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ABSTRACT OF THE DISSERTATION

Applications of Computation to Understand Chemosensory Processing
by

Joel Kowalewski

Doctor of Philosophy, Graduate Program in Neuroscience
University of California, Riverside, March 2021
Dr. Anandasankar Ray, Chairperson

Chemosensory processing encodes environmental information, relaying it to neural
systems that regulate key behavioral responses. This broad definition implies the study of
chemosensory processing is relevant across model organisms, leading to multiple
practical applications. Of interest is chemosensory processing in agricultural pests and
insect vectors, since volatile organic compounds and tastants determine behavior toward
humans and agriculture. Some work has been done to uncover key pathways mediating
behavioral attraction and aversion in the fruit fly, Drosophila melanogaster, as well as
mosquito vectors. However, the limited number of pathways that can be experimentally
manipulated suggests computational methods offer a complementary method. Machine
learning has been applied to successfully predict ligands of insect chemosensory
receptors. But these tools have not yet been applied across sensory encoding,

identification of important neural pathways for attraction or aversion, and the discovery

v



of receptor ligands and chemical repellents. Such a comprehensive analysis pipeline is
the aim of this work. Although emphasis is on insect repellent discovery, human as well
as broader ecological toxicity remain highly relevant. This demands accurate in silico
toxicity estimation in addition to cosmetic properties such as odor perceptual qualities
that are a key consideration in designing topical formulations. Modeling of toxicological
endpoints and human perceptual encoding by odorant receptors and the physicochemical
features of odorants, are therefore discussed independently in detail, and later included
into the repellent discovery pipeline. Ultimately, the discovery pipeline has helped
identify numerous insect repellents that have desirable properties such as flavors and
fragrances, has provided key insights into theories of chemosensory processing, and has
been adapted to drug repurposing and discovery for COVID-19, with several top

predicted compounds subsequently confirmed in vitro assays by others.



TABLE OF CONTENTS

Chapter 1: INtroduction ..............ccooiiiiiiiiii i ereeeeeieee e et e e e e e e e ereeeesneaeeeesnnneeeens

Chapter 2: Sensory pathways that are predictive of behavioral valence in insects

2.1 INEEOAUCTION L.ttt et ettt e e st e bt e et e sseeenteas
2.2 RESUILS .ttt ettt ettt ettt ht e et e bt e et enat e et esneeenteas
2.3 DHSCUSSION ..entieiiieiie et ette ettt et te st e et e sat e et eessteeabeesateenbeessaeenbeesateenseesneesnseesaeeenseannns 11
24 FIGUIES ..ottt ettt ettt ettt et e s st e et e esat e e bt e sabeenbeesateeabeesnbeenseesaeeenseennee 13
2.5 METROAS ..t 18

Chapter 3: Discovery of physicochemical properties of ligands that act on repellent
pathways

R B 13 (0T L1 Lo o) WSS 21
3.2 RESUILS .ttt ettt ettt ettt sttt et sae e 24
3.3 DISCUSSION ..vnieiieiieteete ettt ettt ettt ettt eat e bt et e s it e s bt et e esee s st ensesseenbeenseeneenaeenee 26
B FIGUTES .ottt ettt e e et e et e e et e ettt e e steeesbeeessaeeensaaesnsaeenssseennseeennseeennses 29
3.5 MEROAS .. 33

Chapter 4: Natural repellent and attractant activity of microbial metabolites on
human skin

4.1 INEEOAUCTION ..ttt ettt ettt 39
4.2 RESUILS ..ottt ettt et ettt et e et e et e et e st e ebeesateenbeennee 42
4.3 DISCUSSION ..ttt ettt et ettt et e ettt et e sat e e bt e eate et e esaeeebeesbeeeabeessbesabeesaeeenreenaee 48
A4 FIGUIES c..vteeeiiiee ettt eiee et e e st e ettt e ettt e esteeesbeeensaeeesssaeansaeeensaeeansaeesnseeensseeensseennns 51
4.5 TADBIES ..ttt et 63
4.0 METNOAS ...t ettt ettt e 64

Chapter 5: Predicting human odor perception of odorants including repellents

5.1 INEOAUCTION ..ttt ettt sttt 68
5.2 RESUILS ..ttt ettt et st eeas 71
5.3 DISCUSSION ..uiiiiiieteeite ettt ettt sttt ettt et st be et e bt e bt et e saee bt et e saeesaeenee 78
S FIZUIES ..ottt ettt ettt et e ettt e bt e et e e bt e et e e st e e ab e e bt e enbeenneeenneenaaeenbeenne 81

vi



5.5 TADLES oo e e e ————aaeeee e e a——————— 98
S0 METNOAS ..o 103

Chapter 6: Predicting human olfactory perception using odorant receptor activities

6.1 INEOAUCTION ...ttt ettt st be e 118
0.2 RESULLS ...ttt sttt sttt et st 121
0.3 DISCUSSION ..eentiiuiieiiettete ettt ettt ettt ettt ettt e bt et se e e sbe e e e st e sbeebesaeesaeeaeenees 127
0.4 FIGUIES ...ttt ettt et ettt e bt e et e e aeesabeesaee e bt e snteenbeenneeens 131
0.5 TADIES ...t ettt ettt esateeas 147
6.0 METROAS ...ttt sttt ettt et 157

Chapter 7: Adapting the computational pipeline to discovery of odorant-based
Covid-19 drugs

7.1 INEEOAUCIION ..ottt ettt e et e et e e e staeeessaeeetaeesssaeeesseeeesseeesnseeenns 164
T2 RESUILS ..ottt ettt et e et eae e st e e st e e saeeabaessaeesbeessaeenseennneans 168
7.3 DISCUSSION ..euviieiiieiieeiteesiieeiteestteeteesteeebeeseeesseessteesseessseasseesssesssaessseasseesssesseessseans 174
T4 FIZUIES ..ttt ettt ettt ettt e et e st e et e bt e enb e e teesabeesaeeenbeassseenseennbaens 177
7.5 TADIES ..ttt et e e et e e bt e e s aa e e e aaeeebaeenareeenn 190
7.6 MEENOAS ...t et e e sae e et e e et e e e aaeesaaaeeebeeesareeenes 199
REFEIEIICES .........oooiiiieiie et et e et e e et e e e aaeeentaeeensaeennseeennsees 207

vil



LIST OF FIGURES

Chapter 2: Sensory pathways that are predictive of behavioral valence in insects

FIGUIE 2.1 ottt ettt et e e e et e s e et e e st e enbeesnbeenneesaaeenreennns 13
FIGUIE 2.2 oottt ettt ettt et e st e et e e ab e et e e e b e enneesaaeenreeenes 14
FIGUIC 2.3 ettt ettt e et e e et e e et e e e saeeeataeeesbaeessraeensbeeennraeenns 15
FIGUIC 2.4 ..ottt ettt e et e e et e e e ta e e e sbeeeataeeesbaeeenbaeennaaeeenreeenns 16

Chapter 3: Discovery of physicochemical properties of ligands that act on repellent
pathways

FIGUIE 3.1 ettt et ettt e st e et e st e e enee 29
FIGUIE 3.2 ettt ettt ettt et e et st enee 30
FIGUIE 3.3 ettt ettt ettt e st e e ate e eeee 31

Chapter 4: Natural repellent and attractant activity of microbial metabolites on
human skin

FIGUIE 4.1 ettt ettt ettt et et eae et et saeens 51
FIGUIE 4.2 ettt ettt sttt ettt et 52
FIGUIE 4.3 ettt sb ettt et b ettt 54
FIGUIE 4.4 ..ottt ettt sttt ettt et 56
FIGUIE 4.5 .ottt ettt ettt ettt et 57
FIGUIE 4.6 .ottt ettt e 59
FIGUIE 4.7 ettt ettt ettt et 60
FIGUIE 4.8 .ottt ettt st 62

Chapter 5: Predicting human odor perception of odorants including repellents

FIGUIE 5.1 oottt sttt ettt st 81
FIGUIE 5.2 ettt ettt ettt 83
FIGUIE 5.3 et ettt ettt et 85
FIGUIE 5.4 ettt ettt ettt 87
FIGUIE 5.5 et ettt ettt ettt e 89
FIGUIE 5.0 ettt ettt sttt et ettt et 91
FIGUIE 5.7 ettt ettt ettt st 93

viil



FIGUIC 5.8 oottt ettt e e e e e et e e s sae e ensaeessbaeesssaeessseeeeaseeenns 94
FIGUIC 5.9 ettt e et e e et e e et e e s aa e e ssbaeeesbaeennbeeenaraeenns 96

Chapter 6: Predicting human olfactory perception using odorant receptor activities

FIGUIC 0.1 ettt e ettt e e et e e st e e e baeeenreeesssaeeeabeeeenreeas 131
FIGUIC 0.2 ..ottt e et e et e e st e e e bt e e e naaeeensaeenabeeeenreeas 133
FIGUIC 0.3 oottt et e et e e et e e st e e e bae e s saaeeesbaeenabeeennreeas 135
FIGUIC 0.4 ...ttt ettt ettt st e sat e bt et eneeas 137
FIGUIC 0.5 oottt ettt ettt e s e et e snbeestaeenbeessaeensaas 138
FIGUIE 0.6 ...ttt ettt st e e e et e enbeestaeenseessaeensaas 139
FIGUIC 0.7 ettt et ettt e s e et eesbeesseesnbeeetaeenseessseensaas 141
FIGUIE 0.8 ..ottt et et st e s b e et e sebeestaeenseesnaeensaas 142
FIGUIE 0.9 ..ottt ettt sttt et eneeas 144
FIGUIE 6.10 ...ttt ettt ettt et enneas 146

