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Chapter 11


The NERSC Cori HPC System 
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Tina Declerck, Jack Deslippe, Richard Gerber, Rebecca Hartman–Baker, Yun 
(Helen) He, Douglas Jacobsen, Thorsten Kurth, Jay Srinivasan, and Nicholas 
J. Wright 

NERSC, Lawrence Berkeley National Laboratory 

11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

11.1.1 Sponsor and Program Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

11.1.2 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277


11.2 Applications and Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277


11.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

11.4 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280


11.4.1 Node Types and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

11.4.1.1 Xeon Phi ”Knights Landing” Compute Nodes . . . . . . . . . . 280

11.4.1.2 Xeon ”Haswell” Compute Nodes . . . . . . . . . . . . . . . . . . . . . . . . 280

11.4.1.3 Service Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280


11.4.2 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

11.4.3 Storage - Burst Buffer and Lustre Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . 281


11.5 System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

11.5.1 System Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

11.5.2 System Management Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

11.5.3 Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

11.5.4 Storage Resources and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

11.5.5 Networking Resources and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

11.5.6 Containers and User-Defined Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284


11.6 Programming Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.6.1 Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.6.2 Languages and Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.6.3 Libraries and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

11.6.4 Building Software for a Heterogeneous System . . . . . . . . . . . . . . . . . . . . . . . 286

11.6.5 Default Mode Selection Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

11.6.6 Running Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287


11.7 NESAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

11.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

11.7.2 Optimization Strategy and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

11.7.3 Most Effective Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

11.7.4 NESAP Result Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

11.7.5 Application Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291


11.7.5.1 Quantum ESPRESSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

11.7.5.2 MFDn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293


11.8 Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295


275 



276	 Contemporary High Performance Computing, Vol. 3 

11.8.1 IO Improvement: Burst Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

11.8.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297


11.8.2.1	 Network Connectivity to External Nodes . . . . . . . . . . . . . . . 298

11.8.2.2	 Burst Buffer Filesystem for In-situ Workflows . . . . . . . . . . 298

11.8.2.3	 Real-time and Interactive Queues for Time Sensitive 

Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 
11.8.2.4	 Scheduler and Queue Improvements to Support 

Data-intensive Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 
11.9	 System Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299


11.9.1 System Utilizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

11.9.2 Job Completion Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299


11.10	 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

11.11	 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302


Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302


11.1 Overview 

11.1.1 Sponsor and Program Background 

The National Energy Research Scientific Computing Center (NERSC) is the mission high 
performance computing facility for the Department of Energy’s Office of Science (DOE SC). 
NERSCs primary goal is to accelerate scientific discovery for the DOE SC workload through 
high performance computing, related technology development and data management and 
analysis. Toward this end, NERSC provides large-scale, state-of-the-art computing, storage 
and networking for the DOE SCs unclassified research programs. 

With thousands of users from universities, national laboratories and industry, NERSC 
supports a large and diverse research community. The NERSC workload represents the wide 
variety of research performed by its users, including simulations that run at the largest 
scales. In addition, the analysis of massive datasets is becoming increasingly important at 
NERSC in support of DOE SC experimental facilities. Over the years, NERSC’s resources 
have contributed to ground breaking science. Five of NERSC’s users have won the Nobel 
Prize and each year over 2000 publications are attributed to using NERSC’s systems. 

The NERSC Center was founded in 1974 at Lawrence Livermore National Laboratory 
and became the first unclassified computing center. At the time, the Center was focused on 
fusion energy research. In 1983 the Center’s focus expanded to support high performance 
computing to all the programs in what is now the Department of Energy Office of Science. In 
1996 NERSC moved to Berkeley Lab and became part of the Computing Sciences program. 
In 2000, NERSC outgrew its location on the main Berkeley Lab campus and temporarily 
moved to the Oakland Scientific Facility while a new facility was built to house the super­
computers and staff. More than a decade later, in 2016, NERSC moved back to the main 
Berkeley Lab campus into a state-of-the-art energy efficient building. 

The Cori system, a 30PF Cray XC system, described in detail in this chapter, was de­
signed to support data intensive workloads and be a platform that would begin to transition 
the user community to more energy efficient architectures. Preparing for and deploying the 
Cori system [7] in a brand new facility was a top priority for NERSC in 2016. 
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11.1.2 Timeline 

The Cori system was procured as part of the Alliance for Application Performance 
at Extreme Scales (APEX), a partnership between Berkeley Lab, Los Alamos National 
Lab and Sandia Lab. The intention of the collaboration was to procure two systems in 
the 2016 time frame that would begin to serve to transition the user community to more 
advanced architectures on the path to exascale. One system would be installed at LANL, in 
partnership with Sandia and the other would be installed into the new Wang Hall facility 
at Berkeley Lab for NERSC. The systems were procured through a competitive process and 
Cray was selected as the vendor for the Cori system. The Cori system was delivered in two 
phases. The first phase, known as the Cori Data Partition, or Cori Haswell, was delivered 
in the fall of 2015 and was the first system installed into the new Wang Hall facility. The 
second phase of Cori, the KNL partition, was delivered in the summer of 2016 and installed 
and integrated into NERSC later that year. The system was accepted in 2016. Early users 
from the NERSC Exascale Science Application Program (NESAP) were the first enabled 
on the system and given priority access to the system until it transitioned into production 
on July 1st, 2017. 

11.2 Applications and Workloads 

As the mission high performance scientific computing facility for the Office of Science 
in the United States Department of Energy, NERSC supports research in a wide variety of 
disciplines, including climate modeling, research into new materials, simulations of the early 
universe, analysis of data from high-energy physics experiments, investigations of protein 
structure, and many others. 

NERSC has a diverse user base of over 6,000 users in more than 700 projects running 
more than 600 different codes. However, the top ten codes make up 50% of the workload, and 
the top 25 codes make up more than 2/3 of the workload. But even these 25 codes are quite 
diverse in both application area as well as execution characterization. Codes run at NERSC 
utilize all seven original motifs (Dense Linear Algebra, Sparse Linear Algebra, Computations 
on Structured Grids, Computations on Unstructured Grids, Spectral Methods, Particle 
Methods and Monte Carlo) and more. 

11.2.1 Benchmarks 

Benchmarking is essential for ensuring that HPC systems provide correct results and 
satisfactory performance, both upon installation and throughout the lifetime of the machine. 
[29] Benchmarks may be designed to test specific aspects of system performance (i.e., the 
STREAM micro-benchmark measures memory bandwidth) or the performance of a complete 
scientific application. While NERSC routinely performs and monitors the performance of 
several micro-benchmarks, we emphasize the importance of application benchmarks (over 
micro-benchmarks and kernels) because application performance is a direct indication of 
the experiences of our users and requires balanced integration of the entire stack of system 
hardware and software stack. By focusing on applications rather than micro-benchmarks, 
the risk of tuning the system for niche uses that do not benefit real simulation codes is 
avoided. 

The APEX benchmark suite [6] used to evaluate Cori consists of eight applications: 
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FIGURE 11.1: NERSC 2016 usage by science category. 

