In general, using consistent land use assumptions
for the base year and future years represent entirely plausible scenarios, but also slightly
reduces variation in the relative risk. To guard against false precision, our summaries of risk use
the common baseline (“neutral” vegetation allocation and WUI exposure). We also emphasize
that the ICLUS scenarios do not disaggregate population change and land use change. Future
work may explore the disaggregation of these two factors.

Also, for UPlan, the use of a base year mask tends to reduce overall values exposed, and the
criteria used to mask out those cells does not correlate perfectly with our WUI/urban threshold
criteria that are applied to ICLUS base year data when used with UPlan, and that are applied to
UPlan in future years. Another factor related to UPlan is that our WUI exposure scheme
essentially overrides some of the UPlan modeling at the intra-grid-cell level, which is
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particularly relevant for assessing the performance of the “fire-threat avoidance” scenario. To
the extent that relocation of development only shifts UPlan growth patterns within grid cells,
our results will not reflect that change —rather it is only where UPlan’s fire scenario shifts them
to grid cells with lower risk as we evaluate it that the change is apparent.

In general, our model makes a variety of assumptions about certain factors remaining constant
over space and time, which may impact interpretation of results on both those dimensions. One
is that fire probabilities continue to respond to the presence of vegetation and population in the
same manner as they have historically done. We also assume that the probability of a tract
burning conditional on a fire occurring in the grid cell is independent of the vegetated area of
that tract, and of the expected size of fires originating in the tract. Perhaps more significantly,
we assume that expected losses contingent on a tract falling within a fire do not change over
time or space—we devote more discussion to this issue and its relation to policy in the
Conclusion.

Even where we do explore variation in parameters that lead to different levels of exposure,
scenarios apply the same parameters across the state, and generally apply parameters
consistently across time periods. It is theoretically possible that these parameters could vary in
ways that exacerbate or mitigate the otherwise risk-increasing impact of new growth. For
example, it may be that in areas with high and topographic relief, housing remains vulnerable
at even higher densities than we have considered, or it may be that communities that are
cognizant of their own high fire risk take greater steps to reduce their exposure. Such actions
may vary across the state within time period, but may also change across time periods as well.
Either of these could imply that the spatial patterns produced at the level of our 1/8-degree grid
cell cells might not be robust.
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Section 5: Conclusion

Residential property risk due to wildfire increases over the coming several decades under the
vast majority of scenarios that we consider through the end of the century, although high
growth can lead to reduced risk under a limited set of parameter combinations. Expected losses
increase in almost all scenarios through mid-century, with low WUI/urban thresholds
producing changes in risk that commonly range from a 20 percent decrease to a 100 percent
increase; while a high urbanization threshold assumption shows many instances in which risk
more than triples by mid-century. As a reference point for the magnitude of these changes, from
1990 to 2010, wildfires in state responsibility areas averaged about 130 million dollars of
structure damage per year in California (California Department of Forestry and Fire Prevention
2011), which represents only a fraction of the total cost wildfires imposed on the state. It is also
important to note that, even in the cases where we show a reduction in expected losses under
high growth, that reduction is in part based on an assumption of fire protection response that
increases with value—thus lowered expected losses may still be associated with significant
increases in other wildfire-related costs.

Increases are due to a combination of climate, population growth, and changing exposure based
on how development occurs, while the decreases are due to a combination of reduced vegetated
area and reduced exposure due to growth at high densities. Overall, the relative impact of
changes in exposure dominates when varying across scenarios considered here. While this is
explained in large part by greater changes due to exposure alone, it is also a function of where
growth occurs relative to changing climate and wildfire patterns.