Chapter 7: Adapting the computational pipeline to discovery of odorant-based
Covid-19 drugs

FIGUIE 7.1 ettt st ettt et et eaeeas 177
FIGUIE 7.2 oottt ettt ettt et st 179
FIGUIE 7.3 ettt sttt ettt st 180
FIGUIE 7.4 oottt ettt et st nae e 182
FIGUIE 7.5 ettt ettt sttt st 184
FIGUIE 7.6 ettt ettt et as 185
FIGUIE 7.7 ettt ettt ettt es 186
FIGUIE 7.8 ettt et sttt es 187
FIGUIE 7.9 ettt sttt e eaeeas 188

X



LIST OF TABLES

Chapter 4: Natural repellent and attractant activity of microbial metabolites on
human skin

TADIE 4.1 ..ttt 63

Chapter 5: Predicting human odor perception of odorants including repellents
TADLE 5.1 ..ttt 98
TADIE 5.2ttt 102

Chapter 6: Predicting human olfactory perception using odorant receptor activities

TADIE 6.1 ..ottt et 147
TADIE 0.2ttt sttt nees 150
TADIE 6.3 .. ettt et be s 152
TADIC 0.4 ...t e et e et e e et e e e tae e e baeeearaeebeeennraeenns 155
TADIE 0.5 e e e e e et e e e ta e e e baeeearaeebeeennraeenns 156

Chapter 7: Adapting the computational pipeline to discovery of odorant-based
Covid-19 drugs

TADLE 7.1 ettt ettt st ea 190
TADLE 7.2 ettt ettt ettt e b et et eenaaens 193
TADLE 7.3 ettt ettt ettt ettt e bt e nteebeennaeens 195
TADLE 7.4 ..ttt et ettt e bt e nae et eeateens 196



Scientific Contributions

Acknowledgements

I would like to thank my coauthors and the supervision of my advisor, Anandasankar
Ray. I am equally thankful for my parents and their persistent support of my academic
and scientific research pursuits.

The text of this dissertation is reproduced in part with the permission of the licensor
through RightsLink® as it appears in:

MacWilliam, D., Kowalewski, J., Kumar, A., Pontrello, C., & Ray, A. (2018). Signaling
Mode of the Broad-Spectrum Conserved CO2 Receptor is One of the Important
Determinants of Odor Valence in Drosophila. Neuron, 97(5), 1153-1167.e4.
https://doi.org/10.1016/j.neuron.2018.01.028

Kowalewski, J., Huynh, A., & Ray, A. A systems level analysis of the olfactory percept
space. (2021, in press). Chemical Senses, Oxford Univ. Press.
https://doi.org/10.1093/chemse/bjab007

The text of this dissertation is also reproduced in part in accordance with licensors who
have given these rights without permissions to the author(s) to reuse published content in
the dissertation as it appears in:

Kowalewski, J., & Ray, A. (2020). Predicting Human Olfactory Perception from
Activities of Odorant Receptors. iScience, 23(8), 101361.
https://doi.org/10.1016/].15¢1.2020.101361

Kowalewski, J., & Ray, A. (2020). Predicting novel drugs for SARS-CoV-2 using
machine learning from a >10 million chemical space. Heliyon, €04639.
https://doi.org/10.1016/].heliyon.2020.e04639

Chen ST, Kowalewski J, Ray A. (2021). Prolonged activation of carbon dioxide-sensitive
neurons in mosquitoes. Interface Focus 11: 20200043.
https://doi.org/10.1098/rsfs.2020.004

Data and editorial synthesis of the dissertation

Behavioral and electrophysiological data used in analyses for Figures 2.1 — 2.4 are from
Drs. Crystal Pontrello and Dyan MacWilliam, respectively. Similarly,
electrophysiological recordings and behavior data in Figures 3.1 and 3.2 were performed
by Dr. Stephanie Turner-Chen. This data was used to develop the computational models
in Figure 3.3.

xi


https://doi.org/10.1016/j.neuron.2018.01.028
https://doi.org/10.1093/chemse/bjab007
https://doi.org/10.1016/j.isci.2020.101361
https://doi.org/10.1016/j.heliyon.2020.e04639
https://doi.org/10.1098/rsfs.2020.004

Chapter 1

Introduction

Mosquitoes including Aedes aegypti and Anopheles gambiae, which are notable insect
disease vectors, as well as the fruit fly, Drosophila melanogaster, sense the chemical
surroundings through Ionotropic Receptors (IRs), Gustatory receptors (Grs) and Odorant
receptors (Ors). These chemosensory receptor classes are largely housed in structured
called sensilla, with limited overlap between classes per sensillum. Each sensillum is
identified by hair-like protrusions from the superficial epidermis (cutical). These hair-like
structures are porous, enabling the transfer of chemicals into the sensillum and onto the
sensory neuron dendrites, which house the receptors. The dendrites, extending down to
cell bodies, are bathed in lymph. An electrochemical potential accumulates due to a
difference in charge and ion concentration between the intracellular membrane surface
and extracellular lymph. The sensory receptors at the dendrites subsequently mediate ion
flow, altering the charge and concentration balance either toward or away from the
activity threshold. Surpassing this activity threshold leads to an action potential or wave
of intracellular depolarizing current relative to the extracellular sensillum lymph. The
wave in turn propagates to second order neurons or glomeruli. These glomeruli represent
a critical layer in which sensory information from antennal neurons is integrated and
subsequently relayed to high order brain structures for memory and behavior regulation.
One key neural pathway in Diptera, particularly mosquitoes and flies, is
associated with CO; sensing. While the specific receptors are distinct, dedicated CO>

response pathways are well conserved across Diptera, including the experimentally



tractable and well-studied model organism Drosophila melanogaster or more broadly the
fruit fly. Evolutionary conservation among diptera thus offers the possibility to develop
general chemosensory processing models using Drosophila. Researchers have already
characterized attractive and aversive behaviors in response to various environmental
chemicals as well as some neural pathways. However, these studies alone cannot easily
highlight putative interactions among numerous sensory receptor pathways or compare
them according to their contribution to behavior.

An important next step is to clarify the most relevant receptor pathways. Here,
alongside collaborators, I have outlined computational approaches to understand the
chemosensory pathways underpinning simple attractive and aversive behaviors (Chapter
2); the subsequent chapter then applies these findings to accurately predict the activity of
chemicals that target these pathways (Chapter 3). Accordingly, the need for a
comprehensive map of chemicals on or potentially on human skin including the
relationships between their structures and mosquito behavior is addressed in Chapter 4 as
well as the development of a computational discovery pipeline for chemical repellents.
Notably, since the repellents must equally be safe and suitable for human use, cosmetic
and physical properties of a chemical are also important. Later chapters (Chapters 5-7)
therefore include computational modeling of human perceptual neuroscience (Chapters 5
and 6) and toxicity (Chapter 7). While this work is centered around chemosensory
neuroscience, the concluding chapter (Chapter 7) illustrates that the discovery pipeline
for insect repellents can be generalized for COVID-19 treatments; repurposing approved

drugs and discovering novel therapeutic compounds. Taken together, these studies



demonstrate the value of computational tools in basic biology and neuroscience research,

with an emphasis on understanding chemosensory processing from theory to application.



Chapter 2

Sensory pathways that are predictive of behavioral valence in insects

2.1. Introduction
Although several insect repellents are widely and consistently used, the precise
mechanisms, particularly for the most prominent chemical repellent, N, N-Diethyl-meta-
toluamide (DEET), remain unclear. DEET is the outcome of a large-scale government
initiative in the 1950s to discover chemical strictures that repel or possibly incapacitate
insects. In subsequent decades, it has been thoroughly studied to replicate its efficacy, but
these efforts have suggested numerous modes for its repellent activity. This complexity
makes it challenging to use traditional chemical approaches, which are most successful
when one or few protein targets are well defined. It is then plausible to design chemicals
around the relevant physical constraints of the protein target(s) such as the electrostatic
interactions that facilitate docking. However, in chemosensory science, even if the
protein targets were well defined, there is a paucity of 3D structural data for sensory
receptors. This presents, at least initially, a computational problem. This problem can be
broken down into two steps: (1) Identification of the sensory receptors/pathways that are
predictive of simple behaviors in mosquitoes and agricultural pests; (2) study the
physicochemical attributes of chemicals that act on these receptors/pathways by
identifying which of these attributes best predict the activity.

The work presented in this chapter canvasses the first of these two steps. Here, my
colleagues and I observed a correlation between electrophysiological recordings from the

CO2 detecting neuron in Drosophila and odor valence (e.g. attraction or aversion to an



odorant). Odor valence was quantified using the T-maze assay, where flies navigates to a
solvent treated control arm or a chemically treated experimental arm. Counting the flies
in each arm and expressing as a ratio gives the Preference Index (PI), a coefficient from -
1.00 to +1.00 that quantifies attractive (positive values) and aversive (negative values)
behaviors. Though the activity of odorant receptor neurons (ORN5) is not measured
during the T-maze assay, the fly’s navigation is based on detecting odorant molecules via
these neurons. It is therefore possible to record from these neurons independently of the
assay, later using these activities to predict the Preference Index (PI).

