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Abstract: Perovskite-related materials show very promising properties in many fields. Pb-free
perovskites are particularly interesting, because of the toxicity of Pb. In this study, hybrid double
perovskite MA2KBiCl6 (MA = methylammonium cation) was found to have interesting variable
temperature behaviours. Both variable temperature single crystal X-ray diffraction, synchrotron
powder diffraction, and Raman spectroscopy were conducted to reveal a rhombohedral to cubic
phase transition at around 330 K and an order to disorder transition for inorganic cage below 210 K.

Keywords: hybrid halide perovskite; phase transition; Pb-free

1. Introduction

In the past decades, solution-processable hybrid lead halide perovskites MAPbX3
(MA = methylammonium cation, X = Cl, Br, I) have achieved a remarkable power con-
version efficiency and photoluminescence quantum yield, finding their applications in
many fields such as photovoltaics, X-ray detectors, LED, etc. [1–3] The search for lead-free
alternatives has been the subject of much research in the last few years. Since 2016, making
halide double perovskite via heterovalent substitution of Pb2+ by a monovalent cation (M+)
and environmental benign Bi3+/Sb3+/In3+ provided a plausible approach, where the 3D
perovskite framework is maintained by alternating corner-connected MX6 and BiX6 (or
SbX6, InX6) octahedra. In the last century, inorganic double perovskites, i.e., elpasolites,
have been systematically synthesized, and mostly with ionic Li, Na, F, and Cl which gen-
erally give wide bandgaps [4–6]. Within just one year, six new double perovskites that
can be potential photovoltaic materials were reported—MA2KBiCl6 [7], MA2TlBiBr6 [8],
MA2AgBiBr6 [9], Cs2AgBiCl6 [10,11], Cs2AgBiBr6 [12], and Cs2AgInCl6 [13], with optical
bandgaps ranging from 1.9 eV to 3.3 eV. Later we discovered Cs2AgSbBr6 with a bandgap
as low as 1.55 eV [14]. They showed remarkably similar physical properties with their
lead analogues.

In this paper, we investigate the variable temperature behaviours of MA2KBiCl6,
the first reported hybrid double perovskite, finding a reversible phase transition from
R3m to Fm3m at 330 K. More complicated low temperature behaviour was detected from
variable temperature (VT) single crystal and synchrotron powder X-ray diffraction and
Raman spectroscopy.
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2. Results and Discussions
2.1. High Temperature Phase Transition

At room temperature (RT), the MA2KBiCl6 crystal structure possesses rhombohedral
symmetry R3m (No. 166), a = 7.8379(2) Å, c = 20.9801(6) Å (CCDC 145389), where the MA
cations align along the c axis and corner-connecting octahedra tilted with K-Cl-Bi angle
173.04◦ (Figure 1). Both KCl6 and BiCl6 octahedra are slightly distorted [7].
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Figure 1. (a) Lattice parameters variations as a function of temperature. The lattice parameters of
the rhombohedral cell were converted into its equivalent cubic setting. (b) Bond distance variations.
Octahedral arrangements at both rhombohedral and cubic symmetry are illustrated (MA cation is
omitted in cubic cell for illustration purpose. Green: Cl, purple BiCl6, brown: KCl6. (c) The VT
synchrotron PXRD patterns.

Upon heating above 330K, a phase transition to typical halide double perovskite
symmetry—cubic Fm3m (a = 11.4326(2) Å at 380 K, CCDC 2224436)—is seen and MA
cations become disordered, similarly to their MA2AgBiBr6 counterpart [9] (Figures 1 and S1,
Tables S1 and S2). The octahedra experience a transition from tilted to regular, yielding
contractions in the K-Cl (~2.29%) and Bi-Cl (~1.15%) interatomic distances through the
phase transition from 320 K to 340 K. KCl6 shows a larger contraction due to the lower
coulombic affinity between K+ and Cl− compared to Bi3+ and Cl−, weaker Cl− to Cl−

repulsion in the KCl6 octahedron due to larger K+ size, and less directional ionic bonds
making the KCl6 octahedron easier to rotate/distort. A similar phenomenon is observed
in zeolites when substituting Zn2+ with Li+ and B3+—upon applying pressure, a larger
distortion is observed around Li, which has lower valence and larger ionic size [15]. After
the phase transition, further increasing temperature did not cause significant changes in
bond lengths, lattice parameters, or unit cell volumes.

2.2. Low Temperature Behaviour

VT PXRD patterns from 300 K to 12 K did not show any peak splitting or abnormal
peak broadening; anisotropic thermal expansion was detected by anisotropic peak shifting
(Figure 1c). More detailed analysis was conducted by VT SCXRD. Upon cooling, negative
and nonlinear thermal expansion along the c axis and continuous volume reduction can be
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observed throughout the temperature range, and approximately linear thermal expansion
9.07 × 10−5 K−1 for the a axis is obtained until 190 K (Figure 2). A sudden change regarding
the octahedral tilting and distance of hydrogen bond (Figure S2) below 230 K suggests
possible phase transitions [16]. The LT structures are analysed based on the organic
molecules and inorganic framework, respectively.
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Figure 2. (a) Bond length and angle variations as function of temperature during cooling. Left axis:
K-Cl, Bi-Cl bond lengths and K-Cl-Bi angle. Right axis: C-N distance. Both y axes show percentage
changes from 225 K for easy comparison. (b) Volume and (c) lattice parameters expansion in response
to temperature. (d) Cl anisotropic displacement parameters along the maximum, medium and
minimum elongation directions. (e) The Cl splitting model. Data are from SCXRD.

