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ABSTRACT OF THE DISSERTATION 

 

Inhibitory Circuits of the Cortex: 

Control of Rhythmic and Stimulus Evoked Activity 

by 

Bassam V. Atallah 

Doctor of Philosophy in Neurosciences 

with a Specialization in Computational Neurosciences 
 

University of California, San Diego, 2011 

Professor Massimo Scanziani, Chair 

 

 We are surrounded by a world, which makes sense, only because we 

make sense of it. At every instant in our waking life we estimate the state of the 

world based on sensory data, then we reshape the world to meet our goals. 

How are these sensations encoded, goals represented and action computed? 

To answer these questions we dissect the biological circuitry in our brains that 

seamlessly performs these computations. 

To study the dynamics of neural circuits, we specifically focus on the role 

inhibition in shaping signal processing. This work examines how inhibitory 

circuits process increasingly complex forms of afferent input: 

First, we characterize and model local circuit responses to brief impulses 

of afferent activity. We find that local circuits generate feedforward inhibition in 
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the first few milliseconds after an afferent impulse. This inhibition adjusts the 

excitability of the local population normalizing it to the afferent excitation level. 

Then, in the next few milliseconds, as individual local pyramidal cells spike they 

immediately recruit a distinct recurrent inhibitory circuit. This feedback circuit is 

extremely sensitive responding with negative feedback when even a single local 

pyramidal cell is active.  By modeling the circuit dynamics during these stages 

in cortical processing we quantitatively demonstrate that the feedforward and 

feedback inhibitory circuits are tuned to be both sensitive to sparse activity and 

yet maintain fidelity with which a cortical circuit represents inputs at high activity 

levels. 

Next, the role inhibition during spontaneous rhythmic activity is 

dissected. Our results demonstrate that by rapidly balancing excitation with 

inhibition, cortical networks can swiftly modulate rhythms over a wide band of 

frequencies.  

Finally, we investigate the role of a distinct type of inhibitory interneuron 

during the first stage of cortical visual processing. Using optogenetics to either 

enhance or suppress parvalbumin positive interneurons spiking, we 

demonstrate that these neurons play a key role in modulating the selectivity of 

responses in primary visual cortex. 

Together, these results demonstrate the multifaceted role inhibitory 

circuits play in signal processing and shaping cortical computation; adding to 

our communal effort to develop a complete picture of how neural circuitry 

performs computations and encodes sensation. 



 1 

Introduction 

 

From the moment we are born, before we can coordinate our hands, 

eyes, tongue, or even synthesize permanent memories, our brain is hard at 

work setting the ground work for us to learn and function as intelligent beings. 

What explains the unique human capacity for complexity, abstraction and 

reasoning. 

We are privileged in that we are no longer constrained to speculate as to 

the nature of thought. Instead we can use psychophysics and electrophysiology 

to quantify our behavior and neural activity. This enables us to apply the same 

methods of scientific reductionism that have been fruitful in the physical 

sciences. An initial goal of this approach is to identify the basic neural modules 

that together coordinate these complex computations. 

  

What are the modules of neural computation? 

Consider man-made computers, arguably the brain’s closest relative in 

terms of complexity and function, for an analogy. A modern PC consists of 

computational modules on several different scales. On the largest scale, there 

are specific processors tackling problems like graphics and sound. Similarly, we 

know that in the brain, both cortex and subcortical areas are segregated into 

modality specific regions such as vision or audition (Jasper and Penfield 1954).  

 
 
 

1 
 
 



 2 

On an intermediate scale, computer processors are made up from logic 

gates (computational modules that perform basic operations such as NOT, 

AND, NAND, etc) that are repeated identically no matter whether they are part 

of a graphics or sound processor. At the finest scale these computational 

modules are all built from the same basic components: transistors, resistors and 

capacitors.   

It has been suggest that the brain also consists of repeated modular-like 

stuctures of “columns” (Mountcastle, 1978, Mountcastle, 1997).  This is 

because, the functional properties of within the cortex change depending on a 

neuron’s position on the rostral-caudal or medial-lateral axes, but these 

properties are largely conserved independent of a neuron’s depth along the 

radial axis within the cortex.  Anatomical and developmental data appear to 

support the idea that neurons along this “column” or radial axis may have a 

unique relationship (Rakic, 1971). However, the precise definition of columns 

and whether they are distinct computational modules remains unclear. This is 

because, while much is known about the cellular and synaptic nature of the 

brain’s basic components: neurons1, we have a poor understanding of the 

intermediate scale, at the circuit level, i.e. between a functional column and a 

neuron, where neurons operate as groups.  

                                                
1 Though subcellular compartments are certainly important for neuronal 
computation (London & Häusser 2005). 
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Since bridging this gaping hole in our knowledge of neural computation is 

crucial, we chose to study how circuits process signals and perform 

computations. 

 

Inhibitory circuits 

A critical part of neural circuitry are GABAergic inhibitory interneurons. 

Inhibitory function within the nervous system was first described by Sherrington 

(Sherrington et al 1906), as part of muscle contraction. It was his student John 

Eccles however, who first recorded intracellularly from motor neurons and 

observed inhibitory post-synaptic potentials (Brock et al 1952). In a subsequent 

set of experiments, he established that inhibition was caused by a specific set 

of cells that ubiquitously inhibited their targets (and not by differential action of 

the same axons on different postsynaptic targets) (Bradley et al 1953). In the 

next two decades, GABA and glycine were established as the inhibitory 

neurotransmitters (Krnjevic et al 1967, Curtis et al 1968).  This work established 

the existence of inhibitory neurons, and that they are distinct from their 

excitatory counter parts.  

GABAergic interneurons make up a major portion of all neurons in the 

brain (20-30%). Inhibitory synaptic transmission is crucial for healthy 

neurophysiology and information processing. Since cortical circuits are 

recurrent, imbalances between excitation and inhibition, even if small, can result 

in aberrant cortical activity. In fact, disruptions of this balance results in sedated 

states when inhibition is pharmacologically enhanced and epileptic states when 
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inhibition is reduced pathophysiologically (Traub & Wong 1982, Prince 1978, 

Miles & Wong 1987). 

  Maintaining the balance of excitation and inhibition is a dynamic process. 

Levels of excitation in cortical networks change as a function of both the state of 

the extrinsic sensory world and the intrinsic state of cortical excitability. 

Variations in the nature of sensory stimuli are accompanied by large changes in 

the amount of both excitation and inhibition received by neurons. Studies 

quantifying this balance suggest that changes in synaptic excitation are often 

accompanied by changes in synaptic inhibition (Wehr & Zador 2003, Wilent & 

Contreras 2004, Anderson et al 2000). Together, these two conductances 

determine the computations performed by cortical neurons. In sensory cortices, 

for example, this precise balance defines the receptive-fields of neurons (Dykes 

et al 1984, Kyriazi et al 1996, Rao et al 2000, also see chapter 4).  

 

Overview 

In the following four chapters, we describe how inhibitory circuits 

dynamically balance excitation: 

Chapter one is the product of a collaboration: Frédéric Pouille and 

Antonia Marin-Burgin show experimentally that the excitability of a local cortical 

network is almost instantaneously normalized to the strength of afferent input by 

feedforward inhibition. I designed a model to test whether this normalization 

quantitatively determines how the local network of principal cells is recruited by 

afferent input. Together we demonstrate that this normalization plays a crucial 
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role in expanding the range of afferent input a neural population can faithfully 

represent. 

Chapter two focuses on what happens after principal cells in a local 

population are recruited. We address how many local principal neurons must be 

active to recruit feedback inhibition. In this collaboration, Christoph Kapfer found 

that feedback inhibition is recruited by the spiking of just one or two principal 

neurons. Using a model, I demonstrate that the distribution of excitatory input 

amplitudes onto inhibitory neurons is critical for setting sensitivity and dynamic 

range of the recurrent inhibitory circuit. Both the sensitivity and the wide 

dynamic range depend on the shape of the excitatory postsynaptic potentials 

(EPSPs) distribution onto inhibitory neurons. The few large-amplitude EPSPs 

ensure that even the activity of a single pyramidal cell will activate a fraction of 

the interneuron population, thus providing sensitivity to the circuit. On the other 

hand, a small the EPSP distribution’s low average insures that the recruitment 

of inhibition does not saturate, but can reliably counters excitation if pyramidal 

cell activity increases. 

In the third chapter we focus on the role of inhibition during fast rhythmic 

activity, a ubiquitous feature of neural activity. Here we use a combination of in 

vivo, in vitro electrophysiology and modeling to demonstrate that inhibition 

instantaneously balances excitation and plays a key role in determining the 

precise frequency of each oscillation cycle. 

Finally, in the last chapter, we determine the impact inhibition has in 

shaping sensory responses in primary visual cortex. Here, we use optogenetics 
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to inactivate or activate a specific sub-type of interneuron, perisomatic targeting, 

parvalbumin expressing cells, during visual processing. We find that the 

inhibition evoked by these neurons plays a key role in determining the 

selectivity of principal neurons for orientation and direction.  

Together, our data reveal the multifaceted role inhibitory circuits play in 

shaping cortical computation by regulating gain, imposing synchrony and 

modulating sensory encoding. In addition to demonstrating specific functions for 

neural circuits, our work illustrates the progress that can be made by 

systematically dissecting functional modules in the brain.  
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Chapter 1. Input normalization by global feedforward inhibition 

expands cortical dynamic range 

 

Abstract 

The cortex is sensitive to weak stimuli, but responds to stronger inputs 

without saturating. The mechanisms that enable this wide range of operation 

are not fully understood. We found that the amplitude of excitatory synaptic 

currents necessary to fire rodent pyramidal cells, the threshold excitatory 

current, increased with stimulus strength. Consequently, the relative 

contribution of individual afferents in firing a neuron was inversely proportional 

to the total number of active afferents. Feedforward inhibition, acting 

homogeneously across pyramidal cells, ensured that threshold excitatory 

currents increased with stimulus strength. A simple model quantitatively 

demonstrates that this increase in threshold as a function of stimulus strength is 

a mechanism that expands the range of afferent input strengths that neuronal 

populations can represent. 

 

Introduction 
 

A characteristic of cortical excitatory neurons is their widely divergent 

axonal projection. This property enables cortical neurons to contact a large 

number of postsynaptic cells and allows each postsynaptic cell to receive inputs 

from many presynaptic neurons. In a circuit constructed with this excitatory 

divergence alone, the number of active presynaptic neurons (input strength) 

 

9 
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that is sufficient to recruit all neurons in the postsynaptic population is only 

slightly larger than the input strength required to recruit any postsynaptic neuron 

at all. In other words, the input range that can be faithfully represented by the 

postsynaptic population is restricted. For example, if presynaptic neurons 

connect to a postsynaptic population with a probability of 15% (Lefort et al, 

2009) and each postsynaptic cell requires 40 active inputs to be recruited 

(Otmakhov et al 1993), then 2% of the postsynaptic cells would be recruited by 

the activity of 200 presynaptic neurons and almost all (>99%) would be 

recruited by simply doubling the number of active presynaptic neurons (as 

determined by binomial statistics). Thus, in the absence of control mechanisms, 

small fluctuations in the fraction of presynaptically active neurons results in all-

or-none recruitment of the postsynaptic population (Marr et al 1969, Vogels & 

Abbott 2005, Shadlen and Newsome 1998, Diesmann et al 1999) (this all-or-

none behavior is qualitatively similar for a wide range of connectivity values and 

number of inputs necessary to reach threshold). However, both spontaneous 

and sensory-evoked cortical activity involves large fluctuations in the fraction of 

active neurons (for example, refs.7,8,9). What mechanisms does the cortex use 

to expand the range of input strengths over which it faithfully responds? One 

could imagine at least two distinct mechanisms. Reducing the gain of individual 

neurons (that is, the change in spiking probability as a function of input 

strength) would allow each neuron in the population to respond over a wider 

range of input strengths; this gain modulation could be achieved through 

GABAAreceptor–mediated conductances (Shu et al 2003, Mitchell & Silver 
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2003, Chance et al 2002, Carvalho & Buonomano 2009). Alternatively, 

staggering the recruitment of individual neurons over a wide range of input 

strengths would allow the population as a whole, rather than individual neurons, 

to represent a wider input range. This could be achieved by varying the 

amplitude of the excitatory postsynaptic currents (EPSCs) necessary to reach 

threshold for spike generation as a function of input strength. 

We found that hippocampal and neocortical feedforward inhibitory 

circuits staggered the recruitment of individual pyramidal cells over a wide 

range of input strengths. Feedforward inhibition (FFI) acted homogeneously 

across the postsynaptic population of pyramidal cells to rapidly adjust their 

excitability to the strength of incoming presynaptic activity. As a result, the 

amplitude of the EPSC necessary for a pyramidal cell to reach spike threshold 

was dynamic and varied with the strength of the input. Heterogeneities in the 

amplitudes of EPSCs across the postsynaptic population determined the 

specific subset of pyramidal cells that would spike in response to the 

presynaptic input.  A quantitative model of pyramidal cell recruitment 

demonstrates that this coordinated action of direct excitation and FFI( by 

effectively increasing distance from spike threshold) , enable the neuron 

population to remain sensitive to weak inputs, but not saturate in response to 

stronger activity.  

 
 
Results 

EPSC necessary to spike pyramidal cell is dynamic 
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We established the range of stimulus strengths over which the CA1 

pyramidal cell population responds, that is, the dynamic range. We recorded 

from individual pyramidal cells in the loose-patch configuration and stimulated 

Schaffer collaterals over a range of intensities, from those that failed to trigger 

any spike to those that triggered spikes on every trial (Fig. 1.1a). The 

relationship between spiking probability of individual pyramidal cells and input 

strength (input strength is proportional to the number of activated Schaffer 

collateral; for details see Experimental Procedures and Appendix) was fitted 

with a sigmoid to interpolate the threshold input strength, where pyramidal cells 

spiked in 50% of the trials (Fig. 1.1a). The cumulative distribution of threshold 

input strengths for all recorded pyramidal cells (n = 39) represents the fractional 

recruitment of the CA1 pyramidal cell population, or activation curve (Fig. 1.1a). 

The dynamic range of the pyramidal cell population (that is, the ratio of the input 

strength necessary to activate 95% versus 5% of the pyramidal cell population) 

was approximately 34 (Fig. 1.1a), meaning that the pyramidal cell population 

can differentially represent a 34-fold increase in the number of active Schaffer 

collateral inputs before saturating. This is much larger than the dynamic range 

of an individual pyramidal cell (1.6 ± 0.7, n = 37; Fig. 1.1a; invariant between 

pyramidal cells recruited at different input strengths, R2 = 0.034, P = 0.27) and 

is the result of staggered recruitment of CA1 pyramidal cells over a wide range 

of stimulus strengths (Fig. 1.1a). 

Why are some pyramidal cells recruited at low input strength, whereas 

others require much stronger stimuli? We compared the excitatory postsynaptic 
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conductance (EPSG) evoked at threshold input strength (Otmakhov et al 1993) 

of pyramidal cells recruited over the range of input strengths (EPSGT refers to 

the EPSG evoked at threshold). Figure 1b illustrates an example of two 

pyramidal cells, simultaneously recorded in the loose-patch configuration, that 

required different stimulus strengths to spike. Whole-cell, voltage-clamp 

recording from the same two cells showed that the EPSGT in the pyramidal cell 

recruited by the stronger stimulus was much larger than in the pyramidal cell 

recruited with weaker stimulus (Fig. 1.1b). Over all of the experiments, we 

observed a steep increase in EPSGTs with increasing input strength (0.3-nS 

increase per percentile input strength, n = 32, P = 0.0024; Fig. 1.1b). 

Are differences in EPSGT amplitudes the results of variability in intrinsic 

pyramidal cell properties? Input resistance, membrane time constant, resting 

potential and threshold potential did not significantly differ between pyramidal 

cells recruited at different input strengths. To further rule out the influence of 

intrinsic variability between pyramidal cells, we compared EPSGTs between 

two independent Schaffer collateral inputs converging onto a single pyramidal 

cell (Fig. 1.1c). EPSGTs were uncorrelated between the two inputs (Fig. 1.1c). 

Furthermore, in an individual pyramidal cell, the EPSGT evoked by the stronger 

input was invariably larger than the EPSGT evoked by the weaker input (1.5 ± 

0.2–fold larger; P = 0.002, n = 19; Fig. 1.1c). Finally, there was no significant 

difference in the rise and decay kinetics of EPSGTs evoked by the weak and 

strong inputs  
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The increase in EPSGT implies that the contribution of each individual 

afferent in firing the neuron decreases with increasing input strength. By how 

much does this decrease? Over the range of input strengths from 0 to 0.5, the 

amplitude of the EPSGT increased approximately linearly (Fig. 1.1b; see model 

below) such that 

 

where N is the number of active afferents, EPSGTN is the EPSGT when 

Nafferents are active, EPSGT0 is the EPSG necessary to reach threshold at 

minimal input strength (under our condition, it was ~ 6 nS; Fig. 1.1b) and kis the 

proportionality factor. Given g, the synaptic conductance produced by an 

individual afferent, the relative contribution of each afferent toward firing a cell, 

, is .  Thus, the relative contribution of individual afferents in 

firing a cell is normalized by the number of active afferents. 

 

FFI expands population's dynamic range 

What determines the amplitude of the EPSGT and why does it vary with 

input strength? Stimulation of Schaffer collaterals triggers powerful FFI in CA1 

pyramidal cells through the recruitment of GABAergic interneurons (Pouille & 

Scanziani 2001, Buzsáki 1984, Alger & Nicoll 1982). There was a strong 

correlation between the amplitude of the EPSGT and the amplitude of the 

concomitantly triggered feedforward inhibitory postsynaptic conductance (IPSG; 

Fig. 1.2a; see Experimental Procedures). Furthermore, consistent with the 



 15 

correlation between EPSGT and input strength (Fig. 1.1b), FFI increased with 

input strength, before saturating at input values above 0.5 (Fig. 1.2a). These 

data suggest that EPSGT may vary with input strength because of a parallel 

increase of FFI. We directly tested this possibility by either abolishing 

GABAergic transmission or by imposing a fixed amount of inhibition (Fig. 1.2b). 

Abolishing FFI with the GABAA receptor antagonist gabazine eliminated the 

increase in EPSGT with input strength (nonsignificant increase of 0.07 nS per 

percentile input strength, n = 30, P= 0.22; Fig. 1.2b), demonstrating a crucial 

role of GABAA receptors. 

 

Model 

Is the observed change in EPSGT sufficient to account for the expansion 

of the range of inputs the pyramidal cell population responds to? We created a 

simple quantitative model of Schaffer collateral excitation onto a population of 

CA1 pyramidal cells (Fig. 1.3; see Experimental Procedures). Schaffer collateral 

inputs contacted pyramidal cells with a probability of 0.06 (Sayer et al 1990). 

We computed the fraction of recruited pyramidal cells as a function of the 

number of stimulated Schaffer collateral and compared the resulting activation 

curves under two conditions: with either a fixed or a dynamic EPSGT (Fig. 

1.3a). The threshold to recruit a pyramidal cell was set at 100 Schaffer collateral 

inputs2 and remained constant in the fixed EPSGT condition. In the dynamic 

EPSGT condition, the number of Schaffer collaterals necessary to recruit a 

pyramidal cell increased linearly with increasing number of stimulated Schaffer 
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collaterals, up to approximately threefold, and then remained constant to 

simulate experimental observation (Fig. 1.3b). The exact increment of the 

modeled dynamic EPSGT was chosen to yield an activation curve that best 

approximated the experimentally observed activation curve (Fig. 1.3c). With a 

fixed EPSGT, the activation curve was steep and had a narrow dynamic range 

(Fig. 1.3c). With a dynamic EPSGT, on the other hand, the activation curve had 

an onset similar to the fixed threshold activation curve, but rose much less 

steeply, resulting in a wider dynamic range (Fig. 1.3c; the sensitivity of the slope 

of the activation curve to the rate of increase of the dynamic EPSGT is 

illustrated in Fig. 1.4).  

The dynamic EPSGT activation curve (Fig. 1.3c) is the synthesis of a 

family of fixed EPSGT activation curves, each having progressively larger 

EPSGT (a subset are illustrated in Fig. 1.3c). An intersection occurs at the 

specific input strength at which dynamic and fixed EPSGT activation curves 

have equal EPSGT. 

This simple model captures the basic experimental finding, namely that 

the dynamic EPSGT expands the range of inputs that the CA1 pyramidal cell 

population responds to by maintaining sensitivity to weak inputs and preventing 

saturation to stronger stimuli. It should be noted, however, that the modeled 

fixed and dynamic EPSGT activation curves both fail to fully account for the 

experimentally observed activation curves, where more than ~ 80% of 

pyramidal cells are active (see Discussion). 
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Discussion 

Our data suggest that the EPSC amplitude necessary to reach spike 

threshold in hippocampal and neocortical pyramidal cells is dynamic and 

increases when the number of active neurons in the presynaptic layer 

increases. Accordingly, the fractional contribution of an individual afferent input 

in firing a neuron is not fixed, but instead is continuously normalized by the total 

number of active afferents. Through this simple mechanism, the pyramidal cell 

population can smoothly operate over a wide range of stimulus strengths. This 

mechanism is probably important for enabling cortical structures such as the 

hippocampus to be responsive to weak stimuli, but remain sparsely active even 

when confronted with stronger inputs. Although FFI sets a global threshold for 

recruitment of pyramidal cells, local differences in afferent excitation determine 

which pyramidal cell is recruited. 