My colleagues and I started with activities from 24 odorant receptor neurons
(ORNSs) in the antennae. Interestingly, we failed to find a correlation between
electrophysiological recordings from these neurons compared to ab1C, a unique sensory
neuron, also housed in the antennae that expresses gustatory receptors rather odorant
receptors. Early developmental regulation typically leads to the expression of a unique
odorant receptor in the odor-sensing neurons of the antennae; the neuron is therefore
often abbreviated as the odorant receptor alone. The ab1C neuron, in contrast expresses
two receptors, Gr21 and Gr63a, which confer sensitivity to CO.. This specialized neuron
is highly evolutionary conserved. Subsequently, the correlation between activity from this
neuron to 54 odorants and the corresponding Preference Index (PI) values from the T-
maze was surprising.

The relevance of ab1C activity to odor valence in Drosophila as well as evidence
in mosquitoes suggested the hypothesis that CO2 detecting neurons may be key in

predicting mosquito and fruit fly behavior. My work focused on determining if a rigorous



computational analysis would support this, work which is outlined in this chapter for

Drosophila (fruit flies).

2.2 Results

2.2.1 Predicting behavior with and without ablC activity.

To assess the behavioral contribution of the activity recorded from the 24 ORs (olfactory
sensory neurons, ORNs) and the Gr21a/Gr63a-expressing ab1C neuron, we performed a
series of statistical and feature-selection approaches. These identify which receptor(s)
optimally predict behavior (Figure 2.1A). Initially, a simple regression analysis using the
known activities of the 24 ORs to 54 odorants failed to explain the variability in fly
preference (Preference Index, PI) to these same odorants (p >.05). However, adding the
activity of the ab1C neuron, improved the fit, explaining 63% of the variation in the T-
maze behavior (p = 0.03). Interestingly, the activity of ab1C alone was also statistically
significant (p<0.001) and favored according to a measure that evaluates the quality of the
model fit (BIC = 24.6) (Figure 2.1B, C).

We next identified the minimum number of receptors that could predict behavior,
as was done previously for larval behavior (Kreher et al., 2008). The 25-predictor model
(24 Ors and ab1C) was analyzed using stepwise regression, entailing the sequential
removal of predictors until converging upon an optimal subset. Candidate models were
screened using values of R squared and the Bayesian Information Criterion (BIC).
Surprisingly, only a two-predictor model with ab1C and Or85f was retained when using
the stepwise selection method alone as before (Kreher et al., 2008). In order to further

control if this model was a byproduct of a few influential odorants affecting the



regression fit or spurious correlations with the Preference Index (PI), the odor space was
sampled from with replacement, a procedure that is also referred to as bootstrapping. This
resulted in thousands of random combinations of the 54 odorants, ensuring the reliability
of the finding. Running the stepwise regression iteratively on 5000 combinations and
recording the selection rate for each predictor in the final model suggested that a model
including ab1C, Or2a, Or67a, Or59b, and Or19a generalized well across the different
odorant combinations (Figure 2.1D). High selection rate across the combinations was for
the most part consistent with the t statistic assigned to each predictor for the full linear
regression model (e.g. all 25 predictors) to the 54 odors (Figure 2.1B, C). The linear
regression model with the smaller subset of informative predictors resulted in the linear
equation, Avg. PI=-0.23 - 0.09 Or67a + 0.02 Or2a - 0.04 Or59b - 0.03 Or19a - 0.14
ab1C (Figure 2.1E). Most of the predictors in the model are broadly tuned ((Hallem and
Carlson, 2006), DoOr database (http://neuro.uni-konstanz.de/DoOR/default.html)),
consistent with the expectation that, since they are activated by many odorants, they
should remain predictive of the T-maze behavior across many different combinations of
the 54 odorants. The importance of ab1C was the highest among the 25 sensory neuron
activities, as determined by the number of times it was selected (out of 5000) for the
final, “best” model, based on statistical criteria. This further emphasizes the role of ab1C
in predictions of odor valence (Figure 2.1D).

Given further evidence that ab1C activity was more informative than Ors, we
revisited the comparison between ab1C and the 24-Or model (shown in Figure 2.1B) but

now using a cross validation procedure. This entails repeatedly fitting the regression



models on a smaller subset of odorants, then predicting the T-maze behavior for the
odorants that are excluded. In this sense, it offers a true assessment of the average
predictive power of the model and therefore helps evaluate its usefulness in predicting the
T-maze behavior for any arbitrary odorant, rather than simply the 54 odorants studied
here. To perform this analysis, the regression model with all Ors (e.g. excluding ab1C)
was now fit using regularized regression (also called ridge regression). Because the larger
24 Or model is more complex than ab1C alone, it will also be less stable in its
predictions. Such a scenario may give rise to poor prediction of T-maze behavior purely
for statistical reasons. Regularization circumvents this by penalizing the larger, 24 Or
model from being too complex, which means the coefficients for Ors that are not
informative are shrunk toward 0; that is, they contribute little to the prediction. The
results of this analysis indicated that ab1C explained 41% of the variability in T-maze
behavior over the validation approach, as compared to 22% for the all Or model (Figure
2.1F).

It remained unclear from these analyses, however, to what extent odor valence
was indeed a linear function of receptor/neuron activity in the antenna and if this was an
unreasonable constraint. Recent studies have suggested the possibility of non-linear
interactions in contribution of ORNs or glomerular activities to behavior behavior (Badel
et al., 2016; Bell and Wilson, 2016). We therefore broadened the scope of our analysis
using different machine learning algorithms that are more flexible and conducive to
capturing non-linear relationships. Using these, we tried to determine (1) at what

frequency would ab1C meaningfully improve predictions regardless of the algorithm



being used, (2) what are the consensus optimal predictor sets selected across these
algorithms, and (3) which algorithms minimize prediction error after removing
uninformative predictors (Methods). To compare the differing approaches and models,
error rates were evaluated using bootstrap validation (1000 resamples) or 10-fold cross-
validation, repeated 100 times (1000 folds). These techniques involve training each
algorithm on a matrix of receptor activities to odorants, subsequently predicting the T-
maze Preference Index (PI) for samples of odorants that were not used during the
training. Across algorithms for identifying optimal predictors, ab1C was always ranked
above the 24 Ors, followed by Or67a and Or22a. Intriguingly, Or22a, which displays a
more complex relationship with behavior was high on every list but was nevertheless
missed by the previous OLS regression and stepwise removal (Figure 2.2A, B). In
general, models sensitive to non-linearity and interactions amongst the predictors resulted
in slight improvement during validation, yet the major determinant was whether ab1C
was in the model (Figure 2.2B, D; Figure 2.3A, B). Despite implementing many complex
algorithms, any improvement approximated our control case, fitting a simple regression
model with ab1C and Or67a (R? = 0.45) (Figure 2.3A, B). Larger odor samples will
undoubtedly favor these sophisticated algorithms, but it remains surprising that ab1C was
selected as one of the top predictors of valence for the T-maze behavior generated in this
study.

It would be important to ask whether ab1C activity is also a significant predictor
for other types of olfactory behavior in longer-term assays such as the wind-tunnel,

walking assays, or traps. While large odor sets have not yet been tested in the wind-



tunnel, we were able to utilize a large behavioral preference data set generated using trap
assays, which had substantial overlap with the odorants (47/110) that we tested in the T-
maze (Knaden et al., 2012). The trap assay evaluates attraction to a “trap” or baited
enclosure and is run for a longer duration than the T-maze (hours vs minutes). But the
Preference Index (PI) (T-maze) and Attraction Index (Al) (trap assay) are otherwise
conceptually similar. Interestingly, the behavioral preferences across the 2 assays differed
for odorants common to the two studies (r = 0.01 p = 0.9; rank ordered correlation for the
bottom ten scoring compounds in the T-maze assay rho = 0.44, p = 0.2), which suggests
the behavior is potentially occurring through different olfactory pathways. Applying the
earlier computational approach to predict the trap assay behavior, we identified the top 7
optimal predictors (Ors) (Figure 2.4B). However, unlike with the T-maze, few predictors
were individually informative; it was no longer evident that a simple rank ordering from
the selection rate was useful. Instead, combinations of the top 7 predictors were
reassessed using repeated 10-fold cross-validation, or repeatedly dividing the data into
training and testing portions, as discussed earlier. The ordinary least squares (OLS)
regression fit for the best model resulted in the linear equation, Avg. Al =0.19511 +
0.07894 Or59b - 0.09033 Or49b - 0.05763 Or98a on the original data (Figure 2.4D-F).
These results suggest that the statistical approach we applied can nevertheless identify
odorant receptors that predict the trap behavior (R?=0.4), as was possible with T-maze. A
more general approach excluding cross-validation and considering activities of all 24 Ors
was not sufficient to predict behavior (Knaden et al., 2012). Surprisingly, however, ab1C

was not a significant predictor of the trap behavior, suggesting that the behavioral

10



responses to these two olfactory assays are likely generated in a fundamentally different

manner, using different receptors.