The octahedral tilting, accompanied with distortion, has increased with lowering
temperature, where larger distortion occurs again to KCl6 (Figures 2 and S3), for similar
reasons to the HT phase: that the larger octahedron with a cation of lower valence is more
easily distorted. However, below 230 K, the anisotropy of Cl ellipsoids increases abruptly,
where the ratio of the maximum, medium, and minimum values can reach ~ 35:2:1 at 120 K
(Figure 2d). Symmetry reduction to other rhombohedral, orthorhombic, monoclinic, and
even triclinic space groups have been attempted, but they either gave high residual electron
density or failed. Hence, we propose a disordered model under the same space group R3m
with Cl split into two symmetrical equivalent positions, with each having 50% occupancy
(Table S5 and Figure 2e). From SCXRD, we are able to narrow down the transition range to
between 210 K to 190 K.

VT Raman spectroscopy further proves the retention of symmetry, as no extra peaks
or peak splitting was observed (Figure 3) [17]. Raman spectra were collected from RT to
120 K at a laser wavelength of 532.05 nm. Four peaks are present from 50 cm−1 to 350 cm−1,
similar to its inorganic analogue, Cs2NaBiCl6 [17]. The possible assignments of frequencies
are (1) the stretching of Cl atoms towards and away from the central Bi/K atoms, (2) 3 Cl
atoms away from Bi/K and 3 Cl towards central atoms in the octahedron at the same time,
(3) octahedral bending and (4) lattice mode of MA cations, from high to low wave numbers,
respectively [18].
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Figure 3. VT Raman spectra during cooling for (MA)2KBiCl6. The peaks are highlighted by *.

Although the MA cations seem to be crystallographically ordered at RT, the short
C-N bonds (1.32 Å) suggest otherwise, as the anisotropic thermal ellipsoids for both C and
N indicate strong transverse vibrations resulting from relatively high molecular mobility.
Upon cooling, the MA molecules tend to be frozen, shown as the increasing crystallographic
C-N distances (Figures 1 and 4), which provide the major contribution to the negative
thermal expansion of c axis. When further inspecting the ellipsoids, the N vibrations tend to
become isotropic, and anisotropy of C also decreases yet is still present, which we speculate
is due to the change of MA vibrational modes. Figure 4 provides an illustration, of the
possible vibrational modes of the MA molecule. At RT, the centre of mass serves as the
centre of liberation, yielding similar ellipsoids for C and N. As temperature is reduced, the
liberation centre moves towards N, most likely due to the locking-in of hydrogen bonds
between N-H···Cl. Similar behaviours can be expected in the rare earth double perovskites
MA2KYCl6 and MA2KGdCl6 [19].
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3. Materials and Methods

Single crystal growth: A saturated solution of MACl (MA: methylammonium), KCl
and bismuth acetate (molar ratio 2:1:1) in aqueous HCl (37 wt%) was prepared at 50 ◦C,
then stored at 4 ◦C. Crystals of millimetre size were obtained using vacuum filtration after
7 days.

Single crystal structure determination from 120 K to 380 K was using an Oxford
Gemini E Ultra diffractometer, Mo Kα radiation (λ = 0.71073Å), equipped with an Eos CCD
detector. Diffractions at variable temperatures were performed by collecting data from
300 K to 120 K using Cryostream system with N2 flow with 40 K steps, then heated up to
380 K for high temperature structure investigation. The crystal stayed under nitrogen flow
for a further 30 min at each temperature to allow sufficient equilibration. Data collection
and reduction were using CrysAliPro (Agilent Technologies). An empirical absorption
correction was applied, and the structure was solved using ShelXS and refined by ShelXL
with the Olex2 platform, except for the structure at 180 K, which was solved using Superflip
and refined by JANA.

Raman spectra were recorded using a LabRam 300 Raman spectrometer coupled with
an Olympus BXFM ILHS confocal microscope with 10 times and 50 times magnification
available. The laser wavelength used was 532.05 nm; the laser power was kept at 100 mW
for the duration of experimentation. The system was calibrated against the 520.5 cm Raman
band of a crystalline silicon wafer. The sample holder and cooling stage was a Linkam
Scientific DSC600 with associated liquid nitrogen pump. Variable temperature Raman was
performed under an air atmosphere. A polycrystalline powder sample was placed in the
sample holder/cooling stage which was subsequently sealed. The stage temperature was
decreased by 10 K/min, and the sample was allowed to equilibrate at a given temperature
for approximately 10 min before the collection of Raman spectra. After data collection at
~120 K, the sample was reheated at 10 K/min to room temperature 296 K, at which point
Raman spectra were again recorded.

4. Conclusions

The Pb-free hybrid double perovskite MA2KBiCl6 was found to have interesting
variable temperature behaviour. Upon heating to 330 K, a phase transition from R3m to
Fm3m occurs, where the MA cations disorder to the cubic symmetry. At low temperatures,
although synchrotron powder diffraction did not indicate any sign of phase transitions,
the inorganic cage tended to be disordered below 210 K. The short C-N bond at room
temperature is a manifestation of vibrational disorder.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010174/s1, Figure S1. The crystal structure of MA2KBiCl6
double perovskite at 380 K; Figure S2: Distance of NH . . . Cl as a function of temperature; Figure S2:
Octahedral angles variation with respect to temperature. Only one set of angles for each octahedra
are shown (the total angle = 180◦ when plus the other set of angles). Smaller angle away from 90◦

means more distortion. Table S1: Atomic coordinates and ADPs at 380K; Table S2: Experimental
details for HT phase (refinement using OLEX2); Table S3: Bond lengths at different temperatures;
Table S4: Experimental details for LT phase, refinement using JANA; Table S5: Atomic coordinates
and ADPs at 180 K [20–22].
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