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ABSTRACT OF THE DISSERTATION

On Hybrid Methods that Blend Computer Vision and Physics

by

Yunhao Ba

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Achuta Kadambi, Chair

Deep learning has exhibited remarkable performance on various computer vision tasks. How-

ever, these models usually suffer from the generalization issue when the training sets are not

sufficiently large or diverse. Human intelligence, on the other hand, is capable of learning

with a few samples. One of the potential reasons for this is that we use other prior knowl-

edge to generalize to new environments and unseen data, as opposed to learning everything

from the provided training sets. We aim to enable machines with such capability. More

specifically, we focus on integrating different types of prior physical knowledge and inductive

biases into neural networks for various computer vision applications.

The core idea is to exploit physical models as inductive biases and design specific strate-

gies to blend them with the neural network learning process. This problem is difficult since

we need to consider both the fidelity of our prior knowledge and the quality of the train-

ing samples. To validate the effectiveness of the proposed blending strategies, extensive

experiments have been conducted on multiple computer vision tasks, such as Shape from

Polarization (SfP), remote photoplethysmography (rPPG), and single-image rain removal.
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6.1 The points above depict datasets and their corresponding outputs from

models trained on them. These outputs come from a real rain image from

the Internet. Our opinion* is that GT-RAIN can be the right dataset for the

deraining community to use because it has a smaller domain gap to the ideal

ground truth. * Why an asterisk? The asterisk emphasizes that this is an

“opinion". It is impossible to quantify the domain gap because collecting true

real data is infeasible. To date, deraining is largely a viewer’s imagination of

what the derained scene should look like. Therefore, we present the derained

images above and leave it to the viewer to judge the gap. Additionally, GT-

RAIN can be used in complement with the litany of synthetic datasets [FHZ17,

HFZ19, LCT19, LTG16, YTF17, ZP18, ZSP19], as illustrated in Tab. 6.4. . . . . 88

6.2 We collect a real paired deraining dataset by rigorously controlling

the environmental variations. First, we remove heavily degraded videos such

as scenes without proper exposure, noise, or water droplets on the lens. Next,

we carefully choose the rainy and clean frames as close as possible in time to

mitigate illumination shifts before cropping to remove large movements. Lastly,

we correct for small camera motion (due to strong wind) using SIFT [Low04]

and RANSAC [FB81] and perform elastic image registration [Thi98, VPP09] by

estimating the displacement field when necessary. . . . . . . . . . . . . . . . . . 93

6.3 Our proposed dataset contains diverse rainy images collected across the

world. We illustrate several representative image pairs with various rain streak
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6.4 By minimizing a rain-robust objective, our model learns robust fea-

tures for reconstruction. When training, a shared-weight encoder is used to

extract features from rainy and ground-truth images. These features are then

evaluated with the rain-robust loss, where features from a rainy image and its

ground truth are encouraged to be similar. Learned features from the rainy im-

ages are also fed into a decoder to reconstruct the ground-truth images with

MS-SSIM and ℓ1 loss functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Our model simultaneously removes rain streaks and rain accumulation,

while the existing models fail to generalize to real-world data. The red

arrows highlight the difference between the proposed and existing methods on

the GT-RAIN test set (zoom for details, PSNR and SSIM scores are listed below

the images). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Our model can generalize across real rainy images with robust perfor-

mance. We select representative real rainy images with various rain patterns

and backgrounds for comparison (zoom for details). EDR V4 (S) [GSJ21] de-
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EDR trained on Rain14000 [FHZ17]. . . . . . . . . . . . . . . . . . . . . . . . . 104
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CHAPTER 1

Introduction

Human intelligence is capable of using learned knowledge for fast adaptation. By observing

just a few samples, we can effortlessly conduct inference in a new scene for a new task by

reutilizing what we have known previously. In contrast, the current leading deep learning

models often have to learn everything from scratch, which makes them notoriously data-

hungry. Unfortunately, a large and diverse dataset may not be available for many real-world

applications, since data acquisition is usually an expensive and time-consuming process.

Without sufficiently large datasets, these deep learning models may fail to generalize their

performance on unseen samples and produce results that are inconsistent with real-world

physical constraints.

Meanwhile, there exist vast amounts of already available physical models for many sci-

entific problems. Due to the existence of physical model mismatches, solutions derived from

these physical models may not be as accurate as the data-driven solutions when the testing

distribution is sufficiently close to the training distribution. However, these physical models

are able to provide robust solutions across various environmental conditions that are not

fully covered by the data acquisition process.

Given that neither physics-based solutions nor purely data-driven models are considered

sufficient to provide accurate and robust estimation for some complicated real-world appli-

cations, the community has started to explore the concept of physics-based learning (PBL),

where these two types of approaches are integrated together in a synergistic and complemen-
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Chapter Content

Chapter 2 Introduction of physics-based learning (PBL) and AutoPhysics

Chapter 3 Blending physics and learning for Shape from Polarization (SfP)

Chapters 4 and 5 Blending physics and learning for remote photoplethysmography (rPPG)

Chapter 6 Blending physics and learning for single-image rain removal

Table 1.1: Dissertation overview.

tary manner.1 This dissertation discusses how to blend some existing physical knowledge

into the deep learning process. We successfully demonstrate that the generalizability of

neural networks can be significantly improved by introducing additional prior knowledge for

various tasks in the field of computational imaging and computer vision.

1.1 Overview

As illustrated in Tab. 1.1, there are four main contributions in this dissertation. We start with

an introduction to PBL and propose an automated framework (AutoPhysics) to find suitable

neural network architectures to blend physical knowledge given some training samples. We

then dive into three specific applications in computational imaging and computer vision.

These three applications are Shape from Polarization (SfP), remote photoplethysmography

(rPPG), and single-image rain removal.

1Physics-based learning is also referred to as physics-guided learning, physics-informed learning, or
physics-aware learning. Please see [WJX22] for a detailed list of various techniques to integrate prior knowl-
edge with machine learning.
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1.2 Summary and Contributions

In Chapter 2, we introduce the concept of physics-based learning (PBL) and propose an

automated approach to blending various types of physical priors during the learning process.

Machine learning in the context of physical systems merits a re-examination of the learning

strategy. In addition to data, one can leverage a vast library of physical prior models

(e.g., kinematics, fluid flow, etc) to perform more robust inference. The nascent sub-field

of PBL studies the blending of neural networks with physical priors. While previous PBL

algorithms have been applied successfully to specific tasks, it is hard to generalize existing

PBL methods to a wide range of physics-based problems. Such generalization would require

an architecture that can adapt to variations in the correctness of the physics, or in the quality

of training data. Unfortunately, no such network architecture exists. In this chapter, we aim

to generalize PBL, by making a first attempt to bring neural architecture search (NAS) to

the realm of PBL. We introduce a new method known as automated physics-based learning

(AutoPhysics) that is able to generate PBL topology with top performance across a diverse

range of quality in the physical model and the dataset. This chapter revises [BZK19].

In Chapter 3, we investigate the Shape from Polarization (SfP) problem and make an

attempt to bring the SfP problem to the realm of deep learning. The previous state-of-the-

art methods for SfP have been purely physics-based. We see value in these principled models

and blend these physical models as priors into a neural network architecture. This proposed

approach achieves results that exceed the previous state-of-the-art on a challenging dataset

we introduce. This dataset consists of polarization images taken over a range of object

textures, paints, and lighting conditions. We report that our proposed method achieves

the lowest test error on each tested condition in our dataset, showing the value of blending

data-driven and physics-driven approaches. This chapter revises [BGW20].

In Chapter 4 and Chapter 5, we take remote photoplethysmography (rPPG) as an ex-

ample to examine the performance bias from skin tone variations in non-contact heart rate
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estimation. Accelerated by telemedicine, advances in rPPG are beginning to offer a viable

path toward non-contact physiological measurement. Unfortunately, the datasets for rPPG

are limited as they require videos of the human face paired with ground-truth, synchronized

heart rate data from a medical-grade health monitor. Also troubling is that the datasets are

not inclusive of diverse populations, i.e., current real rPPG facial video datasets are imbal-

anced in terms of races or skin tones, leading to accuracy disparities on different demographic

groups. For example, MMSE-HR [ZGW16], AFRL [EBM14], and UBFC-RPPG [BMB19]

only contain roughly 10%, 0%, and 5% of dark-skinned subjects respectively. In Chapter 4,

we show a first attempt to overcome the lack of dark-skinned subjects by synthetic augmen-

tation. A joint optimization framework is utilized to translate real videos from light-skinned

subjects to dark skin tones while retaining their underlying blood volume variations. In the

experiment, our method exhibits around 38% reduction in mean absolute error for the dark-

skinned group and 49% improvement on bias mitigation, as compared with the previous work

trained with just real samples. In Chapter 5, we propose a scalable biophysical learning-based

method to generate physio-realistic synthetic rPPG videos given any reference image and

target rPPG signal and shows that it could further improve the state-of-the-art physiological

measurement and reduce the bias among different groups. We also collect a large-scale rPPG

dataset (UCLA-rPPG) with diverse skin tones, in the hope that this dataset could serve as

a benchmark in the field to ensure that advances in the technique can benefit all people for

healthcare equity. Chapter 4 revises [BWK22], and Chapter 5 revises [WBC22].

In Chapter 6, we study the single-image rain removal problem and show how the perfor-

mance of deraining can be improved by incorporating the knowledge of rain phenomena and

human experts through a carefully designed data collection pipeline and a rain-robust loss

function. We propose a large-scale dataset of real-world rainy and clean image pairs and a

method to remove degradations, induced by rain streaks and rain accumulation, from the

image. As there exists no real-world dataset for deraining, current state-of-the-art methods

rely on synthetic data and thus are limited by the sim2real domain gap; moreover, rigorous
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evaluation remains a challenge due to the absence of a real paired dataset. We fill this gap

by collecting a real paired deraining dataset through meticulous control of non-rain varia-

tions. Our dataset enables paired training and quantitative evaluation for diverse real-world

rain phenomena (e.g., rain streaks and rain accumulation). To learn a representation ro-

bust to rain phenomena, we propose a deep neural network that reconstructs the underlying

scene by minimizing a rain-robust loss between rainy and clean images. Extensive exper-

iments demonstrate that our model outperforms the state-of-the-art deraining methods on

real rainy images under various conditions. This chapter revises [BZY22].

Finally, we discuss some potential future directions to conclude the dissertation in Chap-

ter 7.
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CHAPTER 2

Integrating Physical Priors as Inductive Biases into Deep

Learning

2.1 Introduction

Advances in machine learning can transform the way physical calculations are performed

and may even help with the discovery of physical equations [CTB19]. Many physical models

are idealized and do not precisely match real-world data. An elementary example would be

equations for projectile motion which do not account for air resistance. Using these idealized

equations, a completely physics-driven approach would have large errors on real-world data.

A separate approach is completely data-driven, e.g., one could repeatedly record real-world

projectile tosses and use a regression model to estimate a future trajectory, or the physical

expression [BSP02, FAL15]; unfortunately, this approach requires large datasets and lacks

interpretability. To bridge this gap, the field of physics-based learning (PBL) aims to blend

physical priors with data-driven inference, to combine the best of both worlds [GTH00].

Previous PBL architectures have achieved competitive performance on a wide variety

of tasks in computational microscopy [SLL17, NWM18, NXL18, RWO19], low-level and

high-level computer vision [GAL18, MSV18, BGW20, SLK19], medical imaging [JMF17,

KMY17], and robot control [ASA18, ZSL19, ABW19, SSO19]. These seemingly diverse

problem statements share a common thread: the presence of a partially known physical prior

that can be blended with a neural network. Unfortunately, these existing PBL methods

are typically designed for a specific task. Generalization would (as a first step) require
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a PBL architecture capable of adapting to variations in the correctness of physics or the

quality of training data. Our experiments show that no such architecture exists. Having a

general recipe for blending physics and learning is an important step in adopting physics-

based learning to encompass the wide range of physical problems, where priors are only

approximate and training data can be sparse.

In this chapter, we approach the problem of PBL from a different angle. Inspired by

work in neural architecture search (NAS) [ZL16, BGN16, LSY18, CZH18], we propose a

first attempt to automatically find the optimal PBL topology. NAS for PBL is complicated

because the search algorithm needs to learn characteristics of not just data, but also physics.

This means the existing NAS framework can not be applied to PBL directly. To customize

NAS for PBL problems, we find that three modifications must be made to the existing NAS

framework: (1) the inclusion of physical inputs; (2) the inclusion of physical operation sets;

and (3) edge weights to normalize variations in the degrees of freedom introduced by the

inclusion of physical operators. As these modifications are specific to the PBL problem, we

refer to our algorithm as AutoPhysics. The goal of AutoPhysics is to handle a diverse range

of quality in the physical prior or data. Experiments in Sec. 2.4.3 offer support for this goal,

where AutoPhysics outperforms previous PBL methods on multiple physical tasks across a

range of physical priors and dataset conditions.

Our contributions to physics-based learning can be summarized as follows:

• We make a first attempt at bringing neural architecture search (NAS) into the realm

of physics-based learning (PBL), which alleviates the burden of human expertise in

designing high-quality PBL topology;

• We propose AutoPhysics as a novel hybrid differentiable NAS framework based on

the combination of [LSY18] and [CZH18] with three customized modifications for PBL

applications;

• We show in our experiments that AutoPhysics generalizes to a wider range of diversity
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and is capable of generating new hybrid architectures for tasks under diversified physical

environments.

in data and physical priors, as compared to manually designed PBL architectures.

Although our primary contributions are to PBL, it is worth noting that conventional differ-

entiable NAS approaches [LSY18, CZH18] are not designed to incorporate physical priors; in

developing this framework we found it necessary to modify such approaches to incorporate

physical priors as both inputs and candidate operations.

2.2 Categorizing Prior Work in Physics-based Learning

There has been remarkable progress in blending physical priors with neural networks over

the past few years. Here, we make a first attempt to group previous methods into the four

categories as illustrated in Fig. 2.1:

• Physical Fusion feeds the solution from physics-based models as part of the in-
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put [KWR17a, BGW20]. The solutions can be stacked with the original input, or

additional, identical network branches can be used to extract features separately;

• Residual Physics is another way to improve the model-based solutions with deploy-

ments in robot control [ZSL19, ABW19] and medical imaging [JMF17, KMY17]. By

adding the physical solution onto the network output, the neural networks only need

to learn the mismatch between the model-based solution and the ground truth in this

case;

• Physical Regularization harnesses the regularization term from a set of physical

constraints to penalize the network solutions. The regularization term can be appended

as part of the loss function explicitly [KWR17a, SE17, RPK17, Rai18, FWS19], or

through a reconstruction process from physics [CLZ18, CGG18, PLD18];

• Embedded Physics takes the physical model inside the network optimization loop,

where the physical model acts as a skeleton, and the network is in charge of learning

parameters used in these models. Unrolled networks [GL10, DSH17, SDP18, KBR19,

MYK19], PDE-Nets [LLM17], and variational networks [Cha16, HKK18] can all be

classified into this category. During training, auxiliary intermediate losses can be

inserted to guarantee the learned parameters indeed carry their corresponding physical

meanings as well [HCS19, SF19, LCT19].

Continuing to propose new models for PBL is a viable direction, however, this may not

address adaptability to diverse scenarios of physical model mismatch and sparsity in training

data. AutoPhysics is a different tack, where we design basic operation sets inspired by PBL

strategies, and allow networks to customize their architectures during training.
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2.3 AutoPhysics

In what follows, we describe the AutoPhysics algorithm. In Sec. 2.3.1, we discuss the problem

setup. We then describe the search algorithm in Sec. 2.3.2 and the detailed features of

AutoPhysics in Sec. 2.3.3.

2.3.1 Problem Setup

In the PBL problem, we have access to a training set Dtrain = {(xi, yi)}Ni=1, and a partially

known physical operator Aphy. Each sample within the training set is a data pair (xi, yi)

formed by an input instance xi ∈ X and the corresponding output yi ∈ Y . The objective is to

learn a function f(·) that maps input space to output space (X → Y ). f(·) is approximated

by a physics-based network from a search space H with hypotheses f̂(ω, α,Aphy), where ω

denotes network parameters and α denotes architecture parameters. The learning algorithm

searches inside H and tries to find a {ω, α} that parameterizes the optimal f̂(ω, α,Aphy) for

Dtrain. The challenge lies in finding a suitable method to incorporate Aphy into the network

design under diverse regimes of physical model mismatch.

2.3.2 Search Algorithm

In contrast to NAS for vision tasks, we do not search the cell structures and apply these

searched cells to some predefined meta-architectures, since the concatenation of multiple

cells may undermine the underlying physical principles in PBL. Therefore, AutoPhysics

tries to learn an architecture that directly links the network input and the target output.

To achieve this goal, we develop AutoPhysics based on Differentiable ARchiTecture Search

(DARTS) [LSY18] with binarized architecture parameters [CZH18]. To reduce the memory

requirement and accelerate the searching process, we replace the weighted sum in DARTS

with the gated sum using the binarized mask sampled from the softmax probability of archi-

tecture parameters. These binarized parameters are trained using gradient approximation as

10
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The hidden nodes can obtain information from the original inputs or from previous hidden

nodes within this search setup. The training process is supervised by both ground truth and

physical constraints.

described in BinaryConnect [CBD15] and ProxylessNAS [CZH18]. This binarized arrange-

ment ensures that only the sampled paths are activated when searching the PBL topology,

which reduces the gap between the architecture search stage and the architecture selection

stage.

The search space of AutoPhysics is illustrated in Fig. 2.2, where the whole architecture is

represented by a directed acyclic graph with nodes {Ni}Ni=1 and edges {Em}Mm=1. Each edge

connects two nodes (Ni, Nj) through a mixed operator, and each node corresponds to a type

of input or a feature vector extracted from previous nodes through the mixed operators. The

output of the mixed operator between (Ni, Nj) is the gated sum of all candidate operations

{ok}Kk=1:

mij(ni) =
K∑
k=1

gokok(ni), (2.1)

where mij is the output of this mixed operator, ni is the feature vector of node Ni, go is the

binarized operation mask sampled from softmax probabilities of architecture parameters for

different operations αo, and K is the number of operations inside an edge, which depends
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on the properties of node pair (Ni, Nj). The nodes are densely connected so that nj (the

output features of node Nj) is the gated sum of features from all its previous nodes:

nj =

j−1∑
i=0

geimij(ni) =

j−1∑
i=0

gei

K∑
k=1

gokok(ni), (2.2)

where ge is the binarized edge mask sampled from the softmax probabilities of architecture

parameters for different edges αe, and Nj can either be an intermediate node or the output

node.

During training, we retain two incoming edges for each node and one operation for each

edge through the binary gate sampling. During the inference stage, we pick two candidate

edges with the largest edge probabilities, and we select the operation with the maximum

operation probability for each of the two edges. We choose two edges for each node to

enable AutoPhysics to learn complicated structures, such as residual connection and multi-

stream encoding. In order to learn both the network weights and the associated architecture

parameters, we update these two sets of parameters alternately. In the architecture step, we

freeze the network weights ω and minimize the validation loss Lval(ω, α) by updating α. In

the network step, we update ω to minimize the training loss Ltrain(ω, α) with frozen α.

2.3.3 AutoPhysics Features

To incorporate priors into AutoPhysics, we make three customized modifications in the search

process.

Physical Inputs: As a first step in blending physics into AutoPhysics, we need to prepare

unique input nodes that take into account four categories of input information: (1) the

data input X; (2) the duplicated data input Xdup, to verify whether physical information

is indeed necessary since each node has to pick two edges; (3) the estimated solution from

physics Ŷphy = Aphy(X); and (4) the concatenation of X and Ŷphy to test at which stage to

conduct the physical fusion.
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Figure 2.3: We evaluate our method on a simulator of classical tasks. The first

task (left) is predicting the trajectory of a ball being tossed, and the second task (right) is

one-dimensional deconvolution.

Physical Operations: To merge physical models inside the network, we create physics-

informed operation sets O = {oNN1 , ..., oNNL
, ophy}, where oNNi

denotes the neural network

operations (e.g., convolutional layer, skip connection) and ophy denotes the physical forward

operation. Specifically, for the physical forward module, a lightweight network layer, such as

a single fully connected (FC) layer, might be useful to make the size of its input consistent

with the parameter size required by the physical module.

Edge Weights: In AutoPhysics, not all edges are created with the same number of opera-

tions, since they are used to connect different types of nodes. Consequently, if we select the

edges purely based on the operation probabilities, edges with fewer operations are naturally

preferred due to the softmax probability, which causes a biased architecture selection. We

solve this issue by introducing the edge weight as described in Eq. (2.2). After searching, we

first pick a desired edge according to the edge weights and then select the desired operation

for that edge based on the operation weights.
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2.4 Experiments and Results

To comprehensively evaluate AutoPhysics, we simulate two representative physical tasks for

which we can vary the model mismatch: (1) predicting trajectories of an object being tossed,

and (2) recovering the original signal degraded by the convolution process and additive

noise. Figure 2.3 illustrates these tasks; further details are provided in Sec. 2.4.1. Compared

manually designed PBL architectures are described in Sec. 2.4.2. We evaluate AutoPhysics

and provide a detailed analysis of the searched architectures in Sec. 2.4.3.