•	 GTC: 3D gyrokinetic particle-in-cell simulation of Tokomak fusion devices 

•	 MILC: Lattice Quantum Chromodynamics 

•	 MiniDFT: Plane-wave density functional theory 

•	 MiniFE: Finite element generation, assembly and solution of an unstructured grid 
problems 

MiniGhost: 3D finite difference stencil • 

•	 AMG: Algebraic multigrid solver for linear systems 

•	 UMT: 3D, deterministic multigroup photon transport simulation on unstructured 
meshes 

•	 SNAP: discrete ordinates neutral particle transport 

The first three of these codes (GTC, MILC and MiniDFT) were carefully selected to rep­
resent a cross-section of the NERSC workload in terms of node-hours used, algorithmic 
diversity and coverage of scientific domains. The remaining applications were selected by 
other members of the APEX partnership and are similarly important to their workloads, but 
also relevant to NERSC. (For example, the stencil algorithms and communication patterns 
exercised by MiniGhost appear in many NERSC codes as well.) 

The Sustained System Performance (SSP) is the primary metric used to evaluate Cori’s 
performance. SSP is simply the average (geometric mean) of the FLOP rate achieved by 
each application in the benchmark suite, scaled to the full size of the size of the system.[29] 
Cori’s SSP, using the benchmarks, is 562 GF/s, a 10.8× improvement over Hopper, the 
Cray XE6 system that preceded it. 
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FIGURE 11.2: Top 20 codes used at NERSC in 2016. 

11.3 System Overview 

NERSCs newest supercomputer, named Cori after Nobel prize winning biologist Gerty 
Cori, introduces the NERSC user community to the advanced energy efficient architectures 
necessary to reach exascale levels of performance. Cori is a Cray XC40 system made up 
of three primary components. The main system, a Cray XC40, is the compute pool, the 
external login nodes allows users to access the system, and the scratch storage, a Cray 
Sonexion 2000. 

The XC40 has two compute pools consisting of 9,688 single socket nodes with Intel 
Xeon Phi Knights Landing (KNL) manycore processors. Cori also has 2,388 dual-socket 
Intel Xeon Haswell nodes on the same Cray Aries high-speed interconnect network. This 
mix of node types makes Cori a novel system at this scale in HPC. In addition, the system 
has a Burst Buffer, a schedulable, fast, flash-based, intermediary storage pool between the 
compute pool and the Lustre file system, The burst buffer has a capacity of 1.6 PB and a 
bandwidth of over 1.5 TB/sec. The storage system is a 28 PB Lustre file system contained in 
18 cabinets of Cray Sonexion 2000 racks providing over 700 GB/second of IO performance. 
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11.4 Hardware Architecture 

The system design of the XC40 is similar to previous Cray architectures. Compute 
nodes are placed 4 to a compute blade, 16 blades make up a chassis and there are three 
chassis per cabinet, leading to a maximum of 192 nodes per cabinet. The cabinets are cooled 
transversely with air that passes through a water-cooled radiator. Cori can use inlet water 
up to 75 degrees. 

11.4.1 Node Types and Design 

There are two basic blade types, compute and service. Each compute blade has 2 pro­
cessor daughter cards each of which contains 2 nodes. The compute nodes contain either an 
Intel Haswell or Intel Knights Landing processor. 

11.4.1.1 Xeon Phi ”Knights Landing” Compute Nodes 

These single socket nodes contain an Intel Xeon Phi ”Knights Landing” (KNL) Many 
Integrated Cores (MIC) processor. This features 68 cores per node with 4 hardware threads 
each, 512 bit vector units, 16 GB on-package MCDRAM (Multi-Channel DRAM) high 
bandwidth memory and 96 GB of DDR4 memory (6 channels). 

The peak performance of each node is approximately 3 Tflops, and measured DGEMM 
performance is 2.1 TF/s. The MCDRAM memory can sustain 415 GB/s on STREAM triad 
and the DDR memory can sustain 90 GB/s. The two different memory types on the KNL 
processor allow different configurations of the memory (which can be changed with a reboot). 
The node can either be configured with the MCDRAM as a cache for the DDR4 memory, 
or with a flat memory space covering both memory types. If the MCDRAM is configured 
as a cache, a performance penalty is incurred and the STREAM triad bandwidth drops to 
315 GB/s. 

In order to obtain good performance from the KNL nodes, it is essential to use many 
of the 68 cores to make full use of the vector units and to use the MCDRAM as much as 
possible. 

11.4.1.2 Xeon ”Haswell” Compute Nodes 

These dual socket nodes contain two 16 core Intel Xeon E5-2698 v3 ”Haswell” processors 
running at 2.3 GHz and 128 GB of DDR4 memory running at 2133 MHz. Each core supports 
two hyperthreads and has two 256-bit wide vector units. Each core has a peak performance 
of 36.8 Gflops, making the peak performance of the node 1.2 TFlops. Each socket supports 
4 memory channels giving a peak memory bandwidth of 137 GB/s and a STREAM triad 
bandwidth of 115 GB/s. 

11.4.1.3 Service Nodes 

The service blades have 2 nodes per blade. Each contains an Intel Xeon ”Sandy Bridge” 
processor and has 2 PCIe gen3 slots available. Cori has several different types of service 
nodes: network, bridge (used for the Software Defined Networking (SDN) connections), Data 
Virtualization Services (DVS), DataWarp (burst buffer), Lustre Router (LNET), and Slurm 
controller nodes. What the node will be used for determines what type of HBAs are installed. 
The network, Slurm controller nodes and bridge nodes have 2 dual Mellanox (QDR-IB) cards 
installed that are connected using bonded vlans to the NERSC local internal and external 
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networks. The internal network is used primarily for access to storage and external is used 
for LDAP, and general connections from outside the NERSC environment. The DVS nodes 
have one IB and one Ethernet card installed. The InfiniBand provides fast access to the 
NERSC global file systems and the Ethernet is used for the management connections to 
the NERSC global file systems. The LNET nodes have two Mellanox InfiniBand HCAs for 
access to Coris scratch file system. 

11.4.2 Interconnect 

The System uses a Cray proprietary network interconnect, referred to as Aries, in a 
Dragonfly topology. The Aries network interconnect is comprised of Aries chips and cabling. 
The Aries chip is comprised of four Network Interface Controllers (NICs) and a 48-port 
tiled high radix router. The NICs and router are all on a single die. The entire Cray XC 
interconnect consists of a direct network of Aries chips using copper and optical cabling. 
The Aries network interconnect connects all nodes (Compute, Service, and the Cray Burst 
Buffer if the option is exercised) in the Cray XC system. Each compute node connects to 
the Aries network via PCI express, at a peak bandwidth of 16 GB/s. 

The dragonfly network has 3 levels. The lowest level connects each node in a chassis to 
each other, the second level connects each chassis in a pair of cabinets together, finally each 
cabinet pair is connected with optical cables to form the third level of the dragonfly. This 
leads to a maximum of 5 hops between any pair of nodes in the system. The peak bisection 
bandwidth of the machine is 45 TB/s. The Aries interconnect has numerous adaptive routing 
features designed to avoid congestion and hot spots. 

