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Chemosensory processing encodes environmental information, relaying it to neural 

systems that regulate key behavioral responses. This broad definition implies the study of 

chemosensory processing is relevant across model organisms, leading to multiple 

practical applications. Of interest is chemosensory processing in agricultural pests and 

insect vectors, since volatile organic compounds and tastants determine behavior toward 

humans and agriculture. Some work has been done to uncover key pathways mediating 

behavioral attraction and aversion in the fruit fly, Drosophila melanogaster, as well as 

mosquito vectors. However, the limited number of pathways that can be experimentally 

manipulated suggests computational methods offer a complementary method. Machine 

learning has been applied to successfully predict ligands of insect chemosensory 

receptors. But these tools have not yet been applied across sensory encoding, 

identification of important neural pathways for attraction or aversion, and the discovery 
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of receptor ligands and chemical repellents. Such a comprehensive analysis pipeline is 

the aim of this work. Although emphasis is on insect repellent discovery, human as well 

as broader ecological toxicity remain highly relevant. This demands accurate in silico 

toxicity estimation in addition to cosmetic properties such as odor perceptual qualities 

that are a key consideration in designing topical formulations. Modeling of toxicological 

endpoints and human perceptual encoding by odorant receptors and the physicochemical 

features of odorants, are therefore discussed independently in detail, and later included 

into the repellent discovery pipeline. Ultimately, the discovery pipeline has helped 

identify numerous insect repellents that have desirable properties such as flavors and 

fragrances,  has provided key insights into theories of chemosensory processing, and has 

been adapted to drug repurposing and discovery for COVID-19, with several top 

predicted compounds subsequently confirmed in vitro assays by others. 
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Chapter 1 

Introduction 

Mosquitoes including Aedes aegypti and Anopheles gambiae, which are notable insect 

disease vectors, as well as the fruit fly, Drosophila melanogaster, sense the chemical 

surroundings through Ionotropic Receptors (IRs), Gustatory receptors (Grs) and Odorant 

receptors (Ors). These chemosensory receptor classes are largely housed in structured 

called sensilla, with limited overlap between classes per sensillum. Each sensillum is 

identified by hair-like protrusions from the superficial epidermis (cutical). These hair-like 

structures are porous, enabling the transfer of chemicals into the sensillum and onto the 

sensory neuron dendrites, which house the receptors. The dendrites, extending down to 

cell bodies, are bathed in lymph. An electrochemical potential accumulates due to a 

difference in charge and ion concentration between the intracellular membrane surface 

and extracellular lymph. The sensory receptors at the dendrites subsequently mediate ion 

flow, altering the charge and concentration balance either toward or away from the 

activity threshold. Surpassing this activity threshold leads to an action potential or wave 

of intracellular depolarizing current relative to the extracellular sensillum lymph. The 

wave in turn propagates to second order neurons or glomeruli. These glomeruli represent 

a critical layer in which sensory information from antennal neurons is integrated and 

subsequently relayed to high order brain structures for memory and behavior regulation.  

One key neural pathway in Diptera, particularly mosquitoes and flies, is 

associated with CO2 sensing. While the specific receptors are distinct, dedicated CO2 

response pathways are well conserved across Diptera, including the experimentally 
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tractable and well-studied model organism Drosophila melanogaster or more broadly the 

fruit fly. Evolutionary conservation among diptera thus offers the possibility to develop 

general chemosensory processing models using Drosophila. Researchers have already 

characterized attractive and aversive behaviors in response to various environmental 

chemicals as well as some neural pathways. However, these studies alone cannot easily 

highlight putative interactions among numerous sensory receptor pathways or compare 

them according to their contribution to behavior.   

An important next step is to clarify the most relevant receptor pathways. Here, 

alongside collaborators, I have outlined computational approaches to understand the 

chemosensory pathways underpinning simple attractive and aversive behaviors (Chapter 

2); the subsequent chapter then applies these findings to accurately predict the activity of 

chemicals that target these pathways (Chapter 3). Accordingly, the need for a 

comprehensive map of chemicals on or potentially on human skin including the 

relationships between their structures and mosquito behavior is addressed in Chapter 4 as 

well as the development of a computational discovery pipeline for chemical repellents. 

Notably, since the repellents must equally be safe and suitable for human use, cosmetic 

and physical properties of a chemical are also important. Later chapters (Chapters 5-7) 

therefore include computational modeling of human perceptual neuroscience (Chapters 5 

and 6) and toxicity (Chapter 7). While this work is centered around chemosensory 

neuroscience, the concluding chapter (Chapter 7) illustrates that the discovery pipeline 

for insect repellents can be generalized for COVID-19 treatments; repurposing approved 

drugs and discovering novel therapeutic compounds. Taken together, these studies 
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demonstrate the value of computational tools in basic biology and neuroscience research, 

with an emphasis on understanding chemosensory processing from theory to application.   
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Chapter 2 

Sensory pathways that are predictive of behavioral valence in insects 

2.1. Introduction 

Although several insect repellents are widely and consistently used, the precise 

mechanisms, particularly for the most prominent chemical repellent, N, N-Diethyl-meta-

toluamide (DEET), remain unclear. DEET is the outcome of a large-scale government 

initiative in the 1950s to discover chemical strictures that repel or possibly incapacitate 

insects. In subsequent decades, it has been thoroughly studied to replicate its efficacy, but 

these efforts have suggested numerous modes for its repellent activity. This complexity 

makes it challenging to use traditional chemical approaches, which are most successful 

when one or few protein targets are well defined. It is then plausible to design chemicals 

around the relevant physical constraints of the protein target(s) such as the electrostatic 

interactions that facilitate docking. However, in chemosensory science, even if the 

protein targets were well defined, there is a paucity of 3D structural data for sensory 

receptors. This presents, at least initially, a computational problem. This problem can be 

broken down into two steps: (1) Identification of the sensory receptors/pathways that are 

predictive of simple behaviors in mosquitoes and agricultural pests; (2) study the 

physicochemical attributes of chemicals that act on these receptors/pathways by 

identifying which of these attributes best predict the activity.  

The work presented in this chapter canvasses the first of these two steps. Here, my 

colleagues and I observed a correlation between electrophysiological recordings from the 

CO2 detecting neuron in Drosophila and odor valence (e.g. attraction or aversion to an 
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odorant). Odor valence was quantified using the T-maze assay, where flies navigates to a 

solvent treated control arm or a chemically treated experimental arm. Counting the flies 

in each arm and expressing as a ratio gives the Preference Index (PI), a coefficient from -

1.00 to +1.00 that quantifies attractive (positive values) and aversive (negative values) 

behaviors. Though the activity of odorant receptor neurons (ORNs) is not measured 

during the T-maze assay, the fly’s navigation is based on detecting odorant molecules via 

these neurons. It is therefore possible to record from these neurons independently of the 

assay, later using these activities to predict the Preference Index (PI). 

 My colleagues and I started with activities from 24 odorant receptor neurons 

(ORNs) in the antennae. Interestingly, we failed to find a correlation between 

electrophysiological recordings from these neurons compared to ab1C, a unique sensory 

neuron, also housed in the antennae that expresses gustatory receptors rather odorant 

receptors. Early developmental regulation typically leads to the expression of a unique 

odorant receptor in the odor-sensing neurons of the antennae; the neuron is therefore 

often abbreviated as the odorant receptor alone. The ab1C neuron, in contrast expresses 

two receptors, Gr21 and Gr63a, which confer sensitivity to CO2. This specialized neuron 

is highly evolutionary conserved. Subsequently, the correlation between activity from this 

neuron to 54 odorants and the corresponding Preference Index (PI) values from the T-

maze was surprising.  

The relevance of ab1C activity to odor valence in Drosophila as well as evidence 

in mosquitoes suggested the hypothesis that CO2 detecting neurons may be key in 

predicting mosquito and fruit fly behavior. My work focused on determining if a rigorous 
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computational analysis would support this, work which is outlined in this chapter for 

Drosophila (fruit flies). 

 

2.2 Results 

2.2.1 Predicting behavior with and without ab1C activity.  

To assess the behavioral contribution of the activity recorded from the 24 ORs (olfactory 

sensory neurons, ORNs) and the Gr21a/Gr63a-expressing ab1C neuron, we performed a 

series of statistical and feature-selection approaches. These identify which receptor(s) 

optimally predict behavior (Figure 2.1A). Initially, a simple regression analysis using the 

known activities of the 24 ORs to 54 odorants failed to explain the variability in fly 

preference (Preference Index, PI) to these same odorants (p >.05). However, adding the 

activity of the ab1C neuron, improved the fit, explaining 63% of the variation in the T-

maze behavior (p = 0.03). Interestingly, the activity of ab1C alone was also statistically 

significant (p<0.001) and favored according to a measure that evaluates the quality of the 

model fit (BIC = 24.6) (Figure 2.1B, C).  

 We next identified the minimum number of receptors that could predict behavior, 

as was done previously for larval behavior (Kreher et al., 2008). The 25-predictor model 

(24 Ors and ab1C) was analyzed using stepwise regression, entailing the sequential 

removal of predictors until converging upon an optimal subset. Candidate models were 

screened using values of R squared and the Bayesian Information Criterion (BIC). 

Surprisingly, only a two-predictor model with ab1C and Or85f was retained when using 

the stepwise selection method alone as before (Kreher et al., 2008). In order to further 

control if this model was a byproduct of a few influential odorants affecting the 
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regression fit or spurious correlations with the Preference Index (PI), the odor space was 

sampled from with replacement, a procedure that is also referred to as bootstrapping. This 

resulted in thousands of random combinations of the 54 odorants, ensuring the reliability 

of the finding. Running the stepwise regression iteratively on 5000 combinations and 

recording the selection rate for each predictor in the final model suggested that a model 

including ab1C, Or2a, Or67a, Or59b, and Or19a generalized well across the different 

odorant combinations (Figure 2.1D). High selection rate across the combinations was for 

the most part consistent with the t statistic assigned to each predictor for the full linear 

regression model (e.g. all 25 predictors) to the 54 odors (Figure 2.1B, C). The linear 

regression model with the smaller subset of informative predictors resulted in the linear 

equation, Avg. PI = -0.23 - 0.09 Or67a + 0.02 Or2a - 0.04 Or59b - 0.03 Or19a - 0.14 

ab1C (Figure 2.1E).  Most of the predictors in the model are broadly tuned ((Hallem and 

Carlson, 2006), DoOr database (http://neuro.uni-konstanz.de/DoOR/default.html)), 

consistent with the expectation that, since they are activated by many odorants, they 

should remain predictive of the T-maze behavior across many different combinations of 

the 54 odorants. The importance of ab1C was the highest among the 25 sensory neuron 

activities, as determined by the number of times it was selected (out of 5000) for the 

final, “best” model, based on statistical criteria. This further emphasizes the role of ab1C 

in predictions of odor valence (Figure 2.1D).  

Given further evidence that ab1C activity was more informative than Ors, we 

revisited the comparison between ab1C and the 24-Or model (shown in Figure 2.1B) but 

now using a cross validation procedure. This entails repeatedly fitting the regression 
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models on a smaller subset of odorants, then predicting the T-maze behavior for the 

odorants that are excluded. In this sense, it offers a true assessment of the average 

predictive power of the model and therefore helps evaluate its usefulness in predicting the 

T-maze behavior for any arbitrary odorant, rather than simply the 54 odorants studied 

here. To perform this analysis, the regression model with all Ors (e.g. excluding ab1C) 

was now fit using regularized regression (also called ridge regression). Because the larger 

24 Or model is more complex than ab1C alone, it will also be less stable in its 

predictions. Such a scenario may give rise to poor prediction of T-maze behavior purely 

for statistical reasons. Regularization circumvents this by penalizing the larger, 24 Or 

model from being too complex, which means the coefficients for Ors that are not 

informative are shrunk toward 0; that is, they contribute little to the prediction. The 

results of this analysis indicated that ab1C explained 41% of the variability in T-maze 

behavior over the validation approach, as compared to 22% for the all Or model (Figure 

2.1F). 

 It remained unclear from these analyses, however, to what extent odor valence 

was indeed a linear function of receptor/neuron activity in the antenna and if this was an 

unreasonable constraint. Recent studies have suggested the possibility of non-linear 

interactions in contribution of ORNs or glomerular activities to behavior behavior (Badel 

et al., 2016; Bell and Wilson, 2016). We therefore broadened the scope of our analysis 

using different machine learning algorithms that are more flexible and conducive to 

capturing non-linear relationships. Using these, we tried to determine (1) at what 

frequency would ab1C meaningfully improve predictions regardless of the algorithm 
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being used, (2) what are the consensus optimal predictor sets selected across these 

algorithms, and (3) which algorithms minimize prediction error after removing 

uninformative predictors (Methods). To compare the differing approaches and models, 

error rates were evaluated using bootstrap validation (1000 resamples) or 10-fold cross- 

validation, repeated 100 times (1000 folds). These techniques involve training each 

algorithm on a matrix of receptor activities to odorants, subsequently predicting the T-

maze Preference Index (PI) for samples of odorants that were not used during the 

training. Across algorithms for identifying optimal predictors, ab1C was always ranked 

above the 24 Ors, followed by Or67a and Or22a. Intriguingly, Or22a, which displays a 

more complex relationship with behavior was high on every list but was nevertheless 

missed by the previous OLS regression and stepwise removal (Figure 2.2A, B). In 

general, models sensitive to non-linearity and interactions amongst the predictors resulted 

in slight improvement during validation, yet the major determinant was whether ab1C 

was in the model (Figure 2.2B, D; Figure 2.3A, B). Despite implementing many complex 

algorithms, any improvement approximated our control case, fitting a simple regression 

model with ab1C and Or67a (R2  = 0.45) (Figure 2.3A, B). Larger odor samples will 

undoubtedly favor these sophisticated algorithms, but it remains surprising that ab1C was 

selected as one of the top predictors of valence for the T-maze behavior generated in this 

study. 

It would be important to ask whether ab1C activity is also a significant predictor 

for other types of olfactory behavior in longer-term assays such as the wind-tunnel, 

walking assays, or traps. While large odor sets have not yet been tested in the wind-
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tunnel, we were able to utilize a large behavioral preference data set generated using trap 

assays, which had substantial overlap with the odorants (47/110) that we tested in the T-

maze (Knaden et al., 2012). The trap assay evaluates attraction to a “trap” or baited 

enclosure and is run for a longer duration than the T-maze (hours vs minutes). But the 

Preference Index (PI) (T-maze) and Attraction Index (AI) (trap assay) are otherwise 

conceptually similar. Interestingly, the behavioral preferences across the 2 assays differed 

for odorants common to the two studies (r = 0.01 p = 0.9; rank ordered correlation for the 

bottom ten scoring compounds in the T-maze assay rho = 0.44, p = 0.2), which suggests 

the behavior is potentially occurring through different olfactory pathways. Applying the 

earlier computational approach to predict the trap assay behavior, we identified the top 7 

optimal predictors (Ors) (Figure 2.4B). However, unlike with the T-maze, few predictors 

were individually informative; it was no longer evident that a simple rank ordering from 

the selection rate was useful. Instead, combinations of the top 7 predictors were 

reassessed using repeated 10-fold cross-validation, or repeatedly dividing the data into 

training and testing portions, as discussed earlier. The ordinary least squares (OLS) 

regression fit for the best model resulted in the linear equation, Avg. AI = 0.19511 + 

0.07894 Or59b - 0.09033 Or49b - 0.05763 Or98a on the original data (Figure 2.4D-F). 

These results suggest that the statistical approach we applied can nevertheless identify 

odorant receptors that predict the trap behavior (R2=0.4), as was possible with T-maze. A 

more general approach excluding cross-validation and considering activities of all 24 Ors 

was not sufficient to predict behavior (Knaden et al., 2012). Surprisingly, however, ab1C 

was not a significant predictor of the trap behavior, suggesting that the behavioral 
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responses to these two olfactory assays are likely generated in a fundamentally different 

manner, using different receptors.  

 

2.2. Discussion 

An exhaustive statistical analysis to test whether a few selected ORN types could model 

the T-maze behavior in response to the tested odorants led to a linear model with 4 

broadly-tuned Ors (Or2a, Or19a, Or59b and Or67a) and Gr21a/Gr63a. In fact, in every 

possible unbiased analyses we tried, both simple linear regression and based on 

sophisticated machine learning (altogether ~20 different methods), the activity of ab1C 

was consistently selected as the top performing descriptor for behavior predictions.  The 

valence of several odorants therefore depends upon the Gr21a/63a (ab1C) pathway. 

However, narrowly tuned Ors  detect odorants that elicit specialized behaviors such as 

oviposition, or act as pheromones, some that are species-specific (Knaden and Hansson, 

2014). Our experiments also illustrate that the valence of  ~16% odorants are lost and 

~10% are altered in the orco mutant flies, suggesting the importance of the Or pathway 

(MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018). This is consistent with 

recent studies showing segregation of spatial inputs for attractive and aversive odorants in 

the Lateral Horn brain region of the second order projection neurons connected to Or-

neurons (Strutz et al., 2014).  

Although simple regression approaches were suitable to optimally predict 

behavior, more sophisticated algorithms with sensitivity to non-linearity led to 

incremental improvement. Consistent with Bell and Wilson (2016), some Or activities 
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relate to behavior non-linearly, and therefore it is expected that algorithms that can 

capture all relationships (linear and non-linear) will ultimately be optimal. However, it is 

likely that the number of odorants studied here was not large enough to result in a 

substantive performance difference. The predictive success shown here suggests 

computation may be used to merge separate behavior and electrophysiological 

experiments, gaining new insight into insect control. 
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2.4. Figures 

Figure 2.1. CO2 receptor neuron activity required for prediction of odor valence from 

responses. A) Sample workflow of the modeling approach. The T-maze preference index 

for 54 odor x 24 Or-response matrix was used to predict the PI; this Or-only model was 

initially fit using OLS regression and was then retested for fit after adding ab1C activity 

for the 54 odorants. Uninformative predictors were removed and the reduced model was 

validated. B) Tabulated measures of fit are shown for the labeled model on the original 

data. C) Predicted PI was plotted as a function of the observed PI for the 24OR+ ab1C 

model; the red line depicts the linear trend while the overlaying gray band is the standard 

error for th fit.  D) Predictors that are selected most frequently and their selection rates, 

across 5000 iterations of stepwise regression, resampling the 54-odorant set on each run. 

The black vertical line is the empirically determined threshold for consistent selection out 

of 5000 iterations. E) Linear equation of the optimal predictors. Units for the coefficients 

reflect the Z transformed spikes/s. F) Average performance on 1000 cross-validation test 

folds is shown for two models. To ensure optimal performance and stability of the larger 

Or-only model, the test average is shown for ridge regression and compared to ab1C 

alone using OLS regression. Abbreviations: OLS, Ordinary Least Squares; BIC, Bayesian 

Information Criterion. 
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Figure 2.2. Identifying the optimal predictors using multiple approaches. A) Several 

model selection algorithms arrive at a consensus minimal set of optimal predictors and all 

include ab1C. B) Additional algorithm-specific variable importance measures scaled to 

the maximum. Ten predictors appearing in the lists shown in (A) were tested on the 54 

odorant set using recursive partitioning (RPART), partial least squares (PLS), random 

forest (RF) and ordinary least squares (OLS) regression. Except for random forest the 

scaled importance metrics are derived from the original fit and are independent of 

resampling or cross validation. Of the optimal Ors selected for reducing prediction error 

on 1000s of resampled odor sets, some are not important on the original data; ab1C does 

however display consistency in this context.   

 



 

 

15 

 
Figure 2.3. Identifying the optimal methods for predicting behavior. A) Multiple 

machine learning algorithms are compared for the 10 best predictors, using the two 

predictor model of ab1C and Or67a as a control case. Performance is evaluated on 

different portions of data “hidden” from the original fit. The performance metric is the 

square root of the average difference (error) between the predicted and observed 

Preference Index (PI) for the T-maze (RMSE). Each algorithm that is labeled along the 

vertical has been evaluated 1000 times according to this metric; each time is the 

prediction of the Preference Index on a different set of “hidden” or test odorants. Because 

the odorants in these test sets are the same for all algorithms, it is possible to compare. 

Therefore, the colored vertical lines represent all the test performances from one 

algorithm to the next. The objective then is to identify the lowest RMSE (error) values 

and those that are less scattered; the latter highlights the algorithms that predicted the 

behavior with less variability. The plot illustrates that the simple regression model (OLS) 

with Or67a and ab1C predict with error rates comparable to many sophisticated 

algorithms. Algorithms like the linear support vector machine (SVM Linear) predict less 

accurately, with high variability. B) Left, the averaged performance metrics, including 

the R squared, confirm no approach warrants selection over the two-predictor model fit 

using OLS regression, given a diverse but not exhaustive set of 54 odorants. Right, the 

summary statistics for the tabulated performance shown on the left. 
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Figure 2.4 
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Figure 2.4. Optimizing the prediction of odor valence from the trap assay. A) The 24 Or 

model including ab1C is compared to a three predictor model, performing optimally 

during cross-validation. Statistics comparing these models are based on the OLS 

regression fit, predicting the attraction index (AI) for all 47 odorants overlapping with 

available ab1C activities. B) Following filtering for high correlations, potentially 

predictive models were pre-screened based on the rate of predictor selection according to 

stepwise regression using BIC minimization and backward elimination on 10,000 

resamples of the odor space. Unlike in the T-maze, few predictors were individually 

informative; it was no longer evident that a simple rank ordering from the selection rate 

was useful. Instead, combinations of the top 7 predictors were assessed using repeated 

10-fold cross-validation. C) Top 7 predictors based on the selection rate for the 110 

odorant set. D) The best performing model as determined by cross-validation. Estimates 

for coefficients in the linear equation are representative of the standardized activities (Z-

transform) for each of the predictors on the 47 odorant set and are subsequently on the 

same scale.  E) The average variability accounted for in the attraction index across 100 

iterations of 10-fold cross-validation using the model in D and the 47 odorant set. F) The 

cross-validation performance is collapsed into 50 bins representing the variability in 

performance (solid line), along with the overall average (dashed line).  Abbreviations: 

BIC, Bayesian Information Criterion; OLS, ordinary least squares.   
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2.5. Methods 

2.5.1. Drosophila T-maze assays 

T-maze behavioral testing using Drosophila was performed as described previously 

(Turner and Ray, 2009), with minor modifications.  Twenty males and 20 females, 3-7 

days old, wet starved ~20-25 hrs were used in each trial in a T-maze without airflow, 

placed inside a 30 cm3 white card perimeter. Odorants were of the highest available 

purity (Sigma-Aldrich). Chemicals were diluted in water or paraffin oil. For most 

odorants, tubes contained 10 ul of odorant solution or solvent, were sealed with Parafilm 

and allowed to volatilize for ~10 min prior to the start of each 1 min trial.  

PI = (flies in test arm – flies in control arm)/total number of flies in arms of T-maze.  

  

2.5.2. Computational modeling of behavior 

Regression analyses were conducted in R version 3.3 (R Core Team, 2016) using the 

step() and lm() functions. After fitting the full model, predictors were assessed in smaller 

subsets using an exhaustive search algorithm, applying multiple parameters for the 

quality of the fit. Models that reduced complexity while optimizing the R squared, 

Mallow’s Cp and BIC statistics were cross referenced with the solution from stepwise 

regression, which employs an automated search for optimal predictors; the full model 

was fit with successive removal of predictors (backward selection) based on BIC 

minimization (BIC: Bayesian Information Criterion). The BIC is a probability measure 

that is used to identify the model that is best supported by the data. If a model has many 
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predictors (e.g. many parameters estimated from the data), the BIC attempts to justify the 

choice of this large, complex model relative to its explanatory power.  

To control for overfitting, or the tendency to overemphasize the noise in the data, 

the model including the optimal predictors was tested by applying repeated 10-fold cross-

validation (1000 folds) or the bootstrap (1000 resamples), unless stated otherwise. Also, 

since the selection of predictors on training cases is not always representative, a cross-

validation approach was taken to confirm and possibly identify other predictors that 

explained variability in the T-maze bevahior (PI) on resamples of the odor space. 

Machine learning algorithms applied in support of these and other variable selection 

approaches were based on customized scripts in the R programing environment, along 

with support from the classification and regression training (caret) package (Kuhn, 2008), 

the kernlab (Karatzoglou et al., 2004) and e1071 (https://cran.r-

project.org/web/packages/e1071/e1071.pdf) packages. Optimal predictor selection with 

the Boruta algorithm was similarly carried out using the implementation available in R 

(Kursa, et al., 2010). In cases where algorithms could be tuned, particularly for 

regularization, optimal values were identified by searching the space of available 

parameters and using the combinations that maximized predictive performance on data 

withheld during training.  

Bootstrapping the stepwise regression addresses mild correlations amongst 

predictors (e..g Ors). This affects the selection of an optimal model, since the choice of 

one predictor over another in the presence of correlations is arbitrary; namely, these 

correlated predictors could be substituted for each other without affecting the model fit. 
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But in many cases the correlations become too severe and more rigorous procedures are 

necessary to corroborate which predictors and models are indeed optimal. Correlated 

predictors (multicollinearity) can be addressed through partial least squares regression 

(PLS) or principal component regression (PCR), but these approaches are at the expense 

of detail on the best predictors. Model-specific variable importance measures are 

available to determine how much certain variables contribute to the best predictive 

equation; however, the coefficients of this model nevertheless lack interpretability. These 

data were ultimately excluded from the primary text. As a complement, models were also 

fit using regularized regression, such as ridge regression, elastic net and lasso (least 

absolute shrinkage and selection operator); the latter two offer alternative, built-in 

methods for model selection given correlated predictors by shrinking the standardized 

predictor coefficients toward zero, if they are too high or unstable. These regression 

approaches also retained ab1C. But these optimal models failed to significantly improve 

performance beyond similarly sized OLS (Ordinary Least Squares) regression models. In 

the interest of thoroughness, specialized predictor selection algorithms, genetic, Boruta 

and recursive feature elimination, were applied in conjunction with random forest 

regression to generate lists of optimal predictors. These do not assume a linear 

relationship between the Preference Index (PI) and responding unit (sensory neuron), so 

they offer a potentially more robust interpretation.  
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Chapter 3 

Discovery of physicochemical properties of ligands that act on repellent 

pathways 

3.1. Introduction 

The analysis of odor processing in mosquitoes and files identified a few odorant receptor 

neurons in addition to the CO2 detecting neuron strongly contributed to predictions of 

simple behaviors (e.g. attraction/repulsion). The ab1C neuron, which confers CO2 

sensitivity, in the fruit fly provided the most significant contribution to behavior 

prediction, leading to a preliminary model where evolutionary conserved sensory 

pathways, such as for CO2 detection, may play a more important role in determining 

aversive and attractive behaviors. One implication is then that these conserved pathways 

may provide key insight into repellency and the discovery of novel chemical repellents. 

To that end, my colleagues and I characterized the neural activity of the CO2 -detecting 

cpA neuron in mosquitoes, with my work centering on the physicochemical basis of the 

activity.  

  Carbon dioxide (CO2) serves as a long-distance orientation and host-seeking cue 

for most mosquito species.  Human beings generate CO2 odor plumes through exhaled 

breath, causing fluctuation in CO2 between background (0.04%) and expired levels (4%).  

This intermittency in CO2 concentration is thought to increase host-seeking behavior in 

mosquitoes, causing them to fly upwind toward the odor source (Cardé & Willis, 2008; 

Dekker, Geier, & Cardé, 2005).  Once the mosquito has followed the CO2 plume toward 

its source, it is thought that the insect will then detect other sensory cues such as skin 
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odors and heat (Takken & Knols, 1999).  Not surprisingly, mosquito species such as the 

ornithophilic Culex quinquefasciatus and the anthropophilic Anopheles gambiae and 

Aedes aegypti, are differentially attracted to host odors such as those from avian, and 

human sources, respectively.   

However, CO2 is an odor common to all hosts as it signifies the presence of a 

vertebrate’s exhaled air.  When presented in an optimal fashion, CO2 can readily attract 

mosquitoes in the field and in the laboratory (Cooperband & Cardé, 2006; Dekker, 

Takken, & Braks, 2001; A. J. Grant, Aghajanian, O’Connell, & Wigton, 1995; Xue, 

Doyle, & Kline, 2008), as well as increase the sensitivity of mosquitoes to other human 

odors  (Dekker et al., 2005). Since CO2 is highly influential in host-seeking behavior of 

many mosquito species, the majority of mosquito traps employ CO2 as the primary lure. 

The maxillary palp is the CO2 detecting organ, where of the three neurons housed in the 

club-shaped capitate peg (cp) sensilla, the cpA neuron expresses the CO2 receptor Gr1, 

Gr2 and Gr3 (also called Gr22, Gr23, and Gr24) which belong to the gustatory receptor 

family  (Lu et al., 2007; Syed & Leal, 2007).  These proteins are closely related to the 

CO2 receptor of Drosophila melanogaster, Gr21a and Gr63a which are required for 

response to CO2 (Jones, Cayirlioglu, Grunwald Kadow, & Vosshall, 2007; Robertson & 

Kent, 2009). 