2.4.1 Description of Tasks

For the tossing trajectory prediction task (see Fig. 2.3 for visualization), the initial

three locations of an object with a fixed mass {l1, l2, l3} are given as input X, and our

objective is to predict locations of this object in the following 15 timestamps, {l4, l5, ..., l18}.

We only consider the displacement within a 2D plane, therefore, the coordinates of each

location can be represented by two numbers, i.e., li = (lxi
, lyi). We adopt the following

elementary free-falling equations as the prior and examine different methods under this

inadequate physical prior:

Ŷphy :


lxi

= lx1 + vxti

lyi = ly1 + vyti − 1
2
gt2i

, (2.3)

where lxi
and lyi denote the object location at time ti, lx1 and ly1 are the initial location

of the object, vx and vy denote the initial velocities along horizontal and vertical directions

respectively, and g is the fixed gravitational acceleration of 9.8m/s2. We introduce two

model mismatches: random acceleration from wind and an additional damping factor based

on Fair = k×v2 to simulate air resistance. The future locations estimated by this mismatched

prior are used as the physical input Ŷphy. As to the physical modules in Embedded Physics

and AutoPhysics, we estimate parameters {l̂x1 , l̂y1 , v̂x, v̂y}, and substitute these parameters
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into Eq. (2.3) as the physical operation. This physical module is only included in the edges

that connect to the output node for this task.

We use One-dimensional Deconvolution task (see Fig. 2.3 for visualization) to fur-

ther demonstrate the capability of AutoPhysics on real-world applications. One-dimensional

deconvolution has been viewed as an important component for many sensing techniques, such

as reflection seismology [Yil01], time-of-flight imaging [KWB13] and flow cytometry [AFE18].

In our examination, we aim to recover a one-dimensional signal of length 40 from its blurry

observation. We generate random signal x as the ground truth and convolve it with a known

point spread function (PSF) h under Gaussian noise corruption to generate the blurry ob-

servation y. We use different noise n variances to adjust the model mismatch levels. A box

kernel of size 15 is selected as the PSF. For this task, the output of the Wiener filter is

utilized as the physical solution Ŷphy, and we deploy the operation in the unrolled deblurring

network [DSH17] as the Embedded Physics model. The unrolled operator can be expressed

in the equation below:

xout = F−1

{
F(h)F(y) + γF(xnet)

F(h)F(h) + γ

}
, (2.4)

where xout is the output of the unrolled operation, F(·) is the Fourier transform operator,

F−1(·) is the inverse Fourier transform operator, (·) is the complex conjugate operator, h

is the PSF, γ is the learnable balance factor, and xnet is the estimated prior from a neural

network. In [DSH17], there is a residual connection to the network prior, and we include

this connection during comparison. In AutoPhysics, we incorporate Eq. (2.4) as the physical

operation, where xnet is estimated from the previous nodes.

2.4.2 Manually Designed PBL Methods

For the sake of comparison, several manually designed architectures from Sec. 2.2 are also

evaluated. In the tossing task, we use a three-layer multilayer perceptron (MLP) as the

naive data-driven baseline, since it has sufficient expressiveness to fit this physical prob-
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lem [Csa01]. Network structures for the Physical Regularization model and the Residual

Physics model are the same as the naive model. The output of the Residual Physics model

is a summation of Ŷphy and the learned residual from the network. There is an additional

regularization term in the loss function of the Physical Regularization model. Since only a

partially correct physical prior is used, directly using physical solutions as the regularization

will in turn aggravate the error. Thus, we introduce a ReLU-based regularization similar

to [KWR17a]. The regularization loss penalizes the network solution based on the assump-

tion that the object moves along one direction in the horizontal axis. In the Physical Fusion

approach, two separate branches are utilized to extract features from X and Ŷphy respectively,

and each of them is a two-layer MLP. The extracted features will then be concatenated and

fed into the output layer. The Embedded Physics model first estimates necessary parameters

in Eq. (2.3) with a three-layer MLP, and then produces trajectory estimation based on the

fixed physical process. All the above models are supervised by the ground truth with mean

square error (MSE) loss, and the hidden dimension for FC layers is 128.

In the deconvolution task, we use convolutional neural networks (CNNs) to preserve

the spatial relationship. The naive data-driven baseline is obtained with an eight-layer CNN.

The architecture for the Residual Physics model and the Physical Regularization model is

the same CNN as the pure data-driven baseline. We deploy a similar physical reconstruction

process in [PLD18], where the network output is convolved with the PSF to reconstruct

the blurry observation. We use the MSE loss between the real blurry observation and this

reconstructed blurry observation as the additional physical regularization. For the Physical

Fusion model, we use two identical branches to extract features from the Wiener output

and the blurry observation. Each branch is an eight-layer CNN, and a convolutional layer

is used to combine the extracted features at the end. As to the Embedded Physics model,

we use the unrolled network in [DSH17]. Each unrolled block contains a five-layer CNN for

xnet estimation, and the output of each unrolled block is calculated based on Eq. (2.4). We

concatenate five unrolled blocks as the Embedded Physics model. Similarly, all the models

16



are supervised by the ground-truth signal with MSE loss. The number of hidden channels

for convolution layers is 64, and the kernel size is set to be seven to guarantee the receptive

field.

2.4.3 Results Analysis

Implementation Details: When searching, we split the training set into two subsets

of the same size to update architecture parameters and network weights respectively. We

validate the performance of the searched architectures on the architecture updating subset

and pick the architecture with the best performance as the searched result. Please note that

the test set is never used for architecture search or selection. After searching, we retrain

the searched architectures with full training sets. We limit the number of learnable nodes in

AutoPhysics to be 5 and 10 for the tossing and the deconvolution tasks respectively.

In the tossing task, we deploy a single FC layer as the data-driven operation, and the skip

connection operation is enabled when the input and output dimensions of the connected

nodes match with each other. In the deconvolution task, we use a three-layer CNN with

64 hidden channels as the data-driven modules. To include the skip connections, we fix the

number of output channels to be one for each node. ReLU is the only activation function

used. For all the models described in Sec. 2.4.2, we tune their hyperparameters with three

different hyperparameter sets for a fair comparison. When testing, we fixed the testing set

size to 512. All the models are implemented in PyTorch [PGC17] and are trained using the

Adam optimizer [KB14].

Random Search Baseline: We include the random search comparison as shown in Tab. 2.1

and Tab. 2.2. Similar to the settings in DARTS, we randomly sample 12 architectures from

the search space and train them separately with the subset for the network weights updating.

We then select the architecture with the lowest validation error and retrain it using the full

training set.
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Mismatch Level Low High

Sample Amount 32 128 32 128

Naive Network 0.768 0.250 0.594 0.345

Physical Fusion 0.295 0.161 0.332 0.239

Residual Physics 0.317 0.185 0.564 0.279

Embedded Physics 0.801 0.213 0.718 0.446

Physics Reg. 0.564 0.252 0.688 0.306

Physics Only (Ŷphy) 0.613 0.613 1.002 1.002

AutoPhysics 0.218 0.102 0.274 0.152

Random Search 0.268 0.113 0.342 0.185

Table 2.1: Testing performance on the

tossing task. We adopt the average Eu-

clidean distance between the ground truth

and the predicted locations as the evaluation

metric (a lower distance is preferred). The

low mismatch level corresponds to a small

random initial acceleration range [−1m/s2,

1m/s2] and a small damping factor of 0.2.

The high mismatch level corresponds to a

large acceleration range [−3m/s2, 3m/s2] and

a large damping factor of 0.5. The best model

is marked in red and the sub-optimal manu-

ally designed PBL model is marked in blue.

Mismatch Level Low High

Sample Amount 32 128 32 128

Naive Network 25.58 27.77 24.17 25.60

Physical Fusion 25.86 27.91 24.62 25.75

Residual Physics 23.07 27.96 22.79 25.35

Embedded Physics 29.42 32.14 25.93 27.96

Physics Reg. 25.69 28.04 24.26 25.69

Physics Only (Ŷphy) 10.90 10.90 9.48 9.48

AutoPhysics 29.63 32.47 26.24 28.11

Random Search 28.56 30.52 25.13 27.27

Table 2.2: Testing performance on the

deconvolution task. We use the peak

signal-to-noise ratio (PSNR) between the

ground truth and the deconvolution results

as the metric (a higher PSNR is preferred).

The range of the signal is between zero and

one. The low mismatch level corresponds to

a random Gaussian noise with σ2 = 0.0004,

and the high mismatch level corresponds to

a random Gaussian noise with σ2 = 0.001.

The best model is marked in red and the

sub-optimal manually designed PBL model is

marked in blue.
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Figure 2.4: AutoPhysics has lower errors as compared with the best PBL methods

over a range of quality conditions in physics and data. The left figure shows a com-

parison between the best PBL methods and AutoPhysics along different physical mismatch

levels with 32 training samples. The physical mismatch levels are from extreme to low, re-

spectively. Here (r : ±i, k : j) refers to the mismatch level of an initial acceleration range

[−im/s2, im/s2] and a damping factor j. Analogously, the right figure shows a comparison

along different data amounts under a mismatch level of (r : ±3, k : 0.5). The plots show the

error; lower curves are preferred.

Performance Comparison: To fully evaluate the performance of the proposed approach,

we vary the physical model mismatch and sparsity in a controlled manner and apply the pro-

posed AutoPhysics to learn architectures embedded in the search space. The testing results

of AutoPhysics and other existing PBL methods (as detailed in Sec. 2.4.2) are summarized

in Tab. 2.1 and Tab. 2.2. As shown in these two tables, the performance of different PBL

models varies based on the disparity of mismatch levels and training data sizes, while Auto-

Physics is capable of generating architectures that consistently outperform these manually

designed PBL models. Results in Fig. 2.4 further demonstrate this capability along the

data dimension and the physics dimension in a fine-grained scale. In addition, AutoPhysics

outperforms the random search baseline, validating the necessity of searching with sampled

paths under limited computational resources. Our experiments also show that AutoPhysics
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Figure 2.5: Utilization of physics in AutoPhysics. AutoPhysics is able to utilize physical

inputs and physics-inspired operations based on the provided physical situations, which

supports that AutoPhysics can learn characteristics of not just data, but also physics.

is able to perform inference on small training datasets: the physical prior reduces the demand

for high-fidelity training samples. Moreover, the performance gap between AutoPhysics and

the naive MLP method decreases as the number of training samples increases. This suggests

that AutoPhysics is more favorable in scenarios where the number of training samples is

limited.

Utilization of Physics: As illustrated in Fig. 2.5, AutoPhysics is capable of taking ad-

vantage of both physical inputs and physical operations and utilizing them properly based

on the provided physical conditions. In particular, the inaccurate physical operation in the

tossing task is not preferred, and AutoPhysics tries to refine the physical solutions using

the Residual Physics strategy in the final searched architectures. For the deconvolution
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task, multiple unrolled operators are utilized, since they could provide reliable estimations

from physics. However, we can also observe that the unrolled operation alone is not sufficient.

AutoPhysics includes additional CNN operations after unrolled operations to compensate for

the errors from physics. The above results indicate that the proposed AutoPhysics framework

is able to grasp the characteristics of both data and physics for PBL problems.

2.5 Conclusion

In conclusion, our experiments show that AutoPhysics can handle a wider range of phys-

ical models and data, as compared to the existing PBL methods. The main focus of our

approach is to take a first attempt at increasing the diversity of PBL through architecture

search. Ultimately, our hope is to apply AutoPhysics to problems as diverse as computa-

tional microscopy [BOS19], computer vision [VWG12], sensor fusion [ESS15, XAJ18] and

astrophysics [BJZ16, AAA19], where it is important to handle variations in model mismatch

and dataset quality across these problem domains.
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CHAPTER 3

Using Polarization Physics as an Inductive Bias for Deep

Surface Normal Estimation

3.1 Introduction

While deep learning has revolutionized many areas of computer vision, the deep learning

revolution has not yet been studied in the context of Shape from Polarization (SfP). The SfP

problem is fascinating because, if successful, shapes could be obtained in completely passive

lighting conditions without estimating lighting direction. Recent progress in CMOS sensors

has spawned machine vision cameras that capture the required polarization information in

a single shot [Pol17], making the capture process more relaxed than photometric stereo.

This SfP problem can be stated simply: light that reflects off an object has a polarization

state that corresponds to shape. In reality, the underlying physics is among the most optically

complex of all computer vision problems. For this reason, previous SfP methods have high

error rates (in the context of mean angular error (MAE) of surface normal estimation), and

limited generalization to mixed materials and lighting conditions.

The physics of SfP are based on the Fresnel Equations. These equations lead to an

underdetermined system—the so-called ambiguity problem. This problem arises because a

linear polarizer cannot distinguish between polarized light that is rotated by π radians. This

results in two confounding estimates for the azimuth angle at each pixel. Previous work

in SfP has used additional information to constrain the ambiguity problem. For instance,

Smith et al. [SRT16] use both polarization and shading constraints as linear equations when

22



Method Inputs
Mean Angular

Error

Robustness to

Texture-Copy

Lighting

Invariance

Miyazaki [MTH03] Polarization Images High Strong Moderate

Mahmoud [MEF12] Polarization Images High Not Observed Moderate

Smith [SRT18]
Polarization Images

Lighting Estimate
Moderate Strong Moderate

Proposed Polarization Images Lowest Strong Strong

Table 3.1: Deep SfP versus previous methods. We compare the input constraints

and the surface normal quality of the proposed hybrid of physics and learning compared to

previous, physics-based SfP methods.

solving object depth, and Mahmoud et al. [MEF12] use shape from shading constraints to

correct the ambiguities. Other authors assume surface convexity to constrain the azimuth

angle [MTH03, AH06] or use a coarse depth map to constrain the ambiguity [KTS15, KTS17].

There are also additional binary ambiguities based on reflection type, as discussed in [AH06,

MEF12]. Table 3.1 compares our proposed technique with prior work.

Another contributing factor to the underdetermined nature of SfP is the refractive prob-

lem. SfP needs knowledge of per-pixel refractive indices. Previous work has used hard-coded

values to estimate the refractive index of scenes [MTH03]. This leads to a relative shape

recovered with refractive distortion.

Yet another limitation of the physical model is particular susceptibility to noise. The

polarization signal is very subtle for fronto-parallel geometries so it is important that the

input images are relatively noise-free. Unfortunately, a polarizing filter reduces the captured

light intensity by 50 percent, worsening the effects of Poisson shot noise, encouraging a noise

tolerant SfP algorithm.1

In this chapter, we address these SfP pitfalls by moving away from a physics-only solution,

1For a detailed discussion of other sources of noise please refer to Schechner [Sch15].
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toward the realm of data-driven techniques. While it is tempting to apply traditional deep

learning models to the SfP problem, we find this approach does not maximize performance.

Instead, we propose a physics-based learning algorithm that not only outperforms traditional

deep learning but also outperforms three baseline comparisons to physics-based SfP. We

summarize our contributions as follows:

• a first attempt to apply deep learning techniques to solve the SfP problem;

• incorporation of the existing physical model into the deep learning approach;

• demonstration of significant error reduction; and

• introduction of the first polarization image dataset with ground truth shape, laying a

foundation for future data-driven methods.

Limitations: As a physics-based learning approach, our technique still relies on computing

the physical priors for every test example. This means that the per-frame runtime would

be the sum of the compute time for the forward pass and that of the physics-based prior.

Future work could parallelize compute of the physical prior. Another limitation pertains to

the accuracy inherent to SfP. Our average MAE on the test set is 18.5 degrees. While this

is the best SfP performer on our challenging dataset, the error is higher than with a more

controlled technique like photometric stereo.

3.2 Related Work

Polarization cues have been employed for various tasks, such as reflectometry estimation [GCP10],

radiometric calibration [TSZ18], facial geometry reconstruction [GFT11], dynamic interfer-

ometry [MKS18], polarimetric spatially varying surface reflectance functions (SVBRDF)

recovery [BJT18], and object shape acquisition [MHP07, GPD12, RRF17, ZS19]. Our ap-

proach is at the seamline of deep learning and SfP, offering unique performance tradeoffs
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from prior work. Refer to Tab. 3.1 for an overview.

Shape from Polarization infers the shape (usually represented in surface normals) of a sur-

face by observing the correlated changes of image intensity with the polarization information.

Changes of polarization information could be captured by rotating a linear polarizer in front

of an ordinary camera [Wol97, AE18] or polarization cameras using a single shot in real time

(e.g., PolarM [Pol17] in [YTL18]). Conventional SfP decodes such information to recover the

surface normal up to some ambiguity. If only images with different polarization information

are available, heuristic priors such as the surface normals along the boundary and convexity

of the objects are employed to remove the ambiguity [MTH03, AH06]. Photometric con-

straints from shape from shading [MEF12] and photometric stereo [DS01, NNT15, Atk17]

complements polarization constraints to make the normal estimates unique. If multi-spectral

measurements are available, the surface normal and its refractive index could be estimated

at the same time [HRH10, HRH13]. More recently, a joint formulation of shape from shading

and SfP in a linear manner is shown to be able to directly estimate the depth of the sur-

face [SRT16, TSZ17, SRT18]. Our approach is the first attempt at combining deep learning

and SfP.

Polarized 3D involves stronger assumptions than SfP and has different inputs and out-

puts. Recognizing that SfP alone is a limited technique, the Polarized 3D class of methods

integrates SfP with a low-resolution depth estimate. This additional constraint allows not

just recovery of shape but also a high-quality 3D model. The low-resolution depth could

be achieved by employing two-view [MKI04, AH05, BVM17], three-view [CZS18], multi-

view [MSB16, CGS17] stereo, or even in real time by using a SLAM system [YTL18]. These

depth estimates from geometric methods are not reliable in textureless regions where finding

correspondence for triangulation is difficult. Polarimetric cues could be jointly used to im-

prove such unreliable depth estimates to obtain a more complete shape estimation. A depth

sensor such as the Kinect can also provide coarse depth prior to disambiguate the ambiguous

normal estimates given by SfP [KTS15, KTS17]. The key step that characterizes Polarized
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3D is a holistic approach that rethinks both SfP and the depth-normal fusion process. The

main limitation of Polarized 3D is the strong requirement of a coarse depth map, which is

not true for our proposed technique.

Data-driven computational imaging approaches draw much attention in recent years

thanks to the powerful modeling ability of deep neural networks. Various types of con-

volutional neural networks (CNNs) are designed to enable 3D imaging for many types of

sensors and measurements. From single photon sensor measurements, a multi-scale denois-

ing and upsampling CNN is proposed to refine depth estimates [LOW18]. CNNs also show

advantages in solving phase unwrapping, multipath interference, and denoising jointly from

raw time-of-flight measurements [MHM17, SHW18]. From multi-directional lighting mea-

surements, a fully-connected network is proposed to solve photometric stereo for general

reflectance with a pre-defined set of light directions [SSS17]. Then the fully convolutional

network with an order-agnostic max-pooling operation [CHW18] and the observation map

invariant to the number and permutation of the images [Ike18] are concurrently proposed

to deal with an arbitrary set of light directions. Normal estimates from photometric stereo

can also be learned in an unsupervised manner by minimizing reconstruction loss [TM18].

Other than 3D imaging, deep learning has helped solve several inverse problems in the

field of computational imaging [STG17, TSR18, TSS18, LCL19]. Separation of shape, re-

flectance, and illuminance maps for wild facial images can be achieved with the CNNs as

well [SKC18]. CNNs also exhibit potential for modeling SVBRDF of a near-planar sur-

face [LDP17, YLD18, LSC18, DAD18], and more complex objects [LXR18]. The challenge

with existing deep learning frameworks is that they do not leverage the unique physics of

polarization.
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3.3 Proposed Method

In this section, we first introduce basic knowledge of SfP and then present our physics-based

CNN. Blending physics and deep learning improves the performance and generalizability of

the method.

3.3.1 Physical Solution

Our objective is to reconstruct surface normals N̂ from a set of polarization images {Iϕ1 ,

Iϕ2 , ..., IϕM
} with different polarization angles. For a specific polarization angle ϕpol, the

intensity at a pixel of a captured image follows a sinusoidal variation under unpolarized

illumination:

I(ϕpol) =
Imax + Imin

2
+

Imax − Imin

2
cos(2(ϕpol − ϕ)), (3.1)

where ϕ denotes the phase angle, and Imin and Imax are lower and upper bounds for the

observed intensity. Equation (3.1) has a π-ambiguity in the context of ϕ: two phase angles,

with a π shift, will result in the same intensity in the captured images. Based on the phase

angle ϕ, the azimuth angle φ can be retrieved with π
2
-ambiguity as follows [CGS17]:

ϕ =


φ, if diffuse reflection dominates

φ− π
2
, if specular reflection dominates

. (3.2)

The zenith angle θ is related to the degree of polarization ρ, which can be written as:

ρ =
Imax − Imin

Imax + Imin

. (3.3)

When diffuse reflection is dominant, the degree of polarization can be expressed with the

zenith angle θ and the refractive index n as follows [AH06]:

ρd =
(n− 1

n
)2 sin2 θ

2 + 2n2 − (n+ 1
n
)2 sin2 θ + 4 cos θ

√
n2 − sin2 θ

. (3.4)
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Figure 3.1: SfP is underdetermined and one causal factor is the ambiguity problem.

