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Model-free voltage control of active distribution system with PVs using 
surrogate model-based deep reinforcement learning 

Di Cao a, Junbo Zhao b, Weihao Hu a,*, Fei Ding c, Nanpeng Yu d, Qi Huang a, Zhe Chen e 

a School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China 
b Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, United States 
c Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, United States 
d Department of Electrical and Computer Engineering, University of California, Riverside, United States 
e Department of Energy Technology, Aalborg University, Aalborg, Denmark   

H I G H L I G H T S  

• It proposes a physical-model-free control method of distribution network. 
• It develops a method to handle unbalanced distribution system. 
• It proposes a real-time control strategy to deal with fast voltage fluctuations.  

A R T I C L E  I N F O   
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A B S T R A C T   

Accurate knowledge of the distribution system topology and parameters is required to achieve good voltage 
control performance, but this is difficult to obtain in practice. This paper proposes a physical-model-free voltage 
control method based on a surrogate-model-enabled deep reinforcement learning approach. Specifically, a sur
rogate model is trained in a supervised manner using the recorded limited number of historical data to learn the 
relationship between the power injections and voltage fluctuations of each node. Then, the deep reinforcement 
learning algorithm is applied to learn an optimal control strategy from the experiences obtained by continuous 
interactions with the surrogate model. The proposed method can achieve physical-model-free control of un
balanced distribution network and inform real-time decisions to deal with fast voltage fluctuations caused by the 
rapid variation of PV generation. Simulation results on an unbalance IEEE 123-bus system show that the pro
posed method can achieve similar performance as that of perfect physical-model-based approaches while being 
advantageous over other traditional methods.   

1. Introduction 

Active distribution network (ADN) is an effective way to improve the 
integration of distributed energy resources (DERs) since it can realize 
the local consumption and avoid unnecessary power loss from remote 
centralized generation resources [1]. However, the uncertainties and 
intermittence of DERs bring numerous technical challenges for ADN 
operations [2]. The penetration of renewable energy sources may 
change the voltage profiles and make the voltage cross the limits [3]. 

To better regulate the ADN voltage, various approaches have been 
proposed. For utilities, slow-acting devices, such as on-load tap changer 
(OLTC) [4], capacitor banks [5], and network reconfiguration [6], are 

widely used. But they could not deal with fast voltage fluctuations 
caused by PVs and demand responses. This motivates the curtailment of 
PV generations [7], reactive power control of PV inverter [8], and en
ergy management of energy storage systems (ESSs) [9–10]. The 
curtailment of PV output reduces the economic benefits of customers 
and it cannot provide voltage support during the night. The integration 
of ESSs can enhance the reliability and flexibility of the system through 
balancing generation and demand [11], but it suffers from high invest
ment and maintenance costs, and this has not been largely deployed in 
today’s ADN. By contrast, reactive power control of PV inverters is an 
economically attractive solution since it does not cause the waste of 
solar power with negligible extra investments. Tests in [12] demonstrate 
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that the reactive power control of PV inverters can achieve the most 
optimum economy as compared to the active power curtailment of PV, 
distributed ESS, and OLTC controls. 

To deal with the uncertainties of load demand and DERs, stochastic 
programming (SP) and robust optimization (RO) are developed. A two- 
timescale SP based control method is proposed for the optimization of 
distribution network with renewable generators [13]. Ref. [14] proposes 
a SP-based reactive power scheduling strategy for the optimization of 
microgrids. SP methods require pre-sampling scenarios according to the 
assumed probability distribution. However, that information is difficult 
to obtain in practice. They also suffer from a heavy computation burden. 
RO achieves robust operation by constructing a solution that immunizes 
all possible realizations in the uncertainty set [15]. A two-stage control 
framework is proposed in [16] for the scheduling of PV inverters in ADN. 
Ref. [17] proposes a distributed control method for the optimization of 
distribution network based on network partition and distributed RO 
method. A RO-based approach is developed in [18] for the coordinated 
scheduling of active and reactive power in ADN. Both SP and RO-based 
control strategies are model-based. A common assumption is that the 
parameters and topology [19–20] of ADN are accurate, which is chal
lenging to guarantee [21–22]. Moreover, SP and RO deal with un
certainties of DERs and loads by finding a predetermined solution. 
However, DERs can fluctuate a lot in a short time. For example, the PV 
output may change rapidly in a few seconds due to cloud dynamics [23]. 
In this condition, more frequent operations of controllable devices are 
required to cope with the fast-changing outputs of PVs. But they have to 
re-compute the optimal solutions and therefore are difficult to be used 
for real-time decisions. 