Apart from CO2, this receptor is also activated and inhibited by an array of 

volatile odorants that can be grouped into multiple structural categories (Coutinho-Abreu, 

Sharma, Cui, Yan, & Ray, 2019; MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 

2018; Tauxe, Macwilliam, Boyle, Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray, 
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2009). Each of the proteins in the receptor have a 7-transmembrane structure and while 

Gr2 and Gr3 constitute the core receptor, Gr1 increases sensitivity to CO2 and to 

inhibitory odorants (Kumar et al., 2020). It has been previously shown that inhibition of 

the CO2 response by volatile odorants corresponds to complete loss of innate CO2 

avoidance behavior in Drosophila (Turner & Ray, 2009). Given the reversal of behavior 

to CO2 in the presence of the inhibitory odorants, and that mosquito CO2 receptors have 

high amino acid identity with the Drosophila ortholog Gr63a and Gr21a (Hill et al., 2002; 

Kent, Walden, & Robertson, 2008; Lu et al., 2007; Robertson & Kent, 2009), we tested 

and identified similar odorants that could have a similar effect on CO2-mediated host-

seeking behavior in mosquitoes  (Coutinho-Abreu, Sharma, Cui, Yan, & Ray, 2019; 

MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018; Tauxe, Macwilliam, Boyle, 

Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray, 2009). The identified volatile 

odorants included: odors that inhibit the CO2-sensitive neuron and are candidates for use 

in disruption of host-seeking behavior, odors that activate the neuron and can be a 

substitute for CO2 as a lure in trapping devices, and odors that cause strong and 

prolonged activation of the CO2 neuron which blocks the ability to detect changes in CO2 

concentration and therefore offers a novel approach for disruption of host-seeking. These 

compounds could be used as tools for mosquito control as they modify peripheral 

olfactory responses to one of the most important host-seeking cues.  These odor-based 

strategies once developed could potentially lower the incidence of human-mosquito 

contact, and hence lower the spread of vector-borne diseases. 
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3.2. Results 

In the past we have used single-sensillum electrophysiology to screen a large number of 

odorants for their effect on the activity of the CO2-sensitive neuron in the peg sensilla of 

the maxillary palp of female A. gambiae, A. aegypti, and C. quinquefasciatus.  The cpA 

neuronal response to CO2 is nearly identical in all three species and it can be 

unambiguously identified since it has a much larger spike amplitude than the other two 

neurons in the same sensillum. When looking for activator and inhibitory odorants, we 

also found that the responses showed significant conservation (Coutinho-Abreu, Sharma, 

Cui, Yan, & Ray, 2019; MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018; 

Tauxe, Macwilliam, Boyle, Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray, 

2009). One of the interesting questions has been how volatile components of malodorous 

body odor might be interacting with the mosquito CO2 receptor. Many of the malodorous 

compounds are due to bacterial breakdown of lipids, such as butyric acid. When 

performing the electrophysiological recording odor screens, we observed that butyric acid 

caused an initial phasic activation followed by inhibition of the CO2 response (Figure 1).  

However, following this brief phasic excitation, the odorant induced a ‘prolonged’ tonic 

activation of the cpA neuron.  

In previous studies, a prolonged tonic activity has been shown to mask the 

activation caused by subsequent exposures to CO2 such as 2,3 butanedione, (E)-2-

methylbut-2-enal, 3-Methyl-2-Butenal, 3-Methylbutanal (Tauxe et al., 2013; Turner et 

al., 2011). This type of effect has also been observed in other odorant receptor neurons 

with odorants like Methyl 2-propenoate and Methyl propionate (Boyle, McInally, 
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Tharadra, & Ray, 2016). To investigate if prolonged activation by butyric acid could also 

cause a reduced response to subsequent CO2, A. gambiae and A. aegypti mosquitoes were 

exposed to a 3-sec application of the odorant followed by repeated 1-sec stimulus of 

0.15% CO2 applied every 30-sec for a period of approximately 5 minutes.  When 

comparing spike rate in both mosquito species, there is an increase in baseline activity of 

the cpA neuron (Figure 3.1 and 3.2).  However, the brief exposure to butyric acid 

significantly reduced CO2 response for as long as 5.5 min in A. gambiae (Figure 3.2, 

right), while the CO2 response in A. aegypti was completely abolished (Figure 3.2, left).  

These results suggest that the prolonged tonic response can substantially impair the 

ability to sense other ligands like CO2 for minutes.     

To investigate the structural basis of the different activities, we first compared 

simple enriched substructures or cores among activators, prolonged activators, and 

inhibitors of the cpA neuron (Figure 3.3A). Interestingly, the correspondence between 

enriched substructures and activity was unclear.  We next computed additional 

physicochemical features, incorporating information about 3D geometries, the 

distribution of charge across a molecule and other atomic-level properties describing 

bonds and bonding potential. As it is not feasible to manually search numerous features, 

we applied machine learning to identify sets of features that were particularly different 

amongst prolonged activators (Figure 3.3B) and all other cpA activities. This approach 

involved iteratively training a support vector machine (SVM) on a portion of data, 

followed by predicting the remaining ‘left out” portion (Methods). Consistent with the 

overlapping enriched substructures (Figure 3.3A, B), the features that were predictive of 
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prolonged activators often described 3D geometries (Figure 3.3C). We next tested 

whether SVMs trained on these important features could successfully discriminate 

prolonged activators from the other cpA activities.  

ROC analysis is a method for evaluating successful discrimination (Methods). 

The machine learning model (SVM) predicts chemicals that were not in the training data. 

Predictions for these new chemicals are then compared to the ground truth (e.g. 

“prolonged activator” / “not prolonged activator”). Success is defined by high positive 

(sensitivity) and low false positive (1-speciificity) rates. Subsequently, an ROC plot 

shows the relationship between these two rates. The best possible performance is an area 

under the curve (AUC) of 1.0 (Methods). When we evaluated the model using this 

method, the high AUC suggested prolonged activators are physicochemically distinct 

(Figure 3.3D) (avg AUC = 0.958, Shuffled Activities, avg AUC = 0.592). But this is 

particularly true when considering physicochemical properties (e.g. 3D geometries) other 

than enriched 2D substructures or motifs, as indicated by the clear overlap in Figure 

3.3A.  

 

3.2. Discussion 

Interestingly, butyric acid is a component of human sweat  (Cork & Park, 1996), which 

has been shown to activate as well as inhibit several sensilla tricodae in A. gambiae 

(Meijerink & Van Loon, 1999; Van Den Broek & Den Otter, 1999) .  Although human 

sweat is highly attractive to anthropophilic mosquitoes (Braks & Takken, 1999; Healy, 

Copland, Cork, Przyborowska, & Halket, 2002), it is not clear what role carboxylic acids 
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play in the attractiveness of this host-odor blend.  For example, there are several 

conflicting studies as to the attractiveness of carboxylic acids to mosquitoes where in 

some cases carboxylic acids are actually unattractive (Healy et al., 2002; Mboera, Knols, 

Takken, & Della Torre, 1997; Smallegange, Qiu, van Loon, & Takken, 2005).  The 

varied attractiveness to human skin odors could be attributed to intraspecific preferences 

for certain human hosts as their emanations differ from individual to individual (Acree, 

Turner, Gouck, Beroza, & Smith, 1968; Besansky, Hill, & Costantini, 2004; Dekker et 

al., 2001; Qiu et al., 2004; Takken & Knols, 1999).  No study, to our knowledge, has 

looked at the attractiveness of carboxylic acids (or human odors) as it pertains to 

activation or inhibition of neurons in the maxillary palp. It is unclear from these and other 

studies if behavioral responses observed result from a direct repellent effect or another 

mechanism whereby the insects are failing to respond to normally attractive cues such as 

CO2. Perhaps levels of butyric acid from person to person can contribute to host 

preference in the mosquito as a means of CO2 response augmentation. Future behavioral 

assays will be required to test this hypothesis. 

Although the substructure that was enriched among the prolonged activators 

differed subtly from cpA activators and inhibitor, more rigorous 3D analyses indicated 

the presence of distinct physicochemical attributes for each. When incorporating these 

features into a machine learning model, we observed high success rates for classifying 

prolonged activators from other cpA activities. The degree of success implies cpA 

prolonged activation is indeed related to a set of physicochemical attributes, and machine 

learning could therefore play an important role in identifying new ligands. The prolonged 
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activator represents an interesting class of ligand, though there are currently few 

examples. Machine learning pipelines could predict new prolonged activators and help 

resolve even finer distinctions from cpA activators and inhibitors. This would 

subsequently have long-term implications for mosquito vector control strategies.       
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3.3. Figures 

 

Figure 3.1. Butyric acid is an ultra-prolonged activator of the CO2 sensitive neuron in 

A. gambiae and A. aegypti. A,B, Long-term traces from the cpA neuron of A. gambiae 

and A. aegypti, respectively.  A 3-sec stimulus paraffin oil top or butyric acid (4ac) 

bottom is given followed by 1-sec pulses of 0.15% CO2 every 30-sec. Odor diluted 10-1. 
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Figure 3.2. Butyric acid is an ultra-prolonged activator of the CO2 sensitive neuron in 

A. gambiae and A. aegypti. A, Mean baseline activity of the cpA neuron counted every 

30-sec interval after pre-exposure to a 3-sec stimulus of butyric acid (10-1) or paraffin oil 

(PO) solvent. B, Mean change in frequency of response of the cpA neuron to stimulus of 

1-sec 0.15% CO2 applied approx. every 30-sec, following a 3-sec pre-exposure to butyric 

acid (10-1) or paraffin oil (PO) solvent.  n=5, error bars=s.e.m. 
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Figure 3.3 
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Figure 3.3. Ultraprolonged activators of the CO2 neuron have a shared substructure 

and can be modelled computationally. A, cpA activators, inhibitors, and prolonged 

activators; enriched substructures in red. The activators, inhibitors, and prolonged 

activators have similar enriched substructures or simple 2D structural features. B, 

Additional prolonged activators; enriched substructure in red. C, Table of top 2D/3D 

chemical features to discriminate prolonged activators of cpA from the activators and 

inhibitors. D, Support vector machines (SVM) are iteratively fit on a portion of 

chemicals, “training,” and then predictions are made for the chemicals excluded from 

training; the quality of the predictions is assessed using ROC analysis. The plot shows the 

performance across 3 SVM models trained with slightly different chemical feature 

combinations (black colored curve). Random or chance level performance is estimated by 

training these SVM models on shuffled activity labels (red colored curve). Diagonal line 

is the theoretical random performance (AUC = 0.50). The y-axis (Sensitivity) is the true 

positive rate whereas the x-axis is the false positive rate (1-Specificity). Each point along 

the curve is from computing these rates at different probability score cutoffs; the 

probability scores (0-1.0) are assigned by the SVM model to new chemicals. These 

scores are the predictions that a chemical is a super activator of cpA. It is expected that 

high scores are assigned to super activators and low scores to the other cpA activities. 

The ROC plot tests this expectation. Additional details included in the methods.  
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3.4. Methods  

3.4.1. Mosquitoes 

Ae. aegypti wild-type (Orlando strain) and Anopheles gambiae (recently renamed 

Anopheles coluzzii) were maintained using standard protocols in an insectary at ~27C, 

~70-80% humidity on a 14:10 hr (Light: Dark) photoperiod. 

 

3.4.2. Electrophysiology 

Extracellular single-unit recordings were performed as described previously (Turner & 

Ray, 2009) with few modifications. Chemicals were of the highest purity available, 

typically >99% (Sigma-Aldrich). Odorants were diluted in paraffin oil at indicated 

concentration. Unless indicated 50 ul of diluted odorant is applied/cartridge, and each 

cartridge used for 3 stimuli. A controlled volume of air 5ml/sec was puffed through the 

odour cartridge containing vapors, and was delivered into a constant humidified airstream 

of 10ml/sec that flowed over the fly antenna. The odorant vapor present in the cartridge 

was thus diluted ~3-fold before being passed over the fly (each delivery cartridge was 

used no more than 3 times; 10-1 stimulus = ~0.43 ug equivalent from 

cartridge/application; 10-2 stimulus = ~0.043 ug equivalent from cartridge/application). 

CO2 stimulus was pulsed through a separate delivery system that delivered controlled 

pulses using a PSM 8000 microinjector (variable 2.5ml/sec – 6.5ml/ sec) into the same 

humidified airstream, from either a 1% or 5% tank of CO2 (Airgas) . The baseline 

constant humidified airstream (10ml/sec) was generated from a purified air tank (Airgas) 

and mixed with a constant controlled volume (5ml/sec) of filtered room air (~0.035% 
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CO2). For delivery of binary mixtures of CO2 with another odorant, we ensured a steady 

concentration of CO2 to the fly preparation as described in detail in (Turner & Ray, 

2009). Unless mentioned, responses were quantified by subtraction of baseline activity 

immediately preceding stimulus application from activity during the stimulus. For each 

odorant that had a long-term effect on CO2 response, each recording was obtained from a 

naive insect. 

 

3.4.3. Chemical informatics 

Chemicals were analysed for maximum common substructures using RDKit (Python) 

(Landrum, 2006). The algorithm performs an exhaustive search for enriched structural 

patterns over a set of chemicals. For larger, more diverse sets of chemicals specifying a 

threshold value can help the algorithm converge on more substantive structural patterns. 

Here, we set the threshold at .5, which ensures that half of the chemical set should 

contain the pattern. This algorithm was run separately for activators, inhibitors, and 

prolonged activators of cpA. The distinction between the 3 (activators, inhibitors and 

prolonged activators) was based on the spikes/sec calculation, where inhibitors reduce 

activity below the baseline firing rate and activators increase activity above this rate; the 

super activators significantly above. 

Chemical structures were converted into 3D optimized geometries using RDKit 

(Python) (Landrum, 2006). The 3D chemical information was then supplied to alvaDesc, 

which computes ~5,300 physicochemical features. We later removed the features with 

low variance, high correlations (r= 0.85) and imputed missing values using the median.  
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3.4.3.1 Selecting Important Chemical Features 

The reduced feature set was then run through the recursive feature elimination algorithm 

(RFE) over 300 train/test partitions (e.g. 10-fold cross validation, repeated 30 times). 

Here, the algorithm involves iteratively fitting a support vector machine (Radial Basis 

Function (RBF) kernel) with different chemical feature sets on the training portion, 

predicting what remains. Subsequently, the average performance across these different 

feature sets provides an estimate of the number of features that are needed for successful 

predictions. This analysis suggested between 20-50 features. The importance of each 

feature is from the AUC achieved independently. A feature rank is assigned at the end of 

the cross-validation iterations. Machine learning algorithms for feature selection are from 

the caret (Kuhn, 2008) and kernlab (Karatzoglou et al., 2004) packages in the R 

programming language and similar to the way it has been used for ligand prediction of 

human odorant neurons (Kowalewski & Ray, 2020a).  

 

3.4.4. Machine Learning 

After selecting the physicochemical features that are important for the task, models are 

trained using these features, and predictions are made for chemicals that are not in the 

training set to evaluate whether learning has indeed occurred. Here, three support vector 

machine models are fit, sampling different physicochemical features. The individual 

predictions (probability scores) are then averaged. Each support vector machine learns a 

decision boundary from the physicochemical features at training. To validate, new 

chemicals are repeatedly projected into this space. The location of this new chemical 
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relative to the decision boundary provides the prediction, which is compared to an 

observed value or label (e.g. ground truth).  

In machine learning terminology, cross validation refers to training models 

iteratively on subsets of data and then predicting new chemicals with each of the trained 

models. Dividing the data into 10 different training and testing subsets refers to 10-fold 

cross validation. Here, we repeated that procedure 5 times (e.g. 10-fold cross validation, 

repeated 5 times). By using more than one model, it is possible to diversify the training, 

gaining more coverage of the data, getting better estimates of the error, and ultimately, in 

most cases, producing more generalizable predictions.  Implementations of the machine 

learning algorithms are from the caret (Kuhn, 2008) and kernlab (Karatzoglou et al., 

2004) packages in the R programming language 

 

3.4.4.1. Support Vector Machine (SVM) 

The support vector machine (SVM) algorithm uses kernels to facilitate the learning of 

complex, non-linear decision boundaries. The kernel is a function that projects the 

chemical data into a new space where non-obvious boundaries among chemicals of 

different classes are increasingly identifiable. The support vector machines implemented 

here used the gaussian or radial basis function kernel. This kernel is adjusted during the 

training phase through the sigma parameter, which determines the influence of chemicals 

or data points that are far from the decision boundary. This affects the prediction of new 

chemicals and therefore the proper value is set by removing and predicting a small subset 

of chemicals while training. An additional parameter, C, defines the cost associated with 



 

 

37 

incorrect prediction performance. As the cost increases, the boundary adapts to improve 

performance. However, setting the cost value too high produces irregular boundaries that 

fail to generalize to new chemicals or data points. The proper cost value is therefore set 

alongside sigma using the approach discussed above. 

 

3.4.5. ROC Analysis 

Receiver operating characteristic (ROC) analysis graphically represents classification 

success and/or failure by comparing the true positive (y-axis: Sensitivity) and false 

positive rates (x-axis: 1-Specificitiy). In this study, it is analysing the success or failure of 

a machine learning model to classify “super activators” versus other activities on the cpA 

neuron. The trained machine learning model takes the chemical features of a new 

chemical (e.g. not in the training data) as input. Then it assigns a probability score to this 

new chemical based on its similarity to the super activators and other activities on cpA 

from the training data. Subsequently, the ROC analysis defines cutoffs or thresholds for 

these probability scores. For example, if the score is above .50, then these chemicals are 

labelled as super activators or simply positive/active cases. The labels are compared to 

the observed cpA activity, yielding a tally of true positives and false positives that are 

converted into rates. In the ROC plot, this information is a single point (x, y). Continuing 

the above process for multiple cutoffs results in a curve. The success is evaluated as the 

area under the curve (AUC = 1.0; perfect success).  

Typically, the curve is compared to a theoretical random classifier (AUC = .50), 

and this is shown as a diagonal that bisects the plot area. Because chance-level 
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performance depends on the classification problem, it may be higher or lower than AUC 

= .50. Some classification problems are, for instance, trivial, particularly if there are few 

positive and negative examples. The chance performance could match the performance of 

the actual machine learning model. To address this, we trained the models using shuffled 

data, while keeping other parameters constant. This showed that the success of the actual 

model(s) was not attributable to chance.  
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Chapter 4 

Natural repellent and attractant activity of microbial metabolites on 

human skin 

4.1. Introduction 

The finding that a microbial metabolite, 2,3-butantedione, which is also detected in 

human sweat, masked detection of CO2 by the cpA neuron suggested that other microbial 

metabolites may meaningfully affect mosquito behavior. This seems particularly true 

when considering the numerous sensory neural pathways beyond cpA-CO2 and that 

mosquitoes display heightened attraction to some humans according to unique chemical 

signatures on skin. Studies have shown, for instance, that certain humans are highly 

attractive to Anopheles Gambiae, the mosquito vector for the malaria parasite. The 

authors suggested a small number of attractive chemical classes including esters may in 

part explain the strong difference in attraction (Verhulst et al., 2011). Notably, the 

opposite observation—innate differences in repellency among humans—has been 

observed as well  (Logan et al., 2008), but the interpretation is complex, as this could 

result from increased repellent compounds, reduced attractive compounds, an increase in 

compounds that mask attraction, or a combination of each possibility. A strategy based 

on recreating natural or innate repellency has significant utility in vector control.  

Demand for new chemical repellents has been steadily increasing. From the years 

2004-2016, the CDC reported cases of vector-borne illnesses in the United States and 

territories approaching 1 million, with many others going unreported (Rosenberg et al., 

2018). This nevertheless is a fraction of the global incidence.  Annually, Aedes aegypti 



 

 

40 

mosquitos account for 100s of millions of vector-borne illness cases worldwide, 

according to WHO statistics. Insect vectors are currently managed with insecticides and 

repellents. However, genetic drift and overuse has increased resistance. Pyrethroids, 

synthetic derivatives of floral extracts with insecticidal and repellent activity, are 

becoming less effective against mosquito vectors. The mutations that confer insecticide 

resistance have also been shown to affect insect responses to well established chemical 

repellents such as N, N-Diethyl-meta-toluamide (DEET).  

While a bio-inspired approach based on studying the chemicals on human skin 

that naturally repel insects, may be lead to the best long-term outcomes in terms of 

human health and safety and resistance, this data could be too limited currently to meet 

the demand for new repellents. Additional sources of safe chemicals are those approved 

for use as flavors and fragrances, both natural and synthetic. But consideration should 

also be given to chemical libraries far exceeding the number of known flavors and 

fragrances.  

  Chapters 2 and 3 outlined an approach to study repellency through 

electrophysiological data. The recorded activity helped uncover neural pathways that are 

strongly associated with mosquito and fruit fly behavior, alongside computational 

modeling. If considering the complex chemical mixtures on human skin that are 

responsible for differing degrees of mosquito attraction, in addition to the likely 

numerous pathways these chemicals target, computational modeling plays a critical role. 

Specifically, in analyzing the human skin microbiome and relevant microbial metabolites 

and known skin volatiles for repellents.   
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In this chapter, I focus on the microbes, microbial pathways, and metabolites that 

are potentially relevant. These metabolites are divided into 2 categories: (1) metabolites 

that are broadly sourced to a microbe abundant on human skin and (2) metabolites that 

are volatile organic compounds detected on human skin. Further, I analyze the human gut 

microbiome for repellent metabolites due to the generally desirable safety profiles of 

endogenous chemicals, and that the skin microbiome data is incomplete. Therefore, 

initially any commensal microbe may be of relevance.  This study lays the groundwork 

for the future when appropriate microbes may be used for production of the compounds 

in bioreactors or used as part of a skin microbiome transplant that confers repellency.  

However, since it is also possible that the current data is too limited to meet immediate 

demands, I conclude with a proof of concept that machine learning can be applied to 

successfully predict the odor profiles of repellent chemicals. Then this is followed by 

prediction of 10+ million purchasable chemicals for repellency, applying machine 

learning models to filter for toxicity and unpleasant odor profiles. Such large-scale 

prediction rapidly expands the space of possible chemical repellents, immediately aiding 

in the analysis of physicochemical features that might be associated with insect behavior.  

 

4.1.1 The human microbiome as a source of novel insect repellents and attractants  

DEET and other effective repellent chemicals act on complex neural circuitry and 

efforts to isolate receptors or specific pathways have proven difficult. This has 

particularly slowed progress in developing synergistic and ecologically safe chemical 

mixtures, as discovery for synergistic combinations fundamentally depends on 
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knowledge of the pathways and protein targets that drive repellency. One way around this 

fundamental knowledge gap is to look for and study naturally occurring chemical 

mixtures that are already known to modify insect behavior. For instance, complex 

microbial and metabolite compositions on skin are meaningfully related to insect 

behavior (Verhulst et al., 2010, 2011). But unraveling these relationships also presents 

obvious experimental challenges. It is for one unclear which of the thousands of chemical 

and microbial possibilities might be affecting mosquito behavior; the choice of analyzing 

some possibilities in-depth rather than others is arbitrary. The question then is if 

computational methods could be used to annotate skin microbial metabolites, identifying 

which ones are of known or potential relevance to insect behavior.  

 

4.2. Results 

Our understanding of the chemical and microbial compositions on human skin is 

still emerging, but my colleagues and I reasoned that we could develop a theoretical 

space that identifies possible repellents as well as the enriched microbes and pathways as 

a map to guide future research. We started with the 10,000 chemicals in the KEGG 

databases, which include microbe, metabolite, and pathway annotation and next studied 

the skin microbiome literature to identify microbes that may contribute to insect 

repellency (Figure 4.1A). An in-depth analysis of the top predicted microbial metabolites 

(Figure 4.1B, C), suggests many can be found in Cornyebacterium. Based on the 

Euclidean distance between physicochemical features of known repellents, the top 

metabolites closely resemble anthranilates and (+)-nootkatone (Figure 4.1C). Some 
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metabolites such as jasmonates were also ranked highly but have known repellency. The 

biochemical pathways for the top metabolites are diverse, including tryptophan and 

carotenoid metabolism pathways as well as quinone and terpenoid-quinone biosynthesis 

(Figure 4.1C).  

The chemicals identified in this analysis represent a diverse set of metabolites 

from species of skin microbes enriched on human skin. Importantly, these metabolites 

may not all be detectable on the surface of human skin. Due to the diversity, the 

metabolites may have high or low vapor pressure and the mode of potential repellent 

activity would then vary. Metabolites with high volatility would be expected to act more 

spatially, targeting olfactory system whereas those of lower volatility would act primarily 

through taste or contact, targeting ionotropic receptors (Irs) or gustatory receptors (Grs). 

It is therefore of interest to (1) clarify the metabolites that have been detected on human 

skin and (2) identify the putative receptor pathways these chemicals may be acting on.  

The collection of volatile molecules detected on human skin (De Lacy Costello et 

al., 2014) provided some promising leads; high ranking predictions included synthetics 

likely originating from cosmetics or topicals such as the paraben isopropyl 4-

hydroxybenzoate (PubChem CID: 20161) and also fragrances such as hex-3-enyl 2-

hydroxybenzoate (PubChem CID: 103379) (Figure 4.2A). When filtering down to 

molecules also sourced to human skin microbes, top candidates included vanillate and 4-

hydroxybenzoate (Figure 4.2B), although, in general, these microbially sourced 

molecules had lower predicted repellency compared to some of the synthetics appearing 

on skin in Figure 4.2A. Interestingly, these molecules are linked to several species of 
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cornyebacterium, which are particularly well suited for laboratory culture and genetic 

engineering.  

Chapter 3 reported on a subset of small molecules detected on human skin that led 

to prolonged activation of cpA, the neuron in mosquitoes that detects CO2 through a 

complex of three gustatory receptors (Grs). Due to the potential for prolonged activation 

to mask CO2 detection and effect attraction behavior, it is therefore important to identify 

the molecules on human skin with physicochemical properties that may act on the CO2 -

detection pathway. To improve the mapping of molecules sourced to human skin and 

mosquito behavior, the cpA activity prediction model (Chapter 3) was used to screen the 

~1000 volatiles reported in the literature as detectable on human skin  (De Lacy Costello 

et al., 2014). Known prolonged activators were assigned higher probability scores, with 

several structural derivatives also scoring highly. The highly scoring compound acetoin 

(PubChem CID: 179), for instance, substitutes one of the ketones in the known prolonged 

activator 2,3-butanedione with a hydroxide group.  Lower scoring chemicals such as 2-

pentanone (PubChem: 7895) are known to simply activate cpA, and is a prospective trap 

lure. Thus compounds with significant structural overlap do still show score differences 

between prolonged activators and simple activators of the cpA (Figure 4.3A). However, 

the machine learning models also help categorize the metabolites according to broader 

activity on the CO2 -detection pathway. 

In order to visualize the chemical space of volatiles detected on human skin, they 

were clustered using ~300 2D and 3D physicochemical attributes. The volatiles are 

organized into 4 broad groups. The known cpA prolonged activators and best predicted 
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candidates fall closer in this space, roughly in cluster 4, with some in the bordering 

cluster (cluster 3) (Figure 4.3B). This is consistent with the observation that activity on 

the cpA neuron is biased towards certain chemical features. Interestingly, many 

chemicals predicted to be repellents appear structurally diverse and indeed the cpA 

neuron is simply one of many relevant pathways in mosquito behavior (Figure 4.3B).  

To investigate additional pathways, the volatiles detected on human skin were 

next analyzed relative to acid sensing. Acid sensing is typically mediated through 

ionotropic receptors (Irs). However, these receptors are lesser characterized in 

mosquitoes, so the known ligands of the acid sensing Ir64a/8a pathway from the highly 

conserved Drosophila melanogaster, was used for finding training set compounds 

instead. The structure-activity data for several odorants is available. We created a model 

for acid-ligands for insects and the chemical features that were selected to optimally 

predict the activity are in Table 4.1. Computational validation shows a strong relationship 

between physiochemical features and activity on the pathway, as evidenced by successful 

classification of chemicals excluded from training (AUC = 0.99, Sensitivity =  0.97, 

Specificity =  0.85) (Figure 4.4). 

Using this model to predict Ir64a/8a ligands from skin volatiles led to finding 

several predicted actives (Figure 4.5A). Since mosquitoes are known to use acidic 

odorants from skin as attraction cues involved in landing, the predicted hits give us an 

opportunity to identify attractive compounds. When mapping the hits onto the chemical 

space of human odorants for the known and prospective Ir64a/8a activities, prolonged 

activators of the cpA neuron and behavioral repellents, it was evident that these 
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molecules of behavioral relevance, cluster close together (Figure 4.5B). They are 

nevertheless structurally distinct, with low overlap for the top 5 scoring repellents of skin 

microbial origin compared to the cpA prolonged activators and Ir64a/8a ligands (Figure 

4.5B, color dots). Although not expected to directly impact mosquito host-seeking and 

differential attraction across humans, the human gut microbiome offers an additional 

library of natural metabolites for future consideration (Figure 4.6). This opens the 

possibility for developing even more comprehensive structure-behavior maps to recreate 

natural chemical mixtures that repel mosquitoes and pests, a task that is greatly 

accelerated through machine learning models.  