The fraction of neurons active at any given moment in cortical areas 

strongly fluctuates as a result of either varying sensory stimuli or ongoing 

intrinsic activity. Activity levels in the hippocampus can vary from sparse activity 

in the exploring animal8 to synchronous activation of a large fraction of neurons 

during ripples (Csicsvari et al 2000). As a consequence, downstream targets of 

these neuronal populations experiences substantial fluctuations in the fraction 

of afferents that are active at any given time point. The connectivity patterns of 

cortical excitatory projections, however, are ill-suited to allow postsynaptic 

populations of neurons to operate over a wide range of afferent activity5; 

afferent axons typically form very divergent projections to contact a large 
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number of postsynaptic targets through relatively weak contacts, such that the 

simultaneous activity of several afferents is necessary to recruit a target neuron 

(Otmakhov et al 1993, Bruno & Sakmann 2006). Because of this divergence, 

gradual increases in the number of active afferents produce very steep, or 

explosive, increases in the fraction of recruited targets5, resulting in a limited 

range of input strengths that can be differentially represented by the 

postsynaptic population. 

Our data indicate that cortical circuits expand the range of afferent input 

strengths that the cells can respond to by ensuring that, when the input is 

strong, pyramidal cells necessitate larger EPSCs to reach thresholds. The 

dynamic range of the population is several-fold wider than the dynamic range of 

an individual pyramidal cell (34 versus 2). Neither the dynamic range nor the 

gain (slope of the sigmoidal fit, R2 = 0.046, P = 0.2) of individual pyramidal cells 

varied between pyramidal cells recruited along the entire input range. Thus, 

although GABAA receptor–mediated conductances can regulate the gain of 

individual neurons (Shu et al 2003, Mitchell & Silver 2003, Chance et al 2002) 

our data suggest that pyramidal cell populations can function over a wide range 

of afferent intensities without requiring gain changes in individual neurons. 

Individual excitatory afferent inputs to cortical areas diverge to contact 

fast-spiking basket cells and principal neurons. Only those pyramidal cells that 

received large enough EPSCs to overcome the concomitantly occurring 

inhibition reached spike threshold. With increasing stimulus strength, the 

amplitude of FFI increased (Fig. 1.2a) and larger EPSCs became necessary for 
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pyramidal cells to reach spike threshold. The onset of inhibition before spike 

generation in pyramidal cells also means that this early phase of inhibition is 

unlikely to be of feedback origin, as feedback inhibition is a consequence of 

pyramidal cell spiking. The control of the amplitude of the EPSC necessary to 

reach threshold by FFI is likely to be even more marked in response to 

repetitive, burst-like14or asynchronous afferent activity, as a result of the large 

temporal overlap between afferent excitation and FFI generated by the previous 

stimulus. 

Our model captures the initial 80% of the activation curve; that is, until 

the EPSGT plateaus above input strength of ~ 0.5. At these greater input 

strengths, the EPSGT is fixed and the model predicts that the activation curve 

behaves accordingly. However, the top 20% of the experimentally determined 

activation curve extends beyond this prediction. It is possible that the observed 

onset of the plateau is inaccurate because of an error in measurement (for 

example, the lack of proper voltage clamp) and that the real EPSGT continues 

to grow with increasing input strength. Alternatively, a small portion of pyramidal 

cells may receive Schaffer collateral inputs with very low probability as 

compared with the rest of the population (resulting from heterogeneity in the 

population or damage to their dendrites) such that they necessitate a much 

larger stimulus strength to be recruited. Our model also illustrates the fact that 

the activation curve is sensitive to how steeply the EPSGT varies with input 

strength. Because the increase in EPSGT is, at least in part, determined by the 

increase in FFI, any parameter that controls the excitability of GABAergic 
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interneurons, such as neuromodulators, will probably affect the slope of the 

activation curve, and thus the range of input strength that can be represented 

by the postsynaptic pyramidal cell population. 

The model also illustrates that the trajectory activation curve is sensitive 

to the precise manner in which EPSGT evolves as a function of input strength. 

If EPSGT plateaus at a lower input strength then the activation curve saturates 

soon. If, on the other hand, EPSGT plateaus at higher input strength the slope 

of the activation curve will be decreased and hence the dynamic range 

substantially increased. So FFI may play a crucial role in shaping the precise 

transformation of input into activation of pyramidal cell population. Furthermore, 

our model indicates that subtle changes in EPSGT as a function of input 

strength result in substantial reshaping of pyramidal cell activation (Fig 4). Thus, 

the exact balance feed-forward excitation and inhibition is likely tightly regulated 

in order to maintain the precise transformation of input into pyramidal cell 

output. 

In summary, because the EPSGT is controlled in a feedforward manner, 

the sensitivity of pyramidal cells is virtually instantaneously adjusted to match 

the strength of the afferent stimulus. This instantaneous adjustment differs from 

adaptation because it does not rely on the previous history of the network 

through a negative feedback mechanism, such as feedback inhibition, spike 

adaptation, synaptic depression or presynaptic inhibition. The presence of 

feedforward inhibitory circuits along several major excitatory pathways in the 

brain suggests that the expansion of the dynamic range by instantaneously 
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varying the amplitude of the EPSC necessary to reach threshold may not be 

unique to hippocampus cortex. 

 

Experimental Procedures 

Slice preparation. 

Acute hippocampal slices (400 m) were prepared from 4–5-week-old 

male Wistar rats and incubated for 45 min in an interface chamber at 34 °C in 

normal artificial cerebrospinal fluid (ACSF) containing 119 mM NaCl, 2.5 mM 

KCl, 1.3 mM NaH2PO4, 1.3 mM MgCl2, 2.5 mM CaCl2, 26 mM NaHCO3 and 

11 mM glucose (equilibrated with 95% O2 and 5% CO2). The slices were kept 

at room temperature (20–25 °C) for 0 to 6 h before being placed in a 

submerged chamber for recording at 31–33 °C. 

Coronal slices (400 m) from somatosensory cortex were prepared from 

postnatal day 15–25 ICR white mice in modified ACSF containing 83 mM NaCl, 

2.5 mM KCl, 1.0 mM NaH2PO4, 3.3 mM MgSO4, 0.5 mM CaCl2, 26.2 mM 

NaHCO3, 72 mM sucrose and 22 mM glucose (equilibrated with 95% O2 and 

5% CO2). The slices were incubated for 45 min in a submerged chamber at 34 

°C containing the modified ACSF and kept in the same chamber at room 

temperature (20–25 °C) for 0 to 6 h before being placed in a recording chamber 

with normal ACSF at 31–33 °C. 

 

Electrophysiology and analysis. 
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Recorded neurons were visually identified using infrared differential 

interference contrast videomicroscopy. Unless stated otherwise, all whole-cell 

recordings were performed with patch pipettes (2–4 M) filled with 150 mM 

potassium gluconate, 1.5 mM MgCl2, 5 mM HEPES buffer, 1.1 mM EGTA and 

10 mM phosphocreatine (pH = 7.25, 280–290 mOsm); biocytin (0.2% wt/vol) 

and 2 mM Mg-ATP were added in the recording solution for interneurons. When 

recording with a cesium-based intracellular solution, the composition was 115 

mM cesium methanesulphonate, 8 mM NaCl, 10 mM HEPES, 0.3 mM Na3-

GTP, 4 mM Mg-ATP, 0.3 mM EGTA, 5 mM QX-314-Cl and 10 mM BAPTA 

tetracesium (pH = 7.4, 290 mOsm). Series resistance was not compensated but 

was monitored continuously with negative voltage steps, and recordings with 

series resistances larger than 12 MOhm were not included in the estimation of 

EPSGT in control conditions or after gabazine treatment. None of the additional 

recordings in the study had series resistances larger than 20 MOhm. Voltage 

measurements were not corrected for the experimentally determined junction 

potential (-11.7 +/- 1.0 mV, n = 3). Experiments in the hippocampus were 

performed in the presence of the GABAB receptor antagonist CGP54626 (1–2 

M) and the NMDA receptor antagonist R-(–)-3-(2-carboxypiperazine-4-yl)-

propyl-1-phosphonic acid (RS-CPP, 25–50 M). The presence of the GABAB 

and NMDA receptor antagonists had no significant effect on the probability of 

eliciting a spike in pyramidal cells in response to threshold stimulation of 

Schaffer collaterals (CPP, 110.1 +/- 11.9%; CGP54626, 119.8 +/- 50.2%; P = 

0.84 and 0.43, respectively). 



 23 

 

Schaffer collaterals were stimulated (100 s) with constant current (range of 10–

900 A) using a steel monopolar electrodes placed in the stratum radiatum of 

CA1. CA1 was isolated from CA3 and the subiculum by two radial cuts to 

prevent propagation of epileptiform activity.  

Loose-patch recordings were performed with ACSF-filled patch pipettes 

(8–10 M). Field recordings were performed using patch pipettes (2–4 M) filled 

with 3 M NaCl. Data were recorded with Axopatch 200A, Axopatch 200B or 

Multiclamp 700A amplifiers (Axon Instruments); acquisition (5–10-kHz 

digitization) and analysis was performed with pCLAMP 9.2 software (Molecular 

Devices). Average values are expressed as means  s.e.m. Student's t test was 

used for statistical comparisons. We used 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione (NBQX), SR95531 (gabazine), CGP54626, RS-

CPP, DAMGO, CTAP and muscimol (Tocris Cookson). 

 

Calibrating input strength. 

The input strength is proportional to the number of activated Schaffer 

collaterals and varies from 0 to 1. It is a measure that allows comparison of 

stimulus intensities across slices. To estimate input strength, we used two 

experimentally determined parameters: the slope of the field EPSP (fEPSP), 

which is proportional to the number of activated Schaffer collaterals (Vaillend et 

al 2002, Nakamura et al 2007, Winegar & MacIver et al 2006, Steiger et al 

1980), and the amplitude of the population spike. Accordingly, all experiments 
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in which the input strength is reported were performed in the presence of two 

field-potential recording electrodes, one placed in the stratum radiatum of CA1 

(for fEPSPs) and one in the stratum pyramidale (for population spikes). The 

fEPSP was calibrated with respect to the simultaneously recorded population 

spike. Specifically, the slope of the fEPSP elicited at any given stimulus 

intensity was normalized by the slope of the fEPSP evoked at a stimulus 

intensity that evoked a population spike of 95% of its maximal amplitude. This 

normalization was done because even if the same number of Schaffer 

collaterals were recruited in two different slices, the absolute value of the slope 

of the fEPSP may vary (for example, as a result of a different positioning or 

depth of the recording electrode). The value of such normalized fEPSP is the 

input strength. Thus, the input strength is 1 when the number of stimulated 

Schaffer collateral triggers a population spike of 95% of its maximal amplitude 

and is 0.1 when the number of stimulated Schaffer collaterals is a tenth of the 

number it takes to trigger 95% population spike. For each slice, the input 

strength was always determined in control conditions. Thus, the number of 

Schaffer collaterals stimulated in control conditions or in gabazine is the same 

for a given input strength. In a subset of experiments, fEPSP was recorded in 

the stratum pyramidale. Experiments were only started once the amplitude of 

the population spike remained stable over a period of at least 10 min. 

Threshold stimulation, activation curves and the measure of EPSCs and 

IPSCs peak amplitude, conductance and charge. 
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Neurons were recorded in the loose-patch configuration and the Schaffer 

collaterals stimulated at increasing intensities until about 50% of the trials 

elicited a spike in the recorded cells. Neurons recorded in the loose-patch 

configuration were subsequently re-patched with a pipette containing standard 

internal solution (see above) to gain whole-cell access. In a subset of the 

recording reported in Figures 1 and 2 (see legends), we determined threshold 

input strength using whole-cell recordings; the distribution of EPSGT with input 

strength did not differ significantly from the one obtained when threshold input 

strengths was determined in the loose-patch configuration (linear regressions, 

ANCOVA test on slopes, P = 0.13; intercepts, P = 0.1). The data were thus 

pooled. 

The activation curve of a population of neurons (Figs. 1a) is the 

cumulative distribution of the input strengths that elicit 50% spiking probability in 

the neurons of that population. The 50% spiking probability of individual 

neurons was interpolated by fitting their spiking probability plotted against 

stimulus strength (Fig. 1.1a) with the sigmoid function , where x0 

is the input strength at 50% spiking probability and p is the slope at x0. 

The increase in feedforward inhibition with input strength (Fig. 1.2a) was 

fitted with the Boltzmann equation , where A is the asymptote, 

x0 is the input strength at half maximal feedforward IPSG and p is the slope at 

x0. 
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Correlation analysis of EPSC and IPSC amplitudes. 

The homogeneity of excitation (and inhibition) across the population of 

recorded neurons was accessed by correlating the average amplitude of 

EPSCs (or IPSCs) simultaneously recorded in cell pairs (Appendix). These 

paired data can yield a range of different correlation values depending on 

whether each pair of amplitudes, A and B, is plotted as (A,B) (that is, A on the x 

axis and B on the y axis) or (B,A). To account for this, we repeatedly calculated 

the correlation where the dataset was the same, but each pair of amplitudes 

was randomly assigned to be (A,B) or (B,A). The mean correlation values from 

this process were R = 0.3 for EPSC pairs and R = 0.8 for IPSC pairs. The 

correlation between IPSCs was significantly larger (P < 0.02), assessed using 

one-tail test of correlation for dependent variables44. 

 

Computational model 

We sought to design a simple model constrained by experimentally 

determined parameters (anatomical connectivity and average number of inputs 

required to reach threshold) to establish whether the experimentally measured 

increase in EPSGT can, in principle, account for the observed dynamic range of 

the activation curve. Our model predicts the fraction of pyramidal cells activated 

as a function of the number of active Schaffer collaterals, given a connectivity p 

of Schaffer collaterals onto pyramidal cells. We assume that all Schaffer 

collateral-pyramidal cell synapses have the same strength. Thus, the 
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distribution of inputs strengths onto the pyramidal cell population is given by the 

binomial probability distribution. 

Accordingly the fraction A of active pyramidal cells given N active 

Schaffer collateral is 

 
 

where N is the number of Schaffer collaterals, and T is threshold of excitation 

expressed in terms of the number of active presynaptic inputs i. p is taken as 

0.06 (ref. 25), and the fixed EPSGT activation curve was simulated using a 

constant threshold, T = 100 (Otmakhov et al 1993). To simulate the dynamic 

EPSGT activation curve, the threshold was 100 Schaffer collaterals initially, but 

changed as a function of input strength, T(N), optimized to minimize the 

distance between the simulated and experiment activation curves. This 

optimization was constrained by our experimental finding such that it increased 

by threefold, reaching a plateau when 65% of the pyramidal cells were active 

(Matlab, Mathworks). 
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Fig. 1.1 The stronger the stimulus, the larger the excitation necessary to      
recruit a pyramidal cell. 
(A) Left, spiking probability plotted against input strength for one CA1 pyramidal cell (PC, sigmoidal fit, dashed lines 
indicate 50% spiking probability). Inset, loose-patch recording at two different input strengths, five consecutive 
sweeps. Successes are shown in black and failures in gray. Right, black data points represent the activation curve 
(that is, the cumulative distribution of input strengths eliciting 50% spiking, n = 39). Dashed lines represent the input 
strengths recruiting 5% and 95% of the pyramidal cell population. Gray sigmoids indicate the spiking probability of the 
39 pyramidal cells making up the activation curve. Their recruitment was staggered along the range of input 
strengths. Red sigmoid indicates the experiment shown on the left.  
(B) Top left, recording configuration. Rec, recording electrode. Top traces represent the responses of two CA1 
pyramidal cells simultaneously recorded in loose-patch to threshold stimulation of Schaffer collateral inputs (five 
superimposed sweeps; successes are shown in black, failures in gray). The pyramidal cell on the left was recruited at 
weaker stimulus than the pyramidal cell on the right. Bottom traces represent threshold EPSCs (that is, EPSCs 
evoked at threshold input strength, average of ten traces) recorded in the same two cells voltage clamped at -80 mV. 
The pyramidal cell on the left necessitated less excitation to reach threshold. Right, summary graph of EPSGTs 
(black, n = 32, spike threshold determined in loose patch for n = 15 cells and in whole-cell current clamp for n = 17 
cells) plotted against input strength at threshold (bin width 0.1). Dashed line represents the average EPSGT for the 0–
0.1 bin. Error bars are s.e.m.  
(C) Top left, recording configuration. Top traces represent the response of a single CA1 pyramidal cell recorded in 
loose patch to threshold stimulation of two different Schaffer collateral inputs (stimuli a and b, five superimposed 
sweeps each). Bottom traces represent threshold EPSCs (average of ten traces) recorded in the same cell voltage 
clamped at -90 mV. The difference in amplitude of the two threshold EPSCs should be noted. Right, summary graph 
(n = 19). There was no correlation between EPSGTs evoked by input a and input b (linear regression, R2 = 0.07; 
spike threshold determined in loose patch for all cells, red data point indicates the experiment shown on the left)
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Fig. 1.2  Feedforward inhibition expands the dynamic range of the pyramidal 
cell population.  
(A) Top traces represent whole-cell current-clamp recording from two CA1 pyramidal cells recruited at threshold by 
weak (left) or strong (right) Schaffer collateral stimulation (five superimposed sweeps; black indicates successes and 
gray indicates failures to trigger a spike). Bottom traces, represent threshold EPSC (black, average of five traces 
recorded in the voltage clamp, -88 and -92 mV for left and right, respectively) and concomitantly evoked feedforward 
IPSC (blue, recorded at -52 and -59 mV for left and right, respectively, and isolated by subtraction from average of ten 
sweeps). Insets represent expanded timescale of the sweeps. The size of the two insets has been scaled to match 
EPSC amplitudes. Bottom left, threshold feedforward IPSG (IPSGT) plotted against EPSGT (bin width of 2.5 nS, n = 
30, spike threshold determined in loose patch for n = 19 cells and in whole-cell current clamp for n = 11 cells, dotted 
line is the linear regression fit of the binned data, R2 = 0.61, slope of 0.82). Bottom right, feedforward IPSG plotted 
against input strength (bin width of 0.1, n = 50, continuous blue line is a Boltzmann fit of the binned data). Error bars 
are s.e.m.  
(B) Summary graph of EPSGTs plotted against input strength in the presence of gabazine (6 M, n = 30, spike threshold 
determined in loose patch for n = 20 cells and in whole-cell current clamp for n = 10 cells) or under tonic inhibition (1 M 
muscimol and 0.5–1 M DAMGO, n = 14, spike threshold determined in loose-patch for n = 11 cells and in whole-cell 
current clamp for n = 3 cells). Dotted and dashed horizontal lines represent the average EPSGT during tonic inhibition 
or gabazine treatment, respectively. In contrast with control conditions (black line from Fig. 1b), the EPSGT recorded in 
gabazine or tonic inhibition changed little with increasing input strength. For all input strengths, the EPSGT during tonic 
inhibition was larger than during gabazine treatment.  
(C) Activation curves (cumulative distribution of input strengths eliciting 50% spiking) in control conditions (black 
symbols from Fig. 1a) and after gabazine treatment (n = 28, spike threshold determined in loose patch for all cells). 
Dashed lines indicate input strengths recruiting 5% and 95% of the pyramidal cell population. Error bars are s.e.m. 
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Fig.  1.3  Model of activation curve with dynamic EPSGT. 
(A) Modeled distribution of EPSG amplitudes in the population of pyramidal cells when N (top row) and 1.5N (bottom) 
afferent fibers are active. The area above spike threshold T, under the curve (black shaded), is the fraction of pyramidal 
cells recruited with either fixed (left column) or dynamic (right) EPSGT. For dynamic EPSGT, a smaller fraction of 
pyramidal cells was recruited when increasing the number of active afferent fibers from N to 1.5N.  
(B) EPSGT as a function of input strength used in the model; dynamic (continuous line), fixed (dashed line) and 
experimentally measured dynamic EPSGT (gray columns, same data as in Fig. 1 but for the entire range of stimulus 
strengths) are shown.  
(C) Modeled pyramidal cell activation curves with fixed or dynamic EPSGT. Experimentally measured activation curve in 
gabazine and control conditions are superimposed. Dotted gray lines represent a set of fixed EPSGT activation curves 
(for each activation curve, the threshold is given in multiples of T, the threshold at minimal input strength). The dynamic 
EPSGT activation curve intersects each of the fixed EPSGT activation curves at the specific input strength at which the 
threshold of the two curves matches. The dynamic EPSGTactivation curve thus results from the synthesis of a family of 
fixed EPSGT activation curves. 
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Fig.  1.4    Model activation curve sensitivity to different EPSGT functions 

 (A) EPSGT as a function of input strength used in the model. Dynamic-(black) and fixed-(red) EPSGT functions are the 
same as figure 6. Blue and gray curves illustrate an increase and decrease of the rate of increase of the EPSGT as a 
function of input strength by ~ 15% respectively.  
(B) Activation curves generated using EPSGT functions in panel a. Note that an increase in the rate of EPSGT increase 
decreases the initial slope of the activation curve slope whereas a decrease in the rate of EPSGT increase has the 
opposite effect. 
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Appendix 

Heterogeneous excitation and homogeneous inhibition 

What determines which pyramidal cells in the population are recruited in 

response to Schaffer collateral stimulation? We recorded from two neighboring 

pyramidal cells simultaneously (somata separated by <50 um) and increased 

the number of activated Schaffer collaterals until one of the two cells spiked. 

We then compared the EPSGs and feedforward IPSGs in the two cells. 

Although the EPSG was, on average, 1.6 +/- 0.1–fold larger in the cell that 

spiked (P = 0.001, n = 15), the IPSG was, on average, not significantly different 

between the two neurons (1.1 +/- 0.1–fold difference, P = 0.3, n = 15;). 

Furthermore, the latency of the feedforward IPSC (with respect to the onset of 

the EPSC) did not differ significantly between spiking (1.75 +/- 0.09 ms) and 

nonspiking neurons (1.59 +/- 0.06 ms, P = 0.09, n = 15). Thus, differences in 

the amplitude of synaptic excitation, rather than in the amplitude or timing of 

inhibition, govern which neuron will spike in response to Schaffer collateral 

stimulation. 