Here, two different surface orientations could result in exactly the same polarization signal,

represented by dots and hashes. The dots represent polarization out of the plane of the paper

and the hashes represent polarization within the plane of the board. Based on the measured

data, it is unclear which orientation is correct. Ambiguities can also arise due to specular

and diffuse reflections (which change the phase of light). For this reason, our network uses

multiple physical priors.

The dependency of ρd on n is weak [AH06], and we assume n = 1.5 throughout the rest

of this chapter. With this known n, Eq. (3.4) can be rearranged to obtain a closed-form

estimation of the zenith angle for the diffuse dominant case.

When specular reflection is dominant, the degree of polarization can be written as [AH06]:

ρs =
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
. (3.5)

Equation (3.5) can not be inverted analytically, and solving the zenith angle with numerical

interpolation will produce two solutions if there are no additional constraints. For real-world

objects, specular reflection and diffuse reflection are mixed depending on the surface material

of the object. As shown in Fig. 3.1, the ambiguity in the azimuth angle and uncertainty in

the zenith angle are fundamental limitations of SfP. Overcoming these limitations through

physics-based neural networks is the primary focus of this work.
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3.3.2 Learning with Physics

A straightforward approach to estimating the normals, from polarization would be to simply

take the set of polarization images as input, encode it into a feature map using a CNN,

and feed the feature map into a normal-regression sub-network. Unsurprisingly, we find

this results in normal reconstructions with higher MAE and undesirable lighting artifacts

(see Fig. 3.7). To guide the network towards more optimal solutions from the polarization

information, one possible method is to force our learned solutions to adhere to the polariza-

tion equations described in Sec. 3.3.1, similar to the method used in [KWR17b]. However,

it is difficult to use these physical solutions for SfP tasks due to the following reasons: 1.

Normals derived from the equations will inherently have ambiguous azimuth angles. 2. Spec-

ular reflection and diffuse reflection coexist simultaneously, and determining the proportion

of each type is complicated. 3. Polarization images are usually noisy, causing errors in the

ambiguous normals, especially when the degree of polarization is low. Shifting the azimuth

angles by π or π
2

could not reconstruct the surface normals properly for noisy images.

Therefore, we propose directly feeding both the polarization images and ambiguous nor-

mal maps into the network and leave the network to learn how to combine both of these

inputs effectively from training data. The estimated surface normals can be structured as

follows:

N̂ = f(Iϕ1 , Iϕ2 , ..., IϕM
,N diff ,N spec1,N spec2), (3.6)

where f(·) is the proposed prediction model, {Iϕ1 , Iϕ2 , ..., IϕM
} is a set of polarization

images, and N̂ is the estimated surface normals. We use the diffuse model in Sec. 3.3.1 to

calculate N diff , and N spec1,N spec2 are the two solutions from the specular model. These

ambiguous normals can implicitly direct the proposed network to learn the surface normal

information from the polarization.

Our network structure is illustrated in Fig. 3.2. It consists of a fully convolutional encoder

to extract and combine high-level features from the ambiguous physical solutions and the
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Figure 3.2: Overview of our proposed physics-based neural network. The network

is designed according to the encoder-decoder architecture in a fully convolutional manner.

The blocks comprising the network are shown below the high-level diagram of our network

pipeline. We use a block based on spatially-adaptive normalization as previously imple-

mented in [PLW19]. The numbers below the blocks refer to the number of output channels

and the numbers next to the arrows refer to the spatial dimension.

polarization images, and a decoder to output the estimated normals, N̂ . Although three

polarization images are sufficient to capture the polarization information, we use images with

a polarizer at ϕpol ∈ {0°, 45°, 90°, 135°}. These images are concatenated channel-wise with

the ambiguous normal solutions as the model input.

Note that the fixed nature of our network input is not arbitrary, but based on the output

of standard polarization cameras. Such cameras utilize a layer of polarizers above the pho-

todiodes to capture these four polarization images in a single shot. Our network design is

intended to enable applications using this current single-shot capture technology. Single-shot

capture is a clear advantage of our method over alternative reconstruction approaches, such

as photometric stereo, since it allows images to be captured in a less constrained setting.

After polarization feature extraction, there are five encoder blocks to encode the input

30



Batch
Norm

x (Upstream Layer
Output)

(Polarization Images)
, , ,��1
��2

��3
��4

3x3
Conv

3x3
Conv ReLU 3x3

Conv

α β

Figure 3.3: Diagram of SPADE normalization block. We use the polarization images

to hierarchically inject back information in upsampling. The SPADE block, which takes a

feature map x and a set of downsampled polarization images {Iϕ1 , Iϕ2 , Iϕ3 , Iϕ4} as the input,

learns affine modulation parameters α and β. The circle dot sign represents elementwise

multiplication, and the circle plus sign represents elementwise addition.

to a B × 512 × 8 × 8 tensor, where B is the minibatch size. The encoded tensor is then

decoded by the same number of decoder blocks, with skip connections between blocks at

the same hierarchical level as proposed in U-Net [RFB15]. It has been noted that such deep

architectures may wash away some necessary information from the input [HSL16, SGS15], so

we apply spatially-adaptive normalization (SPADE) [PLW19] to address this problem. Mo-

tivated by their architecture, we replace the modulation parameters of batch normalization

layers [IS15] in each decoder block with parameters learned from downsampled polarization

images using simple, two-layer convolutional sub-networks. The details of our adaptations

to the SPADE module are depicted in Fig. 3.3. Lastly, we normalize the output estimated

normal vectors to unit length, and apply the cosine similarity loss function:

Lcosine =
1

W ×H

W∑
i

H∑
j

(1− ⟨N̂ ij,N ij⟩), (3.7)

where ⟨·, ·⟩ denotes the dot product, N̂ ij is the estimated surface normal at pixel location

(i, j), and N ij is the corresponding ground truth surface normal. This loss is minimized

when N̂ ij and N ij have identical orientation.
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3.4 Dataset and Implementation Details

In what follows, we describe the dataset capture and organization as well as software im-

plementation details. This is the first real-world dataset of its kind in the SfP domain,

containing polarization images and corresponding ground truth surface normals for a variety

of objects, under multiple different lighting conditions. The Deep Shape from Polarization

dataset can thus provide a baseline for future attempts at applying learning to the SfP

problem.

3.4.1 Dataset

A polarization camera [Luc18] with a layer of polarizers above the photodiodes (as described

in Sec. 3.3.2) is used to capture four polarization images at angles 0°, 45°, 90° and 135° in

a single shot. Then a structured light based 3D scanner [SHI18] (with single shot accu-

racy no more than 0.1 mm, point distance from 0.17 mm to 0.2 mm, and a synchronized

turntable for automatically registering scanning from multiple viewpoints) is used to obtain

high-quality 3D shapes. Our real data capture setup is shown in Fig. 3.4. The scanned 3D

shapes are aligned from the scanner’s coordinate system to the image coordinate system of

the polarization camera by using the shape-to-image alignment method adopted in [SMW19].

Finally, we compute the surface normals of the aligned shapes by using the Mitsuba ren-

derer [Jak10]. Our introduced dataset consists of 25 different objects, each object with 4

different orientations for a total of 100 object-orientation combinations. For each object-

orientation combination, we capture images in 3 lighting conditions: indoors, outdoors on

an overcast day, and outdoors on a sunny day. In total, we capture 300 images for this

dataset, each with 4 polarization angles.2

2The dataset is available at: https://visual.ee.ucla.edu/deepsfp.htm.
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Figure 3.4: This is the first dataset of its kind for the SfP problem. The capture

setup and several example objects are shown above. We use a polarization camera to capture

four gray-scale images of an object with four polarization angles in a single shot. The scanner

is put next to the camera for obtaining the 3D shape of the object. The polarization images

shown have a polarizer angle of 0 degrees. The corresponding normal maps are aligned

below. For each object, the capture process was repeated for 4 different orientations (front,

back, left, right) and under 3 different lighting conditions (indoor lighting, outdoor overcast,

and outdoor sunlight).

3.4.2 Software Implementation

Our model was implemented in PyTorch [PGC17] and trained for 500 epochs with a batch size

of 4. It took around 8 hours for the network to converge with a single NVIDIA GeForce RTX

2070. We used the Adam optimizer [KB14] with default parameters with a base learning rate

of 0.01. We train our model on randomly cropped 256×256 image patches, which is relatively

common in shape estimation tasks [XCB14, MSL18] as a form of data augmentation.

3.5 Experimental Results

In this section, we evaluate our model with the presented challenging real-world scene bench-

mark and compare it against three physics-only methods for SfP. All neural networks were
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Figure 3.5: The proposed method handles objects under varied lighting conditions.

Note that our method has very similar mean angular error among all test objects across the

three lighting conditions (bottom row).

trained on the same training data as discussed in Sec. 3.4.1. To quantify shape accuracy, we

compute the widely used mean angular error (MAE) score on the surface normals.

3.5.1 Comparisons to Physics-based SfP

We used a test dataset consisting of scenes that include ball, horse, vase, christmas,

flamingo, dragon. On this test set, we implement three physics-based methods for SfP

as a baseline: 1. Smith et al. [SRT18]. 2. Mahmoud et al. [MEF12]. 3. Miyazaki et

al. [MTH03]. The first method recovers the depth map directly, and we only use the diffuse

model due to the lack of specular reflection masks. The surface normals are obtained from

the estimated depth with bicubic fit. Both the first and the second methods require lighting

input, and we use the estimated lighting from the first method during comparison. The

second method also requires known albedo maps, and following convention, we assume a

uniform albedo of 1. Note the method proposed in [MTH03] is the same as that presented

in [AH06]. We omit comparison with Tozza et al. [TSZ17], as it requires two unpolarized

intensity images, with two different light source directions. To motivate a fair comparison,

we obtained the comparison codes directly from Smith et al. [SRT18]. 3

3https://github.com/waps101/depth-from-polarisation
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(a) Result from ShadingU npolarized Image

Figure 3.6: Our network is learning from polarization cues, not just shading cues.

An ablation study conducted on the Dragon scene. In (a) the network does not have access

to polarization inputs. In (b) the network can learn from polarization inputs and polarization

physics. Please refer to Fig. 3.8, row c, for the ground truth shape of the Dragon.

3.5.2 Robustness to Lighting Variations

Figure 3.5 shows the robustness of the method to various lighting conditions. Our dataset

includes lighting in three broad categories: (a) indoor lighting; (b) outdoor overcast; and

(c) outdoor sunlight. Our method has the lowest MAE, over the three lighting conditions.

Furthermore, our method is consistent across conditions, with only slight differences in MAE

for each object between lightings.

3.5.3 Importance of Polarization

An interesting question is how much of the shape information is learned from polarization

cues as compared to shading cues. Figure 3.6 explores the benefit of polarization by ablating

network inputs. We compare two cases. Figure 3.6(a) shows the resulting shape reconstruc-

tion when using a network architecture optimized for unpolarized image input. The shape

has texture copy artifacts and a high MAE of 28.63 degrees. In contrast, Fig. 3.6(b) shows

shape reconstruction from our proposed method of learning from four polarization images

and a model of polarization physics. We observe that shape reconstruction using polarization

cues is more robust to texture copy artifacts, and has a lower MAE of only 19.46 degrees.

Although only one image is used in the shading network (as is typical for shape from shad-

ing), this image is computed using an average of the four polarization images. Thus the
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Specular Highlight Texture Copy Priors Reduce Copy

Polarization Images Result without Priors Result with Priors

Figure 3.7: Ablation test shows that the physics-based prior reduces texture copy

artifacts. We see that the specular highlight in the input polarization image is directly

copied into the normal reconstruction without priors. Note that our prior-based method

shows stronger suppression of the texture copy artifacts.

distinction between the two cases in Fig. 3.6(a) and Fig. 3.6(b) is the polarization diversity,

rather than improvements in photon noise.

3.5.4 Importance of Physics Revealed by Ablating Priors

Figure 3.7 highlights the importance of physics-based learning, as compared to traditional

machine learning. Here, we refer to “traditional machine learning” as learning shape us-

ing only the polarization images as input. These results are shown in the middle column

of Fig. 3.7. Shape reconstructions based on traditional machine learning exhibit image-based

artifacts, because the polarization images contain brightness variations that are not due to

geometry, but due to specular highlights (e.g., the horse is shiny). Learning from just

the polarization images alone causes these image-based variations to masquerade as shape

variations, as shown in the zoomed inset of Fig. 3.7. A term used for this is texture copy,
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Scene Proposed Smith [SRT18] Mahmoud [MEF12] Miyazaki [MTH03]

Box 23.31° 31.00° 41.51° 45.47°

Dragon 21.55° 49.16° 70.72° 57.72°

Father Christmas 13.50° 39.68° 39.20° 41.50°

Flamingo 20.19° 36.05° 47.98° 45.58°

Horse 22.27° 55.87° 50.55° 51.34°

Vase 10.32° 36.88° 44.23° 43.47°

Whole Set 18.52° 41.44° 49.03° 47.51°

Table 3.2: Our method outperforms previous methods for each object in the test

set. Numbers represent the MAE averaged across the three lighting conditions for each

object. The best model is marked in magenta and the second-best is in blue.

where image texture is undesirably copied onto the geometry [KTS15]. In contrast, the

proposed results with physics priors are shown in the rightmost inset of Fig. 3.7, showing

less dependence on image-based texture (because we also input the geometry-based physics

model).

3.5.5 Quantitative Evaluation

We use MAE4 to make a quantitative comparison between our method and the previous

physics-based approaches. Table 3.2 shows that the proposed method has the lowest MAE

on each object, as well as the overall test set. The two most challenging scenes in the

test set are the horse and the dragon. The former has intricate detail and specularities,

while the latter has a mixed material surface. The physics-based methods struggle on these

challenging scenes as all scenes have over 49 degrees of mean angular error. The method from

Smith et al. [SRT18] has the second-lowest error on the dragon scene, but the method from

4MAE is the most commonly reported measure for surface normal reconstruction, but in many cases,
it is a deceptive metric. We find that a few outliers in high-frequency regions can skew the MAE for
entire reconstructions. Accordingly, we emphasize the qualitative comparisons of the proposed method to
its physics-based counterparts.
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Miyazaki et al. [MTH03] has the second-lowest error on the horse scene. On the overall

test set, the physics-based methods are all clustered between 41.4 and 49.0 degrees, while

the physics-based deep learning approach we propose achieves over a two-fold reduction in

error to 18.5 degrees.

The reader may wonder why the physics-based methods perform poorly on tested scenes.

The result from Smith et al. [SRT18] assumes a reflection model and combinatorial lighting

estimation, which do not appear to scale to unconstrained, real-world environments, resulting

in a normal map with a larger error. Mahmoud et al. [MEF12] uses shading constraints that

assume a distant light source, which is not the case for some of the tested scenes, especially the

indoor ones. Finally, the large region-wise anomalies on many of the results from Miyazaki et

al. [MTH03] are due to the sensitive nature of their histogram normalization method.

3.5.6 Qualitative Evaluation

Figure 3.8 shows qualitative and quantitative data for various objects in our test set. The

RGB images in (row a) are not used as input but are shown in the top row of the figure for

context about material properties. The input to all the methods shown is four polarization

images, shown in (row b) of Fig. 3.8. The ground truth shape is shown in (row c), and corre-

sponding shape reconstructions for the proposed method are shown in (row d). Comparison

methods are shown in (row e) through (row g). It is worth noting that the physics-based

methods particularly struggle with texture copy artifacts, where color variations masquerade

as geometric variations. This can be seen in Fig. 3.8, (row f), where the physics-based recon-

struction of Mahmoud [MEF12] confuses the color variation in the beak of the flamingo

with a geometric variation. In contrast, our proposed method, shown in (row d), recovers

the beak more accurately. Beyond texture copy, another limitation of physics-based methods

lies in the difficulty of solving the ambiguity problem, discussed earlier in this chapter. In

row g, the physics-based approach from Miyazaki et al. [MTH03] has significant ambiguity

errors. This can be seen as the fixed variations in color of normal maps, which are not due to
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Figure 3.8: The proposed method shows qualitative and quantitative improve-

ments in shape recovery in our test dataset. (row a) The RGB scene photographs for

context—these are not used as the input to any of the methods. (row b) The input to all

methods is a stack of four polarization photographs at angles of 0°, 45°, 90°, and 135°(row

c). The ground truth normals obtained experimentally. (row d) The proposed approach

for shape recovery. (row e-g) We compare with physics-based SfP methods by Smith et

al. [SRT16], Mahmoud et al. [MEF12] and Miyazaki et al. [MTH03]. (We omit the results

from Atkinson et al. [AH06], which uses a similar method as [MTH03]).
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random noise. Although less drastic, the physics-based method of Smith et al. [SRT18] also

shows such fixed pattern artifacts, due to the underdetermined nature of the problem. Our

proposed method is fairly robust to fixed pattern error, and our deviation from ground truth

is largely in areas with high-frequency detail. Although the focus of Fig. 3.8 is to highlight

qualitative comparisons, it is worth noting that the MAE in of the proposed method is the

lowest for all these scenes (lowest MAE is highlighted in green font).

3.6 Discussion

In summary, we presented a first attempt at re-examining SfP through the lens of deep

learning, and specifically, physics-based deep learning. Table 3.2 shows that our network

achieves over a two-fold reduction in shape error, from 41.4 degrees [SRT18] to 18.5 degrees.

An ablation test verifies the importance of using the physics-based prior in the deep learning

model. In experiments, the proposed model performs well under varied lighting conditions,

while previous physics-based approaches have either higher error or variation across lighting.

Future Work: The framerate of our technique is limited both by the feed-forward pass, as

well as the time required to calculate the physical prior (about 1 second per frame). Future

work could explore parallelizing the physics-based calculations or using approximations for

more efficient computing. As discussed in Sec. 3.5.5, the high MAE is largely due to a

few regions with extremely fine detail. Finding ways to effectively weigh these areas more

heavily or add a refinement stage focused on these challenging regions, are promising avenues

for future exploration. Moreover, identifying a metric better able to capture the quality of

reconstructions than MAE would be valuable for the continued study of learning-based SfP.

Conclusion: We hope the results of this study encourage future explorations at the seam-

line of deep learning and polarization as well as the broader field of fusion of data-driven

and physics-driven techniques.
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CHAPTER 4

Style Transfer with Bio-realistic Appearance

Manipulation for Skin-tone Inclusive rPPG

4.1 Introduction

During the pandemic, telehealth consults have increased more than 50-fold for certain groups

(e.g., those with chronic diseases) [WBH21] due to the concerns that the congregation of peo-

ple may increase the risk of contraction. Although contact sensors (e.g., electrocardiograms,

oximeters) provide a gold-standard measurement of human body functions, these contact de-

vices are not widely available, which makes a non-contact way of detecting vital signs crucial

for telehealth settings [BDO20, SLW20, Bok21]. Non-contact health sensing can also benefit

applications in clinical settings, such as neonatal intensive care unit (ICU) sensing [VCJ19],

as the contact sensors may cause infection for these vulnerable groups. For non-contact

health sensing systems to be deployed at scale in society, it is important to ensure their

performance consistency across a broad range of ethnic groups [Kad21]. In this chapter, we

use remote photoplethysmography (rPPG) as an example to explore how to push Pareto

frontier by promoting both accuracy and fairness in heart rate estimation with synthetic

augmentation as shown in Fig. 4.1. We select camera-based rPPG [VSN08, PMP10a] since

it provides a solution to the above scenarios given that web cameras are more ubiquitously

available, contactless, and low-cost. In the meantime, the existing rPPG datasets are usually

overwhelmed by subjects of light skin tones, which makes it problematic to deploy rPPG for

various demographic groups.
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Lowest Error, Lowest Bias

Figure 4.1: Our proposed augmentation method pushes the Pareto frontier to-

ward both axes: accuracy and equity for rPPG. We use the mean absolute error

(MAE) of the heart rate (HR) estimation for all skin tones as the overall performance metric

and the standard deviation of MAEs across different skin-tone groups as the bias metric.

Our proposed augmentation method has the lowest estimation error with minimized bias as

compared with the existing solutions. HR MAE is measured in the unit of beats per minute

(BPM) in the plot.