 

4.2.1. Prioritizing candidate repellents by modeling their odor qualities 

Microbial metabolites may have unpleasant odors and therefore are less value as topically 

applied repellents. Modeling approaches to predict human odor perception from chemical 

structure, physicochemical properties or in vitro human odorant receptor activities have 

proven successful (Kowalewski & Ray, 2020a) (details to follow in Chapters 5-6), 

particularly on flavor and fragrance databases. As topically applied chemical repellents 

must be further characterized by cosmetic descriptions such as odor, I developed a set of 

machine learning models that provide a proof of concept for prediction of human odor 

perceptual qualities (odor descriptors). By predicting 146 odor perceptual descriptors, 

including “Fruity other than citrus”, “Lemon”, “Orange”, “Cinnamon” and unpleasant 

ones such as “Sickening”, “Rancid”, “Animal”, and “Dirty Linen,” it was possible to 
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assign a complex odor profile to chemical repellents, and then compare this to the human 

assigned labels.  

While odor qualities remain poorly characterized for most repellent chemicals, 

among the predicted and tested repellents from our analyses, some have been evaluated 

by humans. The prediction performance could therefore assessed using ROC analysis. 

The perceptual models predicted the observed descriptors for most repellents with a high 

success rate (Avg. AUC = 0.77) (Figure 4.7A, B). Given this success, it was evident that 

such a filter could be incorporated into the repellent discovery pipeline to better prioritize 

confirmed and putative repellents. This result further confirmed the odor perception 

prediction methods detailed in later chapters (5 and 6). 

 

4.2.2. Mining massive commercially available chemical spaces for novel insect 

repellents 

In our earlier machine learning applications, we emphasized the prediction and 

verification of chemical repellents from natural sources, as if they are not already 

approved for human use, obtaining approval is less challenging than synthetics. But the 

size and diversity of a chemical library as well the cost and availability of chemicals is 

fundamentally limiting. Subsequently, we scaled-up the analysis to a 10+ million 

commercially available chemical space (ZINC 15), canvasing more structural diversity 

than the metabolites we previously screened. We built a new training set including the 

chemical repellents we experimentally verified. Then, by applying the filters that we 

progressively incorporated into the pipeline (e.g. odor perceptual qualities) we identified 
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a smaller set of candidates (Figure 4.8A). The top predictions were enriched with many 

anthranilate-like compounds, which formally are aminobenzoates comprised of benzene 

and amino and ester groups. Some chemicals notably differ in that they contain a 

carbonyl carbon bonded to nitrogen, resembling amide repellents like diethyltoluamide 

(DEET) (Figure 4.8B). 

 

4.3. Discussion 

 The analysis presented here was guided by the observation that some humans are 

especially attractive to mosquitoes whereas others are not. Although previous work has 

been done on its chemical basis by studying volatile emanations from humans of 

differing attractiveness to mosquitoes, these have not yielded bio-inspired solutions. One 

key issue is the combinatorial complexity of the problem that is best suited for 

computational modeling. Here, I developed for the first time a machine learning-based 

study to map connections between skin microbial metabolites, volatile organic 

compounds on human skin and prospective and known activities on insect sensory 

receptors/pathways. The analysis suggested that few chemicals potentially on human skin 

are candidate repellents. This also implies that mosquito host seeking behavior preference 

could be a complex chemical puzzle, rather than be due to one or few volatiles. 

Therefore, efforts to develop an even more comprehensive mapping of human skin 

chemicals is essential, with a key role for computational modeling going forward.  This 

work will help drive research into safe, biological repellent strategies and provides a 
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template for more advanced study as more data emerges on both skin microbes and 

volatiles on human skin.  

 Importantly, the work is limited to the availability of data. The interpretation 

therefore depends on understating this uncertainty. It is clear with respect volatiles on 

human skin and microbial species on human skin that there are more chemicals and 

species of note than included in this study. Similarly, machine learning models do not 

overcome the uncertainties of experimental studies. For receptor activation studies (cpA 

and Ir64a), smaller training sets will lead to uncertainty in computational models. The 

computational validation of the machine learning models supports the conclusion of 

accurate prediction however this should be experimentally determined. Nevertheless, the 

successful application of the computational method here still suggests the plausibility of 

using these methods to advance repellency research, particularly the notable differences 

in mosquito behavior toward some humans. The emphasis on metabolites sourced to skin 

and gut microbiota raises the intriguing possibility of genetically engineering microbes to 

efficiently produce repellent mixtures, offsetting many additional costs that arise with 

chemical synthesis in a laboratory.  

In general, this study demonstrates the successful development and application of 

a machine learning pipeline that accelerates research into insect repellency and its 

physicochemical basis. The methods and data will help identify additional novel repellent 

chemicals as well as bio-inspired repellent strategies. Here, we emphasized screening 

candidate chemicals that are most likely to fit multiple requirements rather than one (e.g. 

repellency). As these requirements steadily increase, it is obvious that massive, 
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unexplored chemical spaces offer the most promising leads. Our prediction of 10+ 

million purchasable chemicals further illustrates the essential role of machine learning in 

future repellency studies and efforts to identify safe, effective repellent chemicals.  
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4.4. Figures 

 

Figure 4.1. Metabolites of skin microbiota include many candidate repellents. A, 

Overview of the approach to predict repellency of microbial metabolites from skin 

microbiota, filtering the predictions into priority sets according to odor perceptual 

qualities (Kowalewski & Ray, 2020a) and toxicity (Kowalewski & Ray, 2020b). B, 

heatmap with the predicted % repellency, filtered to the top values. C, tabulated top 

predicted metabolites among skin microbiota, displaying the structures alongside the 

closet matching known repellent and the Euclidean distance, microbe species/strain and 

the pathway for the metabolite. Note some pathways and metabolites are also identified 

in microbial species other than the one listed.  
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Figure 4.2 
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Figure 4.2. Volatiles on human skin from biological and synthetic sources are known 

and prospective repellents. A, Repellency, defined as a percentage relative to DEET, is 

estimated using machine learning models as in Figure 1 but for small molecules 

categorized as volatile organic compounds (VOCs). These molecules therefore likely act 

spatially, targeting sensing by odorant receptors. Metabolites in Figure 1 may affect both 

taste and/or odor sensing. Many top scoring repellents in the plot are synthetic (e.g. 

sourced to cosmetics). Heat colors emphasize the difference in repellency scores. B, 

Volatiles detected on human skin that are linked to biosynthetic pathways in microbial 

species enriched on skin. As before, the repellency is the precent relative to DEET; heat 

colors emphasize the difference in scores.  

 

 

 

 

 

 

 



 

 

54 

 

Figure 4.3 

 

 

 

 

 

 



 

 

55 

Figure 4.3. Microbial volatile metabolites are known and candidate prolonged 

activators of the CO2-detecting neuron in mosquitoes. A, The approach described in 

Chapter 3 to successfully predict cpA neuron activity is applied to further annotate the 

volatiles on human skin. The cpA activity is an aggregate machine learning score, scaled 

0-1.0, with 1.0 indicating high likelihood of prolonged cpA activation. Colors emphasize 

different scores. The models ranked known prolonged activators with the highest scores. 

High-Intermediate scores appear consistent with normal cpA activation, as some are 

known to act like CO2 as mosquito lures. B, Various physicochemical attributes (~300), 

after eliminating high correlations and low variance, are used to cluster the volatiles 

detected on human skin based on the k-means algorithm. The approach leads to a 2D plot 

illustrating the distance between chemicals from their physicochemical attributes. Four 

broad clusters are supported by the data. The top scoring prolonged cpA activators are 

shown differently colored (black dots) to indicate their location among the volatiles. 

These molecules occupy a specific region of the chemical-structural space, consistent 

with highly specific targeting of the evolutionary conserved CO2 detecting neuron (cpA).  
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Figure 4.4. Validation of the machine learning models to predict Ir64a / 8a. Five 

support vector machine (SVM) models are trained on physicochemical features of 

chemicals with known activity on the Drosophila Ir64a / 8a pathway, which detects acids. 

Drosophila is used here as a model system to identify potential activity on acid-sensing 

pathways for chemical libraries such as volatile organic compounds and microbial 

metabolites on the surface of human skin. Cross validation procedure is applied to 

validate the models. This entails repeatedly splitting the data into training and testing 

portions. Bars represent the average performance for the labeled metric over 30 such 

training/testing splits. The metrics here summarize the results of the Receiver Operating 

Characteristic (ROC) analysis, which determines successful classification of the activity 

on this pathway (“Active” / “Inactive). The prediction is compared to the experimentally 

observed result, giving rise to the Sensitivity (True Positive Rate), Specificity (False 

Positive Rate = 1-Specificity) and the area under the ROC curve (ROC AUC). These 

values have a maximum value of 1.0, Error bars show the standard error of the mean 

(SEM).  
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Figure 4.5 
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Figure 4.5. Adding Ir64a acid sensing activity in drosophila leads to comprehensive 

map of structure-insect behavior relationships for volatiles detected on human skin. A, 

Ir64a activity from Drosophila (fruit flies) is used to train machine learning models, 

followed by prediction of volatiles detected on human skin. The heat colors help 

distinguish differences in the scores. The top ranked volatiles are acids, with many 

having known activity on Ir64a. The scores are scaled 0-1 and are a probability-like 

value, with the highest score (1.0) indicating the chemicals that are very similar to 

“Actives” the machine learning model was trained on (e.g. activators of Ir64a). Here, the 

score is an aggregate of 5 different algorithms. Each algorithm takes a different 

perspective on the learning problem and the aggregation (averaging) then leads to better 

generalizability of the predictions. B, Clustering of human volatiles on human skin by 

structure, shown previously in Figure 4.3, is annotated further, illustrating how 

repellency behavior, activity on the CO2-detecting cpA neuron and activation of Ir64a 

relate in terms of chemical structure. The four clusters are shown as in Figure 4.3B but in 

greyscale to better clarify the annotations. The annotations (colored dots) reflect both top 

known and predicted activities gathered from Figures 4.2-4.3 and the Ir64a model 

validated in Figure 4.4.  The top scoring repellency annotation (green dots) is specially 

for volatiles linked to biosynthetic pathways in microbes. 
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Figure 4.6. Human gut microbial metabolites offer some natural repellent candidates. 

A, The predicted % repellency (scaled relative to the repellent DEET (DEET = 100) for 

human gut microbial metabolites. Metabolites are labelled according to the CHEBI 

identifier. ChEBI. Chemical Entities of Biological Interest is a curated database of 

biologically sourced chemicals or synthetics of relevance to biological systems.  
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Figure 4.7         
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Figure 4.7. Models successfully predict odor perceptual qualities of repellents. A, 

Validation of models predicting the odor perceptual qualities (146 perceptual descriptors) 

of a set of compounds with newly experimentally verified repellency. The performance 

metric for the validation is the area under the Receiver Operating Characteristic (ROC) 

curve (AUC), which assesses the rate of correctly predicted perceptual descriptors (True 

Positive Rate or Sensitivity) relative the rate of incorrectly predicted perceptual 

descriptors (False Positive Rate or 1-Specificity). Dashed horizontal line is the mean 

AUC. B, Sample ROC curves for select compounds (colors) as well as the ROC curve 

across all compounds (black); the area under the curve (AUC) for each example is 

provided in the plot area. Details on the perceptual data and ROC analysis in Methods. 
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Figure 4.8. Screen of 10+ million purchasable chemicals accelerates new discoveries in 

insect repellency. A, Tabulated predicted % repellency (relative to DEET) from a library 

of 10+ million chemicals, filtered to the top values. The best matching known repellent is 

displayed alongside the Euclidean distance, the predicted LD50.   
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4.5. Tables 

 

Table 4.1 

Feature Description 

GATS2e Geary autocorrelation of lag 2 weighted by Sanderson 

electronegativity 

GATS4v Geary autocorrelation of lag 4 weighted by van der Waals volume 

GATS5v Geary autocorrelation of lag 5 weighted by van der Waals volume 

GGI3 topological charge index of order 3 

H-047 H attached to C1sp3, C0sp2 

MATS4i Moran autocorrelation of lag 4 weighted by ionization potential 

P_VSA_LogP_

4 

P_VSA-like on LogP, bin 4 

P_VSA_m_2 P_VSA-like on mass, bin 2 

P_VSA_s_3 P_VSA-like on I-state, bin 3 

PDI packing density index 

PW4 path/walk 4 - Randic shape index 

SHED_DA SHED Donor-Acceptor 

SIC1 Structural Information Content index (neighborhood symmetry of 1-

order) 

SpMAD_B(s) spectral mean absolute deviation from Burden matrix weighted by I-

State 

SpMAD_EA(d

m) 

spectral mean absolute deviation from edge adjacency mat. 

weighted by dipole moment 

SpMax_B(s) leading eigenvalue from Burden matrix weighted by I-State 

SpMaxA_AEA(

ed) 

normalized leading eigenvalue from augmented edge adjacency mat. 

weighted by edge degree 

SpPosA_B(p) normalized spectral positive sum from Burden matrix weighted by 

polarizability 

VE1_B(p) coefficient sum of the last eigenvector (absolute values) from 

Burden matrix weighted by polarizability 

X2A average connectivity index of order 2 

 

Table 4.1. Top chemical features for predicting activity on Ir64a / 8a pathway. Features 

supplied are from the alvaDesc software package and were selected from > 5000 using 

the recursive feature elimination (RFE) algorithm and a support vector machine (SVM). 

This entailed fitting100 SVM models on different portions of the data, predicting a “held 

out” or test set of chemicals; finally, rank ordering the features based on their area under 

the receiver operating characteristic curve (ROC AUC) over the 100 iterations. The 

“Description” is the detail for the shorthand label assigned to the features.  
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4.6. Methods 

4.6.1. Repellency 

The behavior data for the predictions of repellency are derived from the following: 

Percentage repellency = 100 x [1 - (mean cumulative number of mosquitoes on the 

window of treatment for 5 seconds at time points 2,3,4,5 min/ mean cumulative number 

of mosquitoes that remained on window of solvent treatment for 5 seconds at time points 

2,3,4,5 min)]. For computational modeling, the percent repellency was then scaled 

relative to DEET, setting, that is, 100% repellency as the avg. score obtained for the tests 

using DEET. This led to a more meaningful interpretation for the predictive scores. 

 

4.6.2. Chemicalinformatics and Machine learning 

Physicochemical features were selected using alvaDesc software, which offers > 5000 

chemical features. Optimal chemical features were then selected using cross-validated 

recursive feature elimination (CV-RFE). The RFE algorithm takes a partition of the data 

and a subset of chemical features, and fits a model using a preferred machine learning 

algorithm; in this study, support vector machine. The portion of data that was not used to 

fit the model serves as a test set. Over 100s of such iterations the algorithm identifies an 

optimal number of features to maximize predictive success. Additionally, for every round 

the contribution of each chemical feature is assessed, giving rise to an aggregate rank; 

namely the frequency at which a feature has been identified as important to the predictive 

success.  
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The support vector machine (SVM) algorithm does not natively evaluate the 

contribution of a feature to successful predictions; some algorithms such as Random 

Forest (RF) permute (or shuffle) a feature’s values, providing a simple comparison 

between the actual and permuted cases. This is then a proxy for importance. For the SVM 

algorithm, this must be done by the analyst, and a custom importance metric must be 

defined. Here, if the predicted outcome was a number (e.g. % Repellency), this was the 

pseudo R2, “pseudo” as it is the non-linear regression approximation of the R2 in linear 

regression. If it was classification (e.g. classifying metabolites as “Prolonged Activators” 

/ “Not Prolonged Activators” of the cpA neuron), then it was the AUC for each feature on 

its own. Additional details are available in the documentation for caret package in R 

(Kuhn, 2008). 

 

4.6.2.1. Machine learning predictions of odor perceptual qualities 

Perceptual training data is from a study published in a reference book: ATLAS of odor 

character profiles (Dravnieks, 1985). In the study, panellists supplied ratings for 150 

odorants and mixtures across 146 possible descriptors; the ratings are reported as the % 

usage. The % usage refers to the portion of panellists that rated an odorant (1-5) using a 

particular descriptor (1-146), indicating its relevance to the odorant. It is on the scale 0-

100, with the maximum of 100% suggesting every participant found the descriptor to be 

relevant. Models were trained to classify chemicals in the top 10% of the % usage 

distribution; therefore, it is classification of chemicals that are highly “Fruity” versus 

those that are not, according to the human panellists. These trained models were 
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subsequently evaluated by comparing the labels that humans assigned to a set of chemical 

repellents using Receiver Operating Characteristic (ROC) analysis.  

 

4.6.2.2. ROC analysis 

The Area under the ROC Curve (AUC) assesses the true positive rate (TPR or sensitivity) as a 

function of the false positive rate (FPR or 1-specificity) while varying the probability threshold 

(T) for a label (Active/Inactive). If the computed probability score (x) is greater than the threshold 

(T), the observation is assigned to the active class. Integrating the curve provides an estimate of 

classifier performance, with the top left corner giving an AUC of 1.0 denoting maximum 

sensitivity to detect all targets or actives in the data without any false positives. The theoretical 

random classifier is reported at AUC = 0.5.  

 

𝑻𝑷𝑹(𝑻) = ∫ 𝒇𝟏(𝒙) 𝒅𝒙
∞

𝑻

 

𝑭𝑷𝑹(𝑻) = ∫ 𝒇𝟎(𝒙) 𝒅𝒙
∞

𝑻

 

Where 𝑻 is a variable threshold and 𝒙 is a probability score 

 

4.6.3. Clustering 

Chemical features were computed in alvaDesc (> 5,000). The resulting chemical feature 

matrix is sparse and the features can be highly correlated. To ensure that the features 

were most relevant to the metabolite set (linked to human skin microbiota), low and zero 

variance as well high correlation (>.85) filters were applied, reducing the matrix down to 

~300 information-rich chemical features. Clustering was then performed on the Z-
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normalized matrix using the k-means algorithm. The “k” or number of clusters that best 

represents the data is estimated from the data. This entails setting k to different values, 

evaluating the quality of the clustering at each k according to the total within group 

cluster variability. The goal is to select the k that minimizes the within group variability 

(e.g. sum of squares), which implies tighter clusters. The variability here is the Euclidean 

distances among the metabolites based on the values of the ~300 chemical features. Here, 

the optimal k was 4.  
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Chapter 5 

Predicting human odor perception of odorants including repellents 

5.1. Introduction 

Although an understanding of repellent receptor targets and the associated neural 

pathways is important, additional considerations such as the perceptual qualities of a 

candidate repellent are of potentially greater concern, particularly among biologically 

sourced chemicals. Many of the microbial metabolites introduced in Chapters 3 and 4, for 

instance, are characterized by strong, unpleasant scents, which limit their value as 

topically applied repellents. The predictability of odor-perceptual qualities from 

physicochemical properties was successfully applied to a set of newly discovered 

chemical repellents in Chapter 4. But there is a longstanding and comprehensive study of 

the physicochemical basis of smell predating that success. Not until the advent of modern 

machine learning has it become increasingly possible to evaluate the extent that chemical 

structure significantly determines odor perception. Despite correlations between 

functional groups and some odor perceptual qualities, one hypothesis is that human 

perception is unique. Specifically, that while prediction from chemical structure may be 

successful, these cases could represent outliers. In this chapter, I outline my work to 

study this claim in detail, further building on the value that this technology brings to 

repellent discovery. 
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6.1.1. A system-wide analysis of the human olfactory perceptual space 

Human perceptual descriptions for olfactory stimuli are less stereotypic than for vision or 

auditory stimuli where perception can be predicted by clearly defined properties such as 

wave frequency. In fact olfactory perception may vary without an apparent relationship to 

the physicochemical properties of  an odorant nor the molecular and cellular organization 

of the olfactory system (Buck L and Axel, 1991; P Mombaerts, 1999; P Mombaerts et al., 

1996; Peter Mombaerts, 2001; Vassar, Ngai, & Axel, 1993). Yet the olfactory capabilities 

of humans appear to be close to that of species that rely heavily on olfaction for survival 

and mating (McGann, 2017). Genetic variation in olfactory receptors also explains a 

significant amount of variability in basic perceptual qualities like intensity as well as 

more complex perceptual qualities (Mainland et al., 2014; McRae et al., 2012; Trimmer 

et al., 2019). While culture and language also affect olfactory perception (Majid & 

Kruspe, 2018), individuals often show significant similarities in perceptual descriptions 

for the same chemical (Dravnieks, 1985; Keller & Vosshall, 2016), implying an 

underlying physicochemical basis for human olfactory perception. In fact, predicting 

percepts from physicochemical features is becoming increasingly plausible (Haddad, 

Medhanie, Roth, Harel, & Sobel, 2010; Keller et al., 2017; Kepple & Koulakov, 2017; 

Khan et al., 2007; Licon et al., 2019; Nozaki & Nakamoto, 2016; Snitz et al., 2013). 

However, the breadth and complexity of the human olfactory perceptual space and its 

physicochemical correlates remain poorly understood except for a select few (<10) 

perceptual descriptors (Keller et al., 2017). Moreover, because of the comparatively 

limited repertoire of olfactory receptors that have been functionally deorphanized (de 
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March et al., 2020; Hu et al., 2020; Keller, Zhuang, Chi, Vosshall, & Matsunami, 2007; 

Mainland et al., 2014; McClintock, Khan, et al., 2020; McClintock, Wang, Sengoku, 

Titlow, & Breheny, 2020; Pfister et al., 2020; Saito, Kubota, Roberts, Chi, & Matsunami, 

2004; Shirasu et al., 2014), experiments with receptors and ligands are presently not an 

efficient method to comprehensively map physicochemical features to different 

perceptual qualities. There is subsequently an important role for computational modeling. 

Previous attempts to predict ratings of odor perception from the physiochemical 

features of molecules have been successful to some degree, although these examples 

represent a small fraction of the perceptual descriptor space (Keller et al., 2017; Khan et 

al., 2007; Nozaki and Nakamoto, 2016). In these previous efforts, several perceptual 

descriptors tested were hard to predict and these descriptors may have been difficult to 

evaluate by study volunteers or lack a strong physicochemical basis. Nevertheless, a 

natural language processing (NLP) approach could successfully predict perceptual 

descriptors across studies, suggesting that descriptions of olfactory perceptual content are 

likely structured and not totally subjective (Gutiérrez, Dhurandhar, Keller, Meyer, & 

Cecchi, 2018). These earlier studies create an underlying framework that points to the 

intriguing possibility that the perceptual descriptions humans select to characterize 

odorants are associated with key physicochemical features, even those that are seemingly 

abstract and currently not well defined. While prior structure-activity studies predate 

modern machine learning, indicating features enriched among chemicals with shared 

perceptual qualities (Rossiter, 1996), some exceptions arise.  
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A few recent studies have modeled odor perception using large, non-experimental 

databases, training deep neural networks (Sanchez-Lengeling et al., 2019; Tran, Kepple, 

Shuvaev, & Koulakov, 2019) to predict perceptual descriptors from chemical features. 

These efforts have suggested that many complex perceptual descriptors are predictable, 

but the success can be challenging interpret. The chemical representation or input 

undergoes further abstraction, in which the predictive features are the network weights. 

We therefore established a pipeline to clarify the physicochemical properties that best 

predict diverse perceptual descriptors and to rigorously test using different metrics and 

controls that ensure the machine learning models are consistent with biological 

expectations. We find that chemical feature models can address many complex, 

biologically relevant tasks. As this suggests the important or predictive features that we 

identify are a resource for further research, we finally annotate a large commercially 

available chemical database with predicted odor qualities. These predictions reveal 

enriched structural motifs that help interpret the machine learning models.  

 

5.2. Results 

To better clarify the physicochemical basis of diverse perceptual descriptors, we designed 

a pipeline that begins with the identification of chemical features that contribute most to 

perceptual descriptors, followed by training machine learning (ML) models to predict 

percepts from these features and evaluating their predictions (Figure 5.1A, Methods). We 

used perceptual data from two human studies, Dravnieks (1985) and Keller (2016), 

conducted at different times and with different participant demographics (Dravnieks, 
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1985; Keller & Vosshall, 2016). In the Dravnieks (1985) study, fragrance industry 

professionals rated 137 individual volatile chemicals for 146 different odor qualities 

(perceptual descriptors). We identified ~30 predictive physicochemical features (from 

DRAGON software) for each of these perceptual descriptors (see Methods for details).  

Machine learning models that were trained with the physicochemical features 

successfully predicted most of the perceptual descriptors as seen by the computational 

validation (Figure 5.1B) (avg. Area Under Curve (AUC) = 0.81, avg. shuffle AUC = 

0.62; t = 24.17, p < 10-55; top 50 models avg. AUC = 0.90, avg. shuffle AUC =0.62; t = 

55.54, p < 10-75). We also observed that altering the general classification cutoff from 

the top 10% usage to the top 15% or 25% changes the AUC value determined for 

different percepts (Table 5.1). Specifically, of note, is the increase in performance as the 

cutoff is lowered, suggesting these descriptors in the study dataset have fewer high 

scoring (% usage) examples for training and the high scoring chemicals may not be as 

physicochemically distinct as lower scoring (% usage) chemicals. In order to remove bias 

because of differences in the score distribution, we next evaluated other metrics for the 

validation such as root mean square error (RMSE), mean absolute error (MAE) and 

correlation between predicted and observed % usage (R); see details in Methods). Each 

chemical has a complex perceptual profile, we analyzed the correlation between predicted 

and observed % usage over the validation for the full (146 descriptor set), which 

suggested good results (Figure 5.5A).  Next, for a set of hidden test chemicals, the 

predicted olfactory profile over all 146 perceptual descriptors also correlated well with 
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the known human ratings (avg. r = 0.72; best predicted chemical:  r = 0.86; worst 

predicted chemical: r = 0.67) (Figure 5.1C). 

The Dravnieks (1985) study used experienced human raters, and to generalize the 

utility of our approach we next applied it to the more recent Keller (2016) study of 

general public volunteers (Keller & Vosshall, 2016). As with the Dravnieks (1985) study, 

perceptual descriptors for a set of 69 hidden test chemicals (Keller et al., 2017) were also 

well predicted from physicochemical features (Figure 5.5B) or with multiple train/test 

sets from all 476 chemicals (Figure 5.5C).  

The two studies, though differing significantly in methodology, evaluated a small 

number of identical perceptual descriptors. It was therefore possible to test whether 

models from the 1985 study could predict equivalent perceptual descriptors in the 2016 

study (Cross-Study). Prior work has performed this analysis on a small number of 

overlapping chemicals using an approach involving semantic similarity and chemical 

features (Gutiérrez et al., 2018). We focused on 413 non-overlapping chemicals and more 

traditional modeling methods to evaluate across studies.  Models for “Sweet“, Warm”, 

“Sweaty” and “Chemical” trained on the Dravnieks (1985) study were successful at 

classifying the 413 chemicals unique to the Keller (2016) study (Dravnieks, 1985; Keller 

& Vosshall, 2016) (Figure 5.1D) (Avg. Cross-Study AUC = 0.73 ±.07, maximum AUC =  

0.82 ±.03 for “Sweet”). As a control, we compared the cross-study predictions with the 

Dravnieks (1985) model for a distinct percept, “Varnish,” which achieved good accuracy 

in Figure 5.1B and is similar to “Chemical” but expected to differ from the rest. 

Consistent with expectation, the overall average AUC using the Dravnieks (1985) 
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“Varnish” model cross-study was 0.41 ±.12. When we trained the Dravnieks (1985) 

models on randomly shuffled labels before the cross-study predictions, the overall 

average AUC was 0.52 ±.07 (Table 5.2). These results suggest that identical perceptual 

descriptors across studies are predictable from a set of physicochemical features, despite 

differences in study sample demographics and odor diversity.  

We next analyzed if the descriptors within each study could be predicted equally 

well by a different descriptor model with good classification accuracy. For the Keller 

2016 study, “Bakery,” which is similar to the many food-related descriptors in the study 

but differs from the rest, did not classify the 69 test chemicals as well as the percept-

specific models (Figure 5.6A). Of the 146 Dravnieks (1985) study descriptors, ~96% 

were better predicted by the percept-specific model vs “Varnish” (avg. Varnish AUC = 

0.51; t = 21.65, p < 10-59) (Figure 5.6B). However, the ”Varnish” model was 

indistinguishable from “Chemical,” “Paint,” and “Etherish,” implying chemical features 

are redundant in some cases. As this also suggested some descriptors in an arbitrarily 

large descriptor space might be predicted equally well by semi or even unrelated 

chemical feature models, we studied this exhaustively (Figure 5.7A). Overall, predictions 

with the actual descriptor model was often statistically better, even for some seemingly 

similar descriptors. However, this is not always the case, suggesting some descriptors 

may simply lack quality exemplar chemicals.  

Apart from these two semiquantitative psychophysical studies, (Dravnieks (1985) 

and Keller), a large amount of perceptual data is available as text at various databases, 

some using identical or similar perceptual descriptors. While these databases are not 
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quantitative or methodical, we tested each of our 146 Dravnieks (1985) perceptual 

descriptor models on a unique set of 2, 525 chemicals from one such database maintained 

by the GoodScents company. The predicted perceptual scores of each chemical were 

evaluated against the known textual data using ROC analysis (Methods). Although this 

task differed dramatically from previous test datasets, on average, the predictions 

compared favorably to the observed percepts (AUC = 0.72, t = 48.53, p < 10-15) (Figure 

5.1E). Collectively, these examples of predictive success within and across datasets 

establish that many perceptual descriptors, even those that are seemingly abstract, have a 

physicochemical basis that can be identified.  