To determine whether inhibition is more homogeneously distributed 

across pyramidal cells as compared with excitation, we calculated how well the 

amplitude of inhibition in one cell correlated with the amplitude of inhibition in its 

neighbor and did the same for excitation. For this, we used the same paired 

values as described above, but we randomly allocated the spiking cell to either 
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one of the two axes. This randomization removes the correlation bias caused by 

systematically having the larger amplitude on the same axis. The correlation 

between IPSGs (RIn = 0.79) was significantly larger than the correlation 

between EPSGs (REx = 0.30, P < 0.02, see Experimental Procedures). These 

results indicate that, although FFI is relatively homogenous across the 

pyramidal cell population, and thus sets a global threshold for pyramidal cell 

recruitment by Schaffer collaterals, heterogeneities in excitation determine 

which pyramidal cells in the population overcome this threshold. 
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Fig. 1.A Homogeneous inhibition and heterogeneous excitation control the  
recruitment of pyramidal cells. 
(A) Top, recording configuration. Left traces represent simultaneous loose-patch recording from two neighboring CA1 
pyramidal cells. Schaffer collaterals stimulation was sufficiently strong to reach threshold in one cell (black traces, five 
superimposed sweeps), but not in the other (gray traces). Right traces represent whole-cell voltage-clamp recording 
from the same two neurons (top, feedforward IPSCs recorded at -60 mV and isolated by subtraction from average of ten 
traces; bottom, EPSCs recorded at -80 mV, average of ten traces). The amplitude of the feedforward IPSC was similar 
in both cells, whereas the EPSC was larger in the cell that spiked.  
(B) Left, summary graph of 15 similar experiments in which the EPSG in the nonspiking cell is plotted against the EPSG 
in the spiking cell. The majority of the data points are below the unity line (red data point indicates the experiment 
shown on top). Right, summary graph of the same 15 experiments in which the feedforward IPSG in the nonspiking cell 
is plotted against the feedforward IPSG in the spiking cell. In contrast with the EPSG, all of the data points are scattered 
around the unity line (spike threshold determined in loose patch for n = 8 pairs and in whole-cell current clamp for n = 7 
pairs; red data point indicates experiment shown in (A); Error bars are s.e.m. Insets have the same data points as are 
shown in the main graphs, but the spiking cell is randomly allocated to either one of the two axes. Note the larger 
spread of EPSGs as compared with IPSGs.  
(C) Trial-by-trial fluctuation of EPSGs (left) and IPSGs (right) simultaneously recorded in two pyramidal cells (PC 1 and 
PC 2) voltage clamped at the reversal potential of IPSCs (left) or EPSCs (right, same Schaffer collateral stimulation 
intensity for both holding potentials, cesium internal). Left, single-trial EPSGs recorded in PC 1 are plotted against the 
EPSGs recorded simultaneously in PC 2. Upper traces are five example EPSCs recorded in PC 1 ordered according to 
amplitude. Lower traces are the corresponding five EPSCs recorded simultaneously in PC 2. Right, single-trial IPSGs 
recorded in PC 1 are plotted against the IPSGs recorded simultaneously in PC 2. Upper traces are five example IPSCs 
recorded in PC 1 ordered according to amplitude. Lower traces are the corresponding five IPSCs recorded 
simultaneously in PC 2. Note the marked covariation in amplitude of IPSGs recorded in the two pyramidal cells as 
compared with EPSGs. 
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Chapter 2. Supralinear increase of recurrent inhibition during 

sparse activity in the somatosensory cortex 

 

Abstract 

The balance between excitation and inhibition in the cortex is crucial in 

determining sensory processing. Because the amount of excitation varies, 

maintaining this balance is a dynamic process; yet the underlying mechanisms 

are poorly understood. We show here that the activity of even a single layer 2/3 

pyramidal cell in the somatosensory cortex of the rat generates widespread 

inhibition that increases disproportionately with the number of active pyramidal 

neurons. This supralinear increase of inhibition results from the incremental 

recruitment of somatostatin-expressing inhibitory interneurons located in layers 

2/3 and 5. The recruitment of these interneurons increases tenfold when they 

are excited by two pyramidal cells. A simple model demonstrates that the 

distribution of excitatory input amplitudes onto inhibitory neurons influences the 

sensitivity and dynamic range of the recurrent circuit. These data show that 

through a highly sensitive recurrent inhibitory circuit, cortical excitability can be 

modulated by one pyramidal cell 
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Introduction 
 

Sensory stimuli both excite and inhibit cortical neurons (Ferster & 

Jagadeesh 1992, Wehr & Zador 2003, Zhu & Connors 1999, Wilent & 

Contreras 2004, Douglas et al 1991, Anderson et al 2000). The fraction of 

cortical neurons that respond to a sensory stimulus, and the timing of these 

neuronal responses, depend on the relative amount of synaptic excitation and 

inhibition they receive (Wehr & Zador 2003, Anderson et al 2000, Wilent & 

Contreras 2005, Gabernet et al 2005). Disrupting this balance, for example 

through pharmacological manipulations, interferes with the response of cortical 

neurons to several properties of the stimulus, including orientation, contrast and 

the receptive field size (Dykes et al 1984, Kyriazi et al 1996, Sillito 1975). 

Maintaining a balance between excitation and inhibition is a dynamic 

process. Variations in stimulus intensity are accompanied by large changes in 

the amount of excitation received by cortical neurons. These changes in 

excitation are rapidly countered by changes in synaptic inhibition within several 

primary sensory areas (Wehr & Zador 2003, Wilent & Contreras 2004, 

Anderson et al 2000). However, the mechanisms by which cortical circuits vary 

the strength of inhibition during ongoing changes in excitation are not well 

understood. Although recurrent inhibitory circuits seem to be well suited to 

provide this dynamic regulation (Pouille & Scanziani 2004, Shu et al 2003, 

Carandini & Heeger 1997) their specific contribution to the inhibition of primary 

sensory areas is not known. Furthermore, the relative proportion of excitation 
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and inhibition experienced by cortical neurons in response to sensory stimuli is 

still debated. Although some data indicate that inhibition increases linearly with 

the amount of excitation received by cortical neurons (Wehr & Zador 2003, 

Wilent & Contreras 2004, Anderson et al 2000), other results and theoretical 

considerations suggest that a nonlinear increase of inhibition may better 

account for the observed cortical responses to sensory stimuli (Pinto et al 

2003). 

The somatosensory 'barrel' cortex of the rat receives sensory information 

from the whiskers. The number of cortical neurons excited by whisker deflection 

increases with the velocity of the deflection (Pinto et al 2000). However, even 

strong stimuli trigger spikes in only a very small fraction of synaptically excited 

cortical neurons (Brecht et al 2003). Whether this small fraction is sufficient to 

recruit inhibition and how inhibition increases with increasing number of 

activated neurons are unknown. 

Here we show that even very sparse excitation triggers widespread 

synaptic inhibition in layer 2/3 cortical neurons by recruiting intra- and 

translaminar recurrent inhibitory circuits. Furthermore, this inhibition increases 

disproportionately with increases in excitation. A simple model based on 

experimentally determined parameters captures the essential properties of this 

behavior and illustrates the cellular mechanism affecting the scaling between 

excitation and inhibition in response to the spiking of a few pyramidal cells. 

Together, these findings suggest common principles of operation of elementary 

circuits across cortical layers. 
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Results 

Recurrent inhibition triggered by a single pyramidal cell  

To determine the minimal conditions (Kozloski et al 2001) required to 

generate inhibition in the somatosensory cortex, we performed double or triple 

recordings from pyramidal cells in layer 2/3 of slices of rat somatosensory 

cortex (distance between cell bodies <50 um; 194 pairs tested in 305 directions; 

each double recording corresponds to one pair that can be tested in maximally 

two directions, and each triple recording corresponds to three pairs that can be 

tested in maximally six directions). In 12.5% of all directions tested (38 of 305), 

a train of ten action potentials at 100–125 Hz triggered in an individual 

pyramidal cell elicited an outward current in the simultaneously recorded 'target' 

pyramidal cell (voltage clamped at -40 mV; Fig 2.1a). The onset of the outward 

current occurred, on average, between the fourth and the fifth action potential in 

the train (4.9 +/- 0.31, n = 38), and its peak amplitude was 15.5 +/- 2.1 pA (n = 

38; Fig 2.1b). When the target cell was recorded in current clamp (Vm = -50.2 

+/- 1.0 mV, n = 9), the resulting synaptic hyperpolarization averaged 1.1 +/- 0.2 

mV (n = 9; Fig 2.1c). The outward current was blocked by the GABAA receptor 

antagonist gabazine and was evoked in the presence of the GABAB receptor 

antagonist CGP54626. Furthermore, the outward current was abolished by the 

glutamate receptor antagonist NBQX (10 uM; n = 12;Fig 2.1d), indicating that it 

resulted from synaptic recruitment of GABAergic interneurons rather than from 

monosynaptic GABA release between two recorded neurons. These results 
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demonstrate that, under the present conditions, recurrent inhibitory circuits in 

layer 2/3 of the somatosensory cortex can be recruited by as few as four action 

potentials in a single pyramidal cell. 

To determine the fraction of neighboring pyramidal cells inhibited by 

these unitary recurrent inhibitory circuits, we first assessed the activation of 

recurrent inhibitory circuits on a target pyramidal cell in response to the spiking 

of a neighboring pyramidal cell and then established the probability of observing 

inhibition on a second target pyramidal cell. For this we recorded from three 

pyramidal cells (either as sequential pairs or as simultaneous triples): two in the 

voltage-clamp configuration to monitor synaptic currents and one in current 

clamp to elicit action potentials. In 20.4% (21 of 103) of all recordings, inhibition 

could be confirmed in at least one of the two voltage-clamped target cells. If 

inhibition was confirmed in one of the pyramidal cells, the chance of observing 

inhibition in the other was 38.1% (8 of 21; Fig 2.1e). 

These results demonstrate that, through the activation of recurrent 

inhibitory circuits, a single layer 2/3 pyramidal cell of the somatosensory cortex 

can inhibit about 40% of its neighbors. 

To determine the fraction of neighboring pyramidal cells inhibited by these 

unitary recurrent inhibitory circuits, we first assessed the activation of recurrent 

inhibitory circuits on a target pyramidal cell in response to the spiking of a 

neighboring pyramidal cell and then established the probability of observing 

inhibition on a second target pyramidal cell. For this we recorded from three 

pyramidal cells (either as sequential pairs or as simultaneous triples): two in the 
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voltage-clamp configuration to monitor synaptic currents and one in current 

clamp to elicit action potentials. In 20.4% (21 of 103) of all recordings, inhibition 

could be confirmed in at least one of the two voltage-clamped target cells. If 

inhibition was confirmed in one of the pyramidal cells, the chance of observing 

inhibition in the other was 38.1% (8 of 21; Fig 2.1e). 

These results demonstrate that, through the activation of recurrent 

inhibitory circuits, a single layer 2/3 pyramidal cell of the somatosensory cortex 

can inhibit about 40% of its neighbors. 

 

Supralinear increase of recurrent inhibition 

To determine whether inhibition increases when more pyramidal cells are 

synchronously active, we next performed simultaneous triple recordings and 

triggered trains of action potentials in two pyramidal cells while monitoring 

inhibition in a third voltage-clamped target pyramidal cell. 

When two pyramidal cells were activated together, the probability of 

triggering inhibition in a target pyramidal cell was much higher than what would 

be expected if the two pyramidal cells were activating independent inhibitory 

circuits. Whereas the probability (p) of eliciting inhibition in a target pyramidal 

cell with spikes triggered in a single pyramidal cell was 0.125 (that is, 12.5%, 38 

of 305, see above), the probability increased to 0.477 (56 of 120) when two 

pyramidal cells were spiking simultaneously (Fig 2.2a). This is about twice the 

expected probability ((1 - (1 - p)2) = 0.234) if each individual pyramidal cell 
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recruited independent inhibitory circuits, suggesting that pyramidal cells 

cooperate in the recruitment of recurrent inhibition. 

We next determined whether the inhibition evoked in a target pyramidal 

cell (PC1) in response to the simultaneous activity of two pyramidal cells (PC2 

and PC3) was merely the sum of inhibition triggered when either PC2 or PC3 

were active independently or whether inhibition increased in a nonlinear manner 

(Fig 2.2b,c). Trains of action potentials evoked simultaneously in PC2 and PC3 

elicited an inhibitory current in PC1 whose integral (the inhibitory charge) was 

three times larger (see below) than the sum of the inhibitory charges elicited in 

PC1 by independently spiking PC2 and PC3. To quantify the increase of 

inhibition, we computed the nonlinearity index NL as (IPC2PC3 - (IPC2 + 

IPC3))/IPC2PC3, where IPC2 and IPC3 are the inhibitory charges recorded in PC1 in 

response to the spiking of either PC2 or PC3, respectively, and IPC2PC3 is the 

inhibitory charge recorded in PC1 when PC2 and PC3 are active 

simultaneously. NL is 1 when supralinearity is maximal (that is, IPC2 = 0, IPC3 = 0 

and IPC2PC3 > 0; for example, Fig 2.2a), 0 when inhibition sums linearly (that is, 

IPC2 + IPC3 =IPC2PC3), and negative for sublinearity (that is, IPC2+IPC3 > IPC2PC3). 

The NL averaged 0.68 +/- 0.06 (n = 38; Fig 2.2c; and thus IPC2PC3   3 x (IPC2 

+IPC3)), indicating that there was a strong supralinear increase of inhibition when 

PC2 and PC3 were spiking together. These results indicate that, as the number 

of spiking pyramidal cells increases, both the probability and the amount of 

recurrent inhibition generated in layer 2/3 of the somatosensory cortex increase 

supralinearly; furthermore, the onset of inhibition occurs earlier. 
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A tenfold increase in the recruitment of SOM interneurons 

After identifying the type of interneuron that generates recurrent inhibition 

in response to sparse activity in layer 2/3 (see Appendix where we 

demonstrated that somatostatin, SOM, expressing interneurons are responsible 

for this inhibition) we can now determine the mechanism underlying the 

observed supralinear increase in inhibition. Toward this end, we first estimated 

the increase in the average number of recruited SOM interneurons when two 

pyramidal cells are active, as compared to one. Then we determined the 

increase in the probability of recruiting SOM interneurons that receive input 

from both active pyramidal cells (Fig 2.3). 

As shown above, when the number of active pyramidal cells increases 

from 1 to 2, the chance of a neighboring pyramidal cell being inhibited increases 

from 0.125 (Pinh1) to 0.477 (Pinh2). Can we use this information to deduce the 

increase in the average number of recruited SOM interneurons? Unfortunately, 

we do not know how many SOM interneurons participate in the inhibition of a 

pyramidal cell. However, in the cases where no inhibition is observed (1 - Pinh1), 

none of the recruited interneurons contacts the recorded pyramidal cell. Thus, 

given the connectivity of an SOM interneuron to a pyramidal cell (PIP), we can 

determine the number of SOM interneurons recruited, N1 and N2, when one or 

two pyramidal cells are active, respectively: (1 - Pinh1) = (1 - PIP) N1; (1 - Pinh2) = 

(1 - PIP)N2. 
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By applying the experimentally determined PIP (0.49; 19 connections out 

of 39 pairs; see Methods), we can solve for N1 and N2 (N1 = 0.2; N2 = 0.96; 

Fig 2.5b). Thus, increasing the number of pyramidal cells spiking from 1 to 2 

increases the average number of recruited SOM interneurons by a factor of 5 

(N2/N1 = 4.85; Fig 2.3b). 

We can now estimate the increase in the probability of recruiting SOM 

interneurons in the subpopulation that receives convergent input from both 

active pyramidal cells. Because only the fraction (PPI)2 of SOM interneurons 

receives convergent input from both pyramidal cells (where PPI is the 

connectivity of a pyramidal cell to an SOM interneuron), only part of the fivefold 

increase is due to cooperative recruitment. We determined the probability PPI 

that a layer 2/3 pyramidal cell excites an SOM interneuron (0.29; n = 29 pairs; 

see Methods). The probability of recruiting those SOM interneurons receiving 

convergent input from two active pyramidal cells increased 11.8 times (Fig 2.3c; 

see Experimental Procedures). 

Thus, these results show that the supralinear increase in inhibition when 

two pyramidal cells are spiking is due to a fivefold increase in the number of 

recruited SOM interneurons. This increase in the number of active SOM 

interneurons mainly results from the fact that the recruitment of SOM 

interneurons contacted by two active pyramidal cells increases by an order of 

magnitude. 
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Range and sensitivity 

How does the increase in inhibition progress when more than two 

pyramidal cells are active simultaneously? Based on the experimentally 

determined properties of the circuit, we first constructed a simple model that 

captures the observed increase in inhibition. We then used this model to predict 

the dynamic behavior of the circuit for a wider range of pyramidal cell activity 

(Fig 2.4). 

The model incorporates three parameters: the probability of a layer 2/3 

pyramidal cell exciting an SOM interneuron (PPI = 0.29; n = 29 pairs, see 

above), the distribution of the peak amplitudes of the EPSPs recorded in SOM 

interneurons in response to ten action potentials in a pyramidal cell (mean, 3.3 

mV; median, 2.8 mV; s.d., 2.7 mV; range, from <1 mV to >10 mV; n = 31; Fig 

2.6), and the threshold for action potential generation in SOM interneurons 

(Wang et al 2004). The EPSP amplitude distribution used for the model, D1, 

was obtained by fitting the experimentally determined EPSP distribution with an 

alpha function (Fig 2.4a; see Methods). Using PPI, we then calculated the 

distribution of EPSP amplitudes, D2, received by the interneuron population 

when two pyramidal cells are spiking. With a threshold of 11.3 mV above 

resting membrane potential (see Methods), D2 leads to a fivefold increase in 

the fraction of interneurons that are active as compared to D1, indicating that 

our model captures the specific behavior of the recurrent inhibitory circuit onto 

layer 2/3 pyramidal cells (Fig 2.4b). 
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With the same parameters, we can now use the model to predict the 

evolution of inhibition when more than two pyramidal cells are simultaneously 

spiking. The activation curve (Fig 2.4b) shows that the recruitment of inhibitory 

interneurons begins with only one active pyramidal cell and increases 

supralinearly when up to about four pyramidal cells are simultaneously active. 

Inhibition then progresses linearly over a relatively wide range, and half-

maximal activation of the interneuron population occurs when nine pyramidal 

cells are firing (Fig 2.4b). 

What properties of the EPSP distribution between layer 2/3 pyramidal 

cells and SOM interneurons dictate this dynamic behavior? The distribution of 

EPSPs has a relatively small mean, yet is skewed toward larger amplitudes 

(see above; Fig 2.4a). These few large-amplitude EPSPs provide 'sensitivity' to 

the circuit because they allow the spiking of a single pyramidal cell to excite a 

fraction of its target SOM interneurons above threshold for spike generation. In 

fact, a hypothetical EPSP distribution with the same mean but no skew yields 

an activation curve with an onset shifted to the right; that is, more active 

pyramidal cells are needed before the first interneuron is recruited (Fig 2.4c, 

thin gray line). The relatively small mean of the EPSP distribution, on the other 

hand, allows the activation of SOM interneurons to progress over a relatively 

wide 'range' of activities in the pyramidal cell population. In fact, a hypothetical 

EPSP distribution in which the same fraction of EPSPs are above threshold, yet 

with a larger mean as compared to the experimentally observed distribution, 

yields an activation curve where the spiking of only five pyramidal cells is 
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necessary to recruit half of the SOM interneuron population. Furthermore, by 

increasing with a steeper slope, the function reaches saturation rather quickly 

(Fig 2.4c, thick gray line). Thus, the distribution of EPSPs onto SOM 

interneurons (with a small mean but skewed toward large amplitudes) provides 

both sensitivity and a broad dynamic range to recurrent inhibition of layer 2/3 

pyramidal cells. 

This model illustrates the progression in the recruitment of SOM 

interneurons with increasing numbers of simultaneously active pyramidal cells 

each firing ten action potentials. How does this progression change if pyramidal 

cells are firing only three action potentials (a situation that may be closer to the 

brief burst of spikes recorded in vivo in response to sensory stimulation 

Svoboda et al 1997, Svoboda et al 1999)? The distribution of EPSP amplitudes 

recorded in SOM interneurons in response to the third action potential in the 

presynaptic pyramidal cell can be directly extracted from our dataset (Appendix 

Fig 2.f). Unsurprisingly, the recruitment of SOM interneurons in response to 

three action potentials requires the activity of more active pyramidal cells (half-

maximal activation 14; Fig 2.5). Further, the recruitment of SOM interneurons 

increases with a shallower slope, thereby covering a broader range. 

Hence, even during very sparse activity in layer 2/3 of the 

somatosensory cortex, intra- and translaminar recurrent inhibitory circuits 

involving SOM interneurons are recruited, resulting in widespread inhibition of 

pyramidal cells. Because of the large increase in the probability of spiking of 

SOM interneurons, recurrent inhibition increases supralinearly with increases in 
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the number of active pyramidal cells. Our model shows that both the sensitivity 

of recurrent inhibition and its dynamic range result from the skewed distribution 

of EPSPs onto SOM interneurons. 

