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Key Points 

• Blending spatial snow data from a ground network with gauge precipitation and atmospheric moisture improves mountain 
rain and snow estimates. 

• The blending approach better represented orographic precipitation gradients, compared to gauge-based results. 
• The blending approach performed well in snow-dominated elevations during heavy events related to atmospheric rivers 

and Sierra barrier jets. 

Abstract 
This study reports on a blending approach using snowpack measurements from a wireless-sensor network, gauge precipitation, 
and atmospheric-moisture data to estimate mountain precipitation amount and phase. We applied the approach in California’s 
American River basin, using dense measurements from a network consisting of over 130 sensor nodes distributed across the 
upper, more snow-dominated part of the basin (≥ 1500 m elevation). Analysis of 60 precipitation events in water years 2014-
2017 showed that the approach provides estimates of precipitation and orographic enhancement that reduce uncertainty from 
apparent snow undercatch by limited gauges. This approach also infers total precipitation based on snow measurements during 
rain-on-snow events. The sensor network and blending approach yielded median upper-basin Orographic Precipitation 
Gradients (OPGs) of 0.57 km–1, smaller than the also-positive lower-basin (< 1500 m) medians OPGs from precipitation 
gauges and a gauge-based gridded dataset of 1.23 and 1.00 km–1, respectively. However, during 73% of the events, both gauges 
and the gridded product showed negative OPGs in the upper basin, inconsistent with typically positive values from the 
distributed sensor network. Upper-basin OPGs from gauges and the gridded product were more negative (p-values < 0.03) 
during heavy events related to atmospheric rivers and Sierra barrier jets than during milder events, revealing the challenges for 
gauges to reliably measure precipitation from large moisture transport by strong winds. In snow-dominated headwater areas, 
precipitation from the blending approach is recommended as being more accurate for decision support, providing critical rain-
versus-snow amounts and complementing precipitation-gauge data. 
Keywords: Orographic Precipitation; Wireless-Sensor Network; Snow; Precipitation Phase; Rain-Snow-Transition Zone

1 Introduction 
Mixed-phase precipitation in mountainous regions has large 
temporal and spatial variability (Buytaert et al., 2006; Costa-
Cabral et al., 2013); and in comparatively warm environments 
like the Sierra Nevada, solid precipitation amounts (i.e. 
snowfall) are sensitive to small elevation-dependent 
temperature changes. Accurate estimates of precipitation 
partitioning into rain and snow are crucial as a primary input 
for hydrologic predictions and process studies (Henn et al., 
2018; Morin et al., 2006; Sharma et al., 2012). This is because 
the amount and spatial pattern of mixed-phase winter 
precipitation in mountainous regions, where snowfall can 
account for a considerable portion of annual precipitation, 
play a crucial role in determining local-to-regional water 
supply and flood risk. For example, winter precipitation 
combined with snowpack storage in the Sierra Nevada 
provides the major water source for urban, irrigation, 
hydroelectric, and ecosystem uses in California (Bales et al., 
2006; Pandey et al., 1999), where its Mediterranean climate 
leads to wet winters and dry summers. Besides the sparse 

availability (Avanzi et al., 2021), maintenance, and 
representativeness issues of precipitation gauges in high-
elevation regions, the systematic bias introduced by wind-
induced undercatch is also a considerable source of 
uncertainty (Bales et al., 2009; Grossi et al., 2017; Stisen et 
al., 2012; Strangeways, 1996; Yang et al., 1999). Snowfall is 
particularly challenging to measure (Yang et al., 2005), with 
bias frequently ranging from 20% to 50% (Rasmussen et al., 
2012). More accurate, reliable estimates of mixed-phase 
precipitation in mountainous regions are needed at the scale of 
water-resources decision making and management – the 
watershed scale. 

Gridded precipitation datasets at various spatial and 
temporal resolutions are currently available, such as the 
Parameter-elevation Relationships on Independent Slopes 
Model (PRISM, 800-m spatial resolution and daily temporal 
resolution; Daly et al., 2008), the Daymet (1-km daily 
resolution; Thornton et al., 1997), and the North American 
Land Data Assimilation System project, Phase 2 (NLDAS-2, 
~12-km hourly resolution; Cosgrove et al., 2003). Gridded 
reanalysis datasets are typically derived through spatial 
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interpolation of gauge measurements. These gridded 
precipitation data often include elevation adjustments and 
corrections for complex orographic effects (Henn et al., 2018). 
However, the interpolation and extrapolation to high 
elevations come with uncertainty in the gridded data, as gauge 
density and thus accuracy decreases in higher-elevation 
mountain areas with complex terrain (Hofstra et al., 2009). 
Moreover, the systematic bias from undercatch in 
precipitation gauges is generally not accounted for before 
interpolating to gridded products (Adam & Lettenmaier, 
2003), and these biases can be carried through to hydrologic 
studies using gridded products as model inputs. 

As direct measurements of precipitation in complex terrain 
remain problematic, mountain precipitation can be more 
comprehensively assessed using multiple types of 
measurements such as radar, streamflow, and snow 
(Lundquist et al., 2019). Much effort has been devoted to 
applying ground-based observations to indirectly estimate 
precipitation. Doppler radars in the U.S. have been upgraded 
to dual-polarization radars and provide improved Quantitative 
Precipitation Estimates (QPEs) based on reflectivity, 
differential reflectivity, and specific differential phase, 
compared to conventional radars (Cifelli et al., 2011; Cocks et 
al., 2019; Gourley et al., 2009; Seo et al., 2015; J. Zhang et al., 
2020). However, radar observations suffer from gaps in 
reflectivity data at the near-surface, and terrain "gaps" due to 
line-of-sight restrictions, and does not provide direct 
precipitation at ground level (Cocks et al., 2019; Dai et al., 
2019; Krajewski et al., 2010; Vignal et al., 2000; Westrick et 
al., 1999). 

Ground snow measurements are valuable for assessing 
precipitation. Winter solid precipitation can be estimated 
based on snow-depth increment, avoiding the undercatch 
problem from precipitation gauges (e.g. Mair et al., 2016). 
However, single-site investigations in complex topography do 
not provide a basin-scale assessment of precipitation. Building 
upon Snow Water Equivalent (SWE) measurements, 
Lundquist et al. (2015) compared precipitation estimates from 
125 snow pillows in California’s Sierra Nevada to a gridded 
dataset based on gauge data and PRISM climatology, and 
reported reasonable agreement, with a median difference of 
±10% on an annual scale. However, underestimates from the 
gridded dataset could exceed 50% for individual storms. 

Airborne lidar has been used to examine precipitation 
patterns both for individual events (Behrangi et al., 2018a; 
Brandt et al., 2020) and seasonal accumulation (Kirchner et 
al., 2014). The Airborne Snow Observatory (ASO) provides 
gridded (50 m) snow depth and SWE using scanning lidar, 
imaging spectrometer, and modeled snow density (Painter et 
al., 2016). Using the ASO data in the Tuolumne basin, Brandt 
et al. (2020) quantified the spatial variability of solid 
precipitation during a snow storm before and after lidar flights, 
and Behrangi et al. (2018a) evaluated precipitation products in 
a cold month bracketed by two flights. A high-resolution (90 
m) snow product from SWE reanalysis (Margulis et al., 2016) 
was used to investigate the orographic gradients of cumulative 
snowfall in the Sierra Nevada (Huning & Margulis, 2017, 
2018). Although snow-product-based solid precipitation is 

valuable and provides insight, it does not directly address the 
pressing challenge of estimating total or liquid precipitation. 

The precipitation gradient along elevation in mountains, 
i.e. Orographic Precipitation Gradient (OPG), is of great 
importance for hydrologic modeling and forecasting. For 
example, it is required as a key input for the Precipitation-
Runoff Modeling System (PRMS), the Soil Water Assessment 
Tool (SWAT), and glacio-hydrologic models (Fontaine et al., 
2002; Immerzeel et al., 2014; MacDougall et al., 2011; 
Markstrom et al., 2015; Wang et al., 2018). Avanzi et al. 
(2021) also showed that OPGs from snow-course data in the 
Western European Alps can improve snow-hydrologic 
predictions. However, the OPGs in model settings are often 
treated as constant parameters at annual or monthly timescales 
(Fontaine et al., 2002; Immerzeel et al., 2014; Markstrom et 
al., 2015), which may not represent precipitation changes 
along elevation for extreme-precipitation events. This will 
likely result in biased runoff forecasts.  

Precipitation is dominated and modified by a number of 
atmospheric processes. For the complex terrain of California’s 
northern Sierra Nevada, Atmospheric Rivers (ARs) and Sierra 
Barrier Jets (SBJs) can lead to extreme orographic 
precipitation when landfalling ARs are forced atop of a south-
southeasterly SBJ (Ralph et al., 2016). The water-vapor flux 
transported by wintertime ARs towards west-facing slopes of 
the northern Sierra Nevada leads to more orographic 
precipitation (Smith et al., 2010). By investigating average 
water-year precipitation, Lundquist et al. (2010) found that the 
OPG is greater with lower SBJ heights and stronger westerly 
winds. Moisture and wind are the two basic drivers of 
orographic precipitation (Smith & Barstad, 2004). Using a 
snow reanalysis dataset (Margulis et al., 2016), Integrated 
water-Vapor Transport (IVT), and zonal winds at 700hPa, 
Huning & Margulis (2018) investigated the OPG climatology 
of solid precipitation across the Sierra Nevada. Yet from a 
hydrologic perspective, the critical OPGs of solid, liquid, and 
total precipitation during events associated with the ARs and 
SBJs have not been studied. 

Spatially distributed clusters of wireless-sensor nodes in 
the Sierra Nevada have been shown to reliably and cost-
effectively provide dense, spatially representative, hydrologic 
measurements that can inform real-time decision making 
(Brun-Laguna et al., 2016; Cui et al., 2020; Malek et al., 2017, 
2019; Welch et al., 2013; Zhang et al., 2017a, 2017b; Z. Zhang 
et al., 2020). Previous work (Zhang et al., 2017a) using sensor 
clusters in the American River basin tested precipitation 
estimates for Water Year 2014 (WY, October 1, 2013-
September 30, 2014) based on snow-depth increments from 
the sensors plus estimated snowpack density, and found 
positive precipitation lapse rates (i.e. the rate of precipitation 
change with elevation) above 1500-m elevation. The spatial 
heterogeneity of precipitation was better represented by the 
wireless sensors than by the limited operational observations 
(Zhang et al., 2017a; Zheng et al., 2018). While the potential 
of precipitation inferred from wireless-sensor snow 
measurements was shown, liquid precipitation during rainfall 
days was not included in the previous study. Total and 
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partitioned precipitation (i.e. solid and liquid precipitation) 
remained uncertain in extensive, mixed rain-snow regions. 

In this study, we estimated precipitation amounts 
(including partitioned solid and liquid precipitation) in mixed 
rain-snow mountain regions, using rich snow measurements 
and other on-the-ground data from a basin-scale wireless-
sensor network. The specific objectives of this study were to: 
i) develop a method that blends snowpack measurements from 
a distributed-sensor network, gauge precipitation, and 
atmospheric-moisture data to estimate precipitation in a 
mountain basin, ii) investigate OPGs across the basin at both 
precipitation-event and annual time scales, with specific 
attention given to heavy events associated with Atmospheric 
Rivers and Sierra Barrier Jets, and iii) evaluate the consistency 
and uncertainty of precipitation estimates and OPGs from 
wireless-sensor data, precipitation gauges, gridded gauge-
based precipitation data, snow reanalysis data, and radar-
precipitation data. Here we tested the hypothesis that blending 
snow data with gauge-precipitation data in mountains with a 
fluctuating rain-snow transition zone can improve both event 
and annual precipitation estimates, with OPGs different from 
those based on gauges. 

2 Data and methods 
Our WY 2014-17 study period corresponds to the years of 
operation of a dense research network of wireless sensors, 
which included two drought years that for the northern Sierra 
Nevada had 62% (2014) and 74% (2015) of the 100-year 
average precipitation, a near-average year that had 115% of 
average precipitation (2016), and the wettest year on record 
(2017) that saw 189% of average precipitation. WY2015 was 
also especially warm as well as dry, with only 5% of the 
historical April 1 average snowpack. The other 3 years were 
also relatively warm, with the wet WY2017 having 159% of 
the historical April 1 average snowpack. In addition to data 
from the research network, we used in situ snow and 
precipitation from operational networks, two gridded 
precipitation datasets, a snow reanalysis dataset, and 
atmospheric data. 