2.2. Discussion
An exhaustive statistical analysis to test whether a few selected ORN types could model
the T-maze behavior in response to the tested odorants led to a linear model with 4
broadly-tuned Ors (Or2a, Or19a, Or59b and Or67a) and Gr21a/Gr63a. In fact, in every
possible unbiased analyses we tried, both simple linear regression and based on
sophisticated machine learning (altogether ~20 different methods), the activity of ab1C
was consistently selected as the top performing descriptor for behavior predictions. The
valence of several odorants therefore depends upon the Gr2/a/63a (ab1C) pathway.
However, narrowly tuned Ors detect odorants that elicit specialized behaviors such as
oviposition, or act as pheromones, some that are species-specific (Knaden and Hansson,
2014). Our experiments also illustrate that the valence of ~16% odorants are lost and
~10% are altered in the orco mutant flies, suggesting the importance of the Or pathway
(MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018). This is consistent with
recent studies showing segregation of spatial inputs for attractive and aversive odorants in
the Lateral Horn brain region of the second order projection neurons connected to Or-
neurons (Strutz et al., 2014).

Although simple regression approaches were suitable to optimally predict
behavior, more sophisticated algorithms with sensitivity to non-linearity led to

incremental improvement. Consistent with Bell and Wilson (2016), some Or activities
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relate to behavior non-linearly, and therefore it is expected that algorithms that can
capture all relationships (linear and non-linear) will ultimately be optimal. However, it is
likely that the number of odorants studied here was not large enough to result in a
substantive performance difference. The predictive success shown here suggests
computation may be used to merge separate behavior and electrophysiological

experiments, gaining new insight into insect control.
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2.4. Figures
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Figure 2.1. CO; receptor neuron activity required for prediction of odor valence from
responses. A) Sample workflow of the modeling approach. The T-maze preference index
for 54 odor x 24 Or-response matrix was used to predict the PI; this Or-only model was
initially fit using OLS regression and was then retested for fit after adding ab1C activity
for the 54 odorants. Uninformative predictors were removed and the reduced model was
validated. B) Tabulated measures of fit are shown for the labeled model on the original
data. C) Predicted PI was plotted as a function of the observed PI for the 240R+ ab1C
model; the red line depicts the linear trend while the overlaying gray band is the standard
error for th fit. D) Predictors that are selected most frequently and their selection rates,
across 5000 iterations of stepwise regression, resampling the 54-odorant set on each run.
The black vertical line is the empirically determined threshold for consistent selection out
of 5000 iterations. E) Linear equation of the optimal predictors. Units for the coefficients
reflect the Z transformed spikes/s. F) Average performance on 1000 cross-validation test
folds is shown for two models. To ensure optimal performance and stability of the larger
Or-only model, the test average is shown for ridge regression and compared to ab1C
alone using OLS regression. Abbreviations: OLS, Ordinary Least Squares; BIC, Bayesian
Information Criterion.
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Figure 2.2. Identifying the optimal predictors using multiple approaches. A) Several
model selection algorithms arrive at a consensus minimal set of optimal predictors and all
include ab1C. B) Additional algorithm-specific variable importance measures scaled to
the maximum. Ten predictors appearing in the lists shown in (A) were tested on the 54
odorant set using recursive partitioning (RPART), partial least squares (PLS), random
forest (RF) and ordinary least squares (OLS) regression. Except for random forest the
scaled importance metrics are derived from the original fit and are independent of
resampling or cross validation. Of the optimal Ors selected for reducing prediction error
on 1000s of resampled odor sets, some are not important on the original data; ab1C does
however display consistency in this context.

14



A SVM linear
Bayesian Ridge Reg
OLS Reg

CART

Cond Inf Trees

Boosted Trees

PLS Reg

Elastic Net

Stepwise Reg

LASSO Reg

Boosted GLM

M5

OLS reg (Or67a & ab1C)
Bagged Trees

Ridge Reg
MARS
Random Forest
KNN
SVM Radial
Cubist
T T T T T
0 0.2 0.4 06 0.8
RMSE
B
RMSE Rsquared
Cubist 0240 0.500
Random Forest 0250 0470
OLS Or67a and ab1C 0260 0.450
Gradient Boosted Machine 0.260  0.400 Statistic N Mean St. Dev. Min Max
Bagged Trees 0260 0.440 RMSE 110.255 0.009 0.2400.270
Conditional Inference Trees 0.270 0.450 Rsquared 11 0.458 0.035 0.400 0.520
MARS 0250 0.520
SVM Radial Kernal 0.250 0.460
k-Nearest Neighbors 0240 0480
PLS Regression 0260 0410
Ridge Regression 0.260 0460

Figure 2.3. Identifying the optimal methods for predicting behavior. A) Multiple
machine learning algorithms are compared for the 10 best predictors, using the two
predictor model of ab1C and Or67a as a control case. Performance is evaluated on
different portions of data “hidden” from the original fit. The performance metric is the
square root of the average difference (error) between the predicted and observed
Preference Index (PI) for the T-maze (RMSE). Each algorithm that is labeled along the
vertical has been evaluated 1000 times according to this metric; each time is the
prediction of the Preference Index on a different set of “hidden” or test odorants. Because
the odorants in these test sets are the same for all algorithms, it is possible to compare.
Therefore, the colored vertical lines represent all the test performances from one
algorithm to the next. The objective then is to identify the lowest RMSE (error) values
and those that are less scattered; the latter highlights the algorithms that predicted the
behavior with less variability. The plot illustrates that the simple regression model (OLS)
with Or67a and ab1C predict with error rates comparable to many sophisticated
algorithms. Algorithms like the linear support vector machine (SVM Linear) predict less
accurately, with high variability. B) Left, the averaged performance metrics, including
the R squared, confirm no approach warrants selection over the two-predictor model fit
using OLS regression, given a diverse but not exhaustive set of 54 odorants. Right, the
summary statistics for the tabulated performance shown on the left.
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Figure 2.4. Optimizing the prediction of odor valence from the trap assay. A) The 24 Or
model including ab1C is compared to a three predictor model, performing optimally
during cross-validation. Statistics comparing these models are based on the OLS
regression fit, predicting the attraction index (Al) for all 47 odorants overlapping with
available ab1C activities. B) Following filtering for high correlations, potentially
predictive models were pre-screened based on the rate of predictor selection according to
stepwise regression using BIC minimization and backward elimination on 10,000
resamples of the odor space. Unlike in the T-maze, few predictors were individually
informative; it was no longer evident that a simple rank ordering from the selection rate
was useful. Instead, combinations of the top 7 predictors were assessed using repeated
10-fold cross-validation. C) Top 7 predictors based on the selection rate for the 110
odorant set. D) The best performing model as determined by cross-validation. Estimates
for coefficients in the linear equation are representative of the standardized activities (Z-
transform) for each of the predictors on the 47 odorant set and are subsequently on the
same scale. E) The average variability accounted for in the attraction index across 100
iterations of 10-fold cross-validation using the model in D and the 47 odorant set. F) The
cross-validation performance is collapsed into 50 bins representing the variability in
performance (solid line), along with the overall average (dashed line). Abbreviations:
BIC, Bayesian Information Criterion; OLS, ordinary least squares.
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2.5. Methods

2.5.1. Drosophila T-maze assays

T-maze behavioral testing using Drosophila was performed as described previously
(Turner and Ray, 2009), with minor modifications. Twenty males and 20 females, 3-7
days old, wet starved ~20-25 hrs were used in each trial in a T-maze without airflow,
placed inside a 30 cm3 white card perimeter. Odorants were of the highest available
purity (Sigma-Aldrich). Chemicals were diluted in water or paraffin oil. For most
odorants, tubes contained 10 ul of odorant solution or solvent, were sealed with Parafilm
and allowed to volatilize for ~10 min prior to the start of each 1 min trial.

PI = (flies in test arm — flies in control arm)/total number of flies in arms of T-maze.

2.5.2. Computational modeling of behavior

Regression analyses were conducted in R version 3.3 (R Core Team, 2016) using the
step() and Im() functions. After fitting the full model, predictors were assessed in smaller
subsets using an exhaustive search algorithm, applying multiple parameters for the
quality of the fit. Models that reduced complexity while optimizing the R squared,
Mallow’s Cp and BIC statistics were cross referenced with the solution from stepwise
regression, which employs an automated search for optimal predictors; the full model
was fit with successive removal of predictors (backward selection) based on BIC
minimization (BIC: Bayesian Information Criterion). The BIC is a probability measure

that is used to identify the model that is best supported by the data. If a model has many
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predictors (e.g. many parameters estimated from the data), the BIC attempts to justify the
choice of this large, complex model relative to its explanatory power.

To control for overfitting, or the tendency to overemphasize the noise in the data,
the model including the optimal predictors was tested by applying repeated 10-fold cross-
validation (1000 folds) or the bootstrap (1000 resamples), unless stated otherwise. Also,
since the selection of predictors on training cases is not always representative, a cross-
validation approach was taken to confirm and possibly identify other predictors that
explained variability in the T-maze bevahior (PI) on resamples of the odor space.
Machine learning algorithms applied in support of these and other variable selection
approaches were based on customized scripts in the R programing environment, along
with support from the classification and regression training (caret) package (Kuhn, 2008),
the kernlab (Karatzoglou et al., 2004) and e1071 (https://cran.r-
project.org/web/packages/e1071/e1071.pdf) packages. Optimal predictor selection with
the Boruta algorithm was similarly carried out using the implementation available in R
(Kursa, et al., 2010). In cases where algorithms could be tuned, particularly for
regularization, optimal values were identified by searching the space of available
parameters and using the combinations that maximized predictive performance on data
withheld during training.