 

Discussion 

In the cortex, changes in excitation are continuously countered by 

corresponding changes in inhibition (Wehr & Zador 2003, Anderson et al 2000, 

Wilent & Contreras 2005, Gabernet et al 2005, Shu et al 2003, Haider et al 

2006). The cellular mechanisms underlying this balancing are poorly 

understood. Neither the minimal conditions required to generate inhibition nor 

the dynamics of the increase of inhibition are known. Here we show that sparse 

excitatory activity in layer 2/3 of the somatosensory cortex specifically recruits a 

recurrent inhibitory circuit involving SOM interneurons that are located in layers 

2/3 and 5. Through this circuit a single pyramidal cell can cause inhibition of 

almost 40% of its neighbors. Furthermore, when two pyramidal cells are spiking 

simultaneously, recurrent inhibition increases disproportionately owing to the 

tenfold increase in the recruitment of SOM interneurons receiving convergent 

inputs. A simple model, based on experimentally determined parameters, 

illustrates how the specific distribution and connectivity of excitation onto 

interneurons dictates the sensitivity and the dynamic range of the circuit. 

 

Dynamics of recurrent inhibition in cortical layer 2/3 
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Not only do recurrent inhibitory circuits through SOM interneurons 

necessitate that little cortical activity be recruited, but their recruitment 

progresses supralinearly with slight increases in excitation. We show that the 

number of spiking interneurons increases fivefold (N1/N2 = 4.85) when a 

second pyramidal cell is engaged. Two key parameters determine the increase 

in the recruitment of inhibitory neurons with increasing number of active 

pyramidal cells: the distribution of the amplitudes of excitatory inputs onto SOM 

interneurons with respect to spike threshold and the convergence of pyramidal 

cells onto SOM interneurons. If, for example, layer 2/3 pyramidal cells evoked 

sufficiently large EPSPs to trigger a spike in all their target SOM interneurons, 

yet the probability of contacting an SOM interneuron were very low, the fraction 

of activated SOM interneurons would grow almost linearly with the number of 

active pyramidal cells. In contrast, if the probability of contacting SOM 

interneuron were high, the fraction of activated SOM interneurons would reach 

its maximum very quickly. 

Our study shows that, in contrast to the above example, the distribution 

of unitary EPSPs onto SOM interneurons is skewed toward small values, such 

that only a fraction of interneurons receiving inputs from any given pyramidal 

cell will reach threshold for spike generation. However, because of the relatively 

large convergence of pyramidal cells onto SOM interneurons (0.3), about 10% 

(0.32) of the interneuron population will receive convergent inputs from any two 

active pyramidal cells. The recruitment of SOM interneurons increases by ten 

times for that population receiving convergent inputs from two active pyramidal 
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cells. Thus, the supralinear increase in inhibition can be accounted for by the 

tenfold increase in the recruitment of 10% of the SOM interneuron population. 

By using a simple model that incorporates experimentally determined 

connectivity parameters, we can, at least qualitatively, predict the behavior of 

recurrent inhibition when many pyramidal cells are active. Our model shows 

that, after an early supralinear recruitment of interneurons, increases in 

inhibition become proportional to those of excitation over a relatively wide 

range. For a given connectivity between layer 2/3 pyramidal cells and SOM 

interneurons, both the early recruitment and the wide linear range of increase 

depend on the shape of the EPSP distribution. The few large-amplitude EPSPs 

ensure that even the activity of a single pyramidal cell will activate a fraction of 

the interneuron population, thus providing sensitivity to the circuit. Because of 

the skew of the distribution, large-amplitude EPSPs are likely to be under-

sampled in our database, and hence the distribution used in our model is only 

an approximation of the real distribution. Furthermore, because of the cutting of 

axonal and dendritic processes during the slicing procedure, both the 

connectivity between neurons and the size of unitary EPSPs are probably 

underestimated. However, this underestimation is unlikely to qualitatively affect 

our conclusions, as larger amplitudes would further enhance the capacity of 

individual pyramidal cells to recruit SOM interneurons. 

The small mean of the EPSP distribution ensures that during stronger 

cortical activity, recruitment of interneurons proceeds almost linearly over a 

wide range before reaching saturation. Notably, during relatively high levels of 
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excitation, linear changes in cortical inhibition have been observed both in vitro 

(Shu et al 2003) and in vivo (Wehr & Zador 2003, Anderson et al 2000, Haider 

et al 2006) suggesting that the distributions of EPSP amplitudes and the 

specific connectivity of the circuit may have a crucial role in correctly balancing 

excitation with inhibition in the cortex. 

Besides activating only a small fraction of neurons in the somatosensory 

cortex (Brecht et al 2003), whisker deflections often evoke bursts of action 

potentials in layer 2/3 pyramidal cells (Svoboda et al 1997, Svoboda et al 1999). 

Our data show that high-frequency trains of action potentials in one or a few 

layer 2/3 pyramidal cells are ideally suited to recruit SOM interneurons. This 

suggests that in response to tactile stimuli, recurrent inhibitory circuits involving 

SOM interneurons may be specifically engaged in the balancing of cortical 

excitation, thereby contributing to the processing of sensory information. 

 

Experimental Procedures 

Slice preparation and recordings. 

Parasagittal slices of primary somatosensory cortex (300–400 m) were 

prepared from Wistar rats 23 +/- 5 (mean +/- s.d.; n = 67) days of age. Animals 

were anesthetized in isoflurane or a mixture of ketamine and xylazine (4/1). 

Slices were cut with a Vibratome (DSK) in a chilled solution containing (in mM): 

85 NaCl, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 4 MgCl2, 25 NaHCO3, 75 

sucrose, 25 glucose and 0.5 ascorbic acid (95% O2, 5% CO2) and incubated 

for 30 min at 34 °C in artificial cerebrospinal solution containing (in mM): 122 
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NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 25 glucose and 

3 sodium pyruvate. Slices were stored in an interface chamber at room 

temperature until being placed in a submerged chamber for recordings at 32–34 

°C. 

Pyramidal cells in cortical layer 2/3 and interneurons in layers 2/3 and 5 

were visually identified by infrared differential interference contrast 

videomicroscopy. Whole-cell patch-clamp recordings were performed using 

Multiclamp 700B and Axopatch 200A amplifiers (Axon Instruments) and 

digitized at 20 kHz. For recordings in pyramidal cells, pipettes (2–4 M) were 

filled with either (in mM) 122 potassium gluconate, 1 MgCl2, 10 L-glutamic acid, 

10 HEPES, 4 magnesium ATP, 0.3 sodium GTP, 10 sodium phosphocreatine 

and 5.5 biocytin (pH 7.25, 290 mOsm) 41 or 150 potassium gluconate, 1.5 

MgCl2, 5 HEPES, 1.1 EGTA, and 10 phosphocreatine (pH 7.25; 280–290 

mOsm). For recordings in interneurons, internal solutions contained (in mM) 

134 potassium gluconate, 1.5 MgCl2, 10 HEPES, 0.1 EGTA, 3 magnesium 

ATP, 10 sodium phosphocreatine and 5.5 biocytin (pH 7.25, 290 mOsm). Trains 

of action potentials were elicited by somatic current injection (2 ms, 0.8–4 nA). 

Voltage measurements were not corrected for the experimentally determined 

liquid junction potential of 13  0.4 mV (n = 3). The drugs used were NBQX, 

gabazine (SR95531) and CGP54626 (all from Tocris Bioscience). 

 

Data analysis 
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Amplitudes of recurrent IPSCs and inhibitory postsynaptic potentials 

were measured relative to baseline, over a window of 4–6-ms duration, 4 ms 

after the action potential, on averages of 6–100 sweeps. To determine the 

onset of recurrent IPSCs, a threshold criterion of 2 s.d. of the noise was applied 

to the averaged traces. To determine the shift in the onset of the recurrent IPSC 

when two pyramidal cells are spiking simultaneously, we compared the onset of 

the current recorded in PC1 when either PC2 or PC3 were spiking alone with 

the onset of the current recorded in PC1 when PC2 and PC3 were spiking 

simultaneously. Thus, this analysis does not include the set of triple recordings, 

in which neither the individual activity of PC2 nor of PC3 evoked a detectable 

inhibition of PC1. 

Amplitudes of monosynaptic EPSCs and IPSCs in pyramidal cell–

interneuron pairs were measured over a window of 0.5–2 ms around the peak 

of the averages of 5–50 sweeps. If the decay of the averaged response to the 

previous action potential in a train did not return to baseline, the decay of the 

previous signal was fitted with a single exponential and the baseline 

extrapolated. 

Average values in the text and figures are expressed as mean s.e.m. 

unless stated otherwise. The Student's t-test was used for statistical 

comparisons. All traces are the average of more than ten sweeps, unless stated 

otherwise. 

 

Connectivity 
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To determine PPI, we first identified the recorded interneuron through the 

characteristic facilitating excitation it receives from a simultaneously recorded 

presynaptic pyramidal cell. Then, while keeping the identified interneuron, we 

recorded sequentially from additional pyramidal cells. Notably, PPI was 

computed exclusively using the additional pairs—that is, it did not include the 

initial pair used to identify the interneuron. 

 

Quantifying the recruitment of SOM interneurons. 

We determined experimentally that when the number of active pyramidal 

cells increases from 1 to 2, the probability that a neighboring pyramidal cell is 

inhibited increases from 0.125 to 0.477. By assuming that SOM interneurons 

contact pyramidal cells statistically independently, we calculated that this 

increase in probability occurs because of a fivefold increase (N2/N1 = 4.85) in 

the number of SOM interneurons recruited. How much of this increase is 

contributed by cooperativity? To answer this question we determined the 

increase in probability of recruiting SOM interneurons receiving convergent 

excitation from two active pyramidal cells as compared to the probability of 

recruiting SOM interneurons receiving excitation from only one pyramidal cell as 

follows: assuming that pyramidal cells contact SOM interneurons statistically 

independently, we compute N1 and N2, the number of recruited SOM 

interneurons when one or two pyramidal cells are active, respectively, as 
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where F1 is the probability of SOM interneurons being recruited in the 

subpopulation contacted by only one of the two pyramidal cells, and F1&2 is the 

probability of SOM interneurons being recruited in the subpopulation contacted 

by both pyramidal cells. PPI is the probability that a pyramidal cell contacts a 

SOM interneuron (that is, connectivity) and is experimentally determined. N is 

the total number of SOM interneurons in the local circuit. Solving for F1&2/F1 

using N2/N1 (see above), we find that F1&2/ F1 = 11.83. 

The probability F1&2 consists of SOM interneurons that are contacted by 

both pyramidal cells but may be recruited by the independent activity of either 

pyramidal cell or the cooperative activity of both pyramidal cells; thus we 

subtract the fraction that is due to independent pyramidal cell activity ((F1&2 - 

(2F1 - (F1)2)/F1). The probability of recruiting SOM interneurons through the 

cooperative activity of two pyramidal cells is approximately 9.8 times larger than 

if they were recruited by one pyramidal cell. This result is an underestimate 

because we approximated that the term (F1)2, which represents the probability 

of SOM interneurons recruited by both pyramidal cells independently, to be 

zero. Because 0 < F1 "1, this underestimate is small. 

Note that F1 and F1&2 are the probabilities that an SOM interneuron is 

recruited at least once, given n trials. These probabilities are distinct from the 
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fraction of trials in which the spiking of a pyramidal cell recruits an SOM 

interneuron. 

 

Model 

We experimentally quantified the probability that pyramidal cells recruit 

inhibition onto neighboring 'target' pyramidal cells (see Results). This probability 

is a measure of the capacity of a pyramidal cell, given n trials, to at least once 

recruit at least one inhibitory circuit that impinges onto the target pyramidal cell. 

Note that this probability is distinct from the fraction of trials in which the spiking 

of a pyramidal cell evokes inhibition on a given target pyramidal cell. 

Accordingly, the probability of recruiting an interneuron determined in the 

study is a measure of the capacity of a pyramidal cell, given n trials, to recruit 

an interneuron at least once, and not the fraction of trials in which the spiking of 

the pyramidal cell recruits a given interneuron. 

Consequently, the activation curves (Fig 2.4) describe the maximal (not 

the average) fraction of interneurons that could be activated at any individual 

trial by the simultaneous spiking of n pyramidal cells. 

We sought to design a simple model constrained by experimentally 

determined parameters (EPSP distribution and anatomical connectivity) for the 

purpose of (i) determining whether the experimentally observed increase in the 

probability of recruiting the SOM interneuron circuit can be explained based 

only on these parameters, and (ii) providing qualitative insight into how 
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connectivity, EPSP distribution and the number of active pyramidal cells affect 

the fraction of interneurons recruited. 

Our model predicts the fraction of interneurons activated as a function of 

the number of spiking pyramidal cells. We created a distribution of EPSP 

amplitudes from paired recordings between connected pyramidal cells and 

SOM interneurons. The EPSP amplitude and standard deviation (s.d.) was 

measured after the third or tenth action potential. We then fit an alpha function 

(B = xe-ax, a = 0.58) to this distribution of mean EPSP amplitudes (similar results 

were obtained using a Gaussian smoothed EPSP distribution). A fraction of 

these EPSP amplitudes are above threshold (as the activity of a single 

pyramidal cell is sufficient to recruit recurrent inhibition). This fraction is equal to 

the fraction of active interneurons. However, the distribution of average EPSP 

amplitudes does not take into account the trial-to-trial variability inherent in 

synaptic transmission. Namely, some EPSPs may fluctuate such that in only a 

minority of trials they are suprathreshold while their average remains 

subthreshold. To ensure that the model design accounted for a pyramidal cell's 

capacity for recruiting inhibition (rather then just the average behavior), the 

average EPSP s.d. (s.d. = 1.2 mV) was added to the distribution of EPSP 

amplitudes. Based on this shifted distribution, we obtained the maximum 

fraction of interneurons above threshold for any individual trial. To create D1 

(see Fig 2.4b), the connectivity between pyramidal cells and interneurons was 

introduced into the distribution by adding zeros to B (that is, if PPI = 0.29, then 

0.71 of D1 must be zeros). Finally, the distribution of EPSP amplitudes when 
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two pyramidal cells are spiking (D2) was generated from the linear sum of two 

EPSPs picked randomly out of D1 (see gray trace in Fig 2.4b, left). We used the 

same method to generate D3–DN. 

On the basis of our experiments, we deduced that two pyramidal cells 

have the capacity to recruit five times as many interneurons as one pyramidal 

cell can. These data can be used to determine the threshold (T) for interneuron 

activity in our model. The ratio of the integral of D2 > T to D1 > T (that is, 

D2  / D1) should equal 4.85. A threshold, T, of 11.3 mV above resting 

membrane potential is consistent with this fivefold increase (Fig 2.4b, left). This 

T is consistent with the range of experimentally measured thresholds for SOM 

interneurons30. We then used this threshold, together with D1–DN, to predict 

the fraction of interneurons recruited when more than two pyramidal cells are 

active (Fig 2.4b,c). Clearly, as more pyramidal cells simultaneously excite 

interneurons, reductions in driving force and membrane resistance will result in 

sublinear summation of EPSPs. So our model will underestimate the number of 

active pyramidal cells required to fully activate the interneuron population. 
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Fig 2.1    Unitary recurrent inhibitory circuits 
(A) The spiking (ten action potentials at 100 Hz) of a layer 2/3 pyramidal cell (black trace) evokes outward currents in a 
simultaneously recorded target layer 2/3 pyramidal cell (blue traces; VH, -40 mV). The top trace is the average of 15 
sweeps, 3 of which are shown superimposed in the middle. Upper left, schematic of the recording configuration. V 
clamp, voltage clamp; I clamp, current clamp.  
(B) Summary current, averaged over all experiments (n = 38), recorded in layer 2/3 pyramidal cells in response to a 
train of action potential in a neighboring pyramidal cell (the dots indicate the time of the spikes). Individual currents were 
normalized by their peak amplitudes. Inset, peak current for each recurrent IPSC (n = 38; open symbols) and the 
averaged peak of all experiments (solid symbol). (C) Same configuration illustrated in a (different pair), except that 
target pyramidal cell is recorded in current clamp (blue traces; Vm = -52 mV). Inset, peak hyperpolarization for nine 
similar experiments (open symbols) and the average of all experiments (solid symbol).  
(D) Same recording configuration illustrated in a (different pair). Application of the AMPA/kainate receptor antagonist 
NBQX (10 M) completely abolishes the outward current.  
(E) Simultaneous recording from three layer 2/3 pyramidal cells. The spiking of one of the cells (black trace) evokes 
outward current in the two other pyramidal cells (blue and green traces; VH, -40 mV). The top traces are the average of 
23 sweeps. Lower traces show four individual sweeps recorded simultaneously in the green and blue pyramidal cells. 
Black–blue pair same as in d.  
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Fig 2.2 Supralinear increase of inhibition  
(A) Simultaneous recording from three layer 2/3 pyramidal cells (PC1, blue; PC2, black; PC3, green). Left, a train of 
action potentials in PC2 elicits no current in PC1 nor PC3 (VH, -40 mV). Middle, a train of action potentials in PC3 
elicits no current in PC1 or PC2 (VH, -40 mV). Right, simultaneous trains of action potentials in PC2 and PC3 elicit an 
outward current in PC1. All current traces are averages of multiple sweeps.  
(B) Same recording configuration as in a (different cells). Left, the spiking of either PC2 or PC3 alone elicits outward 
currents in PC1. Note the earlier onset of inhibition in PC1 (blue trace) when PC2 and PC3 are spiking simultaneously 
(the PC2-PC1 pair is the same one as in Fig 2.1a). Right top, gray trace: algebraic sum of the currents elicited in PC1 in 
response to the spiking of PC2 and PC3 alone. Blue trace, outward current elicited in response to the simultaneous 
spiking of PC2 and PC3. Right bottom, running integral of the two currents illustrated on top. Note that the inhibitory 
charge in response to the simultaneous spiking of PC2 and PC3 is larger than the inhibitory charge of the algebraic 
sum of the responses of PC1 to the spiking of PC2 and PC3 alone. All current traces are averages of multiple sweeps.  
(C) Cumulative distribution of the nonlinearity index (see Results for details) for 38 similar experiments. Note that most 
values are larger than 0, indicating supralinear increase in recurrent inhibition when PC2 and PC3 are spiking 
simultaneously.  
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Fig 2.3   Increase in the recruitment of somatostatin-expressing interneurons 
(A) Schematic of the projection of two pyramidal cells onto SOM interneurons. N is the total population of SOM 
interneurons; PPI is the probability of a pyramidal cell contacting a SOM interneuron; NxPPI is the population of SOM 
interneurons contacted by one layer 2/3 pyramidal cell; and Nx(PPI)2 is the population of interneurons targeted by both 
pyramidal cells. The number of interneurons assigned to each population is for illustration purpose only.  
(B) Top, when only one of the two pyramidal cells is spiking, the N1 SOM interneurons are recruited (filled red circles). 
Bottom, when two pyramidal cells are spiking, almost five times more interneurons (N2) are recruited.  
(C) Within the population of interneurons receiving convergent input from two pyramidal cells (Nx(PPI)2), the fraction that 
is recruited in response to the activity of two pyramidal cells (bottom) is 11.8 times larger than the one that is recruited 
by one pyramidal cell only (top; see Experimental Procedures). 
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Fig 2.4    Model describing range and sensitivity of recurrent inhibition. 
(A) Left, mean EPSP amplitude recorded in SOM interneurons after the tenth action potential evoked in the presynaptic 
pyramidal cell, plotted against the standard deviation (s.d.) of the EPSP, for each of the 31 unitary connections. Middle, 
distribution of EPSP amplitudes (blue bars) and alpha function (black curve) that fits the distribution. Right, cumulative 
distribution of EPSP amplitudes (blue line) and alpha function (black line).  
(B) Left, distribution of EPSP amplitudes evoked by one pyramidal cell (D1: black line) or two pyramidal cells (D2: gray 
line) in the interneuron populations contacted by one pyramidal cell or by either of two pyramidal cells, respectively. 
Values at zero represent the fraction of unconnected interneurons (black: 1 - PPI, gray: 1 - (1 - PPI)2). The threshold for 
action potential generation (11.3 mV above resting potential) is shown by a dashed line. Right, prediction of the fraction 
of recruited SOM interneurons (INs) plotted against the number of active pyramidal cells (interneuron activation curve). 
The blue dotted lines illustrate half activation.  
(C) Left: black line, D1 (same as in b; values at zero have been cut; mean 4.6 mV, s.d. 2.8 mV); continuous gray line, 
EPSP distribution with same mean but small s.d. (mean 4.6 mV; s.d. 0.5 mV); dotted gray line, EPSP distribution with 
large mean (mean 10.3 mV, s.d.  0.5 mV), yet same fraction of EPSPs above threshold as D1. Right: interneuron 
activation curves for the three EPSP distributions shown on the left (black trace same as in b). Note the faster 
saturation of the activation curve for the EPSP distribution with a large mean (dotted gray trace) and the right-shifted 
onset for the EPSP distribution with a small s.d. (continuous gray trace). The blue dotted lines illustrate half activation. 
Inset, the minimum number of pyramidal cells required to activate inhibitory circuit for experimental EPSP distribution is 
1, as compared to 3 for the normal distribution of the same mean with a smaller s.d. 
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Fig 2.5  Model describing range and sensitivity of recurrent inhibition with 1, 3 
or 10 action potentials. 
Left: Distribution of EPSP amplitudes (blue bars) recorded in SOM interneurons after the 3rd action potential in the 
presynaptic pyramidal cell and alpha function (black curve) describing the distribution. Middle: Cumulative distribution 
of EPSP amplitudes (blue line) and alpha function (black line). Right: Prediction of the fraction of recruited SOM 
interneurons plotted against the number of active pyramidal cells (interneuron activation curve) when pyramidal cells 
are firing 3 action potentials (APs; continuous black line) or when they are firing 10 action potentials (dashed black line; 
from Fig 2.4b). The blue dotted line illustrates half activation. The gray dashed line illustrates the activation curve in 
response to 10 action potentials, shifted to match half maximal activation of the activation curve in response to three 
action potentials. Note the slight change  
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Appendix 

Recurrent inhibition via somatostatin-expressing interneurons 

Which type of inhibitory interneuron generates this recurrent inhibition in layer 

2/3 in response to the activity of one or a few pyramidal cells? Any interneuron 

receiving excitatory inputs from and projecting back to layer 2/3 pyramidal cells 

could, in principle, participate in the observed recurrent inhibition. Through 

recordings from pairs of connected pyramidal cells and interneurons, we 

subdivided the interneuron population into two broad categories: those that 

received unitary EPSCs that depressed in response to a train of spikes in 

pyramidal cells and those that received facilitating EPSCs. Both categories of 

inhibitory neurons, those receiving facilitating inputs (fRS cells) and those 

receiving depressing excitatory inputs (fast spiking, FS and depressing-regular 

spiking dRS cells), formed inhibitory synapses with layer 2/3 pyramidal cells 

(average unitary IPSC amplitude mediated by fRS cells onto pyramidal cells, 

19.14  16.4 pA, n = 31; average unitary IPSC amplitude mediated by FS and 

dRS cells (pooled) onto pyramidal cells, 44.4  10.1 pA, n = 21), confirming their 

potential involvement in the observed recurrent inhibition. 

fRS cells receiving inputs from and projecting back to layer 2/3 pyramidal 

cells (not necessarily the same pyramidal cell they received input from) were 

found in both layers 2/3 and 5 (layer 2/3 pyramidal cells to layer 2/3 fRS cells, 

indicating that recurrent inhibitory circuits involving this category of interneurons 

can cross cortical layers. In contrast, FS and dRS cells receiving input from and 

projecting back to layer 2/3 pyramidal cells were found exclusively in layer 2/3. 
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fRS cells invariably expressed somatostatin (SOM; 10 of 10 processed 

neurons) Hence, we refer to fRS cells as SOM interneurons. SOM-positive 

labeling was never observed in FS and dRS cells. 