This study developed a new method to estimate total and 
solid versus liquid precipitation based on the ground 
measurements from the wireless sensor network, as well as 
incorporating gauge data and atmospheric moisture through a 
random-forest model. Precipitation in the American River 
basin was estimated for 60 individual events in WY2014-2017 
(Table S1). Each was classified based on the occurrence of AR 
and SBJ, and we also investigated precipitation amounts and 
OPGs at an aggregated-event scale. 
2.1 Study area 
The study area is the American River basin located on the 
western slope of the Sierra Nevada (i.e. west of the Sierra 
Nevada crest, Figure 1). This basin has an area of 6710 km2, 
and an elevation high of 3090 m. Basin headwaters flow 
through three river forks to Folsom reservoir – key for 
municipal water supplies, downstream agriculture, power 
generation, aquatic ecosystems, and flood protection 
(Woldemichael et al., 2012). Its Mediterranean-type climate is 

characterized by a wet winter and early spring with little 
precipitation during summer. The average historical snow line 
is 1500 m elevation (Raleigh & Lundquist, 2012; Welch et al., 
2013). This study refers to the upper American River basin as 
the area with elevation ≥ 1500 m (2120 km2), and the lower 
basin as that below 1500 m (4590 km2). 
2.2 Wireless sensor network 
The research network consists of 13 wireless sensor clusters 
(Figure 1 and Table 1), which were deployed across the upper, 
seasonally snow-covered part of the American River basin. 
The network covers the basin from 1510 to 2723 m elevation. 
Above the highest SCN cluster, there is 0.6% of the basin area 
with an average slope of 17.6° (Figure S1). Each cluster 
comprises 10 wirelessly connected sensor nodes strategically 
placed within a 1-km2 area (Zhang et al., 2017b). The sensors 
were optimized to represent basin‐wide snowpack and to 
encompass the variability of landscape attributes, e.g. 
elevation, canopy cover, slope, and aspect, that affect snow 
accumulation and melt (Welch et al., 2013; Zhang et al., 2017a, 
2017b).  

These spatially distributed nodes (Figure S2) measured air 
temperature & relative humidity (Sensirion SHT-15), snow 
depth (Judd ultrasonic depth sensor), soil moisture (Decagon 
GS3), and solar radiation (Hukseflux LP02) at 15-min 
intervals (Zhang et al., 2017b). The 15-min distance-to-
ground raw data (data processing Level 0) from Judd 
ultrasonic sensors had noisy jumps and missing values (Figure 
S3), which averaged 20% of the entire data across all nodes in 
WY2017, but can be up to 70% for damaged nodes (e.g. Judd 
sensor at node 8 of Schneiders buried by snow, Figure S3b). 
Raw data were then processed to Level 1 snow-depth data 
(Bales et al., 2018, 2020; Roche et al., 2019; Zhang et al., 
2017a), providing relatively reliable measurements with an 
average of 15% missing data during precipitation days (8%, 
19%, 18%, and 13% for WY2014-2017, respectively; Figure 
S4). After further processing and gap filling, the continuous, 
daily snow-depth data (Level 2) offered dense, valuable 
ground information for precipitation estimation. For example, 
within-cluster snow-depth variations (Figure S5) were shown 
by the sensor-network data. The maximum difference of snow 
depth across the 10 sensor nodes in the CAP cluster was as 
much as 162 cm in WY2017 (Figure S5d). The sensor data 
used in this study can be obtained at 
https://doi.org/10.6071/M39Q2V (Bales et al., 2020). 
2.3 In situ precipitation and snow data 
Precipitation and snow data from in situ operational stations 
within the American River basin or nearby (Figure 1 and Table 
2) were acquired from the California Data Exchange Center 
(CDEC, http://cdec.water.ca.gov). SWE was observed by 14 
snow pillows at operational stations in the upper basin. Solid 
precipitation from each pillow was estimated by daily SWE 
increment. Precipitation data were collected from 41 gauges 
ranging from 8 to 2546 m elevation, including 23 gauges in 
the lower and 18 in the upper basin. All SWE and precipitation 
data were subjected to quality control to remove anomalies 
and spurious fluctuations by applying a moving-median-based 
method and manual check. Daily precipitation was calculated 
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as the difference between the last hourly accumulated 
precipitation on consecutive days. At 15 sites precipitation 
was recorded by tipping-bucket rain gauges (Table 2). Ten out 
of 41 sites had measurements of wind speed and direction, and 
we adjusted daily precipitation from these gauges for wind-
induced undercatch following the procedure of Yang et al. 
(1998). However, undercatch may also occur due to solid 
precipitation removed by wind and blockage of gauge orifice 
(Kochendorfer et al., 2020; Rasmussen et al., 2012). The 
wind-induced undercatch was more significant during 
snowfall (Figure S6), as also indicated by the cumulative solid 
precipitation from snow pillows being greater than or close to 
cumulative precipitation from the four gauges at higher-
elevation sites, after accounting for early season rainfall 
(Figure S7). The annual undercatch amounts of precipitation 
from gauges were estimated by the difference from raw 
precipitation data to either wind-adjusted precipitation or solid 
precipitation from nearby snow pillows. Precipitation 
undercatch is more noticeable at higher-elevation sites during 
wet years (Figure S8). 
2.4 Gridded precipitation and snow datasets 
The 800-m gridded daily PRISM precipitation dataset 
(http://www.prism.oregostate.edu) was used to compare 
precipitation estimates and OPGs from the blending approach 
described below. The data are interpolated based on 
precipitation from 13,000 gauges, and make use of snow-
course measurements (Henn et al., 2015), with a climate-
elevation regression that accounts for many influences, such 
as topographic aspect and position, coastal proximity, and 
orographic effectiveness of terrain (Daly et al., 1994, 2008). 
The spatial climatology from PRISM is used in other gridded 
precipitation data (e.g. NLDAS-2, Xia et al., 2012). PRISM 
data are also actively used as inputs for hydrologic models (e.g. 
Avanzi et al., 2020a). This study averaged PRISM data by 
100-m elevation bands in the American River basin for our 
analyses. 

We also collected WSR-88D radar-based precipitation 
data, which have sufficient spatial coverage and resolution in 
complex terrain (Gourley et al., 2009; Matrosov et al., 2007; 
Zhang et al., 2016). The Multi-Radar Multi-Sensor (MRMS) 
precipitation data at 1-km resolution include a correction for 
the vertical profile of radar reflectivity (Qi et al., 2013; Zhang 
et al., 2012) and also incorporate gauges, plus atmospheric 
environmental and climatological data (Zhang et al., 2016). 
We retrieved hourly gauge-corrected MRMS precipitation 
data (https://mtarchive.geol.iastate.edu) for WY2016-2017, 
and then aggregated them to daily resolution. The daily 
MRMS data in the American River basin were averaged to 
100-m elevation bands. 

The 90-m daily SWE reanalysis data (Margulis et al., 2016) 
are available for the Sierra Nevada above 1500 m for 
WY1985-2016. The data were generated using a Bayesian 
data-assimilation framework with Landsat fractional snow 
cover and a snow model driven by NLDAS-2 forcing (Huning 
& Margulis, 2018). The daily SWE increase at each pixel was 
calculated as daily solid precipitation, which was then 
averaged to 100-m elevation bands to estimate OPGs. The 

solid precipitation and OPGs from the SWE reanalysis data 
were used to compare the results from our blending approach, 
described below. 
2.5 Atmospheric data 
We augmented our analyses of ground-based precipitation 
using atmospheric data, including vertically Integrated water-
Vapor Transport (IVT, vector with a unit of kg m–1 s–1). IVT 
describes the direction and intensity of moisture flux in an 
atmospheric column. It is calculated by integrating wind speed 
and specific humidity from 1000 to 300 hPa. The IVT is 
widely used to define and categorize atmospheric rivers (Pan 
& Lu, 2019; Ralph et al., 2019), which contribute 20-40% of 
annual precipitation on the west coast of the U.S., and up to 
50% for California (Dettinger et al., 2011; Lavers & Villarini, 
2015). We used hourly IVT data from the Modern-Era 
Retrospective analysis for Research and Applications, Version 
2 (MERRA-2 with a resolution of 0.5° lat × 0.625° lon, ~ 50 
km in latitudinal direction), produced by the National 
Aeronautics and Space Administration’s (NASA’s) Global 
Modeling and Assimilation Office (http://gmao.gsfc.nasa.gov, 
Gelaro et al., 2017). 

The Sierra Barrier Jet (SBJ) is a low-level, dynamic barrier 
jet along the windward slope of California’s northern Sierra 
Nevada that strongly affects the magnitude and distribution of 
orographic precipitation (Hughes et al., 2012; Lundquist et al., 
2010; Marwitz, 1983; Neiman et al., 2010, 2013; Ralph et al., 
2016). Here we include the 915-MHz wind profiler (Carter et 
al., 1995) data at Chico (CCO, 39.699° N, 121.907° W, 42 m 
elevation, 
https://psl.noaa.gov/data/obs/sites/view_site_details.php?siteI
D=cco) to determine the SBJ occurrence and height. The CCO 
profiler data were retrieved from NOAA’s Physical Sciences 
Laboratory (https://psl.noaa.gov/data/obs/data). Following the 
Neiman et al. (2010) method, SBJs are identified based on 
hourly averaged Sierra-parallel (directed from 160° to 340°) 
wind speed (V). The SBJ requires that: i) a relative maximum 
V ≥ 12 m s–1 at an elevation located between profiler’s second 
range gate (200 m above ground) and the Sierra crest (3000 
m), and ii) V decreases by more than 2 m s–1 between the 
height of maximum V and 3000 m. The SBJ height is the 
elevation where the maximum V is presented. 

We also used the atmospheric-snow-level data at Colfax 
(39.080° N, 120.938° W, 644 m elevation, Figure 1) in the 
American River basin. The snow-level data indicate the 
elevation at which the probability of precipitation falling as 
snow is 50%, with an assumption of uniform snow level across 
the basin. They are determined based on the Frequency-
Modulated Continuous Wave (FMCW) radar-detected 
reflectivity (Johnston et al., 2017; White et al., 2002, 2010). 
We retrieved the snow-level data from NOAA’s Physical 
Sciences Laboratory (https://psl.noaa.gov/data/obs/data) and 
averaged them to hourly resolution. Although radar snow 
levels tend to be higher than the rain-snow transition elevation 
from ground measurements in mountain areas (Cui et al., 
2020; Lundquist et al., 2008), the FMCW radars provide 
valuable, near-real-time snow-level information to forecasters 
for operational use. 
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2.6 Precipitation estimation 
Our blending approach parses rain versus snow using a 
combination of sensors, measurement thresholds, and models 
(Figure 2) to arrive at an estimate of the liquid content for both 
rain and snow at each wireless sensor. Precipitation days 
(defined as days with average PRISM precipitation in the 
upper basin larger than 0.254 mm, i.e. the measurable 
precipitation 0.01 inch by the National Weather Service 
(Sumargo et al., 2020)) were used to identify precipitation 
events. An event was defined as consecutive precipitation 
days with cumulative precipitation greater than 2 cm. We also 
manually checked each event by visually examining monthly 
data (e.g. Figure S9), including radar snow level, SBJ height, 
gauge precipitation, averaged PRISM precipitation in the 
upper basin, and IVT at Folsom Dam. Table S1 lists the 60 
precipitation events identified during WY2014-2017. Events 
were classified as AR-related and/or SBJ-related according to 
the occurrences of AR and SBJ. As an example illustrated in 
Figure S10, an AR-related event was classified by visually 
checking (Cui et al., 2020) and automatically detecting 
(Goldenson et al., 2018) whether an IVT pattern (≥ 250 kg m–

1 s–1) with a long (> 2000 km) and narrow (< 1000 km) corridor 
intersected the northern Sierra Nevada during the event 
(Demaria et al., 2017). We also classified precipitation events 
as SBJ-related if at least 8 consecutive hourly SBJ heights 
occurred during the event; see Figure S11 as an example. 
Event-averaged SBJ heights were calculated and listed for all 
SBJ-related events in Table S1.  

For each sensor node, we first classified each precipitation 
day as a snowfall or rainfall day (Figure 2) based on its daily 
snow-depth change, meaning that the precipitation-day 
classification can vary across sensors on the same day. A 
positive snow-depth change indicated a snowfall day, and a 
precipitation day with unchanged or decreased snow depth 
was termed a rainfall day. Note that snow-depth change is also 
subject to localized processes (Elder et al., 1991, 1998; 
Winstral & Marks, 2002), e.g. wind redistribution (Dadic et 
al., 2010), sublimation (Stigter et al., 2018), and compaction 
by metamorphism and overburden (Ryan et al., 2008). We 
recognize that these processes could introduce uncertainties, 
but it is beyond the scope of the paper to investigate these 
potential error sources. However, the wireless-sensor network 
was specifically designed as a set of sensor clusters, with 
nodes strategically placed to encompass the variability of 
attributes that influence snow distribution (Zhang et al., 
2017b). Precipitation during both snowfall and rainfall days 
can consist of both liquid and solid precipitation (i.e. rain-
snow mixed; purple box in Figure 2), which was partitioned 
using snow fraction (i.e. the ratio of daily solid precipitation 
over daily total precipitation) based on wet-bulb temperature 
(Twet). We assumed that precipitation with Twet below 0 °C 
(above 1 °C) is all snow (rain). During snowfall days we first 
estimated solid precipitation using accumulated snow depth 
and new-snow density (blue box in Figure 2). Then if 
precipitation is determined as all snow, total precipitation 
equals solid precipitation. Otherwise, total precipitation is the 
sum of solid and liquid precipitation estimated using snow 

fraction (purple box). During rainfall days total precipitation 
was first estimated by a machine-learning random-forest 
model (red box). Then if precipitation is determined as all rain, 
total precipitation equals liquid precipitation. Otherwise, solid 
and liquid precipitation is partitioned using snow fraction and 
total precipitation (purple box in Figure 2). Details of the 
methods for estimating precipitation during snowfall and 
rainfall days at each sensor node are described below. 
2.6.1 Snowfall days. Assuming that daily snow-depth 
increments were mainly caused by new-fallen snow, the 
amount of solid precipitation (i.e. SWE increment) received 
on the ground was computed as the snow-depth increment 
multiplied by new-snow density. The daily new-snow density 
(ρnew, kg m–3, Equation 1) was estimated based on the daily 
SWE and snow-depth increments from co-located snow 
pillows and snow-depth sensors at 13 operational sites in the 
American River and nearby basins (Table S2). 