Bootstrapping the stepwise regression addresses mild correlations amongst
predictors (e..g Ors). This affects the selection of an optimal model, since the choice of
one predictor over another in the presence of correlations is arbitrary; namely, these

correlated predictors could be substituted for each other without affecting the model fit.
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But in many cases the correlations become too severe and more rigorous procedures are
necessary to corroborate which predictors and models are indeed optimal. Correlated
predictors (multicollinearity) can be addressed through partial least squares regression
(PLS) or principal component regression (PCR), but these approaches are at the expense
of detail on the best predictors. Model-specific variable importance measures are
available to determine how much certain variables contribute to the best predictive
equation; however, the coefficients of this model nevertheless lack interpretability. These
data were ultimately excluded from the primary text. As a complement, models were also
fit using regularized regression, such as ridge regression, elastic net and lasso (least
absolute shrinkage and selection operator); the latter two offer alternative, built-in
methods for model selection given correlated predictors by shrinking the standardized
predictor coefficients toward zero, if they are too high or unstable. These regression
approaches also retained ab1C. But these optimal models failed to significantly improve
performance beyond similarly sized OLS (Ordinary Least Squares) regression models. In
the interest of thoroughness, specialized predictor selection algorithms, genetic, Boruta
and recursive feature elimination, were applied in conjunction with random forest
regression to generate lists of optimal predictors. These do not assume a linear
relationship between the Preference Index (PI) and responding unit (sensory neuron), so

they offer a potentially more robust interpretation.
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Chapter 3
Discovery of physicochemical properties of ligands that act on repellent

pathways

3.1. Introduction

The analysis of odor processing in mosquitoes and files identified a few odorant receptor
neurons in addition to the CO, detecting neuron strongly contributed to predictions of
simple behaviors (e.g. attraction/repulsion). The ab1C neuron, which confers CO>
sensitivity, in the fruit fly provided the most significant contribution to behavior
prediction, leading to a preliminary model where evolutionary conserved sensory
pathways, such as for CO; detection, may play a more important role in determining
aversive and attractive behaviors. One implication is then that these conserved pathways
may provide key insight into repellency and the discovery of novel chemical repellents.
To that end, my colleagues and I characterized the neural activity of the CO; -detecting
cpA neuron in mosquitoes, with my work centering on the physicochemical basis of the
activity.

Carbon dioxide (CO) serves as a long-distance orientation and host-seeking cue
for most mosquito species. Human beings generate CO> odor plumes through exhaled
breath, causing fluctuation in CO; between background (0.04%) and expired levels (4%).
This intermittency in CO» concentration is thought to increase host-seeking behavior in
mosquitoes, causing them to fly upwind toward the odor source (Cardé¢ & Willis, 2008;
Dekker, Geier, & Cardé, 2005). Once the mosquito has followed the CO> plume toward

its source, it is thought that the insect will then detect other sensory cues such as skin
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odors and heat (Takken & Knols, 1999). Not surprisingly, mosquito species such as the
ornithophilic Culex quinquefasciatus and the anthropophilic Anopheles gambiae and
Aedes aegypti, are differentially attracted to host odors such as those from avian, and
human sources, respectively.

However, CO; is an odor common to all hosts as it signifies the presence of a
vertebrate’s exhaled air. When presented in an optimal fashion, CO; can readily attract
mosquitoes in the field and in the laboratory (Cooperband & Cardé, 2006; Dekker,
Takken, & Braks, 2001; A. J. Grant, Aghajanian, O’Connell, & Wigton, 1995; Xue,
Doyle, & Kline, 2008), as well as increase the sensitivity of mosquitoes to other human
odors (Dekker et al., 2005). Since CO:z is highly influential in host-seeking behavior of
many mosquito species, the majority of mosquito traps employ CO; as the primary lure.
The maxillary palp is the CO: detecting organ, where of the three neurons housed in the
club-shaped capitate peg (cp) sensilla, the cpA neuron expresses the CO2 receptor Grl,
Gr2 and Gr3 (also called Gr22, Gr23, and Gr24) which belong to the gustatory receptor
family (Lu et al., 2007; Syed & Leal, 2007). These proteins are closely related to the
COz receptor of Drosophila melanogaster, Gr21a and Gr63a which are required for
response to CO2 (Jones, Cayirlioglu, Grunwald Kadow, & Vosshall, 2007; Robertson &
Kent, 2009).

Apart from COo, this receptor is also activated and inhibited by an array of
volatile odorants that can be grouped into multiple structural categories (Coutinho-Abreu,
Sharma, Cui, Yan, & Ray, 2019; MacWilliam, Kowalewski, Kumar, Pontrello, & Ray,

2018; Tauxe, Macwilliam, Boyle, Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray,
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2009). Each of the proteins in the receptor have a 7-transmembrane structure and while
Gr2 and Gr3 constitute the core receptor, Grl increases sensitivity to CO; and to
inhibitory odorants (Kumar et al., 2020). It has been previously shown that inhibition of
the CO» response by volatile odorants corresponds to complete loss of innate CO-
avoidance behavior in Drosophila (Turner & Ray, 2009). Given the reversal of behavior
to COz in the presence of the inhibitory odorants, and that mosquito CO> receptors have
high amino acid identity with the Drosophila ortholog Gr63a and Gr21a (Hill et al., 2002;
Kent, Walden, & Robertson, 2008; Lu et al., 2007; Robertson & Kent, 2009), we tested
and identified similar odorants that could have a similar effect on CO;-mediated host-
seeking behavior in mosquitoes (Coutinho-Abreu, Sharma, Cui, Yan, & Ray, 2019;
MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018; Tauxe, Macwilliam, Boyle,
Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray, 2009). The identified volatile
odorants included: odors that inhibit the CO;-sensitive neuron and are candidates for use
in disruption of host-seeking behavior, odors that activate the neuron and can be a
substitute for CO- as a lure in trapping devices, and odors that cause strong and
prolonged activation of the CO2 neuron which blocks the ability to detect changes in CO»
concentration and therefore offers a novel approach for disruption of host-seeking. These
compounds could be used as tools for mosquito control as they modify peripheral
olfactory responses to one of the most important host-seeking cues. These odor-based
strategies once developed could potentially lower the incidence of human-mosquito

contact, and hence lower the spread of vector-borne diseases.
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3.2. Results

In the past we have used single-sensillum electrophysiology to screen a large number of
odorants for their effect on the activity of the CO»-sensitive neuron in the peg sensilla of
the maxillary palp of female 4. gambiae, A. aegypti, and C. quinquefasciatus. The cpA
neuronal response to CO» is nearly identical in all three species and it can be
unambiguously identified since it has a much larger spike amplitude than the other two
neurons in the same sensillum. When looking for activator and inhibitory odorants, we
also found that the responses showed significant conservation (Coutinho-Abreu, Sharma,
Cui, Yan, & Ray, 2019; MacWilliam, Kowalewski, Kumar, Pontrello, & Ray, 2018;
Tauxe, Macwilliam, Boyle, Guda, & Ray, 2013; Turner et al., 2011; Turner & Ray,
2009). One of the interesting questions has been how volatile components of malodorous
body odor might be interacting with the mosquito CO: receptor. Many of the malodorous
compounds are due to bacterial breakdown of lipids, such as butyric acid. When
performing the electrophysiological recording odor screens, we observed that butyric acid
caused an initial phasic activation followed by inhibition of the CO> response (Figure 1).
However, following this brief phasic excitation, the odorant induced a ‘prolonged’ tonic
activation of the cpA neuron.

In previous studies, a prolonged tonic activity has been shown to mask the
activation caused by subsequent exposures to CO> such as 2,3 butanedione, (E)-2-
methylbut-2-enal, 3-Methyl-2-Butenal, 3-Methylbutanal (Tauxe et al., 2013; Turner et
al., 2011). This type of effect has also been observed in other odorant receptor neurons

with odorants like Methyl 2-propenoate and Methyl propionate (Boyle, Mclnally,
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Tharadra, & Ray, 2016). To investigate if prolonged activation by butyric acid could also
cause a reduced response to subsequent CO», A. gambiae and A. aegypti mosquitoes were
exposed to a 3-sec application of the odorant followed by repeated 1-sec stimulus of
0.15% CO: applied every 30-sec for a period of approximately 5 minutes. When
comparing spike rate in both mosquito species, there is an increase in baseline activity of
the cpA neuron (Figure 3.1 and 3.2). However, the brief exposure to butyric acid
significantly reduced CO; response for as long as 5.5 min in 4. gambiae (Figure 3.2,
right), while the CO» response in 4. aegypti was completely abolished (Figure 3.2, left).
These results suggest that the prolonged tonic response can substantially impair the
ability to sense other ligands like CO» for minutes.

To investigate the structural basis of the different activities, we first compared
simple enriched substructures or cores among activators, prolonged activators, and
inhibitors of the cpA neuron (Figure 3.3A). Interestingly, the correspondence between
enriched substructures and activity was unclear. We next computed additional
physicochemical features, incorporating information about 3D geometries, the
distribution of charge across a molecule and other atomic-level properties describing
bonds and bonding potential. As it is not feasible to manually search numerous features,
we applied machine learning to identify sets of features that were particularly different
amongst prolonged activators (Figure 3.3B) and all other cpA activities. This approach
involved iteratively training a support vector machine (SVM) on a portion of data,
followed by predicting the remaining ‘left out” portion (Methods). Consistent with the

overlapping enriched substructures (Figure 3.3A, B), the features that were predictive of
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prolonged activators often described 3D geometries (Figure 3.3C). We next tested
whether SVMs trained on these important features could successfully discriminate
prolonged activators from the other cpA activities.

