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Hai Yang, Ryuichi Kitamura, Paul P. Jovanis, Kenneth M. Vaughn,
Mohamed A. Abdel-Aty and Prasuna DVG Realiy

Institute of Transportation Studies, University of California at Davis
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ABSTRACT

A model of drivers’ route choice behavior under advanced traveler information system (ATIS) is

developed based on data collected from learning experiments using interactive computer

simulation. The experiment subjected drivers to 32 simulated days in which they were to choose

between a freeway or a side road. A neural network model is used as a convenient modeling

technique in this initial phase of the analysis. The results indicated that most subjects made route

choices based mainly on their recent experiences. Results also demonstrated that route choice

behavior is related to the personal characteristics as well as the characteristics of the respective

routes. Travel experiences had less effect on the choice of the side road compared to the freeway

and the results indicate that the prediction accuracy of the model, the acceptance rate of advice, and

the quality of advice are closely correlated. The model developed here was for advice consistently

provided at a level of 75 percent accuracy. The paper concludes with a discussion of experimental

limitations and suggestions for future research.

INTRODUCTION

Recently, much interest has focused on the development of advanced traveler information systems

(ATIS) as a “hi-tech” approach to aid the driver more informed route choices and to alleviating

increasing levels of traffic congestion. An important issue in the implementation of these systems is

to develop an understanding of how ATIS will affect drivers’ behavior, how drivers will adopt and

learn to use ATIS and how these changes will impact travel demand in the network. Several
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methods have been used to study drivers’ route choice behavior when influenced by ATIS. These

methods, as summarized by Abdel-Aty et al. (1992), include: Field experiments (Catling and

McQueen, 1991), route choice surveys (Khattak et al., 1992; Hatcher and Mahmassani, 1992),

interactive computer simulation games (Bonsall and Parry, 1990, Krage and Mark, 1991;),  route

choice simulation and modeling (Lotan and Koutsopoulos, 1992; and Mahmassani and Chen,

1991) and stated preference approach (Haselkorn et al., 1991). Although significant advances have

been made in these studies, results also suggest that more theoretical and empirical investigations

need to be carried out in order to gain a basic understanding of drivers’ choice behavior in the

absence of information.

COMPUTER-BASED SIMULATION EXPERIMENT

An experiment to investigate drivers’ learning abilities and route choice behavior under ATIS was

performed. The experiment developed through a collaborative effort between the Institute of

Transportation Studies and the Psychology Department at UC Davis is carried out on an IBM

compatible micro-computer using an interactive simulation program written in Turbo Pascal. The

simulation experiment begins by presenting a set of instructions to the subject describing how the

program operates. Subjects are instructed that their main task is to minimize their overall travel

time by deciding when, and when not, to follow the advice provided by the transportation

information system. Subjects are also told that their decision and response time, are being

measured and that they should try to respond as quickly as they can. This experiment subjected

drivers to 32 simulated days in which they were to choose one of two routes, either the freeway or

a side road. The test subjects are told that they have purchased a new “Traffic Watch Device”

which will provide traffic information prior to their route selection. The subjects are also told that

the device will not always be accurate, but are not given any indication of its overall accuracy.

Upon completion of each trial, subjects were asked to rate their choice satisfaction, and to provide

an estimate of their perceived travel time on their chosen route. Upon completion of 32 sequential

simulated days, subjects were asked to rate their potential for purchasing a traffic information
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device, their perceived accuracy of the device, and their own ability at selecting routes when

compared to the information device. The data set used for this analysis was based on the choices

made by 20 individuals. The simulation was run with 75 percent accuracy level and with

feedback. A more detailed description of the route choice experiment can be found in a companion

paper (Vaughn et al. 1992)

NEURAL NETWORK CONCEPTS

Artificial neural networks have been widely studied for information processing. But recently there

has been an increasing interest in application of neural network techniques to transportation

engineering. In a recent conference held in California, different transportation application problems

analyzed with neural networks have been reported including: classification and pattern recognition

(Faghrin and Hua, 1992), travel demand estimation (Yang et al., 1992; Shih-Miao Chin et al.,

1992),  image processing (Bullock et al., 1992; Kaseko et al., 1992),  freeway incident detection

(Richie et al., 1992) and driver route choice analysis (Dougherty and Joint, 1992). It is generally

reported that the neural networks have the ability to accommodate complicated problems without

the requirement of giving explicit equations correlating input/output data, and neural networks can

generate reasonable results efficiently. The neural network approach utilizes an iterative data

matching technique and is often confused with artificial intelligence (Berardinis 1992). This

approach is being used as a quick and efficient method to analyze route choice behavior and as a

comparative approach to conventional analysis methods (Vaughn et al. 1992).