𝜌𝑛𝑒𝑤 =  
𝜌𝑤

𝑛
 ∑

Δ𝑆𝑊𝐸 𝑖 

Δ𝑆𝐷 𝑖 

𝑛

𝑖=1
                               (1)     

where ΔSWEi (mm) and ΔSDi (mm) are daily SWE and snow-
depth increments at site i, respectively, n is the number of sites 
that recorded increments in both SWE and snow depth on a 
given day, and water density ρw is 1000 kg m–3. The averaged 
ρnew across sites was used to construct a daily time series of 
new-snow density (Figure S12), which was gap-filled using a 
nearest-neighbor interpolation for the days without ρnew 
estimates. 

During snowfall, the wet-bulb temperature (Twet) can 
sometimes be above 0 °C. In this case, we used snow fraction 
to estimate liquid precipitation (i.e. rainfall) and total 
precipitation (summation of liquid and solid precipitation). 
Snow fraction was estimated based on Twet (Behrangi et al., 
2018b; Casellas et al., 2020; Cleave et al., 2019; Cui et al., 
2020; Ding et al., 2014; Olsen, 2003; Sims & Liu, 2015; 
Tamang et al., 2020; Wang et al., 2019; Zhong et al., 2018). 
We first calculated hourly dew-point temperature using air 
temperature and relative humidity by an empirical equation 
(Lawrence, 2005; Zhang et al., 2017a). Then, we iteratively 
derived hourly wet-bulb temperature at each sensor node using 
air and dew-point temperatures in the psychrometric equation 
(Marks et al., 2013). The rain-snow-transition in Utah (Cleave 
et al., 2019) and Sierra Nevada (Cui et al., 2020) mountains 
was found at the elevation at which Twet was 0.5 °C. The 
dominant precipitation phase is snow above the rain-snow-
transition, and precipitation is rain‐dominated below the 
transition. We used a function with daily Twet (averaged from 
hourly data) to calculate daily snow fraction (SF) at each 
sensor node (Cui et al., 2020; Susong et al., 1999; Zhang et al., 
2017a). In general, we assumed a linear relation between Twet 
and snow fraction. 

𝑆𝐹 = {

0  ,                            𝑇𝑤𝑒𝑡 ≥ 1°C

max(0.4, 1 − 𝑇𝑤𝑒𝑡) ,     0 <  𝑇𝑤𝑒𝑡 < 1°C
1  ,                             𝑇𝑤𝑒𝑡 ≤ 0°C

       (2) 

Daily total precipitation during snowfall days was 
estimated by solid precipitation divided by snow fraction, and 
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liquid precipitation was calculated as total precipitation minus 
solid precipitation. To avoid unrealistic large total 
precipitation resulting from solid precipitation dividing by a 
small snow-fraction value, we set the minimum value of snow 
fraction to 0.4 when Twet is in between 0 and 1 °C, similar to 
the approach of assigning a minimum value of snow fraction 
in Jordan’s rain-snow-partitioning scheme (Jordan, 1991; 
Wang et al., 2019). The minimum value of snow fraction was 
selected according to model performance evaluated in Section 
3.2. 

The rain-snow-transition zone, where mixed-phase 
precipitation occurs, was determined as the elevation range 
with Twet between 0 and 1 °C using hourly data from wireless-
sensor nodes. This hourly time series tracks the elevation 
where precipitation transitions from rain to snow during a 
precipitation event, as also indicated by the atmospheric snow 
level from the FMCW radar. 
2.6.2 Rainfall days. Total precipitation during rainfall days 
was estimated by a random-forest model, which can capture 
non-linear dependencies based on regression trees (Breiman, 
2001; Denisko & Hoffman, 2018; Koch et al., 2019). Since 
snow depth decreases during rain-on-snow (McCabe et al., 
2007), we assumed that decreasing snow depth during rainfall 
days is primarily caused by rain-on-snow process and driven 
by liquid precipitation. Daily snow-depth change at wireless-
sensor nodes is used as one candidate predictor variable. Since 
the atmospheric-moisture variable IVT is closely associated 
with precipitation (Pandey et al., 1999), but is more 
predictable than precipitation (Lavers et al., 2016, 2017, 
2018), daily averaged IVT intensity and direction are used as 
two candidate predictor variables. Together with other 
variables, i.e. Twet, air temperature, relative humidity, snow 
depth, and water-year day (days after October 1), we initially 
had eight candidate predictor variables. Then we used Boruta 
feature-selection method (Kursa & Rudnicki, 2010) to select 
input variables from the eight candidates. Based on the 
ranking of features, five variables (IVT intensity, relative 
humidity, daily snow-depth change, and IVT direction) were 
finally selected and used in the random-forest model. 

The wireless-sensor clusters at six sites (BTP, OWC, 
DUN, ALP, CAP, and ECP, Table S3) had precipitation 
gauges. Four sites (OWC, ALP, CAP, and ECP) provided 
continuous daily precipitation. Gauge data from BTP and 
DUN appear to be missing or undercatching multiple events 
(Figures S13a, c). To ensure that our model was trained with 
quality data, we only included consistent precipitation data at 
BTP and DUN by comparing them to daily precipitation 
extracted from PRISM (Figures S13b, d). We selected data 
from the sensor node nearest the operational gauge to train the 
model for predicting total precipitation. Note that precipitation 
at ECP was not wind-adjusted, as an anemometer was not co-
located at this site, while precipitation data at the other five 
sites were wind adjusted. Using the trained random-forest 
model, total precipitation at all wireless-sensor nodes was 
estimated. For daily Twet < 1°C, solid precipitation was 
estimated as total precipitation multiplied by snow fraction. 

To indicate dominant precipitation days (i.e. snowfall and 
rainfall days) within the sensor network during a precipitation 

event (Table S1), we further classified events into three types 
according to the rain-snow transition elevation: cold (≥ 50% 
hourly transition elevation during the event is lower than 1500 
m), mixed-phased (≥ 50% transition elevation in between 
1500 and 2700 m), and warm (≥ 50% transition elevation 
higher than 2700 m).  
2.7 Orographic precipitation gradient 
To investigate the hydrologically important precipitation 
gradient with elevation, we used the Orographic Precipitation 
Gradient (OPG, α unit of km–1) following Lundquist et al. 
(2010), instead of the precipitation lapse rate (β, cm km–1) that 
varies with precipitation totals (Bohne et al., 2020) and event 
duration, thus hindering the comparison of orographic 
enhancement across different events. We defined the OPGs 
for the lower and upper basins separately. The α denotes the 
precipitation at a specific elevation z (km) relative to the 
reference precipitation at a lower elevation. To reduce the 
impact of potential outliers on OPG estimates, we first fitted 
linear models of precipitation data with elevation, for the 
upper and lower basins separately, using the robust Huber 
regression (Huber, 1973), which is less sensitive to outliers 
(Vetter et al., 2015). 

�̂�(𝑧) = 𝛽𝑧 + 𝛾                                     (3) 
Here β (cm km–1) is the fitted slope, the same as the 
precipitation lapse rate used in Zhang et al. (2017a), γ (cm) is 
the fitted intercept, and �̂�(𝑧)  with a unit of cm is the 
regression-predicted precipitation at elevation z. 

Then OPG α was calculated using the fitted precipitation 
data �̂�(𝑧) by Equations 4 and 5. 

Lower basin (z < 1.5 km): 
�̂�(𝑧)

�̂�0

= 1 + 𝛼𝑙𝑜𝑤𝑒𝑟(𝑧 − 𝑧0) (4) 

Upper basin (z ≥ 1.5 km): 
�̂�(𝑧)

�̂�1

= 1 + 𝛼𝑢𝑝𝑝𝑒𝑟(𝑧 − 𝑧1)  (5) 

For calculating the lower-basin αlower, �̂�0  is the fitted 
precipitation at the lower reference elevation z0 of 0.2 km. For 
calculating the upper-basin αupper, �̂�1 is the fitted precipitation 
at the upper reference elevation z1 of 1.7 km. By computing 
the least-squares solutions of linear equations 4 and 5, the 
OPGs αlower and αupper were obtained for total, solid, and liquid 
precipitation with either point estimates or 100-m-banded 
gridded data. For the upper-basin αupper from the sensor 
network, OPGs were calculated using precipitation estimates 
at all sensor nodes, which may have a blend of snowfall days 
and rainfall days during an event. 

3 Results 

3.1 Precipitation events  
Data from two wireless-sensor clusters, SBJ height, two 
precipitation gauges, and the IVT at Folsom Dam for WY2017 
illustrate the range of measurements for a wet water year 
(Figure 3). The higher-elevation CAP site (2440 m) had 
deeper snow, longer snow-cover duration, and 46-cm more 
annual precipitation than did OWC (1566 m). Annual air 
temperature at CAP (4.2 °C) was lower than at OWC (8.8 °C), 
while no apparent difference in relative humidity between the 
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two clusters emerged (mean annual values of ~67% for both 
CAP and OWC). The atmospheric IVT at Folsom Dam from 
the MERRA-2 dataset was positively correlated with 
precipitation amount, with correlation coefficients of 0.69 for 
CAP and 0.70 for OWC. As the CCO wind profiler had a 
failure from April to July 2017, the SBJ height was not 
identified during the outage (Figure 3d), and three 
precipitation events in April were assumed to not be related to 
SBJ (Figures 3d, e, f). Note that the SBJ heights showed 
hourly variability (Figure S11). Of the 20 precipitation events 
in WY2017, 15 were AR-related, and 12 were SBJ-related. 
Among all 60 events in WY2014-2017, 15 were cold, 41 
mixed-phased, and four warm events (Table S1). 
3.2 Model evaluation  
New-snow density and snow fraction for snowfall days. We 
evaluated our new-snow density by comparing with those 
estimated from two other methods (Figure S14). One was 
daily manual measurements of new-snow density collected by 
Mammoth Mountain Ski Patrol at Sesame in the eastern Sierra 
Nevada (37.650° N, 119.042° W, 2743 m elevation, Figure 
S12) from Bair et al. (2018), and the other was an air-
temperature-based new-snow density used in the Noah-MP 
land surface model (Hedstrom & Pomeroy, 1998; Niu et al., 
2011). Using the data on cold, snowy days when the daily rain-
snow-transition elevation was lower than the lowest elevation 
of the 13 snow pillows, results show that estimated SWE 
increments using the new-snow density in this study had the 
best agreement (R2 of 0.56; Root Mean Square Error (RMSE) 
of 1.13 cm) with measured SWE increments, compared to 
those from Bair et al. (2018) and the air-temperature-based 
method, which had R2 values of 0.14 and 0.29, and RMSEs of 
2.21 and 1.52 cm, respectively. 

We compared total precipitation estimated from snow 
fraction and SWE increments versus gauge-measured total 
precipitation (Figures S15a,b), to examine our snow-fraction 
method (Equation 2) and select the minimum value of snow 
fraction. Another snow-fraction method based on a sigmoid 
function of Twet used in the Noah-MP model (Wang et al., 
2019) was included for comparison. Model results from both 
snow-fraction methods showed that RMSE decreases 
substantially when the minimum value of snow fraction 
increases from 0.05 to 0.2, but remains relatively stable for the 
minimum value of snow fraction ≥ 0.4 (Figure S15c). The R2 
value from our snow-fraction method increases with the 
minimum value of snow fraction (Figure S15d). However, R2 
value from the Noah-MP model continuously decreases when 
the minimum value of snow fraction is ≥0.4. Therefore, we set 
the minimum value of snow fraction=0.4, which can result in 
reasonable performances for both our snow-fraction method 
and the sigmoid-function method of the Noah-MP model 
(Figures S15a,b). Both explained 31% of the variance of 
gauge-measured total precipitation. The RMSEs were 2.38 
and 2.44 cm for our snow-fraction method and the sigmoid-
function-based method, respectively. Results from both 
methods show that 46% of gauge-measured total precipitation 
was lower than estimated total precipitation, reflecting 

uncertainties from gauge measurements during snowfall, as 
well as uncertainties from snow-fraction estimates.  

Random-forest model for rainfall days. As part of the 
rainfall-day calculation, a random-forest model was 
established using ~1300 daily precipitation values from six 
gauges (Table S3 including data distribution across gauges). 
We applied a grid-search method to tune model 
hyperparameters that maximize the mean of R2 values of 
training and testing, e.g. number of trees in the forest (ranging 
from 50 to 450), maximum tree depth (5-35), minimum 
number of samples at a leaf node (1-6), and proportion of the 
dataset used in training (60%-90%). Finally, we used the tuned 
hyperparameters (number of trees in the forest = 200, 
maximum tree depth = 25, and minimum number of samples 
at a leaf node = 1, proportion of the dataset used in training = 
85%) to train the random-forest model using shuffled data 
with a loss function of mean squared error. 

