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ZFP14 Regulates Cancer Cell Growth and Migration by
Modulating p53 Protein Stability as Part of the MDM2 E3
Ubiquitin Ligase Complex
Shakur Mohibi * , Xinbin Chen and Jin Zhang *

Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California,
Davis, CA 95616, USA
* Correspondence: smohibi@ucdavis.edu (S.M.); jinzhang@ucdavis.edu (J.Z.)

Simple Summary: Cancer is among the leading causes of deaths in the US and worldwide. Although
extensive research has led to a decline in the overall cancer deaths in the US since the early 1990s,
cancer still remains a major cause of mortality in the US. The tumor suppressor p53 is the most
frequently mutated gene in all human cancers, accounting for a loss of function in more than 50% of
all human cancers. Even after years of extensive research on p53, most of the pathways regulating the
p53 family network are yet to be elucidated. Here, we identified a mutual regulation between p53 and
ZFP14, a member of the largest family of transcription factors in humans, whose functions have been
unknown till now. We showed that p53 can increase the amount of ZFP14 when cells are under stress
and that ZFP14, in turn, negatively affects the p53 protein levels forming a feedback loop. We also
showed that ZFP14 carries this out as part of a complex containing the major p53 negative regulator,
MDM2. Moreover, the removal of ZFP14 from cancer cells reduces their tumorigenic properties in a
manner dependent on p53 levels. Our findings reveal that ZFP14 might play an important role in
tumor suppression via p53.

Abstract: Multi-zinc finger proteins that contain a KRAB domain are part of the biggest family of
transcription factors in mammals. However, the physiological or pathological functions for the
majority of them are unknown. Here, we showed that ZFP14 (also known as ZNF531) is a p53
target gene that can be induced upon genotoxic stress in a p53-dependent manner. To determine
the function of ZFP14 in mouse and human cancer cell lines, we generated multiple cell lines where
ZFP14 was knocked out. We showed that ZFP14-KO inhibits cancer cell growth and migration. We
also showed that, as a target of p53, ZFP14, in turn, represses p53 expression and that the knockdown
of p53 restores the potential of ZFP14-KO cells to proliferate and migrate. Mechanistically, we found
that ZFP14 modulates p53 protein stability by increasing its ubiquitination via associating with and
possibly enhancing MDM2/p53 complex integrity through its zinc finger domains. Our findings
suggest that the reciprocal regulation of p53 and ZFP14 represents a novel p53-ZFP14 regulatory loop
and that ZFP14 plays a role in p53-dependent tumor suppression.

Keywords: ZFP14; p53; Mdm2; protein stability; cancer cell growth

1. Introduction

The KRAB-ZFPs (multi-zinc finger proteins containing Kruppel-associated box) are
part of the largest family of transcription factors in vertebrates, especially in mammals [1,2].
Although largely considered as DNA-binding transcriptional repressors, they can also acti-
vate transcription, as well as bind to RNA and proteins to execute their key functions [2–4].
The N-terminal KRAB domain generally facilitates the recruitment of repressive complexes,
whereas the signature residues in each of their zinc fingers aid in the recognition of spe-
cific nucleotides in DNA/RNA or specific amino-acids in proteins [3,5,6]. Despite their
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abundance and several large-scale studies showing their contribution to the evolution of
gene-regulatory networks, their role in physiology and various diseases, including cancer,
remains relatively rare [2,7,8].

The tumor suppressor p53 is the most commonly mutated gene in human cancers.
Upon various cellular stresses, p53 suppresses oncogenic traits by regulating various
transcriptional networks that induce cell growth inhibition or cell-death pathways [9,10].
Although p53 is one of the most studied proteins, the pathways that mediate p53-dependent
tumor suppression are not completely understood [9,10]. p53 is known to expand its
transcriptional network by activating several transcription factors, including multi-zinc
finger proteins, such as ZNF750, ZNF185 and Zfp871 [11–13]. Moreover, ZNF420, ZNF475
and ZNF568 directly interact with p53 and regulate the transcription of a small subset of p53-
target genes [14,15]. On the other hand, several ZFPs, such as ZNF307, Zfp871 and Zfp148,
regulate p53 protein stability by diverse mechanisms [12,16–19]. Thus, identifying more
zinc finger proteins from this largely understudied family as regulators of p53-dependent
tumor suppression will provide more insights into the p53 pathway.

Here, we established the KRAB zinc finger protein ZFP14 as a p53 target gene that is
induced upon genotoxic stress in a p53-dependent manner. Moreover, ZFP14-KO cancer
cells showed a decrease in cell growth and migration, which was a result of the negative
regulation of the p53 protein by ZFP14. Mechanistically, we found that ZFP14 modulates
p53 protein stability by associating with the MDM2/p53 complex and increasing p53-poly-
ubiquitination and degradation. Overall, our findings suggest that ZFP14 is an important
regulator of p53 during tumorigenesis.

2. Materials and Methods
2.1. Cell Culture, Cell Line Generation and Reagents

The mouse C2C12 cell and the human HCT116, MCF7 and RKO cells were purchased
from American Type Culture Collection (ATCC) and used within 2 months of thawing
or below passage 20. Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) was used to culture
all of the cell lines. Generation of ZFP14-KO HCT116 and MCF-7 cell lines was achieved
by transfecting two pSpCas9(BB)-2A-Puro vectors (Addgene plasmid#62988) expressing
single guide RNA (sgRNA) to remove ZFP14 exon 3 and create a frame shift deletion. The
two guide RNAs would create an approximately 287 base pair deletion leading to a frame
shift from amino acid 4 onwards. Puromycin was used to select the transfected cells, and
the clones obtained were genotyped using the primers: sense, 5′-CAA AAG GCT TGC
GTG CAC TA-3′, and antisense, 5′-GGC CTA GTT CCA ACC TGA CAA-3′. The bands
obtained from the genotyping were sequenced to confirm the deletion of the entire exon 3.
The clones were further tested to show loss of ZFP14 mRNA by RT-PCR. The clones that
did not show the deletion were sequenced and used as isogenic controls if the sequence in
the targeted region was not mutated or deleted.