In order to get an overview of the physicochemical basis of odor perception, we 

created network representations of the relationship between the percepts and the most 

predictive chemical features (Bullmore & Sporns, 2009; Koulakov, 2011; Meunier, 

Lambiotte, & Bullmore, 2010; Zhou, Smith, & Sharpee, 2018). For example, we 

expected that similar descriptors (“Fruity, Citrus”, “Lemon”, “Grapefruit”) were best 

predicted by similar chemical features and they would cluster together in the network 

(Figure 5.2A). Initially, we performed simple hierarchical clustering to compare the 

distances between the perceptual descriptors based on the % usage (Figure 5.8A), and 

then based on chemical feature sets in the machine learning models for comparison. 

While some chemical features were selected for multiple descriptor models, resulting in 

unconventional pairings in the hierarchical tree relative to perceptual ratings, we 

observed many similarities (Figure 5.8B).  
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We next turned our attention to the network-based visualizations, reducing the 

chemical features down to the top 3 for 93 of the most distinct perceptual descriptors in 

the Dravnieks (1985) study (117 features in total). Despite the limited information, 

distinct clusters were detectable. In general, networks using more chemical features (top 

5 or 10) were better connected (Figure 5.2B, Figure 5.9A). Interestingly, these networks 

relate well to those assembled only from human participant ratings rather than 

physicochemical information (Castro, Ramanathan, & Chennubhotla, 2013). Taken 

together, these analyses suggested that perceptual descriptors with highly correlated % 

usage (e.g. descriptors that are fruit-like) may be subtly different in terms of the most 

important or predictive chemical features.  

The human olfactory system discriminates similar smelling chemicals and does so 

presumably by detecting minor differences in key physicochemical features using an 

array of odorant receptors. To understand how a machine learning algorithm might 

achieve such discrimination, we selected two groups of closely correlated perceptual 

descriptors, fruit-like and soot-like and performed a network analysis as before. As 

expected, many top physicochemical features were shared among these similar 

descriptors, and yet separate sub-clusters were present (Figure 5.2C, top and bottom). 

Representative compounds with descriptors such as “Grape Juice” and “Peach, Fruit” are 

subtly different from each other, as are ones for “Sooty” and “Tar” (Figure 5.2D). When 

examining these differences in physicochemical features, it is evident how slight 

variations in structurally related chemicals could result in distinct perceptual responses. 

We also observed this in an additional analysis (Figure 5.9B). This suggests that 
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physicochemical information in machine learning models can address a complex 

challenge, similar to the biologically relevant discriminatory task. 

An analysis of the chemical features selected for all the perceptual models 

suggested that the 3D structure of a chemical contributed significantly to predictions of 

odor perception, particularly the 3D-MoRSE (Schuur, Selzer, & Gasteiger, 1996) and 

GETAWAY (Consonni, Todeschini, & Pavan, 2002) chemical features (DRAGON), 

which are 3D representations weighted by physicochemical properties that are possibly 

without precise structural interpretations (Figure 5.9C). Simpler 2D features and 

functional group counts were less important (Figure 5.9C).  

Only a miniscule portion of the odor-chemical space has been evaluated for 

perceptual information and this in part reflects the low throughput and high cost of 

human studies. One approach to overcome this is to extend small experimental datasets to 

large, unexplored chemical spaces. Subsequently, we predicted the 146 Dravnieks (1985) 

study perceptual descriptors for a ~440,000 chemical library (Boyle, Guda, et al., 2016; 

Boyle, McInally, Tharadra, & Ray, 2016) (Figure 5.3a, top and bottom). We evaluated 

~68 million descriptor-chemical combinations and predicted numerous (hundred to 

thousands) new chemicals that smell like each descriptor. These chemicals represent a 

massive expansion (>3000 times) of the previously known chemical space with 

perceptual descriptors, which is likely to cover a substantial fraction of putative volatile 

chemicals with odorant properties. Ultimately, the predictions allowed us to create, for 

the first time, a comprehensive chemical space of all 146 Dravnieks (1985) perceptual 

descriptors. 
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Visualizing this massive chemical space in a 2D image is difficult, so we 

represented only a fraction of the top predictions in the form of a network (Figure 5.3B). 

We next clustered similar perceptual descriptors, highlighting the frequently occurring 

chemical features among the top predictions. Though the machine learning models 

incorporate potentially abstract chemical features, this type of analysis can help visualize 

structural features that may contribute to a certain percept (Figure 5.4). 

 

5.3. Discussion 

 In this study, we provided a comprehensive analysis of odor perception prediction 

from physicochemical features of volatile chemicals, and have supplied important 

groundwork to understand optimal methods, metrics and approaches in modeling diverse 

perceptual descriptors. We do so with an additional focus on transparency and 

interpretability.  

Of note, is the finding that most perceptual descriptors are best predicted by 

chemical features that describe 3D geometries. The value of 3D information was 

anticipated however when considering structurally similar odorants share many 2D 

features. To successfully discriminate odorant percepts, machine learning models utilize 

additional physicochemical properties, particularly 3D shape. In datasets with an 

arbitrarily large number of perceptual descriptors, the important chemical features could 

be redundant and cross-descriptor predictions overlap. However, we found that, although 

important chemical features overlap, the set of descriptors for a percept and the models 

themselves were indeed largely distinct. This would be consistent with evidence that 
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perceptual descriptors appear highly structured and are not arbitrary (Gutiérrez et al., 

2018). 

While caution is required in interpreting results from the Dravnieks (1985) or 

Keller (2016) datasets, which are small samples by typical machine learning standards, 

our validations and control analyses establish that they are nevertheless rich sources of 

information for uncovering structure-odor percept relationships. The generalizability of 

physicochemical feature-based models across the differing sample demographics and the 

mostly distinct odor panels is further evidence. To that end, we have ultimately outlined a 

simple pipeline that can be applied to facilitate data-driven theories about the human 

olfactory perceptual space and its physicochemical origins on a considerably larger scale.  

This study differs in notable ways to others including placing the results in the 

context of diverse odor perception prediction efforts. We expanded cross-study analyses, 

where training and testing are performed on different psychophysics data sources. These 

results suggested that models trained on the Dravnieks data could be successfully adapted 

to predict the Keller study and a very different, non-experimental dataset in GoodScents. 

Although the size of the training set directly impacts success, and models trained on more 

data are always expected to perform better, the results are quite good relative to the size 

of the Dravnieks training data. Importantly, in previous modeling efforts focus has been 

placed on open source chemical feature representations. These include e-Dragon, a free 

web interface to an early version of Dragon software and moldred/RDKit. Here, we used 

proprietary geometry optimization tools such as OMEGA alongside the full version of 

Dragon. When we compared different feature representations, it is evident that there are 
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performance gains and losses depending on the perceptual descriptor. Subsequently, there 

is no consensus approach, but the tools used in this study appear to improve predictions, 

particularly within the Keller study; that is, when training is followed by prediction of 69 

test chemicals from the same study.  

The chemical features we report for the different Dravnieks perceptual descriptors 

are therefore a valuable resource and will likely support odor coding research and assist 

researchers in identifying new chemicals that smell a specific way. Predicted compounds 

from the large computational screen are a rich source of information about our potential 

olfactory chemical space. While this includes comparing predictive modeling efforts to 

define successes, failures and future directions for the field, differences in the 

methodology and chemical sets have thus far limited comparisons. We set the foundation 

here for such comparisons, analyzing several different perceptual datasets and evaluating 

various modeling efforts with multiple metrics. These comparisons are nevertheless 

broad in nature. But they help provide interpretation about perceptual descriptors and 

their predictability across considerably different modeling studies. 

By applying machine learning alongside traditional chemoinformatic tools, we 

suggest it is now possible to extrapolate from the quality perceptual study data to large 

chemical spaces. These spaces can play an important role in translating the complex 

chemical features in machine learning models into visible, more interpretable patterns. 

We therefore anticipate that this study will provide a powerful approach and resource for 

the discovery of new flavors and fragrances. 



 

 

81 

5.4. Figures 
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Figure 5.1. Predicting perceptual descriptors from physicochemical features with 

machine learning. A) Pipeline for predicting Dravnieks (1985) ratings (% Usage) for 

perceptual descriptors, an example is provided for the descriptor, “molasses.” Important 

chemical features are detected that predict “Molasses.” A support vector machine (SVM) 

is fit; predictions are assessed by different methods such as the area-under-the curve 

(AUC) from Receiver Operating Characteristic (ROC) plots. B) Chemicals within the top 

10% of ratings (% Usage) are labeled as “Active.”  The AUC quantifies the relationship 

between sensitivity to actives (chemicals in the top 10% ratings) vs false positives. Plot 

bars represent the average AUC from three models trained using different chemical 

features. The AUC is computed on chemicals excluded from training (30 times, 10-fold 

CV repeated 3 times). Significance (*) from one-sided t-test, comparing the AUC to an 

identical model trained on shuffled “Active” labels. The number of “Active” labels 

remains unchanged. Significance is p ≤ .05 after adjusting for false discovery rate. C) 

Predicted vs observed % usage for select test chemicals. For clarity, only a selection of 

perceptual descriptors is shown. D) Dravnieks (1985) trained models of “Sweet”, 

“Warm”, “Sweaty” and “Chemical” predict ratings for these same descriptors from a 

study of public volunteers for 413 test chemicals (Keller & Vosshall, 2016). Cutoffs to 

convert the public volunteer data into actives are from the Dravnieks (1985) study (top 

10% usage). Significance is from one-sided t-test, comparing the perceptual descriptor 

models with a non-identical but top-performing Dravnieks (1985) model, “Varnish” over 

100 bootstrap samples. Public volunteer data is averaged over dilution. E) Average 

prediction performance (AUC) when assigning 1-146 Dravnieks (1985) perceptual 

descriptor labels to 2,525 test chemicals with known labels in GoodScents database. CV: 

Cross-validation.  

 

 



 

 

83 

 

 

 



 

 

84 

Figure 5.2. Building perceptual descriptor networks from few physicochemical 

features. A) Pipeline summarizing methods for selecting the most important chemical 

features for predictions of Dravnieks (1985) perceptual descriptors, followed by the 

construction of networks that help visualize relationships among these descriptors when 

considering physicochemical information alone. B) Assembled network from the top 5 

chemical features per descriptor. Descriptors with shared top 5 chemical features are 

connected in the network. Similar perceptual descriptors are color-coded based on the 

Louvain algorithm. C) Two sets of correlated descriptors are analyzed based on the 

chemical features that are important (among the top 5) for predicting them. Top, matrix 1: 

“fruity” descriptors. Bottom, matrix 2: “sooty” descriptors. Louvain clustering (square 

color) shows the similar descriptors are separable into 2 sub-groups. Filled-in squares, 

regardless of color, represent the importance of the labeled chemical feature. D) 

Exemplar chemicals from the computationally inferred clusters.  
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Figure 5.3. Predicting and mining large commercially available chemical spaces. A) 

The machine learning models are used to predict perceptual descriptors from ~440,000 

compounds. Top, predicted chemical counts are based on optimal thresholds from the 

ROC curves and structural similarity (atom pair similarity > .25) to training actives. An 

optimal threshold is the point on the curve that minimizes false positives and maximizes 

true positives.  Bottom, detailed validation for the models ordered with respect to the 

number of predicted chemicals. B) A 2D representation of predictions for 15 hits for each 

perceptual descriptor (or all chemicals that exceed the % usage threshold for actives), 

with edges connecting compounds that are predicted for multiple descriptors. The newly 

predicted chemicals are indicated as unnamed red dots, and each descriptor as blue dots 

and labeled in rectangles. Predictions are from the support vector machine (SVM) 

algorithm with a radial basis function (RBF) kernel. See Methods for additional 

information.  
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Figure 5.4. Enriched chemical features among predictions. A) Top predicted chemicals 

in eMolecules from the Figure 5.3 network are clustered and analyzed for common 

structural features (substructures or cores). These are highlighted (red) in images of 

representative chemicals from the predictions. The ID is the eMolecules identifier. 

Simple structural features are common among predicted chemicals, enabling basic 

comparisons between different perceptual descriptors based on chemical structure. 

Accordingly, this is an example of how a large network of predictions can offer 

additional insight.  See Methods for details on the maximum common substructure 

algorithm for identifying the enriched features.  
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Figure 5.5. Comprehensive evaluation of machine learning models with different 

metrics and data. A) Average correlation (R) between the predicted and observed % 

usage for the full set of perceptual descriptors over cross validation. Dravnieks (1985) 

study chemicals (x-axis) are abbreviated as the CAS identifier. B) Evaluation of chemical 

(DRAGON) feature models trained on the Keller 2016 study data. Models classify 69 test 

chemicals (used in the DREAM analysis) as smelling like a given descriptor (top 10% 

Usage). These chemicals were excluded from training and chemical feature selection. 

The area under the ROC curve (AUC) compares predictions to the data observed from the 

general public volunteers in that study. Chance performance is defined by training 

models identically but on mislabeled chemicals (shuffle). Error is the standard deviation 

over 100 bootstrap samples. C) A similar analysis is done using an alternative validation 

method where all 476 chemicals in the Keller 2016 study are repeatedly divided into 

training and testing chemical sets (10-fold cross-validation, repeated 3 times). This 

covers more diversity than the 69 test chemicals. Chemical features for these models 

were selected using a subset of the data to minimize biased validation. The predictions 

are aggregated from the support vector machine (SVM) and regularized random forest 

algorithms. Additional information on AUC calculation and its interpretation are in 

Methods. Chemical feature selection methods and biases that affect validation are also 

defined in Methods.   
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Figure 5.6. An arbitrary model for predicting an perceptual descriptor fails to 

outperform actual model. A) Area under the ROC curve (AUC) for classifying the top 

10% of usage on 69 test chemicals with chemical (DRAGON) features across perceptual 

descriptors from the 55 Keller 2016 study participants, averaging over dilution. The 69 

test chemicals are as reported in the DREAM analysis (Keller et al., 2017). AUCs 

computed from aggregated scores of a RBF SVM and a regularized random forest.  

Performance of each perceptual descriptor model is plotted alongside performance if 

replacing the predictions with the “Bakery” model. Chemical features selected and 

models fit on 407 training chemicals. Error (standard deviation) is over 100 bootstrap 

samples of the 69 test chemicals.  B) Classification (AUC) of top 10% of usage for the 

146 Dravnieks (1985) perceptual descriptors descriptor models (teal dots) compared to 

predictions using a top performing “Varnish” (purple dots) model. Perceptual descriptors 

colored in purple failed to outperform “Varnish,” p > .05, adjusting for FDR (Benjamini-

Hochberg). Plotted AUCs reflect the average of 3 RBF SVM models using different 

chemical features from a pool of ~70 over 30 cross validation folds (10- fold CV repeated 

3 times) (RBF: Radial Basis Function; SVM: Support Vector Machine; FDR: False 

Discovery Rate). 
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Figure. 5.7. The actual predictive model for a perceptual descriptor is generally most 

accurate. A) Dravnieks (1985) study prediction performance over the cross validation 

where the percent usage of each perceptual descriptor is predicted by the models for the 

other descriptors. The color is the p value adjusted for FDR (T-test). Descriptor labels are 

colored (red) to distinguish the models that are of a lower quality rather than perceptual 

redundancy. These perceptual descriptors may fail for many reasons but notably most are 

not well represented among Dravnieks (1985) study chemicals (e.g. lack exemplars for 

classification training).  
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Figure 5.8. Chemical features cluster odor perceptual qualities similarly to the ground 

truth human rating. A) Hierarchical clustering of the Dravnieks (1985) study data by % 

usage. The cluster (colors) number is determined by the gap statistic over bootstrap 

samples. The distance is Euclidean. B) Hierarchical clustering is instead performed based 

on chemical feature sets appearing in the machine learning models. The distance is 1-

Jaccard index, where the Jaccard index here indicates the similarity of binary strings (1,0) 

specifying if a chemical feature is or is not in the perceptual descriptor model.  
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Figure 5.9. Few predictive chemical features can in part differentiate diverse odor 

perceptual qualities. A)  The 10 most important chemical (DRAGON) features for 

accurate predictions of perception (% usage) are used to build a network representation 

that shows relationships among the perceptual descriptors in terms of their prospective 

physicochemical similarity. Connectivity in the network signifies shared chemical 

features among 93 distinct perceptual descriptors and is used to infer clusters of similar 

perceptual descriptors according to the Louvain algorithm. The large number of features 

leads to a densely connected network but clusters detected.  B) Left, discriminating top 

chemicals that smell like “cherry” versus “tar,” according to Dravnieks (1985) study 

respondents. The discrimination success is quantified by the average AUC across 30 

cross validation folds (10-fold CV repeated 3 times) for models comprised of 1, 2, and 3 

principal components (PC 1-3) that optimally retain information in the combined top 10 

chemical (DRAGON) features (20 total). Error bars reflect the standard error. Note the 3 

component model provides perfect classification. Right, exemplar chemicals for "cherry 

(berry)" and “tar" that are structurally similar but with subtly distinct chemical features. 

c) Counts of the chemical (DRAGON) features selected in bins from the top 1-10 (x–

axis) for 146 perceptual descriptors with respect to the broad categories (y-axis) the 

features fall into. 
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5.5. Tables 

Table 5.1  

Perceptual Descriptor 

Actives 
(Top 

25%) 

Actives 
(Top 

15%) 

Actives 
(Top 

10%) 

AUC 
(Top 

10%) 

AUC 
(Top 

15%) 
AUC 

(Top 25%) 

FRUITY.CITRUS 34 20 14 0.850 0.852 0.825 

LEMON 34 20 14 0.856 0.849 0.793 

GRAPEFRUIT 36 20 14 0.851 0.847 0.858 

ORANGE 35 20 14 0.849 0.848  0.849 

FRUITY.OTHER.THAN.CITRUS 34 20 14 0.892 0.887 0.855 

PINEAPPLE 35 20 14 0.901 0.888 0.823 

GRAPE.JUICE 34 21 14 0.764 0.761 0.743 

STRAWBERRY 34 20 14 0.771 0.802 0.819 

APPLE.FRUIT 37 21 14 0.637 0.661 0.729 

PEAR 34 20 14 0.910 0.828 0.808 

CANTALOUPE.HONEY.DEW.MELON 34 21 14 0.878 0.898 0.850 

PEACH.FRUIT 34 20 14 0.911 0.933 0.849 

BANANA 34 20 14 0.917 0.812 0.747 

FLORAL 34 20 14 0.884 0.830 0.834 

ROSE 34 20 14 0.857 0.823 0.848 

VIOLETS 34 20 14 0.744 0.793 0.787 

LAVENDER 34 20 14 0.782 0.834 0.787 

COLOGNE 34 20 14 0.848 0.869 0.850 

MUSK 34 20 14 0.715 0.721 0.708 

PERFUMERY 34 20 14 0.860 0.843 0.777 

FRAGRANT 34 20 14 0.686 0.742 0.790 

AROMATIC 34 20 14 0.872 0.834 0.810 

HONEY 35 20 15 0.913 0.810 0.770 

CHERRY.BERRY 34 20 14 0.866 0.838 0.770 

ALMOND 34 20 14 0.916 0.876 0.866 

NAIL.POLISH.REMOVER 35 20 14 0.772 0.788 0.699 

NUTTY.WALNUT.ETC 34 20 14 0.886 0.858 0.825 

SPICY 34 20 14 0.871 0.867 0.843 

CLOVE 34 20 14 0.758 0.802 0.782 

CINNAMON 34 20 14 0.917 0.855 0.837 

LAUREL.LEAVES 38 20 16 0.748 0.717 0.783 

TEA.LEAVES 34 20 15 0.682 0.776 0.707 

SEASONING.FOR.MEAT 34 20 14 0.773 0.722 0.736 

BLACK.PEPPER 34 20 14 0.649 0.630 0.732 

GREEN.PEPPER 34 20 14 0.607 0.658 0.766 

DILL 34 21 14 0.645 0.585 0.605 

CARAWAY 36 20 14 0.871 0.710 0.713 

OAK.WOOD.COGNAC 34 20 14 0.680 0.759 0.792 
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WOODY.RESINOUS 36 20 14 0.799 0.824 0.828 

CEDARWOOD 34 20 14 0.863 0.807 0.809 

MOTHBALLS 34 20 14 0.878 0.893 0.813 

MINTY.PEPPERMINT 34 20 14 0.855 0.880 0.800 

CAMPHOR 34 20 14 0.697 0.839 0.828 

EUCALIPTUS 34 21 14 0.737 0.785 0.753 

CHOCOLATE 34 20 14 0.822 0.823 0.721 

VANILLA 35 20 14 0.864 0.929 0.840 

SWEET 34 20 14 0.769 0.803 0.797 

MAPLE.SYRUP 35 20 14 0.843 0.778 0.646 

CARAMEL 34 20 14 0.859 0.825 0.819 

MALTY 34 21 15 0.858 0.811 0.782 

RAISINS 37 21 14 0.666 0.820 0.806 

MOLASSES 34 22 14 0.831 0.784 0.708 

COCONUT 34 20 14 0.780 0.794 0.777 

ANISE.LICORICE 34 21 14 0.715 0.724 0.703 

ALCOHOLIC 34 20 14 0.817 0.821 0.704 

ETHERISH.ANAESTHETIC 34 20 14 0.908 0.801 0.783 

CLEANING.FLUID 35 20 14 0.626 0.800 0.807 

GASOLINE.SOLVENT 34 20 14 0.894 0.865 0.776 

TURPENTINE.PINE.OIL 34 20 14 0.909 0.864 0.827 

GERANIUM.LEAVES 36 20 14 0.728 0.766 0.815 

CELERY 35 21 14 0.897 0.788 0.742 

FRESH.GREEN.VEGETABLES 34 20 14 0.846 0.867 0.821 

CRUSHED.WEEDS 35 20 14 0.827 0.738 0.767 

CRUSHED.GRASS 34 20 14 0.897 0.866 0.788 

HERBAL.GREEN.CUT.GRASS 34 20 14 0.814 0.832 0.822 

RAW.CUCUMBER 34 20 14 0.851 0.819 0.748 

HAY 34 20 14 0.702 0.760 0.735 

GRAINY.AS.GRAIN 34 20 14 0.818 0.741 0.729 

YEASTY 34 20 14 0.937 0.877 0.827 

BAKERY.FRESH.BREAD 35 21 14 0.648 0.563 0.622 

SOUR.MILK 34 20 14 0.949 0.848 0.741 

FERMENTED.ROTTEN.FRUIT 34 20 14 0.886 0.889 0.791 

BEERY 34 20 14 0.611 0.675 0.707 

SOAPY 34 20 14 0.885 0.871 0.836 

LEATHER 34 20 14 0.762 0.788 0.783 

CARDBOARD 34 20 14 0.617 0.697 0.726 

ROPE 34 20 14 0.607 0.634 0.582 

WET.PAPER 34 20 14 0.674 0.729 0.728 

WET.WOOL.WET.DOG 34 20 14 0.718 0.759 0.762 

DIRTY.LINEN 34 20 14 0.888 0.885 0.864 

STALE 34 20 14 0.833 0.868 0.810 
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MUSTY.EARTHY.MOLDY 34 21 14 0.788 0.814 0.754 

RAW.POTATO 35 20 14 0.641 0.786 0.718 

MOUSE 34 20 14 0.861 0.887 0.813 

MUSHROOM 34 20 14 0.799 0.765 0.746 

PEANUT.BUTTER 34 20 14 0.896 0.828 0.825 

BEANY 34 21 14 0.770 0.711 0.690 

EGGY.FRESH.EGGS 34 20 14 0.635 0.578 0.568 

BARK.BIRCH.BARK 34 22 14 0.714 0.722 0.666 

CORK 34 20 14 0.718 0.733 0.773 

BURNT.SMOKY 34 20 14 0.849 0.898 0.913 

FRESH.TOBACCO.SMOKE 34 21 15 0.750 0.738 0.675 

INCENSE 34 20 14 0.778 0.817 0.826 

COFFEE 34 20 15 0.912 0.882 0.735 

STALE.TOBACCO.SMOKE 34 20 14 0.879 0.869 0.872 

BURNT.PAPER 34 21 14 0.895 0.858 0.864 

BURNT.MILK 35 21 14 0.908 0.745 0.675 

BURNT.RUBBER 34 20 14 0.837 0.845 0.891 

TAR 34 20 14 0.779 0.795 0.783 

CREOSOTE 34 21 14 0.834 0.865 0.773 

DISINFECTANT.CARBOLIC 34 20 14 0.922 0.737 0.859 

MEDICINAL 34 21 14 0.791 0.677 0.771 

CHEMICAL 34 20 14 0.815 0.841 0.814 

BITTER 34 20 15 0.858 0.889 0.780 

SHARP.PUNGENT.ACID 34 20 14 0.847 0.891 0.815 

SOUR.VINEGAR 34 20 14 0.885 0.866 0.802 

SAUERKRAUT 34 20 14 0.970 0.904 0.788 

AMMONIA 34 21 14 0.811 0.848 0.792 

URINE 36 20 14 0.810 0.810 0.797 

CAT.URINE 35 20 14 0.833 0.862 0.748 

FISHY 34 21 14 0.831 0.791 0.753 

KIPPERY.SMOKED.FISH 34 20 14 0.754 0.701 0.660 

SEMINAL.SPERM.LIKE 35 20 14 0.814 0.850 0.804 

NEW.RUBBER 34 20 14 0.752 0.799 0.827 

SOOTY 34 20 15 0.797 0.756 0.769 

BURNT.CANDLE 34 20 14 0.741 0.800 0.771 

KEROSENE 34 20 14 0.910 0.857 0.802 

OILY.FATTY 34 20 14 0.739 0.821 0.883 

BUTTERY.FRESH.BUTTER 34 21 14 0.899 0.872 0.786 

PAINT 34 20 14 0.949 0.864 0.774 

VARNISH 34 20 14 0.892 0.840 0.775 

POPCORN 34 20 15 0.672 0.666 0.659 

FRIED.CHICKEN 0 21 17 0.731 0.688 N/A 

MEATY.COOKED.GOOD 37 20 14 0.833 0.830 0.801 
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SOUPY 37 21 14 0.616 0.677 0.752 

COOKED.VEGETABLES 34 20 15 0.831 0.905 0.760 

RANCID 34 20 14 0.908 0.888 0.816 

SWEATY 34 20 14 0.879 0.848 0.764 

CHEESY 36 20 14 0.836 0.677 0.716 

HOUSEHOLD.GAS 34 20 14 0.941 0.930 0.890 

SULFIDIC 34 20 14 0.899 0.923 0.821 

GARLIC.ONION 34 20 14 0.964 0.810 0.823 

METALLIC 35 21 14 0.587 0.675 0.713 

BLOOD.RAW.MEAT 34 20 14 0.826 0.759 0.813 

ANIMAL 34 20 14 0.787 0.775 0.731 

SEWER 35 20 14 0.891 0.897 0.825 

PUTRID.FOUL.DECAYED 35 20 14 0.876 0.903 0.831 

FECAL.LIKE.MANURE 34 20 14 0.863 0.868 0.772 

CADAVEROUS.DEAD.ANIMAL 37 20 14 0.934 0.893 0.817 

SICKENING 34 20 14 0.902 0.917 0.847 

DRY.POWDERY 34 20 14 0.759 0.840 0.812 

CHALKY 35 20 14 0.641 0.739 0.772 

LIGHT 34 20 14 0.825 0.770 0.753 

HEAVY 34 20 14 0.790 0.842 0.806 

COOL.COOLING 34 20 14 0.837 0.804 0.664 

WARM 34 20 14 0.818 0.769 0.771 

 

Table 5.1. Figure 1 performance using different classification cutoffs. The average 

AUC is shown for varying classification cutoffs. The % usage is transformed into active 

and inactive labels according to the top end of the % usage distribution (Top 10, 15, and 

25), which changes the number of active and inactive chemicals.   
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Table 5.2 
 

Perceptual Descriptor AUC 

SWEET 0.8162655 

VARNISH.SWEET 0.3243550 

SHUFFLE.SWEET 0.5812922 

SWEATY 0.7071707 

VARNISH.SWEATY 0.3413408 

SHUFFLE.SWEATY 0.5426659 

WARM 0.7472995 

VARNISH.WARM 0.3774729 

SHUFFLE.WARM 0.5421157 

CHEMICAL 0.6452747 

VARNISH.CHEMICAL 0.5801918 

SHUFFLE.CHEMICAL 0.4234795 

 

Table 5.2. Cross-Study classification performance. Dravnieks (1985) models predict the 

same perceptual descriptor in the Keller 2016 study for 413 chemicals unique to the 

study. The area under the curve (AUC) is averaged over 100 bootstrap samples. The 

perceptual descriptor is the model used for predictions. Each descriptor is appended with 

“Shuffle” or “Varnish,” showing the performance when the Dravnieks (1985) study 

model is trained on shuffled labels for exemplar chemicals or, alternatively, the 

Dravnieks (1985) “Varnish” model.  
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5.6. Methods 

5.6.1. Psychophysical data  

5.6.1.1 Keller (2016) Study 

We used data from 55 general public volunteers(Keller & Vosshall, 2016) for external 

validation. Due to limited diversity in the selection of odor descriptors supplied by naïve 

volunteers and evidence indicating experience with odor language improves the quality 

of perceptual data (Dubois & Rouby, 2002; Lawless, 1984; Olofsson & Gottfried, 2015), 

we primarily considered a sample of industry professionals as reported in the atlas of 

odor character profiles (Dravnieks (1985)) (Dravnieks, 1985). Notably, the semantic 

descriptors (odor characters or perceptual descriptors) were sparsely used in some cases 

among the general public volunteers, suggesting that averaged ratings for a given 

descriptor (odor character) might represent a very small proportion of the respondents. 