Results indicate that the random-forest model could 
account for precipitation variability, with R2 values of 0.94 
and 0.75, and RMSEs of 0.54 and 1.00 cm for training and 
testing, respectively (Figure 4a). The larger difference in R2 
between training and testing suggests that there was some 
overfitting. The random-forest model tended to underestimate 
daily precipitation above about 10 cm, which applied to only 
1.1 % of daily values. Overall, the model captured the non-
linear dependency of precipitation on predictor variables. 
Three variables — IVT intensity, relative humidity, and daily 
snow-depth change — together contributed 87% of the 
relative feature importance in the predictive model, as 
suggested by normalized-permutation-feature importance 
calculated using the Python package rfpimp (Figure 4b). 

To evaluate the random-forest model’s effectiveness, we 
also trained the model with a larger amount of data (~5100) 
from PRISM precipitation at all 13 wireless-sensor clusters, 
using the same tuned hyperparameters. As illustrated by 
Figure S16, with more data the model’s prediction 
performance for testing was better (R2 of 0.89, RMSE of 0.77 
cm). This indicates that more training data from gauges spread 
across the basin would improve precipitation estimates, and 
that our random-forest model is applicable for this study. We 
used the gauge-based random-forest model for the rest of the 
analysis. 
3.3 Precipitation estimates  
3.3.1 Event-scale precipitation totals and phase. Five 
precipitation events are used to illustrate precipitation 
estimates from the sensor network and comparisons to snow 
pillows, precipitation gauges, and gridded data. Two cold 
events with low rain-snow-transition elevations include an 
extreme precipitation event on January 18-23, 2017 
(cumulative PRISM precipitation 6th highest of the 60 events, 
Table S1) and an average event on January 4-9, 2016 (ranked 
34th). The largest precipitation event on February 2-10, 2017 
and a small summer event on September 20-23, 2017 (57th) 
are used to demonstrate precipitation estimates during mixed-
phased events. A summer warm event on September 11-13, 
2017 (smallest event) illustrates rain-only precipitation 
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estimates. Results for all 60 events can be found in the 
supporting information. 

Cold events. The wireless-sensor network captured the 
occurrence of snowfall and estimated solid precipitation, as 
demonstrated by the AR&SBJ-related cold-storm event on 
January 18-23, 2017 (Figures 5a-g). Mean air temperature at 
all sensor nodes was below 0 °C, and those of the lowest node 
at BTP and the highest node at SCN were –0.5 and –7.2 °C, 
respectively. The rain-snow-transition zone was mostly below 
the lowest sensor node at 1510-m elevation (80% of snowfall 
time), which was in line with snow-level radar observations 
(89% of the radar-detected snow-level data were lower than 
the lowest sensor node, Figure 5a). Snow pillows at three sites 
(EP5, CAP, and FRN) recorded SWE increase during the 
event (Figure 5d). The maximum daily SWE increment was 
9.3 cm d–1 observed at FRN on January 22. However, the 
precipitation from the gauge at CAP was 75% of accumulation 
on the co-located snow pillow, while the other two gauges 
captured much less of the solid precipitation during the event 
(38% for FRN and 5% for EP5). The mean snow-depth 
increment from sensor clusters was 107 cm (Figure 5c). 
Estimated snowfall precipitation from the sensor network 
(Figure 5f) is consistent with operational data (Figure 5d), 
with the peak precipitation (mean 5.7 and maximum 10.8 cm 
d–1) on January 22. Note that few sensor nodes (at OWC, 
MTL, and SCN) recorded decreasing snow depth on 20-22 
January, likely caused by snow settling and redistribution. 
These sensor nodes were originally classified as experiencing 
rainfall days, and thus the total precipitation at these sensors 
was first automatically estimated by the random-forest model 
with their snow-depth loss (red box in Figure 2). However, the 
Twet-based snow fraction algorithm caught the error and 
corrected it to snowfall, by automatically partitioning total 
precipitation to solid precipitation, since their Twet values were 
below 1°C (purple box in Figure 2). Thus, all the precipitation 
from the wireless-sensor nodes was in the form of snow 
(Figure 5f), meaning that none of the sensor nodes 
experienced rainfall (Figure 5g). 

During the cold event in January 2017, positive OPGs of 
lower-basin total precipitation were 1.6 and 1.3 km–1 from the 
gauges and PRISM data, respectively (Figure 6b). For solid 
precipitation in the upper basin (Figure 6a), the sensor network 
observed a positive OPG of 0.2 km–1, and snow pillows 
showed a slightly negative value of –0.1 km–1. The average 
cumulative solid precipitation from the sensor network (23 
cm) agreed with that from snow pillows (25 cm). For the 
upper-basin total precipitation, both the sensor network and 
the banded PRISM data had an OPG of 0.1 km–1. The average 
cumulative total precipitation from the sensor network (23 cm) 
agreed with that from PRISM (24 cm). Although gauges 
showed a positive upper-basin OPG of 0.5 km–1, the 
cumulative total precipitation estimates from gauges were 
quite scattered and underestimated, with a mean value of 12 
cm, reflecting precipitation measurement issues from upper-
basin gauges during snowfall. 

Another snow-only event in January 2016 (Figure S17) 
was chosen to compare upper-basin solid precipitation 
between the senor network and the gridded SWE reanalysis 

data, since liquid precipitation could not be inferred using only 
SWE reanalysis data. The mean solid precipitation (5.1 cm) 
from the sensor network was close to that (5.6 cm) from the 
SWE reanalysis (Figure S18a). At a basin scale, the sensor 
network represented the solid-precipitation variabilities from 
the SWE reanalysis, as indicated by the similar coefficient of 
variation (CV) of 0.35. On a 100-m-elevation-band scale, 
banded-solid-precipitation CVs from the sensor network 
typically accounted for 75% of those from the SWE reanalysis 
(Figure S18b). The SWE reanalysis included larger 
precipitation above 2400-m elevation, which was not shown 
in the sensor network, resulting in a larger positive OPG from 
SWE reanalysis (0.3 km–1) than that from the sensor network 
(0.1 km–1). This was expected given that the spatial coverage 
of the wireless-sensor nodes was much smaller than the 
~2,160,000 grided points represented by the SWE reanalysis. 
The general agreement of solid precipitation estimates 
indicates that the blending approach based on snow-depth 
change and new-snow density is applicable during snow 
events.  

Mixed-phased events. The largest precipitation event on 
February 2-10, 2017 was related to both an AR (Category 4, 
Ralph et al., 2019) and an SBJ, with intense moisture flux 
(peak of IVT > 750 kg m–1 s–1, Figure 5i) from the Pacific 
Ocean affecting the American River basin. During the first 
five days (Feb. 2-6), the rain-snow-transition zone was 
relatively low (1820 m, Figure 5h). Most sensor nodes (76%) 
continuously received snowfall (Figure 5m), while some 
sensors below 1830 m occasionally experienced rainfall 
(Figure 5n). Snow pillows and precipitation gauges at three 
operational sites (> 2300 m elevation) recorded precipitation 
as snow (Figures 5k, l). In the following two days (Feb. 7-8), 
the warm atmospheric-river core came across the basin, 
resulting in an elevated rain-snow-transition zone (2470 m), 
as shown by both the sensor network and radar (Figure 5h). 
The high rain-snow-transition zone and intense atmospheric-
moisture flux caused heavy rainfall at most sensor nodes, 
except for the highest-elevation sensor nodes at SCN (2673 
m), which experienced snowfall (Figure 5m). The rain-on-
snow event resulted in snow-depth decreases at all sensor 
clusters, as much as 52 cm, again except for SCN (Figure 5j). 
The snow pillow and gauge at EP5 also showed SWE loss due 
to rain-on-snow. After Feb. 9, as the atmospheric-river core 
passed and moisture flux started to diminish (Figure 5i), the 
rain-snow-transition zone dropped in elevation (Figure 5h). 
On Feb. 9, with still relatively large IVT, sensor nodes at 
higher elevations (> 2100 m) received as much as 17 cm of 
solid precipitation and showed increased snow depths, as 
much as 51 cm (Figures 5j, m). 

During the largest February 2017 event, lower-basin total 
precipitation from gauges and PRISM showed positive OPGs 
of 1.7 and 1.0 km–1, respectively (Figure 6d). In the upper 
basin (Figure 6c), both the sensor network and snow pillows 
showed a similar elevational trend of solid precipitation, with 
large OPGs of 5.0 and 3.2 km–1, respectively. The upper-basin 
OPG of total precipitation from the sensor network was 0.4 
km–1, however those from gauge and PRISM data were 
negative, –0.1 and –0.2 km–1, respectively (Figure 6d). 
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Average upper-basin cumulative-precipitation estimates from 
three sources were comparable (37, 37, and 39 cm for the 
sensor network, gauges, and PRISM, respectively). Above 
2300 m, gauge and PRISM data tended to show less total 
precipitation than did the sensor network. 

During another mixed-phased event (September 20-23, 
2017), the upper-basin-average Twet was 0.78 °C, and the mean 
transition elevation was 2100 m (Figure S19a). Mean solid 
precipitation was ~1 cm estimated by the blending approach 
(Figure 6e). The small snow accumulation during this summer 
event was not represented by the cleaned daily data from the 
sensor network and snow pillow, though there were some 
fluctuations in raw hourly and daily data (Figure S20). The 
snowfall occurrence was reported in the news (e.g. CBS News, 
https://www.cbsnews.com/news/snow-last-day-of-summer-
sierra-nevada-turns-deadly/). Positive OPGs of total 
precipitation in the upper and lower basins were captured by 
all three sources (Figure 6f). Figure 6e reflects an advantage 
of the blending approach using the sensor network and the 
random-forest model, since solid precipitation with a positive 
OPG was estimated using total precipitation multiplied by 
snow fraction, even when cleaned snow data from ground 
sensors did not represent small snow accumulation. 

Warm event. During the summer rain-only event on 
September 11-13, 2017 (Figures 6g, h), the upper-basin-
average Twet was 10.7 °C, and the rain-snow transition 
elevation was above 3000 m (Figure S21a). Upper-basin 
liquid presentation from gauges and PRISM was expected to 
be less affected by gauge undercatch. Thus, positive OPGs of 
upper-basin precipitation due to orographic enhancement 
(Dawdy & Langbein, 1960; Dettinger et al., 2004) were 
represented by all three sources. Both the sensor network and 
gauges estimated a precipitation amount of 2.0 cm, slightly 
larger than 1.2 cm from PRISM. 
3.3.2 Annual precipitation. For the lower basin, both gauges 
and PRISM yielded positive annual total-precipitation OPGs 
(0.67-1.68 km–1, Table S4) for WY2014-2017 (Figure 7). For 
the upper basin, total-precipitation values from the senor 
network were positive (0.09-0.58 km–1), while those from 
gauges and PRISM were negative (–0.33 to –0.09 km–1). The 
sensor network and snow pillows captured positive upper-
basin solid-precipitation OPGs (0.95-3.64 km–1, Figure 8). 
Due to decreasing Tair and Twet with elevation, snow ratio 
(annual solid precipitation over total precipitation) increases 
(Figure S22). An increasing snow ratio with elevation results 
in less liquid precipitation in higher elevations (i.e. negative 
upper-basin liquid-precipitation OPGs, Figure 8). Although 
gauge-precipitation undercatch in high elevations may 
contribute to the negative OPGs for liquid precipitation, their 
undercatch amounts (Figure S8) were considerably smaller 
than the liquid precipitation decrements with elevation (Figure 
8). Therefore, the negative OPGs for liquid precipitation in the 
upper basin were dominated by the increased snow ratio 
caused by temperature decrease. Note that Huning & Margulis 
(2018) found that the southwest basins in the Sierra Nevada 
exhibited negative elevational trends of solid precipitation 
above 3000 m; but solid precipitation in the American River 
basin monotonically increased along elevation. Kirchner et al. 

(2014) observed the declining precipitation over 3300-m 
elevation (very small area) in the southern Sierra Nevada, 
likely due to exhaustion of atmospheric moisture and reduced 
orographic lifting. While this could be the case for smaller 
storms, larger storms that possess large amounts of consistent 
IVT will likely not experience moisture exhaustion in the 
American River basin. For example, the Category-4 AR 
during the event in February 2017 provided sufficient 
atmospheric moisture for orographic precipitation in the upper 
American River basin (Figure 5i), yet gauges and PRISM did 
not show the positive OPG of total precipitation shown by the 
sensor network (Figure 6d). Further, since the American River 
basin is principally below 3000 m, solid-precipitation OPGs 
in the upper basin were positive, suggesting that upper basin 
values for total precipitation should also be generally positive 
(Figures 6b, d, f, h). However, the upper-basin total-
precipitation OPGs from the sensor network were smaller than 
those in the lower basin (Figure 7). The unusual negative 
OPGs of upper-basin total precipitation from gauges were 
likely due to uncertainty in gauge measurements of 
precipitation, particularly solid precipitation. As PRISM data 
are based on both gauge data and snow-course measurements 
(Henn et al., 2015), PRISM showed less-negative values 
(Figure 7). Note that physical mechanisms, e.g. 
thermodynamics, wind redistribution, microphysics, and 
terrain slope can change mountain precipitation patterns and 
may result in precipitation decrease at high elevations (Huning 
& Margulis, 2018; Lundquist et al., 2019; Siler & Roe, 2014), 
which were not investigated in this study. For radar-based 
precipitation (Figures 7c, d), MRMS data had positive lower-
basin OPGs of 0.57 and 0.54 km–1 for WY2016 and 2017, 
respectively. MRMS precipitation agreed with PRISM data at 
lower elevations below 1000 m. However, MRMS data 
showed noticeable underestimates of precipitation above 
1500-m elevation, compared to other sources, reflecting the 
challenges to obtaining accurate radar-based precipitation in 
mountains (Zhang et al., 2012). 