2.2. Plasmids and siRNAs

Plasmids for pcDNA3-p53 and pcDNA3-2x-FLAG-Ubiquitin have been described
previously [20,21]. The pcDNA3-(mouse)Zfp14-FLAG ORF clone (Cat#OMu07658D) was
purchased from GenScript (Piscataway, NJ, USA). The cDNA clone for human ZFP14
(cloneid: 9053225) was obtained from Dharmacon (Lafayette, CO, USA). The human ZFP14
ORF was amplified from the cDNA clone using the primers: forward (containing HA-tag)-
5′ AGT CAA GCT TAT GTA CCC ATA CGA TGT TCC AGA TTA CGC TGC CCA TGG TTC
AGT GAC ATT-3′; and reverse–5′-AGT CCT CGA GTT AAA TTC CAT TAT GAA TCT-3′.
The resulting PCR amplicon was digested with HindIII-XhoI and cloned in pcDNA3 and
pcDNA4 vectors digested at the same sites. The clones obtained were sequence verified.

pSpCas9(BB)-2A-Puro vectors containing ZFP14 specific sgRNAs were generated
based on the previously described protocol [22]. The oligonucleotides used for cloning
sgZFP14-1 are sense, 5′-CAC CGG ATA GCA TGC AAA CAG CAT T-3′, and antisense,
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5′-AAA CAA TGC TGT TTG CAT GCT ATC C-3′; for sgZFP14-2, are sense, 5′-CAC CGC
TTT CTC TGC TGT CAA TTT C-3′, and antisense, 5′-AAA CGA AAT TGA CAG CAG
AGA AAG C-3′.

All of the small interfering RNAs (siRNAs) used in this study were purchased from
Dharmacon RNA Technologies (Lafayette, CO, USA) and are listed in Supplementary
Table S1.

2.3. Western Blot and IP-Western Blot Analysis

Western blotting was performed as previously described [23]. Briefly, 7–11% SDS-
polyacrylamide gels were used to resolve cell lysates and were transferred to nitrocellulose
membrane. A total of 2.5% milk in PBST was used to block the membranes at room tem-
perature (RT) for 30 min, and, following that, the membranes were incubated overnight at
4 ◦C with primary antibodies. The following day, after washing with PBST, the blots were
incubated in HRP-conjugated secondary antibodies for 1h at RT. All of the antibodies were
diluted in 2.5% milk containing PBST. After 5× washings with PBST, the immunoreactive
bands were soaked with enhanced chemiluminescence reagents (ThermoFisher Scientific,
Waltham, MA, USA), and then visualized by the BioSpectrum 810 Imaging System (UVP
LLC, Upland, CA, USA) and quantified by densitometry using ImageJ software. For im-
munoprecipitations (IP), cell lysates were prepared in IP-lysis buffer (20 mM Tris-HCl
[pH 7.5], 150 mM sodium chloride, 0.5% Nonidet P-40, 1 mM EDTA, and protease inhibitor
mixture). The lysates were incubated with 100U of benzonase (70664-10KU; Millipore
Sigma, Burlington, MA, USA) at 4 ◦C for 1 h, followed by mild sonication and centrifuga-
tion at 16,000× g for 15 min at 4 ◦C. The resulting lysates were incubated with 1.5–3 µg of
specified antibody or control IgG at 4 ◦C overnight. Next morning, magnetic A/G beads
from Pierce (ThermoFisher Scientific) were used to capture the immunocomplexes for 2 h at
4 ◦C, followed by extensive washing. The immunocomplexes were resolved on SDS-PAGE
and analyzed by Western blotting as described above. Antibodies used were: MDM2
(1:1000) (sc-965), p21 (1:1000) (sc-53870), actin (1:3000) (sc-133155), and GST (1:5000) (sc-138)
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); HA (1:3000) (W15093A)
from BioLegend (San Diego, CA, USA); mouse anti-p53 (1:2000) (DO-1, AHO0152) from
Invitrogen (Waltham, MA, USA); rabbit anti-p53 (1:1000) (Cal#BS-8687R) from Bioss Anti-
bodies (Woburn, MA, USA); mouse anti-mouse p53 (1:2000) (1C12, Catl#2524) from Cell
Signaling (Danvers, MA, USA).

2.4. RNA Isolation and RT-PCR

TRIzol reagent (Invitrogen) was used to harvest total RNA from cells. cDNA was syn-
thesized from 2 µg total RNA using RevertAid First Strand cDNA Synthesis kit according
to the manufacturer’s protocol (ThermoFisher Scientific). The levels of various transcripts
were measured by qRT-PCR or semiquantitative PCR with primers listed in Supplementary
Table S2.

2.5. Protein Half-Life Assay

Cells were treated with cycloheximide (CHX), an inhibitor of protein translation, at
the indicated times to measure p53 protein stability. The relative level of remaining p53
protein over time was quantified using ImageJ software and normalized using the level of
actin. The values for remaining p53 were plotted versus treatment time and the half-life of
p53 protein calculated from the graph.

2.6. Chromatin Immunoprecipitation (ChIP) Assays

ChIP assays were performed based on previously published protocols [24]. In brief,
p53 expression was induced by treating RKO cells with 250 nM camptothecin (CPT) for 16 h,
fixed with 1% paraformaldehyde and lysed with lysis buffer (5 mM HEPES pH 8.0, 85 mM
KCl, 0.5% NP-40, protease inhibitor cocktail) on ice for 10 min. Nuclei were subsequently
collected by centrifugation and lysed in 1× RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl,



Cancers 2022, 14, 5226 4 of 14

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM MgCl2, protease inhibitor cocktail)
on ice for 10 min. The chromatin was sonicated on ice using Branson 150 Ultrasonics
Sonifier (Fisher Scientific, Waltham, MA, USA) at amplitude 43%, 20 s on and 30 s off, for
a total of 22 pulses. The chromatin was centrifuged at 16,000× g for 15 min at 4 ◦C, and
immunoprecipitated with anti-p53 (DO-1, AHO0152, Invitrogen) for ChIP assay. IP with
normal mouse IgG was used as a negative control for ChIP. Before setting up IPs, 10% of
the lysates were taken out as inputs. The inputs were processed in the same manner as the
IP samples. The binding of p53 to the p53-REs in the human ZFP14 and p21 promoters was
detected by PCR with the primers listed in Supplementary Table S3. The putative p53-REs
in the human ZFP14 gene were identified using a web tool (p53famtag.ba.itb.cnr.it) and
also by manual searches in the promoter region 3 kb upstream of TSS and in the entire
intron 1 region.

2.7. Colony Formation Assays

The protocol for colony formation assays has been described previously [23]. Briefly,
1000 isogenic control or ZFP14-KO HCT116 or MCF-7 cells were plated in 3 wells of a
6-well plate and grown until colonies were visible with change in medium every 3 days.
Subsequently, the colonies were stained with crystal violet after fixing with methanol: acetic
acid (7:1). ColonyArea plug-in tool in ImageJ software was used to quantify the colony area
based on the published protocol [25] and represented as percentage of colony area relative
to the isogenic control. For colony formations after siRNA treatment, 5 × 105 isogenic
control or ZFP14-KO HCT116 cells were plated in one well of a 12-well plate followed
by transfection with control or p53 siRNAs. The following day, 1000 cells for each group
were plated in one well of a 6-well plate in triplicates and subsequently grown, fixed and
quantified as above.