Climate change is expected to increase the probability of large wildfires occurring in a
substantial portion of the state, but the greatest increases are projected for forests in the
mountains and foothills of northern California (Westerling et al. 2011a; see also National
Research Council 2011; Spracklen et al. 2009; Westerling and Bryant 2008). This is largely
because climate effects on fuel flammability tend to be important in these forests (Westerling et
al. 2003; Littell et al. 2009). Warmer temperatures are associated with drier conditions and a
longer fire season in western U.S. forests, as well as an increased incidence of large forest fires
(Westerling et al. 2011b; Swetnam et al. 2009; Littell et al. 2009; Heyerdahl et al. 2008; Morgan et
al. 2008; Westerling et al. 2006). In the statistical fire models used here, the probability of large
fire occurrence tends to increase with temperature-related increases in summer drought, so the
most extreme fire scenarios occur at the end of the century under the higher-emissions scenario
examined here (SRES A2), and especially for the model with the greatest temperature sensitivity
to the resulting greenhouse gas forcing (GFDL CM2.1) (see Westerling et al. 2011a).

ICLUS and UPlan growth scenarios tend to concentrate development in and around existing
urban areas. These are typically in lower elevation areas with drier climates, where climate
effects on fuel availability tend to be more important than on fuel flammability. Temperature is
typically less important than antecedent precipitation as a driver of fire in these locations, and
consequently the effects of climate change on fire risks are weaker and less certain than in the
less-populated forest areas in northern California forests. As a result, the greatest increases in
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households in terms of numbers and aggregate values potentially at risk in the state are in areas
with weaker and less-certain changes in fire risks. Thus, the effects of growth scenarios tend to
dominate those of climate scenarios at the statewide level.

Yet, statewide aggregates tend to obscure interesting details revealed by spatially explicit
scenarios for wildfire and property risk. California’s ecosystems and fire regimes are quite
diverse, and as noted above the greatest increases in wildfire are projected for northern
California forests, corresponding to end-of-century increases on the order of 100 to over

300 percent above the recent historical baseline (Westerling et al. 2011a; National Research
Council 2011; Westerling and Bryant 2008). Much of this forest area is federal land reserved
from residential use, under Park Service and Forest Service management. Growth in households
is constrained to occur in private lands in the foothills and small mountain enclaves. In these
areas of the state, our modeling indicates that residential property risks are highly sensitive to
the growth in the number of households and their spatial footprint, relative to historical
baselines. ICLUS scenarios indicate that, by end of century, rapid, sprawling growth in areas on
the periphery of the Sierra Nevada could result in substantial increases in residential wildfire
risks —with substantial areas projected to increase on the order of five to 10 times above the
historical baseline—in a diverse array of communities from Tehama and Butte counties in the
far north, to El Dorado, Amador, and Alpine counties in the north, to Madera, Fresno, and
Tulare counties in the south (Figure 7F). And while patterns in the San Francisco Bay Area
tended to more closely reflect parameter and scenario effects at the state level, it is visible from
Figure 6 that risk increases vary significantly across the region depending on parameters and
scenarios; for example, Panel 6E and 6F show drastic differences in risk along the coastal
portion of Sonoma County, and these differences are explained mainly by the different
assumptions about the interaction of new development with existing vegetation.

As we have seen, the range of potential outcomes for residential property losses for any given
climate and growth scenario is large, suggesting a dominance of inherent uncertainty. Yet the
dependency on key parameter values is clear and has implications for policy and research
priorities. In particular, the results are largely driven by assumptions about our scaling function
s(Vi,D,k,a), which describes how the probability of a tract falling within a fire perimeter varies
with the value contained within the tract. This suggests the importance of data collection to
characterize this scaling function more accurately, both in its shape and in how it may vary
across the state. Doing so will be one step toward more confidently drawing growth and fire
management implications using our modeling approach, which currently assumes several
factors remain constant throughout the state and over time. At the same time, a very robust
result of our scenario analysis is that “smart” growth strategies that concentrate growth in
existing urban areas and at higher densities reduced expected losses by mid-century across the
vast majority of scenarios.