To determine which of the two categories of interneurons mediates the 

observed recurrent inhibition, we reasoned as follows: the timing of spikes 

elicited in the interneuron in response to a train of action potentials in a 

pyramidal cell must account for the time course of the inhibitory current 

recorded in the target pyramidal cell. The suitability of the candidate interneuron 

category can thus be evaluated by convolving the distribution of spike times 

with the average unitary IPSC generated onto pyramidal cells. This convolution 

should match the time course of the observed recurrent inhibition. 

Through paired recordings, we determined the distribution of spike times 

in the two interneuron categories in response to a train of action potentials in 

pyramidal cells (see Methods). The convolution of the distribution of spike times 

triggered in SOM interneurons (Fig 2.Aa,b) with the unitary IPSC (10–90% rise 

time of 2.3  0.2 ms, n = 19; decay time constant 12.12  1.9 ms, n = 20) that they 

generate onto pyramidal cells resulted in an outward current with a time course 

that was markedly similar to that of the inhibition observed in pyramidal cells in 

response to a train of action potentials triggered in a neighboring pyramidal cell 

(Fig 2.Ac). In contrast, the distribution of spike times of interneurons receiving 

depressing excitatory inputs peaked much earlier (Fig 2.Ad), indicating that they 

are recruited at the onset of a train of action potentials12. Accordingly, the 

convolution of this spike time distribution with the unitary IPSC that these 
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interneurons generate on layer 2/3 pyramidal cells (10–90% rise time 1.0  0.1 

ms, n = 18; decay time 9.4  1.3 ms, n = 14) resulted in an outward current with 

a much earlier onset and peak than the observed one (Fig 2.Ae).  
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Fig 2.A Spike timing of somatostatin-positive interneurons determines the time 
course of recurrent inhibition. 
(a) A train of spikes at 100 Hz in a layer 2/3 pyramidal cell (black trace) elicits action potentials in an SOM interneuron 
(threshold for action potential generation was achieved in some (blue races; 12 superimposed sweeps) but not all (gray 
traces, 14 superimposed sweeps) trials (Vm interneuron, -63 mV)). Inset, the interneuron was reciprocally connected 
with the pyramidal cell: spiking of the interneuron (blue trace) triggered outward currents in the pyramidal cell (black 
trace). (b) Summary graph of the distribution of spike times in SOM interneurons in response to trains of action 
potentials at 100Hz in the presynaptic pyramidal cells (n = 12). (c) The blue trace illustrates the result of the convolution 
of the spike time distribution (in b) with a fit to an average unitary IPSC (sum of two exponential functions; rise, 1.7 ms; 
decay, 11 ms). The convolution is superimposed onto the time course, averaged over all experiments, of the outward 
current elicited by the spiking of a single pyramidal cell onto a neighboring pyramidal cell (gray trace, from Fig 2.1b). 
Note the similarity of the rising and decaying phase of the two currents. Inset: gray trace, standard IPSC; black trace, 
unitary IPSC from a. (d) Summary graph of the distribution of spike times in interneurons receiving depressing inputs in 
response to trains of action potentials at 100 Hz in the presynaptic pyramidal cells (n = 2). Inset, a train of spikes at 100 
Hz in a layer 2/3 pyramidal cell (black trace) elicits action potentials in an interneuron receiving depressing inputs (blue 
traces; five superimposed sweeps where threshold for action potential generation was achieved (Vm interneuron, -63 
mV)). (e) Convolution (blue trace) of the spike distribution (in d) with the fit of an average IPSC (sum of two exponential 
functions; rise, 0.8 ms; decay, 9.4 ms). The convolution is superimposed onto the time course, averaged over all 
experiments, of the outward current elicited by the spiking of a single pyramidal cell onto a neighboring pyramidal cell 
(gray trace, from Fig 2.1b). Note the very different rising and decaying phases of the two currents. (f) Simultaneous 
recording from three layer 2/3 pyramidal cells (blue, PC1; black, PC2; green, PC3). A train of spikes in PC2 alone leads 
to inhibition with late onset in PC1 (VH, -40 mV; black traces), similar to that illustrated in Figures 1 and 2. A train of 
spikes in PC3 alone leads to no inhibition in PC1 (green traces). A simultaneous train of spikes in PC2 and PC3 leads to 
the appearance of an early component of inhibition (open arrow) followed by the late component (black arrow) in PC1 
(blue trace). 
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Chapter 3. Instantaneous modulation of gamma oscillation 

frequency by balancing excitation with inhibition 

 

Abstract 

Neurons recruited for local computations exhibit rhythmic activity at 

gamma frequencies. The amplitude and frequency of these oscillations are 

continuously modulated depending on stimulus and behavioral state. This 

modulation is believed to crucially control information flow across cortical areas. 

Here we report that in the rat hippocampus gamma oscillation amplitude and 

frequency vary rapidly, from one cycle to the next. Strikingly, the amplitude of 

one oscillation predicts the interval to the next. Using in vivo and in vitro whole-

cell recordings, we identify the underlying mechanism. We show that cycle-by-

cycle fluctuations in amplitude reflect changes in synaptic excitation spanning 

over an order of magnitude. Despite these rapid variations, synaptic excitation 

is immediately and proportionally counterbalanced by inhibition. These rapid 

adjustments in inhibition instantaneously modulate oscillation frequency. So, by 

rapidly balancing excitation with inhibition, the hippocampal network is able to 

swiftly modulate gamma oscillations over a wide band of frequencies. 
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Introduction 

One of the most prominent characteristics of cortical activity is the 

rhythmic fluctuation of large neuronal populations in synchrony. Such 

oscillations occur over a wide range of frequencies, from 0.1 Hz to >100 Hz 

depending on the behavioral state of the animals (Buzsaki, 2006; Steriade, 

2006).  Gamma oscillations are a particularly prominent form of rhythmic activity 

that results from the synchronous fluctuation of the membrane potential of 

cortical neurons at frequencies between 20 and 60 Hz (Jagadeesh et al., 1992; 

Penttonen et al., 1998; Soltesz and Deschênes, 1993). These gamma rhythms 

occur during wakefulness, attentive behavior (Bragin et al., 1995; Chrobak and 

Buzsaki, 1998; Fries et al., 2001; Womelsdorf et al., 2005) as well as in some 

anesthetized states (Gray and Singer, 1989; Jones and Barth, 1997; Neville 

and Haberly, 2003). They are evoked by external stimuli in sensory cortices 

(Gray and Singer, 1989; Jones and Barth, 1997; Neville and Haberly, 2003), by 

exploratory behavior in the hippocampus (Bragin et al., 1995), and precede 

motor responses in premotor areas (Pesaran et al., 2002). 

Activity at gamma frequencies is thought to play a major role in the 

propagation of information across cortical areas (Engel et al., 2001; Sirota et al., 

2008; Womelsdorf et al., 2007). By synchronizing the spiking activity of multiple 

neurons, gamma oscillations may allow these neurons to efficiently cooperate in 

the recruitment of their postsynaptic targets thereby facilitating the transmission 

of information (Bruno and Sakmann, 2006; Womelsdorf et al., 2005). Indeed, 

odor evoked oscillations triggered in the olfactory bulb are effectively 
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transmitted all the way through olfactory and entorhinal cortex to the 

hippocampus (Martin et al., 2007).  

Synchronous spiking during gamma activity may also regulate the 

efficiency by which two distinct groups of neurons recruit a third group to which 

they both project, thereby contributing to the merger, or “binding,” of information 

originating from distinct regions (Engel et al., 2001). When two groups of 

neurons oscillate synchronously or in-phase, they can act synergistically to 

recruit target neurons by exciting them simultaneously. However, even subtle 

changes in the phase or frequency of the oscillations in one group with respect 

to the other may dramatically alter this synchrony and the subsequent 

recruitment of downstream target neurons (Fell et al., 2001; Schoffelen et al., 

2005). The transmission of information during gamma oscillations is therefore a 

dynamic process that depends on the precise timing of the oscillation.  

Even within a specific cortical location, the instantaneous frequency of 

gamma oscillations changes from one moment to the next (Bragin et al., 1995; 

Womelsdorf et al., 2007). This ongoing modulation in oscillation frequency (or 

phase) affects the precise timing of neuronal spiking within that cortical location, 

thereby altering the efficacy with which information is transmitted to 

downstream regions. In fact, a recent study has shown that the precise phase 

of oscillations can determine whether or not activity is effectively transmitted 

between cortical areas (Womelsdorf et al., 2007).   

Despite the importance of frequency modulation in the transmission of 

information across cortical areas, little is known about the mechanisms that 
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drive rapid changes in oscillation frequency. Here we show that in the 

hippocampus the CA3 network maintains inhibition proportional to excitation 

during each oscillation cycle. This ongoing adjustment in the level of inhibition 

results in an instantaneous modulation of oscillation frequency. Thus, changes 

in inhibitory synaptic activity control the instantaneous oscillation frequency on a 

cycle-by-cycle basis.  

 

Results 

Oscillation Amplitude Predicts Instantaneous Oscillation Frequency 

To determine how frequency and amplitude of hippocampal activity vary 

in vivo, we recorded the local field potential (LFP) in area CA3 of anesthetized 

rats (Fig 3.1). A prominent feature of the recorded activity was periodicity at 

gamma frequencies (Bragin et al., 1995; Csicsvari et al., 2003). We observed 

robust rhythmic activity ranging from 26 to 41 Hz (mean frequency = 34.8 Hz; 

sd = 5.3 Hz, n = 6 rats) corresponding to gamma oscillations. While this gamma 

rhythm was an ongoing feature of the LFP in CA3, its precise amplitude and 

frequency varied substantially from one oscillation cycle to the next (Fig 3.1A, 

B). 

The interval between individual oscillation cycles (interevent interval, IEI) 

varied from 12 ms to over 40 ms, corresponding to instantaneous frequencies 

spanning a large frequency band (25-80 Hz). Strikingly however, the changes in 

amplitude and frequency were not independent. We observed a substantial 

decrease in the instantaneous frequency of rhythmic activity following large 



 78 

oscillation cycles. The amplitude of an oscillation cycle was strongly correlated 

with the latency to the subsequent cycle (r = 0.51 ± 0.03, n = 6 rats, Fig 3.1B). 

Consistent with oscillation amplitude predicting the latency to the next cycle the 

amplitude of an oscillation cycle was only weakly correlated with the latency to 

the previous cycle (r = 0.18, n = 6 rats, discussed further in Appendix). The 

correlation between amplitude and interval was not unique to activity recorded 

in anesthetized rats. In fact, a similar correlation existed during gamma activity 

recorded in area CA3 of the freely-moving rat (r = 0.46, Fig 3.6). These results 

demonstrate that the amplitude of an oscillation cycle predicts the 

instantaneous oscillation frequency. 

In order to determine whether these rapid fluctuations in LFP amplitude 

and frequency reflect changes in the spike output of the CA3 network, we 

recorded multi-unit spiking activity via extracellular electrodes placed in the 

pyramidal cell layer of anesthetized rats. Fluctuations in LFP amplitude were 

accompanied by changes in spike rate (Fig 3.1E and 3.6). Spikes were 

precisely phase-locked to the LFP oscillation as demonstrated by the peri-

oscillation time histogram (POTH, Fig 3.1D) (Bragin et al., 1995; Csicsvari et al., 

2003; Tukker et al., 2007) and spike-LFP coherence (Fig 3.7). Furthermore, 

despite large ongoing changes in oscillation amplitude, the time window in 

which spikes occurred was equally narrow during both large and small 

amplitude cycles (full-width at half maximum, FWHM, of the POTH: 6.3 ± 1.0 ms 

for small cycles and 7.1 ± 1.4 ms for large cycles, n = 6 rats; Fig 3.1E). Taken 

together these data demonstrate that during gamma activity the correlated 
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fluctuations in amplitude and frequency of the LFP are precisely reported by the 

number and the timing, respectively, of spikes generated in the CA3 network. 

What cellular mechanisms underlie the correlation between amplitude 

and instantaneous frequency of the LFP during gamma oscillations? To monitor 

synaptic events during gamma oscillations, we performed a series of 

experiments in acute hippocampal brain slices. First, we verified that 

oscillations generated in vitro also exhibited correlated changes in amplitude 

and frequency. Ongoing gamma oscillations were generated in area CA3 by 

bath application of low concentrations of kainic acid (100-500 nM) (Hájos et al., 

2000) and recorded by placing a field electrode in the stratum radiatum of the 

CA3 region (Fig 3.2A). A distinct spectral peak in LFP activity occurred at 

frequencies between 25 Hz and 40 Hz (mean frequency = 29.8 Hz; sd = 2.4 Hz) 

as observed in vivo. Furthermore, rhythmic activity in vitro also exhibited large 

changes in both amplitude and frequency (Fig 3.2A). Finally, as observed in 

vivo, during rhythmic activity generated in vitro the amplitude of a cycle was a 

good predictor of the interval to the next cycle (r = 0.69 ± 0.02, n = 6 slices; Fig 

3.2B. This correlation was not the spurious result of constructive and 

destructive summation of individual LFP oscillations; see Appendix and Fig 3.8). 

 

Balanced Fluctuations of Excitation and Inhibition Underlie Variation in 

Oscillation Amplitude 

In order to determine what synaptic events underlie gamma oscillations 

we performed whole-cell voltage-clamp recordings from CA3 pyramidal cells 



 80 

while monitoring the LFP with an electrode placed in the stratum radiatum. 

Pyramidal cells were voltage clamped at either the reversal potential for 

inhibition (VH $   -85 mV) or for excitation (VH $ 0 mV) to isolate excitatory 

postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs), 

respectively (Fig 3.9). Both excitatory and inhibitory synaptic currents occurred 

at gamma frequencies, as shown by their power spectra, and exhibited a 

pronounced peak in coherence with the simultaneously recorded LFP within the 

gamma frequency band (Fig 3.9). While the rise time of excitatory and inhibitory 

currents during each oscillation cycle (computed using an oscillation triggered 

average, Fig 2C) were similar (10-90% rise-time EPSC: 4.0 ± 0.5, IPSC 4.3 ± 

0.6, t-test p = 0.7, n = 6) the decay time of IPSCs was ~ 50% longer then that of 

EPSCs  (mono-exponential fit EPSC: 8.5 ± 1 ms, IPSC: 13.2 ± 2.5 ms, t-test p < 

0.003; n = 6). 

Importantly, the amplitude of both EPSCs and IPSCs exhibited large 

cycle-to-cycle fluctuations that were correlated with the LFP oscillation 

amplitude on a cycle-by-cycle basis (r = 0.63 ± 0.05; n = 8 pairs and r = 0.65 ± 

0.07; n = 8 pairs respectively, Fig 3.9). This suggests that cycle-by-cycle 

variation in excitatory and inhibitory currents may not be unique to each cell but 

common across the population. To address this possibility, we recorded EPSCs 

simultaneously in two neighboring CA3 pyramidal cells (Fig 3.10). We found 

that a substantial fraction of variation in EPSC amplitude was common to both 

cells (r = 0.54 ± 0.10; n = 5 pairs, Fig 3.10). Similarly when both pyramidal cells 

were voltage clamped at the reversal potential for excitation, we observed a 
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strong correlation between the amplitude of simultaneous IPSCs (r = 0.77 ± 

0.07, n = 5 pairs, Fig 3.10). These data demonstrate that cycle-by-cycle 

fluctuations in the amplitude of excitatory and inhibitory currents are not cell 

specific but common across the population. 

When the same approach was used to simultaneously record EPSCs 

and IPSCs (Fig 3.2C, by holding one of the pyramidal cells at the reversal 

potential for IPSCs and the other at the reversal potential for EPSCs) we were 

surprised to find that excitation and inhibition were exquisitely balanced during 

each cycle. That is, the amplitude of excitatory and inhibitory synaptic 

conductances (gE and gI, respectively), recorded simultaneously in two 

pyramidal cells, varied over an order of magnitude from cycle to cycle (e.g. gE: 

0.5-8 nS; gI: 2-25 nS) yet strikingly remained proportional (r = 0.63 ± 0.04, slope 

= 5 ± 0.6, n = 8 pairs Fig 3.2E). Thus, independent of the amplitude changes, 

each excitatory synaptic event was almost instantaneously (Fig 3.2D, excitation 

led inhibition by 2.3 ± 0.3 ms, n = 8 cells; Fisahn et al., 1998) counterbalanced 

by an approximately five times larger inhibitory synaptic conductance (Fig 3.2E 

and 3.9C).  

These results show that cycle-to-cycle fluctuations in the amplitude of the 

LFP reflect underlying fluctuations of both excitatory and inhibitory synaptic 

currents, yet excitation and inhibition remain proportional such that, during each 

oscillation cycle, inhibition is approximately 4 times larger than excitation. 

 

A Simple Model Predicts the Correlation between Amplitude and Frequency 
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Can these large cycle-by-cycle fluctuations in synaptic conductances 

account for the observed changes in interval between gamma events? To test 

whether the observed relationship between excitation and inhibition may, at 

least in principle, account for the correlation between oscillation cycle amplitude 

and frequency we developed a simple model of CA3 recurrent circuitry.  

Pyramidal cells and inhibitory interneurons were modeled as single-

compartment neurons where intrinsic properties were matched to experimental 

data (Appendix). The population of pyramidal cells was reciprocally connected 

with itself and with a population of inhibitory neurons using physiologically 

realistic probabilities of connection (Fig 3.11).  When model pyramidal cells 

were depolarized the network intrinsically exhibited rhythmic oscillations at 

gamma frequencies (Fig 3.3). We imposed no rhythmic pattern of 

depolarization; oscillations resulted from intrinsic circuit dynamics as 

demonstrated by other models (Bartos et al., 2007; Traub et al., 1996; Wang 

and Buzsáki, 1996). From the point of view of a “voltage clamped” pyramidal 

cell within the simulated population, EPSCs generated by the spiking of 

pyramidal cells preceded IPSCs by ~3 ms similar to experimental results. 

Furthermore, during each oscillation cycle the fraction of spiking inhibitory 

neurons was proportional to that of pyramidal cells. Thus, the amplitude of the 

EPSC co-varied with the amplitude of the IPSC on a cycle-by-cycle basis (Fig 

3.11B), as observed experimentally. 

Importantly, the model captures the correlation between oscillation 

amplitude and frequency observed during gamma oscillations in vivo and in 
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vitro. That is, the larger the synaptic currents, the longer the interval to the next 

cycle, thereby giving rise to instantaneous frequencies ranging from 28 to 75 Hz 

(IEI ranging from 13 – 40 ms, Fig 3.3B). This variability in inter-event interval 

was not due to a change in the kinetics of synaptic conductance since in the 

model, as in the experiment, the kinetics of both excitatory and inhibitory 

synaptic currents remained constant despite large changes in the amplitude 

(Fig 3.12). Rather, larger inhibitory currents produced a more pronounced 

hyperpolarization of the modeled membrane potential. As a consequence the 

time required for the membrane potential to recover to the mean potential is 

increased and the start of the new oscillation cycle delayed accordingly (Fig 

3.3C, D). Thus, the model suggests that network-wide fluctuations in the 

amplitude of inhibition impose a variable delay to the onset of the subsequent 

cycle. 

To test whether, as predicted by the model, recovery from 

hyperpolarization is prolonged after large oscillations as compared to small 

ones, we recorded from CA3 pyramidal neurons in the current-clamp 

configuration while simultaneously monitoring oscillations with an LFP electrode 

placed in the stratum radiatum (Fig 3.4). Pyramidal neurons were systematically 

more hyperpolarized after larger amplitude oscillation cycles than smaller ones, 

as illustrated by the significant correlation between oscillation amplitude and 

membrane hyperpolarization (r = 0.47 ± 0.04, n = 11 cells; Fig 3.4B). 

Furthermore, a significantly longer time was required for the membrane 
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potential to recover to the mean potential after large oscillations as compared to 

small ones (Fig 3.4B, C).  