2.8. Wound-Healing Assay

HCT116 and MCF7 cells were plated at 50% confluency. Next day, when the cells
reached 70% confluency, a scratch was made with a 10 µL pipette tip. Following this, the
cells were incubated with fresh medium for 48 h and then captured with Nikon microscope
(Nikon Corporation, Tokyo, Japan).

2.9. GST Pull-Down Assay

The protocol published by Frangioni and Neel [26] was used to purify GST-ZFP14
wild-type or mutants from bacterial lysates. After purification, 1 µg of glutathione bead
bound GST, GST-ZFP14 wild-type or mutants were incubated with lysates from indicated
cell lines prepared in lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM sodium chloride, 0.5%
Nonidet P-40, protease inhibitor cocktail) for 4 h at 4 ◦C and washed extensively using lysis
buffer. The pulled-down proteins were resolved by SDS-PAGE, transferred to nitrocellulose
membrane and immunoblotted as described above.

2.10. Ubiquitination Assay

For in vivo ubiquitination assays, pcDNA3 constructs containing WT-p53 and 2×-Flag-
ubiquitin with or without HA-ZFP14 were transfected into HCT116 cells using Jetprime
transfection reagent for 20 h, followed by treatment with 20 µM MG132 for 5 h. Following
this, cells were lysed in 1× RIPA buffer and the lysates were immunoprecipitated with
mouse anti-p53 antibody (AHO0152, Invitrogen) followed by Western blot analysis with
HRP conjugated anti-FLAG antibody (1:3000) (Cat#86852, Cell Signaling) or rabbit anti-p53
antibody (1:1000) (Cat#BS-8687R, Bioss Antibodies) to detect poly-ubiquitinated p53.

2.11. Statistical Analysis

The graphs for qRT-PCRs and colony formation assays are presented as means ±
standard error of the mean (SEM) or means± standard deviation (SD). Two-tailed Student’s
t-tests were used to calculate the p-values for qRT-PCRs and colony formation assays, and



Cancers 2022, 14, 5226 5 of 14

p-value < 0.05 was considered statistically significant. n = 3 for each experimental data
point. Statistical analyses were performed and the graphs were made using Microsoft Excel
(Microsoft, Redmond, WA, USA).

3. Results
3.1. ZFP14 Expression Correlates with p53 in Human Tissues and ZFP14 Is Induced upon DNA
Damage in a p53-Dependent Manner

KRAB-ZFPs have the unique ability to regulate both p53-mediated transcription and
p53 protein stability [12,14–19]. In addition, the regulation of KRAB-ZFPs by p53 widens
the ability of p53 to indirectly regulate several genes, as KRAB-ZFPs can recognize unique
DNA, RNA and protein sequences [2–4]. This is important because, out of the several genes
identified as p53 targets, only a fraction are directly regulated by p53 and a majority of
them are indirect targets [27,28]. Thus, identifying novel KRAB-ZFPs as p53 targets is a
key area in cancer research. In order to identify putative KRAB-ZFPs as p53 targets, we
examined the co-expression of several KRAB-ZFPs with p53 in normal human tissues using
the online tool GEPIA. We found that the expression of ZFP14 was positively correlated
with that of p53 in several normal human tissue samples (Figures 1A–C and S1A–D). In
addition, we also showed the correlation of ZFP14 expression with that of other p53 target
genes, MDM2 and CDKN1A (p21), in normal human tissues (Supplementary Figure S1E–
H). Moreover, we examined the correlation of ZFP14 expression with that of p53 mRNA
expression/mutations in the TCGA pan cancer database. Interestingly, we observed that
cancers having a lower ZFP14 expression were correlated with those having p53 mutations,
indicating that the wild-type p53 status is required for higher levels of ZFP14 in cancer
patients (Supplementary Figure S1I). ZFP14 (also known as ZNF531) consists of an N-
terminal KRAB domain, a linker region and 13 C2H2-type zinc fingers in the C-terminus
(Figure 1D). A search for a homolog in mice identified mouse Zfp14 as having an 88%
similarity to human ZFP14 (Supplementary Figure S2A). The multi-ZNFs recognize specific
DNA, RNA or protein sequences via the variable amino acids present at positions −1, +2,
+3 and +6 of each zinc finger domain [2]. As the variable residues for each zinc finger are
different, every multi-ZNF protein has a unique zinc finger signature based on the variable
residues present in each of its zinc fingers. Because these variable residues decide the
substrate identity, we compared the zinc finger signatures of human and mouse ZFP14.
Notably, the comparison of the zinc fingerprint between the human and mouse ZFP14
showed those to be identical (Supplementary Figure S2B).

Next, we examined if ZFP14 can be induced upon DNA damage in a p53-dependent
manner. For this, we used wild-type p53 containing human cancer cells MCF7, RKO
and HCT116, as well as mouse myocyte cells C2C12, and treated them with a DNA-
damaging agent doxorubicin (DOX) or camptothecin (CPT). We found that DNA damage
led to an increased expression of ZFP14 along with the positive control p21 (Figure 1E–H).
Importantly, the increase in ZFP14 expression post DNA-damage was p53-dependent, as
we did not observe this increase in TP53-KO MCF7 and RKO cells (Figure 1I,J). Moreover,
the induction of p53 in H1299 p53-null cells also resulted in a robust increase in ZFP14
expression along with p21 (Figure 1K). We also confirmed the expression of p53 protein in
all of the above samples by Western blotting (Supplementary Figure S3A–H).