Here, a neural network route choice model is constructed and used to analyze the driver route

choice mechanisms under ATIS. UC Davis students were recruited to participate in the

experiments. While the students participating in the experiment were quite diverse, they certainly

are not intended to represent a broader population of drivers. The students were tested to evaluate

the simulation game and conduct initial data analyses, some of which are reported here.



INPUT LAYER HIDDEN LAYER OUTPUT LAYER

FIGURE1 A typical multi-layer feed-forward neural network.

Figure 1 shows the connection scheme of a typical multi-layer feed-forward network. This

network consists of processing elements arranged in three layers: an input layer, a hidden layer and

an output layer. Processing elements in adjacent layers are connected through connections WV and

w+ The output emitted from each processing element is a function of the weighted outputs from

the processing elements in the preceding layer. Mathematically,

Yj =f(T Wi)xi+8j) (1)
i=l

where 6) is the threshold value for the jth processing element in the hidden layer, f is called an

activation function which scales and smoothes the output. Usually, a logistic function is used:

f(x) = j-&-x (2)

In the same way, the output value of the prccessing  elements in the output layer are computed as

Zk  =fCi WjkYj+ ok) (3)
j=l

where & is the threshold value of the kth processing element in the output layer.
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Proper values of connection weights and thresholds can be estimated so that the squared errors

between the network output and the desired output is minimize:

4
9 c (zk-dk12

k=l
(4)

where dk is the desired output (or “teacher signal”) of the kth processing element in the output

layer.

A back-propagation algorithm implementing gradient descent in the output error is used for

“training” the network. In this algorithm, connection weights are updated gradually in proportion

to the difference between the estimated and actual output as follows (Rumelhart et al., 1986):

&‘ik = (dk-zk)Zk( l-zkh (5)

6Wc = i (dk-zk)zk(  l-zk)wjkxflj( l-yj)
k

(6)

AW(n) =q SW(n) + adW(n-1) (7)

W(n+l) =W(n) + AW(n) (8)

The 6 is the error, AW is change in weight and n is the cycle number. The first term on the right

hand side in (7) is a correction based on the current error; 17 is called the training rate, and oC7) ~1.

The second term is the momentum term from the previous adjustment, and a is referred to as the

momentum rate, also Oat 1.

Thresholds for each processing element in the hidden and the output layers are updated respectively

by:

if&=(&-zk)Zk( 1-Q)

Sej =i (dk-Zk)Zk( I-Zk)Wjflj(  I-Yj)
k= l

(9)

WV
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Ae(n)=q &l(n) + ade(n-1) (11)

&z+l)=&z) + A&t) (12)

Training of the network starts with small random numbers assigned to all the weights and the

thresholds. The training is terminated when either the maximum number of iterations is reached or

the sum of squared output errors is reduced to an acceptable value. Figure 2 shows the training

process with a back-propagation algorithm (Rumelhart et al., 1986).

1 Initialize parameters 1

eForward ---

FIGURE 2 Flow chart of a back-propagation  training
algorithm (Rumelhart et al., 1986).
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FIGURE 3 A three-layer  neural network model for route choice analysis.

NEURAL NETWORK ROUTE CHOICE MODEL

Structure of neural network

The neural network used in this study consists of the input layer, a hidden layer and the output

layer as shown in Figure 3. There are 9 processing elements in the input layer which feeds various

pieces of information to the network. A single processing element in the output layer is used to

indicate a choice between freeway and side road. During the training of the neural network, the

desired output is set to be 1 if the freeway is chosen and 0 otherwise. During the testing or
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x *t . Current advice: 1 If the freeway is recommended by the information system and 0 if the side
1

road is recommended

x2: Weighted agreement satisfaction on the side road: A weighted sum of the drivers’ level of

satisfaction with the choices made in previous days when they followed the advice to take

the side road.

x3: Weighted disagreement satisfaction on the side road: A weighted sum of the drivers’ level of

satisfaction with the choices made in previous days when they did not follow the advice to

take the side road.

x4: Weighted speed on the side road: A weighted sum of the driver’s estimate of his/her

perceived speeds on the side road chosen in previous days.

x5: Weighted delay on the side road: A weighted sum of delays on the side road in previous

days.