This becomes particularly important for generating predictive models since missing data 

points (e.g. chemicals or odorants that are not rated by some participants) must be dealt 

with such as by averaging ratings for the nearest neighboring (k) odorants or filling-in 

with the median/mean rating across all odorants. While these approaches are valid in 

predictive modeling, they are a significant modification of the respondent data; the failure 

to provide a rating is a potentially important source of information. We maintained, as a 

result, the 0-100 scale for the general public volunteer data but converted ratings to a % 

usage metric instead. Dilution was not considered, averaging % usage over the different 

dilutions. In preliminary analyses there was however some evidence that models might 

benefit from training on data from a single dilution. Similarly, a small number of 
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replicates that were performed in this study were not included in the final training and 

testing datasets.  

Although with the % usage each odorant is assigned numeric values more 

naturally, this modification was also in line with the Dravnieks (1985) study data. The % 

usage therefore provided a means to compare two sources that to a first approximation 

appear very different. Dravnieks (1985) also reports a percent applicability metric. The 

percent applicability is the sum of the ratings for a chemical or odorant over all 

participants divided by the maximum possible sum. This was not used for our cross-study 

comparisons as ratings from an experienced participant panel might scale differently and 

the sample size between the two studies is very different. Because cross-study 

comparisons are not well defined, we opted for the simplest possible metric, the % usage.  

 

5.6.1.2. Atlas of odor character profiles, Dravnieks (1985) 

Dravnieks (1985) summarizes odor profiles for 180 odorants, replicates and mixtures, 

with the latter not being used for predictions, from 507 industry professionals in total 

across 12 organizations. Each chemical was rated by between 120 and 140 participants. 

The participants scored a set of replicates, which were used to provide an index of 

discriminability for the data as the inverse of the squared correlation coefficient between 

replicates (RV). For this study, RV = .11. The scoring metric was on the range of 1-5 

with 1 being slightly and 5 being extremely relevant. Raw scores were subsequently 

processed into two numeric values summarizing the participants’ responses. We only 

focused on the % usage; the fraction of participants providing any response, 1-5 because 
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it is the simplest metric to interpret and relate to other studies. The perceptual descriptor 

(or character) set available for the Dravnieks (1985) study was extensive but empirically 

driven. Recommendations from the ASTM (American Society for Testing and Materials) 

sensory evaluation committee winnowed an initial set of 800 possible odor characters 

(perceptual descriptors) for sensory analyses down to 160.  Prompted by additional 

research, this figure was later revised to 146 relevant perceptual descriptors, a final set 

that addressed concerns in which clear perceptual differences could result in identical 

descriptor usage from study participants.  This final set of 146 perceptual descriptors and 

the percent usage was subsequently prepared for machine learning analyses.  

 

5.6.1.3. GoodScents Test Data 

GoodScents is a database of 2000+ chemicals, containing basic physicochemical 

information as well as perceptual descriptor labels, if available, from published reference 

materials. Since it is not possible to predict a descriptor for which there is no Dravnieks 

(1985) equivalent, we had to define exclusionary criteria to properly evaluate the 

predictions. This included in addition to removing non-unique chemicals those without 

descriptor labels matching or similar to Dravnieks (1985), leaving 2,525 chemicals for 

test set validation. Examples of similar descriptors in GoodScents include “weedy” and 

“nutty,” which correspond with “crushed weeds,” and “walnut” and “peanut butter in 

Dravnieks (1985), respectively.”  The 146 Dravnieks (1985) descriptor models assigned a 

probability score. ROC curves were subsequently computed using the observed 

descriptor labels for each of the 2,525 chemicals. A chemical described simply as 
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“nutty,” for example, is expected to have high probabilities for “peanut butter” and 

“walnut’” but not for “orange” and “chemical.” Cases where descriptors were correlated 

in Dravnieks (1985) (>.85) were also defined as a set to avoid overly penalizing the 

assignment of redundant descriptors to new chemicals. We identified earlier that models 

with this level of correlation are often interchangeable, with only a non-significant 

reduction in prediction performance. Namely, machine learning assignment of 

“Chemical” to an odorant described as “Varnish” was not incorrect given the data. The 

ROC curve assesses that high probabilities are correctly assigned to the observed 

descriptors. When the machine learning models predict descriptors that are unlike those 

observed, the area under the ROC curve decreases. An independent t-test comparison was 

made between actual AUCs and those using random probability scores. 

 

5.6.2. Selecting optimally predictive chemical features 

5.6.2.1. Optimizing chemical structures 

Chemical features were computed with DRAGON 6 for Dravnieks (1985). Chemical 

structures were optimized and 3D coordinates computed with OMEGA. Molecular or 

chemical features were pre-computed and made publicly available for the DREAM study 

and these data files were used as is for analysis of the 55 public volunteers reported in the 

Keller 2016 study.  

 

5.6.3. Chemical feature ranking and importance 

5.6.3.1. Cross-validated recursive feature elimination (CV-RFE) 
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Recursive feature elimination iteratively selects subsets of features to identify optimal 

sets. The algorithm is a “wrapper” and therefore relies on an additional algorithm to 

supply predictions and quantify importance. Often this is a decision tree such as random 

forest, which was used here, since the algorithm computes feature importance internally. 

This distinction between internal and external simply means that while any arbitrary 

algorithm can supply the prediction error—here, the error in predicting the % usage 

value—many lack a well-defined method for quantifying feature importance. Feature 

importance and ranking must, in these instances, be supplied externally such as by non-

linear regression models for each predictor and outcome compared to a constant.  

 

Including cross-validation with the recursive feature elimination (RFE) partitions the 

training data into multiple folds. This step avoids biasing performance estimates but 

results in lists of top predictors over the cross-validation folds such that importance of a 

predictor is based on a selection rate. 

 

5.6.3.2. Random Forest 

Random forest is an extension of basic decision trees that overcomes the often-poor 

generalizability of these models by aggregating the predictions from multiple trees 

trained on bootstrap samples and different predictor sets, effectively limiting redundancy 

between trees. Rows that are excluded as part of bootstrapping process are used to 

estimate prediction performance on new data. This also provides a method for assigning 

importance to features through randomization; the % increase in prediction error after 
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randomizing a feature is accordingly the ranking metric that was used for tabulating 

chemical feature importance.  

 

5.6.3.3. Selection Bias 

Selecting features or predictors on the same dataset used for cross validation results in 

models that have already “seen” possible partitions of the data and therefore performance 

metrics will be biased. Selection bias (Ambroise & McLachlan, 2002) was addressed by 

bootstrapping and cross validation, which ensure some separation between 

predictor/feature selection and model-fitting/validation. In addition to these methods, we 

used hidden test sets and also showed that the models could be used to predict perceptual 

responses from a completely different experiment, removing methodological biases 

arising from odorant preparation and presentation or any unforeseen regularities that 

machine learning algorithms could exploit but that are fundamentally task irrelevant for 

the analyst or researcher interested understanding rather than predicting.  

 

5.6.3. Selecting optimal machine learning algorithms 

The support vector machine (SVM) with the radial basis function kernel (RBF) 

outperformed random forest, regularized linear models (ridge and lasso), and linear SVM, 

tuning over L1 versus L2 regularization. However, gradient boosted decisions trees and 

tree ensembles such as random forest nevertheless approximated performance of RBF 

SVMs on the public volunteer data (Keller 2016), which was used in part for the 

DREAM analysis, and in certain cases outperformed it. This emphasizes that the optimal 
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algorithm is context dependent. To ensure consistency in our analysis of different 

psychophysical data sources, we did not report the results in this manner, that is, fitting 

the best performing algorithm each time. We instead aggregated multiple SVM models to 

improve generalizability.  Algorithm selection and training was done using the R 

package, caret (classification and regression training)(Kuhn, 2008; R Development Core 

Team, 2016).  

 

5.6.4. Cross-Study Predictions 

 For cross-study predictions, models were fit as shown in the Figure1a pipeline 

with Dravnieks (1985) data. Multiple SVM models were fit with slightly different 

chemical features and their predictions were aggregated. This ensemble approach limits 

the tendency to overfit during the training phase.  

Notably, chemicals do overlap between the two studies. Removing these 

chemicals (58) from Dravnieks (1985) significantly reduces the available training data. 

We instead removed the overlap from the Keller 2016 dataset, leaving 413 chemicals as a 

test set. Although theoretically all 146 perceptual descriptors could be assessed, the 

choice of “warm,” “sweaty,” “sweet,” and “chemical” depended on key differences in the 

perceptual descriptors available for the two studies, Keller (2016) and Dravnieks (1985). 

For instance, while Dravnieks (1985) used word strings in many cases such as “putrid, 

foul, decayed” to provide greater context, Keller 2016 opted for “decayed.” It is unclear 

what impact this difference might have and if it is non-trivial. The interpretation of the 

cross-study prediction becomes ambiguous as a result. Identically presented descriptors, 
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like “chemical,” “warm,” “sweaty,” and “sweet” are well defined cases for testing models 

across studies. 

 

5.6.5. Network analyses and visualizations 

5.6.5.1. Matrices for network 

Chemical and perceptual descriptor relationships were modeled as bipartite graphs from 

an incidence matrix with perceptual descriptors as rows and columns the combined, 

unique optimal chemical feature sets. The optimal feature sets are from iteratively fitting 

a random forest model on 100 different partitions of the Dravnieks (1985) training data. 

We ranked the features based on the random forest importance over the partitions. 

Several different perceptual descriptor-chemical feature matrices were assembled by 

varying the number of ranked features per descriptor (e.g. Top 3,5,10). Incidence 

matrices from the top 3, 5, or 10 chemical features are therefore identical except for the 

number of columns (unique chemical features). Factor analysis was performed to reduce 

the number of perceptual descriptors for clarifying network plots as in Figure 5.2B. This 

was run using the factanal function in addition to functions in the nFactors (Raiche, 2010) 

R package for factor extraction.  

 

Specifically, values in the incidence matrices are 1 or 0; the optimal chemical features for 

each perceptual descriptor are 1, otherwise 0. This amounts to a sparse matrix with the 

non-zero values indicating relationships among the optimal physicochemical features and 

the perceptual descriptors. Collectively, these binary strings are likened to a set of 
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combinatorial chemical feature codes for the Dravnieks (1985) perceptual descriptors. 

We subsequently separated the bipartite graph for clarity into its constituent, adjacency 

matrices, which are symmetrical, m x m and n x n, matrices, with m denoting rows 

(perceptual descriptors) and n the columns (chemical features) in the original incidence 

matrix. An adjacency matrix can be obtained by multiplying an incidence matrix by its 

transpose.  

 

5.6.5.2. Clustering networks 

Several methods are available for identifying modules, communities or clusters in 

networks assembled from adjacency matrices. We tested several, selecting the Louvain 

algorithm based on its higher modularity score for Dravnieks (1985) data. Actual or 

observed network properties were in turn compared to 10,000 random network 

simulations (Erdos-Renyi) of approximately identical size and density. The actual 

network properties differed from those generated through the random simulation.   

 

5.6.5.3. Tools for network analysis and visualization 

Graph analyses were done using the igraph package (Csardi & Nepusz, 2006) in R, plots 

with ggplot2 (Wickham & Chang, 2016) and functions from the ggnetwork package for 

visualizing the networks.  
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5.6.6. eMolecules Predictions and Network Representation 

The eMolecules predictions are from Dravnieks descriptor models trained on the % 

Usage (0-100 ratings), with detailed performance in Figure 5.5A and Figure 5.6B. The 

regression-based models predict or estimate these ratings for the eMolecules chemicals. 

Because the Dravnieks training set is not structurally exhaustive, we applied two filters to 

further sort the predictions. These include (1) an atom pair fingerprint based on 

commonly occurring feature sets in biologically active compounds (Cao, Charisi, Cheng, 

Jiang, & Girke, 2008) and (2) the % usage values of the chemicals at the top end of the 

distribution (% Usage) . Initially, the % usage values for the top chemicals (exemplars) 

per descriptor were applied to filter the predictions. For each descriptor, the reduced set 

was then compared to the physicochemical features of the exemplar chemicals using 

atom pair fingerprints. Since atom pairs are a coarse representation of complex 3D 

molecules, we applied a Tanimoto similarity coefficient threshold of .25. This ensured 

that predictions per descriptor displayed basic 2D features that overlapped with the 

Dravnieks exemplar chemicals, while exploring new structural patterns or motifs that are 

potentially missed in 2D comparisons. Notably, projecting from a small chemical training 

set to a larger chemical set potentially amplifies noise in the training data, which should 

be considered in the interpretation. 

 

5.6.7. Enriched Substructures/Cores 

Enriched cores were analyzed using RDKit through Python (Landrum, 2006; Python 

Core Team, 2015). The algorithm performs an exhaustive search for maximum a 
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common substructure among a set of chemicals. In practice, larger sets often yield less 

substantive cores. To remedy this, the algorithm includes a threshold parameter that 

relaxes the proportion of chemicals containing the core. We used a threshold of .5, 

requiring that half of the chemicals from the top 10 contained the core. 

 

5.6.7. Support Vector Machine 

Training the support vector machine (SVM) involves identifying a set of parameters that 

optimize a cost function, where cost 1 and cost 0 correspond to training chemicals labeled 

as “Active” and “Inactive,” respectively. θT is the scoring function or output of the 

support vector machine. If the output is ≥ 0, the prediction is “Active.” The function (ƒ) 

is a kernel function. 

𝑆𝑉𝑀 𝐶𝑜𝑠𝑡 =  min
𝜃

𝐶  ∑ 𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖)) +  
1

2
 ∑ 𝜃𝑗

2

𝑛

𝑗=1

 

The kernel determines the shape of the decision boundary between the active and inactive 

chemicals from the training set. The radial basis function (RBF) or Gaussian kernel 

enables the learning of more complex, non-linear boundaries. It is therefore well suited 

for problems in which the biologically active chemicals cannot be properly classified as a 

linear function of physicochemical properties. This kernel computes the similarity for 

each chemical (𝑥) and a set of landmarks (𝑙), where σ2 is a tunable parameter determined 

by the problem and data. The similarity with respect to these landmarks is used to predict 

new chemicals (“Active” vs. “Inactive”). 
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𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 =  𝑒𝑥𝑝 (−
‖𝑥 − 𝑙(1)‖

2

2𝜎2
) 

 

5.6.7.1 Model Performance Metrics 

The Area under the ROC Curve (AUC) assesses the true positive rate (TPR or sensitivity) 

as a function of the false positive rate (FPR or 1-specificity) while varying the probability 

threshold (T) for a label (Active/Inactive). If the computed probability score (x) is greater 

than the threshold (T), the observation is assigned to the active class. Integrating the 

curve provides an estimate of classifier performance, with the top left corner giving an 

AUC of 1.0 denoting maximum sensitivity to detect all targets or actives in the data 

without any false positives. The theoretical random classifier is reported at AUC = 0.5.  

 

𝑻𝑷𝑹(𝑻) = ∫ 𝒇𝟏(𝒙) 𝒅𝒙
∞

𝑻

 

𝑭𝑷𝑹(𝑻) = ∫ 𝒇𝟎(𝒙) 𝒅𝒙
∞

𝑻

 

Where 𝑻 is a variable threshold and 𝒙 is a probability score 

However, we generated classifiers that are more authentic than theoretical random 

classification, shuffling the chemical feature values in the models and statistically 

comparing the mean AUCs across multiple partitions of the data. This controls against 

optimally tuned algorithms predicting well simply because of specific predictor attributes 

(e.g. range, mean, median, and variance) or models that are of a specific size (number of 

predictors) performing well even with shuffled values. Additionally, biological data sets 
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are often small, with stimuli or chemicals that—rather than random selection—reflect 

research biases, possibly leading to optimistic validation estimates without the proper 

controls. We used the AUC with classification-based training, such as to predict binary 

labels (Active/Inactive). For classification-based training we initially converted the % 

usage into a binary label (Active/Inactive) using the top 10% of the distribution as the 

cutoff. To provide additional context, we showed performance estimates varying the 

cutoff as well. The basis for a classification-based performance metric was the often top-

heavy distribution of the % usage. It is for instance possibly not as relevant for models to 

accurately predict chemicals with minimal % usage. Rather, it is preferable for models to 

accurately predict whether a chemical will smell “Sweet” or not. 

To provide further clarity we also reported multiple performance metrics 

including the correlation between the predicted and observed % usage, the root mean 

squared error (RMSE), and mean absolute error (MAE): RMSE: Root mean squared 

error is the square root of the mean difference between predicted values and those 

observed (% usage). It is the average prediction error on the same scale as the target or 

outcome being predicted. We supplied this metric because the correlation coefficient (R) 

is not always an accurate representation of model performance and classification of 

exemplar chemicals required an arbitrary cutoff (e.g. 90th percentile). We reported the 

correlation coefficient, R, between the predicted and observed % usage due to its 

previous use with human perceptual data. MAE: Mean absolute error is the mean of the 

absolute difference between predicted and observed (% usage). It thus assigns equal 

weight to all prediction errors, whether large or small.  
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RMSE = √
∑ (𝑦−�̂�𝑛

𝑖=1 )2

𝑁
 

MAE = 
1

𝑛
 ∑ |𝑦 − �̂�|𝑛

𝑖=1 ; where, �̂� = predicted and 𝑦 = observed 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
; where, TP = True Positive and FN = False Negative 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ; where, TN = True Negative and FP = False Positive 
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Chapter 6 

Predicting human olfactory perception using odorant receptor activities 

The prediction of human odor perception from 3D structure (Chapter 5) implies a 

combinatorial coding scheme, as different perceptual qualities of an odorant were best 

predicted by unique sets of structural and physicochemical features. Organizing diverse 

perceptual qualities according to such features is nevertheless abstract. Fundamentally, it 

is the odorant receptor that is activated or inactivated by these features and therefore 

computational models that deal directly with the receptor activation data are potentially 

more accurate and interpretable. Though the structure-based approach of Chapter 5 

proved successful, I next analyzed the use of human odorant receptor data to address 

some of the limitations of the Chapter 5 approach.  

Importantly, in vivo odorant receptor recordings are only possible under special 

circumstances such as in surgical patients that are not representative study samples. 

Efforts to understand the human odorant receptor code have therefore relied on in vitro 

heterologous systems. This in combination with whole genome sequencing studies have 

offered some progress. But the in vitro modeling step still represents a significant 

bottleneck. Accordingly, here, I ask three questions that build off of the previous chapter: 

(1) Can computation expand the putative ligand space and help accelerate discoveries?; 

(2) is in vitro odorant receptor activity a suitable alternative to the structure-based 

approach to predicting human  perception?;  and  (3)  what is gained with the approach in 

terms of insight into odor coding? 
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6.1. Introduction 

In humans a single odorant molecule might be described by different perceptual 

descriptions, influenced by culture, language, and experience (Majid and Kruspe, 2018). 

Such complexities suggest that while olfactory circuitry is structurally similar across 

species, language or experience, which is dynamic and constantly evolving, could be a 

strong determinant of perceptual experience for humans. But even though the implication 

is that odor perception should be highly subjective, studies have shown that genetic 

variability in odorant receptors contributes to odor perception. Equally, machine learning 

has accurately predicted perceptual descriptors of odorants from chemical features, 

suggesting that physicochemical properties influence perception  (Debnath et al., 2019; 

Gutiérrez et al., 2018; Keller et al., 2017; Khan et al., 2007; Licon et al., 2019; Nozaki 

and Nakamoto, 2016; Sanchez-Lengeling et al., 2019). Moreover, modeling human odor 

perception using a large semantic similarity space has shown that accurate predictions of 

perceptual ratings are possible even when training and prediction are done on completely 

different study samples. That is, in aggregate human perceptual descriptors do not appear 

to be arbitrarily used and are generalizable (Gutiérrez et al., 2018).  

The connection between odorant receptor activity and perception is not as well 

defined. It is unclear that the activity of specific ORs confers odor identity. For instance, 

while the human odorant receptor OR5AN1 is highly selective to musk-smelling 

chemicals, less selective ORs also respond to these chemicals (Ahmed et al., 2018). In 

simpler systems like insects, there is some evidence that activation or inhibition of certain 

odorant receptors is sufficient to drive behaviors from attraction and aversion to 
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courtship, supporting the possibility of an underlying olfactory receptor code for 

perception (Chihara et al., 2014; Dweck et al., 2013; Kurtovic et al., 2007; MacWilliam 

et al., 2018; Stensmyr et al., 2012; Suh et al., 2004). Since these genetic studies are not 

feasible in humans, it is not yet clear how an olfactory receptor code can be 

generalizable, or whether it exists. It is however becoming increasingly plausible that 

there is indeed a perceptual code in humans. A few key odorant receptors have been 

reported for perceptual attributes other than musk (Shirasu et al., 2014) such as  onion 

(Noe et al., 2017), general food-related volatiles (Geithe et al., 2017) and steroids (Keller 

et al., 2007). Sequence variation in the OR7D4 receptor has been shown to alter the 

perception of androstenone from a “sweaty,” unpleasant smell to one that is mildly 

“sweet” and pleasant (Keller et al., 2007). More recently, the specific amino acid residues 

of OR5AN1 that are responsible for its high selectivity to musk-smelling chemicals  have 

also been confirmed (Ahmed et al., 2018). These studies were possible due to three types 

of information: (1) perceptual responses of humans (2) the odorant receptors that detect 

the chemicals from heterologous expression systems, and (3) genetic studies (Trimmer et 

al., 2019). Obtaining this information is not trivial for reasons that include the difficulty 

of receptor deorphanization and that behavioral responses are known for only a fraction 

of the purported volatile space, due to low throughput data collection with human 

volunteers.  

Although some of these limitations are not easily overcome, we reasoned that it 

would be of interest to leverage machine learning/artificial intelligence to better 

understand the ligands of odorant receptors and clarify the role of odorant receptor 
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activity on human perceptual coding. Most prior machine learning efforts have focused 

on modeling odor perception according to the chemical features of odorants. While these 

studies have shown promise and provide evidence for the physicochemical basis of odor 

perception, chemical features alone do not offer clear insight into biological coding, as 

this would require additional information about the olfactory receptors that odorants 

activate. Moreover, it is an extremely challenging task to isolate the olfactory receptors 

that are relevant to a percept.  

Here, we tested if human odorant receptor responses from heterologous assays 

could be used in lieu of chemical features for modeling human odor perception, and also 

developed models incorporating both approaches. We first created machine learning 

models to predict ligands for 34 human ORs. We could then use these models to evaluate 

how OR activity predicted perceptual descriptors. To start, we focused on hundreds of 

chemicals that human volunteers previously evaluated (Keller and Vosshall, 2016), and 

selected ORs that best predicted perceptual descriptors on a portion of training chemicals. 

Surprisingly, the prediction accuracy for models of only a few top scoring ORs compared 

favorably to large physicochemical feature models on 69 test chemicals (Keller et al., 

2017), emphasizing that a small percentage of the OR pool is particularly useful for a 

given percept. This also suggested that specific subsets of ORs may be highly tuned to 

certain perceptual qualities, as implied in a prior network analysis of odorant receptors 

and perceptual descriptors (Bak et al., 2019).  
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6.2. Results  

6.2.1. Modeling OR responses using chemical features 

Each odorant receptor is activated by a unique set of chemicals, and together the large 

olfactory receptor family can detect a vast chemical space. We compiled a database of 84 

deorphanized human ORs and 54 allelic variants which have been tested with multiple 

odorants, altogether adding up to ~170 (Adipietro et al., 2012; Braun et al., 2007; 

Charlier et al., 2012; Cook et al., 2009; Fujita et al., 2007; Gonzalez-Kristeller et al., 

2015; Jacquier et al., 2006; Jaeger et al., 2013; Keller et al., 2007; Mainland et al., 2014; 

Mashukova et al., 2006; Maßberg et al., 2015; Matarazzo et al., 2005; McRae et al., 

2012; Menashe et al., 2007; Neuhaus et al., 2006; Saito et al., 2009; Sanz et al., 2005; 

Schmiedeberg et al., 2007; Shirasu et al., 2014; Spehr et al., 2003; Topin et al., 2014). In 

order to generate more comprehensive odor response profiles of these ORs, we used 

machine learning to model structure-activity relationships. Among the 138 ORs, only 34 

have a sufficient number of known ligands for machine learning models. For each of the 

34 ORs, predictive chemical features were identified from the known ligands (Figure 

6.1A). We validated the models by predicting ligands on a subset of odorants that were 

randomly left out of the training data set, repeating this several times. The prediction 

success was high for the 34 models (avg. AUC = 0.88; shuffled chemical features avg, 

AUC = .0.51, p < 10-32) (Figure 6.1B; Figure 6.7A-B; Table 6.1). 

The OR-ligand predictive models also gave us an opportunity to identify new 

ligands for the 34 ORs from a large chemical library (~450,000). In doing so, we 

developed a theoretical space that expands the existing data by a factor of 10 (Figure 
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6.1C). Enriched structural features were identifiable among the top predicted ligands for 

each OR, illustrating simple 2D features that are presumably important for activating 

each receptor (Figure 6.1D; Table 6.2).  

 

6.2.2. Modeling odorant percepts from OR responses 

A key question in olfaction is how activities of ORs contribute to different perceptual 

qualities. Specific receptors contribute to androstenone perception (Keller et al., 2007), 

however little is known about odorants commonly perceived as flavors and fragrances. 

One possibility is that their perception depends on a model similar to androstenone, and 

one or few receptors contribute to perception. Alternatively, a model involving a 

combinatorial code of a large number of ORs is also possible, particularly since unlike 

androstenone, most odorants activate multiple ORs. In order to test these possibilities, we 

performed a series of analyses on a large dataset of human odor perception (Keller and 

Vosshall, 2016). Not only were a large number of chemicals tested by volunteers in this 

study, but computational studies have successfully demonstrated structure-percept 

relationships (Gutiérrez et al., 2018; Keller et al., 2017; Kepple and Koulakov, 2017; 

Sanchez-Lengeling et al., 2019). However, several odorants used in the behavior study 

have not been tested for OR activities. We therefore used the OR-ligand models in the 

previous section to estimate activity for chemicals, designating similar training and 

testing chemicals as described before (Keller et al., 2017) (407 training; 69 testing 

chemicals) (Figure 6.8A). Models containing only a few optimal ORs successfully 

predicted the perceptual descriptors for test chemicals (average test AUC = 0.78) (Figure 
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6.8B), particularly when compared to a similar approach based on different 

physicochemical feature encodings rather than ORs (Figure 6.8C). Lastly, because the 

activity on the 34 ORs was known for some chemicals in the Keller 2016 study, and it 

was unclear if this might affect the results, we revisited the analysis with these chemicals 

removed (326 train; 54 test chemicals). Test performance was not significantly reduced, 

compared to the earlier analysis (p = 0.234).  

We next turned to another psychophysical study (ATLAS) that evaluated 146 

perceptual descriptors for ~150 odorants. As before, most perceptual descriptors were 

well predicted from a small subset of ORs, despite the larger, more diverse descriptor 

pool in this study (Figure 6.2A) (Top 50 best-performing: 10 ORs: avg. AUC = 0.84). 

When we compared the performance of the OR activity to the optimal chemical features, 

47/146 perceptual descriptors were better predicted using the ORs. In light of this 

excellent performance, we further investigated ORs whose contributions to percept 

predictions are highest. Interestingly, only a few select ORs contributed strongly to the 

prediction of some perceptual descriptors (Figure 6.3A). 

In order to expand the scope and utilize activity information from the 104 ORs 

with few known ligands, we computed 3D similarity between chemicals in the ATLAS 

study and the OR ligands (Mahé et al., 2006) and identified the most likely active 

compound for each of the 104 ORs (Methods). When incorporating these additional ORs 

into the pipeline, predictions improved slightly for some perceptual descriptors. Among 

the top 50 best predicted descriptors, smaller OR models were significantly better than all 

138 ORs on the test data (10 ORs AUC = 0.84; 138 OR AUC = 0.80, t = 2.76, p = 0.007), 
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suggesting that the additional information was not often useful (Figure 6.9A). These 138 

ORs still represent just a third of the human OR repertoire, and we anticipate our 

approach will help identify even better sets of ORs that are tuned to specific perceptual 

qualities as more human ORs get deorphanized. 

 

6.2.3. Modeling odorant percepts from OR responses and chemical features 

Because many previous efforts have focused on predicting odor perception with chemical 

features (Keller et al., 2017), we tested if adding ORs could improve the predictions. We 

selected OR6P1, an OR ranked highly for “Cinnamon,” as a test case and added it to 34 

optimal chemical features. Interestingly, we found a notable increase in predictive 

success on test chemicals (mean AUC chemical features: 0.77, mean AUC chemical 

features + OR6P1 = 0.81) (Figure 6.10A).  