To determine if ZFP14 is a direct p53 target, we searched for putative p53-responsive
element(s) (p53-RE) in the ZFP14 genomic locus. We found three putative p53-REs that
were all located in the intron 1 of the human ZFP14 gene (Figure 1L). To determine if any of
these putative p53-REs are bound by p53, we performed chromatin immunoprecipitation
(ChIP) assays after treating cells with DNA damage. We showed that p53 recognized only
p53-RE2, but not p53-RE1 or p53-RE3 (Figure 1M). As a positive control, we showed the
binding of p53 to the p21 promoter following DNA damage (Figure 1M). Thus, ZFP14 is
induced by genotoxic stress in a p53-dependent manner.
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Figure 1. ZFP14 is induced upon DNA damage and is a p53 target. (A–C) Correlation of ZFP14
expression with p53 expression in normal human tissues from GEPIA. (D) Schematic showing the
various domains and motifs present in human and mouse ZFP14. AA; amino acids. (E–G) The levels
of ZFP14, p21 and Actin mRNAs were measured by RT-PCR in MCF7 cells mock-treated or treated
with 250 nM CPT (E) or RKO cells (F) and HCT116 cells (G) mock-treated or treated with 250 µg/mL
Dox for 18 h. (H) The levels of Zfp14, p21 and Actin transcripts were measured in mouse C2C12 cells
mock-treated or treated with 250 µg/mL Dox for 12-36 h. (I,J) qRT-PCR was used to measure the
levels of ZFP14 and p21 mRNAs in MCF7 WT or p53-KO cells mock-treated or treated with 250 nM
CPT (I) and RKO WT or p53-KO cells mock-treated or treated 350 µg/mL Dox for 18 h (J). (K) The
levels of p53, ZFP14, p21 and Actin mRNAs were measured by RT-PCR in H1299 cells (H24-p53-15
clone) uninduced or induced to express p53 for 24 h. (L) Sequences of consensus p53-RE, the putative
p53-REs located in ZFP14 intron 1 and p53-RE2 in the p21 promoter. Also shown are the locations
of the p53-REs in the human ZFP14 and human p21 gene regions and the primer locations used for
chromatin immunoprecipitation (ChIP) assays. (M) RKO cells were treated with 250 nM CPT for 16 h
and the lysates obtained were used to perform ChIP assays using p53 antibody. PCR was performed
using primers shown in (L) to determine the p53 binding to the ZFP14 promoter region. p53 binding
to the p21 promoter upon DNA damage was used as a positive control.
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3.2. Human and Mouse ZFP14 Negatively Regulate p53

Several genes that are regulated by p53, such as MDM2 and RBM38, in turn regulate
p53, forming a feedback loop [29,30]. To test this, we transiently expressed mouse/human
ZFP14 in multiple mouse and human cancer cells. We showed that the levels of p53 protein
were decreased by the over-expression of mouse Zfp14 in mouse C2C12, as well as by the
over-expression of human ZFP14 in HCT116 and MCF7 cells (Figure 2A–C). Conversely,
the knockdown of Zfp14 markedly increased the level of p53 protein in mouse C2C12 cells
(Figure 2D). Similarly, the KD of ZFP14 in HCT116 and MCF7 cells led to a substantial p53
increase (Figure 2E,F). Moreover, we also generated ZFP14-KO HCT116 and MCF7 cell
lines using CRISPR-Cas9 (Supplementary Figure S4A–C) and tested the p53 levels in those.
Examining ZFP14 mRNA expression in the isogenic controls and ZFP14-KO clones revealed
no ZFP14 mRNA in KO clones (Figure 2G,I). Notably, we observed elevated p53 protein in
ZFP14-KO HCT116 and MCF7 clones compared to isogenic controls (Figure 2H,J). These
data indicate that ZFP14 can negatively regulate both mouse and human p53 expression.
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Figure 2. Human and mouse ZFP14 negatively regulate p53. (A–C) ZFP14, p53 and actin/GAPDH
protein levels were measured by Western blotting in mouse C2C12 (A), human HCT116 (B) and
human MCF7 (C) cells transiently transfected with either empty vector, mouse Zfp14-FLAG (A) or
human HA-ZFP14 (B,C) for 24 h. (D–F) The levels of ZFP14 and actin mRNAs (left panels) or p53
and GAPDH/actin proteins (right panels) were measured in mouse C2C12 (D), human HCT116 (E)
and human MCF7 (F) cells that were transfected with 75 nM scramble or ZFP14 siRNA for 72 h. (G,I)
The levels of ZFP14 and actin mRNAs were measured in isogenic controls and ZFP14-KO HCT116
(clones #25 and #10) cells (G) or isogenic control and ZFP14-KO MCF7 (clone #4) cells (I). (H, J) The
levels of p53 and actin proteins were measured in isogenic controls and ZFP14-KO HCT116 (clones
#25 and #10) cells (H) or isogenic control and ZFP14-KO MCF7 (clone #4) cells (J).
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3.3. ZFP14 Regulates p53 Protein Stability by Associating with MDM2

p53 expression is known to be regulated by two major pathways: transcriptional and
post-transcriptional mechanisms [9]. As ZFP14 can act as a transcriptional repressor, we
first determined the mRNA levels of p53 in isogenic control and ZFP14-KO cells. We found
no difference in the p53 mRNA levels in ZFP14-KO HCT116 and MCF7 cells compared to
the isogenic control cells (Figure 3A,D), ruling out the regulation of p53 mRNA by ZFP14.
Next, we looked to determine if ZFP14 can regulate p53 protein stability. For this, we
treated isogenic control and ZFP14-KO HCT116 and MCF7 clones with cycloheximide
(CHX) for various times. We found that ZFP14 deletion led to an increased p53 protein
stability in both HCT116 and MCF7 cells (Figure 3B,E). The p53 protein half-life increased
from 69 min in isogenic control HCT116 cells to 231 min in ZFP14-KO cells (Figure 3C).
Similarly, ZFP14-KO MCF7 showed a p53 protein half-life increase to 99 min from 30 min
in isogenic control cells (Figure 3F).
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Figure 3. ZFP14 regulates p53 protein stability through MDM2. (A,D) The levels of p53 and actin
mRNAs were measured in isogenic controls and ZFP14-KO HCT116 (clones #25 and #10) cells (A) or
isogenic control and ZFP14-KO MCF7 (clone #4) cells (D). (B,E) The levels of p53, vinculin and actin
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proteins were measured in isogenic control and ZFP14-KO HCT116 (clone# 25) cells (B) or isogenic
control and ZFP14-KO MCF7 (clone #4) cells (E) mock-treated or treated with cycloheximide (CHX)
for indicated times. (C,F) The relative level of p53 protein in (B,E) was normalized to actin and the
half-life of p53 protein was calculated by plotting the remaining protein over time. (G,H) pcDNA3-
p53 and pcDNA3-2×-Flag-ubiquitin with or without pcDNA3-HA-ZFP14 were transfected in HCT116
cells followed by treatment with 20 µM MG132 for 5 h. Poly-ubiquitinated p53 levels in whole-cell
lysates were measured by immunoprecipitation with mouse anti-p53 antibody followed by Western
blotting with FLAG-HRP (G) or rabbit anti-p53 (H). (I,J) The levels of p53 and actin proteins were
measured in isogenic control and ZFP14-KO HCT116 (clone# 25) cells (I) or isogenic control and
ZFP14-KO MCF7 (clone #4) cells (J) mock-treated or treated with Nutlin for 16 h. (K) The levels of
p53 and actin proteins were measured in isogenic control and ZFP14-KO HCT116 (clone# 25) cells
mock-treated or treated with 250 µg/mL Dox for 18 h.