The sensor network typically estimated higher total 
precipitation amounts than did gauges and PRISM at 
elevations over 2000 m (Figure 7), except in the dry year 
WY2015, with its exceptionally low snowpack. This is 
because more than half of the total precipitation above 2000 
m was snow (Figure S22). The total precipitation between 
1500 and 2000 m elevation from the sensor network was 
generally lower than that from the gauges and PRISM. Taking 
wet WY2017 as an example (Figure 7d), total precipitation 
above 2000 m from the sensor network averaged 21 and 37 
cm more than those from PRISM and gauges, respectively. 
For elevations between 1500 and 2000 m, the sensor network 
underestimated precipitation by 50 and 38 cm compared to 
PRISM and gauges, respectively. This underestimation likely 
reflects sensor clusters having limited spatial coverage in that 
elevation range. Note that total precipitation from a sensor 
cluster matched the co-located-gauge values (e.g. OWC at 
1586 m in the South Fork American River; Figure 7c). 
However, for the higher precipitation at BLC (1609 m, Figure 
7c) in the North Fork American River, total precipitation was 
not well represented by the sensor network due to spatial 
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variability of precipitation (relatively higher in the North Fork 
American River), although the elevation difference between 
OWC and BLC is small. The gauge values from both OWC 
and BLC compared well to those from PRISM (Figure S23). 
A caveat here is that the relatively low precipitation at OWC 
was used as training data in the random-forest model, which 
possibly resulted in the larger upper-basin total-precipitation 
OPGs from the blending approach. Smaller upper-basin OPGs 
would likely be obtained if BLC or a different gauge at low 
elevation were used as a training gauge. It is apparent that a 
precipitation gauge may not record well. For example, the 
training gauge at FRN (2318 m) measured anomalously low 
precipitation in WY2016 (Figure 7c). The blending approach 
using the sensor network showed a robust performance with 
the ability to handle the isolated unusual observation at FRN, 
since no significant deficiency of precipitation estimates was 
found near FRN’s elevation, compared to other gauges and 
PRISM. 

For annual solid precipitation in the upper basin, the sensor 
network showed good agreement with snow pillows in 
WY2014-2016, with a difference of mean values less than 12 
cm. In wet WY2017, the solid precipitation from the sensor 
network averaged 33 cm lower than the snow pillows (Figure 
8d). The sensor network averaged 22, 23, and 23 cm higher 
than values from the SWE reanalysis for WY2014-2016, 
respectively (Figures S24a, c, e). This is plausibly due to the 
fact that solid precipitation during rain-on-snow could not be 
easily obtained from the SWE reanalysis. Although the 
gridded SWE reanalysis dataset could not estimate total and 
liquid precipitation, it captured a larger spatial variability of 
solid precipitation than did the sensor network (Figures S24b, 
d, f). 
3.4 Orographic precipitation during different events 
For all precipitation events in WY2014-2017 (Figure 9), the 
sensor network and snow pillow yielded positive OPGs for 
upper-basin solid precipitation for 98% and 64% of the events, 
respectively; and respective median values were 0.89 and 0.58 
km–1. For partitioned liquid precipitation in the upper basin, 
most sensor-network OPGs (90%) were negative, with a 
median of –0.96 km–1. Combining positive solid-precipitation 
OPGs and negative liquid-precipitation values, the sensor 
network showed positive OPGs of upper-basin total 
precipitation for 77% of the events, with a median of 0.57 km–

1. However, the values from gauges and PRISM were negative 
for 73% of events, with medians of –0.35 and –0.13 km–1, 
respectively. As there was less snow in the lower basin, both 
gauges and PRISM observed positive lower-basin total-
precipitation OPGs, with medians of 1.23 and 1.00 km–1, 
respectively. For total precipitation, the sensor-network 
results demonstrate that the upper-basin values are generally 
positive but smaller than those in the lower basin. 

ARs produced higher positive event-aggregated OPGs for 
lower-basin total-precipitation and upper-basin solid-
precipitation, compared to those for aggregated Non-AR 
events (Table 3). However, the upper-basin total-precipitation 
values from gauges and PRISM during aggregated AR (SBJ) 
events were more negative, compared to those during Non-AR 

(Non-SBJ) events. Compared to aggregated low-SBJ events, 
high-SBJ events had smaller lower-basin total-precipitation 
OPGs from gauges and PRISM, and had larger upper-basin 
total-precipitation values from the sensor network but more-
negative upper-basin total-precipitation values from gauges 
and PRISM. Since a low SBJ allows more low-level airmass 
flow across the lower mountain (Lundquist et al. 2010), the 
OPG is larger during low-SBJ than during high-SBJ events. 
As such, the largest OPGs of lower-basin total precipitation 
were found in the aggregated events with AR and Non-SBJ, 
as AR provides mountain-perpendicular moisture that is not 
blocked by SBJ. 

Across the 60 events, 21 events were associated with both 
an AR and an SBJ (Figure 10 and Table 3); however, these 
aggregated heavy AR&SBJ events contributed 62% (289 cm) 
of upper-basin total precipitation (467 cm) and 61% (195 cm) 
of upper-basin solid precipitation (322 cm). In the lower basin, 
the positive OPGs of total precipitation did not show a 
statistically significant difference between mild Non-
AR&Non-SBJ events and heavy AR&SBJ events (Figures 
S25a, c). However, the upper-basin OPGs for total 
precipitation from gauges and PRISM were more negative (p-
values <0.03 from two-tailed student’s t-tests, Figures S25b, 
d) during the AR&SBJ events than during the Non-AR&Non-
SBJ events. As AR and SBJ transport a large amount of 
moisture together with strong wind, we expect that the OPGs 
of total precipitation in the upper basin should be positive, as 
indicated by the sensor network. Again, negative OPGs for 
total precipitation in the upper basin from gauges and PRISM 
should be viewed cautiously, likely caused by relatively few 
measurements and potential gauge undercatch during heavy 
AR&SBJ events. 

4 Discussion 
With dense measurements, particularly for snow, our blending 
approach provides additional precipitation information in 
high-elevation mountain terrain, complementing precipitation 
from less-dense operational gauges and gridded datasets. 
Here, we discuss the use of distributed-sensor measurements 
to assist precipitation estimation, and the potential for real-
time application, and finally the limitations of the method. 
4.1 The use of distributed-sensor measurements for 

precipitation estimation 
In rain-snow mixed mountain areas, precipitation undercatch 
is a concern for gauge measurements. Snow pillows are one of 
the few high-elevation gauge networks, and so offer useful 
insight into precipitation-accumulation totals in higher-
elevation snow-dominated areas. This study found that gauges 
and gridded data may underestimate precipitation and infer 
negative OPGs at higher elevations during cold storms. 
Blending in more snow measurements can contribute to more 
accurate precipitation estimates, with wireless-sensor 
networks providing a convenient way to incorporate more 
high-elevation data.  

Compared to common operational observations, the 
wireless-sensor network can provide value-added 
measurements of snow depth, temperature, and humidity, 
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reflecting spatial variability and reducing hydrologic 
uncertainty (Zhang et al., 2017b). The blending approach uses 
snow depth plus new-snow density to estimate partitioned 
precipitation during snowfall, increasing the certainty of 
precipitation through more distributed measurements. In terms 
of solid precipitation, estimates from the sensor network 
showed a relative difference of –7% (i.e. lower) compared to 
those from snow pillows during WY2014-2017 (Figure S26). 
One plausible uncertainty may be the new-snow density 
(Figure S12), used to convert snow-depth increment to solid 
precipitation. This study’s new-snow density ranged from 98 
to 343 kg m–3, with a mean value of 166 kg m–3. The measured 
new-snow density from Bair et al. (2018) presented a similar 
distribution (Figure S12a), but with a smaller mean value of 
129 kg m–3 compared to the density used in this study. Note 
that the large daily densities in both this study and Bair et al. 
(2018) often resulted from declining snow depth due to rain-
on-snow, e.g. the 343 kg m–3 in this study was estimated 
during the event on Feb. 7-9, 2017 (Figures 5j, k). Thus, this 
study used new-snow density slightly higher than the 
measurements from earlier studies, for example, 120 kg m–3 in 
the central Sierra Nevada (McGurk et al., 1988) and 
measurements ranging from 10 to 257 kg m–3, and modes 
(peaks) of six individual-site histograms from 60 to 100 kg m–

3 in the central Rockies (Judson & Doesken, 2000). However, 
using the eastern Sierra values from Bair et al. (2018), the 
relative difference of solid-precipitation estimates compared 
to snow pillows was –27%, which is about four times that 
using our derived new-snow density in this study (Figure S26). 
Together with the comparison between different new-snow 
densities (Figure S14), we assess that the new-snow density 
used in this study is more suitable for solid-precipitation 
estimation at our nodes. One reason for the smaller solid 
precipitation from the sensor network is that snow pillows 
may overestimate solid precipitation, since rain can be 
retained in the snowpack overlaying the pillow, and melting 
snow can lead to more water being stored (Langham et al., 
1974). 
4.2 Potential for near-real-time applications 
The blending approach for estimating precipitation based on 
snow measurements can be further adopted and incorporated 
in near-real-time applications. The U.S. National Weather 
Service California-Nevada River Forecast Center (CNRFC) 
and the California Department of Water Resources jointly 
issue the streamflow forecasts for basins in the CNRFC 
region, including the American River basin (He et al., 2018). 
Quantitative Precipitation Forecasts (QPFs) from weather-
forecast models, surface and upper-air observations, radar and 
satellite data (Ralph et al., 2010) and Quantitative 
Precipitation Estimates (QPEs) from on-the-ground rain 
gauge data (Willie et al., 2017) are used together with the 
PRISM precipitation climatology to produce the sub-basin-
scale Mean Areal Precipitation (MAP), which is a key input 
for hydrologic modeling. For the American River basin, it is 
recommended to incorporate additional precipitation 
estimates from the blending approach in the upper basin, 
particularly in the snow-dominated areas above 2000 m. Once 

the random-forest model of the blending approach is well 
trained using historical quality-controlled gauge-precipitation 
data, the precipitation at snow-observation sites during rainfall 
days can be estimated in near-real-time by the model using 
IVT, relative humidity, and snow-depth data (not requiring 
gauge data at prediction time; Figure 2). The proposed 
approach can be applied and evaluated in other operational 
snow-observation sites, further enlarging spatial coverage of 
additional precipitation estimates in high elevations. 

From the perspective of forecasters, one practical way for 
benefitting near-real-time applications is to use the additional 
precipitation estimates at high elevations to update the PRISM 
climatology for the American River basin. This often requires 
long-time records of precipitation estimates from the research 
wireless-sensor network, which are currently not available. 
Since operational snow-observation sites often have longer-
term measurements, the proposed approach can be applied to 
operational sites to generate long-term precipitation estimates, 
which can help update the PRISM climatology product. 
Another practical way is to treat these additional precipitation 
estimates as ground “precipitation measurements”, 
supplementing the relatively sparse precipitation gauges in 
high elevations. These additional precipitation estimates can 
be easily included as near-real-time inputs for producing QPE 
and MAP.  

There is also a need to broaden our use of observation 
information beyond inputs into a formal forecasting process. 
Near-real-time situational awareness of how the rain-snow-
transition elevation is evolving and how orographic 
precipitation is enhanced and partitioned across mountains can 
help provide advance information on runoff-response changes 
during storms and help enable more-nimble water 
management. The blending approach incorporates multiple 
types of measurements, leveraging information less apparent 
in single-type observations to help provide reliable 
precipitation estimates in near-real-time for both flood 
forecasting and water-resource decision making. Further, 
since the same data can inform both flood-response and water-
supply decisions, synergy may deliver important efficiency 
gains. This is particularly important to regions like California, 
where heavy AR&SBJ events often occur in wet winters and 
contribute a substantial amount of water supply. 
4.3 Limitations of the study 
Although the blending approach using snow measurements 
provides an alternative way to estimate mountain 
precipitation, some limitations still exist. First, the spatial 
coverage of precipitation estimates using snow measurements 
is somewhat limited, compared to gridded products, which can 
provide data at fine spatial-temporal resolutions.  