Camera-based rPPG uses subtle skin color variations on the face to obtain physiological

signals. When the light hits the face, the amount of light reflected or absorbed is determined

by the physiological processes, and the color change corresponding to the Blood Volume Pulse

(BVP) is synchronized with the heart rate (HR), which provides the feasibility to extract HR

from facial videos. While data-driven neural networks have exhibited remarkable estimation

accuracy for non-contact camera-based sensing [McD18, YPL19, RIS19, NSH19], there exist

several practical constraints towards collecting large-scale data from patients for these deep

learning models: (1) demographic biases in society that translate to data (e.g., innovation
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happening in some countries/regions may not have access to a diverse dataset); (2) the

requirement of medical-grade sensors and necessity of intrusive/semi-intrusive traditional

methods for data collection; and (3) patient privacy concerns (e.g., OBF dataset [LAS18] is

not publicly available due to the license issue).

Recent studies have shown that computer vision algorithms have been disadvantaging the

underrepresented groups in some applications, such as face recognition [BG18]. Non-contact

rPPG estimation is not an exception given the unbalanced and relatively small datasets

in the field [NMV20b]. There are very rare subjects with dark skin tones in the existing

benchmark datasets. More specifically, MMSE-HR [ZGW16], AFRL [EBM14], and UBFC-

RPPG [BMB19] only contain roughly 10%, 0%, and 5% dark-skinned subjects respectively.

With the training sets heavily biased towards subjects of light skin tones, the state-of-the-art

data-driven rPPG models usually fail to generalize their performance to the underrepresented

groups [NMV20b]. This prohibits the clinical deployment of these algorithms since it is

critical for rPPG algorithms to have consistent performance across different demographic

groups in clinical settings.

Realizing the difficulty of recruiting patients to collect large-scale rPPG datasets in the

university setting, synthetic augmentation of facial videos has become an active research

topic recently. McDuff et al. [MHW20] use synthetic avatars with ray tracing to reflect

the blood volume changes under various configurations. However, as the authors point out,

that infrastructure is labor-intensive and requires a significant amount of rendering time for

each frame (approximately 20 seconds per frame), which impedes their scalability. Pulse

signals can also be incorporated to make the synthetic avatars more lifelike, yet it is difficult

for avatar-based methods to generate a balanced dataset due to the lack of dark-skinned

avatars [MN21]. Tsou et al. [TLH20] augment source rPPG videos with other specified pulse

signals, however, their framework is restricted to the face appearance in the original source

videos and fails to produce novel videos with dark skin tones.

In contrast to these prior arts, we do a first attempt to directly augment the existing
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rPPG dataset by translating videos of light-skinned subjects to dark skin tones. This is

difficult because the color variations due to blood volume changes are subtle, and the gener-

ation network has to be carefully designed to reflect these subtle changes while conducting

skin tone translation without accessing real rPPG videos of dark-skinned subjects. How-

ever, this technique is rewarding, since it is capable of producing both photo-realistic and

physiologically accurate synthetic videos in a fast manner (approximately 0.005 seconds per

frame on average for our model) and can assist the development of algorithms and techniques

for remote diagnostics and healthcare. In the experiment, our proposed method can reduce

around 31% HR estimation error for the dark-skinned group and show 46% improvement in

bias mitigation for all the groups, as compared with the existing architecture trained with

just real samples.

Yucer et al. [YAA20] introduce a race translation model across various racial domains with

a CycleGAN-based architecture [ZPI17]. However, their work is not designed to incorporate

pulsatile signals. As illustrated in Fig. 4.2, this vanilla skin tone translation network [YAA20]

merely focuses on the visual appearance, and the pulsatile signals are not preserved. To

address this issue, we propose a learning framework that can augment realistic rPPG videos

with dark skin tones that are of high fidelity. The framework consists of two interconnected

components: (1) a generator to translate light skin tones to dark skin tones and (2) an rPPG

estimator named PhysResNet (PRN) to encourage pulsatile signals within the generated

videos. The generator is trained to learn both the visual appearance and the subtle color

variations with respect to the underlying blood volume variations, and the rPPG network can

simultaneously benefit from the generator to generalize its performance in diverse groups.

We also demonstrate that our generated synthetic videos can be directly utilized to improve

the performance of the state-of-the-art data-driven rPPG method with reduced bias across

different skin color groups.

To summarize, the contributions of our work include:

• We introduce a first attempt to translate facial videos of light-skinned subjects to dark
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Figure 4.2: The proposed method successfully incorporates pulsatile signals into

the generated videos, while the existing work [YAA20] only focuses on the visual

appearance. For different facial regions, frames generated by the proposed method exhibit

similar pixel intensity variations as compared with frames from real videos, while the prior

work shows unrealistic RGB variations. As a result, pulsatile signals can be well preserved

in our method as opposed to the vanilla skin tone translation.

tones while preserving the underlying blood volume variations;

• We demonstrate that our synthetic videos can be directly utilized to improve the

performance of the state-of-the-art deep rPPG methods with mitigated bias across

different demographic groups;

• We propose a simple yet efficient rPPG estimation model based on 3D convolution

operations and show that the proposed model can achieve state-of-the-art performance

on various facial videos.
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4.2 Related Work

4.2.1 Imaging Photoplethysmography

Imaging PPG methods aim to recover the pulsatile signal from the subtle color changes in

the face videos. Algorithms of detecting non-contact PPG signal can roughly be divided

into three categories: Signal decomposition [LRK11, PMP10a, PMP10b, TAR16, WSD15],

model-based methods [DV14, DJ13, WBS16, KVS15], and deep learning methods [McD18,

YPL19, RIS19, NSH19]. Signal decomposition techniques based on Blind Source Sepa-

ration (BSS) techniques decompose/demix the face videos into different sources utilizing

PCA [LRK11] or ICA [PMP10a]. However, these methods do not exploit skin reflectance

properties that are specific to rPPG problems.

Model-based methods, such as CHROM [DJ13], apply color space transforms to linearly

combine the chrominance signals to obtain the final PPG signals. The Pulse Blood Vec-

tor [DV14] method uses characteristic blood volume changes to weigh different color chan-

nels. This method can be further improved by first projecting the temporally-normalized

skin tone onto the plane which is orthogonal to the intensity variation term and then linearly

combining the projected signals [WBS16]. These methods use all the face skin pixels for the

rPPG measurement, which may achieve sub-optimal results as each pixel may have a rather

different contribution to the pulse signals.

More recently, data-driven methods have gained more attention [CM18, YPL19, SCC21,

LHZ21, NMV21a, TLH20]. More specifically, DeepPhys [CM18] proposes a Convolutional

Attention Network (CAN) which uses appearance information to guide motion estimation

to recover physiological signals. PhysNet [YPL19] captures the temporal correlation of the

pulse signals in the rPPG face videos using a 3D spatial-temporal Convolutional Neural

Network (3D-CNN) or a Recurrent Neural Network (RNN). While these methods exhibit

remarkable performance improvement as compared with model-based solutions, their gener-

alization capability is highly affected by the diversity of the training samples.
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4.2.2 Synthetic Augmentation in Healthcare

Medical images have been widely used in clinics and played a critical role in various clinical

applications. Due to the significant cost of collecting high-quality medical images, most

datasets are very limited in size, and this has impeded the scientific progress. Traditional data

augmentation schemes, such as horizontal/vertical flipping, rotation, and translation, are

used and have become a standard procedure for training deep neural networks in computer

vision applications [KSH12]. However, the diversity of the dataset can not be improved

significantly by such schemes. Medical image synthesis can be of great benefit to address

this problem [NTL18], such as synthetic skin lesion images [QLZ20] and synthetic Magnetic

Resonance (MR) images for brain tumors [FE20].

In the rPPG field, McDuff et al. [MHW20] use synthetic avatars with blood volume

changes to generate rPPG face videos under various settings. The infrastructure for their

pipeline is expensive and labor-intensive, which makes it difficult to scale up their generation

process. Tsou et al. [TLH20] propose to augment the source rPPG videos with a specified

rPPG signal present in another video and show improvement on the heart rate estimation

task with the augmented dataset. Their model cannot augment the original dataset with

different face appearance, such as skin tones. In contrast, we use a generator to synthesize

bio-realistic videos with dark skin tones to reflect the underlying subtle PPG signal variations

in a scalable way and show that it is beneficial to improving the measurement of heart rate

for remote clinical use.

4.2.3 Neural Style Transfer for Medicine

Neural style translation has been applied to various medical applications, such as digital

histopathology since the images of the same tissue recorded from different labs and hos-

pitals usually exhibit a large variation in terms of their colors [MNM09, BLT15, LP15,

BRC15]. Color translation frameworks based on neural networks [XDV19, CLC17, LPL20]
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have been proposed to learn not only the certain color distribution but also the correspond-

ing histopathological patterns. The performance of tissue segmentation and classification is

improved with the color-augmented histopathological datasets. Inspired by these success-

ful applications, our work provides a first attempt to bridge the gap between neural style

transfer and rPPG for bio-realistic skin tone augmentation.

4.3 Method

Our bio-realistic skin translation framework is designed to adhere to the light transport

analysis of human skin. In Sec. 4.3.1, we briefly review the existing skin reflection theory

that models pulsatile blood variations. In Sec. 4.3.2, we detail our pipeline to translate videos

of real subjects with light skin tones to synthetic dark skin tones. The implementation details

are provided in Sec. 4.3.3.

4.3.1 Optical Model for Pulsatile Blood Variations

Under the assumption of a light source with a constant spectral composition and varying

intensity, RGB channels Ck(t) at the kth skin pixel measured by a remote color camera

can be described by the dichromatic reflection model as a time-varying function [WBS16] as

illustrated in Fig. 4.3:

Ck(t) = I(t) ·
(
vs(t) + vd(t)

)
+ vn(t), (4.1)

where I(t) is the luminance intensity level, vs(t) and vd(t) are the time-varying specular and

diffuse reflections respectively, and vn(t) is quantization noise. Specular component vs(t)

in Eq. (4.1) is a result of the mirror-like reflection from the skin surface, which is usually

considered to be BVP independent. We can write vs(t) as the following equation [WBS16]:

vs(t) = us ·
(
s0 + s(t)

)
, (4.2)
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Figure 4.3: Illustration of the dichromatic skin model. The specular component is due

to the reflection from the skin surface, and the diffuse component is related to the absorption

and scattering properties of the skin tissues. Our bio-realistic skin tone translation model

aims to conduct skin tone translation while preserving the relative variations between BVP

and skin appearance.

where us is the unit color vector of the incident light, s0 is the stationary part of the specular

reflection, and s(t) is the varying part of the specular reflection induced by motion. Diffuse

reflection vd(t) in Eq. (4.1) is related to the absorption and scattering properties of the

skin tissues, and its varying component is identified as a key indicator to the blood volume

changes [WBS16]:

vd(t) = ud · d0 + up · p(t), (4.3)

where ud is the unit color vector of the skin, d0 is the stationary reflection strength, up is

the relative pulsatile strengths in RGB channels, and p(t) is the pulse signal. Substitut-

ing Eq. (4.2) and Eq. (4.3) into Eq. (4.1), we can write Ck(t) as follows:

Ck(t) = I(t) ·
(
us ·

(
s0 + s(t)

)
+ ud · d0 + up · p(t)

)
+ vn(t). (4.4)

The stationary parts of the specular and diffuse components can be combined into a single

skin stationary term:

uc · c0 = us · s0 + ud · d0, (4.5)
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where uc is the unit color vector of the skin reflection, and c0 denotes the reflection strength.

This further simplifies Eq. (4.4) as:

Ck(t) = I0 ·
(
1 + i(t)

)
·
(
uc · c0 + us · s(t) + up · p(t)

)
+ vn(t), (4.6)

where I(t) is expressed as the sum of a stationary part I0 and a time-varying motion-induced

part I0 · i(t). Video-based PPG measurement algorithms aim to estimate the pulse signal

p(t) from the pixel intensity Ck(t) by separating the physiological and non-physiological

variations, while the primary focus of our work is to establish an inverse mapping between

p(t) and Ck(t) for dark-skin realistic human faces in a data-driven manner.

4.3.2 Bio-realistic Skin Tone Translation

In order to translate real subjects with light skin tones to synthetic subjects with dark skin

tones, we utilize two interconnected networks: a video generator G and an rPPG estimator

E, as illustrated in Fig. 4.4. We next describe the proposed 3D convolutional video generator,

the rPPG estimation network, and our joint optimization scheme.

4.3.2.1 3D Convolutional Video Generator

The goal of our video generator G is to translate frame sequences of real light-skinned

subjects to synthetic dark-skinned subjects. We propose a novel 3D convolutional neural

network to accomplish this goal. The model consists of an encoder (several convolutional

layers), a transformer (6 ResNet Blocks), and finally a decoder (several convolutional layers).

The generator takes 256 consecutive frames Ilight at size 80×80 as the input and generates

the corresponding translated frames in the same dimension. Since the paired ground-truth

translated frames do not exist, we use a race transfer model [YAA20] pretrained on VG-

GFace2 [CSX18] to generate the pseudo target frames Idark. More specifically, the generator

Caucasian-to-African in [YAA20] is utilized to translate videos of light-skinned subjects in

the existing rPPG dataset to dark skin tones.
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Figure 4.4: Illustration of the proposed joint optimization framework. Our frame-

work is capable of translating light-skinned facial videos to dark skin tones while maintaining

the original pulsatile signals. With a two-phase weight updating scheme, the rPPG estima-

tion network can benefit from the synthetic dark-skinned videos and gradually learn to

conduct inference on dark-skinned subjects without accessing real facial videos with dark

skin tones.

The generator is first supervised by the L1 distance between the pseudo target frames

Idark and the generated frames Îdark = G(Ilight) to learn the visual appearance of the synthetic

dark-skinned subjects. At this stage, the output frames Îdark do not contain pulsatile signal,

since the target frames Idark from [YAA20] are generated in a frame-by-frame manner without

temporal pulse correspondence along the time dimension. In the joint optimization part, we

describe how to further incorporate the pulsatile signals presented in the original videos Ilight

into the generated frames.
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4.3.2.2 PRN: rPPG Estimator with Residual Connections

The rPPG estimator is designed to model the BVP temporal information from a sequence

of facial frames. Similarly, it takes 256 consecutive frames at size 80 × 80 as the input,

and its output is the corresponding BVP value for each input frame. We build our novel

rPPG estimator based on 3D convolution operations. It consists of three consecutive 3D

convolutional blocks with residual connections, and an average pooling is performed after

each block for the downsampling purpose.

To supervise the network, we use a negative Pearson correlation loss between the esti-

mated pulse signals p̂ ∈ RT and the ground-truth pulse signals p ∈ RT :

Lppg(p, p̂) = 1−
T
∑

i pip̂i −
∑

i pi
∑

i p̂i√(
T
∑

i p
2
i − (

∑
i pi)

2) (T ∑
i (p̂i)

2 − (
∑

i p̂i)
2) , (4.7)

where the summation
∑

i is over the frame length T . This negative Pearson correlation

loss has shown to be more effective as compared with the point-wise mean squared error

(MSE) loss in the previous work [YPL19]. We first train PRN with only real subjects, and

this simple yet efficient architecture can already achieve state-of-the-art performance on the

existing rPPG datasets. In the next part, we detail how to further incorporate the synthetic

subjects into the training process.

4.3.2.3 Joint Optimization

The generator trained with L1 loss in the previous part fails to produce synthetic dark-

skinned subjects with desired pulsatile information, and the rPPG estimator trained with

only real light-skinned subjects exhibits poor generalization capability on unseen data or

data that rarely appears in the training set (i.e., the underrepresented group with dark skin

tones). To make use of these two models, we design a joint optimization mechanism to

incorporate pulsatile signals into the synthetic videos and improve the generalizability of the
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rPPG estimator simultaneously.

We use a two-phase weight updating scheme to train the video generator and the rPPG

estimator simultaneously. These two phases are alternated within each mini-batch as illus-

trated in Fig. 4.4. In the generation phase, we freeze the weight of the rPPG estimator E,

and the generator G is supervised by the following loss function to maintain both the visual

appearance and the pulsatile information:

LG(Ilight, p) = Lppg(p, E(Îdark)) + λ ∗ LA(Idark, Îdark), (4.8)

LA(Idark, Îdark) =
1∑
i zi

∑
i

zi|Idarki − Îdarki |, (4.9)

zi =


0 if |Idarki − Îdarki| < ϵ

1 otherwise
, (4.10)

where Îdark = G(Ilight) is the generated frame sequence from synthetic dark-skinned subjects,

λ is the balance factor, LA(·) is the visual appearance loss designed based on a threshold L1

loss, and ϵ is the selected threshold. The weighting factor λ is chosen to be 1.0. Directly en-

forcing an L1 loss between Idark and Îdark causes the generator to struggle between the visual

appearance and the pulse information, since the pseudo ground truth Idarki from [YAA20]

does not contain the desired BVP variations. Therefore, we relax the appearance loss LA(·)

by a threshold ϵ. The relaxation is based on the observation that the color changes due to

BVP variations are subtle in the RGB domain. In our implementation, we select ϵ = 0.1

based on an empirical analysis of the color variations in real videos.

In the rPPG estimation phase, we freeze the weight of the generator G and train the

rPPG estimator E with both real and synthetically augmented frame sequences:

LE(Ilight, Îdark), p) = Lppg(p, E(Îdark)) + Lppg(p, E(Ilight)). (4.11)

Both real and synthetic subjects are utilized to supervise the rPPG network E while updating

its weights. This arrangement allows E to gradually adapt to the synthetic dark-skinned

subjects without losing estimation accuracy on real subjects. With this two-phase updating
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rule, both the generator and the rPPG estimator benefit from each other in an alternate

manner. At convergence, the generator G can successfully translate frame sequences from

real light-skinned subjects to dark skin tones while maintaining the original BVP variations,

and the estimator E can generalize its performance to dark skin tones without using actual

real videos from dark-skinned subjects.

4.3.3 Implementation Details

The facial bounding box for each video is estimated by applying a face detector based on

Multitask Cascaded Convolutional Neural Networks (MTCNN) [ZZL16] to its first frame,

and a square region with 160% width and height of the detected bounding box is cropped

and resized to 80×80 using linear interpolation. The learning rate for the generator and the

rPPG network are 0.0001 and 0.0003 respectively. The learning rates are modified based on a

cosine annealing schedule during training [LH17]. The networks are initialized with Kaiming

initialization [HZR15] with a batch size of two and ReLU activation. We use Adam [KB14]

solver with β1 = 0.5 and β2 = 0.999. The network architectures are implemented with batch

normalization [IS15] in PyTorch [PGM19a], and the experiments are conducted on a single

NVIDIA Tesla V100 GPU.

4.4 Experiments

To demonstrate the effectiveness of the proposed method, we conduct a comprehensive evalu-

ation on several commonly used rPPG datasets. We describe the datasets for our experiment

in Sec. 4.4.1, the comparison methods in Sec. 4.4.2, and the evaluation metrics in Sec. 4.4.3.

Some illustration of the generated synthetic videos is provided in Sec. 4.4.4. The perfor-

mance of different comparison models and the proposed solutions are listed in Sec. 4.4.5

and Sec. 4.4.6. The bias mitigation analysis is shown in Sec. 4.4.7.
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4.4.1 Datasets

4.4.1.1 UBFC-RPPG [BMB19]:

UBFC-RPPG database contains 42 front facial videos from 42 subjects, and the correspond-

ing ground-truth PPG signals are collected from a fingertip pulse oximeter. The videos are

recorded at 30 frames per second with a resolution of 640x480 in the uncompressed 8-bit

AVI format. Each video is roughly one minute long.

4.4.1.2 VITAL Dataset [CKK20]:

Facial videos are recorded at 1920x1080 pixel resolution and 30 frames per second for 60

subjects at room lighting in the highly compressed MP4 format. Each video is roughly 2

minutes long. A Philips IntelliVue MX800 patient monitor is utilized for ground-truth vital

sign monitoring. The subject wears a blood pressure cuff, 5-ECG leads, and a finger pulse

oximeter, which is connected to the MX800 unit. Diverse skin tones and varied demographic

groups are represented in the dataset. We use 58 subjects in the VITAL dataset (subject 26

and subject 40 are left out due to data errors in the collecting process). For the skin types

quantified by Fitzpatrick scales [Fit88], there are 5, 16, 14, 11, 5, and 7 subjects respectively

from I (lightest) to VI (darkest).

4.4.2 Comparison Methods

We compare our model with three conventional methods: POS [WBS16], CHROM [DJ13],

and ICA [PMP10a]. These rPPG baseline methods are implemented based on the publicly

available MATLAB toolbox [MB19], and we follow the procedures in the toolbox to obtain

facial pixels of interest, i.e., converting facial frames from RGB to Y CRCB and identifying

skin pixels based on a predefined threshold. We also compare with a data-driven state-

of-the-art rPPG algorithm 3D-CNN [TLH20]. It is implemented based on the architecture
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description as detailed in the original publication.