As ubiquitination is a major mechanism by which p53 protein stability is regulated,
we next investigated whether ZFP14 promotes p53 ubiquitination, resulting in enhanced
p53 degradation. For this, we co-expressed p53 and 2×-FLAG-ubiquitin with or without
HA-ZFP14 in HCT116 cells followed by treatment with 20 µM MG132 for 5 h. As seen
in Figure 3G,H, we observed a robust increase in poly-ubiquitinated p53 upon ectopic
expression of ZFP14, suggesting that ZFP14 regulates p53 protein stability by modulating
its ubiquitination.

Since MDM2 is the major E3 ubiquitin ligase for p53 that regulates p53 protein stabil-
ity [31], we next examined if ZFP14 regulates p53 protein stability through MDM2. For
this, we examined p53 levels in isogenic control and ZFP14-KO clones treated with or with-
out Nutlin-3, an inhibitor of MDM2-p53 interaction. We observed increased p53 protein
upon Nutlin treatment in isogenic control cells; however, p53 was not further increased
in ZFP14-KO HCT116 and MCF7 cells treated with Nutlin (Figure 3I,J), indicating that
ZFP14 regulates p53 protein stability through MDM2. In addition, as opposed to the Nutlin
treatment above, we showed that the levels of p53 were further increased by genotoxic
stress in ZFP14-KO cells compared to isogenic control cells (Figure 3K), showing that ZFP14
regulates p53 levels under basal and stress conditions possibly through MDM2.

To determine how ZFP14 regulates p53 protein stability, we examined whether ZFP14
may associate with the p53/MDM2 complex through its interaction with the KRAB-
associated protein-1 (KAP1, also called TRIM28) as a part of the MDM2 E3 ubiquitin
ligase complex [32]. To test this, we overexpressed p53 and HA-ZFP14 in HCT116 cells
and performed co-immunoprecipitation experiments using anti-HA (ZFP14) (Figure 4A)
or anti-p53 antibodies (Figure 4B). We found that ZFP14 pulled down both MDM2 and
p53 (Figure 4A), indicating that ZFP14 forms a complex with MDM2-p53. Similarly, we
showed that p53 was able to pull down both ZFP14 and MDM2 (Figure 4B). Importantly,
we tested if ZFP14 can associate with endogenous p53 by performing anti-HA or anti-p53
co-immunoprecipitations in HCT116 cells overexpressing only HA-ZFP14. As seen in
Figure 4C, we showed that ZFP14 associated with endogenous p53 and MDM2. Moreover,
reciprocal immunoprecipitation with anti-p53 antibodies showed that endogenous p53 was
also present in a complex with ZFP14 and MDM2 (Figure 4D).

The N-terminal KRAB domain in KRAB-ZNFs is known to be necessary for their
association with MDM2 [24]. Specifically, a conserved aspartate and valine in the KRAB
domain has been shown to be essential for the association of the KRAB domain with
the KAP1-MDM2 complex [6]. Thus, to test if ZFP14 associates with MDM2 through
interacting with KAP1 via the KRAB domain, we mutated the aspartate and valine residues
in position 10 and 11 of human ZFP14 to alanine residues (DV:AA mutant) (Figure 4E;
also see Supplementary Figure S1A). Next, we performed GST pull-down assays with
GST-tagged full-length ZFP14 and the ZFP14 DV:AA mutant using lysates from HCT116
cells. Surprisingly, we found that, like the full-length ZFP14, the DV:AA mutant of ZFP14
was still able to associate with MDM2 and p53 (Figure 4F), indicating that ZFP14 might
associate with the MDM2-p53 complex independent of its KRAB domain. To test this
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theory, we generated various GST-tagged truncated mutants of ZFP14 (Figure 4E). GST
pull-down assays using HCT116 cell lysates showed that full-length ZFP14 and ZFP14∆45,
as well as ZFP14-∆79, were all able to associate with MDM2 and p53 (Figure 4G), consistent
with the above findings. Notably, the ZFP14-∆ZnF mutant lacking all of the zinc fingers
was defective in bringing down both MDM2 and p53 (Figure 4G), suggesting that, unlike
other KRAB-zinc finger proteins, ZFP14 associates with MDM2/p53 via its zinc fingers and
possibly enhances MDM2/p53 complex integrity. Further, to examine if ZFP14 can bind to
MDM2 independent of p53, we performed GST pull-down assays using HCT116-p53-KO
cell lysates and showed that the full-length ZFP14 and ZFP14∆45, as well as ZFP14-∆79,
were all able to bring down MDM2 independent of p53 (Figure 4H).
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Figure 4. ZFP14 associates with MDM2-p53 complex via its zinc finger domains. (A–D) Lysates
from HCT116 cells transfected with indicated plasmids were subjected to immunoprecipitation using
anti-HA (A,C) or anti-p53 (B,D) antibodies. The immunoprecipitates were subjected to Western
blotting to measure the association of p53, ZFP14 and MDM2 proteins. (E) Schematic diagrams and
names of all of the GST-fused mutants of ZFP14 used for GST pull-down assays. The DV residues
correspond to amino acids 10 and 11, respectively, in human ZFP14. (F,G) GST pull-down assays were
performed by incubating the indicated bacterially purified GST-fusion proteins with HCT116 cell
lysates followed by washes and Western blotting using the indicated antibodies. (H) GST pull-down
assays were performed by incubating the indicated bacterially purified GST-fusion proteins with
HCT116-p53-KO cell lysates followed by washes and Western blotting using the indicated antibodies.