While varying the parameters of our scaling function clearly revealed their driving role, we note
that our analysis does not consider variation in one important parameter: 2, the expected loss
contingent on property-specific protective efforts. This variable represents the fraction of value
that is lost when a tract is encompassed by wildfire, and could be highly variable. To the extent
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that new housing growth and residential landscaping follows best practices for fireproofing,
and to the extent that future residents are able to successfully manage their property for greater
resilience to fire, future expected losses will be proportionately lower. Indeed, recent state-level
policy changes requiring increased defensible space (Public Resources Code 4291) and fire-
resistant home construction (California Building Code Chapter 7A) should succeed in lowering
this parameter over time in regions of severe fire hazard.

Lastly, from a public policy standpoint, it is also important to consider costs and benefits of
growth and land management policy more broadly than just the fire risk context. Besides the
important ecological impacts mentioned in the introduction, people build homes with low
density in the wildland-urban interface because they perceive it to be a more desirable
environment than other alternatives. It is also possible people may not take all fire-proofing
steps available to them because they may deem them excessively costly or aesthetically
undesirable. To the extent that homeowners may not be fully aware of and may not fully bear
wildfire-related risks, there remains a role for government, land management agencies, and
private sector actors such as property insurers to improve homeowner’s understanding of the
risk they bear when making such decisions, and to take actions to mitigate that risk.
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Glossary

A

AR4

B
CalFire
CAML
CNRM
D

FIPS
GCM
GFDL
GPDs
ha
ICLUS
IPCC
km
LDAS
LRAs
m
NCAR
NCEP
NLCD
NLDAS
PIER
RD&D
RR
SERGoM
U

\Y

VIC

W
WUI
Nvec

agricultural

IPCC Fourth Assessment

bare

California Department of Forestry and Fire Protection
California Augmented Multisource Landuse
Centre National de Recherches Météorologiques
density

Federal Information Processing Standard
global climate model

Geophysical Fluid Dynamics Laboratory
generalized Pareto distributions

hectares

Integrated Climate and Land Use Scenarios
Intergovernmental Panel on Climate Change
kilometer

Land Data Assimilation System

local responsibility areas

meter

National Center for Atmospheric Research
National Centers for Environmental Prediction
National Land Cover Database

North American Land Data Assimilation System
Public Interest Energy Research

research, development, and demonstration
relative risk

the Spatially Explicit Regional Growth Model
urban

Vegetation

Variable Infiltration Capacity

water

wildland-urban interface

number of vegetated tracts
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Appendix A.1 Identifying New Populations for UPlan

UPlan data is provided on a 50 meter raster, with categorical encoding of housing and
commercial densities. For calculating population, we assume that there are no residences on
properties identified as light or heavy commercial, or industrial. Therefore, we create a new
raster by substituting the per-acre household density into the raster according to the following
mapping, provided in the UPlan description (Thorne et al. 2012).

Table Al: Raster Mappings for UPlan Housing Densities

Raster Value Housing density
(hh/acre)
9 20
10 5
12 1
13 A
15 50
16 5
17 0
18 0
19 0
20 10

Next, we make a similar substitution, replacing a raster encoding county level Federal
Information Processing Standard (FIPS) codes with the county-specific population-per-
household data used in the UPlan calculations. We then multiply those two rasters together to
get per-acre population density by tract. Those values are then aggregated to the 1/8-degree
grid cell and downscaled by the ratio of the tract area to an acre (2,500 square meters per tract
to 4,046.85642 square meters per acre). Lastly, those are combined with the 1/8-degree estimates
from ICLUS for the base year, which are calculated in a similar fashion. As discussed in the
main text (Section 3.7), ICLUS data is used because the UPlan output does not include a year
2000 housing density map. The overall procedure is:

1. Combine UPlan 50 m rasters indicating household density with county-specific
population-per-household data to develop a raster of population estimates at the
50 meter level.

2. Use point-in-polygon operations to sum populations within each grid cell. These provide
the new populations only.

3. Combine the grid cell-level new populations for 2050 with the pre-existing grid cell level
populations for 2000 from ICLUS.
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Appendix A.2 Identifying Vegetated Areas Based on
New Growth

This follows essentially the exact procedure as defined in the appendix to Westerling et al.
(2009) and is included here for completeness. We first reproduce the salient points of that
procedure, and then focus on the differences specific to UPlan.