Can the entire range of oscillation intervals observed in the LFP be 

accounted for by changes in the time required for pyramidal cells to recover to 

their mean membrane potential after each oscillation cycle? To address this 

question we plotted the inter-event interval recorded in the LFP against the 

recovery time and fit the relationship with a linear function (Fig 3.4C).  A slope 

of 1 implies that the recovery time of the membrane potential spans the same 

range as the inter-event interval in the LFP. The slope was not significantly 

different from unity (mean slope = 1.16; sd = 0.31, n = 11 cells, p = 0.12) 

indicating that changes in recovery time from hyperpolarization can indeed 

account for the entire range of oscillation intervals.  These results indicate that 

cycle-by-cycle fluctuations in the amplitude of inhibition are likely to play an 

important role in setting the interval between consecutive gamma cycles. 

 

Synaptic Activity during Gamma Oscillations In Vivo 

To determine whether the amplitude of the IPSC predicts the interval to 

the next gamma oscillation cycle in vivo, as established in vitro, we performed 

whole-cell voltage-clamp recording from hippocampal CA3 neurons in 

anesthetized rats. We simultaneously monitored gamma oscillation with an LFP 

electrode, the tip of which was placed ~500 µm from the patch electrode, in the 

stratum radiatum (Fig 3.5). Both excitatory and inhibitory synaptic currents 

coincided with each gamma oscillation cycle, as illustrated by the coherence of 
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EPSCs and IPSCs with the LFP in the gamma band and the oscillation 

triggered average (7/8 cells exhibited significant coherence at gamma 

frequencies and were included in further analysis; Fig 3.5B, C), consistent with 

what we observed in vitro (Fig 3.2D and 3.9B). The rise and decay times of 

excitatory and inhibitory currents during each oscillation cycle were also similar 

to those recorded in vitro (10-90% rise-time EPSC: 4.7 ± 0.4, IPSC 4.3 ± 0.3; 

mono-exponential decay EPSC: 9.6 ± 1.1 ms, IPSC: 13.9 ± 3.3 ms, n = 7). The 

relative amplitudes and timing of EPSCs and IPSCs in oscillating cells also 

matched in vitro synaptic activity, reported above. Specifically, IPSCs recorded 

during gamma oscillations in vivo were on average 5 times larger (Fig 3.5D, E) 

and followed EPSCs by approximately 2 ms (Fig 3.5C). Furthermore, both 

EPSC and IPSC amplitudes varied over a wide range from one cycle to the yet 

were significantly correlated with the amplitude of the simultaneously recorded 

LFP (r = 0.22 ± 0.04, and r = 0.33 ± 0.02, respectively, p< 0.009 n = 7 cells for 

excitation and inhibition). We next addressed whether excitation and inhibition 

underlying gamma oscillations in vivo also fluctuate in a proportional manner. 

Since whole-cell recordings were made from single cells in vivo, EPSCs and 

IPSCs could only be recorded sequentially. In order to directly relate the two 

synaptic currents we made use of the simultaneously recorded LFP oscillation 

amplitude. That is, we subdivided LFP oscillations in separate bins according to 

amplitude and, for each bin averaged the simultaneously recorded EPSC or 

IPSCs (Fig 3.5D). A graph of EPSC amplitudes plotted against IPSC 

amplitudes, from corresponding bins, illustrates the proportional increase of the 
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two synaptic currents (Fig 3.5E). These results demonstrate that, despite large 

fluctuations in their amplitudes, EPSCs and IPSCs on average remain 

proportional during gamma oscillations in vivo. Finally, as predicted by the 

model and observed in vitro, the amplitude of the IPSC during each cycle was 

correlated with the interval to the next gamma cycle, with larger IPSCs 

predicting longer intervals (Fig 3.5F, r = 0.31 ± 0.04, p < 0.001, 6/7 cells; 

remaining cell, r = 0.13 p < 0.06). 

 

Discussion 

We report that gamma oscillations in the CA3 region of the hippocampus 

undergo rapid variability in amplitude and that, the amplitude of each oscillation 

cycle predicts the interval to the next cycle. Consistent with a causal 

relationship between amplitude and the interval to the next cycle, the amplitude 

of an oscillation was not a strong predictor of the interval to the previous cycle 

(Appendix). Using a combination of whole-cell voltage-clamp recordings in vivo 

and in vitro, we show that synaptic inhibition remains proportional to synaptic 

excitation during each cycle, despite large cycle-by-cycle fluctuations in the 

amplitude of excitation. These rapid adjustments in inhibition result in 

instantaneous changes in the oscillation interval. 

 

Inhibition's Role in Rapidly Changing Oscillation Phase 

Inhibition has long been held to play a role in generating fast rhythmic 

activity (Horowitz, 1972; Leung, 1982; Leung, 1992). Not only do interneurons 
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participate in these fast oscillations (Buzsaki et al., 1983; Hasenstaub et al., 

2005; Tukker et al., 2007) but, experimental and modeling studies have 

demonstrated that inhibition also plays a critical role in synchronizing neuronal 

activity (Cobb et al., 1995; Lytton and Sejnowski, 1991), pacing the average 

oscillation period (Traub et al., 1996; Whittington et al., 1995) and maintaining 

coherent oscillations (Mann et al., 2005; Van Vreeswijk et al., 1994; Vida et al., 

2006; Wang and Rinzel, 1992; Wang and Buzsáki, 1996). Our results indicate 

that inhibition rapidly modulates the phase or frequency of oscillations on a 

cycle-to-cycle basis.  

We observe that cycle-by-cycle fluctuations in the amount of synaptic 

inhibition are not specific to individual neurons but, on the contrary, strongly 

correlate among neighboring pyramidal cells within the CA3 population. The 

homogeneity of this gamma-modulated inhibition is thus likely to have a strong 

impact on the excitability of the local population on a moment-to-moment basis. 

(Because both the spatial coherence of gamma activity and interneuron axonal 

arbors span only a few hundred microns i.e. local (Glickfeld and Scanziani, 

2006; Katzner et al., 2009; Sirota et al., 2008), the correlation between 

inhibitory synaptic activity, and the correlation between the LFP and synaptic 

currents is likely to decrease on a similar spatial scale). Indeed, we report that 

one of the most direct consequences of the ongoing fluctuations in the amount 

of synaptic inhibition generated at each cycle is the modulation of the interval to 

the next cycle. We provide a mechanistic explanation for this phenomenon by 

showing that larger inhibitory conductances produce a correspondingly larger 
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and longer lasting hyperpolarization of the membrane potential (Fig 3.4). In fact, 

the time it takes to recover from the hyperpolarization mediated by each cycle 

of synaptic inhibition not only strongly correlates with the interval to the 

subsequent cycle but can, in principle, completely account for the duration of 

the interval. What role could shunting play in modulating the interevent interval? 

Synaptic conductance decays with a time constant of approximately 15 ms, 

thus shunting inhibition is likely to play a role in determining the minimal interval 

between oscillation events (~ 12 ms). Interevent intervals, however, can be as 

long as 45 ms (average ~ 33 ms). So pyramidal cell excitability during 

oscillation cycles longer than 15 ms is likely determined by membrane 

hyperpolarization rather than shunting. These findings do not exclude the 

possibility that other negative feedback mechanisms, like inhibition of 

transmitter release via presynaptic glutamate or GABA receptor activation, may 

also contribute to the observed fluctuations in interevent interval.  

  

Proportional Excitation and Inhibition during Gamma Oscillations   

What causes cycle-by-cycle fluctuations in the amount of synaptic 

inhibition? We observe that during each gamma oscillation cycle, synaptic 

excitation is almost instantaneously counteracted by inhibition and that the 

amount of inhibition is proportional to the quantity of excitation recorded at the 

soma. Inhibition recorded in vivo is on average 4-5 times larger than excitation 

at the soma (and 3-6 times larger when recorded in vitro, consistent with Oren 

et al., 2006). Strikingly, this proportionality is maintained on a cycle-by-cycle 
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basis over a range of synaptic conductances spanning more than one order of 

magnitude, from less than 1 nS to approximately 10 nS. Thus, the CA3 network 

is able to maintain a balance between excitation and inhibition despite rapidly 

changing activity levels.  

How is balance over such a wide range achieved? It has been shown 

that even small changes in the number of active excitatory neurons can directly 

affect the number of active local inhibitory interneurons (Csicsvari et al., 1998; 

Kapfer et al., 2007; Miles and Wong, 1984; Silberberg and Markram, 2007). 

Thus inhibition during each oscillation cycle is likely to be recruited by recurrent 

excitation in proportion to the number of active excitatory neurons thereby 

providing a rapid balance in each cycle. In fact, we find that even a simple 

model of a local recurrent network, with realistic anatomical and physiological 

parameters and random connectivity between pyramidal cells and interneurons, 

results in a proportional activation of excitatory and inhibitory conductances 

over a relatively wide range. 

Consistent with the idea that recurrent networks balance excitation with 

inhibition, proportional changes in these two conductances have also been 

observed in the neocortex during non-rhythmic spontaneous activity (Okun and 

Lampl, 2008), high conductance states (Haider et al., 2006) and sensory 

evoked activity (Anderson et al., 2000; Wehr and Zador, 2003). Because both 

somatic and dendritic targeting interneurons participate in gamma oscillations 

(Bartos et al., 2007; Hajos et al., 2004; Hasenstaub et al., 2005; Mann et al., 
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2005; Tukker et al., 2007), both forms of inhibition may contribute to the 

observed proportionality.  

Given the relatively constant relationship between excitatory and 

inhibitory conductances, why is the membrane potential of pyramidal cells more 

hyperpolarized after large amplitude oscillation cycles? One would expect that, 

despite large cycle-by-cycle fluctuations in synaptic conductances, the balance 

between excitation and inhibition may maintain the trajectory of a cell’s 

membrane potential relatively constant. The dynamics of these two opposing 

synaptic currents differ however such that IPSCs occur ~2 ms later and decay 

slower than EPSCs. These kinetic differences tip the balance towards 

hyperpolarization during the late phase of each oscillation cycle. These 

observations underscore the critical role of the fine temporal structure of 

excitatory and inhibitory events in controlling the membrane potential (Pouille 

and Scanziani, 2001) and hence the interval between oscillation cycles.   

Importantly, although excitatory and inhibitory synaptic activity is 

proportional on a cycle-by-cycle basis these two opposing synaptic 

conductances are not perfectly correlated. Similarly, in neighboring neurons 

despite substantial co-variation of inhibition (and also of excitation) cell-to-cell 

variability remains. Differences in connectivity between pyramidal cells and 

interneurons as well as stochastic synaptic properties such as probability of 

release are likely to contribute to this variability. This cycle-by-cycle and cell-to-

cell variability in the relative magnitude and timing of excitation and inhibition 
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must be critical in determining the identity of cells that spike during each 

oscillation cycle. 

So, the hippocampal circuitry tightly links the amplitude of gamma 

oscillation with instantaneous frequency: ongoing fluctuations in the number of 

active excitatory neurons are instantaneously counterbalanced by proportional 

changes in the number of active inhibitory neurons and the resulting inhibition is 

translated into variability in interevent interval or oscillation phase. The tight link 

between amplitude and phase is highlighted by the fact that gamma oscillations 

recorded under conditions ranging from acute slices to awake behaving 

animals, all show this fundamental relationship. Thus the hippocampal circuit 

constrains oscillatory dynamics such that the active number of neurons and the 

frequency are inextricably linked. 

Synchronous spiking of neurons is an effective means to transfer 

information between cortical areas (Bruno and Sakmann, 2006; Womelsdorf et 

al., 2005). It is believed that oscillations play a role in dynamically modulating 

synchronous activity to facilitate routing of information across cortical areas in a 

behaviorally relevant manner (Destexhe and Sejnowski, 2001; Engel et al., 

2001; Womelsdorf et al., 2007). That is, distinct groups of oscillating neurons 

can be phase-locked at specific times and cooperatively drive postsynaptic 

targets, or be incoherent at other times depending on the nature of sensory 

stimuli, attentional state and behavior goals. In fact, the coherence between 

neuronal activity recorded in various sub-regions of the hippocampus 

undergoes rapid changes during exploratory behavior and spatial tasks (Bragin 
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et al., 1995; Chrobak and Buzsaki, 1998; Montgomery and Buzsáki, 2007). So it 

is critical to our understanding of how information is routed across different 

cortical areas to establish how changes in coherence are regulated. This 

involves determining both the cellular mechanisms that implement phase shifts 

within a network and how afferent projections drive these changes. We focused 

on the former in this study. Our results demonstrate that oscillation phase is 

determined on a moment-by-moment basis by inhibitory activity.  We show that 

as oscillations fluctuate in amplitude, inhibition is adjusted to be proportional to 

excitation leading to rapid changes in instantaneous oscillation frequency. It will 

be important for future studies to identify what mechanisms underlie cycle-to-

cycle fluctuations in the amplitude of excitation. Phase shifts generated by 

these fluctuations, by increasing or decreasing coherence between groups of 

oscillating neurons, may be crucial in differentially routing information to distinct 

hippocampal areas. 
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Experimental Procedures 

Surgical Procedures 

All animal experiments were performed in strict accordance with the 

guidelines of the National Institutes of Health and the University of California 

Institutional Animal Care and Use Committee.  In vivo experiments were 

performed in 6–8 week-old rats anesthetized with urethane (1.8 g/kg), and 

supplemented with ketamine (0.3 g/kg) and xylazine (0.03 g/kg) delivered i.p. 

The depth of anesthesia was assessed by toe pinch. Skin incisions were 

infused with lidocaine. Body temperature was monitored and maintained at 35–

37 °C using a heating pad.  Animals were head-fixed using Kopf rat adapter and 

18o ear-bars mounted on a custom stereotaxic fixture. After removing a section 

of the temporomandibular muscle a square (~4 mm2) craniotomy was 

performed. The craniotomy was located 4 mm caudal to the bregma and 7 mm 

ventrolateral to the sagittal suture along the surface of the skull (i.e. the 

craniotomy was located on top of the parietal-temporal suture). Two small 

duratomies were performed using a 30 G needle (<0.5 mm in diameter, one for 

the extracellular recording electrode and one for the patch pipette), separated 

by approximately 1 mm along the rostral-caudal axis.  

  

Slice Preparation 

Hippocampal slices (400 µm) were prepared from 4-7 week-old Wistar 

rats and incubated for one hour in an interface chamber at 34°C in oxygenated 
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artificial cerebrospinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 1.3 

Na2HPO4, 1.3 MgCl2, 2.5 CaCl2, 26 NaHCO3, and 11 glucose. The slices 

were kept at room temperature before being placed in a submerged chamber 

superfused (6 ml/min in a ~1.5 ml bath) with oxygenated artificial cerebrospinal 

fluid at 32-34ºC for recordings. Gamma oscillations were induced by bath 

application of 100-500 nM of kainate (Hájos et al., 2000). In a subset of 

experiments area CA3 was severed from the dentate and CA1. Under these 

circumstances rhythmic activity was observed in CA3 but not in the dentate or 

CA1 indicating that the CA3 network alone is capable of generating gamma 

oscillations (Bragin et al., 1995; Csicsvari et al., 2003; Fisahn et al., 1998). 

 

Electrophysiology 

In vivo recordings: Whole-cell recordings were made with patch pipettes 

(3-5 M%) filled with (in mM): 130 Cs-Methylsulfonate, 3 CsCl, 10 HEPES, 1 

EGTA, 10 phosphocreatine, 2 Mg-ATP (7.25 pH; 280-290 mOsm) and 0.2% 

biocytin. Extracellular recordings were performed using tungsten electrodes (~ 1 

M%, FHC). Two extracellular electrodes were lowered into the hippocampus. 

One electrode (rostral duratomy) was inserted perpendicular to the pia and 

used to locate the CA3 pyramidal cell layer. The other (caudal duratomy) was 

inserted at a slight angle and advanced into the stratum radiatum such that the 

tip of the two electrodes, in their final positions, were separated by 

approximately 500 µm. The electrophysiological signature of area CA3 

consisted of robust gamma oscillations in the stratum oriens followed by unit 
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activity in the pyramidal cell layer at a depth of -2.5 to -2.8 mm from the pial 

surface. Gamma oscillations reversed sign in the stratum radiatum. After 

locating the pyramidal cell layer the rostral extracellular electrode was retracted 

and replaced with a patch pipette. Whole-cell recordings were obtained using 

the "blind" patch-clamp approach (Cang and Isaacson, 2003; Ferster and 

Jagadeesh, 1992; Margrie et al., 2002). Post-hoc histology was used to verify 

that recordings were made in CA3 pyramidal cell layer.  Recordings were made 

at approximately 3.8 mm posterior to the bregma and lateral 4.0 mm to the 

midline. 

In vitro recordings: Whole-cell voltage-clamp recordings were made with 

patch pipettes (3-5 M%) containing (in mM): 130 Cs-Methylsulfonate, 3 CsCl, 10 

HEPES, 1 EGTA, 10 phosphocreatine, 2 Mg-ATP (7.25 pH; 280-290 mOsm) 

and 0.2% biocytin. Whole-cell current-clamp recordings were performed with 

pipettes (3-5 M%) filled with (in mM) 150 K-gluconate, 1.5 MgCl2, 5 HEPES, 1.1 

EGTA, 10 phosphocreatine (pH 7.25; 280–290 mOsm) and 0.2% biocytin. 

Voltages were corrected for the experimentally determined junction potential 

(9.8 ± 0.2 mV; n = 3). Extracellular recordings were performed with tungsten, ni-

chrome electrodes or glass pipettes (containing 1M NaCl) placed in the stratum 

radiatum of the CA3 region. Whole cell recordings were obtained from visually 

identified CA3 pyramidal cells using infrared videomicroscopy. 

  

Recordings from Awake Freely-moving Rat 
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Data Acquisition: Recordings from freely-moving rat were made using 

tetrodes placed in CA3 as described in Leutgeb et al., 2007. The LFP was 

recorded in the 1-450 Hz frequency band and digitized at 2 kHz. Data Analysis: 

LFP was filtered using moving average filter (40 ms window) this procedure 

removed theta band activity. Data was then analyzed using the methods 

described in the main text. 

 

Data Acquisition 

Whole cell and extracellular recordings, performed in vitro and in vivo 

anesthetized rats, were carried out using MultiClamp 700B amplifiers and 

digitized at 20 kHz. Whole-cell recordings were low-pass filtered (2 kHz) and 

extracellular recordings band-pass filtered (0.1-2 kHz). EPSC were recorded at 

-87 ± 0.5 mV (n = 12 cells) in vitro and -94 ± 1 mV (n = 12 cells) in vivo.  IPSCs 

were recorded at -1 ± 4 mV (n = 7 cells) in vitro and 22 ± 4 mV (n = 7 cells) in 

vivo. Excitatory and inhibitory synaptic conductances (gE and gI respectively) 

were computed assuming that EPSCs were recorded at the reversal potential 

for inhibition, and that IPSCs were recorded at the reversal potential for 

excitation. Series resistance, assessed using an instantaneous voltage step in 

voltage-clamp configuration, was 12 ± 2 M% (n = 13 cells)  for cells recorded in 

vitro and 11 ± 2 M% (n = 7 cells) in vivo; we compensated for pipette 

capacitance in cell-attached mode before whole-cell access. When multi-unit 

recordings were performed in the stratum pyramidale, the sign of the LFP was 

inverted to be consistent with LFP recorded in the stratum radiatum.  
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Data Analysis 

All analysis was performed with custom routines utilizing Matlab 

(MathWorks). In order to analyze oscillation events, time periods when the LFP 

recording exhibited gamma activity were identified.  A spectrogram of the 

broadband recording was constructed from 100 ms windows in 25 ms steps. 

For analysis we used time periods of at least 100 ms when greater than 

average power (root mean square) in gamma-band activity was recorded. The 

extracellular recording was then band-pass filtered (5-100 Hz). Individual 

oscillation cycles were identified as a peak in the LFP (as illustrated in Fig 3.1). 

The oscillation cycle amplitude was defined as the peak-to-trough amplitude i.e. 

the difference between the peak of a given cycle to the subsequent trough of 

the same cycle (Fig 3.1). The onset of each oscillation event was defined as the 

time, after the peak, at which the LFP reached 10% of the oscillation cycle 

amplitude. The interevent interval of oscillation events was computed as the 

time between the onset of consequent cycles. Events with very low amplitude, 

less than 0.25 of the standard deviation in oscillation amplitude, were 

considered to be noise and omitted (these events made up only a small fraction 

of all events (<5%) when we reanalyzed the data including these events the 

results were not significantly difference).  

The amplitudes of EPSCs and IPSCs during an oscillation cycle were 

calculated, in a similar manner, i.e. as the difference between the minimum and 

maximum current within a given cycle (Fig 3.2C, D).  
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In order to extract multi-unit spiking activity, extracellular recordings were band-

pass filtered (0.3-2 kHz), and a threshold applied. A peri-oscillation time 

histogram (POTH) was then constructed time locked to the onset of gamma 

oscillation events. The POTH was then fit with a local linear regression 

(Chronux) in order to extract the full-width at half maximum (FWHM). 

 Correlation, r, was computed using Pearson’s correlation, Spearman’s 

rank correlation yielded quantitatively similar results. All individual r values in 

the reported averages were highly significant (p<0.0001) unless otherwise 

stated. For further description of correlation methods see Appendix. 

The average time course of EPSCs, IPSCs and intracellular membrane 

potential during an oscillation cycle (i.e. oscillation triggered average) was 

determined by using a method similar to a spike-triggered average. In this case, 

however, the average was triggered by the onset of an oscillation cycle 

recorded in the LFP. 