 To determine if ORs could improve predictive models in an unbiased manner 

across the 146 perceptual descriptors, we combined the odor response information of the 

138 ORs and the chemical features, selecting a small subset of important ORs and 

chemical features to create Machine Learning models (Figure 6.4A). We found that 

removing the top ranked ORs and replacing them with those of lesser importance 

negatively impacted predictions for some descriptors (Figure 6.4B). If we permute the 

activities of the optimal or top-ranked ORs for a given descriptor, the overall test 

performance significantly dropped (p < 10-7), with 82% of descriptors better predicted 

with non-permuted ORs (Table 6.3). Collectively, these results indicate that specific ORs 
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appear to contribute more than others and perceptual predictions are generally improved 

by including ORs (Table 6.4) 

In order to visualize relationships among the perceptual descriptors based on 

predictive ORs and chemical features, we next performed a cluster analysis. When 

examining the clustering based only on perceptual ratings of chemicals (Figure 6.5A), we 

found the top 5 predictive ORs grouped the perceptual descriptors similarly (Figure 

6.5B). Notably, randomly selecting 5 ORs failed to produce any meaningful groups or 

clusters of perceptual descriptors (Figure 6.5C). Combining the most predictive ORs and 

chemical features improved the clustering of perceptual descriptors (Figure 6.5D). 

Overall, the descriptors that were best clustered in Figure 5A (Silhouette Width  > 0.3) 

matched completely or partially with Figure 6.5B and 6.5D,  with the exception of 

“Fishy” and “Kippery.”  This indicates that relationships among perceptual descriptors in 

the ATLAS training set are somewhat preserved in OR activity or chemical feature 

models, even when only a small amount of chemical or OR information is included in 

each model.   

 

6.2.4. Modeling with in vivo OR response data from Drosophila  

 One of the interesting observations we have is that only a few ORs are picked and 

are sufficient to create predictive models of odor perception. However, the perceptual 

descriptor – to – OR mapping we analyzed here represents data from only ~20% of the 

human OR repertoire and one possibility is that when more ORs are available to pick 

from, a larger number will be selected computationally as optimal. In order to understand 
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the contribution of specific olfactory receptors to behavior in a system where a large 

fraction of odorant receptors have been deorphanized, we turned to the Drosophila 

melanogaster model system. In vivo odor-response spectra are known for several 

odorants for the majority of odorant receptors (Ors) and olfactory receptor neurons 

(ORNs) in the adults, as well as the behavioral valence (attraction vs aversion) to these 

odorants.  

We adapted our approach to predict behavioral valence of flies (Figure 6.6A) and 

we could do so with significant success using a small number of important chemical 

features and electrophysiologically measured responses from sensory neurons. Similar to 

what we observed with human ORs, a subset of the in vivo Drosophila Or activities was 

favored for odor valence predictions, beyond collections of numerous chemical features 

(Figure 6.6B). Evaluating the best valence predictors for test chemicals from a combined 

set of Or/ORN activities and chemical features indicated that the Or/ORNs significantly 

contributed to odor valence predictions, consistent with the in vitro human data ( R2 = 

0.66; Shuffle ORs + Chemical Features: 0.51, p = 0.007) (Figure 6.6C).  These results 

also suggested that a small number of Drosophila Or/ORN activities is highly predictive 

on the same set of test chemicals. Interestingly, additional Ors/ORNs failed to improve 

predictions (Or/ORN subset: R2 = 0.53;   All other ORs: R2 = 0.40, p = 0.015) (Table 6.5). 

While this type of analysis remains to be done in humans, the results from flies suggest 

that even when a more comprehensive receptor or neuron array is added, only a small 

subset of the available receptors appears information rich as far as behavioral decisions 

are concerned (Figure 6.6D). 
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6.3. Discussion 

While previous machine learning pipelines have found some success using chemical 

features, selecting the optimal feature sets for predictions of perception not well defined. 

We found that human odorant responses from heterologous assays could be used with 

comparable and sometimes better predictive success. In part, the result is anticipated by 

the fact that each OR is presumably selective to very specific physicochemical features 

themselves. Both the human perceptual descriptor and fly valence predictions suggest 

that a substantive portion of odor identity arises early in the processing stream, at the 

olfactory receptors, based on high predictive success rates (~76-91%). It is likely that the 

remaining portion depends on experience-dependent modulation, supporting a 

downstream model with reliance on distributed neuronal networks for human perceptual 

coding. Our findings support a “primacy model” which holds that a small number of 

distinct and overlapping olfactory receptor activity profiles encode odor identity (Wilson 

et al., 2017). Although increasing concentration activates more receptors, the highest 

sensitivity receptors start responding first as an animal approaches an odor source and 

presumably continue to convey the identity. Such a model is consistent with the findings 

reported here and others (Weiss et al., 2012) because it appears that only a few ORs 

contribute to a perceptual descriptor and it is therefore also tractable to predict how a 

chemical smells from specific physicochemical properties.  

Nevertheless, it is unclear how information arising early in the olfactory pathway 

is preserved along the complex circuits and can in fact lead to generalizable perceptual 

features. The spatial organization of the olfactory receptor neurons and glomeruli are for 
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one not well preserved in the piriform cortex. Unlike the retinotopic and tonotopic 

patterning observed in the visual and auditory cortices, representing spatiotemporal 

properties of visual and auditory stimuli as they are processed at sensory neurons, 

piriform activity appears randomly distributed, without a clear mapping of 

physicochemical features (Stettler and Axel, 2009). A combination of computational 

models and calcium imaging has however shown piriform circuits, though they are 

qualitatively different, can support perceptual invariance amid changes in concentration 

and across different odorants (Roland et al., 2017; Schaffer et al., 2018). Similarly, neural 

tracing experiments in mice support that while olfactory circuitry differs from other 

sensory modalities, odor related-information is represented along equally structured 

neuroanatomical pathways, as in the piriform output projecting to the orbitofrontal cortex 

(Chen et al., 2014). 

One possibility is that only 1 or few receptors of the many that detect an odorant 

actually convey percept. The evolutionary landscape should accordingly be coupled to 

biologically relevant or frequently encountered features of the chemical space, as has 

been implied by characterizations of receptors highly tuned for musk and onion-related 

compounds (Ahmed et al., 2018; Noe et al., 2017), in addition to the highly conserved 

trace amine-associated receptors (TAARs) and their importance in modulating behavioral 

output in mice (Dewan et al., 2018).  In our analyses, the OR specialized for musk was 

not a top candidate for musk predictions but contributed strongly to predictions of 

“sweaty.” Since methods for selecting and ranking ORs depend on characteristics of the 

available data, interpretations should be cautious, acknowledging that the human OR data 
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are sparse and the participants and chemical sets from the ATLAS and Keller studies are 

not exhaustive. Yet from these same considerations the positive results achieved are 

unexpected, especially when compared to predictions of odor perception using chemical 

features. 

Odorant receptors (ORs) are also expressed in non-olfactory tissues. Ligands for 

certain ORs have been shown to modify the function and proliferation of multiple cell 

types. Although the precise mechanisms are not well defined, ORs represent promising 

therapeutic targets. Ligands for ORs such as OR51E1, OR10G7 and OR1D2, which were 

included in this study, are candidate treatments for conditions ranging from prostate 

cancer and chronic obstructive pulmonary disease (COPD) to atopic dermatitis (Kalbe et 

al., 2016; Maßberg et al., 2016; Tham et al., 2019). We therefore anticipate that the 

predictions and the analysis of known and candidate OR ligands from this study will also 

have value in non-olfactory studies. 

 

6.3.1. Limitations of the study 

The computational approach presented in the study is restricted by training sets from 

previously deorphanized human odorant receptors (OR) determined by in vitro assays. 

Only a small fraction of the human ORs family has been deorphanized in vitro, therefore 

limiting the identification of the optimal predictive ORs in this study. Moreover, the 

number of chemicals with well-defined perceptual profiles determined behaviorally is 

small relative to the space of chemicals that are likely to have odorant properties.  Since 
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the computational approach we outlined depends on the size and complexity of OR and 

perceptual datasets, our results should be interpreted alongside these limitations.  
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6.4. Figures  
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Figure 6.1. Features of human Odorant Receptor ligands can be learned and new 

ligands predicted. a) Pipeline for generating probability scores for chemicals with 

perceptual data. Starting with lists of ligands from heterologous assay data SVM models 

learn predictive physicochemical features for a subset of human ORs and OR variants 

with >2 ligands (34 total). These trained models in turn predict new chemicals such as 

those with known perceptual profiles. b) Average performance of 34 OR models using 

repeated 10-fold cross validation. c) Number of ligands predicted for each of the 34 ORS 

in ~400,000 eMolecules library after filtering based on optimal probability score cutoffs 

and structural similarity to known ligands. d) Sample of enriched substructures among 

the top 10 predicted chemicals for indicated ORs.  Only substructures that were non-

trivial and present in at least half of the 10 highest scoring chemical ligands. A 

comprehensive table of substructures for other receptors is provided in Table 6.2. 
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Figure 6.2. OR activity can model diverse olfactory percepts in human studies. 

Performance of RBF SVM models trained with 10 ORs for ATLAS study data. The top 

10% usage chemicals are predicted for all 146 perceptual descriptors in the study. 

Successful classification of these chemicals is reported as the mean Area-Under-the-

Curve (AUC) over repeated 10-fold cross validation (10-fold repeated 5 times; 50 folds 

total). To limit biased validation, the procedure was run twice, setting aside different test 

chemicals, determining important OR subsets to predict the descriptors with these 

chemicals excluded, then ensuring that the cross-validated AUC comprised 60% 

completely hidden chemicals. The variability in the plot is the standard deviation over 

these two distinct runs. High variability may arise as the top 10% usage is computed from 

the training data.  SVM: Support Vector Machine; RBF: Radial Basis Function; 

additional algorithm details in Methods. 
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Figure 6.3. Contribution of ORs to perceptual models. A) Importance of individual ORs 

for machine learning models of each of the 146 ATLAS perceptual descriptors. The 

heatmap is generated by fitting models for each OR separately and scaling relative to 

maximum AUC (100). Importance is shown with the most important ORs in blue. Labels 

for the perceptual descriptors (Y-axis) and ORs (X-axis) are arranged relative to similar 

importance values.  
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Figure 6.4. Few Odorant receptors are needed to predict perceptual descriptors. A) 

Schematic of the approach to selecting a small number of important chemical features 

and ORs, followed by model-fitting. Two methods, including replacing top-ranking ORs 

with those of lesser importance and permuting (shuffling) the OR activities, help identify 

perceptual descriptors where ORs contribute relative to chemical features. To standardize 

the analysis, the training and validation are as outlined in Figure 6.2. B) Combined 

chemical feature-OR models predict the top 10 % usage of ATLAS perceptual 

descriptors. The (*) symbol signifies a notable decrease in performance occurred if the 

ORs were replaced with ones of lesser importance (One-tailed Independent Samples T-

test, p <= 0.05). For the comparison with permuted or shuffled OR activities, other 

metrics, and benchmarking relative to chemicals features, see Tables 6.3-6.4. 

 



 

 

138 

 

Figure 6.5. A few key ORs or chemical features sensibly cluster the perceptual 

descriptors. A) Dendrogram representation of the Euclidean distances among perceptual 

descriptors based on overlap of perceptual response data (% Usage) from chemicals in 

the ATLAS study. B) Dendrogram from the top 5 ORs picked per perceptual descriptor. 

C) Dendogram created from 5 randomly chosen ORs per perceptual descriptor. D) 

Dendrogram from the 5 best overall predictors including OR and chemical features per 

perceptual descriptor. Clustering is hierarchical and based on Euclidean distance (A) or 

the Jaccard distance (B-D). Cluster number (colored branches) inferred from gap statistic 

across bootstrap samples. 
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Figure 6.6. Few odorant receptor activities in Drosophila are highly predictive of 

valence. A) Schematic for applying machine learning to identify optimal predictors of 

odor valence in drosophila from in vivo neural activity and chemical features. The best 

combined model is evaluated on test chemicals. OR contributions to Drosophila odor 

valence are assessed by shuffling the OR activities in the combined model as well as 

comparing the best OR vs all (Table 6.5). B) Selecting chemical features and in vivo OR 

activities that optimally predict odor valence.  Recursive feature elimination (RFE) is run 

twice to accomplish this. Selection in the top 10 over these runs is plotted as a percent. 

Additional details on selecting optimal models in methods. C) The best combined model 

is evaluated on test chemicals, with and without the OR activities shuffled. D) Generic 

model displaying a many-to-one mapping between ORNs and glomeruli. Although there 

are > 1 responding units (ORs), information that confers perceptual character is restricted 

to a smaller subset of the input.  
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Figure 6.7. Detailed performance of models predicting activity on 34 human ORs. A) 

The average sensitivity of the 34 OR models and B) average specificity over repeated 

cross validation folds (10-fold CV repeated 10 times). 
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Figure 6.8. Human OR activity or chemical features predict perceptual data from 

Keller 2016 study participants. A) Pipeline for making predictive models for odor 

perception from ORs for the Keller 2016 perceptual data. Classification cutoffs for the 69 

test chemicals are determined from 407 training chemicals. B) Classifying the top 10% of 

usage for 69 hidden test set chemicals; performance is reported as the area under the 

ROC curve (AUC). Prediction of the % usage is an aggregate of 5 SVM models, each 

sampling 5 ORs from the top 10. The OR ranking is determined by recursive feature 

elimination over cross validation (10-fold repeated 10 times) with 407 training chemicals. 

C) Prediction of the 69 test chemicals with models trained on various chemical feature 

representations. Left, physicochemical features are computed for optimized 3D structures 

and 5 SVM models sample 35 top ranked chemicals features. Plotted performance is the 

aggregated prediction. Middle, predictions from an SVM model trained on Morgan 

circular fingerprints. During training, low variance bit positions are dropped to improve 

the fit. Right, predictions from an SVM model trained on topological torsion fingerprints, 

dropping low variance bit positions during training. All plots display the standard 

deviation over 100 bootstrap samples of the 69 test chemicals.  
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Figure 6.9. Small subsets of ORs optimize predictions of most perceptual descriptors.  

A) Comparison between models fit with 10 or 138 ORs on ATLAS study data. Black 

colored dots show the performance using all ORs while blue dots show the performance 

using 10 ORs. 
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Figure 6.10. Adding an OR to a chemical feature model improves odor perception 

predictions. A) An OR (OR6P1) that was selected for predicting the % usage of the 

descriptor “Cinnamon” in the ATLAS study is validated with and without 

physicochemical features by ROC analysis.  The examples are RBF SVM models that are 

trained and tested on equivalent chemicals sets. (RBF = Radial Basis Function; SVM = 

Support Vector Machine).  
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6.5. Tables 

Table 6.1  

OR Metric Value 

OR10G3 AUC 0.9764246 

OR10G7 AUC 0.9571523 

OR11H7P AUC 0.8438965 

OR1A2 AUC 0.8741326 

OR1C1 AUC 0.7959467 

OR1D2 AUC 0.9958090 

OR1G1 AUC 0.7593999 

OR2B11 AUC 0.9649722 

OR2G2 AUC 0.9473866 

OR2J2 AUC 0.7880475 

OR2J3 AUC 0.8525910 

OR2M4 AUC 0.8861412 

OR2T10 AUC 0.9438511 

OR2T34 AUC 0.8784901 

OR2W1 AUC 0.7741072 

OR4Q3 AUC 0.9717862 

OR51E1 AUC 0.9142729 

OR51L1 AUC 0.8378983 

OR52D1 AUC 0.7448325 

OR5AC2 AUC 0.9059954 

OR5K1 AUC 0.7841736 

OR5P3 AUC 0.8616590 

OR10A6.V140G.L287P AUC 0.8566833 

OR2B11.V198M AUC 0.9949333 

OR2B11.V198M.T293I.D300G AUC 0.9946667 

OR2C1.C149W AUC 0.9331333 

OR2C1.G16S.C149W.C169Y.R229H AUC 0.8975333 

OR2J2.T111A AUC 0.8400286 

OR2J2.Y74H.T111A.V146A.T218A AUC 0.8713667 

OR2J3.I228V.M261I AUC 0.8373600 

OR2J3.I228V AUC 0.8386250 

OR2J3.R226Q.I228V.M261I AUC 0.8731667 

OR1A1 AUC 0.7773069 

OR2C1 AUC 0.9636074 

OR10G3 Sens 0.8283333 

OR10G7 Sens 0.9080000 

OR11H7P Sens 0.7196667 

OR1A2 Sens 0.8520000 

OR1C1 Sens 0.7533333 
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OR1D2 Sens 0.9516667 

OR1G1 Sens 0.6909206 

OR2B11 Sens 0.9042286 

OR2G2 Sens 0.9150000 

OR2J2 Sens 0.7081444 

OR2J3 Sens 0.7126667 

OR2M4 Sens 0.8422222 

OR2T10 Sens 0.9150000 

OR2T34 Sens 0.7876190 

OR2W1 Sens 0.7489190 

OR4Q3 Sens 0.9450000 

OR51E1 Sens 0.7851667 

OR51L1 Sens 0.7000000 

OR52D1 Sens 0.7425333 

OR5AC2 Sens 0.8422222 

OR5K1 Sens 0.6816667 

OR5P3 Sens 0.7321667 

OR10A6.V140G.L287P Sens 0.7173333 

OR2B11.V198M Sens 0.8626667 

OR2B11.V198M.T293I.D300G Sens 0.8493333 

OR2C1.C149W Sens 0.6066667 

OR2C1.G16S.C149W.C169Y.R229H Sens 0.6680000 

OR2J2.T111A Sens 0.7034286 

OR2J2.Y74H.T111A.V146A.T218A Sens 0.7613333 

OR2J3.I228V.M261I Sens 0.6864000 

OR2J3.I228V Sens 0.6120000 

OR2J3.R226Q.I228V.M261I Sens 0.6893333 

OR1A1 Sens 0.6514000 

OR2C1 Sens 0.6520000 

OR10G3 Spec 0.8646471 

OR10G7 Spec 0.9032486 

OR11H7P Spec 0.7610861 

OR1A2 Spec 0.7966139 

OR1C1 Spec 0.7823186 

OR1D2 Spec 0.9231667 

OR1G1 Spec 0.7163778 

OR2B11 Spec 0.8521181 

OR2G2 Spec 0.8702770 

OR2J2 Spec 0.7565145 

OR2J3 Spec 0.8094917 

OR2M4 Spec 0.7900806 

OR2T10 Spec 0.8730319 

OR2T34 Spec 0.7994472 



 

 

149 

OR2W1 Spec 0.6918247 

OR4Q3 Spec 0.8771373 

OR51E1 Spec 0.8272121 

OR51L1 Spec 0.7352230 

OR52D1 Spec 0.6525470 

OR5AC2 Spec 0.8433472 

OR5K1 Spec 0.7919028 

OR5P3 Spec 0.8127833 

OR10A6.V140G.L287P Spec 0.7745800 

OR2B11.V198M Spec 0.8317600 

OR2B11.V198M.T293I.D300G Spec 0.8378600 

OR2C1.C149W Spec 0.8425800 

OR2C1.G16S.C149W.C169Y.R229H Spec 0.7978600 

OR2J2.T111A Spec 0.8063800 

OR2J2.Y74H.T111A.V146A.T218A Spec 0.7627000 

OR2J3.I228V.M261I Spec 0.7053000 

OR2J3.I228V Spec 0.8181000 

OR2J3.R226Q.I228V.M261I Spec 0.7882000 

OR1A1 Spec 0.7249889 

OR2C1 Spec 0.8959733 

 

Table 6.1. Summary of ROC analysis for models predicting activity on 34 human ORs. 

Averages for the prediction performance of Figure 1 models over validation, including 

the sensitivity (true positive rate), specificity (false positive rate = 1-speciifcity), and 

overall AUC. 
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Table 6.2  



 

 

151 

 

 

Table 6.2. Enriched substructures among predicted ligands for 34 human ORs. 

Additional enriched cores/substructures for the labeled ORs, highlighting the core on an 

exemplar chemical from the eMolecules predictions.  ID is the eMolecules identifier for 

the representative chemical, which is among the top 10 predictions for the labeled OR. 

Bonds and atoms are colored black. The enriched substructure is in red.  
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Table 6.3 
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Table 6.3. Detailed analysis of odor perception predictions using chemical features and 

ORs. Combined OR and chemical feature model performance using the ATLAS study 

data. In one condition, ORs are replaced with those of lesser importance (“Random”). In 

the second condition, OR activities for the best combined set are permuted (shuffled). 

The chemical features are intact in both conditions. Training and testing chemicals are 

equivalent.  

 

 

 

 

 

 

 

 



 

 

155 

Table 6.4 

Best Predicted Metric Chem Features ORs + Chem Features 

Top 5 AUC 0.9502134 0.9708750 

Top 10 AUC 0.9210808 0.9565362 

Top 20 AUC 0.8969860 0.9253587 

Top 25 AUC 0.8822129 0.9117761 

Top 50 AUC 0.8314386 0.8558157 

Top 5 R 0.6559822 0.7265567 

Top 10 R 0.5977552 0.6949485 

Top 20 R 0.5818210 0.6447922 

Top 25 R 0.5734141 0.6267827 

Top 50 R 0.5271159 0.5474018 

    

Table 6.4. Comparing predictions of odor perception with chemical features or 

chemical features and ORs. Summary table containing the average test performance for 

the best predicted perceptual descriptors in the ATLAS study across two metrics (R and 

AUC) and different predictor set combinations (e.g. ORs and chemical features). R is the 

correlation between the predicted and observed % usage of the perceptual descriptors. 

The AUC is the classification success for chemicals in the top 10% of usage. 
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Table 6.5 

 

 

 

 

 

 

Table 6.5. A subset of ORN activities best predict the drosophila preference index 

compared to the full set of ORNs. Shows the root mean square error (RMSE) and R 

squared metrics (Methods), metrics which quantify the relationship between the predicted 

and observed T-maze Preference Index (PI).  The RMSE quantifies the average error in 

the prediction, where a smaller value is better. Mean absolute error (MAE) is is metric 

that is related to RMSE; however, by excluding the square root, this metric does not 

overemphasize one or few predictions that may be very far from the observed. The R 

squared, in contrast, quantifies the relationship between the variability in the predicted vs 

observed T-maze Preference Index (PI). The square root of the value is simply the 

correlation coefficient, often designated as ‘r’ or ‘R.’ This value should be as large as 

possible, with the maximum being 1.0. The “Model” column provides details about the 

type of fit, a subset of few ORNs versus all, whereas “Method” clarifies the algorithm 

that was used. ORN: Olfactory Response Neuron; OR: Olfactory Receptor; RBF SVM: 

Support Vector Machine with a Radial Basis Function kernel (details in Methods). 

Additional details on metrics provided in Methods under the Metrics heading.  

 

 

 

 

 

 

 

 

 

 

 

RMSE Rsquared MAE Model Method 

0.307164 0.403876 0.252166 All ORs RBF 

SVM 

0.261997 0.531187 0.218281 Optimal 

ORs 

RBF 

SVM 
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6.6. Methods 

6.6.1. Modeling OR ligands from chemical features 

We trained SVM models to learn physicochemical features of the confirmed ligands for a 

subset of ORs whose response profiles are currently better characterized (34 total). 

Different chemical features were encoded as binary fingerprints (1,0) (Klekota-Roth 

(Klekota and Roth, 2008), Morgan/Circular (Morgan, 1965), MACCs, Shortest Path, and 

Hybridization (Steinbeck et al., 2003). Chemical fingerprints can encode up to ~1000 bits 

and many are possibly uninformative. Kullback–Leibler (KL) divergence (Nisius and 

Bajorath, 2010) was used to select only those bits that maximized the distance between 

active and inactive compounds in the heterologous assay data. Predictions from these 

models provided probability scores for each OR-chemical pair for the ATLAS chemicals. 

This work relied on the chemistry development kit (CDK) (Steinbeck et al., 2003) as well 

as its R interface (Guha, 2007). 

 

6.6.2. Enriched Substructures/Cores 

Enriched cores were analyzed using RDKit through Python (Landrum, 2006). The 

algorithm is an exhaustive search for the maximum common substructure among 

chemicals. In practice, larger chemical sets often yield less substantive cores. To remedy 

this, the algorithm includes a threshold parameter that relaxes the proportion of chemicals 

containing the core. We used a threshold of .5, requiring that half of the top predicted 

chemicals contained the core. 
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6.6.3. ORs as predictors of perception  

Despite several available data sources, most in vitro assays typically report a handful of 

ORs with multiple ligands and many others with few ligands (1 or 2 compounds that pass 

statistical thresholds). To incorporate the more narrowly tuned receptors, we computed an 

approximation of the 3D pharmacophore kernel (Mahé et al., 2006). Pharmacophore 

kernels are a versatile method for computing pairwise similarities among chemicals 

according to a set of standard features that are related to biological activity. Namely, 

similarity between ATLAS chemicals and known OR ligands was defined by the three-

point Tanimoto coefficient, which is scaled to 0-1, with 1 being maximally similar. In 

cases where there were > 1 ligands for an OR the maximally similar ligand was used.  

To incorporate the ORs with more ligands, we trained SVM models on 

physicochemical features of odorants with known activity. There were 34 ORs with 

sufficient training data for this approach. These models assigned probability scores for 

the 34 ORs to the perceptual study chemicals (ATLAS and Keller 2016). The Keller 2016 

perceptual ratings were converted to the % usage, or the % of participants using a 

perceptual descriptor; that is, supplying a rating (0-100) for a given descriptor. The 

ATLAS study provides this metric.  

The receiver operating characteristic (ROC) analysis or, in particular, the area 

under the curve (AUC) is based on transforming the rating that had been assigned to a 

perceptual descriptor by study participants into a classification label (active/inactive). 

The active chemicals are those within the top 10% of the ratings (% usage). However, as 

this cutoff is arbitrary, other metrics are supplied in supplementary materials for 
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comparison. These, in addition to the classification-based metric (ROC analysis), are 

explained in detail in the metrics section alongside their strengths and weaknesses for this 

specific problem. Unless noted in the figure legends the importance of an OR is not based 

on classification. Specific methods for evaluating importance are discussed below.  

 

6.6.4. Computing chemical features to predict perceptual descriptors 

We computed chemical features using the Python wrapper for the open source RDKit 

software (Landrum, 2006). This included chemicals features that were raw values, 

pertaining to features such as functional group counts and 3D geometries, which closely 

resemble the proprietary DRAGON software; the whole library is accessible through the 

mordred module (Moriwaki et al., 2018).  We also computed Morgan/circular (radius =2) 

and topological torsion fingerprints. These use a hash function to encode different 

chemical features as fixed length binary strings (1024 bits). 

 

6.6.5. Selecting important ORs in prediction of human perception 

Important ORs were selected using a cross validated recursive feature elimination (10-

fold, repeated 10 times), with the random forest (RF) algorithm or the support vector 

machine (SVM) algorithm. Random forest defines importance by permuting predictors 

and reporting the % increase in error. Random forest fits multiple decision trees on 

different bootstrap samples and supplies a consensus vote over the trees as the prediction. 

Bootstrap sampling leads to a portion of data being left out; the “out of bag” sample 

which is used to estimate the prediction performance. When a model is fit, the predictor 
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importance (% increase in error) is computed. The support vector machine, however, 

does not include an ‘out of bag’ sample and therefore the OR/chemical feature 

importance is computed externally by fitting non-linear regression models for each 

predictor.  

By including the model-fitting inside a cross validation loop the importance is 

computed over multiple folds or portions of the training data rather than on the complete 

training set, which reduces bias in the predictors that are selected. The importance is in 

this context redefined as a selection rate (e.g. the rate the predictor was highly ranked). 

 

6.6.6. Clustering 

Clustering was performed with the hcust function in R using the Ward D2 method and 

the Euclidean distance for numerical matrices such as the perceptual ratings (Figure 5A) 

or 1-Jaccard distances for binary matrices (Figure 5B-D). 1000 bootstrap samples were 

used to select the optimal number of clusters, according to the gap statistic (1-standard 

error (SE) rule).  

Quantification and statistical analysis  

 

6.6.7. Support Vector Machine  

Training the support vector machine (SVM) involves identifying a set of parameters that 

optimize a cost function, where cost 1 and cost 0 correspond to training chemicals labeled 

as “Active” and “Inactive,” respectively.  



 

 

161 

𝑆𝑉𝑀 𝐶𝑜𝑠𝑡 =  min
𝜃

𝐶  ∑ 𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖)) +  
1

2
 ∑ 𝜃𝑗

2

𝑛

𝑗=1

 

Additionally, a kernel determines the shape of the decision boundary between the 

active and inactive chemicals from the training set. The radial basis function (RBF) or 

Gaussian kernel enables the learning of more complex, non-linear boundaries. It is 

therefore well suited for problems in which the physicochemical properties vary among 

the biologically active chemicals. This kernel computes the similarity for each chemical 

(𝑥) and a set of landmarks (𝑙), where σ2 is a tunable parameter determined by the 

problem and data. The similarity with respect to these landmarks is used to predict new 

chemicals (“Active” vs. “Inactive”). 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 =  𝑒𝑥𝑝 (−
‖𝑥 − 𝑙(1)‖

2

2𝜎2
) 

 

6.6.8. Metrics 

The area under the roc curve (AUC) assesses the true positive rate (TPR or sensitivity) as 

a function of the false positive rate (FPR or 1-specificity) while varying the probability 

threshold (T) for a label (Active/Inactive). If the computed probability score (x) is greater 

than the threshold (T), the observation is assigned to the active class. Integrating the 

curve provides an estimate of classifier performance, with the top left corner giving an 

AUC of 1.0 denoting maximum sensitivity to detect all targets or actives in the data 

without any false positives. The theoretical random classifier is reported at AUC = 0.5.  