Weighted agreement satisfaction on the freeway.

x7: Weighted disagreement satisfaction on the freeway.

33: Weighted speed on the freeway.

prediction, the freeway is estimated to be chosen if the output value is greater than or equal to 0.5,

and the side road is estimated to be chosen if the output value is less than 0.5.

In the model, two pieces of information, the route advice provided by the information system and

the drivers’ perceptions of travel conditions on the freeway and side road, are considered to be

important in the route choice decision. To reflect the fact that the drivers’ perception and

knowledge are based on experience accumulated from day to day, weighted cumulative averages

are used as input variables of the analysis. The input variables to the model are defined as follows:
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xg : Weighted delay on the freeway.

Note that the neural network shown in Figure 3 is designed for the analysis of individual route

choice behavior. If the route choice behaviors of a group of drivers are to be analyzed, a drivers

individual attributes should be taken into account. The set of variables is thus extended to include

two new input variables xl0 and x1 l defined as:

X10: Driving frequency.

31: Individual’s gender: 1 if the driver is male and 0 if female.

The driver’s age category can be used as an input variable, but it is not considered here because

most of the subjects in this experiment are college students at UC Davis.

In the above input variable, x1 reflects the effect of advice provided by the information system; x2

through x5 represent the effects of the driver’s previous travel experiences on the side road, and x6

through xs on the freeway; xl0 and x1 1 reflect the influence of personal characteristics on the route

choices.

All values taken by variables x will be normalized to be between 0 and 1 using a logistic function

and then transmitted to the hidden layer in the neural network

Measure of travel experience

Subjects were asked to indicate their levels of satisfaction with the choice made and estimate their

perceived speed on their chosen route after each simulation run: A five-stage rating on choice and

speed, ranking from -2 to +2 was adopted where a negative number implies a bad experience. If

one of the routes was not used by the driver on some day, then the corresponding evaluation

values were set to be zero, which means that no new knowledge or experience about the unused

route was acquired. In the same way, driving frequency of the subjects was also measured. The

scales are summarized in the next page:
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-2 -1 0 1 2

Incorrect
choice

Probably
incorrect

Don’t know Probably correct
choice

Evaluation of choice

-2 1 2

Incredibly
slow

Fairly slow Moderate Reasonably Fastest
fast possible

Evaluation of sueed

-2 1 2

Do not
drive

Drive Never commuted Do not now but
infrequently

Currently
but drive frequently formerly commuted commute

Evaluation of driving freuuencv

In the simulation experiments, delays on the routes were randomly generated to be 1 through 5

units on the freeway and 2 through 6 units on the side road. These values were also transformed

linearly into values between -2 and 2.

The vectors of previous travel experience evaluated above need to be combined by a perception

updating strategy to constitute the vector x of the driver’s current perception of travel conditions on

the freeway and side road. But, no matter what strategy is adopted, the final combination values

should be fit into the same evaluation scale [-2,2] in order for the values to be meaningful.

Perception updating strategy

Variables x2 through x9 represent the drivers’ knowledge or perception of travel conditions on the

side roads and freeway. This perception comes from the travel experience accumulated from day to

day, and hence must be updated in choice sequences by historical experience. In general, a

perception updating strategy reflects a learning process and may be different across drivers.
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Suppose, the beginning of day w the driver constructs his updated historical perceptions x of travel

conditions. This update is a function of the previous historical perceptions and the personal

experience observed in his travel on day (w-l) (Ben-Akiva, et al., 1992). The following updating

strategy is considered in this study:

x(w) = (l-A)x(w- 1) + ilU(W- l), OS&l (13)

where

U(W-1): a vector of drivers’ evaluations on his travel on last day,

X(W- 1): a vector of drivers’ previous historical perception of road conditions.

h : a positive parameter called experience factor which reflects the relative impact of the last

day experience and the accumulated historical knowledge on the individual’s perception

updating.