3.4. Decrease in Cancer Cell Growth and Migration upon ZFP14 KO Is p53-Dependent

As ZFP14 appeared to be a bona fide p53 target that negatively regulated p53, we
next assessed the effect of ZFP14 deficiency on cellular oncogenic traits. To test this, we
performed clonogenic assays and showed that the ability of ZFP14-KO cells to form colonies
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was significantly decreased compared to isogenic controls in both HCT116 and MCF7 cells
(Figure 5A,B). Furthermore, scratch assays showed decreased cell migration in ZFP14-KO
clones compared to the isogenic control cells in both HCT116 and MCF7 cells (Figure 5C,D),
suggesting that ZFP14 promotes cancer cell proliferation and migration.
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Figure 5. Decrease in cancer cell growth and migration upon ZFP14 KO is p53-dependent. (A,B)
Isogenic control and ZFP14-KO HCT116 (clone #10) cells: (A) cells or isogenic control and ZFP14-KO
MCF7 (clone #4) cells (B) were plated for clonogenic assays and grown for two weeks, followed by
fixation and crystal violet staining. ColonyArea plugin in ImageJ was used to quantify the relative
colony areas, which are shown below each image. (C,D) Wound-healing assay was performed with
isogenic control and ZFP14-KO HCT116 (clone #10) cells (C) or isogenic control and ZFP14-KO MCF-7
(clone #4) cells (D) for a period of 48 h. (E) The levels of p53, p21 and actin proteins were measured
by Western blotting in isogenic control and ZFP14-KO HCT116 cells transfected with scramble, p53
siRNA#1 or p53 siRNA#2 for 72 h. (F) The cells treated as in (E) were plated for clonogenic assays
48 h after transfection and, after two weeks, the colonies were fixed and stained with crystal violet.
(G) ColonyArea plugin in ImageJ was used to quantify the relative colony areas from (F) and plotted
as percentage colony area. The area of isogenic control cells transfected with control siRNA was set at
100%. (H) The levels of p53, p21 and actin proteins were measured by Western blotting in isogenic
control and ZFP14-KO MCF7 cells transfected with control, p53 siRNA#1 or p53 siRNA#2 for 72 h. (I)
72 h after transfection, the cells treated as in (H) were subjected to wound-healing assays for 48 h.
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As the loss of ZFP14 inhibits cell proliferation and migration but increases p53 protein
in ZFP14-KO cells, we reasoned that the decrease in cell proliferation and migration could
be a result of an increased p53. To examine if the reduced cell proliferation upon ZFP14-KO
is indeed caused by an increased p53, we transiently knocked down p53 using two different
siRNAs in ZFP14-KO, as well as in isogenic control HCT116 cells (Figure 5E). We observed
decreased p53 levels, as well as its target p21, upon p53 KD (Figure 5E). Next, we used these
cells for colony formation assays. Upon transfection with the p53 siRNAs, isogenic control
cells showed a modest increase in the ability to form colonies compared to scrambled
siRNA (Figure 5F, top panel and Figure 5G), consistent with the well-known fact that the
loss of wild-type p53 promotes cell growth. Notably, the KD of p53 completely reversed the
defect in cell proliferation compared to that by control siRNA in ZFP14-KO cells (Figure 5F,
lower panel and Figure 5G), indicating that an increased p53 is responsible for decreased
cell proliferation in ZFP14-KO cells. Similarly, to determine if the decreased cell migration
observed in ZFP14-deficient cells is also p53-dependent, scratch assays were performed
with isogenic control and ZFP14-KO MCF7 cells transfected with control siRNA or two
separate p53 siRNAs (Figure 5H). We showed that the KD of p53 in isogenic control resulted
in an increased cell migration, consistent with the well-known fact that the loss of wild-type
p53 promotes cell migration. Notably, the decreased migration observed in ZFP14-KO cells
was ameliorated upon the KD of p53 (Figure 5I). These data suggest that the decreased
tumor cell proliferation and migration observed in ZFP14-KO cells is p53-dependent.

4. Discussion

KRAB-ZFP genes represent >1% of the genes in humans and other higher vertebrates,
with increased numbers correlating with advanced evolution [33]. Thus, they seem to have
important functions in mammalian development and diseases, including cancer. Despite
their numbers and importance, the function of a majority of them remains ambiguous.
Here, we showed a positive correlation of ZFP14 with p53 in several normal human tissues
and also showed a negative correlation of ZFP14 with p53 mutations in human cancer
samples. Subsequently, we identified ZFP14 as a p53 target gene. Further, we showed that
the deletion of ZFP14 from cancer cells leads to a decrease in their oncogenic properties,
which is caused by the negative regulation of p53 by ZFP14.

Several important p53 target genes are still being discovered even after decades of
research. Interestingly, a number of zinc finger proteins, such as ZNF365, ZFP871, ZNF750
and ZNF185, have been identified as direct targets of p53 family members [11–13,34],
indicating the importance of zinc finger proteins in the p53 pathway. This is because zinc
finger proteins have the unique ability to bind and regulate DNA and RNA, as well as
proteins [2–4]. Thus, the p53-mediated regulation of multi-ZFPs increases the repertoire
of targets that p53 can modulate indirectly. Moreover, the induction of KRAB-ZFPs could
also help in the p53-dependent regulation of endogenous retrolelement and transposon
expression that KRAB-ZFPs are known to bind to [33,35]. Here, we found that ZFP14
expression correlates with that of p53 in several normal tissues, which prompted us to
examine if ZFP14 is transcriptionally regulated by p53. In that respect, we found that ZFP14
is induced by DNA damage in a p53-dependent manner. We also showed that p53 binds to
a p53-RE in the intron 1 of the ZFP14 gene and directly regulates ZFP14 expression.

Multiple p53 target genes, including several zinc finger proteins, in turn negatively
or positively regulate p53 expression and/or activity, thus forming regulatory feedback
loops [12,30,36]. While some zinc finger proteins, such as ZNF420, PISA and PITA, differen-
tially regulate p53-mediated transcription, protein stability remains the major mechanism
controlling p53 function [14,15,37]. In this regard, we and others have shown that ZFP871,
ZFP148 and ZER6 regulate p53 protein function by modifying its stability via MDM2, a crit-
ical E3 ligase of p53 [12,19,38]. Here, we showed that ZFP14 associates with p53 and MDM2
and negatively regulates p53 protein stability, possibly by enhancing the p53/MDM2 com-
plex integrity. Surprisingly, the GST pull-down assay revealed that ZFP14 associates with
p53 and MDM2 through its zinc finger domains but not through its N-terminus KRAB
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domain, the latter of which is shown to associate with MDM2 via its interaction with
KAP1 [32]. Interestingly, other KRAB-ZFPs, such as ZNF420 and ZFP148, also associate
with the p53/MDM2 complex through their zinc finger domains [14,19]. Thus, ZFP14 regu-
lates p53 protein stability by associating and possibly enhancing the p53/MDM2 complex
integrity. Taken together, we conclude that the p53-MDM2-ZFP14 pathway plays a critical
role in tumor cell survival and dissemination.

5. Conclusions

The biological functions of most KRAB-ZFPs are unknown and thus the identification
of the physiological and cancer-specific function of ZFP14 is significant. Our findings sug-
gest that the mutual regulation of p53 and ZFP14 represents a novel p53-ZFP14 regulatory
loop and that ZFP14 plays a role in p53-dependent tumor suppression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215226/s1, Figure S1: ZFP14 expression positively
correlates with wild-type p53 in normal human tissues and inversely correlates with mutant p53
in tumor tissues; Figure S2: ZFP14 domain structure, human and mouse ZFP14 similarity and zinc
finger signature; Figure S3: p53 expression in various cells induced by DNA damaging agents;
Figure S4: Strategy used to knock-out ZFP14 in cancer cell lines using CRISPR-Cas9; Table S1: siRNA
oligonucleotides; Table S2: Primers used for qRT-PCR and RT-PCR; Table S3: Primers used for
ChIP-PCR.