The latency between EPSCs and IPSCs was computed for each 

individual cell by using the LFP as a time stamp.  We used two different 

approaches to calculate this latency: first, the time lag between the trough (i.e. 

dI/dt = 0) of the oscillation triggered average IPSC and inverted EPSC (Fig 3.2 

& 5), and second, the time lag between the peak in the cross-correlation of the 

LFP-EPSC and LFP-IPSC. Additionally, in paired recordings we also computed 

the latency between EPSCs and IPSCs simultaneously recorded measured in 

two different cells. The results of the three methods were not significantly 

different. 
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To determine the relationship between sequentially recorded excitatory 

and inhibitory currents recorded in vivo, we evenly subdivided the LFP 

oscillations according to amplitude into 8 to 10 separate bins each contained at 

least 3 cycles (range: 3-220). Within each cell, we compared the amplitudes of 

EPSCs and IPSCs belonging to the same bin (Fig 3.5D). 

Power and coherence spectra as well as confidence intervals were 

computed using multitapered methods (Mitra and Pesaran, 1999), the Chronux 

package (NIMH) and custom Matlab routines. All spectral analysis were 

performed on broadband recordings unless otherwise stated. 

Statistical analysis was performed using the t-test and fisher transform 

where appropriate. Variability reported a standard error of the mean, unless 

stated to be standard deviation (sd). 

  

Model 

The local recurrent CA3 circuit was simulated using a model consisting 

of 400 pyramidal cells and 80 interneurons. Each cell was modeled as single 

compartment, integrate-and-fire neuron with the following parameters.  

Parameters were chosen to match the range of intrinsic properties and synaptic 

connectivity patterns experimentally observed in the hippocampus. Excitatory 

and inhibitory synaptic conductances were modeled with instantaneous rise-

times and exponential decays (& = 5 and 8 ms respectively). Stochasticity was 

included in the model by the probability of release at excitatory synapses (PR = 

0.5) and background synaptic activity introduced as Gaussian noise (s.d. = 50 



 100 

pA). Modeled pyramidal neurons received no extrinsic rhythmic depolarization. 

Instead neurons’ resting potential was near threshold (similar to the 

experimentally recorded mean resting potential of -51.4 ± 1mV, n = 6 of 

pyramidal cells in vitro) and spiking activity was initiated by the stochastic 

background synaptic activity. The resulting rhythmic activity was a result of the 

network dynamics.  

Although not directly imposed, the simple model exhibited several key 

characteristics of real oscillations in the CA3 network: the network spiked 

rhythmically at intervals of 28-75 ms, excitation led inhibition by ~3 ms during 

each oscillation cycle, excitation and inhibition were proportional during each 

oscillation cycle despite large changes in excitatory conductance and finally the 

interval between cycles was correlated with the magnitude of inhibitory 

conductance during the previous cycle.  

  PYR IN References 

Membrane Resistance (M!) 60 40 

Capacitance (pF) 100 100 
(Glickfeld and Scanziani, 2006) 

Prob. of connection to PYR 0.15 0.4 

Prob. of connection to IN 0.4 0.4 
(Sik et al., 1995; Traub et al., 1997) 

Mean unitary synaptic 

conductance (nS) onto PYR 

0.15 1 (Glickfeld and Scanziani, 2006; Miles, 

1990; Miles and Wong, 1986) 

Mean unitary synaptic 

conductance (nS) onto IN 

2 1 (Bartos et al., 2002; Glickfeld and 

Scanziani, 2006) 

Vrest (mV) -55 -62 See below 

gI reversal (mV)  -75 -55 (Glickfeld et al., 2009; Vida et al., 2006) 

gE reversal (mV)  0 0  
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Fig. 3.1  Gamma Oscillation Amplitude Predicts Latency to Next Oscillation 
Cycle 
(A) (Top) Broadband (gray) and gamma-band filtered local field potential (LFP, 5-100 Hz) recorded in the stratum 
radiatum of area CA3 of an anesthetized rat. Raster plot marks the peak of each oscillation cycle. (Bottom, left) 
Autocorrelation of LFP and power spectral density of gamma-band LFP. (Bottom, right) Histograms of oscillation 
amplitude and interevent interval (IEI). (Inset) LFP recording illustrating the measurement of peak-to-peak amplitude 
and IEI (expansion of the recording marked by a horizontal bracket in the top panel). Positivity is up. 
(B) (Top) IEI correlated against amplitude of the previous cycle illustrated in histogram. Note the correlation between 
oscillation amplitude and IEI. (Bottom) summary of correlations, n = 6 rats. Vertical bar is average.  
(C) Broadband extracellular recording (top), gamma-band LFP (middle, 5-100 Hz band-pass), multi-unit spiking (green, 
0.2-2 kHz) from stratum pyramidale of area CA3. Negativity is up. 
(D) Oscillation triggered average of LFP, peri-oscillation spike-time histogram (POTH), and local linear fit to POTH 
(green).  
(E) (Left) Average LFP and POTH fit calculated separately for large (mean amplitude = 313 µV) and small (99 µV, 
dotted) oscillation cycles. Arrows illustrate the increased latency between spiking events after large amplitude cycles. 
(Inset) Small POTH scaled to the peak of the large POTH. (Right) Summary of full-width at half maximum (FWHM) of 
POTH for large (solid) and small (open) oscillation cycles (n = 6 rats). Averages are illustrated with horizontal bars. 
Note that spiking occurs in a narrow time-window during each oscillation cycle independent of oscillation amplitude. 
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Fig. 3.2  Excitation Instantaneously Balanced by Proportional Inhibition during 
Each Gamma Oscillation Cycle 
(A) (Top) Broadband (gray) and gamma-band filtered (black) LFP recorded in the stratum radiatum of area CA3 in acute 
hippocampal slice. Raster plot marks the peak of each oscillation cycle. (Bottom, left) Autocorrelation of LFP and power 
spectral density of gamma-band LFP. (Bottom, right) Histograms of oscillation amplitude and IEI (interevent interval). 
(Inset) LFP recording illustrating the measurement of peak-to-peak amplitude and IEI (expansion of the recording 
marked by a horizontal bracket in the top panel). Positivity is up. 
 (B) (Top) IEI correlated against amplitude of the previous cycle. (Bottom) summary of correlations, n = 6 slices. Vertical 
bar is the average. Note the correlation between oscillation amplitude and IEI.  
(C) Dual patch-clamp recording from two neighboring CA3 pyramidal cells. Oscillations are monitored with an LFP 
electrode (black, positivity is up). EPSCs (red) and IPSCs (cyan) simultaneously recorded by holding two cells at the 
reversal potential for inhibition (-3 mV) and excitation (-87 mV) respectively. Note the correlated fluctuations in the 
amplitude of excitation and inhibition.  
(D) (Left) Average time course of EPSC and IPSC (same cell as C) during an oscillation cycle recorded in the LFP i.e. 
oscillation triggered average. EPSC is inverted for illustration purposes. LFPs recorded simultaneously with EPSCs and 
IPSCs are shown as black and gray traces respectively. (Right) Summary of EPSC-IPSC lag during an oscillation cycle. 
Horizontal bar is the average. 
(E) (Top) Cycle by cycle correlation between excitatory and inhibitory conductances recorded in the pair shown in C. 
Summary of correlation between excitation and inhibition (bottom) and ratio of mean excitatory and inhibitory 
conductances (right) (n = 8 pairs). Vertical and horizontal bars illustrate respective averages. 

 



 103 

 
Fig. 3.3  Correlated Amplitude and Frequency in Simple Model of CA3 Circuit  

(A) Average excitatory (gE, red) and inhibitory (gI, cyan) synaptic conductance received by model pyramidal cells. LFP 
(black) is approximated as the sum of the two conductances.  
(B) (Top) Autocorrelation and power spectrum of simulated LFP. (Bottom) Interevent interval correlated against 
amplitude of the previous cycle.  
(C) The membrane potential (Vm) of an individual pyramidal cell in modeled circuit (spike truncated), gE (red) and gI 
(cyan); dotted line illustrates the average Vm.  
(D) Oscilllation cycles were binned according to gI amplitude and the oscillation triggered amplitude of Vm computed for 
each bin (different colors): average time course of gI in four bins of increasing amplitude (middle) and corresponding 
(color coded) Vm averages (top). The arrows illustrate that it takes longer for Vm to recover to the average potential 
(horizontal dotted line) after large amplitude cycles. (Bottom) Cycle-by-cycle correlation between Vm hyperpolarization 
and the gI. Bins in upper panels are illustrated with solid dots of respective colors. 
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Fig. 3.4  Larger, Longer Hyperpolarization of Pyramidal Cells following Large 
Amplitude Oscillation Cycles 
(A) LFP and simultaneously recorded membrane potential (Vm; whole-cell current clamp configuration: IC) during in 
vitro gamma oscillations (dotted line is mean Vm).  Positivity is up. 
(B) Oscillation cycles were binned according to LFP amplitude and the oscillation triggered average (OTA) of Vm 
computed for each bin (different colors): average time course of LFP in four bins of increasing amplitude (top) and 
corresponding (color coded) Vm averages (middle). Note that Vm undergoes larger and longer hyperpolarization during 
large amplitude oscillation cycles. (Bottom, left) Cycle-by-cycle correlation between the peak hyperpolarization and LFP 
amplitude. Bins in upper panels are illustrated with solid dots of respective colors. (Bottom, right) summary of correlation 
(n = 11 cells).  
(C) (Top) Oscillation cycles were binned according to LFP interevent interval and the OTA of membrane potential 
computed for each bin (different cell than A and B). Arrows illustrate “recovery time”, i.e. time from onset of oscillation 
cycle till membrane potential recovers to mean Vm (horizontal dotted line). (Bottom) LFP interevent interval plotted as a 
function of Vm recovery time. Colored dots and black line correspond to the above cell, other cells shown in grey. Note, 
mean slope, m = 1.16; sd = 0.3, suggesting that changes in the time for recovery from hyperpolarization in individual 
cells can account for the entire range of oscillation intervals observed in the LFP.  
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Fig. 3.5 Excitation Balanced by Proportional Inhibition during Gamma 
Oscillations In Vivo 
(A) Whole-cell recording of EPSCs in CA3 cell (red) and simultaneously recorded LFP (black, positivity is up) during 
gamma oscillations in anesthetized rat. IPSCs (cyan) and inverted LFP recorded from the same cell. Note correlated 
fluctuations in the amplitude of LFP and synaptic currents.  
(B) Coherence between LFP and IPSCs (cyan) or EPSC (red); jack-knifed 95% confidence interval (thin lines); arrows 
mark peak coherence frequencies. Summary of peak coherence frequency (bottom) and peak coherence (right). 
Average shown as a vertical or horizontal bar (n = 7 cells). 
(C) Oscillation triggered average (OTA) of EPSC (red), IPSC (cyan) and LFP. LFP was recorded simultaneously with 
EPSCs, IPSC (black and dotted traces respectively). EPSC is inverted for illustration purposes. Overlaid POTH (green, 
data from Fig 3.1D, aligned to the LFP also in green) illustrates spike timing during oscillation cycle. Note that maximal 
spiking precedes peak of inhibition. (Bottom) Summary of EPSC-IPSC lag during an oscillation cycle; vertical bar is 
average. 
(D) OTA of EPSCs (red), IPSCs (cyan) computed for four different bins of LFP oscillation amplitude (black; dotted and 
solid traces were recorded simultaneously with IPSC and EPSCs respectively, same cell as A-C).  
(E) Summary of correlation between average inhibitory (gI) and excitatory (gE) conductance in vivo; individual cells are 
each represented by a different color linear regression. Note, although excitation and inhibition are proportional, the 
inhibitory conductance is approximately 5 times larger (dotted line is at unity).  
(F) OTA of IPSC (middle) computed for four different bins of LFP oscillation interevent interval (top). Vertical arrows 
illustrate IPSC amplitude and horizontal arrows the correlated changes in the time to the next oscillation event (IEI). 
(Bottom) IPSC amplitude during an oscillation event correlated with the time to the next oscillation in the LFP (IEI); blue 
dots correspond to the four OTA shown above. 
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Fig. 3.6 Gamma Oscillation Amplitude Predicts Latency of Next Oscillation 
Cycle in Awake Freely-moving Rat 
(A) (Top) broadband and gamma-band local field potential (LFP, 5-100Hz) recorded in area CA3 of freely moving rat. 
These data were recorded by S. Leutgeb and D. Schwindel. Raster-plot marks the peak of each oscillation cycle. 
(Bottom, left) Autocorrelation of LFP and power spectral density of gamma-band LFP. (Bottom, middle) Histograms of 
oscillation amplitude and IEI. (Inset) LFP (from top panel; time window marked by horizontal bracket) on expanded time-
scale to illustrate the measurement of peak-to-peak amplitude and IEI.  Positivity is down. 
(B) IEI correlated against amplitude of the previous cycle illustrated in 2D histogram. Note the correlation between 
oscillation amplitude and IEI. 
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Fig. 3.7  Timing of CA3 Spike Output Covaries with Gamma Oscillation 
Frequency 
(A) Oscillations recorded in the LFP were separated into 4 bins according to amplitude. (Top) The average time course 
of the LFP oscillation cycles in each bin. (Bottom) Coherence between multi-unit activity and LFP (individually computed 
for each bin). Arrows illustrate peak coherence frequencies. Coherence is significant at p > 0.05 above the dotted 
horizontal line. Positivity is up. 
 (B) LFP amplitude vs. peak coherence frequency. Note peak coherence frequency increases as oscillation amplitude 
decreases. 
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Fig. 3.8 Correlation Between the Amplitude and Interevent Interval of 
Intracellularly Recorded Oscillation Cycles 
(A) Illustration of an LFP-like waveform (top) generated from the superposition of individual events of identical 
amplitude (bottom). The LFP-like waveform is the results of events that constructively (red) and destructively (cyan) 
summate. Raster plot marks the peak of each cycle. In this case, neither the amplitude nor the timing of cycles in the 
LFP reliably report that of the underlying biphasic events (see Appendix). Note, examining the LFP-like waveform and 
raster plot, one observes a spurious correlation between oscillation amplitude and interevent interval.  
(B) Whole-cell recording of IPSCs (cyan) at the reversal potential for excitation and simultaneously recorded LFP 
(black). Raster plots mark the peak of each oscillation event either intracellularly (cyan) or in the LFP (black). Note, each 
LFP events correlate with simultaneous inhibitory events. Positivity is up. 
(C) (Top) Correlation between LFP amplitude and interevent interval. (Bottom) correlation between IPSC amplitude and 
the intracellular interevent interval, i.e. the time interval to the next IPSC. 
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Fig. 3.9  Cycle-by-cycle Fluctuations in Excitatory and Inhibitory Activity 
Matches Fluctuation in LFP Amplitude 
(A) (Top) EPSCs (red) recorded in CA3 pyramidal cell and simultaneous LFP recording. (Bottom) IPSCs 
(cyan) recorded in same cell and simultaneous LFP recording. Positivity is up. 
(B) Power spectra (left) of EPSC and IPSC recordings, and coherence (right) between EPSCs and IPSC and LFP. Thin 
lines are jack-knifed 95% confidence intervals. 
(C) Summary of average excitatory and inhibitory conductance during an individual cycle. Red and cyan dots joined by 
a line represent conductances recorded in the same cell (n = 8 cells). Notice that inhibition is 3-6 times larger than 
excitation.  
(D) Correlation between LFP amplitude and simultaneously recorded EPSC or IPSC (computed for each oscillation 
cycle).  
(E) Summary of correlation between LFP and EPSC or IPSC (n = 8 cells). 
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Fig. 3.10 Shared Fluctuations of EPSCs and IPSCs within CA3 Pyramidal Cell 
Population  
(A) (Left) LFP and IPSCs simultaneously recorded in two CA3 pyramidal cells. (Right) 2D histogram illustrating the 
cycle-by-cycle correlation of the IPSC amplitudes recorded in the two cells.  

 (B) (Left) Simultaneous recording of LFP and EPSCs in same cells. (Right) 2D histogram illustrating the cycle-by-cycle 
correlation of the EPSC amplitudes recorded in the two cells. Positivity is up. 
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Fig. 3.11 Balanced Excitation and Inhibition in Model of CA3 
(A) Schematic illustrating the synaptic properties of the modeled circuit: probability of release (PR), probability of 
connection (PC), average conductance (gsyn).  
(B) Correlation between the amplitude of excitatory and inhibitory synaptic conductances during each oscillation cycle. 
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Fig. 3.12  Time-course of Synaptic Currents during Gamma Oscillations In Vivo 
is Independent of Oscillation Amplitude 
(Left) Oscillation triggered average (OTA) of LFP, EPSCs (red, inverted) and IPSCs (cyan) recorded in vivo. (Top) LFP 
was subdivided into large (right) and small (left) amplitude oscillation cycles (Gray LFP traces recorded simultaneous 
with IPSCs and black traces with EPSCs; LFP traces are not scaled). (Bottom) OTA of the simultaneously recorded 
IPSCs and EPSCs (scaled to peak).  Note that IPSCs decay slower than EPSCs.   
(Right) OTA EPSCs and IPSCs from small (dotted) and large (solid) cycles scaled to peak. Neither EPSC (or IPSC) 
rise-time, nor EPSC-IPSC lag changes as a function of oscillation amplitude consistent with the spiking data shown in 
Fig 3.1E. Positivity is up. 
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Appendix 

Correlation between Oscillation Amplitude and Interevent Interval 

To test whether the correlation between the amplitude of an oscillation 

cycle and the latency to the next cycle (R+1) was consistent with a causal link, 

we assessed the correlation between oscillation amplitude and the latency to 

the previous cycle (R-1).  

We found that this correlation (R-1= 0.27 ± 0.04, n = 12) was 

substantially weaker than the correlation between the amplitude of event n and 

the interval to the next event (R+1) for every recording both in vivo and in vitro 

(data combined). On average R+1 was more than 2 times larger than R-1, and 

this, in a highly significant manner (p<5x10-6).  

What could account for the correlation R-1? We have observed that 

there is a weak correlation between the amplitudes of consecutive events 

(RAmpli = 0.27 ± 0.05, n = 12). In other words, large amplitude events are more 

likely to follow large events than smaller ones (and vise versa). This could 

account some of R-1. In fact, if the amplitude of events n and n-1 are correlated 

then the amplitude of event n not only predicts the interval to the next event, but 

also the interval to the preceding event. Indeed, RAmpli accounts for more than 

35% of R-1. This was determined by using a partial correlation analysis where 

the variability in the amplitude of event n (An) and the interval to the previous 

event (In-1) predicted by the amplitude event n-1 was removed resulting in A'n 

and I'n-1. The correlation between A'n and I'n-1 was substantially reduced 

relative to R-1. Importantly, the weak correlation between the amplitudes of 
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consecutive events (RAmpli) does not confound our finding that the amplitude 

of event n strongly predicts the interval to the next event (R+1) since the same 

partial correlation analysis demonstrated a negligible portion of R+1 was 

accounted for by RAmpli (1.2± 0.8%, n = 12). 

In summary we demonstrate that the amplitude of event n correlates 

significantly better with the interval to event n+1 (R+1) than with the interval to 

event n-1 (R-1). Furthermore R+1 is not confounded by correlations in the 

amplitude of consecutive cycles. 

 

Summation of Events within the LFP 

Here we address the possibility that the correlation between the 

amplitude and interevent interval observed in the LFP may be an artifact of 

superposition, rather than reflecting real changes in the amplitude and timing of 

neuronal activity. Since the LFP results from the constructive and destructivea 

superposition of electrical sources and sinks, the LFP could hypothetically result 

from the superposition of multiple biphasic events of similar peak-to-peak 

amplitude (Fig 3.8). Depending on their interval, such biphasic events would 

undergo constructive or destructive summation generating an LFP with events 

variable apparent amplitude. In this case, however neither the timing nor the 

amplitude of events in the LFP would reflect the underlying neuronal activity. 

Accordingly a correlation between the amplitude and interevent interval would 

not be descriptive of neuronal activity but rather an artifact of superposition. 
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   To address this concern, we using whole-cell configuration to isolate 

IPSCs by voltage-clamping a CA3 pyramidal cell, in acute slice, at the reversal 

potential of excitation (Fig 3.8).  Because under these conditions there is no 

driving force for synaptic excitation the recorded synaptic events are purely 

inhibitory and hence are monophasic. Using this method we found that the 

amplitude and timing of events observed in the LFP did in fact correspond to 

that of the recorded synaptic activity. These results confirm that fluctuations in 

amplitude and interevent interval recorded in the LFP indeed reflect that of the 

underlying neuronal activity.  

 

What causes the modeled network to generate oscillations that fluctuate in 

amplitude?   

We find that stochasticity, by impacting the number of neurons which 

synchronously participate in an oscillation cycle, plays a dominant role. 

Stochasticity in our model takes two forms (i) probability of release (PR) at 

excitatory synapses, (ii) other sources of stochasticity - represented by a noise 

current drawn from a Gaussian distribution (with standard deviation x) during 

each time interval.  In fact, the stochasticity caused by probability of release 

alone (PR = 0.2) in the presence of a negligible amount of current noise (<2 pA) 

was sufficient to evoke fluctuations in amplitude (almost an order of magnitude) 

and inter-event interval (instantaneous frequency varied from 28 – 66 Hz). This 

demonstrates that, at least in our model, sources of “noise” compatible with the 
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physiological properties of the network can result in oscillations that fluctuate in 

amplitude and frequency. 

Ultimately, however, in the intact CA3 region in vivo external afferents, 

from the dentate gyrus and the perforant path, are likely to dwarf intrinsic 

stochasticity as the main cause of amplitude fluctuations. Indeed such external 

sources are almost certain to play an important role, as gamma coherent 

oscillation have been observed between hippocampus and entorhinal cortex 

and CA3 and other hippocampal subfields (Bragin et al., 1995; Chrobak and 

Buzsaki, 1998; Montgomery and Buzsáki, 2007) 

 

Does the model robustly generate oscillations where changes in amplitude are 

correlated with interevent interval? 