ROC analysis is a method for evaluating successful discrimination (Methods).
The machine learning model (SVM) predicts chemicals that were not in the training data.
Predictions for these new chemicals are then compared to the ground truth (e.g.
“prolonged activator” / “not prolonged activator). Success is defined by high positive
(sensitivity) and low false positive (1-speciificity) rates. Subsequently, an ROC plot
shows the relationship between these two rates. The best possible performance is an area
under the curve (AUC) of 1.0 (Methods). When we evaluated the model using this
method, the high AUC suggested prolonged activators are physicochemically distinct
(Figure 3.3D) (avg AUC = 0.958, Shuffled Activities, avg AUC = 0.592). But this is
particularly true when considering physicochemical properties (e.g. 3D geometries) other
than enriched 2D substructures or motifs, as indicated by the clear overlap in Figure

3.3A.

3.2. Discussion

Interestingly, butyric acid is a component of human sweat (Cork & Park, 1996), which
has been shown to activate as well as inhibit several sensilla tricodae in 4. gambiae
(Meijerink & Van Loon, 1999; Van Den Broek & Den Otter, 1999) . Although human
sweat is highly attractive to anthropophilic mosquitoes (Braks & Takken, 1999; Healy,

Copland, Cork, Przyborowska, & Halket, 2002), it is not clear what role carboxylic acids
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play in the attractiveness of this host-odor blend. For example, there are several
conflicting studies as to the attractiveness of carboxylic acids to mosquitoes where in
some cases carboxylic acids are actually unattractive (Healy et al., 2002; Mboera, Knols,
Takken, & Della Torre, 1997; Smallegange, Qiu, van Loon, & Takken, 2005). The
varied attractiveness to human skin odors could be attributed to intraspecific preferences
for certain human hosts as their emanations differ from individual to individual (Acree,
Turner, Gouck, Beroza, & Smith, 1968; Besansky, Hill, & Costantini, 2004; Dekker et
al., 2001; Qiu et al., 2004; Takken & Knols, 1999). No study, to our knowledge, has
looked at the attractiveness of carboxylic acids (or human odors) as it pertains to
activation or inhibition of neurons in the maxillary palp. It is unclear from these and other
studies if behavioral responses observed result from a direct repellent effect or another
mechanism whereby the insects are failing to respond to normally attractive cues such as
COsz. Perhaps levels of butyric acid from person to person can contribute to host
preference in the mosquito as a means of CO2 response augmentation. Future behavioral
assays will be required to test this hypothesis.

Although the substructure that was enriched among the prolonged activators
differed subtly from cpA activators and inhibitor, more rigorous 3D analyses indicated
the presence of distinct physicochemical attributes for each. When incorporating these
features into a machine learning model, we observed high success rates for classifying
prolonged activators from other cpA activities. The degree of success implies cpA
prolonged activation is indeed related to a set of physicochemical attributes, and machine

learning could therefore play an important role in identifying new ligands. The prolonged
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activator represents an interesting class of ligand, though there are currently few
examples. Machine learning pipelines could predict new prolonged activators and help
resolve even finer distinctions from cpA activators and inhibitors. This would

subsequently have long-term implications for mosquito vector control strategies.
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3.3. Figures
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Figure 3.1. Butyric acid is an ultra-prolonged activator of the CO; sensitive neuron in
A. gambiae and A. aegypti. A,B, Long-term traces from the cpA neuron of 4. gambiae
and A. aegypti, respectively. A 3-sec stimulus paraftin oil top or butyric acid (4ac)
bottom is given followed by 1-sec pulses of 0.15% COz every 30-sec. Odor diluted 10!,
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Figure 3.2. Butyric acid is an ultra-prolonged activator of the CO; sensitive neuron in
A. gambiae and A. aegypti. A, Mean baseline activity of the cpA neuron counted every
30-sec interval after pre-exposure to a 3-sec stimulus of butyric acid (10™!) or paraffin oil
(PO) solvent. B, Mean change in frequency of response of the cpA neuron to stimulus of
I-sec 0.15% CO. applied approx. every 30-sec, following a 3-sec pre-exposure to butyric
acid (107" or paraffin oil (PO) solvent. n=>5, error bars=s.e.m.
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Figure 3.3. Ultraprolonged activators of the CO2 neuron have a shared substructure
and can be modelled computationally. A, cpA activators, inhibitors, and prolonged
activators; enriched substructures in red. The activators, inhibitors, and prolonged
activators have similar enriched substructures or simple 2D structural features. B,
Additional prolonged activators; enriched substructure in red. C, Table of top 2D/3D
chemical features to discriminate prolonged activators of cpA from the activators and
inhibitors. D, Support vector machines (SVM) are iteratively fit on a portion of
chemicals, “training,” and then predictions are made for the chemicals excluded from
training; the quality of the predictions is assessed using ROC analysis. The plot shows the
performance across 3 SVM models trained with slightly different chemical feature
combinations (black colored curve). Random or chance level performance is estimated by
training these SVM models on shuffled activity labels (red colored curve). Diagonal line
is the theoretical random performance (AUC = 0.50). The y-axis (Sensitivity) is the true
positive rate whereas the x-axis is the false positive rate (1-Specificity). Each point along
the curve is from computing these rates at different probability score cutoffs; the
probability scores (0-1.0) are assigned by the SVM model to new chemicals. These
scores are the predictions that a chemical is a super activator of cpA. It is expected that
high scores are assigned to super activators and low scores to the other cpA activities.
The ROC plot tests this expectation. Additional details included in the methods.
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3.4. Methods

3.4.1. Mosquitoes

Ae. aegypti wild-type (Orlando strain) and Anopheles gambiae (recently renamed
Anopheles coluzzii) were maintained using standard protocols in an insectary at ~27C,

~70-80% humidity on a 14:10 hr (Light: Dark) photoperiod.

3.4.2. Electrophysiology

Extracellular single-unit recordings were performed as described previously (Turner &
Ray, 2009) with few modifications. Chemicals were of the highest purity available,
typically >99% (Sigma-Aldrich). Odorants were diluted in paraffin oil at indicated
concentration. Unless indicated 50 ul of diluted odorant is applied/cartridge, and each
cartridge used for 3 stimuli. A controlled volume of air Sml/sec was puffed through the
odour cartridge containing vapors, and was delivered into a constant humidified airstream
of 10ml/sec that flowed over the fly antenna. The odorant vapor present in the cartridge
was thus diluted ~3-fold before being passed over the fly (each delivery cartridge was
used no more than 3 times; 107! stimulus = ~0.43 ug equivalent from
cartridge/application; 10 stimulus = ~0.043 ug equivalent from cartridge/application).
CO; stimulus was pulsed through a separate delivery system that delivered controlled
pulses using a PSM 8000 microinjector (variable 2.5ml/sec — 6.5ml/ sec) into the same
humidified airstream, from either a 1% or 5% tank of CO> (Airgas) . The baseline
constant humidified airstream (10ml/sec) was generated from a purified air tank (Airgas)

and mixed with a constant controlled volume (5ml/sec) of filtered room air (~0.035%
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CO»). For delivery of binary mixtures of CO> with another odorant, we ensured a steady
concentration of CO; to the fly preparation as described in detail in (Turner & Ray,
2009). Unless mentioned, responses were quantified by subtraction of baseline activity
immediately preceding stimulus application from activity during the stimulus. For each
odorant that had a long-term effect on CO; response, each recording was obtained from a

naive insect.

3.4.3. Chemical informatics
Chemicals were analysed for maximum common substructures using RDKit (Python)
(Landrum, 2006). The algorithm performs an exhaustive search for enriched structural
patterns over a set of chemicals. For larger, more diverse sets of chemicals specifying a
threshold value can help the algorithm converge on more substantive structural patterns.
Here, we set the threshold at .5, which ensures that half of the chemical set should
contain the pattern. This algorithm was run separately for activators, inhibitors, and
prolonged activators of cpA. The distinction between the 3 (activators, inhibitors and
prolonged activators) was based on the spikes/sec calculation, where inhibitors reduce
activity below the baseline firing rate and activators increase activity above this rate; the
super activators significantly above.

Chemical structures were converted into 3D optimized geometries using RDKit
(Python) (Landrum, 2006). The 3D chemical information was then supplied to alvaDesc,
which computes ~5,300 physicochemical features. We later removed the features with

low variance, high correlations (r= 0.85) and imputed missing values using the median.
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3.4.3.1 Selecting Important Chemical Features

The reduced feature set was then run through the recursive feature elimination algorithm
(RFE) over 300 train/test partitions (e.g. 10-fold cross validation, repeated 30 times).
Here, the algorithm involves iteratively fitting a support vector machine (Radial Basis
Function (RBF) kernel) with different chemical feature sets on the training portion,
predicting what remains. Subsequently, the average performance across these different
feature sets provides an estimate of the number of features that are needed for successful
predictions. This analysis suggested between 20-50 features. The importance of each
feature is from the AUC achieved independently. A feature rank is assigned at the end of
the cross-validation iterations. Machine learning algorithms for feature selection are from
the caret (Kuhn, 2008) and kernlab (Karatzoglou et al., 2004) packages in the R
programming language and similar to the way it has been used for ligand prediction of

human odorant neurons (Kowalewski & Ray, 2020a).