4.4.3 Evaluation Metrics

After obtaining the estimated pulse waves from each model, we apply a Butterworth filter

to the output signals with cut-off frequencies of 0.7 and 2.5 Hz for heart rate estimation.

The filtered waves are divided with sliding windows of 30-second length and 1-second stride,

and a heart rate is estimated based on the position of the peak frequency for each window.

For each subject, four error metrics are calculated and averaged over all windows. The four

metrics include mean absolute error (MAE), root mean square error (RMSE), Pearson’s

correlation coefficient (PCC) between the estimated heart rate and the ground-truth heart

rate, and signal-to-noise ratio (SNR) of the estimated PPG waves. The ground-truth HR

for UBFC-RPPG is obtained by applying the same procedures as described above to the

ground-truth pulse waves, and the ground-truth HR for the VITAL dataset is obtained from

the MX800 patient monitor through ECG signals. Details of these metrics are provided as

follows:

MAE =

∑N
i=1

∣∣∣HRi − ĤRi

∣∣∣
N

, (4.12)

RMSE =

√√√√∑N
i=1

(
HRi − ĤRi

)2

N
, (4.13)

PCC =
T
∑

i pip̂i −
∑

i pi
∑

i p̂i√(
T
∑

i p
2
i − (

∑
i pi)

2) (T ∑
i (p̂i)

2 − (
∑

i p̂i)
2) , (4.14)

SNR = 10 log10


∑2.5

f=0.75

(
Ut(f)Ŝ(f)

)2

∑2.5
f=0.75

(
(1− Ut(f)) Ŝ(f)

)2

 , (4.15)

where HR is the ground-truth heart rate, ĤR is the estimated heart rate, N is the total

number of windows, p is the ground-truth pulse wave, p̂ is the estimated pulse signal, Ŝ is

the power spectrum of the estimated pulse signal, f is the frequency in Hz, and Ut(·) is a

binary mask. For the heart frequency region from fHR - 0.1 Hz to fHR + 0.1 Hz and its first
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harmonic region from 2 * fHR- 0.1 Hz to 2 * fHR + 0.1 Hz, Ut(·) is set to be one. For other

regions, Ut(·) is set to be zero.

4.4.4 Generating Synthetic Dark-skinned Subjects

We demonstrate the superiority of our proposed method with empirical results on UBFC-

RPPG [BMB19] and VITAL [CKK20] for HR estimation using the above four metrics. The

synthetic videos generated by our model can also further improve the performance of the

existing data-driven PPG estimation model with reduced bias across different skin tones.

The UBFC-RPPG dataset is randomly split into a training set (32 subjects) and a val-

idation set (10 subjects). The training set is used to jointly optimize the generator G and

the rPPG estimator E. Models with minimum validation loss are selected for a cross-dataset

evaluation on the VITAL videos. Some generated frames in the UBFC-RPPG validation set

are illustrated in Fig. 4.5. Our generator G can successfully produce photo-realistic videos

that reflect the associated underlying blood volume changes. Estimated pulse waves from

the real videos and the synthetic videos are both closely aligned with the ground truth. In

the frequency domain, the power spectrum of the PPG waves is also preserved with a clear

peak near the gold-standard HR value.

4.4.5 Performance on UBFC-RPPG

Performance metrics of different models in the UBFC-RPPG validation set are listed in Tab. 4.1.

We list the HR estimation accuracy of PRN trained with the proposed joint optimization

pipeline (referred to as PRN augmented), real samples (referred to as PRN w/ Real), and

synthetic samples (referred to as PRN w/ Synth). The synthetic samples are generated by

our generator G through translating the real samples in the UBFC-RPPG training set when

the joint optimization converges. As a comparison, we also include the performance of a

state-of-the-art deep learning model 3D-CNN [TLH20] that is trained with both real and
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Real Frames (Upper) & Synthetic Frames (Lower) PPG Waveform Power Spectrum

Figure 4.5: Illustration of real frames and the corresponding synthetic frames

in the UBFC-RPPG dataset. Our proposed framework has successfully incorporated

pulsatile signals when translating skin color. The estimated pulse waves from PRN exhibit a

high correlation to the ground-truth waves, and the heart rates are preserved in the frequency

domain.

synthetic samples (referred to as 3D-CNN w/ Real&Synth), just real samples (referred as

3D-CNN w/ Real), and just synthetic samples (referred as 3D-CNN w/ Synth). Performance

of three traditional methods (POS [WBS16], CHROM [DJ13] and ICA [PMP10a]) are also

provided in the table.

Notably, the proposed PRN architecture has already outperformed other rPPG estima-

tion methods even without synthetic skin color augmentation. More specifically, the pro-
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Method MAE↓ RMSE↓ PCC↑ SNR↑

PRN augmented 0.68 1.31 0.86 5.76

PRN w/ Real 0.75 1.64 0.83 7.91

PRN w/ Synth 4.32 6.56 0.54 -1.93

3D-CNN [TLH20] w/ Real&Synth 0.89 1.66 0.88 7.74

3D-CNN [TLH20] w/ Real 1.09 1.91 0.84 7.80

3D-CNN [TLH20] w/ Synth 0.95 1.80 0.82 3.48

POS [WBS16] 3.69 5.31 0.75 3.07

CHROM [DJ13] 1.84 3.40 0.77 4.84

ICA [PMP10a] 8.28 9.82 0.55 1.45

Table 4.1: Performance of HR estimation on UBFC-RPPG. Boldface font represents

the preferred results.

posed PRN has around 31% improvement on MAE and around 14% improvement on RMSE

over the state-of-the-art 3D-CNN using real training samples. With synthetic augmenta-

tion, the performance of PRN can be further improved. PRN trained with augmentation

achieves 9% improvement on MAE (from 0.75 BPM to 0.68 BPM) as compared with PRN

trained with just real samples. This suggests that even for the UBFC-RPPG dataset which

is overwhelmed by subjects with light skin tones, increasing the diversity of training sam-

ples is still able to enhance the performance. This finding is consistent with the recent

research [LNP20, CBA22] that demonstrates the benefit of a diverse dataset.

The jointly optimized generator G can be beneficial to other data-driven models as well.

We train 3D-CNN with both real and corresponding synthetic samples from G. As compared

with the 3D-CNN model trained with just real samples, the 3D-CNN model trained with

both real and synthetic samples exhibits 18% improvement on MAE and 13% improvement

on RMSE. This further indicates that our generator has successfully learned to produce both
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visually satisfying and BVP-informative facial videos, and these synthetic videos can facil-

itate the learning progress of the existing data-driven rPPG estimation algorithm without

conducting the joint optimization process again to adapt to another new network architec-

ture.

4.4.6 Cross-dataset Performance on VITAL

In real-world applications, it is common that the test subjects are in a different environment

(e.g., illumination conditions) in contrast to the training samples. Therefore, we conduct

a cross-dataset evaluation on the VITAL dataset using the models trained on the UBFC-

RPPG videos. The VITAL dataset contains different subjects and is captured in an entirely

different environment as compared to the UBFC-RPPG dataset. This type of cross-dataset

verification can provide more visibility on the generalization capability of the models.

Similarly, we report MAE, RMSE, PCC, and SNR of various models trained with real

and synthetic samples in Tab. 4.2. Since the VITAL dataset contains testing subjects of

diverse skin tones with the associated Fitzpatrick scale labels (F1-6), we group the subjects

into three categories, i.e., F1-2 (light skin color), F3-4 (medium skin color), and F5-6 (dark

skin color), to measure the performance across different demographic groups.

PRN trained with the joint optimization pipeline exhibits significant improvement across

these metrics as compared with PRN trained with just real samples. More precisely, there

is 1.01 BPM reduction on MAE and 1.33 BPM reduction on RMSE for the light skin color

group, 1.72 BPM reduction on MAE and 2.01 BPM reduction on RMSE for the medium

skin color group, and 2.22 BPM reduction on MAE and 2.5 BPM reduction on RMSE for

the dark skin color group. For all the methods, it is observed that the error of the light skin

tone group is generally lower than other groups. This is probably due to that the melanin

concentration of the light-skinned subjects is the least, and more light can be reflected to the

camera. However, it should also be noted that models trained by both real and synthetic data

have a relatively smaller performance difference among the three groups. For the dark skin

60



Method
F1-2 F3-4 F5-6 Overall

MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

PRN augmented 2.37 3.13 2.95 3.82 4.39 5.98 3.04 4.01

PRN w/ Real 3.38 4.46 4.67 5.83 6.61 8.48 4.60 5.88

PRN w/ Synth 4.27 6.01 4.52 6.18 5.64 8.33 4.66 6.57

3D-CNN [TLH20] w/ Real&Synth 2.32 3.11 3.18 4.09 5.45 7.07 3.34 4.35

3D-CNN [TLH20] w/ Real 3.31 4.64 5.86 6.78 7.07 8.89 5.19 6.44

3D-CNN [TLH20] w/ Synth 3.88 5.23 4.68 6.07 7.81 9.88 5.04 6.56

POS [WBS16] 4.97 6.28 5.36 6.86 7.25 9.74 5.69 7.25

CHROM [DJ13] 6.51 8.92 5.01 6.38 7.83 14.56 6.14 8.99

ICA [PMP10a] 7.65 9.66 7.14 8.40 5.75 7.31 7.04 8.63

F1-2 F3-4 F5-6 Overall

PCC↑ SNR↑ PCC↑ SNR↑ PCC↑ SNR↑ PCC↑ SNR↑

PRN augmented 0.40 3.45 0.63 5.73 0.30 -3.38 0.48 3.02

PRN (w/ Real) 0.36 0.32 0.50 0.03 0.08 -7.00 0.36 -1.32

PRN (w/ Synth) 0.29 -0.64 0.42 -0.44 0.11 -6.35 0.31 -1.74

3D-CNN [TLH20] (w/ Real&Synth) 0.42 3.96 0.65 5.21 0.17 -4.84 0.47 2.68

3D-CNN [TLH20] (w/ Real) 0.30 -0.61 0.48 -1.26 0.11 -8.26 0.34 -2.47

3D-CNN [TLH20] (w/ Synth) 0.07 -2.04 0.38 -1.34 0.10 -6.38 0.21 -2.64

POS [WBS16] 0.26 -2.22 0.42 -1.04 0.27 -5.59 0.33 -2.41

CHROM [DJ13] 0.15 -2.14 0.46 -1.11 -0.10 -5.53 0.23 -2.40

ICA [PMP10a] 0.24 -2.06 0.32 -1.73 0.06 -5.04 0.23 -2.53

Table 4.2: The proposed method shows an improved HR estimation accuracy on

the VITAL dataset. Boldface font denotes the preferred results.

color groups, PRN trained with synthetic data shows lower estimation errors as compared

with real data, and the errors are reversed for the light skin color group. This validates

the fact that data-driven rPPG estimation models are heavily impacted by the skin color

distribution of training samples, and it is critical to create a diverse and balanced training

set for generalizability and real-world deployment of rPPG algorithms.
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To assess the cross-dataset generalization capability of synthetic videos, we also evaluate

3D-CNN trained on real and synthetic samples from UBFC-RPPG on the VITAL dataset.

Similar improvement can be observed in the 3D-CNN model, where 3D-CNN trained with

both real and synthetic samples outperforms the model trained on only real or only synthetic

samples. This supports that our generator can generate synthetic videos that can accurately

reflect subtle color variations due to blood volume changes, instead of simply overfitting the

UBFC-RPPG training samples. Our synthetic data can therefore serve as a bio-realistic

augmentation to the real samples.

POS [WBS16], CHROM [DJ13] and ICA [PMP10a] show relatively large HR estimation

errors as compared with the data-driven models, where their MAEs on the light skin color

group is usually larger than 4 BPM. Their MAEs are even higher for other groups. Un-

like the end-to-end rPPG estimation networks, these conventional methods usually require

preprocessing steps which may diminish the subtle color changes on the face and degrade

the performance. Besides, these models need to average the pixel intensities over the skin

region, and this might be a sub-optimal solution since skin pixels at different facial regions

can contribute differently to the pulse signals.

The cross-dataset experiment indicates that the improvement of our proposed framework

is more substantial as compared with the intra-dataset evaluation where all the samples are

obtained within the same environment. This suggests that synthetic videos can provide more

significant benefits by diversifying the training samples when there exist some data distribu-

tion shifts between real training and testing videos. This finding is also consistent with the

observation for ray-tracing based augmentation method [MHW20]. Synthetic augmentation

techniques thus become particularly effective for cross-domain learning and can improve the

generalization capability of HR estimation for real-world applications.
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Figure 4.6: Synthetic dark-skinned videos can help to reduce bias in HR estima-

tion. The augmented PRN and the 3D-CNN [TLH20] trained on both real and synthetic

videos show a reduced standard deviation on MAE and RMSE across Fitzpatrick scales F1-6

in the VITAL dataset.

4.4.7 Bias Mitigation

It is critical for an algorithm to have consistent performance across different demographic

groups in real-world medical deployment. To quantify the performance gap for each group, we

use the standard deviation of MAE and RMSE for each Fitzpatrick scale as the measurement.

This measurement has also been used in some prior work [MHW20, YAA20]. The standard

deviation for each method in the VITAL dataset is illustrated in Fig. 4.6, together with a

sample portrait for each skin scale from F1 to F6. The conventional POS method exhibits

large variation (MAE: 2.66 BPM, RMSE: 3.19 BPM) across different Fitzpatrick scales,

while the jointly optimized PRN shows the lowest bias (MAE: 1.53 BPM, RMSE: 1.80

BPM) as compared with all the conventional methods. In contrast to PRN trained with just
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real samples (MAE: 2.03 BPM), the augmented training offers a 25% improvement of bias

mitigation among different groups while simultaneously improving the overall performance

of all the groups. This suggests our joint training framework can provide a more desirable

trade-off between performance and bias. For 3D-CNN, the standard deviations for MAE and

RMSE are also reduced by adding the synthetic samples into the training set. We attribute

this improvement to the more diverse and balanced dataset augmented by our generator.

4.5 Discussion and Limitations

Our work has made an attempt to tackle bias in rPPG. The lack of dark-skinned subjects

in existing rPPG datasets (MMSE-HR, AFRL, and UBFC-RPPG have roughly 10%, 0%,

and 5% dark-skinned subjects) has produced unwanted bias against some underrepresented

groups, and there exist several practical constraints towards collecting a large-scale balanced

dataset for rPPG. To address this issue, an attempt is proposed to translate facial frames from

light-skinned subjects to dark skin tones while preserving the subtle color variations corre-

sponding to the pulsatile signals. The jointly optimized rPPG estimator can outperform the

existing state-of-the-art methods with reduced estimation bias across different demographic

groups. More specifically, PRN trained with augmentation has around 38% reduction in

MAE for the dark-skinned group along with 49% improvement on bias mitigation in the

VITAL dataset, as compared with 3D-CNN [TLH20] trained with just real samples. Our

generated synthetic videos maintain both photo-realistic and bio-realistic features and can

be directly used to improve the performance of the existing deep learning rPPG estimation

model.

Video synthesis, such as DeepFake, has raised public concerns in the community [ML21].

Over half a decade, these ‘fake’ videos generated by deep learning have been used for face

manipulation, and the malicious usage has drawn a lot of social attention. We demonstrate

a positive example that these bio-realistic ‘fake’ videos can also be utilized for the purpose of
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social good. Our synthetic videos are capable of reducing both HR estimation error and bias

for rPPG models and further facilitate the development of remote healthcare. We hope our

framework can act as a tool to address some social issues in the existing medical applications.

We now discuss a few limitations of our approach. Our current pipeline is an initial at-

tempt that focuses on skin color translation, and all the remaining factors (e.g., pulse signals,

body motion, and other facial attributes) are directly copied from the original videos. To

maximize the benefit of synthetic augmentation, it is also important to extend the generation

framework to incorporate arbitrary facial attributes and pulse waves. We hope the method

presented in our work could inspire following work on synthetic generation for a more diverse

dataset. Besides, it should also be noted that the generated frames are limited by a fixed

resolution at 80 × 80. Future work may produce solutions to generate frames at arbitrary

pixel resolution to fit the requirements of various subsequent rPPG estimation models with-

out frame size interpolation. The primary goal of our work is to overcome the shortness

of real dark-skinned subjects by synthetic generation. Therefore, the current framework is

designed based on Caucasian-to-African translation. Future work may extend this to other

appropriate racial group(s) to further diversify the training data. Our framework relies on

a generator designed based on 3D convolutions, where its output is not directly supervised

by videos from real dark-skinned subjects. While the improved heart rate estimation results

support the effectiveness of the proposed solution, inductively generalizing claims in our

work of reducing bias need to be validated in much larger-scale clinical trials than what is

possible in an academic work introducing a new method.

In our work, we used existing metrics to evaluate rPPG quality, such as standard wave-

form measures of MAE and RMSE. These metrics were carefully chosen so they are re-

gressable against previous rPPG papers. It could be that the metrics could themselves be

biased (e.g., if the rPPG waveform has a unique shape amongst demographics and/or if the

synthetic data has an unusual shape). Ultimately, we felt more comfortable using the same

error metrics used in previous works, to aid in comparisons. Identifying biases in a metric
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and/or proposing solutions requires thought and experiment, particularly when the context

involves fairness. An option for future work is to evaluate if there is possibly a better metric

for the rPPG problem.

4.6 Conclusion

To conclude, we perform appearance transfer while retaining the subtle transient character-

istics of realistic blood flow. During training, we demonstrate that heart rate estimation can

be improved in both performance and equity. Other than heart rate estimation, we hope

that future work can apply physiologically-sound appearance transfer to other vital signs,

such as blood pressure, blood oxygen saturation, and respiration rate.

Ethics Statement: We envision positive benefits of bio-realistic avatars, as a way to ex-

pand training datasets for medical instruments, like remote vital sign monitors. We condemn

the use of this technique to fool DeepFake catchers.
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CHAPTER 5

Synthetic Generation of Face Videos with

Plethysmograph Physiology

5.1 Introduction

Photoplethysmography (PPG) is an optical technique that measures vital signs such as Blood

Volume Pulse (BVP) by detecting the light reflected or transmitted through the skin. Remote

Photoplethysmography (rPPG) based on camera videos has several advantages over the

conventional PPG methods. It is non-contact thus allowing for a wide range of applications

in neonatal monitoring [KPA21, VCJ19]. It causes no skin irritation and prevents the risk of

developing into infection for those whose skins are fragile and sensitive to the adhesive sensing

electrodes. As cameras are ubiquitous in electronic devices nowadays (such as smartphones

and laptops), rPPG can be applied for telemedicine with patients at home and no equipment

setup is needed [APM21]. Camera-based rPPG techniques have also been used in other

applications such as driver monitoring [NMM18] and face anti-spoofing [LYZ16].

Traditional rPPG methods either use Blind Source Separation (BSS) [PMP10a, PMP10b,

LRK11] or models based on skin reflectance [WBS16, DJ13, KVS15] to separate out the pulse

signal from the color changes on the face. These methods usually require pre-processing such

as face tracking, registration, and skin segmentation. More recently, deep learning and convo-

lutional neural networks (CNN) have been more popular due to their expressiveness and flex-

ibility [CM18, YPL19, LFP20, NSH19, NYH20, LHZ21]. CNNs learn the mapping between

the pulse signal and the color variations with end-to-end supervised training on the labeled
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Dataset # Subjects # Videos Demo. diversity Orig. Videos Free Avail.

AFRL [EBM14] 25 300 ✗ ✓

MMSE-HR [ZGW16] 40 102 ✗ ✗

UBFC-rPPG [BMB19] 42 42 ✗ ✓

UBFC-Phys [MBD21] 56 168 ✗ ✓

VIPL-HR [NHS18] 107 3130 ✗ ✓

Dasari et al. [DPJ21] 140 140 ✗ ✗

Our synthetic method 480 480 High ✓

Table 5.1: Comparison of rPPG real datasets and our proposed synthetic dataset.

Real datasets are limited by the number of subjects and videos and demographic diversity,

while synthetic datasets have easy control of these attributes.

dataset, thus achieving state-of-the-art performance on vital sign detection. However, the

performance of data-driven rPPG networks hinges on the quality of the dataset [NMV20b].

There are some efforts (as shown in Tab. 5.1) on collecting a large rPPG dataset for better

physiological measurement. Nonetheless, there exist several practical constraints towards

collecting real patient data for medical purposes. These include (1) demographic biases

(such as race biases) in society that translate to data. As pointed out in [BWK22], a diverse

rPPG dataset may not be accessible for some countries/regions due to the geographical

distribution of skin colors as reflected in their skin tone world map for indigenous people, (2)

necessity of intrusive/semi-intrusive traditional methods for collection of data, (3) patient

privacy concerns, and (4) requirement of medical-grade sensors to generate the data. Hence,

there is a pressing need for the concept of ‘digital patients’: physiologically accurate graphical

renders that may assist the development of algorithms and techniques to improve diagnostics

and healthcare. We provide such a neural rendering instantiation in the rPPG field.