To address this question we independently varied the two forms of 

stochasticity over approximately two orders of magnitude (x = 1 to 100 pA, PR = 

0.05 to 0.9). 

At very low levels of stochasticity (x < 2 pA and PR > 0.9) the network 

exhibits little fluctuations in amplitude (i.e. approximately the same number of 

neurons participated in each event) and correspondingly little changes in inter-

event interval. At very high levels of stochasticity (x > 80 pA or PR < 0.1), on the 

other hand, synchrony is abolished and the network no longer reliability 

generated rhythmic activity.  

In the vast majority of stochasticity levels (x = 2 pA – 80 pA, PR = 0.1 – 

0.9) we found that the model of CA3 generates gamma oscillations that 
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fluctuate in amplitude and interevent interval. Importantly, not only are there 

fluctuations, but oscillation amplitude is correlated with interevent interval 

demonstrating that this correlation is robust to a wide range of different noise 

levels and probabilities of transmitter release. We conclude that the model 

robustly generates oscillations where fluctuations in amplitude are correlated 

with interevent interval over a broad range of stochasticity, spanning almost the 

entire range of PR, and approximately two orders of magnitude in noise current.  
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Chapter 4. The impact of parvalbumin expressing 

interneurons on visual processing 

 

Abstract 

The tuning of cortical neurons to the specific properties of a sensory 

stimulus is strongly influenced by the neuronal network they are embedded in. 

While enormous progress has been made in identifying the various different 

neuron types that make up the cortical network, still very little is known about 

the specific role that each individual type plays in shaping tuning properties. 

Here we address the role of parvalbumin (PV) expressing cells, a large class of 

inhibitory neurons that target the soma and perisomatic compartment of 

pyramidal cells, in modulating the response of cortical neurons to visual stimuli. 

By bi-directionally manipulating the activity of PV cells we show that these 

neurons sharpen orientation tuning, increase direction sensitivity and regulate 

the contrast response function of pyramidal cells in the primary visual cortex of 

the mouse. Our result thus provide a causal relationship between the activity of 

a select neuron type and specific aspects of cortical sensory processing.   

 

Introduction 

Cortical pyramidal neurons are inhibited by a variety of GABAergic  

interneurons each targeting a specific compartment of the pyramidal cell. 

Among these different interneurons, those that express parvalbumin (PV) (Celio 

& Heizmann 1981, Celio 1986) represent up to a half (Gonchar & Burkhalter 
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1997) of the GABAergic interneuron population in the cortex. PV cells are 

known to inhibit the somatic and perisomatic compartments of pyramidal cells 

(Kawaguchi & Kubota 1997) and have been shown to be instrumental in 

controlling temporal fidelity (Pouille & Scanziani 2001), integration time window 

(Pouille & Scanziani 2001, Gabernet et al 2005), gain (Pouille et al 2009), and 

high frequency oscillations (Hasenstaub et al., 2005; Tukker et al., 2007; Bartos 

et al 2007). Despite key involvement in regulating the dynamics of cortical 

activity, we do not know, how or even whether, PV cells contribute to the tuning 

of pyramidal cells to sensory inputs. To address this question we have 

modulated the activity of PV cells in the visual cortex of PV-Cre mice using 

optogenetic tools and examined the resulting effect on the response of 

pyramidal cells to visual stimuli.  

 

Results 

We ascertained that Cre expressing cells in the PV-Cre line were 

positive for PV by crossing PV-Cre mice with a td-tomato reporter line and 

counter-staining the tissue with antibodies against PV. Indeed, PV antibodies 

exclusively stained td-tomato expressing neurons. Because the aim of our study 

is to establish the impact of PV cells on cortical visual responses we initially 

determined the range of stimuli that best activate these cells. Using two photon 

laser scanning microscopy we performed targeted loose-patch recordings from 

td-tomato expressing PV cells in layer 2/3 of the primary visual cortex of 

anesthetized mice (Fig 4.1A). The spontaneous spike rate of PV cells was 2.5 
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Hz (sd 2 Hz, range = 0 – 6Hz) and their spike-waveforms had faster kinetics 

than non-PV cells recorded using the same configuration, consistent with these 

cells being of the fast spiking type. In response to full field drifting gratings of 

increasing contrast presented to the contro-lateral visual field, PV cells fired at 

progressively increasing rates that saturated at around 7 Hz (Fig. 4.1 sd 5 Hz, 

range 2 – 19 Hz) thus representing, on average, an 3 fold increase in rate as 

compared to their spontaneous firing. In contrast to non-PV cells, PV cells were 

only moderately tuned to orientations of the grating (Fig. 4.1C, osi for PV: = 

0.10 sd 0.06, range = 0.02 – 0.29, n = 46; and non-PV: 0.40 sd 0.25, range = 

0.06 – 0.87, n = 41) (6 orientations presented and 12 directions) (Kerlin et al 

2010, Sohya et al 2007), and responded to relatively high spatial frequencies 

(mean = 0.13 cycles/deg, sd = 0.17 , range = 0.02 – 0.7 ), consistent with the 

physiological profile of fast spiking cells (Niell & Stryker 2008)  

To experimentally control the activity of PV cells we selectively 

expressed into these neurons the light activated microbial opsins Arch-GFP (in 

order to suppress activity) or ChR2-tdTomato (in order to increase activity) 

delivered to the primary visual cortex of adult PV-Cre mice via the AAV viral 

vector.  

To determine the impact of Arch-activation on PV cell firing we 

performed targeted recordings from Arch expressing  layer 2/3 PV cells, as 

described above, at least two weeks after viral injection and illuminated the 

exposed cortex  (see methods) with a fiber coupled LED (473nm, 0.5-10 

mW/mm2 see methods). Photoactivation of Arch significantly reduced both 
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spontaneous and visually evoked firing of PV cells. We alternated visual stimuli 

in the presence or absence of cortical illumination to activate Arch and 

compared the rate and time-course of firing in PV cells in the two conditions. 

We insured to only moderately reduce the activity of PV cells by using sub-

maximal illumination thereby preventing runaway activity of the cortical network. 

Cortical illumination started before the visual stimulus (to monitor the effect on 

spontaneous activity) and ended before the end of the visual stimulus (to 

determine the kinetics of recovery to visually evoked firing rates). Upon 

illumination, the suppression of firing was rapid as was the recovery at the end 

of the illumination (<25 ms). On average visually evoked spiking was reduced 

by 30% from control levels. The sub-maximal illumination reduced the 

spontaneous firing rate of targeted Arch expressing PV neurons by 1.3 Hz  and 

the visually evoked firing rate by 2.2 Hz (Fig. 4.2 range 0 – 15 Hz). 

How does the reduction in PV cell activity impact the processing of visual 

information in the cortex? To address this question we compared contrast 

response function, orientation tuning, direction selectivity of layer 2/3 pyramidal 

cell with or without suppression of Arch expressing PV cells.  

Reducing PV-cell activity lead to an increase in the spike rate in pyramidal cells 

by approximately 100% (Fig. 4.3, 31/34 cells, mean = 0.7 Hz, sd 0.9 Hz, range 

= 0 – 3 Hz) and this increase occurred at all contrasts. As a result, the contrast 

response function of pyramidal cells saturated at higher firing rates, clearly 

indicating that already under control conditions PV cells impose a cap on the 

output range of pyramidal cells in response to visual stimuli. Importantly, the 
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increase in spike rate as a fraction of control was not equal for all orientations 

but instead more pronounced for the non-preferred orientation of the cell.  This 

biased increase in spike rates towards non-preferred stimuli resulted in a 

significant broadening of the tuning of pyramidal cells (Fig 4.3A,C,G; 23/34 

cells, mean decrease in osi = -0.05, range = -0.3 – 0, significance at p < 0.02). 

Similarly, in cells that showed direction selectivity, the increase in spiking rate 

was more pronounced for the non-preferred direction leading to a significant 

decrease in direction selectivity (Fig 4.3B,F; 22/34 cells), mean decrease in dsi 

= -0.11, range = -0.9 – 0.4, significance at p < 0.03) 

These data demonstrate that even a moderate (~30%) yet specific 

decrease in the activity of PV cells leads to a significant increase in the output 

range of pyramidal cells, to a broadening of the orientation tuning, and a 

decrease in direction selectivity. Thus, under control conditions PV cells clearly 

contribute to several aspects of the response properties of pyramidal cells to 

visual stimuli. 

Over what range can PV cell activity modulate cortical processing of 

visual information? Having established that a decrease in PV cell activity 

modulates specific aspects of the response properties of pyramidal cells to 

visual stimulation, we decided to increase PV cell activity and determine 

whether these same properties are modulated in the opposite manner.   

Targeted recordings from ChR2 expressing PV cells demonstrated that 

illumination of the exposed cortical area leads to an increase in both 
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spontaneous and visually evoked firing of these neurons. The firing of PV cells 

was again precisely linked to the onset offset and intensity of illumination. 

In opposition to the suppression of PV cell firing described above, their 

activation reduced evoked spiking rate of pyramidal cell by 50% (0.5 Hz sd 0.3 

Hz, range 0-1 Hz). Importantly, these experiments were performed with sub-

maximal illumination to generate only moderate excitation of PV cells, and thus 

to prevent complete silencing of the cortex.   

The fractional reduction in firing rate was more prominent for the non-

preferred orientation and the non-preferred direction of the pyramidal cell, 

leading to a sharpening of the orientation tuning (Fig 4.4D; 7/9 cells; mean 

increase in osi = 0.04 sd 0.06, range= 0 – 0.12, significance at p < 0.03) and an 

increase in direction specificity (Fig. 4.4C; 7/9 cells; mean increase in dsi = 

0.11, sd 0.19, range = -0.27 – 0.4, significance at p < 0.03). 

These results are the mirror image of the results obtained in response to 

the suppression of PV cells and, taken together, indicate that by increasing or 

decreasing their firing, PV cells can modulate several properties of pyramidal 

cell response to visual stimuli over quite a wide range. Specifically, while 

suppression of PV cells doubles the firing rate of pyramidal cells, their activation 

can reduce it to 50% resulting in a 4-fold modulation. Similarly, the orientation 

tuning can be increased or decreased depending on PV cell activity for a total 

range spanning 0.1 orientation selective units. Finally, direction selective cells 

can also shift their preference over range of 0.2 depending on the activation or 

suppression of PV cells. Importantly, the range of PV cell firing explored here is 
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well within the physiologically reported range in awake behaving mice (Niell & 

Stryker 2010); furthermore we limited the explored range at both the upper and 

lower end to prevent runaway activity and complete silencing of the cortex, 

respectively.     

 

Discussion 

Our results demonstrate that a specific type of interneuron that 

predominantly inhibits the somatic and peri-somatic compartment of pyramidal 

cells has a major impact on the response properties of pyramidal cells to visual 

stimuli. On the one hand its activation sharpens the response of pyramidal cells 

yet limit their output dynamic range to changing contrasts. On the other hand 

the, suppression of PV cells leads to a broadening of the tuning of pyramidal 

cells but to an increase in their dynamic range.  

 

What mechanism underlies the increase in firing rate, the broadening in 

orientation tuning, and the decrease in orientation selectivity?  

While these observations demonstrate that the approach allows us to 

perturb the spontaneous and sensory evoked firing rate of Arch expressing PV 

cells in layer 2/3 it does not provide a quantitative estimate of the concomitant 

reduction in inhibition in pyramidal cells. First of all, a reduction in firing rate of 

PV cells may not necessarily result in a proportional reduction in PV mediated 

GABAergic conductances due to short term plasticity at the GABAergic 

synapse; secondly, not all PV cells within the region of interest express Arch; 
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and thirdly, because PV cells inhibit each other, the reduction in firing rate of the 

Arch expressing PV cells may actually lead to an increase in the firing rate of 

non-Arch expressing PV cells and thus to a minimal decrease in inhibition onto 

pyramidal cells. Furthermore, inactivation of PV cells will also result in an 

increase in excitation. This results from the fact that cortical pyramidal cells 

excite and receive excitation from other local pyramidal cells; thus, an increase 

in firing rate of pyramidal cells in response to PV cell suppression (as observed 

above) will inevitably lead to an increase in the amount of excitation received by 

the pyramidal cells themselves.  

Further experiments using techniques such as whole-cell voltage clamp 

will be necessary to directly measure how the activation and suppression of PV 

cells impacts excitatory and inhibitory synaptic input received by pyramidal 

cells. These data combined with modeling how these synaptic inputs are 

integrated to produces spiking will enable us to dissect the subthreshold 

mechanisms that underlie the changes in pyramidal neuron selectivity.  

Independent on the specific mechanism, however, our results illustrate 

the potential PV neurons have for impacting sensory processing. The known 

sensitivity of PV neurons to neuromodulators makes them ideal circuit elements 

to control response properties of pyramidal cells depending on the state of the 

animal.
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Experimental Procedures 

Virus Injection 

  Adult PV-Cre or PV-Cre x tdTomato reporter line mice were anesthetized 

with 2% isoflorane. Then <1 mm2 area of skull over V1 (2mm lateral to the 

midline, 0.2mm rostral of lambda) was thinned and 0.1-0.4mm2 craniotomy 

performed with a 20G needle. Virus delivered using a glass micropipette 

attached to either a Nanoject II (Drummond) or UMP3 (WPI). A 100-250nL of 

virus (Addgene 18917) (AAV2/1.CAGGS.flex.ChR2.tdTomato.SV40 or 

AAV2/9.flex.CBA.Arch-GFP.W.SV40 (Addgene 22222) was injected at a depth 

of 300-600um from the cortical surface over 10minutes. The scalp was sutured 

and analgesic administered (0.1 mg/kg Buprenex).  

In a subset of experiments AAV2/1.CAGGS.flex.ChR2.tdTomato.SV40 

was injected in P0-P1 pups. Pups were anesthetized under using a cold pad (0 

degress). A beveled glass micropipette, tip 40-60um, was then used to puncture 

the transparent scalp and skull and a bolus of 3x bolus of 20nL injected at 200 

and 400um below the surface of the scalp. No differences in visual physiology 

were observed between adult and pup injected animals.  

 

In vivo physiology 

All procedures were conducted in accordance with the National Institutes 

of Health guidelines and with the approval of the Committee on Animal Care at 

UCSD. Recordings were made from mice 2-8 months of age, at least 2 weeks 

after virus injection. Animals were injected with 5mg/kg chlorprothixene and 
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1.5g/kg urethane. When the mouse reached a surgical plane of anesthesia (10-

20minutes), the animal was secured with a stereotaxic bite bar, eye-lash hairs 

were cut, and a thin, uniform layer of silicone oil (30,000 centistokes)  applied to 

prevent corneal drying.  The scalp was then removed and a head plate attached 

with dental cement.  A ~ 1.5 mm2
 craniotomy performed over primary visual 

cortex (2mm lateral to the midline, 0.7mm rostral of lambda).  Craniotomy was 

then covered with a thin <1mm layer of 1% agarose and the dura left intact. 2ph 

imaging was performed with a Sutter MOM, and Coherent Chameleon Laser at 

1000-1020nm. Targetted recordings extracellular recordings were performed 

using 2-4MOhm microelectors filled with 50uM Alexa 488 or Sulfur rhodamine 

dye in aCSF (142mM NaCl, 5mM KCl, 10mM dextrose, 3.1mM CaCl2 1.3mM 

MgCl pH 7.4). PV + neurons were targeted based on their exprespressino of 

tdTomato or eGFP, while pyramidal neurons were targeted using the “shadow-

patching” method. 

When recordings ended, the animal was sacrificed administering 2.5% 

isoflorane flowed by decapitation. For histology, mice were intracranially 

profused with 4% PFA, (0.1M PB buffer). The brain was then extracted and 

fixed over night in 4 % PFA, rinsed in PBS and sliced (30um) and 

immunohistology performed. 

 

Visual Stimulation 

Stimuli were created using Matlab with  Psychophysics Toolbox and 

displayed with gamma corrected LCD ( Dell 30x 40 cm, 75Hz refresh rate ) 
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placed 25cm from the mouse. The preferred spatial frequency (within the range 

0.01 and 0.5 cycles/degree) and stimulus size (the while ~75% of neurons 

preferred fullfield, the remainder fired more robustly when a disc of diameter 7-

10 degrees.) was determined for each neuron. Orientation and direction 

selectivity was then determined using drifting sinusoidal gratings at the 

preferred spatial frequency, 2-3s duration, temporal frequency 2 Hz,  and 12 

direction at 100% contrast randomly interleaved. Contrast response curves 

were determined by presenting the same stimuli at preferred orientations at 

eight contrast levels logarithmically spanning the range 1% to 100% contrast.  

 

Photostimulation of ChR2 and ARCH 

ChR2/ARCH were activated using a 473nm fiber couple LED (1mm 

diameter, 0.5 NA fiber, Doric lenses) was position approximately 5mm from the 

cranial window. Trials with and without photo stimulation were interleaved. 

 

Analysis 

Spontaneous spike rate was calculated as the average firing rate during 

a 0.5s period before the presentation of the stimulus. The evoked firing rate was 

the rate, over the entire stimulus duration, evoked by the preferred grating 

direction. 

Orientation selectivity was calculated as 1- circular variance (Ringach et 

al 1997). using the average firing rate over the entire duration of the stimulus to 
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each of the 12 grating directions, Direction selectivity was calculated as (Rpref – 

Rpref+180)/ (Rpref + Rpref+180). 

Contrast response curves were fit with the Naka–Rushton equation 

(Naka and Rushton, 1966): R(C) = 1 - g/(1 + (C/C50)n), where C is contrast, g is 

the gain, C50 is the midsaturation contrast, and n is a fitting exponent that 

describes the shape of the curve. 

Statistical significance was determined using the student’s t-test. 
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 Fig. 4.1 Determining what visual stimuli efficiently activate PV cells 

(A1) Two photon targeted loose-patched recording from PV cell. Inset illustrates PV cell fast spike-waveform. Middle, 
spiking response of cell to each of 12 sine grating directions: raw spike waveforms, and raster-plots and peristimulus 
time-histograms (PSTH). Gray shaded region denotes PSTH bootstrapped 95% confidence interval. 
(A2) Top, same cell’s tuning, i.e. average spike rate for 12 grating directions. Illustrated both on cartesian and polar 
axes, note poor selectivity to orientation. Bottom, response to gratings of varying contrasts. 
(B) Response properties of non-PV cell illustrated. Note the longer time-course of spike waveform (green) compared to 
PV cell (red). 
(C) Summary of spontaneous and evoked spike rates, orientation selectivity and contrast response function of PV (red) 
and non-PV (green) cells. Note that PV cells exhibit higher spontaneous and evoked rates, weaker orientation selectivity 
but similar contrast response C50. 
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Fig. 4.2 Arch suppresses PV cell spiking 
(A) Immunohistology performed on PV-Cre x tdTomato mouse injected with Cre depend Arch-GFP AAV-vector. In red is 
naive expression of tdTomato in all PV neurons, while in green is the anti-GFP stain. Right, detail of same image. Note, 
all GFP expressing neurons also express tdTomato. 
(B) Targeted loose-patch recording from Arch expressing PV cell. Raster plot and PSTH illustrate that visually evoked 
response of cell is suppressed by blue light. Note rapid recovery of response at offset of blue light. 
(C) Summary of Arch suppression spontaneous and stimulus evoked spike rates in n = 20 PV cells. 
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Fig. 4.3 Inactivating PV cells reduces stimulus selectivity in neighboring 
pyramidal cells 
(A) Selectivity of pyramidal cell to gratings during either control (black) or inactivation of PV cells (green). Note increase 
in response at non-preferred orientations during PV cell inactivation. Polar and Cartesian plots of average stimulus 
evoked rate. Stimulus selectivity is illustrated by normalizing to the peak response.  Shaded region illustrates directions 
where inactivation disproportionately increased spike rate.  
(B) Pyramidal cell where inactivation resulted in decreased direction selectivity 
(C) Pyramidal cell that exhibited little-to-no spiking response under control conditions but pronounced, orientation 
selective response during inactivation. 
(D) Pyramidal cell that exhibited orientation selectivity under control conditions but no selectivity when PV cells were 
inactivated. 
(E) Cumulative histogram of change in pyramidal cell spontaneous (black) and visual evoked (green) spike rates (n=34).  
(F) Cumulative histogram and bootstrapped mean (grey) of change in direction selectivity between control and 
inactivation (Arch). Negative values indicated a decrease in selectivity. 
(G) Cumulative histogram and bootstrapped mean (grey) of change in orientation selectivity. Inset shows the absolute 
change in preferred orientation between control and PV inactivation in the subset of cells that had strong (>0.55) 
orientation selectivity. Note PV inactivation produces less orientation selectivity, but does not rotate a cell’s preferred 
orientation. 
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Fig. 4.4 Activating PV cells increases stimulus selectivity in neighboring 
pyramidal cells  
(A) Selectivity of pyramidal cell to gratings during either control (black) or activation of PV cells (green). Note decrease 
in response at non-preferred orientations during PV cell inactivation. Polar and Cartesian plots of average stimulus 
evoked rate. Stimulus selectivity is illustrated by normalizing to the peak response.  Difference in tuning shown by 
shaded region.  
(B) Cumulative histogram of change in pyramidal cell spontaneous (black) and visual evoked (red) spike rates (n=9). 
Note the decrease spike rate during PV activation.  
(C) Cumulative histogram and bootstrapped mean (grey) of change in direction selectivity between control and PV 
activation. Positive values indicated an increase in selectivity 
(G) Cumulative histogram and bootstrapped mean (grey) of change in orientation selectivity. 
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