3.4.4. Machine Learning

After selecting the physicochemical features that are important for the task, models are
trained using these features, and predictions are made for chemicals that are not in the
training set to evaluate whether learning has indeed occurred. Here, three support vector
machine models are fit, sampling different physicochemical features. The individual
predictions (probability scores) are then averaged. Each support vector machine learns a
decision boundary from the physicochemical features at training. To validate, new

chemicals are repeatedly projected into this space. The location of this new chemical
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relative to the decision boundary provides the prediction, which is compared to an
observed value or label (e.g. ground truth).

In machine learning terminology, cross validation refers to training models
iteratively on subsets of data and then predicting new chemicals with each of the trained
models. Dividing the data into 10 different training and testing subsets refers to 10-fold
cross validation. Here, we repeated that procedure 5 times (e.g. 10-fold cross validation,
repeated 5 times). By using more than one model, it is possible to diversify the training,
gaining more coverage of the data, getting better estimates of the error, and ultimately, in
most cases, producing more generalizable predictions. Implementations of the machine
learning algorithms are from the caret (Kuhn, 2008) and kernlab (Karatzoglou et al.,

2004) packages in the R programming language

3.4.4.1. Support Vector Machine (SVM)

The support vector machine (SVM) algorithm uses kernels to facilitate the learning of
complex, non-linear decision boundaries. The kernel is a function that projects the
chemical data into a new space where non-obvious boundaries among chemicals of
different classes are increasingly identifiable. The support vector machines implemented
here used the gaussian or radial basis function kernel. This kernel is adjusted during the
training phase through the sigma parameter, which determines the influence of chemicals
or data points that are far from the decision boundary. This affects the prediction of new
chemicals and therefore the proper value is set by removing and predicting a small subset

of chemicals while training. An additional parameter, C, defines the cost associated with
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incorrect prediction performance. As the cost increases, the boundary adapts to improve
performance. However, setting the cost value too high produces irregular boundaries that
fail to generalize to new chemicals or data points. The proper cost value is therefore set

alongside sigma using the approach discussed above.

3.4.5. ROC Analysis
Receiver operating characteristic (ROC) analysis graphically represents classification
success and/or failure by comparing the true positive (y-axis: Sensitivity) and false
positive rates (x-axis: 1-Specificitiy). In this study, it is analysing the success or failure of
a machine learning model to classify “super activators” versus other activities on the cpA
neuron. The trained machine learning model takes the chemical features of a new
chemical (e.g. not in the training data) as input. Then it assigns a probability score to this
new chemical based on its similarity to the super activators and other activities on cpA
from the training data. Subsequently, the ROC analysis defines cutoffs or thresholds for
these probability scores. For example, if the score is above .50, then these chemicals are
labelled as super activators or simply positive/active cases. The labels are compared to
the observed cpA activity, yielding a tally of true positives and false positives that are
converted into rates. In the ROC plot, this information is a single point (X, y). Continuing
the above process for multiple cutoffs results in a curve. The success is evaluated as the
area under the curve (AUC = 1.0; perfect success).

Typically, the curve is compared to a theoretical random classifier (AUC = .50),

and this is shown as a diagonal that bisects the plot area. Because chance-level
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performance depends on the classification problem, it may be higher or lower than AUC
=.50. Some classification problems are, for instance, trivial, particularly if there are few
positive and negative examples. The chance performance could match the performance of
the actual machine learning model. To address this, we trained the models using shuffled
data, while keeping other parameters constant. This showed that the success of the actual

model(s) was not attributable to chance.
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Chapter 4
Natural repellent and attractant activity of microbial metabolites on

human skin

4.1. Introduction
The finding that a microbial metabolite, 2,3-butantedione, which is also detected in
human sweat, masked detection of CO2 by the cpA neuron suggested that other microbial
metabolites may meaningfully affect mosquito behavior. This seems particularly true
when considering the numerous sensory neural pathways beyond cpA-CO; and that
mosquitoes display heightened attraction to some humans according to unique chemical
signatures on skin. Studies have shown, for instance, that certain humans are highly
attractive to Anopheles Gambiae, the mosquito vector for the malaria parasite. The
authors suggested a small number of attractive chemical classes including esters may in
part explain the strong difference in attraction (Verhulst et al., 2011). Notably, the
opposite observation—innate differences in repellency among humans—has been
observed as well (Logan et al., 2008), but the interpretation is complex, as this could
result from increased repellent compounds, reduced attractive compounds, an increase in
compounds that mask attraction, or a combination of each possibility. A strategy based
on recreating natural or innate repellency has significant utility in vector control.
Demand for new chemical repellents has been steadily increasing. From the years
2004-2016, the CDC reported cases of vector-borne illnesses in the United States and
territories approaching 1 million, with many others going unreported (Rosenberg et al.,

2018). This nevertheless is a fraction of the global incidence. Annually, Aedes aegypti
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mosquitos account for 100s of millions of vector-borne illness cases worldwide,
according to WHO statistics. Insect vectors are currently managed with insecticides and
repellents. However, genetic drift and overuse has increased resistance. Pyrethroids,
synthetic derivatives of floral extracts with insecticidal and repellent activity, are
becoming less effective against mosquito vectors. The mutations that confer insecticide
resistance have also been shown to affect insect responses to well established chemical
repellents such as N, N-Diethyl-meta-toluamide (DEET).

While a bio-inspired approach based on studying the chemicals on human skin
that naturally repel insects, may be lead to the best long-term outcomes in terms of
human health and safety and resistance, this data could be too limited currently to meet
the demand for new repellents. Additional sources of safe chemicals are those approved
for use as flavors and fragrances, both natural and synthetic. But consideration should
also be given to chemical libraries far exceeding the number of known flavors and
fragrances.

Chapters 2 and 3 outlined an approach to study repellency through
electrophysiological data. The recorded activity helped uncover neural pathways that are
strongly associated with mosquito and fruit fly behavior, alongside computational
modeling. If considering the complex chemical mixtures on human skin that are
responsible for differing degrees of mosquito attraction, in addition to the likely
numerous pathways these chemicals target, computational modeling plays a critical role.
Specifically, in analyzing the human skin microbiome and relevant microbial metabolites

and known skin volatiles for repellents.
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In this chapter, I focus on the microbes, microbial pathways, and metabolites that
are potentially relevant. These metabolites are divided into 2 categories: (1) metabolites
that are broadly sourced to a microbe abundant on human skin and (2) metabolites that
are volatile organic compounds detected on human skin. Further, I analyze the human gut
microbiome for repellent metabolites due to the generally desirable safety profiles of
endogenous chemicals, and that the skin microbiome data is incomplete. Therefore,
initially any commensal microbe may be of relevance. This study lays the groundwork
for the future when appropriate microbes may be used for production of the compounds
in bioreactors or used as part of a skin microbiome transplant that confers repellency.
However, since it is also possible that the current data is too limited to meet immediate
demands, I conclude with a proof of concept that machine learning can be applied to
successfully predict the odor profiles of repellent chemicals. Then this is followed by
prediction of 10+ million purchasable chemicals for repellency, applying machine
learning models to filter for toxicity and unpleasant odor profiles. Such large-scale
prediction rapidly expands the space of possible chemical repellents, immediately aiding

in the analysis of physicochemical features that might be associated with insect behavior.

4.1.1 The human microbiome as a source of novel insect repellents and attractants
DEET and other effective repellent chemicals act on complex neural circuitry and

efforts to isolate receptors or specific pathways have proven difficult. This has

particularly slowed progress in developing synergistic and ecologically safe chemical

mixtures, as discovery for synergistic combinations fundamentally depends on
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knowledge of the pathways and protein targets that drive repellency. One way around this
fundamental knowledge gap is to look for and study naturally occurring chemical
mixtures that are already known to modify insect behavior. For instance, complex
microbial and metabolite compositions on skin are meaningfully related to insect
behavior (Verhulst et al., 2010, 2011). But unraveling these relationships also presents
obvious experimental challenges. It is for one unclear which of the thousands of chemical
and microbial possibilities might be affecting mosquito behavior; the choice of analyzing
some possibilities in-depth rather than others is arbitrary. The question then is if
computational methods could be used to annotate skin microbial metabolites, identifying

which ones are of known or potential relevance to insect behavior.

4.2. Results

Our understanding of the chemical and microbial compositions on human skin is
still emerging, but my colleagues and I reasoned that we could develop a theoretical
space that identifies possible repellents as well as the enriched microbes and pathways as
a map to guide future research. We started with the 10,000 chemicals in the KEGG
databases, which include microbe, metabolite, and pathway annotation and next studied
the skin microbiome literature to identify microbes that may contribute to insect
repellency (Figure 4.1A). An in-depth analysis of the top predicted microbial metabolites
(Figure 4.1B, C), suggests many can be found in Cornyebacterium. Based on the
Euclidean distance between physicochemical features of known repellents, the top

metabolites closely resemble anthranilates and (+)-nootkatone (Figure 4.1C). Some
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metabolites such as jasmonates were also ranked highly but have known repellency. The
biochemical pathways for the top metabolites are diverse, including tryptophan and
carotenoid metabolism pathways as well as quinone and terpenoid-quinone biosynthesis
(Figure 4.1C).

The chemicals identified in this analysis represent a diverse set of metabolites
from species of skin microbes enriched on human skin. Importantly, these metabolites
may not all be detectable on the surface of human skin. Due to the diversity, the
metabolites may have high or low vapor pressure and the mode of potential repellent
activity would then vary. Metabolites with high volatility would be expected to act more
spatially, targeting olfactory system whereas those of lower volatility would act primarily
through taste or contact, targeting ionotropic receptors (Irs) or gustatory receptors (Grs).
It is therefore of interest to (1) clarify the metabolites that have been detected on human
skin and (2) identify the putative receptor pathways these chemicals may be acting on.