For decades, computer graphics has been a driving force for the visuals we see in movies
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Figure 5.1: Our proposed scalable model can generate synthetic rPPG videos with

diverse attributes, such as poses, skin tones, and lighting conditions. In contrast,

existing real datasets (e.g., UBFC) only contain limited races.

and games. Imagine if we could harness computer graphics techniques to create not just

photorealistic humans, but physio-realistic humans. We combine modalities of image and

waveform to learn to generate a realistic video that can reflect underlying BVP variations as

specified by the input waveform. We achieve this by an interpretable manipulation of UV

albedo map obtained from the 3D Morphable Face Model (3DMM) [FFB21]. Our model can

generate rPPG videos with large variations of various attributes, such as facial appearance

and expression, head motions, and environmental lighting as shown in Fig. 5.1.

We summarize our contributions as follows:

• We propose a scalable physics-based learning model that can render realistic rPPG

videos with high fidelity with respect to underlying blood volume variations.

• The synthetically generated videos can be directly utilized to improve the performance
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of the state-of-the-art deep rPPG methods. Notably, the corresponding rendering

model can also be deployed to generate data for underrepresented groups, which pro-

vides an effective method to further mitigate the demographic bias in rPPG frame-

works.

• To facilitate the rPPG research, we release a real rPPG dataset called UCLA-rPPG

that contains diverse skin tones. This dataset can be used to benchmark performance

across different demographic groups in this area.

5.2 Related Work

5.2.1 rPPG Methods

rPPG techniques aim to recover the blood volume change in the skin that is synchronous with

the heart rate from the subtle color variations captured by a camera. Signal decomposition

methods include [LRK11] that utilizes Principal Component Analysis (PCA) on the raw

traces and chooses the decomposed signal with the largest variance as the pulse signals and

Independent Component Analysis (ICA) [PMP10a, MGP14] that demixes the raw signals

and determines the separated signals with largest periodicity as the pulse. PCA and ICA are

purely statistical approaches that do not use any prior information unique to rPPG problems.

A chrominance-based method (CHROM) [DJ13] is proposed to extract the blood volume

pulse by assuming a standardized skin color to white-balance the image and then linearly

combine the chrominance signals. Plane Orthogonal to Skin-tone (POS) [WBS16] projects

the temporally normalized raw traces onto a plane that is orthogonal to the light intensity

change, thus canceling out the effect of that. CNNs have achieved state-of-the-art results on

vital sign detection due to their flexibility [CM18, YPL19, LFP20, NSH19, NYH20, LHZ21,

BWK22]. The representation for rPPG estimation can be efficiently learned in an end-to-end

manner with the annotated datasets instead of handcrafted features for traditional methods.
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We use two representative work PhysNet [YPL19] and PRN [BWK22] in our experiments to

demonstrate the performance of the rPPG models on both real and synthetic datasets.

5.2.2 Real rPPG Datasets

There are many efforts on collecting real datasets for more accurate physiological sens-

ing [EBM14, ZGW16, BMB19, MBD21, NHS18, DPJ21]. However, these datasets are usu-

ally very limited in the number of subject participants and also biased toward certain demo-

graphic groups. Some work includes subjects with darker skin types, but the number is still

very limited [ZGW16]. Making machine learning methods equitable is of increasing interest

in the medical domain [ZS21, Kad21]. There is a lack of a benchmark dataset to measure

the performance of various rPPG methods on diverse skin tones, especially dark skin tones

in rPPG area. Dasari et al. [DPJ21] proposed a dataset that only contains dark skin tones.

However, only the color space values of skin regions of interest are shared instead of the

actual videos. The current best-performing deep learning algorithms require sizeable input

data. The rPPG model trained on such a biased dataset may easily disadvantage certain

underrepresented groups in the dataset. The lack of such a benchmark dataset to systemat-

ically and rigorously evaluate various methods on diverse skin tones makes it hard to ensure

that the rPPG methods deployed into society would not cause biases against certain groups

that are underrepresented. Our real dataset represents a first step towards filling this gap.

5.2.3 Synthetic Generation of rPPG Videos

The real rPPG dataset construction is a laborious process and generally takes a large amount

of time for collection and administrative work for Institutional Review Board (IRB) approval.

Therefore, it is tempting to have a scalable method that can generate large-scale synthetic

rPPG datasets for data augmentation. Realizing the difficulty of this, there are a few groups

working on generating synthetic rPPG facial videos to augment real data [MHW20, TLH20,
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BWK22, NMV21b]. Mcduff et al. [MHW20] propose to render rPPG face videos using

facial avatars and simulate the blood volume change with Blender. However, as discussed in

the limitation of their method, the rendering of a frame is extremely slow (20 seconds per

frame), thus preventing the synthetic generation of large-scale videos. The initial overhead

for creating the pipeline is also expensive and labor-intensive. A skin tone augmentation

method is proposed in [BWK22] where they use a generative neural network to transfer light

skin tones to dark skin tones while retaining the pulsatile signals so that the performance on

dark skin tones can be improved with the augmented dataset more balanced. Like the other

augmentation method on rPPG signals [TLH20], they are both limited as they can only be

utilized on current datasets and have to be retrained with new datasets. In contrast, our

synthetic generation method can generate diverse appearance with any in-the-wild image

and target rPPG signal as input and the generation is merely a forward pass of the neural

network.

5.3 Methods

In this section, we propose a scalable method that can generate a synthetic dataset with any

given reference image and target rPPG signal in Sec. 5.3.1. The generated videos can be

used to train the state-of-the-art rPPG networks, which we introduce in Sec. 5.3.2.

5.3.1 Synthesizing Biorealistic Face Videos

We first describe the 3DMM model used to obtain the facial albedo maps and then demon-

strate how to further obtain facial blood maps from the extracted albedo by analyzing light

transport in the skin. Details about how to generate synthetic facial videos with the de-

composed blood maps and the source of the input facial images and PPG waveforms are

also provided in this section. Please see Fig. 5.2 for an illustration of the entire synthetic

generation pipeline.
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Figure 5.2: Pipeline of our cross-modal synthetic generation model that can gen-

erate rPPG face videos given any face image and target rPPG signal as input.

The input image is encoded into UV albedo map, 3D mesh, illumination model LSH and

camera model c. We then decompose the UV albedo map into a blood map, vary the UV

blood map according to the target rPPG signal, and generate the modified PPG UV maps.

The modified PPG UV map that contains the target pulse signal variation is combined with

LSH , c to render the final frames with randomized motion.

Non-linear 3DMM: To generate faces with different poses, illuminations, and desirable

rPPG signal variations, we have to infer the 3D shape and albedo parameters of the face. We

use DECA [FFB21] to predict subject-specific albedo, shape, pose, and lighting parameters

from an image. In detail, it uses a statistical 3D head model FLAME [LBB17] to output

a mesh M with n = 5023 vertices. The camera model c is learned to map the mesh M to

image space. Since there is no appearance model in FLAME, the linear albedo subspace of

Basel Face Model (BFM) [PKA09] is used and the UV layout of BFM is converted to be

compatible with FLAME. It outputs a UV albedo map A with a learnable coefficient α. By

expressing the illumination model as the Spherical Harmonics (SH) [RH01], the shaded face
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image can be represented as the following equation:

B (α, l, Nuv)i,j = A(α)i,j ⊙
9∑

k=1

lkHk (Ni,j) , (5.1)

where Hk is the SH basis, lk are the corresponding coefficients and ⊙ denotes the Hadamard

product. Ni,j is the normal map expressed in the UV form. The final texture image is

obtained by rendering the image using the mesh M , shaded image B, and the camera model

c through a rendering function R(·):

Ir = R(M,B, c). (5.2)

As rPPG is essentially the change of blood volume in the face, our idea is to first obtain

the spatial concentration of blood fblood of the UV albedo A and then temporally modulate

the UV blood albedo map in a way that is consistent with the rPPG signals. We show how

this biophysically interpretable manipulation is achieved in the following sections.

Light transport in the skin: In order to obtain blood map fblood on the face, we first

study light transport in the skin to build the connection between face albedo and fblood. Fol-

lowing a spectral image formation model, the original UV face albedo Ac with c ∈ {R,G,B}

is reconstructed by integrating the product of the camera spectral sensitivities Sc, the spec-

tral reflectance R, and the spectral power distribution of the illuminant E over wavelength

λ [AS19a]:

Ac =

∫
λ

E(λ)R(fmel, fblood, λ)Sc(λ)dλ. (5.3)

An optical skin reflectance model [AS19b] with hemoglobin fblood and melanin map fmel as

parameters is utilized to define the wavelength-dependent skin reflectance R(fmel, fblood, λ).

Specifically, we assume a two-layer skin model that characterizes the transmission through

the epidermis Tepidermis and reflection from the dermis Rdermis:

R (fmel, fblood, λ) = Tepidermis (fmel, λ)
2Rdermis (fblood, λ) . (5.4)
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The transmittance in the epidermis is modeled by Lambert-Beer law [PC04] as light not

absorbed by the melanin in this layer is propagated to the dermis [AS17]:

Tepidermis(fmel, λ) = e−µa.epidermis(fmel,λ), (5.5)

where µa.epidermis(fmel, λ) is the absorption coefficient of the epidermis. More specifically,

µa.epidermis(fmel, λ) = fmelµa.mel(λ) + (1− fmel)µskinbaseline(λ), (5.6)

where µa.mel is the absorption coefficient of melanin and µskinbaseline is baseline skin absorption

coefficient.

The reflectance in the dermis can be modeled using the Kubelka-Munk theory [INN07],

and the proportion of light remitted from a layer is given by [AS17]:

Rdermis (fblood, λ) =
(1− β2)

(
eKdpd − e−Kdpd

)
(1 + β2) eKdpd − (1− β)2e−Kdpd

, (5.7)

where dpd is the thickness of the dermis, and K and β are related to the absorption of the

medium contained within the dermis (i.e., blood). For simplicity of notation, we drop the

dependence of K and β on fblood and λ in Eq. (5.7).

Biophysical decomposition and variation of UV albedo map: With the light trans-

port theory of the skin, we follow a physics-based learning framework (BioFaceNet [AS19a])

to obtain fblood from albedo A. The wavelengths are discretized into 33 parts from 400nm

to 720nm with 10nm equal spacing. We utilize an autoencoder architecture and use a fully-

convolutional network as the encoder to predict the hemoglobin and melanin maps and

fully-connected networks to encode the parameters for lighting E and camera spectral sen-

sitivities Sc. The model-based decoder is then to reconstruct the albedo with all the learned

parameters according to Eq. (5.3).

Different from the previous work [AS19a], we obtain biophysical parameters directly from

the UV albedo maps instead of the facial images. This arrangement allows us to model the
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underlying blood volume changes more precisely regardless of the environmental illumination

variations. Our model is trained to minimize the following loss function:

L = w1Lappearance + w2LCameraPrior, (5.8)

where the appearance loss Lappearance is the L2 distance between the reconstructed UV map

AlinRecon and the original one in the linear RGB space AlinRGB.

We convert A to linear space by inverting the Gamma transformation with γ = 2.2.

To make the problem more constrained, we also introduce the additional camera prior loss:

LCameraPrior = ∥b∥22, where b is the prior for the camera spectral sensitivities. w1 and w2 are

the weights for the reconstructed loss and camera prior loss, respectively.

To reflect the change of the target rPPG signal on the face, we temporally vary the UV

blood map fblood linearly with the target rPPG signal in the test phase. Given the blood map

of a reference UV map (e.g., the UV blood map of the first frame), we generate the UV blood

map of the consequent frames as the multiplication of the UV blood map of the reference

frame and a ratio scalar that is calculated as the ratio of pt (rPPG signal at time t) and pref

(rPPG signal at the reference time). Then the modified UV blood map of each frame that

contains the desired rPPG signal is reconstructed using the BioFaceNet decoder to get the

UV map. The final image is rendered using the UV map combined with illumination and

camera model according to Eq. (5.2).

For the purpose of simulating real-world scenarios where the subject might move in the

collection process, we randomize the poses in the generation of the sequence of the frames

by adding a small random value to the pose and expression parameter of the previous frame.

Face image dataset: To generate synthetic rPPG videos with diverse face appearances,

we use the public in-the-wild face datasets BUPT-Balancedface [WDH19]. It is categorized

according to ethnicity (i.e., Caucasian, Indian, Asian, and African). We use these images as

reference images for generating the synthetic videos as shown in Fig. 5.2.
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PPG recordings: To synthesize videos of a given input PPG signal, we use PPG wave-

forms recordings from BIDMC PPG and Respiration Dataset [PJC16]. It contains 53 8-

minute contact PPG recordings with a sampling frequency 125Hz. We sample it correspond-

ingly with the video frame rate (30Hz) and the first sequences of time length L are used

where L is the duration of the generated video.

5.3.2 Physiological Measurement Networks

We use two state-of-the-art deep rPPG networks PhysNet [YPL19] and PRN [BWK22] to

benchmark the performance on both real and synthetic datasets. PhysNet and PRN both

utilize 3D convolutional neural networks (3D-CNN) architecture to learn spatio-temporal

representation of the rPPG videos and predict the rPPG signal in the facial videos. PRN

differs in that it uses residual connections for convolutional layers. They take consecutive

frames of length T as the input, and its output is the corresponding BVP value for each input

frame. The Negative Pearson loss is used to measure the difference between the ground-truth

PPG signal p and the estimated rPPG signal p̂:

Lppg(p, p̂) = 1−
T
∑

i pip̂i −
∑

i pi
∑

i p̂i√(
T
∑

i p
2
i − (

∑
i pi)

2) (T ∑
i p̂

2
i − (

∑
i p̂i)

2) , (5.9)

where all the summation is over the length of frames T .

Implementation details: For the training of BioFaceNet, we use 3000 face albedo images

with 750 images in each race. We use 80% images for training and 20% for validation. The

weight w1 and w2 for the loss is 1e−3 and 1e−4 respectively. The learning rate is set as 1e−4

and the number of epochs is 200. For the generation of synthetic videos, we set the length

of generated frames L as 2100.

The bounding boxes of the videos are generated using a pretrained Haar cascade face

detection model. For each video, one bounding box is detected and increased 60% in each
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direction before the frames are cropped. To be consistent with the original papers, each frame

is resized to 128× 128 pixels using bilinear interpolation for PhysNet and 80× 80 for PRN.

The length of training clips T is 128 for PhysNet and 256 for PRN. The Adam optimizer is

used and the learning rate is set as 1e−4. All the code is implemented in PyTorch [PGM19b]

and trained on Nvidia V100 GPU.

5.4 Experiments

In this section, we introduce the datasets we use for the experiments and evaluation protocol

in Sec. 5.4.1. We report and analyze the experimental results for our real dataset in Sec. 5.4.2

and UBFC-rPPG dataset in Sec. 5.4.3.

5.4.1 Datasets and Evaluation Protocol

Our real dataset UCLA-rPPG: In order to benchmark the performance of current

rPPG estimation methods, we collect a real dataset of 104 subjects. The setting is faulty

for two of them so we dropped their samples. Finally, the dataset consists of 102 subjects of

various skin tone, age, gender, ethnicity, and race groups. The Fitzpatrick (FP) skin type

scale [Fit88] of the subjects varies from 1-6. For each subject, we record 5 videos of about

1 minute each (1790 frames at 30fps). After removing erroneous videos we have 503 videos

in total. All the videos in our dataset are uncompressed and synchronized with the ground

truth heart rate.

Figure 5.3 illustrates the data collection process of our real dataset UCLA-rPPG. The

left part of the figure is a cartoon illustration of the data collection process. The right part of

the figure is a photo depicting the actual data collection process. The human subjects wear

an oximeter on their finger and look into the camera. Both the camera and the oximeter are

connected to a laptop to get synchronous data.
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Figure 5.3: Experimental setup of data collection. The subject wears an oximeter

on their finger and sits looking directly into the camera. The camera and the oximeter are

connected to a laptop to get synchronous video and ground-truth pulse reading. Face blurred

to preserve anonymity.

UBFC-rPPG [BMB19]: UBFC-rPPG database contains 42 front facing videos of 42

subjects and corresponding ground truth PPG data recorded from a pulse oximeter. The

videos are recorded at 30 frames per second with a resolution of 640 × 480. Each video is

roughly one minute long.

Metrics: To evaluate how the heart rate estimates compare with gold-standard heart rates

obtained from gold-standard pulse waves, we use the following four metrics Mean absolute

error (MAE), Root Mean Squared Error (RMSE), Pearson’s Correlation Coefficient (PCC)

and Signal-to-Noise Ratio (SNR). Pearson’s Correlation Coefficient (PCC) and Signal-to-

Noise Ratio (SNR) is defined as in [NMV20a].

For traditional baseline methods POS, CHROM, and ICA, we use the iPhys toolbox [MB19]
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to get the estimated rPPG waveforms. The output rPPG signals are normalized by subtract-

ing the mean and dividing by the standard deviation. We filter all the model outputs using

a 6th-order Butterworth filter with cut-off frequencies of 0.7 and 2.5 Hz. The filtered sig-

nals are divided into 30-second windows with 1-second stride and the above four evaluation

metrics are calculated on these windows and averaged.

5.4.2 Performance on UCLA-rPPG

For the study of our work, we split the subjects into three skin tone groups based on the

Fitzpatrick skin type [Fit88]. They are light skin tones, consisting of skin tones in the FP 1

and 2 scales, medium skin tones, consisting of skin tones in the FP 3 and 4 scales, and dark

skin tones, consisting of skin tones in the FP 5 and 6 scales. This aggregation helps compare

experimental results on skin tones more objectively. Since our ultimate goal is to improve

the performance on our dataset, we first train on all the synthetic data and then finetune

on the real data for the models trained with both real and synthetic data. For training and

testing deep rPPG networks PhysNet and PRN on real dataset, we randomly split all the

subjects into training, validation, and test set with 50%, 10%, and 40%, and all the test

results are averaged on three random splits. The validation set is used to select the best

epoch for testing the model.

We report results on the three groups and overall performance using evaluation metrics

of MAE, RMSE, PCC, and SNR in Tab. 5.2. In general, models trained with both real and

synthetic data perform consistently better than using real data alone on all skin tones across

all evaluation metrics. PhysNet trained with both real and synthetic data achieved the best

overall MAE result 0.71 BPM, with 33% reduction in error compared with PhysNet trained

with only real data (1.06 BPM). Notably, the performance improvement is most significant

on dark skin stones F5-6 group with 41% and 35% reduction in MAE and RMSE respectively

for PhysNet. The same phenomenon is also observed for PRN, where the improvement is

most noticeable for darker skin tones. We attribute this to the introduction of synthetic
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videos we generate in Sec. 5.3.1. The other two metrics PCC and SNR also validate the

superiority of the model trained with both real and synthetic datasets. The results for

traditional methods POS, CHROM, and ICA are far worse than the deep learning methods,

as these methods usually take the average of all the pixels and ignore the inhomogeneous

spatial contribution of the pixels to pulsatile signals.

Method
F1-2 F3-4 F5-6 Overall

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

PhysNet [YPL19] w/ Real&Synth 0.54 0.84 0.38 0.70 1.55 2.17 0.71 1.10

PhysNet [YPL19] w/ Real 0.81 1.21 0.43 0.77 2.61 3.34 1.06 1.51

PhysNet [YPL19] w/ Synth 1.06 1.52 1.16 1.66 4.96 6.20 2.06 2.73

PRN [BWK22] w/ Real&Synth 0.54 0.79 0.36 0.65 3.41 4.09 1.15 1.53

PRN [BWK22] w/ Real 0.65 1.02 0.40 0.71 4.35 5.26 1.43 1.90

PRN [BWK22] w/ Synth 1.47 2.00 0.63 1.07 8.89 9.88 2.87 3.47

POS [WBS16] 3.40 4.34 3.03 3.98 8.07 10.23 4.27 5.49

CHROM [DJ13] 4.06 5.11 3.99 5.25 7.45 9.74 4.79 6.22

ICA [PMP10a] 3.75 4.73 3.26 4.19 7.51 9.34 4.35 5.50

F1-2 F3-4 F5-6 Overall

PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑

PhysNet [YPL19] w/ Real&Synth 0.84 14.40 0.80 17.11 0.60 9.19 0.76 14.45

PhysNet [YPL19] w/ Real 0.81 13.13 0.77 15.83 0.59 6.54 0.74 12.84

PhysNet [YPL19] w/ Synth 0.74 7.19 0.64 6.11 0.23 -3.33 0.57 4.10

PRN [BWK22] w/ Real&Synth 0.81 12.24 0.79 14.61 0.57 4.84 0.74 11.59

PRN [BWK22] w/ Real 0.77 10.73 0.77 13.22 0.48 2.38 0.70 9.91

PRN [BWK22] w/ Synth 0.69 5.14 0.67 5.27 0.21 -5.81 0.56 2.53

POS [WBS16] 0.50 -0.30 0.42 -0.09 0.27 -5.38 0.41 -1.34

CHROM [DJ13] 0.41 -1.81 0.31 -1.60 0.26 -5.31 0.33 -2.49

ICA [PMP10a] 0.45 -0.60 0.38 -0.19 0.27 -5.24 0.37 -1.44

Table 5.2: Heart rate estimation results on our real dataset UCLA-rPPG show

that both PhysNet and PRN trained with real and synthetic datasets perform

consistently better than the models trained with only real data. The improved

performance shows the benefit of the synthetic video dataset we generate.
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Figure 5.4: Left: Ablation study. The model pretrained with all synthetic dataset outper-

forms these pretrained on either light or dark skin tones alone. Right: Bias mitigation.