11.4.3 Storage - Burst Buffer and Lustre Filesystem 

The Burst Buffer (Cray DataWarp) is made up of service nodes that are peers on the 
Aries network with the compute nodes. Each contains 2 Intel P3608 SSD cards that provide 
3.2 TB of available storage per card. The Burst Buffer is configured to use the Cray Data 
Virtualization Service (DVS) software to handle I/O transactions. In addition, numerous 
features to manage allocations of space on a per-job or persistent basis are provided by the 
Cray burst buffer service, which are accessible via the job scheduler. 

The system also has a 30 PB Lustre file system based on the Cray Sonexion 2000 with 
124 scalable storage units (SSUs) and 2 additional Distributed Namespace (DNE) units to 
provide both fast data paths and large storage capacity. Four additional metadata servers 
to help spread the metadata load increasing performance. 

11.5 System Software 

11.5.1 System Software Overview 

The system software stack on Cori consists of several closely inter-related pieces: an 
independent operating system for each of the nodes in the system, management software for 
the collection of nodes that make up the system, and software for operating and managing 
system components, including the storage and compute resources as well as other services 
(login nodes external to the Cray Aries network, network gateway nodes, workload dispatch 
nodes, etc.). This section presents an overview of all this software as well as details on 
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specific functionality and customizations that NERSC has enabled in order to support the 
workload that runs on Cori. 

The Operating System on Cori is a variant of Linux. The compute nodes of the system 
run a modified version of the Linux kernel called Compute Node Linux. The operating 
system itself is based off the SuSE distribution and is, on external (user facing) and service 
nodes, the SLES software stack. Since the compute nodes on Cori are heterogenous, with 
both Knights Landing (KNL) nodes as well as Haswell (HSW) nodes, each of these variants 
of the compute nodes have different node images loaded on them. The service nodes, which 
include the (external) login nodes, compute gateway nodes, storage service nodes (including 
LNET nodes to talk to the Lustre filesystem servers), DVS nodes (for projection of the GPFS 
filesystems on to the compute nodes), and other management nodes for the system have a 
different full-featured SLES-based image loaded on them. 

11.5.2 System Management Stack 

The Cray system management software consists of two parts, the System Management 
Workstation (SMW) software and the Cray Linux Environment (CLE) software. The system 
software stack is pictured in Figure 11.3 below. The function of the system management 

FIGURE 11.3: The system management software stack on Cori. 

software on a Cray system is to generate system images for each of the different types of 
nodes on the system, deploy (boot) the nodes, configure them appropriately for the services 
they will provide and then, collect overall information about the system, including health 
information, performance information, etc. In addition, the system management software 
allows for managing nodes on an ongoing basis, including setting of various power states 
and rebooting of nodes. 

NERSC’s vision of the system management stack hews closely to this description, but 
expands on it by applying it in a uniform fashion to multiple systems. NERSC operates 
four very similar Cray systems, two large scale systems (Cori and a previous generation 
Cray system Edison) and two testbeds, one for each large scale system. Though there are 
some differences in hardware and scale, the intention is to manage them in as similar a way 
as possible. The system management methodology followed [27] allows NERSC to utilize 
the same system configuration method (Ansible) to operate all the Cray systems, with the 
software determining the appropriate configuration to apply to each system. 

11.5.3 Resource Management 

Within Cori, Intel’s Knights Landing processors with High-Bandwidth memory (MC­
DRAM) allows each node to be configured in twenty different configurations or “modes” [26]. 
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While the vast majority of our workload can be run using one or two of these configurations, 
being able to provide users with the ability to select configurations and to quickly provide 
access to the appropriately configured resource is critical to the efficient operation of the 
system. NERSC utilizes the SLURM workload manager to provide users access to compute 
resources, and, in combination with Cray’s DataWarp software, to associated Burst Buffer 
resources. We have worked extensively with SchedMD [28] to design and develop SLURM 
functionality that allows us to: 

•	 Efficiently schedule and run a highly diverse workload on Cori, with job sizes spanning 
a single core to the entire 10,000+ nodes on the system 

•	 Run jobs on an existing configuration of KNL nodes of varying modes and HSW 
nodes. 

•	 Run single jobs across KNL and HSW nodes 

•	 Quickly allocate and configure KNL nodes into a new mode (which requires a node 
reboot) 

•	 Provide access to all the different storage resources (described below) for user jobs, if 
necessary, on demand 

11.5.4 Storage Resources and Software 

The Cori system supports both traditional HPC simulations as well as data analysis 
workloads. This spectrum of user needs requires an equally broad range of storage resources. 
Being able to provide the right kind of storage for jobs is a necessity if the system is to be 
utilized effectively. The Cori system provides users four different kinds of storage resources: 

•	 The system-local, high-performance Lustre “scratch” filesystem. 

•	 Center-wide, GPFS filesystems, providing home directories shared amongst all our 
systems, “Project”-specific storage space as well as “common” space for frequently 
and widely used libraries and programs. 

•	 The I/O acceleration storage layer or “Burst Buffer” provided by Cray as the 
DataWarp system backed by the Lustre scratch filesystem. 

•	 “Node-local” storage, created on demand on the scratch filesystem for jobs using 
Shifter. 

All of these different storage resources can be seamlessly accessed by all jobs on the system. 
In addition, the Lustre filesystem is “external” and can be available to users even if the 
compute nodes are not. This is accomplished by use of Lustres LNET protocol and the 
use of dedicated LNET servers, allowing compartmentalized access to the storage system 
from the compute nodes of Cori, the external login nodes of Cori, the Cray XC-30 “Edison” 
system as well as dedicated Data Transfer Nodes (DTNs) optimized and used for wide-area 
network traffic and grid-based data transfer. 

NERSC staff have also worked closely with Cray and SchedMD to develop the DataWarp 
software to support the needs of our Data-Intensive users. In addition to being able to 
request DataWarp storage on-demand per job, users are able to pre-stage data and store 
data on the resource both for the job lifetime alone as well as across multiple jobs. Future 
functionality being developed includes the ability to use the DataWarp layer as a transparent 
cache to the Lustre backing store. 
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11.5.5 Networking Resources and Software 

Cori provides a high-performance network (Aries) between the compute nodes and be­
tween the compute and service nodes, resulting in a well-integrated system that allows for 
efficient communication within processes and for I/O traffic. For effective support of data-
intensive workloads, however, external network connectivity at reasonably high-bandwidth 
and low latency is required. Crays standard solution for traffic out of the Aries network has 
been to use a combination of Realm-Specific Internet Protocol (RSIP) servers and tradi­
tional network gateways. For performance and reliability reasons this solution is not optimal 
for the NERSC workload. To allow for greater flexibility in shaping external traffic both 
in to and from the compute nodes of the system, we have replaced the RSIP nodes with 
bridge nodes that send and receive the traffic to and from software-based routers (Figure 
11.4). The bridge nodes (each configured to handle a subset of the compute nodes) allow 
for communication between the Aries network and external Ethernet networks. In addition, 
to improve resilience, the bridge nodes can easily be configured to serve a different set of 
compute nodes in case of failure. 

FIGURE 11.4: RSIP replacement configuration. (From [22].) 