Second, the blending approach used precipitation data 
from six gauges near our sensor network to train the random-
forest model. Due to the high variability of weather-dependent 
precipitation in mountains, precipitation amounts in areas out 
of sensor-network coverage may not be well estimated. For 
example, precipitation at OWC (in the South Fork American 
River, Figure 7c) cannot represent the higher precipitation at 
BLC (in the North Fork American River) at a similar elevation 
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due to spatial precipitation variability other than elevation. 
Since precipitation at OWC is relatively low compared to 
other sites of a similar elevation, which might bias OPG 
estimates, we re-computed OPGs without OWC data (Figures 
S27 and S28). As expected, the OPGs from the sensor network 
were less positive, compared to corresponding results with 
OWC data (Figures 7 and 10). However, the main finding 
remains unchanged, which is that upper-basin OPGs from 
gauges and PRISM are lower than those from the sensor 
network. The sensor-network-based OPGs are sensitive to the 
limited spatial area and the limited number of training gauges 
used, whereas PRISM uses a much larger network of gauges 
over a wider area. This may explain their OPG differences. 
Thus, additional data from well-maintained precipitation 
gauges co-located with snow observatories across the entire 
basin could further improve the blending approach’s 
predictive ability and OPG estimates.  

Third, for estimating precipitation, there exists some 
uncertainties using daily changes of snow depth or SWE. For 
example, rainwater may enter and drain through a snowpack 
during warm precipitation events (Lundquist et al., 2015), 
while rain can also be frozen and retained in the snowpack 
(Langham et al., 1974). For AR events, the rain-snow-
transition zone escalates quickly (e.g. Figure 5h), resulting in 
sub-daily-precipitation-phase changes at different elevations. 
Together with intense precipitation during AR events, ground 
snow depth or SWE changes considerably at a sub-daily time 
scale, either through accumulation or melting. If using net 
daily change of snow depth or SWE to estimate daily 
precipitation, sub-daily processes (e.g. warm storm melting 
snow at a short time) are not accounted for. Using snow 
changes at a sub-daily scale would improve precipitation 
estimates by capturing the alternating precipitation phase 
details between snow and rain. However, raw hourly gauge-
precipitation and snow-depth data are not always available and 
can be quite noisy (Avanzi et al., 2014). This is an area of 
future work on many fronts (Avanzi et al., 2020b). 

Fourth, this study assumed that decreasing snow depth 
during rainfall days is primarily caused by rain-on-snow 
process and driven by liquid precipitation. In fact, snow depth 
can also decline due to other processes during a precipitation 
event, e.g. wind redistribution, sublimation, and compaction, 
which all could distort snow depth (Brandt et al., 2020) and 
introduce uncertainty in estimating precipitation amounts. For 
example, the wireless-sensor networks at higher elevations 
(e.g. MTL site with less canopy cover) may be exposed to a 
large amount of wind redistribution, particularly during big 
storms associated with large amounts of moisture and wind. 
Stronger wind can also increase sublimation rate (Pomeroy & 
Goodison, 1997). However, during snowfall and rainfall, high 
atmospheric humidity substantially reduces sublimation 
(Stigter et al., 2018). Additionally, all wireless-sensor 
networks may experience snow compaction, that can be 
mainly driven by snow overburden during snowfall (Wayand 
et al., 2017), liquid precipitation during rainfall (Marshall et 
al., 1999), and metamorphism after a storm (Arthern et al., 
2010; Wiese & Schneebeli, 2017). 

Fifth, this study explored the OPGs during precipitation 
events that were classified by two important atmospheric 
processes, i.e. AR and SBJ for the northern Sierra Nevada. 
However, synoptic-scale storms and orographic lifting of 
moist air generate mountain precipitation, which is also 
modified by other atmospheric dynamic and physical 
processes (Lundquist et al., 2019). Although further 
investigation on atmospheric dynamics is beyond the scope of 
this study, performing meso- or synoptic-scale storm analysis 
can help distinguish strong versus weak orographic storms and 
explain orographic precipitation across the basin. 

5 Conclusions 
This study developed a new blending approach to estimate 
precipitation using snowpack measurements from a spatially 
dense wireless-sensor network, gauge precipitation, and 
atmospheric-moisture data. The blending approach provides 
partitioned solid snow and liquid rain in the upper, more snow-
dominated basin, where precipitation gauges may 
significantly undercatch snowfall. Analysis of total and 
partitioned precipitation amounts in the lower and upper 
American River basin over 60 precipitation events classified 
by atmospheric-river and Sierra-barrier-jet influences leads to 
three main conclusions. 

First, the blending approach overcomes potential 
precipitation biases from gauge undercatch during snowfall, 
and the inability to infer precipitation based on snow 
measurements during rain-on-snow events. As the blending 
approach incorporates ground snow measurements, its 
precipitation estimates are more reliable in the snow-
dominated areas above 2000 m. 

Second, as it is challenging for gauges to measure 
precipitation in the upper American River basin, negative 
OPGs of total precipitation derived from these gauges should 
be viewed cautiously, reflecting the urgency to incorporate 
snow measurements for more accurate precipitation 
estimation. In particular, the OPGs from gauges and PRISM 
are more negative during heavy AR&SBJ events with vast 
moisture and strong wind, compared to milder events. Since 
these heavy AR&SBJ events contribute substantial 
precipitation and are critical for water-resource and flood 
management, precipitation estimates and OPGs from the 
blending approach can add value for decision support. 

Third, it is recommended to incorporate additional 
precipitation estimates from the blending approach in snow-
dominated areas to reduce precipitation uncertainty in 
hydrologic applications. Given the importance of precipitation 
partitioning under climate warming and atmospheric rivers, 
the blending approach using the basin-scale wireless-sensor 
network and multiple types of measurements can complement 
the precipitation from operational gauges and gridded 
datasets, with a potential of providing alternative near-real-
time data. 
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Tables and Figures 

Table 1. Wireless-sensor clusters in the upper American River basin. 

Wireless-sensor 
cluster Abbr. Lat, ° Lon, ° Elevation 

range, m 
Slope, 
° 

Aspect, 
° 

Canopy 
cover, % 

Schneiders SCN 38.745 -120.068 2634-2723 11 207 36 
Echo Peak ECP 38.851 -120.075 2306-2607 16 179 22 
Mt Lincoln MTL 39.286 -120.325 2388-2544 17 160 11 
Caples Lake CAP 38.711 -120.042 2428-2446 6 214 50 
Alpha ALP 38.805 -120.214 2206-2317 13 229 37 
Duncan Peak DUN 39.152 -120.511 2049-2130 15 265 43 
Van Vleck VVL 38.943 -120.309 2046-2087 7 119 48 
Dolly Rice DOR 39.149 -120.371 1952-2003 9 281 55 
Onion Creek ONN 39.276 -120.358 1849-1939 11 234 49 
Robbs Saddle RBB 38.913 -120.379 1782-1834 7 141 48 
Talbot Camp TLC 39.191 -120.377 1723-1751 7 142 58 
Owens Camp OWC 38.736 -120.242 1566-1600 10 201 38 
Bear Trap BTP 39.093 -120.577 1510-1622 15 187 57 

Note: Values of each cluster were averaged by all nodes within the cluster, except for the elevation column showing the elevation range of all 
nodes. Elevation, slope, and aspect were derived using Digital Elevation Model (DEM) with a spatial resolution of 30 m from the National 
Elevation Dataset (NED), and canopy cover was obtained from the National Land Cover Database (NLCD). 
 

Table 2. Precipitation gauges and snow pillows from operational stations on CDEC. 

Station ID Gauge Tipping 
bucket 

Wind 
adjusted 

Snow 
pillow Lat, ° Lon, ° Elevation, m 

LOS    x 38.921  -120.204  2621 
CXS x   x 38.692 -120.002 2546 
SQV x   x 39.194 -120.276 2499 
EP5 x   x 38.849 -120.079 2473 
FDC x   x 38.682 -119.960 2444 
CAP x x x x 38.710 -120.042 2438 
FRN x x x x 38.805 -120.213 2316 
RP2 x   x 39.001 -120.140 2286 
MFT x    38.894 -120.276 2167 
SIL x   x 38.678 -120.118 2164 

DUN x  x  39.144 -120.509 2164 
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CSL    x 39.325 -120.367 2103 
WC3 x   x 39.136 -120.219 2057 
HYS x x  x 39.282 -120.527 2012 
LON x    38.983 -120.323 1954 
GKS x x  x 39.075 -120.558 1707 
BLC x x  x 39.280 -120.709 1609 
BTP x  x  39.095 -120.577 1590 

OWC x  x  38.733 -120.245 1586 
HLH x  x  39.072 -120.422 1396 
SOM x    39.091 -120.732 1311 
SGP x x   39.124 -120.761 1171 
PFH x x   38.759 -120.508 1049 
PCF x    38.765 -120.500 1036 

GTW x x   38.925 -120.790 991 
PWS x x x  38.695 -120.824 566 
SLB x    38.773 -120.699 564 
PCV x    38.700 -120.820 564 
PIH x  x  38.832 -121.009 366 
ADR x x   38.882 -121.045 366 
NCS x x   38.874 -121.135 271 
FOL x    38.683 -121.183 142 
FLD x  x  38.693 -121.130 107 
PRC x    38.592 -121.161 95 
ORN x    38.687 -121.219 72 
CHG x x   38.652 -121.254 64 
LCN x  x  38.882 -121.272 61 
RSV x    38.760 -121.315 46 
RNC x x   38.603 -121.312 22 
RLN x    38.698 -121.449 14 
ARW x x   38.596 -121.413 11 
HRY x    38.587 -121.405 11 
CSU x x   38.555 -121.416 8 

 
 
 
 
 

Table 3. Orographic Precipitation Gradients (OPG α, unit km–1) for aggregated precipitation events in WY2014-2017 based on 
the occurrences of Atmospheric River (AR) and Sierra Barrier Jet (SBJ). High SBJ event is defined as precipitation event with 
SBJ height ≥ 1000 m, and low SBJ event with SBJ height < 1000 m. Non-AR stands for the event that is not associated with AR, 
and Non-SBJ for the event not associated with SBJ. 

Event Category 
(event count) 

Upper Basin (≥1500 m) Lower Basin (<1500 
m) 

Sensor 
liquid  

Sensor 
solid 

Pillow 
solid 

Sensor total Gauge 
total  

PRISM 
total  

Gauge 
total  

PRISM 
total  

AR & SBJ (21) -0.94 1.58 1.20 0.17 -0.48 -0.20 1.09 0.80 
Non-AR & Non-SBJ (20) -0.56 1.58 1.40 0.24 -0.05 -0.06 1.09 0.73 
AR & Non-SBJ (10) -1.04 0.86 0.36 0.39 -0.47 -0.11 1.57 1.03 
Non-AR & SBJ (6) -1.26 0.59 0.57 0.29 -0.61 -0.28 0.76 0.53 
AR (34) -0.95 1.45 1.07 0.22 -0.48 -0.17 1.15 0.82 
Non-AR (26) -0.61 1.23 0.60 0.28 -0.22 -0.11 0.98 0.67 
SBJ (27) -0.94 1.46 0.61 0.17 -0.50 -0.20 1.09 0.77 
Non-SBJ (30) -0.70 1.18 0.58 0.29 -0.34 -0.09 1.25 0.88 
High-SBJ (13) -0.95 1.99 1.11 0.30 -0.60 -0.25 0.92 0.61 
Low-SBJ (14) -0.90 1.29 0.61 0.15 -0.42 -0.17 1.18 0.88 
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Figure 1. a) Map of the basin-scale distributed wireless-sensor network in the American River basin, operational 
precipitation gauges, and snow pillows; b) a close-up view of ten sensor nodes and one base station at ALP site shown 
on Google Earth imagery; and c) plots the elevation distribution of the sensor nodes and base station at ALP. 

 

 
Figure 2. The blending approach for estimating precipitation (P) based on ground-snow-depth changes observed by the 
wireless-sensor network (blue box during snowfall day) and a random-forest model (red box during rainfall day). The 
purple box shows the estimation of rain-snow-mixed precipitation using snow fraction. 
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Figure 3. Measurements from two wireless-sensor clusters (CAP, 2440 m 
and OWC, 1566 m) in WY2017: a) averaged daily air temperature from 
sensor nodes, b) relative humidity, c) cluster-averaged snow depth (solid 
line) and snow depth from each sensor node within the cluster (dashed line), 
d) Sierra barrier jet (SBJ) height using wind profile data at CCO and SBJ-
related precipitation events are shaded with green bands, e) daily wind-
adjusted precipitation at CAP, and atmospheric-river-related precipitation 
events are shaded with red bands, f) daily wind-adjusted precipitation at 
OWC, and g) the Integrated water-Vapor Transport (IVT) at basin outlet, the 
Folsom Dam, from the MERRA-2 dataset. Values larger than 250 kg m–1 s–
1 are marked as red. 