Author Contributions: Conceptualization, S.M. and X.C.; methodology, S.M., X.C. and J.Z.; inves-
tigation, S.M.; resources, S.M., X.C. and J.Z.; data curation, S.M. and J.Z.; writing—original draft
preparation, S.M.; writing—review and editing, S.M., X.C. and J.Z.; supervision, X.C., and J.Z.; fund-
ing acquisition, X.C. All authors have read and agreed to the published version of the manuscript.

Funding: NIH grants CA250338 and CA224433.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank members of the Chen-Zhang laboratory for suggestions
and helpful discussions. This work is supported in part by National Institutes of Health grants
[CA224433 and CA250338 to XC].

Conflicts of Interest: The authors declare no potential conflict of interest.

References
1. Ecco, G.; Imbeault, M.; Trono, D. KRAB zinc finger proteins. Development 2017, 144, 2719–2729. [CrossRef] [PubMed]
2. Emerson, R.O.; Thomas, J.H. Adaptive evolution in zinc finger transcription factors. PLoS Genet. 2009, 5, e1000325. [CrossRef]

[PubMed]
3. Gamsjaeger, R.; Liew, C.K.; Loughlin, F.E.; Crossley, M.; Mackay, J.P. Sticky fingers: Zinc-fingers as protein-recognition motifs.

Trends Biochem. Sci. 2007, 32, 63–70. [CrossRef] [PubMed]
4. Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in

health and disease. Cell Death Discov. 2017, 3, 17071. [CrossRef]
5. Friedman, J.R.; Fredericks, W.J.; Jensen, D.E.; Speicher, D.W.; Huang, X.P.; Neilson, E.G.; Rauscher, F.J. KAP-1, a novel corepressor

for the highly conserved KRAB repression domain. Genes Dev. 1996, 10, 2067–2078. [CrossRef]
6. Brown, R.S. Zinc finger proteins: Getting a grip on RNA. Curr. Opin. Struct. Biol. 2005, 19, 94–98. [CrossRef]
7. Yang, P.; Wang, Y.; Macfarlan, T.S. The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution.

Trends Genet. 2017, 33, 871–881. [CrossRef]
8. Imbeault, M.; Helleboid, P.Y.; Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature

2017, 543, 550–554. [CrossRef]
9. Vousden, K.H.; Prives, C. Blinded by the Light: The Growing Complexity of p53. Cell 2009, 137, 413–431. [CrossRef]
10. Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [CrossRef]
11. Smirnov, A.; Cappello, A.; Lena, A.M.; Anemona, L.; Mauriello, A.; Di Daniele, N.; Annicchiarico-Petruzzelli, M.; Melino, G.;

Candi, E. ZNF185 is a p53 target gene following DNA damage. Aging 2018, 10, 3308–3326. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers14215226/s1
https://www.mdpi.com/article/10.3390/cancers14215226/s1
http://doi.org/10.1242/dev.132605
http://www.ncbi.nlm.nih.gov/pubmed/28765213
http://doi.org/10.1371/journal.pgen.1000325
http://www.ncbi.nlm.nih.gov/pubmed/19119423
http://doi.org/10.1016/j.tibs.2006.12.007
http://www.ncbi.nlm.nih.gov/pubmed/17210253
http://doi.org/10.1038/cddiscovery.2017.71
http://doi.org/10.1101/gad.10.16.2067
http://doi.org/10.1016/j.sbi.2005.01.006
http://doi.org/10.1016/j.tig.2017.08.006
http://doi.org/10.1038/nature21683
http://doi.org/10.1016/j.cell.2009.04.037
http://doi.org/10.1038/nrc2723
http://doi.org/10.18632/aging.101639


Cancers 2022, 14, 5226 14 of 14

12. Mohibi, S.; Zhang, J.; Chen, M.; Chen, X. Mice Deficient in the RNA-Binding Protein Zfp871 Are Prone to Early Death and
Steatohepatitis in Part through the p53–Mdm2 Axis. Mol. Cancer Res. 2021, 19, 1751–1762. [CrossRef]

13. Sen, G.L.; Boxer, L.D.; Webster, D.E.; Bussat, R.T.; Qu, K.; Zarnegar, B.J.; Johnston, D.; Siprashvili, Z.; Khavari, P.A. ZNF750 Is a
p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation. Dev. Cell 2012, 22, 669–677. [CrossRef]

14. Tian, C.; Xing, G.; Xie, P.; Lu, K.; Nie, J.; Wang, J.; Li, L.; Gao, M.; Zhang, L.; He, F. KRAB-type zinc-finger protein Apak specifically
regulates p53-dependent apoptosis. Nat. Cell Biol. 2009, 11, 580–591. [CrossRef]

15. Wang, S.; Peng, Z.; Wang, S.; Yang, L.; Chen, Y.; Kong, X.; Song, S.; Pei, P.; Tian, C.; Yan, H.; et al. KRAB-type zinc-finger
proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res. 2018, 28, 572–592.
[CrossRef]

16. Yan, W.; Scoumanne, A.; Jung, Y.S.; Xu, E.; Zhang, J.; Zhang, Y.; Ren, C.; Sun, P.; Chen, X. Mice deficient in poly(C)-binding protein
4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes Dev.
2016, 30, 522–534. [CrossRef]

17. Li, J.; Wang, Y.; Fan, X.; Mo, X.; Wang, Z.; Li, Y.; Yin, Z.; Deng, Y.; Luo, N.; Zhu, C.; et al. ZNF307, a novel zinc finger gene
suppresses p53 and p21 pathway. Biochem. Biophys. Res. Commun. 2007, 363, 895–900. [CrossRef]

18. Sayin, V.I.; Nilton, A.; Ibrahim, M.X.; Ågren, P.; Larsson, E.; Petit, M.M.; Hultén, L.M.; Ståhlman, M.; Johansson, B.R.; Bergo, M.O.;
et al. Zfp148 Deficiency Causes Lung Maturation Defects and Lethality in Newborn Mice That Are Rescued by Deletion of p53 or
Antioxidant Treatment. PLoS ONE 2013, 8, e55720. [CrossRef]

19. Bai, L.; Merchant, J.L. ZBP-89 Promotes Growth Arrest through Stabilization of p53. Mol. Cell. Biol. 2001, 21, 4670–4683. [CrossRef]
20. Chen, X.; Ko, L.J.; Jayaraman, L.; Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the

apoptotic response of tumor cells. Genes Dev. 1996, 10, 2438–2451. [CrossRef]
21. Jung, Y.S.; Liu, G.; Chen, X. Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation. Mol. Cell.