NERSCs vision of networking to Cori (and to Cray systems in general) is to provide our 
users with a fully software-defined network that can handle the needs of our most demanding 
data ingest requirements (such as the Light Sources) to configure and shape the network 
seamlessly between resources external and internal to the system. 

11.5.6 Containers and User-Defined Images 

The use of container technology has rapidly developed over the last few years to enable 
greater control of the system environment by users. Users, especially those who develop or 
use specialized software for simulation or analysis that is closely tied to a specific operating 
system environment, have found this to be an indispensable way to migrate their workload 
to different systems without explicitly porting the software over. To meet the needs of these 
users, we have investigated the use of Docker-like containers on Cori. Containers have, 
however, not been widely used in HPC environments for various reasons including security 
concerns with allowing user-defined environments in tightly integrated systems and a lack 
of easy to use tools to deploy them in such environments. 

NERSC, in collaboration with Cray, developed a tool called Shifter [27], that allows the 
creation and distribution of Docker-like images on to the Cray platforms, including changes 
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to support the use of the global filesystem, addressing security concerns of deployment of the 
user-defined images in a production environment, and most importantly, integration with 
the workload manager. These features allow users to generate images and simply submit 
a job that requests the image, which allows them to quickly use existing codebases to run 
jobs at very large scale on Cori. Users from light sources such as LCLS at SLAC and from 
high energy physics facilities such as the LHC have successfully utilized Cori this way [27]. 

In summary, a well-integrated, easy to deploy, manage and use system software stack is 
critical to the efficient operation and use of a large complex system such as Cori. NERSC’s 
philosophy of not just taking what is provided with the system, but carefully picking the 
most useful parts of the stack, modifying it if needed, and adding functionality of interest 
to staff and users allows us to deploy a stable state-of-the-art system, both useful to users 
and one that allows for continuous improvement over its lifetime. 

11.6 Programming Environment 

11.6.1 Programming Models 

The majority of existing HPC applications deployed on NERSC resources use MPI as 
their primary means of expressing parallelism after the transition from vector to distributed 
memory architectures. With 68-cores per Cori KNL node with four hardware threads each, 
pure MPI will still work for most applications at some level, though it will unlikely achieve 
optimal performance. The 512-bit wide vector processing units offer additional parallelism. 
Application developers will need to explore more on-node parallelism through threading and 
vectorization. Hybrid MPI/OpenMP is the most common programming model on Cori as 
it allows for existing MPI applications to be more gradually modified by adding OpenMP 
for thread scaling. 

The key reason why a hybrid MPI/OpenMP programming model is needed on KNL is 
that a pure MPI approach may no longer fit in memory since each MPI task runs a copy of 
the program. The number of MPI tasks vs OpenMP threads will depend on the application 
and the specific MPI and OpenMP implementation for a given code. On Cori, applications 
often use a range of between 4 and 16 MPI tasks per node and 2 to 8 OpenMP threads per 
task. OpenMP introduces a compiler-directive agnostic way of expressing SIMD parallelism 
at the loop or function level; and it also allows a degree of application portability to a 
variety of supercomputing architectures. 

While MPI+OpenMP is the most common programming mode, the Cori system supports 
other programming models and languages such as UPC, UPC++, PGAS, Pthreads, C++11, 
TBB, Kokkos and others. Applications can also use non-MPI solutions such as thread-aware 
task-based runtime system and abstractions (e.g., CHARM++, Legion and HPX). 

11.6.2 Languages and Compilers 

On the Cori system, three compilers are supported: Intel, Cray and GNU. Cray’s PrgEnv 
modules initialize the programming environment for a specific compiler and simplify users 
experiences of building applications. The provided Cray compiler wrappers (ftn for Fortran, 
cc for C and CC for C++ codes) automatically link in necessary MPI and other Cray 
libraries that are loaded. 

Each of these compilers support Fortran and C/C++11 language standards, and support 
OpenMP, SHMEM, Global Arrays, Pthreads. The Cray and Intel compilers support Fortran 
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CoArrays, UPC and the KNL MCDRAM memory placement extensions. Only the Cray 
compiler supports C/C++ CoArrays and OpenACC. 

Java and Python libraries are available under the GNU programming environment. 
Python modules are available for scalable service via Data Virtualization Service (DVS) on 
the compute nodes. 

11.6.3 Libraries and Tools 

The default MPI library on Cori is Cray’s MPICH, derived from Argonne National 
Laboratory MPICH [5]and implements the MPI-3.1 standard. Cray’s MPICH has custom 
optimizations for the Aries interconnect and Intel Xeon Phi KNL architectures, which can 
be utilized via runtime tuning options for memory allocation in DDR or MCDRAM, IO 
hints, hugepages, adaptive routings, default message communication protocols, etc. User-
level Generic Network Interface (uGNI) is available to directly program the Aries network. 
The Distributed Memory Applications (DMAPP) interface can be targeted at one-sided 
languages such as PGAS and SHMEM. Intel MPI and OpenMPI based on OpenFabrics [4] 
are also available. 

Cray’s Scientific and Math Libraries (CSML, more familiar to users as LibSci) include 
BLAS, CBLAS, LAPACK, ScaLAPACK, BLACS, PBLACS, Iterative Refinement Toolkit, 
and CrayBLAS. The Cray MPICH libraries and Cray’s scientific libraries are loaded by 
default on Cori. 

Other available common libraries are FFTW, PETSc, Trilinos, and Cray’s Third Party 
Scientific Libraries and Solvers collections, which include MUMPS, ParMetis, SuperLU, Su­
perLU DIST, Hypre, Scotch and Sundials. The available IO libraries are: NetCDF, Parallel 
NetCDF, HDF5, and Parallel HDF5, ADIOS. 

Performance monitoring and profiling tools available on Cori include Cray’s Perfor­
mance Monitoring and Analysis Toolkit (CPMAT, more familiar to users as Perftools); 
Intels VTune and Advisor tools; Allineas MAP tool; Scalasca; TAU; and Barcelona Super-
computing Centers Paraver and Extrae. Debugging tools include Cray’s CCDB, LGDB, 
Intels Inspector tool, Allinea DDT, and Totalview. 

11.6.4 Building Software for a Heterogeneous System 

The heterogeneous Haswell/KNL system is considerably more complex than a homo­
geneous cluster. Cori has both Haswell and KNL compute nodes, and all login nodes are 
Haswell. Compute nodes on Cori KNL are configured without the full build environment, 
thus applications targeting either Haswell or KNL must be built on the Haswell login nodes. 

Executables that run on KNL need to be cross-compiled on Haswell to target KNL. The 
Cray provided target architecture modules craype-haswell and craype-mic-knl can easily 
be switched back and forth for building applications to run on the desired target compute 
nodes. Although a Haswell binary will run on KNL (but not vice-versa), that binary and 
the libraries it calls will use compiler optimizations targeting Haswell rather than KNL, so 
NERSC recommends that the appropriate target module be loaded when building applica­
tions. The Intel compiler has an optional flag of ”-axMIC-AVX512,CORE-AVX2 to build a 
merged binary that contains instructions appropriate to both Haswell and KNL. This flag 
is handy when building applications to target both, especially those that will benefit from 
key numerical libraries that can take advantage of the KNL architecture. 