 

Figure 4. a) Results from the random-forest model to predict 
daily precipitation from gauges using data split into training 
(blue) and testing (red). The RMSE (Root Mean Square Error) 
and R2 (coefficient of determination) quantify model 
performance, and b) relative feature importance, i.e. 
normalized-permutation-feature importance from the random-
forest model. 
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Figure 5. Characteristics of a cold event (left panel, a-g) in January 2017 and a mixed-phased event (right panel, h-n) in 
February 2017. a) rain-snow-transition zone (shaded area of wet-bulb temperature Twet between 0 and 1 °C, transition 
elevation (red line of Twet = 0.5 °C), and snow level from the radar at Colfax (blue dot). Black lines denote elevation 
coverage (1510-2723 m) of the wireless-sensor network, b) hourly integrated water-vapor transport (IVT) at Folsom 
Dam, c) daily average snow depth from sensor clusters, solid red lines denote higher elevation clusters (> 2000 m) and 
black dashed lines for lower clusters, d) daily SWE change from three snow pillows at EP5, CAP, and FRN on CDEC, 
e) daily precipitation (P) from three precipitation gauges, f) daily total precipitation from each sensor node (each row) 
during snowfall days, and the panel is stacked in order of increasing elevation, and g) daily total precipitation from each 
sensor node during rainfall days, and the panel is stacked in order of increasing elevation in a nonlinear scale representing 
elevations of sensor nodes. (h-n) on the right panel are the same as (a-g) but for the mixed-phased event. 
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Figure 6. Comparison of solid and total precipitation estimates for four events in WY2017: (a-b) the cold event on 18-
23 January, (c-d) the mixed-phased event on February 2-10, (e-f) the mixed-phased event on September 20-23, and (g-
h) the warm event on September 11-13. The left panels show solid precipitation from sensor nodes and snow pillows; the 
right panels show total precipitation from sensor nodes, precipitation gauges, and 100-m banded PRISM data for lower 
and upper basins. The dashed lines are fitted lines using the Orographic Precipitation Gradients (OPGs) with the 
corresponding data in the same color. Note that the node-by-node total precipitation in panels (f) and (h) was estimated 
by the random-forest model. Gauges without precipitation records during events were removed and not plotted in the 
right panels. The sensor-solid precipitation in panel (e) was partitioned from sensor-total precipitation (f). The summer 
mixed-phased event (e-f) was confirmed by news (e.g. CBS News, https://www.cbsnews.com/news/snow-last-day-of-
summer-sierra-nevada-turns-deadly/).  
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Figure 7. Annual total precipitation estimates from the wireless-sensor network using the blended approach, precipitation 
gauges, and 100-m banded PRISM and MRMS data: a) WY2014, b) WY2015, c) WY2016, and d) WY2017. Note that 
the vertical-axis scales of each panel are different. The colored, dashed lines are fitted lines using the Orographic 
Precipitation Gradients (OPGs) with the corresponding data in the same color, i.e. red, green, yellow, and blue lines are 
OPG lines for the wireless-sensor network, precipitation gauges, PRISM, and MRMS, respectively. Black cross symbols 
show the primary four precipitation gauges (i.e. OWC, FRN, EP5, and CAP) used in training the random-forest model. 
The other two training sites (BTP and DUN) are not plotted as they have limited, reliable precipitation records. 

 
Figure 8. As in Figure 7, but for annual partitioned precipitation (i.e. solid and liquid) estimates from the wireless-sensor 
network, compared to solid precipitation from snow pillows: a) WY2014, b) WY2015, c) WY2016, and d) WY2017. 
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Figure 9. Orographic Precipitation Gradients (OPGs, α) for solid, liquid, and total precipitation for all precipitation events 
in WY2014-2017, from the wireless-sensor network, snow pillows, precipitation gauges, and PRISM dataset. The black 
line within the box is the median. The box denotes the interquartile range with lower and upper boundaries of 25th and 
75th percentiles, respectively. Whiskers indicate 1.5 times interquartile range beyond the box boundaries. Grey dots show 
the values of OPG. Questionable OPG values (>5 or <–3 km–1) were removed, as they may occur due to zero or abnormal 
precipitation data at reference elevation.  

 
Figure 10. Event-aggregated solid and total precipitation estimates for (a-b) events related to both Atmospheric River 
(AR) and Sierra Barrier Jet (SBJ) and (c-d) events that are not associated with either AR or SBJ (i.e. Non-AR & Non-
SBJ). Left panels show solid precipitation from the wireless-sensor network and snow pillows; right panels show total 
precipitation from sensor nodes, precipitation gauges, and PRISM for the lower and upper basins. All data are averaged 
by 100-m elevation bands. The dashed lines are fitted lines using the Orographic Precipitation Gradients (OPGs) with 
the corresponding data in the same color. 
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Supporting Information 

This supporting information includes the supporting tables and figures referenced in the main text. Results for all 60 
precipitation events (Table S1) and all data figures to identify events can be found at 
https://gitlab.com/UC_WSN/wsn_precip_results/. 

Table S1. Precipitation events in WY2014-2017 and their categorizations of Atmospheric River (AR) and Sierra Barrier Jet 
(SBJ). 

ID Start End ARa SBJ heightb, m Precip. rankingc Typed 

1 10/27/2013 10/30/2013   50 Mixed 
2 11/18/2013 11/21/2013 x 743 40 Mixed 
3 12/6/2013 12/8/2013  874 45 Cold 
4 1/29/2014 1/31/2014 x  22 Mixed 
5 2/5/2014 2/10/2014 x 767 4 Mixed 
6 2/26/2014 3/6/2014 x 1105 14 Mixed 
7 3/25/2014 4/1/2014 x  16 Mixed 
8 4/24/2014 4/25/2014   35 Mixed 
9 9/25/2014 9/28/2014   39 Mixed 
10 10/31/2014 11/1/2014   52 Mixed 
11 11/19/2014 11/22/2014  1317 36 Mixed 
12 11/28/2014 12/6/2014   11 Mixed 
13 12/10/2014 12/12/2014 x 1138 29 Mixed 
14 12/14/2014 12/17/2014  1351 51 Mixed 
15 12/19/2014 12/21/2014 x 717 41 Mixed 
16 2/6/2015 2/9/2015 x 1080 8 Mixed 
17 2/27/2015 3/2/2015   44 Cold 
18 4/5/2015 4/8/2015   42 Cold 
19 4/21/2015 4/25/2015 x  32 Mixed 
20 5/14/2015 5/26/2015   38 Mixed 
21 10/1/2015 10/1/2015   58 Warm 
22 10/16/2015 10/19/2015   43 Warm 
23 10/31/2015 11/3/2015 x  31 Mixed 
24 11/8/2015 11/10/2015   48 Cold 
25 11/15/2015 11/15/2015   56 Cold 
26 11/24/2015 11/26/2015   53 Cold 
27 12/2/2015 12/6/2015 x  55 Mixed 
28 12/9/2015 12/14/2015 x  19 Cold 
29 12/18/2015 12/25/2015 x 790 9 Cold 
30 1/4/2016 1/9/2016  1075 34 Cold 
31 1/12/2016 1/19/2016 x 852 13 Mixed 
32 1/21/2016 1/24/2016 x 900 33 Mixed 
33 1/28/2016 1/31/2016 x 605 17 Mixed 
34 2/16/2016 2/19/2016   30 Mixed 
35 3/3/2016 3/14/2016 x 985 3 Mixed 
36 3/20/2016 3/23/2016 x  26 Mixed 
37 4/8/2016 4/11/2016   49 Mixed 
38 4/21/2016 4/29/2016 x  23 Mixed 
39 5/4/2016 5/8/2016   54 Mixed 
40 5/20/2016 5/25/2016   46 Mixed 
41 10/13/2016 10/17/2016 x 806 7 Mixed 
42 10/27/2016 11/1/2016 x 1184 15 Warm 
43 11/18/2016 11/23/2016  1001 24 Mixed 
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44 11/26/2016 11/28/2016 x  37 Cold 
45 12/7/2016 12/10/2016 x 1268 12 Mixed 
46 12/13/2016 12/16/2016 x 1333 18 Mixed 
47 12/22/2016 12/24/2016  1222 47 Cold 
48 1/1/2017 1/5/2017 x  10 Cold 
49 1/7/2017 1/12/2017 x 971 2 Cold 
50 1/18/2017 1/23/2017 x 908 6 Cold 
51 2/2/2017 2/10/2017 x 893 1 Mixed 
52 2/16/2017 2/22/2017 x 1138 5 Mixed 
53 3/2/2017 3/7/2017 x 612 27 Cold 
54 3/20/2017 3/27/2017 x 1122 20 Mixed 
55 3/29/2017 3/31/2017   59 Mixed 
56 4/6/2017 4/9/2017 x  21 Mixed 
57 4/11/2017 4/14/2017 x  25 Mixed 
58 4/16/2017 4/20/2017 x  28 Mixed 
59 9/11/2017 9/13/2017 x  60 Warm 
60 9/20/2017 9/23/2017 x 852 57 Mixed 

a Marker x means that the precipitation event is atmospheric-river-related, and blank denotes a non-atmospheric-river-
related event. 
b Event-averaged SBJ heights are listed for SBJ-related events. 
c Precipitation ranking is based on cumulative precipitation averaged in the upper basin using PRISM data. Ranking #1 
means the largest precipitation event. 
d Cold event means that more than 50% of the time during the event, rain-snow transition elevation is below 1500 m; 
warm event means that more than 50% of the time during the event, the transition elevation is above 2700 m; and 
mixed (mixed-phased) event means that more than 50% of the time during the event, the transition elevation is in 
between 1500 and 2700 m. 

 
 
 

Table S2. Operational stations used for estimating daily new-snow density. 

ID Station name River basin Lat, ° Lon, ° Elevation, m Operatora 
LOS Lake Lois American  38.925 -120.197 2621 CA DWR 

CXS Carson Pass American 38.692 -120.002 2546 NRCS 

LLP Lower Lassen Peak Feather  40.467 -121.508 2515 PG&E 

CAP Caples Lake American  38.710 -120.042 2438 USBR 

BLK Blue Lakes Mokelumne  38.613 -119.931 2438 NRCS 

FRN Forni Ridge American 38.805 -120.213 2316 USBR 

MDW Meadow Lake Yuba 39.406 -120.506 2195 CA DWR 

SIL Silver Lake American 38.678 -120.118 2164 USBR 

HYS Huysink American 39.282 -120.527 2012 USBR 

RCC Robinson Cow Camp Yuba 39.622 -120.680 1975 CA DWR 

HRK Harkness Flat Feather  40.418 -121.275 1890 CA DWR 

GKS Greek Store American 39.075 -120.558 1707 USBR 
BLC Blue Canyon American 39.280 -120.709 1609 USBR 

a CA DWR: the California Department of Water Resources; NRCS: the Natural Resources Conservation Service; 
USBR: the US Bureau of Reclamation; PG&E: the Pacific Gas and Electric Company. 
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Table S3. Wireless-sensor nodes and operational sites used in training the random-forest model. 

Sensor cluster 
(node id) 

Operational 
site Latitude, ° Longitude, ° Elevation, m Precipitation 

samplesb 
Caples Lake (3) CAPa 38.712 -120.042 2440 373 

Echo Peak (8) EP5 38.852 -120.070 2379 325 

Alpha (1) FRNa 38.805 -120.215 2318 280 

Duncan Peak (7) DUNa 39.150 -120.514 2079 16 

Owens Camp (7) OWCa 38.736 -120.243 1566 302 

Bear Trap (6) BTPa 39.094 -120.581 1510 28 
a Gauge precipitation at this site was wind-adjusted. Note that we only selected consistent precipitation data in BTP and 

DUN for training the model by comparing to PRISM data.  
b Total number of daily precipitation samples used in the random-forest model. 

 
 
 
 

Table S4. Orographic Precipitation Gradients (OPGs, α in the unit of km–1) of annual precipitation in WY2014-2017. 

WY 

Upper Basin  Lower Basin  

Sensor liquid  Sensor 
solid 

Pillow 
solid Sensor total Gauge 

total  
PRISM 

total  
Gauge 
total  

PRISM 
total  

2014 -0.82 2.51 2.29 0.44 -0.17 -0.09 1.12 0.77 
2015 -0.75 2.28 3.64 0.09 -0.24 -0.11 0.93 0.67 
2016 -0.74 1.29 0.95 0.58 -0.33 -0.16 1.68 1.16 
2017 -0.69 1.35 0.83 0.15 -0.33 -0.12 1.37 1.00 

 
 
 

 
Figure S1. a) Cumulative distribution of basin elevation (blue line) and median elevation of each sensor cluster (red circle). 
Note that some circles are overlapped. b) Distribution of terrain slope using the average value of each 100-m elevation 
band. The horizontal dashed line at 1500-m elevation separates the upper and lower basins. 
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Figure S2. a) Schematic detail of sensor node; b) photo of a sensor node on a snow-off day; and c) photo of a sensor 
node on a snow-on day. 
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Figure S3. a) Numbers (ranging 0-96) of noisy/missing data in a day using 15-min raw data (Level 0), the panel is stacked 
in order of increasing elevation in a nonlinear scale (ticks labeled every 10 nodes), representing elevations of each sensor 
node. (b-c) plot the distance to ground (raw data) and snow depth (Level 1) at 15-min resolution for node 8 of Schneiders, 
respectively, with an arrow referring to its location in panel (a). Similarly, panels (d-e) and (f-g) show data for node 5 of 
Van Vleck and node 9 of Owens Camp, respectively. 
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Figure S4. Snow depth and recoding status using Level 1 data in WY 2014-2017. Left panels (a-d) plot daily snow depth 
(Level 1) at sensor nodes (colored by its elevation) with at least 30% annual records. Right panels (e-h) plot the Level-1 
data-recording status at each sensor node during all identified precipitation days (defined as days with average PRISM 
precipitation in the upper basin larger than 0.254 mm). Panels (e-h) are stacked in the order of increasing elevation in a 
nonlinear scale (ticks labeled every 10 nodes), representing elevations of active sensor nodes, for which there were small 
changes in the number and thus elevational range for each year. Red denotes missing data and blue for recorded data. 

https://doi.org/10.1029/2021WR029954
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Figure S5. Hourly measurements of a) air temperature, b) 
relative humidity, c) snow depth from 10 sensor nodes 
(dashed lines with random color for each node) and cluster 
mean (solid black line) at CAP cluster in February 2017, and 
d) same as c) but for entire WY2017. 