The collection of volatile molecules detected on human skin (De Lacy Costello et
al., 2014) provided some promising leads; high ranking predictions included synthetics
likely originating from cosmetics or topicals such as the paraben isopropyl 4-
hydroxybenzoate (PubChem CID: 20161) and also fragrances such as hex-3-enyl 2-
hydroxybenzoate (PubChem CID: 103379) (Figure 4.2A). When filtering down to
molecules also sourced to human skin microbes, top candidates included vanillate and 4-
hydroxybenzoate (Figure 4.2B), although, in general, these microbially sourced
molecules had lower predicted repellency compared to some of the synthetics appearing

on skin in Figure 4.2A. Interestingly, these molecules are linked to several species of
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cornyebacterium, which are particularly well suited for laboratory culture and genetic
engineering.

Chapter 3 reported on a subset of small molecules detected on human skin that led
to prolonged activation of cpA, the neuron in mosquitoes that detects CO» through a
complex of three gustatory receptors (Grs). Due to the potential for prolonged activation
to mask CO; detection and effect attraction behavior, it is therefore important to identify
the molecules on human skin with physicochemical properties that may act on the CO> -
detection pathway. To improve the mapping of molecules sourced to human skin and
mosquito behavior, the cpA activity prediction model (Chapter 3) was used to screen the
~1000 volatiles reported in the literature as detectable on human skin (De Lacy Costello
et al., 2014). Known prolonged activators were assigned higher probability scores, with
several structural derivatives also scoring highly. The highly scoring compound acetoin
(PubChem CID: 179), for instance, substitutes one of the ketones in the known prolonged
activator 2,3-butanedione with a hydroxide group. Lower scoring chemicals such as 2-
pentanone (PubChem: 7895) are known to simply activate cpA, and is a prospective trap
lure. Thus compounds with significant structural overlap do still show score differences
between prolonged activators and simple activators of the cpA (Figure 4.3A). However,
the machine learning models also help categorize the metabolites according to broader
activity on the CO; -detection pathway.

In order to visualize the chemical space of volatiles detected on human skin, they
were clustered using ~300 2D and 3D physicochemical attributes. The volatiles are

organized into 4 broad groups. The known cpA prolonged activators and best predicted
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candidates fall closer in this space, roughly in cluster 4, with some in the bordering
cluster (cluster 3) (Figure 4.3B). This is consistent with the observation that activity on
the cpA neuron is biased towards certain chemical features. Interestingly, many
chemicals predicted to be repellents appear structurally diverse and indeed the cpA
neuron is simply one of many relevant pathways in mosquito behavior (Figure 4.3B).

To investigate additional pathways, the volatiles detected on human skin were
next analyzed relative to acid sensing. Acid sensing is typically mediated through
ionotropic receptors (Irs). However, these receptors are lesser characterized in
mosquitoes, so the known ligands of the acid sensing Ir64a/8a pathway from the highly
conserved Drosophila melanogaster, was used for finding training set compounds
instead. The structure-activity data for several odorants is available. We created a model
for acid-ligands for insects and the chemical features that were selected to optimally
predict the activity are in Table 4.1. Computational validation shows a strong relationship
between physiochemical features and activity on the pathway, as evidenced by successful
classification of chemicals excluded from training (AUC = 0.99, Sensitivity = 0.97,
Specificity = 0.85) (Figure 4.4).

Using this model to predict Ir64a/8a ligands from skin volatiles led to finding
several predicted actives (Figure 4.5A). Since mosquitoes are known to use acidic
odorants from skin as attraction cues involved in landing, the predicted hits give us an
opportunity to identify attractive compounds. When mapping the hits onto the chemical
space of human odorants for the known and prospective Ir64a/8a activities, prolonged

activators of the cpA neuron and behavioral repellents, it was evident that these
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molecules of behavioral relevance, cluster close together (Figure 4.5B). They are
nevertheless structurally distinct, with low overlap for the top 5 scoring repellents of skin
microbial origin compared to the cpA prolonged activators and Ir64a/8a ligands (Figure
4.5B, color dots). Although not expected to directly impact mosquito host-seeking and
differential attraction across humans, the human gut microbiome offers an additional
library of natural metabolites for future consideration (Figure 4.6). This opens the
possibility for developing even more comprehensive structure-behavior maps to recreate
natural chemical mixtures that repel mosquitoes and pests, a task that is greatly

accelerated through machine learning models.

4.2.1. Prioritizing candidate repellents by modeling their odor qualities

Microbial metabolites may have unpleasant odors and therefore are less value as topically
applied repellents. Modeling approaches to predict human odor perception from chemical
structure, physicochemical properties or in vitro human odorant receptor activities have
proven successful (Kowalewski & Ray, 2020a) (details to follow in Chapters 5-6),
particularly on flavor and fragrance databases. As topically applied chemical repellents
must be further characterized by cosmetic descriptions such as odor, I developed a set of
machine learning models that provide a proof of concept for prediction of human odor
perceptual qualities (odor descriptors). By predicting 146 odor perceptual descriptors,
including “Fruity other than citrus”, “Lemon”, “Orange”, “Cinnamon” and unpleasant

ones such as “Sickening”, “Rancid”, “Animal”, and “Dirty Linen,” it was possible to
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assign a complex odor profile to chemical repellents, and then compare this to the human
assigned labels.

While odor qualities remain poorly characterized for most repellent chemicals,
among the predicted and tested repellents from our analyses, some have been evaluated
by humans. The prediction performance could therefore assessed using ROC analysis.
The perceptual models predicted the observed descriptors for most repellents with a high
success rate (Avg. AUC = 0.77) (Figure 4.7A, B). Given this success, it was evident that
such a filter could be incorporated into the repellent discovery pipeline to better prioritize
confirmed and putative repellents. This result further confirmed the odor perception

prediction methods detailed in later chapters (5 and 6).

4.2.2. Mining massive commercially available chemical spaces for novel insect
repellents

In our earlier machine learning applications, we emphasized the prediction and
verification of chemical repellents from natural sources, as if they are not already
approved for human use, obtaining approval is less challenging than synthetics. But the
size and diversity of a chemical library as well the cost and availability of chemicals is
fundamentally limiting. Subsequently, we scaled-up the analysis to a 10+ million
commercially available chemical space (ZINC 15), canvasing more structural diversity
than the metabolites we previously screened. We built a new training set including the
chemical repellents we experimentally verified. Then, by applying the filters that we

progressively incorporated into the pipeline (e.g. odor perceptual qualities) we identified
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a smaller set of candidates (Figure 4.8A). The top predictions were enriched with many
anthranilate-like compounds, which formally are aminobenzoates comprised of benzene
and amino and ester groups. Some chemicals notably differ in that they contain a
carbonyl carbon bonded to nitrogen, resembling amide repellents like diethyltoluamide

(DEET) (Figure 4.8B).

4.3. Discussion

The analysis presented here was guided by the observation that some humans are
especially attractive to mosquitoes whereas others are not. Although previous work has
been done on its chemical basis by studying volatile emanations from humans of
differing attractiveness to mosquitoes, these have not yielded bio-inspired solutions. One
key issue is the combinatorial complexity of the problem that is best suited for
computational modeling. Here, I developed for the first time a machine learning-based
study to map connections between skin microbial metabolites, volatile organic
compounds on human skin and prospective and known activities on insect sensory
receptors/pathways. The analysis suggested that few chemicals potentially on human skin
are candidate repellents. This also implies that mosquito host seeking behavior preference
could be a complex chemical puzzle, rather than be due to one or few volatiles.
Therefore, efforts to develop an even more comprehensive mapping of human skin
chemicals is essential, with a key role for computational modeling going forward. This

work will help drive research into safe, biological repellent strategies and provides a
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template for more advanced study as more data emerges on both skin microbes and
volatiles on human skin.

Importantly, the work is limited to the availability of data. The interpretation
therefore depends on understating this uncertainty. It is clear with respect volatiles on
human skin and microbial species on human skin that there are more chemicals and
species of note than included in this study. Similarly, machine learning models do not
overcome the uncertainties of experimental studies. For receptor activation studies (cpA
and Ir64a), smaller training sets will lead to uncertainty in computational models. The
computational validation of the machine learning models supports the conclusion of
accurate prediction however this should be experimentally determined. Nevertheless, the
successful application of the computational method here still suggests the plausibility of
using these methods to advance repellency research, particularly the notable differences
in mosquito behavior toward some humans. The emphasis on metabolites sourced to skin
and gut microbiota raises the intriguing possibility of genetically engineering microbes to
efficiently produce repellent mixtures, offsetting many additional costs that arise with
chemical synthesis in a laboratory.

In general, this study demonstrates the successful development and application of
a machine learning pipeline that accelerates research into insect repellency and its
physicochemical basis. The methods and data will help identify additional novel repellent
chemicals as well as bio-inspired repellent strategies. Here, we emphasized screening
candidate chemicals that are most likely to fit multiple requirements rather than one (e.g.

repellency). As these requirements steadily increase, it is obvious that massive,
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unexplored chemical spaces offer the most promising leads. Our prediction of 10+
million purchasable chemicals further illustrates the essential role of machine learning in

future repellency studies and efforts to identify safe, effective repellent chemicals.
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4.4. Figures
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