The standard deviation of MAE and RMSE of the deep rPPG models trained with real and

synthetic datasets are smaller than real data alone and the traditional models.

Bias mitigation: To evaluate the bias of various rPPG methods on subjects with diverse

skin tones, we use the standard deviation of the MAE and RMSE results on three skin tone

groups. From the right of Fig. 5.4, we can see the standard deviation of PhysNet with both

real and synthetic datasets is the smallest, and the MAE disparity among all the three groups

is reduced by 45% (from 0.95 BPM to 0.52 BPM) compared with the model trained with

only real dataset. Similarly, the standard deviations of both metrics MAE and RMSE for

PRN are also reduced for the model trained with both real and synthetic datasets.

Ablation study: We first pretrain the PhysNet with either light skin tones (subjects with

race Caucasian in the synthetic dataset) or dark skin tones (subjects with race African),

then finetune the model on real dataset and test the model on real subjects with either light

skin tones or dark skin tones. From the left of Fig. 5.4, we can see the model with the
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Method MAE ↓ RMSE ↓ PCC ↑ SNR ↑

PhysNet [YPL19] w/ Real&Synth 0.90 1.80 0.84 6.28

PhysNet [YPL19] w/ Real 1.42 2.74 0.78 5.64

PhysNet [YPL19] w/ Synth 0.84 1.76 0.83 6.70

PRN [BWK22] w/ Real&Synth 1.15 2.38 0.82 5.36

PRN [BWK22] w/ Real 2.36 4.21 0.66 -1.24

PRN [BWK22] w/ Synth 1.09 1.99 0.83 3.00

POS [WBS16] 3.69 5.31 0.75 3.07

CHROM [DJ13] 1.84 3.40 0.77 4.84

ICA [PMP10a] 8.28 9.82 0.55 1.45

Table 5.3: Performance of HR estimation on UBFC-rPPG shows the superiority

of the synthetic datasets. Boldface font represents the preferred results.

pretrained rPPG network on diverse races is consistently better than these on a single race.

The improvement is more obvious on the dark skin tone test set. This demonstrates the

benefits of a diverse synthetic dataset.

5.4.3 Performance on UBFC-rPPG

We use the model with the best performance on our real dataset to test them on UBFC-

rPPG dataset [BMB19] along with the traditional methods. Since this is a cross-dataset

evaluation for the model trained on UCLA-rPPG, we test the deep learning models on

all the subjects in UBFC-rPPG. All the results with four evaluation metrics are reported

in Tab. 5.3. While the synthetic dataset performs worse than the models trained in our

real dataset, the performance gain is more obvious in UBFC dataset. The MAE of PhysNet

trained on the synthetic dataset achieved the lowest MAE and RMSE (0.84 BPM and 1.76

BPM respectively). The explanation for this observation is that when the distribution of the
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Figure 5.5: The example shows that PRN [BWK22] trained with synthetic data

(above) generalizes better than PRN trained with real data (bottom) on UBFC-

rPPG dataset. The waves are more aligned with the ground-truth PPG wave (dashed

black line) and the power spectrum plot is also more consistent with the ground truth for

the PRN trained with synthetic data.

dataset is similar to the distribution of the test data as in the intra-dataset setting in our real

dataset, the benefits of synthetic datasets are not straightforward. The models trained on

real dataset perform worse on generalizing to another dataset due to different environmental

settings, such as lighting. We also give a qualitative study in Fig. 5.5 that shows that the

rPPG waves extracted using our synthetic dataset resemble more closely to the ground truth

than that using real dataset. As a result, it gives more accurate heart rate estimation.

5.4.4 Visualization

As shown in Fig. 5.6, our model can successfully produce synthetic avatar videos that reflect

the associated underlying blood volume changes. Estimated pulse waves from the synthetic
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Example frames of synthetic videos rPPG signals

Figure 5.6: Illustration of example frames of our generated synthetic videos. Our

proposed framework has successfully incorporated PPG signals into the reference image. The

estimated pulse waves from PRN for generated synthetic videos are highly correlated to the

ground-truth waves, and the heart rates are preserved as shown in the power spectrum plot.

videos are closely aligned with the ground truth. The power spectrum of the PPG waves

with a clear peak near the gold-standard HR value also validates the effectiveness of the

incorporation of pulsatile signals.

5.5 Discussion

Limitations: Though our synthetic dataset could be used to achieve state-of-the-art re-

sults (on UBFC-rPPG datasets, it alone can generalize even better than the model trained

on real dataset) for heart rate estimation, the facial appearance is not photo-realistic, which

may still degrade the performance due to sim2real gap. We are not focused on modeling

the background in the generated videos in our work. However, it is found in [NMV20a] that

the background can be utilized for better pulsatile signals extraction. In addition, we vary

the UV blood map linearly according to the target rPPG signals in the synthetic generation
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method. While this yields reasonable empirical results, we believe biophysical model based

manipulation of the UV blood map could further improve the performance of the synthetic

generation.

Ethics Statement: The novelty of our work is to generate synthetic face videos that are

physiologically consistent with the heartbeat, and we hope it can be a tool to address some

social issues, such as biases around race and gender in medicine. It should also be noted

that even though the research here was solely used to improve remote health technologies,

it might be used to fool rPPG-based DeepFake detectors. We strongly advise against using

this technology for such applications.

Conclusion: We propose a method to generate large-scale synthetic rPPG videos with

high fidelity to the underlying rPPG signals. The synthetic generation pipeline enables the

scalable generation of rPPG facial videos with any given image and rPPG signal. We validate

the effectiveness of the synthetic videos on the UCLA-rPPG dataset we collect that contains

diverse skin tones and the UBFC-rPPG dataset. The experimental results show that the

synthetic dataset can improve the performance on both datasets and help reduce the bias

among different demographic groups.
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CHAPTER 6

Not Just Streaks: Towards Ground Truth for Single

Image Deraining

6.1 Introduction

Single-image deraining aims to remove degradations induced by rain from images. Restoring

rainy images not only improves their aesthetic properties but also supports the reuse of

abundant publicly available pretrained models across computer vision tasks. Top performing

methods use deep networks, but suffer from a common issue: it is not possible to obtain

ideal real ground-truth pairs of rain and clean images. The same scene, in the same space

and time, cannot be observed both with and without rain. To overcome this, deep learning

based rain removal relies on synthetic data.

The use of synthetic data in deraining is prevalent [FHZ17, HFZ19, LCT19, LTG16,

YTF17, ZP18, ZSP19]. However, current rain simulators cannot model all the complex ef-

fects of rain, which leads to unwanted artifacts when applying models trained on them to

real-world rainy scenes. For instance, a number of synthetic methods add rain streaks to

clean images to generate the pair [FHZ17, LTG16, YTF17, ZP18, ZSP19], but rain does

not only manifest as streaks: If raindrops are further away, the streaks meld together, cre-

ating rain accumulation, or veiling effects, which are exceedingly difficult to simulate. A

further challenge with synthetic data is that results on real test data can only be evaluated

qualitatively, for no real paired ground truth exists.

Realizing these limitations of synthetic data, we tackle the problem from another angle by
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Figure 6.1: The points above depict datasets and their corresponding outputs from

models trained on them. These outputs come from a real rain image from the Internet.

Our opinion* is that GT-RAIN can be the right dataset for the deraining community to

use because it has a smaller domain gap to the ideal ground truth. * Why an asterisk?

The asterisk emphasizes that this is an “opinion". It is impossible to quantify the domain

gap because collecting true real data is infeasible. To date, deraining is largely a viewer’s

imagination of what the derained scene should look like. Therefore, we present the derained

images above and leave it to the viewer to judge the gap. Additionally, GT-RAIN can be

used in complement with the litany of synthetic datasets [FHZ17, HFZ19, LCT19, LTG16,

YTF17, ZP18, ZSP19], as illustrated in Tab. 6.4.

relaxing the concept of ideal ground truth to a sufficiently short time window (see Fig. 6.1).

We decide to conduct the experiment of obtaining short time interval paired data, partic-

ularly in light of the timely growth and diversity of landscape YouTube live streams. We

strictly filter such videos with objective criteria on illumination shifts, camera motions, and

motion artifacts. Further correction algorithms are applied for subtle variations, such as

slight movements of foliage. We call this dataset GT-RAIN, as it is a first attempt to pro-

vide real paired data for deraining. Although our dataset relies on streamers, YouTube’s fair

use policy allows its release to the academic community.
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Defining “real, paired ground truth”: Clearly, obtaining real, paired ground truth data

by capturing a rain and rain-free image pair at the exact same space and time is not feasible.

However, the dehazing community has accepted several test sets [AAS19, AAT20, AAT18a,

AAT18b] following these guidelines as a satisfactory replacement for evaluation purposes:

• A pair of degraded and clean images is captured as real photos at two different times-

tamps;

• Illumination shifts are limited by capturing data on cloudy days;

• The camera configuration remains identical while capturing the degraded and clean

images.

We produce the static pairs in GT-RAIN by following the above criterion set forth by the

dehazing community while enforcing a stricter set of rules on the sky and local motion. More

importantly, as a step closer towards obtaining real ground truth pairs, we capture natural

weather effects instead, which address problems of scale and variability that inherently come

with simulating weather through man-made methods. In the results of the proposed method,

we not only see quantitative and qualitative improvements but also showcase a unique ability

to handle diverse rain physics that was not previously handled by synthetic data.

Contributions: In summary, we make the following contributions:

• We propose a real-world paired dataset: GT-RAIN. The dataset captures real rain

phenomena, from rain streaks to accumulation under various rainfall conditions, to

bridge the domain gap that is too complex to be modeled by synthetic [FHZ17, HFZ19,

LCT19, LTG16, YTF17, ZP18, ZSP19] and semi-real [WYX19] datasets.

• We introduce an avenue for the deraining community to now have standardized quan-

titative and qualitative evaluations. Previous evaluations were quantifiable only with

respect to simulations.
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• We propose a framework to reconstruct the underlying scene by learning representa-

tions robust to the rain phenomena via a rain-robust loss function. Our approach

outperforms the state of the art [ZAK21] by 12.1% PSNR on average for deraining real

images.

6.2 Related Work

6.2.1 Rain Physics

Raindrops exhibit diverse physical properties while falling, and many experimental studies

have been conducted to investigate them, e.g, equilibrium shape [BC87], size [MP48], termi-

nal velocity [FD69, GK49], spatial distribution [Man93], and temporal distribution [ZLQ06].

A mixture of these distinct properties transforms the photometry of a raindrop into a com-

plex mapping of the environmental radiance which considers refraction, specular reflection,

and internal reflection [GN07]:

L(n̂) = Lr(n̂) + Ls(n̂) + Lp(n̂), (6.1)

where L(n̂) is the radiance at a point on the raindrop surface with normal n̂, Lr(·) is

the radiance of the refracted ray, Ls(·) is the radiance of the specularly reflected ray, and

Lp(·) is the radiance of the internally reflected ray. In real images, the appearance of rain

streaks is also affected by motion blur and background intensities. Moreover, the dense

rain accumulation results in sophisticated veiling effects. Interactions of these complex phe-

nomena make it challenging to simulate realistic rain effects. Until GT-RAIN, previous

works [GSJ21, HZW21, JWY20, LCT19, WXZ20, WYX19, ZAK21] have relied heavily on

simulated rain and are limited by the sim2real gap.
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6.2.2 Deraining Datasets

Most data-driven deraining models require paired rainy and clean, rain-free ground-truth

images for training. Due to the difficulty of collecting real paired samples, previous works

focus on synthetic datasets, such as Rain12 [LTG16], Rain100L [YTF17], Rain100H [YTF17],

Rain800 [ZSP19], Rain12000 [ZP18], Rain14000 [FHZ17], NYU-Rain [LCT19], Outdoor-

Rain [LCT19], and RainCityscapes [HFZ19]. Even though synthetic images from these

datasets incorporate some physical characteristics of real rain, significant gaps still exist

between synthetic and real data [YTW20]. More recently, a “paired" dataset with real rainy

images (SPA-Data) was proposed in [WYX19]. However, their “ground-truth” images are

in fact a product of a video-based deraining method – synthesized based on the temporal

motions of raindrops which may introduce artifacts and blurriness; moreover, the associated

rain accumulation and veiling effects are not considered. In contrast, we collect pairs of

real-world rainy and clean ground-truth images by enforcing rigorous selection criteria to

minimize environmental variations. To the best of our knowledge, our dataset is the first

large-scale dataset with real paired data. Please refer to Tab. 6.1 for a detailed comparison

of the deraining datasets.

6.2.3 Single-image Deraining

Previous methods used model-based solutions to derain [CH13, JHZ18, LTG16, LXJ15].

More recently, deep learning based methods have seen increasing popularity and progress [FHD17,

GSJ21, HZW21, JWY20, LCT19, PLS18, RSZ20, WXZ20, WYX19, YTF17, ZAK21, ZP18].

The multi-scale progressive fusion network (MSPFN) [JWY20] characterizes and recon-

structs rain streaks at multiple scales. The rain convolutional dictionary network (RCD-

Net) [WXZ20] encodes the rain shape using the intrinsic convolutional dictionary learning

mechanism. The multi-stage progressive image restoration network (MPRNet) [ZAK21]

splits the image into different sections in various stages to learn contextualized features at
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Dataset Type Rain Effects Size

Rain12 [LTG16] Simulated Synth. streaks only 12

Rain100L [YTF17] Simulated Synth. streaks only 300

Rain800 [ZSP19] Simulated Synth. streaks only 800

Rain100H [YTF17] Simulated Synth. streaks only 1.9K

Outdoor-Rain [LCT19] Simulated Synth. streaks & Synth. accumulation 10.5K

RainCityscapes [HFZ19] Simulated Synth. streaks & Synth. accumulation 10.62K

Rain12000 [ZP18] Simulated Synth. streaks only 13.2K

Rain14000 [FHZ17] Simulated Synth. streaks only 14K

NYU-Rain [LCT19] Simulated Synth. streaks & Synth. accumulation 16.2K

SPA-Data [WYX19] Semi-real Real streaks only 29.5K

Proposed Real Real streaks & Real accumulation 31.5K

Table 6.1: Our proposed large-scale dataset enables paired training and quan-

titative evaluation for real-world deraining. We consider SPA-Data [WYX19] as a

semi-real dataset since it only contains real rainy images, where the pseudo ground-truth

images are synthesized from a rain streak removal algorithm.

different scales. The spatial attentive network (SPANet) [WYX19] learns physical properties

of rain streaks in a local neighborhood and reconstructs the clean background using non-

local information. EfficientDeRain (EDR) [GSJ21] aims to derain efficiently in real time by

using pixel-wise dilation filtering. Other than rain streak removal, the heavy rain restorer

(HRR) [LCT19] and the depth-guided non-local network (DGNL-Net) [HZW21] have also

attempted to address rain accumulation effects. All of these prior methods use synthetic or

semi-real datasets and show limited generalizability to real images. In contrast, we propose

a derainer that learns a rain-robust representation directly.
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(1) Scene selection (2) Time control (3) Large motion
removal

(4) Camera motion
removal

(5) Local motion
removal

Figure 6.2: We collect a real paired deraining dataset by rigorously controlling

the environmental variations. First, we remove heavily degraded videos such as scenes

without proper exposure, noise, or water droplets on the lens. Next, we carefully choose

the rainy and clean frames as close as possible in time to mitigate illumination shifts before

cropping to remove large movements. Lastly, we correct for small camera motion (due to

strong wind) using SIFT [Low04] and RANSAC [FB81] and perform elastic image registra-

tion [Thi98, VPP09] by estimating the displacement field when necessary.

6.3 Dataset

We now describe our method to control variations in a real dataset of paired images taken

at two different timestamps, as illustrated in Fig. 6.2.

6.3.1 Data Collection

We collect rain and clean ground-truth videos using a Python program based on FFmpeg to

download videos from YouTube live streams across the world. For each live stream, we record

the location in order to determine whether there is rain according to the OpenWeatherMap

API [Ltd]. We also determine the time of day to filter out nighttime videos. After the rain

stops, we continue downloading in order to collect clean ground-truth frames. Note: while

our dataset is formatted for single-image deraining, it can be re-purposed for video deraining

as well by considering the timestamps of the frames collected.
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6.3.2 Collection Criteria

To minimize variations between rainy and clean frames, videos are filtered based on a strict

set of collection criteria. Note that we perform realignment for camera and local motion only

when necessary – with manual oversight to filter out cases where motion still exists after

realignment.

• Heavily degraded scenes that contain excessive noise, webcam artifacts, poor res-

olution, or poor camera exposure are filtered out as the underlying scene cannot be

inferred from the images.

• Water droplets on the surface of the lens occlude large portions of the scene and

also distort the image. Images containing this type of degradation are filtered out as

it is out of the scope of our work – we focus on rain streaks and rain accumulation

phenomena.

• Illumination shifts are mitigated by minimizing the time difference between rainy

and clean frames. Our dataset has an average time difference of 25 minutes, which

drastically limits large changes in global illumination due to sun position, clouds, etc.

• Background changes containing large discrepancies (e.g., cars, people, swaying fo-

liage, water surfaces) are cropped from the frame to ensure that clean and rainy images

are aligned. By limiting the average time difference between scenes, we also minimize

these discrepancies before filtering. All sky regions are cropped out as well to ensure

proper background texture.

• Camera motion. Adverse weather conditions, e.g., heavy wind, can cause cam-

era movements between the rainy and clean frames. To address this, we use the

Scale Invariant Feature Transform (SIFT) [Low04] and Random Sample Consensus

(RANSAC) [FB81] to compute the homography to realign the frames.

• Local motion. Despite controlling for motion whenever possible, certain scenes still
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contain small local movements that are unavoidable, especially in areas of foliage. To

correct for this, we perform elastic image registration when necessary by estimating

the displacement field [Thi98, VPP09].

6.3.3 Dataset Statistics

Our large-scale dataset includes a total of 31,524 rainy and clean frame pairs, which is split

into 26,124 training frames, 3,300 validation frames, and 2,100 testing frames. These frames

are taken from 101 videos, covering a large variety of background scenes from urban loca-

tions (e.g., buildings, streets, cityscapes) to natural scenery (e.g., forests, plains, hills). We

span a wide range of geographic locations (e.g., North America, Europe, Oceania, and Asia)

to ensure that we capture diverse scenes and rainfall conditions. The scenes also include

varying degrees of illumination from different times of day and rain of varying densities,

streak lengths, shapes, and sizes. The webcams cover a wide array of resolutions, noise

levels, intrinsic parameters (focal length, distortion), etc. As a result, our dataset captures

diverse rain effects that cannot be accurately reproduced by SPA-Data [WYX19] or syn-

thetic datasets [FHZ17, HFZ19, LCT19, LTG16, YTF17, ZP18, ZSP19]. See Fig. 6.3 for

representative image pairs in GT-RAIN.

6.4 Learning to Derain Real Images

To handle greater diversity of rain streak appearance, we propose to learn a representation

(illustrated in Fig. 6.4) that is robust to rain for real image deraining.
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Figure 6.3: Our proposed dataset contains diverse rainy images collected across the

world. We illustrate several representative image pairs with various rain streak appearances

and rain accumulation strengths at different geographic locations.

6.4.1 Problem Formulation

Most prior works emphasize on rain streak removal and rely on the following equation to

model rain [DHZ18, FHZ17, LHZ18, LTG16, WXZ20, WYX19, YP19, ZP18, ZFL17]:

I = J+
n∑
i

Si, (6.2)

where I ∈ R3×H×W is the observed rainy image, J ∈ R3×H×W is the rain-free or “clean”

image, and Si is the i-th rain layer. However, real-world rain can be more complicated due

to the dense rain accumulation and the rain veiling effect [LCT19, LTC20, YTF19]. These

additional effects, which are visually similar to fog and mist, may cause severe degradation,

and thus their removal should also be considered for single-image deraining. With GT-

RAIN, it now becomes possible to study and conduct optically challenging, real-world rainy

image restoration.