Biol. 2010, 30, 1041–1048. [CrossRef] [PubMed]
22. Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat.

Protoc. 2013, 8, 2281–2308. [CrossRef] [PubMed]
23. Mohibi, S.; Zhang, J.; Chen, X. PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α

mRNA Translation. J. Investig. Dermatol. 2020, 140, 2166–2177.e6. [CrossRef] [PubMed]
24. Qian, Y.; Jung, Y.S.; Chen, X. Differentiated embryo-chondrocyte expressed gene 1 regulates p53-dependent cell survival versus

cell death through macrophage inhibitory cytokine-1. Proc. Natl. Acad. Sci. USA 2012, 109, 11300–11305. [CrossRef] [PubMed]
25. Guzman, C.; Bagga, M.; Kaur, A.; Westermarck, J.; Abankwa, D. ColonyArea: An ImageJ plugin to automatically quantify colony

formation in clonogenic assays. PLoS ONE 2014, 9, e92444. [CrossRef]
26. Frangioni, J.V.; Neel, B.G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins.

Anal. Biochem. 1993, 210, 179–187. [CrossRef]
27. Fischer, M. Census and evaluation of p53 target genes. Oncogene 2017, 36, 3943–3956. [CrossRef]
28. Fischer, M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019, 38,

4095–4109. [CrossRef]
29. Shu, L.; Yan, W.; Chen, X. RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability

of the basal and stress-induced p21 transcript. Genes Dev. 2006, 20, 2961–2972. [CrossRef]
30. Barak, Y.; Juven, T.; Haffner, R.; Oren, M. Mdm2 Expression Is Induced by Wild Type P53 Activity. EMBO J. 1993, 12, 461–468.

[CrossRef]
31. Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 1997, 387, 296–299. [CrossRef]
32. Wang, C.; Ivanov, A.; Chen, L.; Fredericks, W.J.; Seto, E.; Rauscher, F.J.; Chen, J. MDM2 interaction with nuclear corepressor KAP1

contributes to p53 inactivation. EMBO J. 2005, 24, 3279–3290. [CrossRef]
33. Bruno, M.; Mahgoub, M.; Macfarlan, T.S. The Arms Race between KRAB-Zinc Finger Proteins and Endogenous Retroelements

and Its Impact on Mammals. Annu. Rev. Genet. 2019, 53, 393–416. [CrossRef]
34. Zhang, Y.; Shin, S.J.; Liu, D.; Ivanova, E.; Foerster, F.; Ying, H.; Zheng, H.; Xiao, Y.; Chen, Z.; Protopopov, A.; et al. ZNF365

promotes stability of fragile sites and telomeres. Cancer Discov. 2013, 3, 798–811. [CrossRef]
35. Wang, T.; Zeng, J.; Lowe, C.B.; Sellers, R.G.; Salama, S.R.; Yang, M.; Burgess, S.M.; Brachmann, R.K.; Haussler, D. Species-specific

endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci.
USA 2007, 104, 18613–18618. [CrossRef]

36. Zhang, J.; Cho, S.J.; Shu, L.; Yan, W.; Guerrero, T.; Kent, M.; Skorupski, K.; Chen, H.; Chen, X. Translational repression of p53 by
RNPC1,a p53 target over expressed in lymphomas. Genes Dev. 2011, 25, 1528–1543. [CrossRef]

37. Pant, V.; Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 2014, 28, 1739–1751.
[CrossRef]

38. Huang, C.; Wu, S.; Li, W.; Herkilini, A.; Miyagishi, M.; Zhao, H.; Kasim, V. Zinc-finger protein p52-ZER6 accelerates colorec-
tal cancer cell proliferation and tumour progression through promoting p53 ubiquitination. EBioMedicine 2019, 48, 248–263.
[CrossRef]

http://doi.org/10.1158/1541-7786.MCR-21-0239
http://doi.org/10.1016/j.devcel.2011.12.001
http://doi.org/10.1038/ncb1864
http://doi.org/10.1038/s41422-018-0008-8
http://doi.org/10.1101/gad.271890.115
http://doi.org/10.1016/j.bbrc.2007.08.180
http://doi.org/10.1371/journal.pone.0055720
http://doi.org/10.1128/MCB.21.14.4670-4683.2001
http://doi.org/10.1101/gad.10.19.2438
http://doi.org/10.1128/MCB.01198-09
http://www.ncbi.nlm.nih.gov/pubmed/20008555
http://doi.org/10.1038/nprot.2013.143
http://www.ncbi.nlm.nih.gov/pubmed/24157548
http://doi.org/10.1016/j.jid.2020.03.942
http://www.ncbi.nlm.nih.gov/pubmed/32243883
http://doi.org/10.1073/pnas.1203185109
http://www.ncbi.nlm.nih.gov/pubmed/22723347
http://doi.org/10.1371/journal.pone.0092444
http://doi.org/10.1006/abio.1993.1170
http://doi.org/10.1038/onc.2016.502
http://doi.org/10.1038/s41388-019-0706-9
http://doi.org/10.1101/gad.1463306
http://doi.org/10.1002/j.1460-2075.1993.tb05678.x
http://doi.org/10.1038/387296a0
http://doi.org/10.1038/sj.emboj.7600791
http://doi.org/10.1146/annurev-genet-112618-043717
http://doi.org/10.1158/2159-8290.CD-12-0536
http://doi.org/10.1073/pnas.0703637104
http://doi.org/10.1101/gad.2069311
http://doi.org/10.1101/gad.247452.114
http://doi.org/10.1016/j.ebiom.2019.08.070

	Introduction 
	Materials and Methods 
	Cell Culture, Cell Line Generation and Reagents 
	Plasmids and siRNAs 
	Western Blot and IP-Western Blot Analysis 
	RNA Isolation and RT-PCR 
	Protein Half-Life Assay 
	Chromatin Immunoprecipitation (ChIP) Assays 
	Colony Formation Assays 
	Wound-Healing Assay 
	GST Pull-Down Assay 
	Ubiquitination Assay 
	Statistical Analysis 

	Results 
	ZFP14 Expression Correlates with p53 in Human Tissues and ZFP14 Is Induced upon DNA Damage in a p53-Dependent Manner 
	Human and Mouse ZFP14 Negatively Regulate p53 
	ZFP14 Regulates p53 Protein Stability by Associating with MDM2 
	Decrease in Cancer Cell Growth and Migration upon ZFP14 KO Is p53-Dependent 

	Discussion 
	Conclusions 
	References