With this recursive formula, the weights assigned to the evaluation vector u of travel experiences

in previous days can be easily shown as:

Therefore, the earlier the day, the smaller is the weight, which reflects the relative impact of

previous travel experiences on different days to today’s travel condition perception. If X=1, then

only the experience received on the last day (most recent) is taken into account in today’s route

choice. If Ml, the driver does not update his information or knowledge from one day to another

(because of this, this formulation is more general than the lagged formulation, x(w)= Ox(w-

l)+u(w-1)).

It is assumed in this study that all the variables are updated through one experience factor and this

experience factor is the same for all the drivers. However, because of the difference in abilities of

combing and processing various information about route conditions, drivers may give different
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weights to the experience associated with travel on different days. Therefore, a more realistic

representation of the updating process is to associate different sets of experience factors with

different drivers, and different values of experience factors with different variables for the same

driver.

Furthermore, the above simple updating strategy of linear combination is only one among many

possible ways. For example, if the driver considers only the best and worst experiences of

previous travel on a route, we get the following updating formula:

X(Whorst = min { X(W-1),  U(W-1)) (15)

x(w)hst = max { X(W- l), U(W-1)) (16)

Other methods such as Bayesian updating or fuzzy inference techniques may be used for

perception updating, where confidence level or possibility distribution are employed to describe

drivers’ observation and perceptions about route conditions.

RESULTS AND ANALYSIS

Neural Network Performance

Before examining individual’s dynamic travel behavior in detail, we report some results of the

validation experiments on the performance of the neural network model.

Firstly, 32 “day-to-day” route choices made by one person in the computer-based simulation

experiments were used for training the basic neural network in Figure 3. In each training cycle, the

training vectors were presented to the network in sequential order from day 1 to day 32. The

number of processing elements in the hidden layer was varied from 3 to 7 in investigating its effect

on the performance of the network. During the training, the values of learning and momentum rates

11 and a were set to be 0.2 and 0.9 respectively, and were kept constant. Moreover, the experience

factor h in the perception updating formula was chosen to be 0.8.
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Figure 4a shows the changes of the sum of squared learning errors for an entire set of training

vectors as training continues, with different numbers of processing elements in the hidden layer.

Figure 4b indicates the corresponding results of training in terms of replication of all the 32 route

choices. It can be seen that the first 50 cycles of training lead to a sharp reduction in the squared

output errors. After 1000 cycles of training, no significant improvement effect was observed, the

network parameters (connection weights and thresholds) were judged to be converged. The

networks with 3 and 5 processing elements in the hidden layer had a replication rate of 96.9% (1

failure out of 32 training vectors) after about 900 cycles of training. This means that the neural

network had adjusted its connection weights to fit on average 31 cases out of 32 route choices. It is

observed that the number of processing elements in the hidden layer had little impact on the

performance of the network.

Figures 5a and 5b show the testing results with an extended neural network model for route choice

analysis of a group of drivers. In this test, a total number of 320 route choices for 10 subjects were

used for training, It is observed that the networks with different numbers of hidden processing

elements show different performances. The networks with 5 and 7 hidden processing elements

respectively have better performance, but the latter exhibits fluctuation in the training process. After

convergence, the neural networks had an overall replication rate of about 90%. Table 1 presents

the replication results with respect to road type for the network with 7 hidden processing elements

after 2000 cycles of training.
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TABLE 1 Replication of route choices by a neural network model
with 7 hidden processing elements after 2000 cycles of training

Fkdicted Choices

Freeway Side Road
Total

Number Replication

Actual Choices
Freeway

Side Road

‘171 16 187 91.4%

7 $26 133 94.7%.:

Average Replication Rate = (171+126)/320x100% = 92.8%

It should be pointed out that, though the above results can be considered to be excellent, further

improvement on the performance of the neural network route choice model can be made by

properly improving the perception updating strategy, especially the setting of the experience factor

h.