Given an image I of a scene captured during rain, we propose to learn a function F(·, θ)

parameterized by θ to remove degradation induced by the rain phenomena. This function is

realized as a neural network (see Fig. 6.4) that takes as input a rainy image I and outputs
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Figure 6.4: By minimizing a rain-robust objective, our model learns robust fea-

tures for reconstruction. When training, a shared-weight encoder is used to extract

features from rainy and ground-truth images. These features are then evaluated with the

rain-robust loss, where features from a rainy image and its ground truth are encouraged to

be similar. Learned features from the rainy images are also fed into a decoder to reconstruct

the ground-truth images with MS-SSIM and ℓ1 loss functions.

a “clean” image Ĵ = F(I, θ) ∈ R3×H×W , where undesirable characteristics, i.e., rain streaks

and rain accumulation, are removed from the image to reconstruct the underlying scene J.

6.4.2 Rain-robust Loss

To derain an image I, one may directly learn a map from I to Ĵ simply by minimizing the

discrepancies between Ĵ and the ground truth J, i.e., an image reconstruction loss—such

is the case for existing methods. Under this formulation, the model must explore a large

hypothesis space, e.g., any region obfuscated by rain streaks is inherently ambiguous, making

learning difficult.

Unlike previous works, we constrain the learned representation such that it is robust to
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rain phenomena. To “learn away” the rain, we propose to map both the rainy and clean

images of the same scene to an embedding space where they are close to each other by

optimizing a similarity metric. Additionally, we minimize a reconstruction objective to

ensure that the learned representation is sufficient to recover the underlying scene. Our

approach is inspired by the recent advances in contrastive learning [CKN20], and we aim to

distill rain-robust representations of real-world scenes by directly comparing the rainy and

clean images in the feature space. But unlike [CKN20], we do not define a positive pair as

an augmentation to the same image, but rather any rainy image and its corresponding clean

image from the same scene.

When training, we first randomly sample a mini-batch of N rainy images with the associ-

ated clean images to form an augmented batch {(Ii,Ji)}Ni=1, where Ii is the i-th rainy image,

and Ji is its corresponding ground-truth image. This augmented batch is fed into a shared-

weight feature extractor FE(·, θE) with weights θE to obtain a feature set {(zIi , zJi
)}Ni=1,

where zIi = FE(Ii, θE) and zJi
= FE(Ji, θE). We consider every (zIi , zJi

) as the positive

pairs. This is so that the learned features from the same scene should be close to each other

regardless of the rainy conditions. We treat the other 2(N −1) samples from the same batch

as negative samples. Based on the noise-contrastive estimation (NCE) [GH10], we adopt

the following InfoNCE [OLV18] criterion to measure the rain-robust loss for a positive pair

(zJi
, zIi):

ℓzJi ,zIi = − log
exp

(
simcos(zIi , zJi

)/τ
)

∑
k∈K exp

(
simcos(zJi

,k)/τ
) , (6.3)

where K = {zIj , zJj
}Nj=1,j ̸=i is a set that contains the features extracted from other rainy

and ground-truth images in the selected mini-batch, simcos(u,v) = u⊺v/ ∥u∥ ∥v∥ is the

cosine similarity between two feature vectors u and v, and τ is the temperature parame-

ter [WXY18]. We set τ as 0.25, and this loss is calculated across all positive pairs within

the mini-batch for both (zIi , zJi
) and (zJi

, zIi).
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6.4.3 Full Objective

While minimizing Eq. (6.3) maps features of clean and rainy images to the same subspace,

we also need to ensure that the representation is sufficient to reconstruct the scene. Hence,

we additionally minimize a Multi-Scale Structural Similarity Index (MS-SSIM) [WSB03] loss

and a ℓ1 image reconstruction loss to prevent the model from discarding useful information

for the reconstruction task. Our full objective Lfull is as follows:

Lfull(Ĵ,J) = LMS-SSIM(Ĵ,J) + λℓ1Lℓ1(Ĵ,J) + λrobustLrobust(zJ, zI), (6.4)

where LMS-SSIM(·) is the MS-SSIM loss that is commonly used for image restoration [ZGF16],

Lℓ1(·) is the ℓ1 distance between the estimated clean images Ĵ and the ground-truth images

J, Lrobust(·) is the rain-robust loss in Eq. (6.3), and λℓ1 and λrobust are two hyperparameters

to control the relative importance of different loss terms. In our experiments, we set both

λℓ1 and λrobust as 0.1.

6.4.4 Network Architecture and Implementation Details

We design our model based on the architecture introduced in [JAF16, ZPI17]. As illustrated

in Fig. 6.4, our network includes an encoder of one input convolutional block, two downsam-

pling blocks, and nine residual blocks [HZR16] to yield latent features z. This is followed

by a decoder of two upsampling blocks and one output layer to map the features to J. We

fuse skip connections into the decoder using 3 × 3 up-convolution blocks to retain infor-

mation lost in the bottleneck. Note: normal convolution layers are replaced by deformable

convolution [ZHL19] in our residual blocks – in doing so, we enable our model to propagate

non-local spatial information to reconstruct local degradations caused by rain effects. Latent

features z are used for the rain-robust loss described in Eq. (6.3). Since these features are

high dimensional (256 × 64 × 64), we use an average pooling layer to condense the feature

map of each channel to 2 × 2. The condensed features are flattened into a vector of length

1024 for the rain-robust loss. It is worth noting that our rain-robust loss does not require
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Data Split Metrics
Rainy

Images

SPANet

[WYX19]

(CVPR’19)

HRR

[LCT19]

(CVPR’19)

MSPFN

[JWY20]

(CVPR’20)

RCDNet

[WXZ20]

(CVPR’20)

DGNL-Net

[HZW21]

(IEEE TIP’21)

EDR

[GSJ21]

(AAAI’21)

MPRNet

[ZAK21]

(CVPR’21)

Ours

Dense Rain

Streaks

PSNR↑

SSIM↑

18.46

0.6284

18.87

0.6314

17.86

0.5872

19.58

0.6342

19.50

0.6218

17.33

0.5947

18.86

0.6296

19.12

0.6375

20.84

0.6573

Dense Rain

Accumulation

PSNR↑

SSIM↑

20.87

0.7706

21.42

0.7696

14.82

0.4675

21.13

0.7735

21.27

0.7765

20.75

0.7429

21.07

0.7766

21.38

0.7808

24.78

0.8279

Overall
PSNR↑

SSIM↑

19.49

0.6893

19.96

0.6906

16.55

0.5359

20.24

0.6939

20.26

0.6881

18.80

0.6582

19.81

0.6926

20.09

0.6989

22.53

0.7304

Table 6.2: Quantitative comparison on GT-RAIN. Our method outperforms the ex-

isting state-of-the-art derainers. The preferred results are marked in bold.

additional modifications on the model architectures.

Our deraining model is trained on 256 × 256 patches and a mini-batch size N = 8 for

20 epochs. We use the Adam optimizer [KB14] with β1 = 0.9 and β2 = 0.999. The initial

learning rate is 2× 10−4, and it is steadily modified to 1× 10−6 based on a cosine annealing

schedule [LH17]. We also use a linear warm-up policy for the first 4 epochs. For data

augmentation, we use random cropping, random rotation, random horizontal and vertical

flips, and RainMix augmentation [GSJ21].

6.5 Experiments

We compare to state-of-the-art methods both quantitatively and qualitatively on GT-RAIN,

and qualitatively Internet rainy images [WMZ19]. To quantify the difference between the

derained results and ground truth, we adopt peak signal-to-noise ratio (PSNR) [HG08] and

structure similarity (SSIM) [WBS04].
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6.5.1 Quantitative Evaluation on GT-RAIN

To quantify the sim2real gap of the existing datasets, we test seven representative existing

state-of-the-art methods [GSJ21, HZW21, JWY20, LCT19, WXZ20, WYX19, ZAK21] on

our GT-RAIN test set. Since there exist numerous synthetic datasets proposed by previous

works [FHZ17, HFZ19, LCT19, LTG16, YTF17, ZP18, ZSP19], we found it intractable to

train our method on each one; whereas, it is more feasible to take the best derainers for

each respective dataset and test on our proposed dataset as a proxy (Tab. 6.2). This follows

the conventions of previous deraining dataset papers [FHD17, HZW21, LTG16, WYX19,

YTW20, ZP18, ZSP19] to compare with top performing methods from each existing dataset.

SPANet [WYX19] is trained on SPA-Data [WYX19]. HRR [LCT19] utilizes both NYU-

Rain [LCT19] and Outdoor-Rain [LCT19]. MSPFN [JWY20] and MPRNet [ZAK21] are

trained on a combination of multiple synthetic datasets [FHZ17, LTG16, YTF17, ZSP19].

DGNL-Net [HZW21] is trained on RainCityscapes [HFZ19]. For RCDNet [WXZ20] and

EDR [GSJ21], multiple weights from different training sets are provided. We choose RCDNet

trained on SPA-Data and EDR V4 trained on Rain14000 [FHZ17] due to superior perfor-

mance.

Compared to training on GT-RAIN (ours), methods trained on other data perform

worse, with the largest domain gap being in NYU-Rain and Outdoor-Rain (HRR) and

RainCityscapes (DGNL). Two trends do hold: training on (1) more synthetic data gives bet-

ter results (MSPFN, MPRNet), and (2) semi-real data also helps (SPANet). However, even

when multiple synthetic [FHZ17, LTG16, YTF17, ZSP19] or semi-real [WYX19] datasets are

used, their performance on real data is still around 2dB lower than training on GT-RAIN

(ours).

Figure 6.5 illustrates some representative derained images across scenarios with various

rain appearance and rain accumulation densities. Training on GT-RAIN enables the network

to remove most rain streaks and rain accumulation; whereas, training on synthetic/semi-real
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data tends to leave visible rain streaks. We note that HRR [LCT19] and DGNL [HZW21] may

seem like they remove rain accumulation, but they in fact introduce undesirable artifacts, e.g.,

dark spots on the back of the traffic sign, tree, and sky. The strength of having ground-truth

paired data is demonstrated by our 2.44 dB gain compared to the state of the art [ZAK21].

On test images with dense rain accumulation, the boost improves to 3.40 dB.

6.5.2 Qualitative Evaluation on Other Real Images

Other than the models described in the above section, we also include EDR V4 [GSJ21]

trained on SPA-Data [WYX19] for the qualitative comparison, since it shows more robust

rain streak removal results as compared to the version trained on Rain14000 [FHZ17]. The

derained results on Internet rainy images are illustrated in Fig. 6.6. The model trained on

the proposed GT-RAIN (i.e., ours) deals with large rain streaks of various shapes and sizes

as well as the associated rain accumulation effects while preserving the features present in the

scene. In contrast, we observe that models [HZW21, LCT19] trained on data with synthetic

rain accumulation introduce unwanted color shifts and residual rain streaks in their results.

Moreover, the state-of-the-art methods [JWY20, WXZ20, ZAK21] are unable to remove the

majority of rain streaks in general as highlighted in the red zoom boxes. This demonstrates

the gap between top methods on synthetic versus one that can be applied to real data.

6.5.3 Retraining Other Methods on GT-RAIN

We additionally train several state-of-the-art derainers [GSJ21, WXZ20, ZAK21] on the

GT-RAIN training set to demonstrate that our real dataset leads to more robust real-

world deraining and benefits all models. We have selected the most recent derainers for this

retraining study.1 All the models are trained from scratch, and the corresponding PSNR

1Both DGNL-Net [HZW21] and HRR [LCT19] cannot be retrained on our real dataset, as both require
additional supervision, such as transmission maps and depth maps.
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Rain

(23.64/0.8561)

SPANet [WYX19]

(23.56/0.8474)

HRR [LCT19]

(19.78/0.7508)

MSPFN [JWY20]

(25.57/0.8659)

RCDNet [WXZ20]

(24.71/0.8654)

DGNL [HZW21]

(17.26/0.7516)

EDR V4 [GSJ21]

(23.93/0.8539)

MPRNet [ZAK21]

(24.33/0.8657)

Ours

(26.31/0.8763)

Ground Truth

(PSNR/SSIM)

Rain

(19.81/0.7541)

SPANet [WYX19]

(20.03/0.7244)

HRR [LCT19]

(15.03/0.4944)

MSPFN [JWY20]

(19.64/0.7491)

RCDNet [WXZ20]

(20.58/0.7164)

DGNL [HZW21]

(15.51/0.6508)

EDR V4 [GSJ21]

(19.96/0.7461)

MPRNet [ZAK21]

(19.88/0.7551)

Ours

(23.89/0.7906)

Ground Truth

(PSNR/SSIM)

Figure 6.5: Our model simultaneously removes rain streaks and rain accumulation,

while the existing models fail to generalize to real-world data. The red arrows

highlight the difference between the proposed and existing methods on the GT-RAIN test

set (zoom for details, PSNR and SSIM scores are listed below the images).
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Rainy Image SPANet [WYX19] HRR [LCT19] MSPFN [JWY20] RCDNet [WXZ20]

DGNL-Net [HZW21] EDR V4 (S) [GSJ21] EDR V4 (R) [GSJ21] MPRNet [ZAK21] Ours

Rainy Image SPANet [WYX19] HRR [LCT19] MSPFN [JWY20] RCDNet [WXZ20]

DGNL-Net [HZW21] EDR V4 (S) [GSJ21] EDR V4 (R) [GSJ21] MPRNet [ZAK21] Ours

Figure 6.6: Our model can generalize across real rainy images with robust per-

formance. We select representative real rainy images with various rain patterns and back-

grounds for comparison (zoom for details). EDR V4 (S) [GSJ21] denotes EDR trained on

SPA-Data [WYX19], and EDR V4 (R) [GSJ21] denotes EDR trained on Rain14000 [FHZ17].

and SSIM scores on the GT-RAIN test set are provided in Tab. 6.3. For all the retrained

models, we can observe a PSNR and SSIM gain by using the proposed GT-RAIN dataset.

In addition, with all models trained on the same dataset, our model still outperforms others

in all categories.
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Data Split Metrics
Rainy

Images

RCDNet

[WXZ20]

(Original)

RCDNet

[WXZ20]

(GT-RAIN)

EDR

[GSJ21]

(Original)

EDR

[GSJ21]

(GT-RAIN)

MPRNet

[ZAK21]

(Original)

MPRNet

[ZAK21]

(GT-RAIN)

Ours

Dense Rain

Streaks

PSNR↑

SSIM↑

18.46

0.6284

19.50

0.6218

19.60

0.6492

18.86

0.6296

19.95

0.6436

19.12

0.6375

20.19

0.6542

20.84

0.6573

Dense Rain

Accumulation

PSNR↑

SSIM↑

20.87

0.7706

21.27

0.7765

22.74

0.7891

21.07

0.7766

23.42

0.7994

21.38

0.7808

23.38

0.8009

24.78

0.8279

Overall
PSNR↑

SSIM↑

19.49

0.6893

20.26

0.6881

20.94

0.7091

19.81

0.6926

21.44

0.7104

20.09

0.6989

21.56

0.7171

22.53

0.7304

Table 6.3: Retraining comparison methods on GT-RAIN. The improvement of these

derainers further demonstrates the effectiveness of real paired data.

6.5.4 Fine-tuning Other Methods on GT-RAIN

To demonstrate of the effectiveness of combining real and synthetic datasets, we also fine-

tune several more recent derainers [GSJ21, WXZ20, ZAK21] that are previously trained

on synthetic datasets with the proposed GT-RAIN dataset. We fine-tune from the official

weights as described in the above quantitative evaluation section, and the fine-tuning learning

rate is 20% of the original learning rate for each method. For the proposed method, we

pretrain the model on the synthetic dataset used by MSPFN [JWY20] and MPRNet [ZAK21].

The corresponding PSNR and SSIM scores on the GT-RAIN test set are listed in Tab. 6.4.

In the table, we can observe a further boost as compared with training the models from

scratch with just real or synthetic data.

6.5.5 Ablation Study

We validate the effectiveness of the rain-robust loss with two variants of the proposed method:

(1) the proposed network with the full objective as described in Sec. 6.4; and (2) the proposed

network with just MS-SSIM loss and ℓ1 loss. The rest of the training configurations and

hyperparameters remain identical. The quantitative metrics for these two variants on the
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Data Split Metrics
Rainy

Images

RCDNet

[WXZ20]

(O)

RCDNet

[WXZ20]

(F)

EDR

[GSJ21]

(O)

EDR

[GSJ21]

(F)

MPRNet

[ZAK21]

(O)

MPRNet

[ZAK21]

(F)

Ours

(O)

Ours

(F)

Dense Rain

Streaks

PSNR↑

SSIM↑

18.46

0.6284

19.50

0.6218

19.33

0.6463

18.86

0.6296

20.03

0.6433

19.12

0.6375

20.65

0.6561

20.84

0.6573

20.79

0.6655

Dense Rain

Accumulation

PSNR↑

SSIM↑

20.87

0.7706

21.27

0.7765

22.50

0.7893

21.07

0.7766

23.57

0.8016

21.38

0.7808

24.37

0.8250

24.78

0.8279

25.20

0.8318

Overall
PSNR↑

SSIM↑

19.49

0.6893

20.26

0.6881

20.69

0.7076

19.81

0.6926

21.55

0.7111

20.09

0.6989

22.24

0.7285

22.53

0.7304

22.68

0.7368

Table 6.4: Fine-tuning comparison methods on GT-RAIN. (F) denotes the fine-tuned

models, and (O) denotes the original models trained on synthetic/real data.

Metrics Rainy Images Ours w/o Lrobust Ours w/ Lrobust

PSNR↑ 19.49 21.82 22.53

SSIM↑ 0.6893 0.7148 0.7304

Table 6.5: Ablation study. Our rain-robust loss improves both PSNR and SSIM.

proposed GT-RAIN test set are listed in Tab. 6.5. Our model trained with the proposed

rain-robust loss produces a normalized correlation between rainy and clean latent vectors of

.95 ± .03; whereas it is .85 ± .10 for the one without. These rain-robust features help the

model to show improved performance in both PSNR and SSIM.

6.5.6 Clean Images as Input

An ideal derainer should be able to preserve the image appearance when clean images are

used as its input. Some typical output images are illustrated in Fig. 6.7 by directly feeding

images without any rain effect into our model. We can observe that the majority of the

model output remains closely identical to the corresponding clean input, which validates
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Clean Input Model Output Clean Input Model Output

Figure 6.7: Our proposed model is capable of preserving image appearance when

using clean images as its input. Two typical scenes with different backgrounds are

selected for illustration.

Rainy EDR V4 (R) [GSJ21] MPRNet [ZAK21] Ours Ground Truth

Figure 6.8: Deraining is still an open problem. Both the proposed method and the

existing work have difficulty in generalizing the performance to some challenging scenes.

the effectiveness of our proposed model on clean image preservation. However, it should

also be noted that our model still introduces some artifacts (e.g., blurriness) in its output.

A potential future direction of the work can focus on removing these artifacts, such as

encouraging the existence of high-frequency details in the output space.

6.5.7 Failure Cases

Apart from the successful cases illustrated in Fig. 6.5, we also provide some of the failure

cases in the GT-RAIN test set in Fig. 6.8. Deraining is still an open problem, and we hope

future work can take advantage of both real and synthetic samples to make derainers more

robust in diverse environments.
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6.6 Conclusion

Many of us in the deraining community probably wish for the existence of parallel universes,

where we could capture the exact same scene with and without weather effects at the exact

same time. Unfortunately, however, we are stuck with our singular universe, in which we

are left with two choices: (1) synthetic data at the same timestamp with simulated weather

effects or (2) real data at different timestamps with real weather effects. Though it is up to

opinion, it is our belief that the results of our method in Fig. 6.6 reduce the visual domain

gap more than those trained with synthetic datasets. Additionally, we hope the introduction

of a real dataset opens up exciting new pathways for future work, such as the blending of

synthetic and real data or setting goalposts to guide the continued development of existing

rain simulators [HLC19, NCY21, WYX21, YCZ21, YXZ21].
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CHAPTER 7

Conclusion

In this dissertation, we investigate the general paradigm of integrating physical priors into

neural networks as well as how physical knowledge can benefit the learning process with spe-

cific applications in the field of computational imaging and computer vision. Applications

in this dissertation primarily focus on incorporating physical knowledge in a single-modality

setting (e.g., RGB domain for skin-tone inclusive rPPG), while complicated real-world infer-

ence usually requires a collaboration of multiple sensor modalities. One potential future work

direction is to extend the idea of learning with physical priors and inductive biases to broader

applications with multiple sensor modalities and advance the technique from low-level vi-

sion to higher-level machine intelligence, such as 3D estimation and scene understanding for

autonomous agents in complex or extreme environments.

In addition, contriving an automated way to blend suitable prior information from a list

of potential candidates can be another line of future work. In this dissertation, we mainly

focus on finding a suitable way to blend a specific type of physical knowledge for a specific

task, however, it is common that there exist multiple types of prior knowledge designed

for the same task. Each type of prior knowledge may contribute differently when meeting

with real data. Establishing an efficient mechanism to identify and combine suitable prior

knowledge from all the potential candidates can be an important step toward more robust

and reliable inference in real-world scenarios.
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