A frequently-encountered difficulty when building software targeting the KNL nodes is 
that in some build systems (such as autoconf or cmake), a small test program needs to 
run in order to generate a Makefile. This will not work when building on Haswell for KNL 
since the binary targeted for KNL cannot run on Haswell. A workaround for this autoconf 
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issue is to perform the configure step in the Haswell environment, then switch to the KNL 
environment before compile. The suite of CMake tools were created by Kitware in response 
to the need for a powerful, cross-platform build environment for open-source projects Cray 
has worked with Kitware to increase the compatibility of CMake with the programming 
environment on the Cray systems to enable cross-compiling [16]. 

NERSC is actively working on streamlining the software build process by using the 
Spack software package manager for building supported packages on all the Cray systems 
at NERSC, including Edison Ivy Bridge, Cori Haswell, and Cori KNL[31]. 

11.6.5 Default Mode Selection Considerations 

KNL nodes have the option of being configured at boot-time in a variety of sub-NUMA 
clustering (SNC) modes and memory modes. Depending on the mode, a single KNL node 
can appear to the OS as having 1 (quad mode), 2 (snc2 mode) or 4 (snc4 mode) NUMA 
domains. It is also possible to configure the MCDRAM as a direct-map cache (cache mode) 
or to expose it as a directly accessible memory domain separate from the DDR (flat mode). 

NERSC tested these different configurations with a variety of benchmark applications 
[6, 1] including MILC, GTC-P, AMG, MiniDFT, SNAP and PENNANT and some user ap­
plications. In our testing it was found that the SNC modes introduce significant complexity 
into user job scripts, especially the snc4 mode due to additional NUMA issues caused by the 
uneven number of cores in each quadrant. We saw the differences from quad+cache from 
other modes are at most 5-10% differences. 

The MCDRAM configured in flat mode outperforms cache mode by a few percent in 
memory bandwidth bound benchmarks such as STREAM when the working set size is less 
than 16 GB. In real applications, the performance difference is often minimal, with cache 
mode sometimes outperforming flat mode. Effectively utilizing a node configured in flat 
mode with data sizes larger than 16 GB requires memory to be directly allocated into 
the MCDRAM and requires additional programming effort. Utilizing the flat mode also 
introduces more settings into the standard batch script. 

For these reasons we chose a default of quad,cache mode for our KNL nodes. However, 
for those users who are able to take advantage of other modes, we allow a fraction of the 
Cori KNL nodes to be rebooted by the job scheduler. We introduced this limit to avoid 
overhead related to rebooting nodes, which could last 30 min or longer for each reboot. 

11.6.6 Running Jobs 

On Cori, the scheduling software SLURM is used in ’native’ mode, meaning SLURM 
directly manages the computing resources without going through another layer of the Cray 
Application Level Placement Scheduler (ALPS). Having 68 cores per KNL compute node, 
with 34 dual-core tiles and different cluster and memory modes, complicates the task place­
ment for hybrid MPI/OpenMP applications. The general recommendations are: Use 64 
cores per node in most cases and use 1 or 2 cores per node for core specialization, which is a 
feature designed to isolate system overhead (system interrupts, etc.) to designated cores on 
a compute node. The srun flags -c and –cpu bind=cores are critical for getting the optimal 
process affinity. Without these, multiple MPI ranks will run on the same physical cores. 
The portable OpenMP process binding options (OMP PROC BIND and OMP PLACES) 
are then used to fine tune thread affinity. Either numactl or the srun –mem bind option can 
be used to specify how MCDRAM memory is used. 

For running large jobs, we suggest users to sbcast (the SLURM command to broadcast) 
the executable to each compute node first before running the job to minimize the job 
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startup delay, which can be up to several minutes sometimes. Using hugepages is generally 
recommended. 

We provide an online Job Script Generator tool so users can input some simple run 
parameters and get a ready-to-use batch script. Pre-built binaries to report process and 
thread affinity information compiled with different compilers are prepared for users to check 
their desired run time settings for their applications. 

11.7 NESAP 

11.7.1 Introduction 

The NERSC Exascale Science Applications Program (NESAP [11]) was established con­
currently with the procurement of Cori in order to help users transition to advanced archi­
tectures like Intel’s Xeon Phi, Knights Landing processor. The NESAP program provides 
support for preparing science applications for Cori not only by providing staff and postdoc 
resources, but also by connecting science code teams with vendor experts at Intel and Cray. 

Since NERSC has more than 6,000 users running 700 different applications, it is not 
feasible to devote staff to each application running at the center. Instead, twenty application 
teams [9] were selected to participate in the NESAP program, from which an optimization 
strategy and set of best practices to share with the greater community would be created. 
The 20 selected applications cover all six programs within the Department of Energy Office 
of Science and represent about 60% of the overall NERSC CPU hours, either directly or as 
proxy codes. The selected codes are displayed in Table 11.1. 

The domain scientists and application developers received intensive advanced training 
in the form of on-site visits from Intel and Cray staff, hackathons at Intel campuses as well 
as on-going collaborations with NERSC and Cray staff as part of a Center of Excellence. 
Furthermore, these teams had access to pre-production Xeon Phi hardware prior to the 
delivery of the Cori system, which significantly increased optimization productivity. Eight 
application teams were additionally paired up with postdoctoral researchers at NERSC who 
devoted a large fraction of their time to the profiling and optimization efforts. 

The lessons learned from these efforts are extensively documented in general Xeon Phi 
documentation guidelines [12] as well as specialized case studies [10] on the NERSC website. 
This facilitates the dissemination of the knowledge gained to the rest of the NERSC user 
base. 

11.7.2 Optimization Strategy and Tools 

The Cori system uses the same Aries interconnect and dragonfly topology as its prede­
cessor Edison [8]. The most disruptive changes in the system come from the novel architec­
ture of the Intel Xeon Phi processor. Therefore, NESAP code optimization effort is mainly 
focused on node-level performance. 

Compared to e.g. Xeon multi-core processors, the Intel Xeon Phi many-core chip fea­
tures more (slower) cores, more hyper-threads, wider vector units supporting more complex 
instructions as well as high-bandwidth on-package MCDRAM. In order to obtain good 
code performance on Xeon Phi, it is mandatory to utilize at least some of these features. 
Navigating this complex optimization space is difficult and therefore NERSC developed an 
optimization strategy based on the roofline performance model [25, 38, 37, 14]. The ap­
proach includes the identification of hot kernels, i.e., code regions that consume a large 
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TABLE 11.1: Overview of NESAP applications. 