In the limit of complete urbanization, it is clear that vegetation fraction is affected by
encroaching human development, because a grid cell entirely covered by dense population
would lack any sufficiently large vegetated space in which wildfires could exist. However,
vegetation cover may be reduced by encroaching human development at intermediate scales as
well, depending on how new growth is allocated. We model this allocation process as follows.

A given grid cell can be partitioned into the following disjoint areas, expressed as fractions of
the grid cell they cover: Vegetation (V), urban (U), bare (B), agricultural (A), and water (W),
with V+U+B+A+W = 1. These values exist for a baseline year, and when there is new urban
growth with a footprint larger than the baseline urban fraction, it must be allocated to some
combination of vegetation, bare, and agricultural land. To assess the range of impact that new
growth may have on the vegetation fraction, we allot new growth in three different ways and
consider the different impacts each method may have.

One is to maximize the wildfire-prone vegetation preserved, which is done by preferentially
allotting new growth to the bare and agricultural areas before allotting any remaining growth to
the vegetated areas:

VEGmax = Vo — max(0, N-(A+B))

Where N is the new urban footprint requiring allocation —that is, the difference between the
urban footprint in a given time versus the urban footprint in the base year. In this formulation,
if there is sufficient agricultural and bare land to accommodate all new growth, the vegetation
fraction is not reduced at all.

Another option is to reduce the vegetation fraction by as much as possible, assigning all new
growth to the existing vegetated area:

VEGmin = mﬂ.X(O,VO — N)
These two allocation methods represent extreme bounds, and in reality, growth will tend to be
distributed among all three land types. As a middle (“neutral”) option, we calculate the

vegetation fraction assuming vegetated area is covered in direct proportion to how much area it
occupies relative to agriculture and bare land:
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VEGneutral = mEIX(O,VO —N VO/(A+N+V0))

To adapt these procedures for use with the UPlan scenarios, first we reclassify UPlan’s new
growth raster according to Table Al as above, except that we assign commercial and industrial
land use (categories 17, 18, and 19) to have effective density of infinity rather than zero, because
here we care about land use, rather than population or value. A value of infinity will always be
deemed to be above the WUI/urban threshold, and therefore always classified as unvegetated.
We then convert mapped values to per-hectare values by multiplying the raw housing density
value by the area ratio of hectares to acres (2.47), and then divide each tract value by four, to
translate the per-hectare value into the 50 meter tract value. Each tract then holds a value that
corresponds to the actual expected number of housing units on that tract (which may be
fractional). We then apply the rules described in the main text for deciding whether each tract is
classified as unvegetated or not. The overall procedure is described algorithmically below:

1. Align the 2000 ICLUS commercial and housing grids (100 m) grids with the UPlan 50 m
data, and disaggregate the ICLUS grids to 50 meters.
2. For each tract, identify whether the tract is “too urban to burn” by assessing whether it
meets at least one of the following criteria:
a. Was labeled commercial by ICLUS
b. Was labeled commercial or industrial by UPlan
c. Waslabeled “pre-existing urban” by UPlan (with exceptions)
d. The combined housing density identified by UPlan and ICLUS is above the
WUI/urban threshold.
3. Aggregate the fraction of all tracts labeled as “too urban to burn” by grid cell.
4. Identify what fraction is “new growth” relative to the urban fractions calculated using
early 1990s LDAS data.
5. Diminish LDAS vegetation fractions according to three different scenario rules, one of
which preserves as much vegetation as possible, one of which minimizes vegetation
preserved, and one of which distributes new growth evenly among all cell types.
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Appendix A.3: County Map for California

tehama
butte
el dorado
alpine
amador
marin
tuolumne mono
alameda mariposd
santa clara madera
fresno
tulare

Figure A.3.1: County map for California with county names labeled
for subregions discussed in Section 4
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