Route Choice Behavior

The above analysis suggests that the constructed neural network model can be used to reliably

predict route choices. In general, route choice behavior, even in the presence or absence of ATIS is

considerably different from driver to driver, since drivers have different abilities: in combining and

processing a variety of information concerning road conditions; in performing travel forecasts with

available information; in previous experience; and, in developing heuristic decision procedures

(Ben-Akiva et al., 1992; Iida, et al., 1992). Here, we roughly classify the route choice behavior

with ATIS experience into the three types shown in Figure 6, based on the model’s replication or

prediction results.

TYPE 1: This is the type of subject for whom a combination of the most recent and historical

experience is optimal (the optimal experience factor h* is around 0.5).
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FIGURE 6 A conceptual  framework for route choices with ADIS experience.

TYPE 2: Subjects in this type stress the importance of most recent travel experience (the optimal

experience factor h* nears 1.0).

TYPE 3: Subjects of this type make their route choices are not based much on their previous

experiences, but (probably) resorting to the route advice provided by the information system.

The above classification is based on the shape of the curves representing the model’s replication or

prediction results with respect to the experience factor h. Drivers can be subclassified into groups

according to their acceptance/rejection of advice based on the value of replication or prediction

accuracy at AGO.

In line with the above classification, individual route choice behavior in the simulation experiment

was studied with the neural network model by investigating the replication or prediction results

with different experience factors. Two cases of computation were conducted.
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CASE A: All the data from a total of 10 subjects were used for training the extended neural

network with 11 input variables (in total 10x32 input vectors). The replication rates were then

computed with different experience factors h varying from 0.0 to 1 .O by steps of 0.2.

CASE B: In this case, the route choice data were divided into two groups. For each subject, 16

cases out of 32 “day-to-day” route choices were randomly chosen for training the neural network

model and the remaining 16 cases were used for prediction. Therefore, there are 160 data points in

total for training and 160 data points for prediction.

100

80

60

CORRELATION COEF. = 0.85

50 60 70 80 90 100
(%) ACCEPTANCE OF ADVICE

FIGURE 7 Relationship between acceptance of advice and
percentage of correct prediction with zero experience factor.
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In both cases, the number of processing elements in the hidden layer was 3; parameters q=O.2 and

c&.9, the maximum number of cycles of training was set to be 1500.

We first examine the extreme situation of h =0, where subjects do not update their perception or

knowledge from one day to another. In this situation, the neural network model predicts driver

route choice based solely on the acceptance/rejection of route advice provided by the information

system and personal characteristics. Therefore, driver compliance with route guidance advice can

be observed from the replication rate or prediction accuracy at h =O. In fact, in Case A with all

route choices used for training, the neural network model gave the same replication rates of route

choices as the acceptance rates of advice for each subject, indicating that the model predicts that

subjects will follow the advised route. In Case B with half of the route choices used for training

and testing respectively, it is found that the percentage of correct prediction has a strong

relationship with the percentage acceptance of advice, as shown in Figure 7. The average

replication rate 79.7% in Case A and the average correct prediction 73.8% in Case B, the average

acceptance rate of advice 79.7% for 10 subjects, and the quality of advice 75% are found to be in

about the same order.

Computation results for Case A are shown in Figures 8 through 10. It can be observed that most of

the driver route choice behaviors fit into either Type 1 or Type 2. Based upon the shape of the

average curve, the optimal experience factor h is around 0.8 (see Figure 8), which implies that

most subjects made route choices based mainly on their recent experiences. It is interesting to see

that the dispersion of replication rates across subjects has a smallest value at the optimal experience

factor h*, and becomes larger as h approaches 0 or 1. This means that there is a large difference

among subjects in how to recognize past and recent experience in making route choice decisions.

In other words, personal characteristics generally had great influence on individual route choice

behavior. Moreover, the dispersion of replication rates at X=0 reflects the difference among

subjects in accepting advice.
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FIGURE 8 Replication of route choices with varying experience factor - Freeway
and Side road choice combined.

From Figures 9 and 10, it can be seen that route choice behavior is related to the characteristics of

the respective routes. It seems that in choosing the freeway, subjects integrate their past and recent

experiences in ways consistent with our hypotheses. However, most of the replication rate curves

for the side road, shown in Figure 10, exhibit no patterns similar to the hypotheses in Figure 6. It

seems that travel experience has less effect on the choice of side road compared with the freeway.