Name Scientific Field 

ACME Climate Modeling 
BerkeleyGW Materials Science 

BoxLib Multiple 
CESM Climate Modeling 

Chombo-Crunch Multiple 
Chroma Nuclear Physics 
DWF High Energy Physics 

EMGeo Geophysics 
GROMACS Materials Science 

HACC high Energy Physics 
HISQ High Energy Physics 

HMMER Bioinformatics 
Meraculous Bioinformatics 

M3D Fusion Research 
MFDN Nuclear Physics 
MILC High Energy Physics 

MPAS-O Climate Modeling 
NWchem Basic Energy Sciences 

Parsec Materials Science 
Qbox Materials Science 

Quantum ESPRESSO Materials Science 
VASP Materials Science 
WARP Accelerator Physics 
XGC1 Fusion Research 

fraction of the wall-time, and the determination of their arithmetic intensity and perfor­
mance in terms of FLOPS/s. The data points are plotted on a 2D roofline plane and may be 
visually compared against the Xeon Phi roofline ceilings (determined by limits on memory 
bandwidth and cpu speed). The position of each of these kernels on the roofline relative 
to the ceilings indicate the most promising optimization targets. For example, it informs 
the user if a kernel is memory bound, compute bound or potentially latency bound. The 
model additionally allows a developer to visually track the effect of optimizations as they 
are implemented in an application. 

In order to obtain the relevant performance metrics, NERSC developed a methodology 
in cooperation with Cray and Intel staff. This approach employs Intels VTune [2], SDE [15] 
and Vector Advisor [3] products. The latter recently incorporated a variant of the roofline 
mode, the so-called cache-aware roofline, into it’s basic functionality. 

Figure 11.5 depicts the performance of a specific kernel in the BerkeleyGW [24] appli­
cation after a series of optimization steps (2 - addition of OpenMP, 3 - loop reordering for 
vector code generation, 4 - cache blocking, 5,6 - hyperthreading and refined vectorization). 
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FIGURE 11.5: BerkeleyGW kernel trajectory after a series of optimization steps. 

11.7.3 Most Effective Optimizations 

As discussed before, the most promising optimizations for a given kernel depend on 
the position on the roofline plot. For memory-bound kernels, cache blocking and utilizing 
MCDRAM have proven to be most efficient. The former is especially important as Xeon 
Phi is not equipped with a comparably big L3 cache that can efficiently mitigate L2 misses. 
For compute-bound kernels on the other hand, efficient vectorization and instruction-level 
parallelism such as utilization of FMA instructions are the most promising optimization 
targets. However, this simple picture becomes complicated when considering more subtle 
effects such as hardware prefetching: if code is not sufficiently vectorized, single-word loads 
and stores can overwhelm the prefetcher while vectorized loads and stores reduce the number 
of in-flight memory operations by a factor of up to 32. 

The following optimizations were identified as the most effective across a series of appli­
cations: 

•	 identifying and exploiting parallelism / creating more work for individual threads: 
This may be the most important thing to consider when switching from multi-core 
to many-core architectures. Small OpenMP sections that do not contain enough work 
for multiple threads will hurt performance significantly due to implicit barriers at the 
end of these sessions. Where possible, loop nests should be collapsed to maximize 
parallelism. 

•	 loop tiling : Cache blocking to achieve cache locality of heavily used arrays can be 
realized by reordering and tiling inner loops. This is especially important on Xeon Phi 
as there is no L3 cache to mitigate the impact of L2 misses on application performance. 
Unfortunately, as this is a manual code transformation rather than a directive, code 
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can become less readable and more brittle. Nevertheless, it was found that blocking 
to shared L2, i.e., 512 KiB per core, performs best for most applications. 

•	 short loop unrolling : short loops should be unrolled as they do not provide enough 
work either for threading or for vectorization. 

•	 ensuring efficient vectorization: This can be a major challenge as it may entail loop 
restructuring as well as data layout transformations. Where the compiler fails to detect 
vectorization opportunities automatically, loops can be annotated with the OpenMP 
4 simd pragmas to enforce the compiler to vectorize these loops. 

•	 using optimized mathematical functions: AVX512 supports intrinsics for reduced pre­
cision divisions and certain expensive mathematical functions such as transcendentals. 
Those can be enabled by instructing the compiler to use a relaxed floating-point model. 

11.7.4 NESAP Result Overview 

Figure 11.6 shows the summary of the node-to-node code performance on Edison and 
Cori before and after applying optimizations. The numbers are collected from multi-node 
benchmarks representing larger scale science runs being performed by the teams. 

The speedups are normalized with respect to the performance of the original (baseline) 
codes on Edison. The number of nodes for each application is displayed in parentheses. 

One observes an approximate 3x speedup on average on Xeon Phi between original 
and optimized codes. Furthermore, one finds an approximate 1.5x average architecture 
advantage in favor of Cori (Xeon Phi) vs. Edison. 

NERSC further studied impacts of various Xeon Phi-specific hardware features on ap­
plication performance. Figure 11.7 shows the relative speedups when utilizing MCDRAM 
(in either cache or flat mode depending on the application preference) vs. ignoring the 
MCDRAM (running in flat mode utilizing only the traditional DRAM). In addition, one 
can compare performance when compiling with full-optimization (-xMIC-AVX512) vs. dis­
abling vectorization (-no-vec -no-simd). It should be noted that the latter test does not 
include libraries or AVX intrinsic codes where such compiler flags are ignored. The NESAP 
optimization efforts overview and results are documented in more detail in [17, 30]. 

11.7.5 Application Highlights 

This section presents some selected applications and the major optimizations used to 
improve their performance on Xeon Phi. 

11.7.5.1 Quantum ESPRESSO 

Quantum ESPRESSO is an open source density functional theory (DFT) code and 
widely used in Materials Science and Quantum Chemistry to compute properties of mate­
rial systems, such as atomic-structures, total-energies, vibrational properties etc. Accurate 
calculations of important electronic properties, like band-gaps and excitations energies, are 
achievable for many systems through so called Hybrid Functional calculations employing a 
certain contribution for the exact exchange (exx) potential - which represents the contribu­
tion of the Pauli-Exclusion principle. 

The most expensive part of an exact exchange (exx) calculation is the calculation of 
the exact exchange functional. This function represents essentially a sequence of element-
wise products of large complex arrays interleaved with Fast Fourier Transforms (FFT) of 
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FIGURE 11.6: Applications performance relative to Edison baseline on multiple nodes. The 
number in parentheses represents the number of nodes used to measure performance. 

FIGURE 11.7: Applications performance speedup using MCDRAM vs. using DRAM (light 
bars) as well as using AVX512 vs. using AVX2 (dark bars). 
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these arrays. In the original code, the OpenMP parallelization was applied to the inner­
most loop, but the code performance did not scale beyond ∼16 threads (cf. Figure 11.8). 
VTune profiling revealed that the run time of these sections was extremely short and thus 
overhead from forking and merging sections dominated. This problem was fixed by moving 
to a coarse grained parallelization, i.e., moving the OpenMP pragmas on the element-wise 
products from the inner to the outer loops. Since these sections are interleaved with FFTs, 
those loops had to be chunked into blocks and the sizes of the involved arrays had to be 
increased so that they can store results for a full chunk. This further enabled pooling of 
multiple FFTs within a chunk, which resulted in a ∼20% performance improvement. On the 
element-wise products, the now doubly nested loops were additionally cache blocked into 
chunks of 2048 double-complex vectors. The two innermost loops were further decorated 
with omp parallel for simd collapse(2) directives in order to exploit full paralleliza­
tion. In addition to this, MPI scaling was improved by re-arranging the data structure 
layout so that more parallelism relevant to this part of the calculation could be exploited. 
This change also enabled independent, node-local, FFTs, which significantly improved per­
formance over the original distributed ones. In order to ensure compatibility between the 
exact exchange and the other parts of the calculation, a data structure transformation was 
performed. The overhead of this procedure is mitigated by the huge performance improve­
ment gained in the expensive exact exchange calculation. Figure 11.9 displays the strong 
scaling for the full calculation (left panel) and the exact exchange part (right panel) for the 
original code (annotated QE 5.2.0) and our improved version. 