𝑇𝑃𝑅(𝑇) = ∫ 𝑓1(𝑥) 𝑑𝑥
∞

𝑇
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𝐹𝑃𝑅(𝑇) = ∫ 𝑓0(𝑥) 𝑑𝑥
∞

𝑇

 

Where 𝑇 is a variable threshold and 𝑥 is a probability score 

However, we generated classifiers that are more authentic than theoretical random 

classification, shuffling the chemical feature (or OR) values in the models and 

statistically comparing the mean AUCs across multiple partitions of the data. This 

controls against optimally tuned algorithms predicting well simply because of specific 

predictor attributes (e.g. range, mean, median, and variance) or models that are of a 

specific size (number of predictors) performing well even with shuffled values. 

Additionally, biological data sets are often small, with stimuli or chemicals that—rather 

than random selection—reflect research biases, possibly leading to optimistic validation 

estimates without the proper controls. We used the AUC with classification-based 

training, such as to predict binary labels (Active/Inactive). For classification-based 

training we initially converted the % usage into a binary label (Active/Inactive) using the 

top 10% of the distribution as the cutoff. The basis for a classification-based performance 

metric was the often top-heavy distribution of the % usage. It is for instance possibly not 

as relevant for models to accurately predict chemicals with minimal % usage. Rather, it is 

preferable for models to accurately predict whether a chemical will smell “Sweet” or not. 

To provide further clarity we also reported multiple performance metrics 

including the correlation between the predicted and observed % usage, the root mean 

squared error (RMSE), and mean absolute error (MAE): RMSE: Root mean squared error 

is the square root of the mean difference between predicted values and those observed (% 

usage). It is the average prediction error on the same scale as the target or outcome being 
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predicted. We supplied this metric because the correlation coefficient (R) is not always an 

accurate representation of model performance and classification of exemplar chemicals 

required an arbitrary cutoff (e.g. 90th percentile). We reported the correlation coefficient, 

R, between the predicted and observed % usage due to its previous use with human 

perceptual data. MAE: Mean absolute error is the mean of the absolute difference 

between predicted and observed (% usage). It thus assigns equal weight to all prediction 

errors, whether large or small.  

RMSE = √
∑ (𝑦−�̂�𝑛

𝑖=1 )2

𝑁
 

MAE = 
1

𝑛
 ∑ |𝑦 − �̂�|𝑛

𝑖=1 ; where, �̂� = predicted and 𝑦 = observed 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
; where, TP = True Positive and FN = False Negative 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ; where, TN = True Negative and FP = False Positive 
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Chapter 7 

Adapting the computational pipeline to discovery of odorant-based 

Covid-19 drugs 

7.1. Introduction 

Earlier emphasis was on implementing machine learning pipelines to understand 

chemosensory processing in insects, humans, and then subsequently incorporating these 

findings into applications, such as safe chemical insect repellents. However, the 

framework outlined throughout is not tied to a specific problem. Indeed, toxicity, 

physical and cosmetic property modeling remain important for numerous problems. With 

the emergence of the COVID-19 the science has had to move at a faster rate, creating 

large amounts of data. To process and analyze this scientific data, computational tools, 

specifically machine learning, have become essential. Since this is consistent with the 

major theme of this work, it seemed critical to adapt the machine learning pipeline to help 

discover putative treatments for COVID-19. This chapter describes that effort.  

 

7.1.1. Drug repurposing and discovery for COVID-19 

SARS-CoV-2 is a novel coronavirus that is responsible for the COVID-19 disease which 

is a rapidly evolving global pandemic. Coronaviruses primarily target the upper 

respiratory tract and the lungs, with varying degrees of severity. Related corona viruses 

such as the SARS-CoV emerging in China in 2002 and the MERS-CoV in the Middle 

East in 2012 result in severe respiratory conditions. The SARS-CoV-2 also produces 

similarly severe respiratory conditions, albeit at a lower rate but with a higher contagion 



 

 

165 

factor (Sanche et al., 2020). Alarmingly, infected individuals may be asymptomatic 

carriers, presumably harboring the viral infection in the upper airway tract, increasing the 

likelihood of infecting populations that are most susceptible to severe complications (Bai 

et al., 2020; Z. Chen et al., 2020). 

Although the mechanisms underlying SARS-CoV-2 infection are not completely 

understood, select human proteins are targets for the virus including ACE2 (Wan, Shang, 

Graham, Baric, & Li, 2020). The SARS-CoV-2 receptor binding domain (RBD) interacts 

strongly with the human ACE2 receptor and TMPRSS2 to enter a human cell (Yan et al., 

2020). In addition to ACE2, a recent systems-level analyses of protein-protein interaction 

with peptides encoded in the SARS-CoV-2 genome identified ~300 additional human 

proteins, of which, 66 were considered suitable candidates for identification of 

therapeutics (Gordon et al., 2020). Gordon et. al. performed an in vitro assay with human 

cells expressing 26 SARS-CoV-2 proteins, which was followed by an analysis for high-

confidence interactions. Of the 100s of reported interactions 66 were prioritized, and the 

authors subsequently mined and tested FDA approved drugs that were known or 

suspected to target these human proteins.  Most of the human target proteins are 

overexpressed in the respiratory tract. Of particular note is the entry receptor ACE2 

which is expressed at high levels in a few cell types of the nasal epithelium, as well as 

elsewhere (Gordon et al., 2020; Sungnak et al., 2020). This could be an unusual 

opportunity for volatile inhaled therapeutics and prophylactics that will have direct access 

to the cells that are infected by the virus. 
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The Gordon et al study also identified FDA-approved drugs that have known 

activity against these human protein targets or are structurally related to chemicals with 

known activity on the targets. While these drugs have yet to be tested directly on the 

virus, another study performed high-throughput testing of ~12,000 FDA-approved or 

clinical stage drugs on viral replication in cell lines (Riva et al., 2020).  This study 

identified at least 6 potential leads that include a kinase inhibitor, a CCR1 inhibitor and 4 

cysteine protease inhibitors that are candidates for testing in clinical trials.       

Since the regulatory process for the approval of new drugs can take several years, 

the repurposing of FDA approved drugs for COVID-19 offers a potential fast-track to 

approval. One of the more promising candidates being tested is the antiviral Remdesivir, 

which has been effective in vitro (Wang et al., 2020) as well as in non-human primates 

(Williamson et al., 2020), with human trails currently ongoing. The other drug being 

tested is the antimalarial, hydroxychloroquine, which showed some promise alongside the 

antibiotic, azithromycin, in small clinical trials (Z. Chen et al., 2020; Gautret et al., 2020). 

However, hydroxychloroquine has shown less promise in larger trials for treating 

COVID-19 (Mahevas et al., 2020).  

While drug repurposing is expedient, it is possible that drugs designed for other 

diseases will not be as well suited to respiratory organs, where a large percentage of 

putative human proteins targeted by the virus are enriched (Gordon et al., 2020), or to the 

nervous system, implicated by neurological symptoms as well as prior evidence that 

coronaviruses can cross the blood brain barrier (Li, Bai, & Hashikawa, 2020; Mao et al., 

2020). Drug-development strategies are also often guided by minimizing off-target 
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interactions. Repurposed drugs might have to be used in combination, and the side effects 

and interactions that this entails are presently not well defined. While there are recent 

efforts exploring novel, directed therapies from small molecule libraries (Sheahan et al., 

2020), it is desirable to identify 100-1000s of putative chemicals as the majority may be 

difficult to synthesize in mass, prove toxic at therapeutic concentrations, or yield 

inconsistent benefits across patients due to genetic variability. These shortcomings have 

significantly increased the demand for additional drugs or small molecules that might 

interfere with viral entry and replication. Additionally, if prophylactics or non-toxic, easy 

to use therapeutics were available even for mild cases that do not require hospitalization 

and experimental drug treatments, it may nevertheless impact long-term health and 

community transmission (Bagheri et al., 2020).   

There are subsequently unmet needs in COVID-19 research, including 

identification of compounds that target the relevant SARS-CoV-2 human proteins from 

(1) approved drugs, (2) FDA registered chemicals or (3) a large repository of ~14 million 

purchasable chemicals from the ZINC 15 database (Sterling & Irwin, 2015),  which we 

computed additional properties for such as mammalian toxicity, vapor pressure, and logP. 

For 65 human protein targets that SARS-CoV-2 interacts with that had publicly available 

bioassay and chemical data (Gordon et al., 2020), we first generated a database of 

predictions based on structural similarity to chemicals that interact with the targets and 

then machine learning models (34). Many chemicals we have identified have little or no 

known biological activities and are predicted to have low toxicity in addition to a wide 

range of vapor pressures. These data are a resource to rapidly identify and test novel, safe 
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treatment strategies for COVID-19 and other diseases where the target proteins are 

relevant.  

 

7.2. Results 

7.2.1. Identification of important structural features from known inhibitors of human 

target proteins.  

In order to test whether there is a structural basis for inhibitors of the target proteins 

identified previously (Gordon et al., 2020; Yan et al., 2020), we used two complementary 

approaches to evaluate each target’s training set of compounds with known activity, 

compiled from the literature. First, we performed an exhaustive search for maximum 

common substructures among active chemicals. In some cases, enriched substructures 

were apparent among known ligands, with slight variation in the substructure based on 

the sensitivity to the targets, suggesting physicochemical features may be relevant in 

predicting activity against these targets. Next, we used a machine learning pipeline for 

predicting chemicals that interfere with SARS-CoV-2 targets. It involves selection of 

important physicochemical features for each target, followed by fitting support vector 

machines (SVM) with these features and then evaluating the predictions using various 

computational validation methods (Figure 7.1A). The chemical features that best 

predicted activity for the different targets included simple 2D information, describing the 

type and number of bonds, but also more abstract 3D geometries (Tables 7.1-7.2). 

Identification of each target-specific feature set provides a foundation to better 
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understand the physicochemical basis of the activity (details about the feature ranking 

algorithms in Methods). 

 

7.2.2. Machine learning models can successfully predict activity from chemical 

structure 

We identified 24 targets with training sets large enough to model the log IC50, Ki, or AC50 

(Figure 7.2A). Rigorous computational validation was performed and the results on 

training (Figure 7.2B, left) and test data that had been set aside (Figure 2C, left) indicated 

good overall performance according to the average mean absolute error (MAE) and the 

correlation between predicted and observed assay measures (MAE = 0.48; R = 0.62). 

Predictions of log Ki for the viral entry receptor, ACE2, were also accurate (test set R = 

0.92; test set mean absolute error (MAE) = 0.53) (Figure 7.2C, left).  

For some of the viral targets, we noticed that assay data included additional 

inhibitory measurements. Some of the available data such as % inhibition, for instance, 

are less quantitative. However, to include as much of the available data as possible, we 

created models to identify physicochemical features that might broadly contribute to 

inhibition. We therefore assigned binary, active and inactive, labels to the chemicals, then 

trained models as outlined before (Figure 7.2A; Methods). The models that were 

developed using this classification approach similarly proved successful,  validating over 

partitions of the training data (avg. AUC = 0.87, avg. Shuffle AUC = 0.50, p  < 10-19) 

(Figure 7.2B, right), as well as over sets of external test chemicals (avg. AUC = 0.83, 

avg. Shuffle AUC = 0.51, p < 10-8) (Figure 7.2C, right). Collectively, these results 
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suggested the models provided accurate predictions and could be used to screen approved 

drug libraries as well as databases of commercially available chemicals for novel 

therapeutics.  

 

7.2.3. Predicting candidates for repurposing of FDA-approved drugs  

Repurposing of existing FDA approved drugs offers a path towards rapid deployment of 

therapeutics against SARS-CoV-2. Approved drugs may have activity that extend beyond 

the original target protein. Accordingly, we used the machine learning models to predict 

activities of ~100,000 FDA registered chemicals (UNII database) as well as the 

DrugBank (Wishart et al., 2018) and Therapeutic Targets (Chen, 2002; Zhu et al., 2009) 

databases, which include information on drug interactions, pathways, and approval status. 

Interestingly, some of the approved drugs are predicted to have high activity against the 

SARS-CoV-2 targets (Figure 7.3A).  In order to identify more efficacious candidates, we 

isolated the drugs scoring in the top 25 for multiple targets and found a few of high 

priority (Figure 7.3B).  

 

7.2.4. Predicting inhaled drugs for SARS-CoV2 from FDA-approved and a large 

~14M chemical space   

Given that many of the human target proteins are overexpressed in the respiratory tract, 

including the entry receptor ACE2 in only a few cells types of the nasal epithelium, the 

upper airways and lungs (Gordon et al., 2020; Sungnak et al., 2020), we reasoned that 

volatile chemicals may offer a unique opportunity as inhaled therapeutics that will have 
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direct access to the cells and tissues that are infected by the virus. We used the machine 

learning models to search a large database of ~14 million commercially available 

chemicals (ZINC) for volatile candidates.  We initially isolated the top 1% of the 

predicted scoring distribution (Figure 7.4A, left), which resulted in > 1 million chemicals 

in total (Figure 4A, right). To prioritize the hits for potential human use, we next 

developed machine learning models to predict volatility (vapor pressure) (Figure 7.7) and 

mammalian toxicity (LD50) (Figure 7.8). The toxicity and vapor pressure estimates 

helped identify smaller priority sets (Figure 7.4B). Although the vapor pressures were not 

especially high, we rank ordered the top candidates according to the best values (Figure 

7.4C).  

Chemicals with suspected odorant properties, however, represent only a fraction 

of the chemical space, and these chemicals may not have the activity levels suited for 

COVID-19 cases. Volatile compounds, for instance, may be biased towards structurally 

simple chemicals that do not resemble drugs. We therefore also focused on additional 

chemicals with highest predicted activities for their targets and low estimated toxicities 

regardless of vapor pressure.  We identified numerous candidates with potential activity 

against multiple viral targets (Figure 7.5A) and many other others with significant 

activity against a single target (Figure 7.6A).  

 

7.2.5. Large-scale toxicity Prediction for chemicals of interest 

Although mammalian toxicity estimates are critical in prioritizing candidates for 

screening, the effect a chemical may have on additional biological processes remains 
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relevant. For approved drugs, some testing has been carried out using in vivo models, but 

the breadth of such testing is not exhaustive, and therefore in silico modeling is in 

demand. Toxicity prediction itself predates modern machine learning, however interest 

has grown considerably of late, with successful modeling of toxicity using decision trees, 

support vector machine, and deep neural networks. Similarly, large-scale government 

initiatives in the United States and European Union suggest a commitment toward virtual 

or in silico toxicity modeling over laboratory animals. The Tox21 program, operating 

under the National Institute of Health (NIH), conducts and reports data from high-

throughput in vitro assays. To date, the database includes 64 target assays for 10,000+ 

chemicals. Machine learning studies have successfully modeled 10 of these targets; 

however, the remaining targets have not been studied extensively with machine learning. 

It is therefore important to assess the suitability of machine learning for the entire set of 

targets and develop a comprehensive database outlining the structural motifs and 

physicochemical properties that are associated with different toxicities.  

To start, approaches were evaluated to predict activity on the 10 protein targets 

that had been previously studied. This ensured that the machine learning could be 

benchmarked relative to prior efforts. Success here would then justify applying this 

approach to the more comprehensive set of targets and chemicals. The 10 targets were 

divided into two broad categories: stress response (SR) and nuclear receptor signaling 

(NR). The chemicals screened across these 10 in vitro assays were divided into training 

(8,000) and testing sets (~700) as before.  Winning approaches from among 400 previous 

submissions achieved prediction accuracies, on average, of ~80-85%, which is consistent 
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with the success rates achieved for this study (Table 7.3; Figure 7.9A). The performance 

in this study for some targets was ranked among the very top of previous efforts, placing 

alongside leading performance (out of the 400) for the other protein targets as well (Table 

7.3; Figure 7.9A). Accordingly, these results suggested that the combination of binary 

fingerprints as well as other physicochemical properties adequately captured the 

structure-activity relationship and this approach would generalize to the protein targets 

that have not been modeled with machine learning.  

Of the proteins that have not been modeled a subset was selected: sonic hedgehog 

(SHH), a critical developmental regulator that is affected by known teratogenic 

chemicals; estrogen receptor beta (ERB), an important endocrine regulator; caspase3 

(CASP3), a protease that is a key part of the apoptosis cascade; constitutive androstane 

receptor (CAR), which mediates the response to xenobiotic chemicals; androgen receptor 

(AR), which, similar to estrogen receptors, plays a key role in endocrine regulation; the 

thyroid stimulating hormone receptor (TSHR), responsible for regulating thyroid 

function; lastly, retinoic acid receptor alpha (RAR), a heterodimer that participates in 

epigenetic regulation, particularly through stimulating deacetylation; the biochemical 

reaction that enhances chromatin packing, thereby repressing gene expression 

(https://ncats.nih.gov/tox21). These protein targets are then further characterized 

according to the type of activity that the in vitro screen was designed to detect (agonist vs 

antagonist) and the cell line (e.g. Kidney Cell, HEK293; Chinese Hamster Ovary, CHO, 

Murine Embryo fibroblast) (Table 7.4). Although the chemicals screened differ by target, 

the composition of training and testing compounds that for the 10 previously modeled 

https://ncats.nih.gov/tox21
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protein targets was kept as consistent as possible. When applying the same approach as 

Figure 7.9A and as reported in Table 7.3, prediction of the test chemicals was successful, 

at a rate that compared to the 10 previously modeled protein targets (Figure 7.9A), with 

an average accuracy of 81% (AUC = .81) (Figure 7.9B). This suggests that in silico 

modeling based on physicochemical properties can be applied to comprehensively 

evaluate undesirable off target toxicities of known drugs and small molecules that have 

potential as novel therapeutics.   

 

7.3. Discussion 

SARS-CoV-2 is a significant world health crisis. The full scope of COVID-19 disease 

and any long-term health complications following infection remain unclear. Although 

vaccines are the best long-term solution, treatments will be necessary to mitigate disease 

severity in the short term. What is concerning is that, while several repurposed drugs 

have already been tested in some form of clinical trial, and only one drug Remdesivir has 

shown a clear benefit in randomized clinical trials. Additionally, there is no guarantee 

that an effective vaccine can be found for the SARS-CoV2 virus, and therefore drug 

candidate pipelines are extremely important to pursue for the long-term research effort 

against COVID-19. A vaccine against SARS-CoV-2 would likely need to stimulate local 

immunity, since the infection is limited to mucosal surfaces, and these could be short-

lived immunities.   

We have therefore taken a comprehensive approach to try and provide a pipeline 

for short and long-term use, and for a potentially local application route via inhalation. 
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Existing FDA approved drugs that target a single protein important for viral replication 

and host entry are currently the highest priority for repurposing as new COVID-19 drugs. 

However, we think that there are compelling reasons to create pipelines to explore many 

putative targets, and chemical spaces that are far larger and more diverse than the known 

approved drugs. We have therefore screened ~14 million potentially purchasable 

compounds from the ZINC database and also predicted toxicity values for the numerous 

candidates. In addition, we have identified chemicals that are predicted to affect more 

than one of the host proteins, suggesting these may have more efficacy. One unusual 

category we have emphasized is volatiles, as these compounds may be biologically 

sourced, and therefore microbes could be genetically engineered to produce them in mass 

(Hug, Krug, & Müller, 2020). This would subsequently reduce the strain on global supply 

chains for chemicals that are necessary in synthesizing certain pharmaceuticals. These 

chemicals are also intriguing options for drug cocktails. If present in metabolic pathways, 

they possibly already interact in vivo. Therefore, short-term therapeutic concentrations 

may be better tolerated in humans.  

It is nevertheless important to note that machine learning depends on available 

data. Because the size and diversity of publicly available bioassay data are limited, 

caution is required in interpreting the predictions. It is common to find past bioassays 

focused on similar shaped chemicals, limiting the scope of the machine learning approach 

to find new chemistries. Importantly, apart from ACE2, the other human proteins that 

were identified to interact with SARS-CoV-2 are yet to be tested in vivo for drug-ability. 

And although some of the candidate chemicals we identified may be biologically 
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sourced, the concentrations are not well defined or unknown, nor is there any 

understanding of a therapeutic concentration in this scenario. These data are presented as 

a forward-looking resource and a pipeline to evaluate chemical data with additional 

research. While our motivation was the evolving COVID-19 pandemic, the 64 SARS-

CoV-2 targets are relevant to a range of other diseases and conditions. We therefore 

anticipate that the AI-based predictions of purchasable compounds from 10+ million 

chemicals will accelerate drug discovery in general and facilitate research on these 

chemicals in the future for a number of diseases. In general, the use of AI-driven tools 

could provide additional valuable solutions for tackling Covid-19 (Santosh, 2020). 
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7.4. Figures 
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Figure 7.1. Machine learning pipeline to identify chemicals that interfere with SARS-

CoV-2 targets. A)  Overview of the pipeline to predict chemicals for 65 SARS-CoV-2 

human targets selected from Gordon et al., 2020 and using bioassay data from publicly 

available databases. B) Graphically depicts the pipeline details. Available bioassay data 

on the viral targets were mined for information to use in machine learning or structural 

analysis. This resulted in 24 targets that could be modeled using values for the most 

abundant inhibitory assay measure (e.g. Ki or IC50) and 21 targets modeled by classifying 

broad inhibition (34 unique targets in total).  The remaining targets with limited data 

were funneled into a structural similarity analysis, which aids in developing more 

bioassay data and helps clarify the chemical features contributing to bioactivity. For 

targets modeled with supervised machine learning, optimal chemical features were 

identified on subsets of training data. The top features were sampled by support vector 

machines (SVM). These models were then aggregated. External chemicals were used to 

verify successful predictions. Models trained for the 34 targets predicted large chemical 

databases including FDA registered chemicals and approved drugs, as well as 10+ 

million purchasable chemicals from the ZINC database. Top scoring predicted chemicals 

were subsequently assigned theoretical toxicity, log vapor pressure, and MLOGP, which 

estimates membrane permeability.  
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Figure 7.2. Models of chemical features accurately predict inhibitors of SARS-CoV-2 

targets. A) Pipeline for fitting and validating models that predict IC50, Ki, or AC50 or a 

classification score, which reflects broad inhibitory activity against the listed viral targets. 

B) Left, mean absolute error (MAE) in predicting the log transformed endpoints (IC50, 

Ki, AC50). Right, classification of broadly inhibiting chemicals using the area under the 

receiver operating characteristic (ROC) curve (AUC). Plots are for 10-fold cross 

validation, repeated 5 times. The model predictions are from an ensemble of three 

support vector machines (SVM), trained on different chemical feature sets. C) Left, 

external test set performance for regression models, where possible. Right, external test 

set performance for classification models, where possible. 
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Figure 7.3. Approved drugs with putative activity against SARS-CoV-2 targets. A) The 

best predicted activity against SARS-CoV-2 targets among databases of approved drugs. 

Viral targets with few promising candidates are omitted. B) Network showing drugs that 

are among the top 25 for multiple viral targets (drugs: black nodes; viral targets: red 

nodes). 
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Figure 7.4. Predicting activity against SARS-CoV-2 targets among theoretical volatile 

chemicals. A) Left, count of chemicals per target after initially filtering based on 

predicted scores. Right, chemical counts across all viral targets for the models predicting 

general inhibitory scores (Classification) and those for specific inhibitory endpoints 

(Regression) (e.g. IC50). B) Pipeline for further prioritizing chemical sets according to 

estimated vapor pressure and low mammalian toxicity (LD50). C) Top ranking 

predictions of general inhibitory activity (Score) and/or specific inhibitory endpoints 

(Predicted Assay Value) against SARS-CoV-2 targets from the ZINC database, filtered 

to the highest estimated log vapor pressures.  
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Figure 7.5. Predicted chemicals rank highly for multiple SARS-CoV-2 targets. a) 

Network of chemicals predicted to have low toxicity that are ranked highly for > 1 viral 

targets. Chemicals were considered if for multiple viral targets they had > 0.75 

inhibitory/class scores or predictions of specific assay measures (Ki, IC50, and AC50) < 

100 nM.  
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Figure 7.6. Predictions of SARS-CoV-2 targets among chemicals lacking odorant 

properties. A)  Sample of ZINC chemicals scoring highly for inhibitory activity against 

the viral targets.  
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Figure 7.7. Machine learning can successfully model vapor pressure. A) Ensemble 

model for predicting log vapor pressure is validated on 676 test chemicals. Test set 

predictions are bootstrapped 500 times, averaged over 100 bins (5 bootstrap samples per 

bin). Predictive success is quantified as the mean absolute error (MAE); average in plot 

area. B) The test chemical predictions are assessed using the R2 value, bootstrapped 500 

times and averaged over 100 bins (5 bootstrap samples per bin). Overall R2 value 

reported in the plot area. Individual models are trained on different chemical feature sets 

and predictions are aggregated. 
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Figure 7.8. Machine learning can accurately predict the toxicity of chemicals. A) 

Ensemble model prediction of rat log LD50 for 2895 test chemicals. Relationship between 

predicted and observed log LD50 is quantified as the correlation. Value reported in plot 

area. The Mean absolute Error (MAE) in the prediction of these test chemicals is also 

reported. Blue line is the least squares approximation of the plotted (x, y) pairs (black 

dots); the thin transparent, gray band surrounding the blue line indicates the error in the 

fit. 
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Figure 7.9. Additional toxicity endpoints are also accurately modeled by machine 

learning. A) Test set performance for 10 well studied toxicity endpoints. These proteins 

were studied in the Tox21 competition, which provided competitors with common set of 

chemicals to train their algorithms and then test them to evaluate success. The approach 

taken here represents the chemicals by binary fingerprints and other physicochemical 

properties; these features are then used to train a regularized random forest (RRF) as well 

as a support vector machine with a radial basis function kernel (RBF SVM) (Methods). 

Predictions of the test chemicals from these two algorithms are subsequently aggregated. 