Prediction results by the neural network route choice model in Case B are individually shown in

Figures 1 la-d for four typical cases. It can be easily seen that subjects have different optimal

experience factors and the same subject has a different optimal experience factors for the freeway

and side road. These results demonstrate empirically that subjects have different abilities to

remember previous route choices. They also update their knowledge or perceptions in different

ways. There is an extensive diversity and variety of dynamic route choice behaviors across

different subjects and across different types of road. In practice, it may be difficult to use a unified

simple approach to describe driver route choice behavior. Similar findings on the differences

between drivers, but not within drivers, have also been reported (Haselkom, et al. 1991,

Stephanedes & Kwon 1989).
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FIGURE  9 Replication of route choices with varying experience factor.
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FIGURE10 Replication of route choices with varying experience factor.
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LIMITATIONS OF THE EXPERIMENT:

In the conduct of empirical investigations, the limitations of the experiments must be kept in mind.

Among the more important regarding this study are:

1) The number of replications: The individual replication rates are greatly influenced by the number

of route choices. In general, subjects tend to choose the freeway. In our experiment, the average

proportion of choices between the freeway and side road is approximately 1.4 :l. The average

number of choices of side road for a subject in the 32 sequential trials is thus 13. Giving one

wrong prediction will lead to 7.7% variation in the replication rate. This perhaps explains, to some

extent, why the replication curves for the side road shown in Figure 10 do not exhibit an

anticipated pattern. It appears that an increase in the number of sequential route choices for each

subject beyond 32 is needed to obtain more stable choice patterns for the side road.
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2) Perception updating strategy: The results presented in this paper are limited to a particular

perception updating strategy. The results suggest the need to carefully consider perception

updating strategies and experience factors. Further studies should include investigation of different

perception updating strategies and construction of a specific individual route choice behavior model

using different experience factors.

3) Model performance: The conclusions concerning route choice behaviors presume that the neural

network route choice model has a correct representation of driver route choice behaviors. The

reliability of the results, however, depends highly on the reliability of the model itself. Further

theoretical and empirical investigation on the performance of the neural network model should be

conducted in order to reliably analyze driver route choice behavior in the presence of ATIS.

4) Sample characteristics: The subjects used in the study are drawn from UC Davis students. The

testing is intended to examine the feasibility of the neural network approach. Generalizations to the

broader population of drivers or commuters require more extensive experimentation.

SUMMARY:

In this study a neural network model is developed to predict drivers’ route choice behavior under

ATIS. The data used for analysis was collected from learning experiments carried out at the

University of California at Davis using an interactive computer simulation. A series of validation

experiments with different route choice structures is first conducted to test the feasibility of the

approach. The neural network model is found to reasonably predict drivers’ route choice. The

constructed neural network model is then employed to explore the specific driver route choice

mechanism under ATIS. The manner in which drivers update their perception of travel conditions

was investigated, including the relative impact of the previous travel experiences on different days

and the route advice provided by the information system.

It was found that most subjects make route choices based mainly on their recent experiences. This

may indicate that drivers short term acceptance of advice is a function of their experiences, and if
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they are given poor information they are unlikely to follow the system advice in immediately

subsequent trips. Over time, however, they may return to following system advice if the system

performs well. Route choice behavior was also related to the characteristics of the respective

routes and varied significantly from driver to driver. The choice to use the freeway seems to be

reasonably modeled by our approach, and indicates a significant use of recent travel experiences in

updated choices with information. Choices to use the side road do not fit hypothesized behaviors,

but this may be partially a function of sample size limitations. There appears to be significant

differences both between and within subjects regarding the choice to use the freeway or surface

street; more retied models need to be tested in this area.

FUTURE RESEARCH:

Future research will continue to expand the modeling efforts undertaken here and in a companion

paper (Vaughn et al. 1992). Specific topics include:

1) Investigation of information update strategies to determine which strategies are most

representative of the ways in which drivers learn from their experiences.

2) Extension of the modeling framework to a more complex and realistic simulated transportation

network

3) Inclusion of mode choice and departure time choice in the experimental design
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