FIGURE 11.8: Strong thread scaling for Quantum ESPRESSO exact exchange calculations 
improved vs. original code for a system comprised of 64 water molecules. 

More detailed discussions are available at [18, 13]. 

11.7.5.2 MFDn 

Many-Fermion Dynamics—nuclear, or MFDn, is a configuration interaction (CI) code 
for nuclear structure calculations currently in use at multiple machines at NERSC, ALCF 
and OLCF for ab initio calculations of atomic nucei [21, 32, 33, 34]. To provide high accuracy 
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FIGURE 11.9: Multi-node scaling of full hybrid-DFT calculation (left) and of the exx­
subroutine (right). 

with realistic two and three-body forces with a CI code, a very large and sparse Hamiltonian 
is required, and therefore a highly scalable code is needed to effectively utilize the aggregate 
memory of a cluster. For problems of physical interest the matrix dimensions can exceed 
1010 × 1010 with over 1013 non-zero elements. The code is written in portable Fortran 90 
with a hybrid MPI/OpenMP programming model. 

A typical run of MFDn involves three phases: 

Matrix construction • 

• Obtain lowest eigenvalue/eigenvector pairs 

• Compute observable properties 

The matrix construction and computation of observables are compute intensive, but 
contain very few flops. The dominant operations are integer comparisons, bit operations 
and random access to lookup tables. In order to obtain good performance in these phases on 
Xeon Phi, improvements to data locality and efficient use of the vector units were essential. 
Promotion of occupied state bit masks from 32-bit to 64-bit integers, manual loop tiling 
and OpenMP 4.0 simd pragmas were used to improve vector and cache efficiency. The 
tile size is now a compile time option and a low multiple of the vector width is chosen in 
practice. Manual tiling and use of OpenMP pragmas instead of compiler options preserves 
the portability of the code. 

The sparse matrix-matrix multiple kernel (SPMM) is the most expensive operation in 
the iterative eigensolver. Changing from the Lanczos to LOBPCG eigensolver enabled the 
use of SPMM, which has a higher arithmetic intensity than SPMV operations. Choosing 
the best number of MPI ranks per node and OpenMP threads per rank is also important 
on Xeon Phi. 

The high OpenMP scalability of MFDn allows it to run with as few as 1 MPI rank per 
node (See Figure 11.10), which would be the preferred mode for best memory utilization. 
However, the best performance on Cori is obtained with multiple ranks as a single Xeon Phi 
core is not able to fully utilize the high speed network. Optimizations for MFDn resulted 
in better performance on all platforms and Xeon Phi saw more improvement than Xeon, 
highlighting that the Xeon Phi platform is more sensitive to code issues than Xeon. 
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FIGURE 11.10: Strong thread scaling for MFDn for matrix construction and SPMM kernels. 

FIGURE 11.11: Comparison of effect of optimizations on 32 nodes of Edison, Cori-Haswell 
and Cori-KNL. 

More detailed discussions are available at [23, 36]. 

11.8 Data Science 

The Cori Haswell partition has been configured to specifically support large-scale data 
analysis. With increasing dataset sizes coming from experimental and observational facili­
ties, including telescopes, sensors, detectors, microscopes, sequencers and, supercomputers, 
scientific users from the Department of Energy, Office of Science are increasingly relying on 
NERSC for extreme scale data analytics. To support these requirements, the Cori system 
includes hardware, software and policy changes to support this new and growing workload. 

11.8.1 IO Improvement: Burst Buffer 

One of the top improvements NERSC users consistently request in requirement reviews 
and feedback is better IO performance. To address this, Cori contains a Burst Buffer, based 
on the Cray DataWarp technology. This is an intermediate layer of non-volatile storage 
that sits between the fast on-node DRAM and the slower (but higher capacity) parallel file 
system (PFS). This Burst Buffer provides users with a configurable layer of fast IO that 
can improve application IO in several ways: 
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TABLE 11.2: Burst Buffer IOR performance, using 11120 compute nodes (HSW+KNL), 4 
ranks per node. 

Posix FPP (GB/s) MPIIO shared file (GB/s) IOPs 
Best measured read 
Best measured write 

1745 
1566 

1320 
1364 

28.2M 
13.1M 

•	 Improved IO bandwidth for reads/writes, for example, for checkpoint-restart applica­
tions. 

•	 Improved performance for complex IO patterns, for example, high IOPS (IO opera­
tions per second). 

•	 Improved capability for complex workflows, for example, combining simulation, anal­
ysis and visualization codes. 

The DataWarp SSDs sit on specialized nodes that bridge the internal Aries interconnect 
of the compute system and the SAN fabric of the PFS, through the IO nodes. The flash 
memory is attached to Burst Buffer nodes that are packaged two nodes to a blade. Each 
Burst Buffer node contains an Intel Xeon processor with 64 GB of DDR3 memory and two 
3.2 TB NAND flash SSD modules attached over two PCIe gen3 x8 interfaces. The Burst 
Buffer nodes are attached to the Cori Cray Aries network interconnect over a PCIe gen3 
x16 interface. Each Burst Buffer node provides approximately 6.4 TB of usable capacity 
and a peak of approximately 5.7 GB/sec of sequential read and write bandwidth, with an 
aggregate bandwidth for the full Burst Buffer reaching over 1.7TB/sec and 28M IOPs (see 
Table 11.2 for details). 

Access to the Burst Buffer resource is integrated with the SLURM scheduler. When a 
user submits a job requesting a Burst Buffer allocation, an XFS filesystem is mounted for 
that allocation so that the user sees a single namespace, even though data might be striped 
over several DataWarp nodes. 

After considerable effort from NERSC staff and Cray engineers to refine the DataWarp 
performance, users generally see excellent performance from the Burst Buffer [20]. For ex­
ample, the ATLAS collaboration has used the Burst Buffer to analyze data from the Large 
Hadron Collider [19], which typically involves several stages of filtering data to identify 
useful events for further analysis. This ”derivation” process involves large I/O reads and is 
up to 7 times faster using the Burst Buffer compared to Cori Scratch (see Figure 11.12). 
Subsequent analysis stages of the filtered data exhibit a very different I/O pattern, requiring 
large amounts of small random reads and writes from the filtered data files. Obtaining an 
optimal performance in the analysis stage required tweaking the application caching from 
2MB to to 100MB, which allowed the application to take better advantage of the available 
bandwidth to the Burst Buffer. This improved the application performance by a factor of 
17, with the Burst Buffer out-performing Cori Scratch by a factor of 5 consistently at all 
job scales, as shown in Figure 11.13. 