The aggregated prediction is evaluated using ROC (Receiver Operator Characteristic) 

analysis, which defines success according to the area under the ROC curve (AUC). Best 

performance 1.0, which implies perfect sensitivity (true positive rate) and specificity (1-

false positive rate). b) The same approach is next applied to a set of protein targets that 

were not among the 10 previously modeled with machine learning. As before, machine 

learning models based on physicochemical features accurately predict most of the 

toxicity targets.   
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7.5. Tables  
 

Table 7.1. Top chemical features for regression models 
Feature Target Description 

GATS5s ABCC1 Geary autocorrelation of lag 5 weighted by I-state 

RDF055m ABCC1 Radial Distribution Function - 055 / weighted by mass 

SpMax_B(s) ABCC1 leading eigenvalue from Burden matrix weighted by I-State 

CATS2D_08_AA BRD2 CATS2D Acceptor-Acceptor at lag 08 

RDF035s BRD2 Radial Distribution Function - 035 / weighted by I-state 

SpDiam_X BRD2 spectral diameter from chi matrix 

HATS8p BRD4 leverage-weighted autocorrelation of lag 8 / weighted by 

polarizability 

R5i+ BRD4 R maximal autocorrelation of lag 5 / weighted by ionization potential 

RDF035m BRD4 Radial Distribution Function - 035 / weighted by mass 

Eig02_EA(bo) CSNK2A2 eigenvalue n. 2 from edge adjacency mat. weighted by bond order 

Eig05_EA(bo) CSNK2A2 eigenvalue n. 5 from edge adjacency mat. weighted by bond order 

SpMax2_Bh(m) CSNK2A2 largest eigenvalue n. 2 of Burden matrix weighted by mass 

CATS2D_04_AA CSNK2B CATS2D Acceptor-Acceptor at lag 04 

SHED_DN CSNK2B SHED Donor-Negative 

SpMin1_Bh(m) CSNK2B smallest eigenvalue n. 1 of Burden matrix weighted by mass 

DISPm DCTPP1 displacement value / weighted by mass 

HATS7u DCTPP1 leverage-weighted autocorrelation of lag 7 / unweighted 

Mor31s DCTPP1 signal 31 / weighted by I-state 

MATS1e DNMT1 Moran autocorrelation of lag 1 weighted by Sanderson 

electronegativity 

Mor23m DNMT1 signal 23 / weighted by mass 

TDB06u DNMT1 3D Topological distance based descriptors - lag 6 unweighted 

GATS4m GFER Geary autocorrelation of lag 4 weighted by mass 

Mor14m GFER signal 14 / weighted by mass 

R5i GFER R autocorrelation of lag 5 / weighted by ionization potential 

DISPp HDAC2 displacement value / weighted by polarizability 

IC2 HDAC2 Information Content index (neighborhood symmetry of 2-order) 

P_VSA_MR_5 HDAC2 P_VSA-like on Molar Refractivity, bin 5 

F04[C-C] IMPDH2 Frequency of C - C at topological distance 4 

HOMA IMPDH2 Harmonic Oscillator Model of Aromaticity index 

VE1_B(s) IMPDH2 coefficient sum of the last eigenvector (absolute values) from Burden 

matrix weighted by I-State 

Eig02_AEA(dm) ITGB1 eigenvalue n. 2 from augmented edge adjacency mat. weighted by 

dipole moment 

SHED_AA ITGB1 SHED Acceptor-Acceptor 

SpMax2_Bh(s) ITGB1 largest eigenvalue n. 2 of Burden matrix weighted by I-state 

F10[C-N] MARK2 Frequency of C - N at topological distance 10 

nPyrroles MARK2 number of Pyrroles 

SaaNH MARK2 Sum of aaNH E-states 
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max_conj_path MARK3 maximum number of atoms that can be in conjugation with each other 

SaaNH MARK3 Sum of aaNH E-states 

VE1_H2 MARK3 coefficient sum of the last eigenvector (absolute values) from 

reciprocal squared distance matrix 

GATS3s NSD2 Geary autocorrelation of lag 3 weighted by I-state 

HOMA NSD2 Harmonic Oscillator Model of Aromaticity index 

Mor16s NSD2 signal 16 / weighted by I-state 

H7m PABPC1 H autocorrelation of lag 7 / weighted by mass 

JGI7 PABPC1 mean topological charge index of order 7 

P_VSA_MR_2 PABPC1 P_VSA-like on Molar Refractivity, bin 2 

GATS4m PLAT Geary autocorrelation of lag 4 weighted by mass 

Mor04s PLAT signal 04 / weighted by I-state 

R6p+ PLAT R maximal autocorrelation of lag 6 / weighted by polarizability 

nPyrroles PRKACA number of Pyrroles 

RDF040v PRKACA Radial Distribution Function - 040 / weighted by van der Waals 

volume 

SpMin3_Bh(m) PRKACA smallest eigenvalue n. 3 of Burden matrix weighted by mass 

Eig02_EA(bo) PSEN2 eigenvalue n. 2 from edge adjacency mat. weighted by bond order 

nArX PSEN2 number of X on aromatic ring 

VE1sign_D/Dt PSEN2 coefficient sum of the last eigenvector from distance/detour matrix 

SHED_DL PTGES2 SHED Donor-Lipophilic 

VE2sign_G PTGES2 average coefficient of the last eigenvector from geometrical matrix 

VE3sign_G PTGES2 logarithmic coefficient sum of the last eigenvector from geometrical 

matrix 

CATS3D_08_AL RIPK1 CATS3D Acceptor-Lipophilic BIN 08 (8.000 - 9.000 Å) 

MATS5i RIPK1 Moran autocorrelation of lag 5 weighted by ionization potential 

VE3sign_RG RIPK1 logarithmic coefficient sum of the last eigenvector from reciprocal 

squared geometrical matrix 

BLTA96 SIGMAR1 Verhaar Algae base-line toxicity from MLOGP (mmol/l) 

F10[C-C] SIGMAR1 Frequency of C - C at topological distance 10 

TPSA(Tot) SIGMAR1 topological polar surface area using N,O,S,P polar contributions 

Eig01_AEA(dm) TBK1 eigenvalue n. 1 from augmented edge adjacency mat. weighted by 

dipole moment 

HATS4i TBK1 leverage-weighted autocorrelation of lag 4 / weighted by ionization 

potential 

SdssC TBK1 Sum of dssC E-states 

AROM VCP aromaticity index 

E1m VCP 1st component accessibility directional WHIM index / weighted by 

mass 

MATS5m VCP Moran autocorrelation of lag 5 weighted by mass 

H5s ACE2 H autocorrelation of lag 5 / weighted by I-state 

Mor10m ACE2 signal 10 / weighted by mass 

Mor17m ACE2 signal 17 / weighted by mass 
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Table 7.1. Important chemical features for regression models. Top three chemical 

features for the viral targets with Ki, IC50, and AC50 bioassay activities.  
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Table 7.2. Top chemical features for classification models  
Feature Target Description 

Mor18s BRD4 signal 18 / weighted by I-state 

SpMAD_G/D BRD4 spectral mean absolute deviation from distance/distance matrix 

SpMax3_Bh(p) BRD4 largest eigenvalue n. 3 of Burden matrix weighted by polarizability 

P_VSA_LogP_3 HDAC2 P_VSA-like on LogP, bin 3 

SHED_DA HDAC2 SHED Donor-Acceptor 

SHED_DL HDAC2 SHED Donor-Lipophilic 

G(N..N) IDE sum of geometrical distances between N..N 

SM1_Dz(i) IDE spectral moment of order 1 from Barysz matrix weighted by ionization potential 

Wap IDE all-path Wiener index 

CATS2D_08_DA TBK1 CATS2D Donor-Acceptor at lag 08 

F08[N-N] TBK1 Frequency of N - N at topological distance 8 

P_VSA_e_3 TBK1 P_VSA-like on Sanderson electronegativity, bin 3 

H7m PRKACA H autocorrelation of lag 7 / weighted by mass 

H7s PRKACA H autocorrelation of lag 7 / weighted by I-state 

RDF060m PRKACA Radial Distribution Function - 060 / weighted by mass 

GATS6e MARK3 Geary autocorrelation of lag 6 weighted by Sanderson electronegativity 

GATS6m MARK3 Geary autocorrelation of lag 6 weighted by mass 

Mor02m MARK3 signal 02 / weighted by mass 

CATS2D_02_DL IMPDH2 CATS2D Donor-Lipophilic at lag 02 

CATS3D_07_DL IMPDH2 CATS3D Donor-Lipophilic BIN 07 (7.000 - 8.000 Å) 

NaasC IMPDH2 Number of atoms of type aasC 

C-039 ABCC1 Ar-C(=X)-R 

VE2sign_Dz(p) ABCC1 average coefficient of the last eigenvector from Barysz matrix weighted by polarizability 

VE3sign_Dz(v) ABCC1 logarithmic coefficient sum of the last eigenvector from Barysz matrix weighted by van der Waals 

volume 

Mor31s ABHD12 signal 31 / weighted by I-state 

RTi+ ABHD12 R maximal index / weighted by ionization potential 

VE3sign_Dz(p) ABHD12 logarithmic coefficient sum of the last eigenvector from Barysz matrix weighted by polarizability 

E2m BRD2 2nd component accessibility directional WHIM index / weighted by mass 

GATS2m BRD2 Geary autocorrelation of lag 2 weighted by mass 

TDB03i BRD2 3D Topological distance based descriptors - lag 3 weighted by ionization potential 

MAXDP COMT maximal electrotopological positive variation 

nDB COMT number of double bonds 

P_VSA_MR_2 COMT P_VSA-like on Molar Refractivity, bin 2 

CATS2D_02_AL DNMT1 CATS2D Acceptor-Lipophilic at lag 02 

Mor04s DNMT1 signal 04 / weighted by I-state 

VE3sign_Dt DNMT1 logarithmic coefficient sum of the last eigenvector from detour matrix 

ChiA_B(i) EIF4H average Randic-like index from Burden matrix weighted by ionization potential 

F05[C-O] EIF4H Frequency of C - O at topological distance 5 

NaasC EIF4H Number of atoms of type aasC 

CENT LOX centralization 

EE_G LOX Estrada-like index (log function) from geometrical matrix 

VE2_D/Dt LOX average coefficient of the last eigenvector (absolute values) from distance/detour matrix 

Eta_D_beta MARK2 eta measure of electronic features 

Mor29v MARK2 signal 29 / weighted by van der Waals volume 

SpPosA_B(i) MARK2 normalized spectral positive sum from Burden matrix weighted by ionization potential 

CATS2D_07_AL NEK9 CATS2D Acceptor-Lipophilic at lag 07 

CATS2D_08_AL NEK9 CATS2D Acceptor-Lipophilic at lag 08 

TDB05p NEK9 3D Topological distance based descriptors - lag 5 weighted by polarizability 

CATS2D_06_DL NEU1 CATS2D Donor-Lipophilic at lag 06 
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TDB04i NEU1 3D Topological distance based descriptors - lag 4 weighted by ionization potential 

X3A NEU1 average connectivity index of order 3 

nR06 RHOA number of 6-membered rings 

R8s+ RHOA R maximal autocorrelation of lag 8 / weighted by I-state 

SpMin1_Bh(m) RHOA smallest eigenvalue n. 1 of Burden matrix weighted by mass 

CATS3D_08_NL SIRT5 CATS3D Negative-Lipophilic BIN 08 (8.000 - 9.000 Å) 

O-057 SIRT5 phenol, enol, carboxyl OH 

SpMax2_Bh(s) SIRT5 largest eigenvalue n. 2 of Burden matrix weighted by I-state 

CATS2D_04_AL TK2 CATS2D Acceptor-Lipophilic at lag 04 

JGI3 TK2 mean topological charge index of order 3 

MATS1i TK2 Moran autocorrelation of lag 1 weighted by ionization potential 

P_VSA_e_3 VCP P_VSA-like on Sanderson electronegativity, bin 3 

RDF020p VCP Radial Distribution Function - 020 / weighted by polarizability 

SpMaxA_AEA(dm) VCP normalized leading eigenvalue from augmented edge adjacency mat. weighted by dipole moment 

 

 

 

Table 7.2. Important chemical features for classification models. Top three chemical 

features for viral targets where the models classified chemicals as active vs inactive 

relative to broad inhibition rather than a specific assay value (e.g. Ki, IC50, and AC50).  
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Table 7.3 

Teams 

NR.Ah

R 

NR.A

R 

NR.AR.L

BD 

NR.Aromat

ase 

NR.E

R 

NR.ER.L

BD 

NR.PPAR.ga

mma 

SR.A

RE 

SR.ATA

D5 

SR.H

SE 

SR.M

MP 

SR.p

53 

DeepT

ox 

0.928 0.807 0.879 0.834 0.81 0.814 0.861 0.84 0.793 0.865 0.942 0.862 

AMA-

ZIZ 

0.913 0.77 0.846 0.819 0.806 0.806 0.83 0.805 0.828 0.842 0.95 0.843 

T 0.913 0.676 0.848 0.825 0.784 0.805 0.822 0.801 0.814 0.811 0.937 0.847 

This 

Study 

0.903 0.701 0.747 0.79 0.78 0.794 0.751 0.758 0.733 0.784 0.913 0.817 

Micro-

somes 

0.901    0.785 0.827 0.717 0.804 0.812   0.826 

Charite 0.896 0.688 0.789 0.781 0.707 0.798 0.7 0.739 0.751 0.852 0.88 0.834 

fillips-

PL 

0.893 0.736 0.743 0.776 0.771   0.758  0.766 0.928 0.815 

RCC 0.872 0.763 0.747 0.792 0.781 0.762 0.637 0.761 0.673 0.755 0.92 0.795 

MML 0.871 0.693 0.66 0.709 0.75 0.71 0.645 0.701 0.749 0.647 0.854 0.815 

CGL 0.866 0.742 0.566 0.749 0.759 0.727 0.738 0.747 0.737 0.775 0.88 0.817 

Froze-

narm 

0.865 0.744 0.722 0.74 0.745 0.79 0.803 0.7 0.726 0.752 0.859 0.803 

kibutz 0.865 0.75 0.694 0.729 0.757 0.779 0.666 0.708 0.737 0.587 0.838 0.787 

ToxFit 0.862 0.744 0.757 0.738 0.729 0.752 0.791 0.697 0.729 0.689 0.862 0.803 

Super-

Tox 

0.854  0.56 0.742    0.711   0.862 0.732 

VIF 0.827 0.797 0.61 0.671 0.732 0.735 0.666 0.636 0.656 0.723 0.796 0.648 

NCI 0.812 0.628 0.592 0.698 0.483 0.703 0.736 0.783 0.714 0.858 0.851 0.747 

dmlab 0.781 0.828 0.819 0.838 0.766 0.772 0.831 0.768 0.8 0.855 0.946 0.88 

Toxic 

Avg 

0.715 0.721 0.611 0.671 0.646 0.64 0.682 0.633 0.593 0.465 0.732 0.614 

Swam-

idass 

0.353 0.571 0.748 0.274 0.68 0.738 0.585 0.372 0.391 0.711 0.828 0.661 

 

Table 7.3. Test performance for this study compared to the top prior efforts from 400 

total. Test set chemicals that the machine learning model has not seen provide a true 

evaluation of the prediction success. Compared to 400 previous efforts to predict the 

same test chemicals for the 10 toxicity endpoints the current study places among the best 

of these efforts. 
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Table 7.4 

Protocol Name  Assay Target Target Category Cell Line Cell Type 

tox21-ahr-p1  AhR NR HepG2 Liver 

tox21-ap1-agonist-p1 AP-1 agonist SR ME-180 Cervical Cancer 

tox21-ar-bla-agonist-p1  AR-BLA agonist NR HEK293 Kidney 

tox21-ar-bla-antagonist-p1 AR-BLA antagonist NR HEK293 Kidney 

tox21-ar-mda-kb2-luc-

agonist-p1  

AR-MDA agonist NR MDA-MB-453 Breast Cancer 

tox21-ar-mda-kb2-luc-

agonist-p3 

AR-MDA agonist (with 

antagonist) 

NR MDA-MB-453 Breast Cancer 

tox21-ar-mda-kb2-luc-

antagonist-p1 

AR-MDA antagonist NR MDA-MB-453 Breast Cancer 

tox21-ar-mda-kb2-luc-

antagonist-p2 

AR-MDA antagonist (lower 

agonist) 

NR MDA-MB-453 Breast Cancer 

tox21-are-bla-p1  ARE SR HepG2 Liver 

tox21-aromatase-p1  Aromatase SR MCF-7 Breast Cancer 

tox21-car-agonist-p1 CAR agonist NR HepG2 Liver 

tox21-car-antagonist-p1 CAR antagonist NR HepG2 Liver 

tox21-casp3-cho-p1  Caspase-3/7 Cytotoxicity CHO Hamster 

tox21-casp3-hepg2-p1  Caspase-3/7 Cytotoxicity HepG2 Liver 

tox21-dt40-p1 Cell viability Gene Tox DT40 Chicken 

tox21-elg1-luc-agonist-p1  ATAD5 Gene Tox HEK293 Kidney 

tox21-er-bla-agonist-p2  ER-BLA agonist NR HEK293 Kidney 

tox21-er-bla-antagonist-p1 ER-BLA antagonist NR HEK293 Kidney 

tox21-er-luc-bg1-4e2-agonist-

p2  

ER-BG1 agonist NR BG1 Ovarian 

tox21-er-luc-bg1-4e2-agonist-

p4 

ER-BG1 agonist (with antagonist) NR BG1 Ovarian 

tox21-er-luc-bg1-4e2-

antagonist-p1 

ER-BG1 antagonist NR BG1 Ovarian 

tox21-er-luc-bg1-4e2-

antagonist-p2 

ER-BG1 antagonist (lower 

agonist) 

NR BG1 Ovarian 

tox21-erb-bla-antagonist-p1 ER-beta antagonist NR HEK293 Kidney 

tox21-erb-bla-p1 ER-beta agonist NR HEK293 Kidney 

tox21-err-p1 ERR NR HEK293 Kidney 

tox21-esre-bla-p1 ER stress SR HeLa Cervical Cancer 

tox21-fxr-bla-agonist-p2 FXR-BLA agonist NR HEK293 Kidney 

tox21-fxr-bla-antagoist-p1 FXR-BLA antagonist NR HEK293 Kidney 

tox21-gh3-tre-agonist-p1 TR-beta agonist NR GH3 Rat pituitary 

tox21-gh3-tre-antagonist-p1 TR-beta antagonist NR GH3 Rat pituitary 

tox21-gr-hela-bla-agonist-p1 GR-BLA agonist NR HeLa Cervical Cancer 

tox21-gr-hela-bla-antagonist-

p1 

GR-BLA antagonist NR HeLa Cervical Cancer 

tox21-h2ax-cho-p2 H2AX Gene Tox CHO Hamster 



 

 

197 

Protocol Name  Assay Target Target Category Cell Line Cell Type 

tox21-hdac-p1 HDAC Gene Tox HCT-116 Colon Cancer 

tox21-hre-bla-agonist-p1 HRE-BLA agonist SR ME-180 Cervical Cancer 

tox21-hse-bla-p1   HSE-BLA SR HeLa Cervical Cancer 

tox21-luc-biochem-p1 Luciferase, biochemical Counter Screen N/A Biochemical 

tox21-mitotox-p1  Mitochondria toxicity SR HepG2 Liver 

tox21-nfkb-bla-agonist-p1 NFkB agonist SR ME-180 Cervical Cancer 

tox21-p53-bla-p1  P53 Gene Tox HCT-116 Colon Cancer 

tox21-pgc-err-p1 PGC-ERR NR HEK293 Kidney 

tox21-ppard-bla-agonist-p1 PPAR-delta-BLA agonist NR HEK293 Kidney 

tox21-ppard-bla-antagonist-

p1 

PPAR-delta-BLA antagonist NR HEK293 Kidney 

tox21-pparg-bla-agonist-p1  PPAR-gamma agonist NR HEK293 Kidney 

tox21-pparg-bla-antagonist-

p1 

PPAR-gamma antagonist NR HEK293 Kidney 

tox21-pr-bla-agonist-p1  PR-BLA agonist NR HEK293 Kidney 

tox21-pr-bla-antagonist-p1  PR-BLA antagonist NR HEK293 Kidney 

tox21-pxr-p1  PXR agonist NR HepG2 Liver 

tox21-rar-agonist-p1 RAR agonist NR C3H10T1/2 Murine embryo 

fibroblast 

tox21-rar-antagonist-p2 RAR antagonist NR C3H10T1/2 Murine embryo 

fibroblast 

tox21-rar-viability-p2 RAR viability Cytotoxicity C3H10T1/2 Murine embryo 

fibroblast 

tox21-ror-cho-antagonist-p1 ROR antagonist NR CHO Hamster 

tox21-ror-cho-viability-p1 ROR viability Cytotoxicity CHO Hamster 

tox21-rt-viability-hek293-p1 Cell viability Cytotoxicity HEK293 Kidney 

tox21-rt-viability-hepg2-p1 Cell viability Cytotoxicity HepG2 Liver 

tox21-rxr-bla-agonist-p1 RXR-BLA NR HEK293 Kidney 

tox21-sbe-bla-agonist-p1  SBE-BLA (TGF-beta) agonist Developmental Toxicity HEK293 Kidney 

tox21-sbe-bla-antagonist-p1  SBE-BLA (TGF-beta) antagonist Developmental Toxicity HEK293 Kidney 

tox21-shh-3t3-gli3-agonist-p1 Hedgehog agonist Developmental Toxicity NIH/3T3 Murine embryo 

fibroblast 

tox21-shh-3t3-gli3-

antagonist-p1 

Hedgehog antagonist Developmental Toxicity NIH/3T3 Murine embryo 

fibroblast 

tox21-spec-hek293-p1 Auto fluorescence Counter Screen HEK293 Kidney 

tox21-spec-hepg2-p1 Auto fluorescence Counter Screen HepG2 Liver 

tox21-trhr-hek293-p1  TRHR agonist and antagonist GPCR HEK293 Kidney 

tox21-tshr-agonist-p1 TSHR agonist GPCR HEK293 Kidney 

tox21-tshr-antagonist-p1 TSHR antagonist GPCR HEK293 Kidney 

tox21-tshr-wt-p1 TSHR wild type GPCR HEK293 Kidney 

tox21-vdr-bla-agonist-p1 VDR-BLA agonist NR HEK293 Kidney 

tox21-vdr-bla-antagonist-p1 VDR-BLA antagonist NR HEK293 Kidney 
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Table 7.4. Details for the Tox21 assays. The terminology for the Tox21 assays is 

clarified. The protocol name is the shorthand descriptor that used throughout to refer to 

characteristics of the assay. The subsequent columns provide the detail behind the 

shorthand or abbreviated description. Tox21 competition protein targets highlighted in 

yellow. NR: Nuclear response; SR: stress response 
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7.6. Methods 

7.6.1. Data Sources for machine learning 

7.6.1.2. ZINC  

ZINC is a free database comprised of 230 million chemicals for in silico analyses. It was 

developed as a resource for non-commercial research. Chemicals predicted here are from 

a purchasable subset; however, availability is subject to change and pricing may vary 

widely (Sterling & Irwin, 2015). 

 

7.6.1.3. Bioassay data 

Bioassay data was retrieved from ChEMBL 25 using the associated Python module, 

which enables access to the API services via Python (EMBL-EBI, 2011; Mendez et al., 

2019). The various inhibitory measures/endpoints, wherever possible, are standardized to 

nM units; the logarithm of the standardized values was used for machine learning. 

Regression models were fit for a single endpoint. For classification machine learning 

models, however, ‘active’ class chemicals were defined using the activity comments, 

endpoints with values up to 10,000 nM (Ki and IC50) and for the semi-quantitative % 

inhibition, greater than 10%. The majority class was downsampled during the training 

and model tuning phases to adjust for possible class imbalances. Training for the 

regression and classification approaches was done on 85% of the total data. Notably, in a 

small number of cases the remaining 15% was insufficient to effectively estimate 

performance using an external test set. To reduce bias, feature selection (recursive feature 

elimination (RFE) algorithm) was always run on 85% of the data over 250-300 different 
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partitions (iteratively running the 10-fold cross validation 25-30 times). However, for 

these cases, the held-out portion (15%) was then incorporated back into the dataset to 

better estimate performance of the trained model by 10-fold cross-validation (repeated 5 

times). We also fit 3 different radial basis function (RBF) support vector machine (SVM) 

models, wherein the chemical features (predictors) were randomly sampled (50%) from 

the top 70.  This makes the performance estimates more conservative.  

 

7.6.1.3. Toxicity data 

Training and testing data are curated by various government agencies and provided freely 

to the general public as databases (see Key Resources Table)  (Fonger, Hakkinen, Jordan, 

& Publicker, 2014; Kinsner-Ovaskainen et al., 2009; Richard & Williams, 2002). 

 

7.6.1.3. Vapor Pressure data 

Training and testing data are from EPI Suite (EPA, 2015), which is developed and 

maintained by the Environmental Protection Agency (EPA). Methods for fitting these 

models are as outlined in the Figure 1 pipeline. To compare the vapor pressure model 

predictions with respect to different machine learning methods as well as EPI suite, data 

were split into train/test partitions as defined in a previous study (Zang et al., 2017). 

 

7.6.2. Selecting optimally predictive chemical features  

 

7.6.2.1, Optimizing chemical structures 
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Chemical features were computed with ~5300 AlvaDesc descriptors, from the developers 

of DRAGON software, and 3D coordinates and optimization performed using RDKit in 

Python (Landrum, 2006). 

 

7.6.2.2 Chemical feature ranking and importance 

 

Recursive feature elimination iteratively selects subsets of features to identify optimal 

sets. The algorithm is a “wrapper” and therefore relies on an additional algorithm to 

supply predictions and quantify importance. We used two different algorithms, depending 

on the size and composition of data: (1) Random Forest and (2) Support Vector Machine 

(SVM). Random forest determines the importance in relation to the % increase in error 

when permuting a feature or predictor. There is no equivalent method for computing 

importance with the SVM. Accordingly, the importance is based on fitting a model 

between the response and each predictor or feature as compared to null. If the response is 

numeric, importance is derived from the pseudo R2 (non-linear regression). If, however, 

the response is binary, the AUC is instead computed for each predictor or feature (see 

Key Resources Table for algorithm source files).  

Including cross-validation with the recursive feature elimination (RFE) partitions 

the training data into multiple folds. This step avoids biasing performance estimates but 

results in lists of top predictors over the cross-validation folds such that importance of a 

predictor is based on a selection rate. 
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7.6.2.2.1 Selection Bias 

Selecting features or predictors on the same dataset used for cross validation results in 

models that have already “seen” possible partitions of the data and therefore performance 

metrics will be biased. Selection bias (Ambroise & McLachlan, 2002) was addressed by 

bootstrapping and cross validation, which ensure some separation between 

predictor/feature selection and model-fitting/validation. In addition to these methods, we 

used hidden test sets. 

7.6.3. Selecting optimal machine learning algorithms 

The support vector machine (SVM) with the radial basis function kernel (RBF) 

outperformed regularized Random Forest (regRF) or performed comparably. Rather than 

utilize many different approaches, we aggregated multiple SVM models to improve 

generalizability. However, in the case of the classification model for EIF4H, we included 

the regularized random forest algorithm, as the aggregated prediction (SVM and regRF) 

was clearly optimal on the test data.  Algorithm selection and training was done using the 

classification and regression training package in R (R Development Core Team, 2016),  

caret (Kuhn, 2008), and the implementation of the Support Vector Machine (SVM) 

algorithm in Kernlab (Karatzoglou et al., 2004). 

 

7.6.4. Enriched Substructures/Cores  

Enriched cores were analyzed using RDKit through Python (Landrum, 2006). The 

algorithm performs an exhaustive search for maximum a common substructure among a 

set of chemicals. In practice, larger sets often yield fewer substantive cores. To remedy 

this, the algorithm includes a threshold parameter that relaxes the proportion of chemicals 
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containing the core. We used a threshold of 0.55, which ensures that the majority of the 

chemicals contained the core. 

 

7.6.5. Chemical Fingerprinting 

Extended Connectivity Fingerprints (ECFP) are a class of cheminformatic algorithms that 

iteratively combine chemical features that are present within a predefined 

radius/diameter, representing them by set of integer values. Typically, the fingerprint is 

converted into a binary string of fixed length using a hash function. Here, the bit length 

was set at 1024 and a radius of 2 (diameter = 4 or ECFP4). This structural representation 

was preferred as it is strongly associated with activity (Rogers & Hahn, 

2010){Formatting Citation}. Accordingly, it is a suitable alternative to identify drug 

candidates in the absence of machine learning models. We used the ECFP algorithm in 

RDKit (Morgan or circular fingerprint) (Landrum, 2006; Morgan, 1965). The similarity 

between the fingerprints of chemicals with known activity against the SARS-CoV-2 

targets and prospective chemicals was computed using the Tanimoto index. This index is 

a similarity coefficient (0-1; 1 = max similarity). It is the overlap of the “on-bits” divided 

by the sum of the unique “on-bits. Notably, coefficients of 1 need not imply identical 

chemicals. 

𝑠𝑖𝑚(𝐴𝐵) =
𝑐

𝑎+𝑏−𝑐
 where c = overlapping “on-bits”; a = “on bits” in A; b = “on-bits” 

in B 

 

 

 



 

 

204 

7.6.6. Support Vector Machine (SVM) 

Training the support vector machine (SVM) involves identifying a set of parameters that 

optimize a cost function, where cost 1 and cost 0 correspond to training chemicals labeled 

as “Active” and “Inactive,” respectively. θT is the scoring function or output of the 

support vector machine. If the output is ≥ 0, the prediction is “Active.” The function (ƒ) 

is a kernel function. 

𝑆𝑉𝑀 𝐶𝑜𝑠𝑡 =  min
𝜃

𝐶  ∑ 𝑦(𝑖)

𝑚

𝑖=1

𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖)) +  
1

2
 ∑ 𝜃𝑗

2

𝑛

𝑗=1

 

The kernel determines the shape of the decision boundary between the active and inactive 

chemicals from the training set. The radial basis function (RBF) or Gaussian kernel 

enables the learning of more complex, non-linear boundaries. It is therefore well suited 

for problems in which the biologically active chemicals cannot be properly classified as a 

linear function of physicochemical properties. This kernel computes the similarity for 

each chemical (𝑥) and a set of landmarks (𝑙), where σ2 is a tunable parameter determined 

by the problem and data. The similarity with respect to these landmarks is used to predict 

new chemicals (“Active” vs. “Inactive”). 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 =  𝑒𝑥𝑝 (−
‖𝑥 − 𝑙(1)‖

2

2𝜎2
) 

7.6.7. Model Performance Metrics 

The Area under the ROC Curve (AUC) assesses the true positive rate (TPR or sensitivity) 

as a function of the false positive rate (FPR or 1-specificity) while varying the probability 

threshold (T) for a label (Active/Inactive). If the computed probability score (x) is greater 
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than the threshold (T), the observation is assigned to the active class. Integrating the 

curve provides an estimate of classifier performance, with the top left corner giving an 

AUC of 1.0 denoting maximum sensitivity to detect all targets or actives in the data 

without any false positives. The theoretical random classifier is reported at AUC = 0.5.  

𝑻𝑷𝑹(𝑻) = ∫ 𝒇𝟏(𝒙) 𝒅𝒙
∞

𝑻

 

𝑭𝑷𝑹(𝑻) = ∫ 𝒇𝟎(𝒙) 𝒅𝒙
∞

𝑻

 

Where 𝑻 is a variable threshold and 𝒙 is a probability score. 

However, we generated classifiers that are more authentic than theoretical random 

classification, shuffling the chemical feature values in the models and statistically 

comparing the mean AUCs across multiple partitions of the data. This controls against 

optimally tuned algorithms predicting well simply because of specific predictor attributes 

(e.g. range, mean, median, and variance) or models that are of a specific size (number of 

predictors) performing well even with shuffled values. Additionally, biological data sets 

are often small, with stimuli or chemicals that—rather than random selection—reflect 

research biases, possibly leading to optimistic validation estimates without the proper 

controls.  

We used the AUC for evaluating classification models. For the classification-

based training, we initially converted the inhibitory data into a binary label 

(Active/Inactive). For predictions of quantitative bioassay measures (e.g. Ki, IC50, AC50, 

Log LD50), we computed the mean absolute error (MAE), the correlation coefficient (R) 

and the squared correlation coefficient (R2). MAE: Mean absolute error is the mean of 
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the absolute difference between predicted and observed (% usage). It therefore assigns 

equal weight to all prediction errors, whether large or small.  

 

MAE = 
1

𝑛
 ∑ |𝑦 − �̂�|𝑛

𝑖=1 ; where, �̂� = predicted and 𝑦 = observed 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
; where, TP = True Positive and FN = False Negative 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ; where, TN = True Negative and FP = False Positive 
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