 
 
 
 

 

Figure S6. Wind-adjusted daily precipitation at six operational gauge sites in the 
American River basin in WY2014-2017: a) LCN, b) PWS, c) HLH, d) OWC, e) 
FRN, and f) CAP. The black dashed line is a reference 1:1 line, and point color 
shows mean daily temperature. See Table 2 for station information. 
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Figure S7. Cumulative total precipitation from gauges, solid precipitation from snow pillows, and wind-adjusted 
precipitation (at FRN and CAP) at eight operational sites for WY2017. 

 
Figure S8. Annual precipitation undercatch from gauges along elevation: a) WY2014, b) WY2015, c) WY2016, and d) 
WY2017. Gauge-undercatch amount was estimated as the gauge-precipitation amount less than wind-adjusted 
precipitation (blue) or the solid precipitation from snow pillow (red). Gauge-undercatch amounts by comparing to snow 
pillow (red points in WY2016-2017) were plotted only when cumulative snow-pillow solid precipitation was larger than 
gauge total precipitation. 

https://doi.org/10.1029/2021WR029954
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Figure S9. Example for data used to identify precipitation events in February 2017. a) Snow level from the radar at 
Colfax, b) Sierra barrier jet (SBJ) height using wind profile data at CCO, (c-d) daily wind-adjusted precipitation at CAP, 
HYS, and GKS, respectively, f) daily, averaged precipitation from PRISM dataset for the upper basin (≥ 1500-m 
elevation); red horizontal dashed line indicates 2-cm daily precipitation, and g) the Integrated water-Vapor Transport 
(IVT) at Folsom Dam, from the MERRA-2 dataset. IVT values larger than 250 kg m–1 s–1 are marked as red. 
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Figure S10. The Integrated water-Vapor Transport (IVT) pattern in an 
atmospheric-river-related precipitation event in February 2017. IVT 
data are based on the Modern-Era Retrospective analysis for Research 
and Applications, version 2 (MERRA-2) dataset. IVT vectors 
exceeding 250 kg m–1 s–1 are shown. The blue region denotes the 
American River basin, and the white-edge region denotes the northern 
Sierra Nevada.  

 

Figure S11. Time-height section of CCO wind data for an SBJ-
related event in December 2016. Hourly wind barb shows wind 
direction and speed (flag = 25 m s–1; bard = 5 m s–1). Red isotach 
shows the Sierra barrier-parallel (directed from 160° to 340°) wind 
speed. 

Figure S12. New-snow density used in this study (blue lines) for 
estimating solid precipitation during snowfall days in WY 2014-
2017: a) probability density function of the new-snow density 
derived by SWE and snow depth from 13 co-located operational 
sites in this study. The red line shows the probability density of 
the daily manually measured new-snow density collected by 
Mammoth Mountain Ski Patrol at the Sesame snow study plot (not 
within the American River Basin, 37.650° N, 119.042° W, 2743 
m elevation) for WY 2010-2017 from Bair et al. (2018); and b) 
the time series of new-snow density used in this study and the 
measured data from Bair et al. (2018). Note that one exceptionally 
large density of 900 kg m-3 during a rain-on-snow event (Oct. 19, 
2015) was removed from Bair et al. (2018). 
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Figure S13. Cumulative precipitation obtained 
from precipitation gauges and 800-m PRISM 
data at a) Bear Trap and c) Duncan for WY 2014-
2017. b) and d) show the selected daily gauge 
precipitation data based on their absolute and 
relative differences to 800-m PRISM data. These 
selected gauge precipitation data are included in 
the training dataset in the random-forest model. 

Figure S14. Comparison between measured 
daily SWE increments (solid precipitation on 
cold, snowy days) from snow pillows and the 
estimated SWE increments from snow-depth 
increment multiplied by new-snow densities 
from three different methods: a) averaged 
density from 13 operational sites used in this 
study, b) measured density at the Sesame snow 
study plot from Bair et al. (2018), and c) new-
snow density (ρnew, kg m–3) equation based on 
air temperature (Tair, °C) from the Noah-MP 
land surface model (Niu et al., 2011), which is 
ρnew = max[120, 67.92+51.25×EXP(Tair/2.59)]. 
RMSE is the root mean square error, and R2 is 
the coefficient of determination. Dashed lines 
show the 1:1 reference lines. 
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Figure S15. Comparison between gauge-measured 
daily total precipitation and estimated total 
precipitation from daily SWE increments from co-
located snow pillows (FRN, EP5, and CAP) 
divided by snow fraction. a) snow fraction from 
Equation 2 in this study and b) snow fraction based 
on a sigmoid function using wet-bulb temperature 
(Twet, °C) from the Noah-MP model (Wang et al., 
2019), which is 𝒔𝒏𝒐𝒘 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =

𝟏

𝟏+𝟎.𝟎𝟎𝟎𝟎𝟔𝟗𝟗𝑬𝑿𝑷(𝟐(𝑻𝒘𝒆𝒕+𝟑.𝟗𝟕))
. For a) and b), a 

minimum value of snow fraction is set to 0.4 when 
rain-snow mixed phase is predicted (i.e. snow 
fraction > 0), to avoid potential, unreasonable large 
total precipitation. RMSE is the root mean square 
error, and R2 is the coefficient of determination. 
Dashed lines show the 1:1 reference lines. Panels 
c) and d) plot RMSE and R2 values as a function of 
the minimum value of snow fraction, respectively.  

Figure S15. Comparison between gauge-measured 
daily total precipitation and estimated total 
precipitation from daily SWE increments from co-
located snow pillows (FRN, EP5, and CAP) 
divided by snow fraction. a) snow fraction from 
Equation 2 in this study and b) snow fraction based 
on a sigmoid function using wet-bulb temperature 
(Twet, °C) from the Noah-MP model (Wang et al., 
2019), which is 𝒔𝒏𝒐𝒘 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =

𝟏

𝟏+𝟎.𝟎𝟎𝟎𝟎𝟔𝟗𝟗𝑬𝑿𝑷(𝟐(𝑻𝒘𝒆𝒕+𝟑.𝟗𝟕))
. For a) and b), a 

minimum value of snow fraction is set to 0.4 when 
rain-snow mixed phase is predicted (i.e. snow 
fraction > 0), to avoid potential, unreasonable large 
total precipitation. RMSE is the root mean square 
error, and R2 is the coefficient of determination. 
Dashed lines show the 1:1 reference lines. Panels 
c) and d) plot RMSE and R2 values as a function of 
the minimum value of snow fraction, respectively.  

Figure S16. Results from the random-forest model 
using PRISM precipitation at all 13 clusters as 
training data. a) Predicted daily precipitation from 
gauges using data split into training (85%, blue) 
and testing data (15%, red). The RMSE (Root 
Mean Square Error) and R2 (coefficient of 
determination) quantify the predictive 
performance of the model, and b) relative feature 
importance, i.e. normalized permutation 
importance from the random-forest model. 
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Figure S17. A cold event in January 2016 used to 
compare total precipitation estimates to that from 
SWE reanalysis data. a) rain-snow-transition zone 
(shaded area of wet-bulb temperature Twet between 
0 and 1 °C, transition elevation (red line of Twet = 
0.5 °C), and snow level from the radar at Colfax 
(blue dot). Black lines denote elevation coverage 
(1510-2723 m) of the wireless-sensor network, b) 
hourly integrated water-vapor transport (IVT) at 
Folsom Dam, c) daily average snow depth from the 
sensor clusters, solid red lines denote higher 
elevation clusters (> 2000 m) and black dashed 
lines for lower clusters, d) daily SWE change from 
three snow pillows at EP5, CAP, and FRN on 
CDEC, e) daily precipitation (P) from three 
precipitation gauges, f) daily total precipitation 
from each sensor node (each row) during snowfall 
days, and the panel is stacked in order of increasing 
elevation, and g) daily total precipitation from each 
sensor node during rainfall days, and the panel is 
stacked in order of increasing elevation in a 
nonlinear scale representing elevations of sensor 
nodes. 

https://doi.org/10.1029/2021WR029954
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Figure S18. Precipitation estimates from the sensor network and SWE reanalysis data during a cold storm on January 4-9, 2016 (Figure 
S17). a) Solid precipitation comparison using boxplots. The red triangle within the box is the mean, the box denotes the interquartile 
range with lower and upper boundaries of 25th and 75th percentiles, respectively, and whiskers indicate 1.5 times interquartile range 
beyond the box boundaries. Data beyond the whiskers are plotted as individual points. b) Partitioned solid and total precipitation along 
elevation from the sensor network, compared to boxplots of 100-m banded solid precipitation from SWE reanalysis.  

 

Figure S19. Same as Figure S17, but for a summer 
mixed-phased event on September 20-23, 2017.  
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Figure S20. SWE measurements from snow 
pillows (EP5, CAP, and FRN from CDEC) at 
different data-processing levels around the 
summer mixed-phased event on September 20-23, 
2017: a) raw hourly data, b) raw daily data, 
computed from hourly data, and c) cleaned daily 
data, i.e. the SWE data labeled as “revised” on 
CDEC. See 
https://cdec.water.ca.gov/dynamicapp/staMeta?sta
tion_id=CAP for an example of snow-pillow data 
at CAP: raw hourly/daily data from sensor 
number 3, and cleaned daily data from sensor 
number 82. 

Figure S21. Same as Figure S17, but for a warm 
event on September 11-13, 2017.  
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Figure S22. Ratio of annual solid precipitation over total precipitation from the wireless-sensor network: a) WY2014, b) 
WY2015, c) WY2016, and d) WY2017. The best linear fits of the data are plotted as dashed lines. 

 

 
Figure S23. Cumulative precipitation for WY2014-2017 
from precipitation gauges and 800-m PRISM data at a) 
Owens Camp in the South Fork American River and b) Blue 
Canyon in the North Fork American River. 

 

https://doi.org/10.1029/2021WR029954


 

 

Water Resources Research                                                                                                                     https://doi.org/10.1029/2021WR029954 

42 
 

 

Figure S24. Comparison of precipitation estimates from the sensor network and SWE reanalysis data for WY2014-2016. 
Left panels (a, c, and e) show the precipitation comparison using boxplots. The red triangle within the box is the mean. 
The box denotes the interquartile range with lower and upper boundaries of 25th and 75th percentiles, respectively. 
Whiskers indicate 1.5 times interquartile range beyond the box boundaries. Data beyond the whiskers are plotted as 
individual points. Right panels (b, d, and f) show partitioned solid and total precipitation along elevation from the wireless 
sensors, compared to boxplots of 100-m banded solid precipitation from the SWE reanalysis. 
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Figure S25. Comparison of the Orographic Precipitation Gradients (OPGs) between AR&SBJ events and Non-AR & 
Non-SBJ events: a) lower-basin and b) upper-basin total-precipitation OPGs from gauges, respectively. c) lower-basin 
and d) upper-basin total-precipitation OPGs from PRISM, respectively. The mean value is labeled and plotted as a red 
triangle. The p-values from two-tailed student’s t-tests are also labeled. 

 
Figure S26. Relative difference of annual solid precipitation estimates from wireless sensors compared to those from 
snow pillows. Results using the new-snow density from this study versus Bair et al. (2018) are shown. a) WY2014, b) 
WY2015, c) WY2016, and d) WY2017. The relative differences of solid precipitation are plotted at 100-m elevation 
bands where both wireless sensors and pillows were presented. A positive difference means that sensor-network-based 
estimates are larger relative to those from snow pillows.  
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Figure S27. Similar to Figure 7, but the 
sensor-network and gauge data at OWC site 
are removed. Annual total precipitation 
estimates from the wireless-sensor network, 
precipitation gauges, and 100-m banded 
PRISM data: a) WY2014, b) WY2015, c) 
WY2016, and d) WY2017. Note that the 
vertical-axis scales of each panel are 
different. The colored, dashed lines are 
fitted lines using the Orographic 
Precipitation Gradients (OPGs) with the 
corresponding data in the same color, i.e. 
red, green, yellow, and blue lines are OPG 
lines for the wireless-sensor network, 
precipitation gauges, PRISM, and MRMS, 
respectively. 

Figure S28. Similar to Figure 10, but the 
sensor-network and gauge data at OWC site 
are removed. Event-aggregated solid and 
total precipitation estimates for (a-b) events 
related to both Atmospheric River (AR) and 
Sierra Barrier Jet (SBJ) and (c-d) events that 
are not associated with either AR or SBJ (i.e. 
Non-AR & Non-SBJ). Left panels show 
solid precipitation from the wireless-sensor 
network and snow pillows; right panels 
show total precipitation from sensor nodes, 
precipitation gauges, and PRISM for the 
lower and upper basins. All data are 
averaged by 100-m elevation bands. The 
dashed lines are fitted lines using the 
Orographic Precipitation Gradients (OPGs) 
with the corresponding data in the same 
color. 
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