Another example application is the coupling of ChomboCrunch and Visit that demon­
strates both high bandwidth and a complex workflow using the Burst Buffer [35]. Figure 
11.14 illustrates that the simulation, visualization and analysis can be run simultaneously 
using the Burst Buffer, enabling higher spatial and temporal resolution, and Figure 11.15 
shows that the bandwidth out-performs Lustre at all scales. 
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FIGURE 11.12: Comparison of applica­
tion bandwidth to Cori Scratch file sys­
tem (Lustre) and the Burst Buffer, for 
ATLAS data filtering. 

FIGURE 11.13: Comparison of applica­
tion bandwidth to Cori Scratch file sys­
tem (Lustre) and the Burst Buffer, for 
ATLAS data analysis. 

FIGURE 11.14: Chombo-Crunch + VisIt workflow. 

11.8.2 Workflows 

NERSCs mission has been expanding into closer interactions with experimental and 
observational facilities, whose users often have different requirements than traditional HPC 
modeling and simulation users. Users analyzing large data sets from an experimental facility 
have more complex workflows including filtering data, moving data and running multiple 
pipelined analysis codes on the data. The Cori system has been designed with data-intensive 
workflows in mind. 
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FIGURE 11.15: Chombo-Crunch I/O bandwidth scaling.The compute node to Burst Buffer 
node ratio is fixed at 16:1. 

11.8.2.1 Network Connectivity to External Nodes 

Many workflow systems are managed by a control node or database that manages the 
different tasks and stages in a workflow - this may be a persistent service that lives outside 
the Cori network. Individual workflow tasks may also need to pull down units of work or 
data, or publish results to/from a data service. Cori compute nodes therefore are able to 
talk to external services directly. 

11.8.2.2 Burst Buffer Filesystem for In-situ Workflows 

Multi-Stage Workflows will generate data between each step in the workflow - for ex­
ample, a simulation generates data files, which need to be analyzed by an independent 
application, which then needs to be visualized by a third application (such as the Chombo-
Crunch and Visit workflow mentioned in section 11.8.1 and [35]). As the size of the data 
grows, it becomes increasingly impractical to move the data in and out of the file system. 
The burst buffer provides a very convenient intermediate staging area for this data. 

11.8.2.3 Real-time and Interactive Queues for Time Sensitive Analyses 

Cori supports a real-time queue for time sensitive analyses. Users can request a small 
number of on-demand nodes if their jobs have special needs that cannot be accommodated 
through the regular batch system. The real-time queue enables immediate access to a set of 
nodes, for jobs that are under the real-time wallclock limit. Typically this is used for real time 
processing linked to an experiment (e.g., LCLS) or event (supernova). In addition to this, 
in mid-2017 NERSC began providing 192 nodes (Haswell and KNL) for high-turnaround 
’interactive’ usage. This allows all users to have instant turnaround for single analytics jobs 
(that can use multiple nodes for several hours). 
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11.8.2.4	 Scheduler and Queue Improvements to Support Data-intensive Com­
puting 

In addition, the scheduler and scheduling policies we had traditionally used to support 
our modeling and simulation workloads proved inflexible for dealing with the more dynamic 
needs of data users. One of the key changes made to support this new workload was a 
change to Native SLURM. The schedulers closer ties to the compute nodes provide easier 
diagnostics, cleaner access to the data and faster startup. Users from experimental facilities 
also often come with expectations of a specific operating system or require a complex set of 
installed libraries. For these users, NERSC is allowing users to bring their own images to 
Cori, by way of a new capability called Shifter [8], which enables users to import and use 
their Docker containers. 

11.9 System Statistics 

As mentioned in Section 11.7.1, NERSC has over 700 projects and more than 6,000 
users. To facilitate moving codes to the Intel Knight’s Landing processors, the NESAP 
codes chosen covered a large spectrum of science fields within the DOE Office of Science 
mission. Since these teams had been working on their codes to prepare for the system, 
they were given exclusive and priority access to KNL nodes starting from November 2016. 
In January 2017, access to a subset of the KNL nodes was granted to all users for code 
development, debugging and optimization. Non-NESAP users started to gain full access 
to the KNL nodes once they had demonstrated some degree of application-readiness. The 
system entered full production mode in July 2017. 

11.9.1 System Utilizations 

Figure 11.16 shows the 30-day rolling medium utilization in node days on Cori KNL. 
NESAP users ramped up the system usage very quickly from the end of November 2016 to 
early January 2017. As shown in Figure 11.18, the system utilization has been mostly in 
the 90% range once users were provided access. 

Figure 11.17 shows the breakdown of hours used on Cori KNL nodes from December 22, 
2016 after Cori was accepted, through June 15, 2017. Lattice QCD codes were ready to use 
KNL before many others. VASP and Quantum Espresso are material science applications 
that NERSC installs on systems and users execute. The VASP and Quantum Espresso users 
were enabled mid-January, explaining the large usage in materials science. 

The workload is highly parallel as indicated in the Job Size breakdowns in Figure 11.18. 
About half of the hours from January to June 2017 were used by jobs using more than 512 
nodes and more than 25% of the total hours were used by jobs running on more than 1,024 
nodes. The system utilization chart also indicated a couple of Cori system maintenance 
periods: February 28 to March 3, and April 18-21 for new cabinets integration, and March 
22-24, 2017 for an OS upgrade. 

11.9.2 Job Completion Statistics 

Job completion statistics help to indicate how successfully user applications are running 
on the system and to discover potential system problems. On Cori, the SLURM accounting 
database is used to analyze success rate, failure categories and causes. 
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FIGURE 11.16: KNL system utilization from November 2016 to June 2017. 

FIGURE 11.17: KNL node hours used by various science category from January to June 
2017. 

Figure 11.19 shows the percentage of KNL node-hours spent by jobs completed with each 
category. A small number of jobs in the categories of Node Fail, Boot Fail and Cancelled 
System are considered as job failures related to system issues. Jobs in the ”Completed” 
category are completed successfully. Jobs in the Timeout categories are unknown of whether 
from system or user issues. Many NERSC workflows choose to intentionally timeout and 
restart from regular checkpointing data. Cancelled or Failed jobs can be from either user or 
system cause, which mostly represent user activities debugging their workloads. 
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FIGURE 11.18: KNL Job size and system utilization from January to June 2017. 

FIGURE 11.19: Job Completion Breakdown from January to June 2017. 

11.10 Summary 

In summary, the Cori system has been configured to support both large-scale simulation 
as well as extreme data analysis for the broad Department of Energy, Office of Science 
workload. With a number of new architectural features such as the Burst Buffer and the 
Knights Landing processor with many light weight cores and high bandwidth memory, users 
are getting exposed to new system features that are expected in next generation systems 
on the path to exascale. Through the NESAP program, users have optimized applications 
through improved parallelism and vectorization and the use of on-package memory. On 
average, NESAP applications have seen a 3x speedup on the Cori Knights Landing compute 
nodes. 

Innovations such as Shifter and SDN as well as new queue policies to support data work­
loads have enabled the Cori system to support users from analyzing data from experimental 
facilities. 
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Since the system was installed, users have rapidly ported codes and system utilization 
has been high. NERSC is continuting to add new capabilities to the system, which will be 
in service for approximately 5 more years. 
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