To address the above issue, machine learning (ML)-based methods 
are developed. They can extract powerful operation knowledge from 
historical data to deal with the uncertain environment. Ref. [24] pre
sents a data-driven local control method for the optimization of ADNs by 
mimicking the optimal behaviors achieved by the chance-constrained 
OPF method. By consolidating the OPF and the learning stage, [25] 
proposes a kernel-based approach for the control of smart inverters by 
explicitly considering the practical limitations. The forecasting infor
mation is first utilized to obtain the optimal inverter rules for the up
coming time intervals, which are then assigned to each inverter. During 
the execution stage, real-time decisions can be achieved by each inverter 
according to the derived rules and the collected inputs. Since the control 
rules are trained periodically, it can achieve a better compromise be
tween computational complexity and communication requirements. 
However, all the aforementioned methods require accurate knowledge 
of the parameters and topology of the ADN, which is difficult to obtain in 
practice. 

Various model-free approaches have been proposed in recent years. 
In [26], a model-free control method of VAR resources in balanced ADN 
using an extreme seeking (ES) algorithm is proposed. This method 
directly interacts with the real distribution network and thus is risky and 
costly. The deep reinforcement learning (DRL) method can implement 
offline training by interaction with the simulation model of ADN and 
then apply the trained agent to the real system [27–30]. A multi-time 
scale voltage control strategy is proposed in [27] combining DRL and 
physics-based optimization. Ref. [28] develops a double deep Q- 
learning-based method for the management of ESSs in a micro-grid. 
Ref. [29] proposes a multi-agent DRL-based approach for the coordi
nate control of PV inverters. Ref. [30] proposes a distributed control 
method based on network partition and multi-agent DRL algorithm. The 
aforementioned studies [27–30] rely on the model of ADN to calculate 
the reward during the training procedure, and thus the assumption on 
accurate knowledge of the parameters and topology of the ADN is still 
there [31]. Ref. [32] develops a physical model-free approach for the 
dynamic configuration of ADN based on augmented DRL. Synthetic 
operation data are generated to augment the original data set for 
training the DRL agent. Since there is no interaction between the agent 
and physical model of ADN during training, this method can achieve 

physical model-free control. However, it requires a large amount of 
training data and distribution mismatch may degrade the performance 
of the algorithm even when sufficiently large and diverse data are given 
[33]. Ref. [34] proposes a dynamic reconfiguration method of ADN 
based on a batch constrained DRL algorithm. However, many expert- 
level historical operational datasets are required for the training of the 
offline DRL algorithm, which is difficult to obtain in a practical system. 

To bridge these gaps, this paper proposes a physical model-free 
approach for the voltage regulation of three-phase unbalanced ADN 
utilizing the reactive power capability of PV inverters and static var 
compensator (SVC). The main contributions are summarized as follows:  

(1) The proposed approach synergistically integrates the deep neural 
network (DNN) based surrogate model with the DRL algorithm to 
achieve physical-model-free control. This is different from exist
ing DRL approaches that need an extensive number of historical 
data or a good physical model.  

(2) The proposed approach can handle an unbalanced three-phase 
distribution system while controlling single-phase PV inverters, 
SVCs, and active power curtailment of PV.  

(3) The proposed method can inform decisions based on the latest 
observations in real-time to deal with fast voltage fluctuations 
caused by the rapid variation of PV generations. 

The rest of this paper is organized as follows. Section 2 describes the 
mathematical model of the voltage regulation problem. In Section 3, the 
surrogate model and control are illustrated in detail. Numerical results 
are discussed in Section 4. Section 5 concludes the paper. 

2. Problem statement 

2.1. System model and constraints 

Consider an ADN of N + 1 buses served by the substation indexed by 
n = 0. All the buses of the ADN are collected into N0 := {0} ∪ N. For 
each bus i ∈ N, let vφ

i represents its complex voltage of phase 
φ ∈ {a, b, c}, and pφ

i +jqφ
i the injected complex power of phase φ. The 

active power injection pφ
i is split into pφ

i := pφ
i,g − pφ

i,c, where pφ
i,g and pφ

i,c 

denote the active power generation and consumption, respectively. 
Likewise, the reactive power injection can be decomposed into qφ

i :=

qφ
i,g − qφ

i,c, where qφ
i,g and qφ

i,c represent the reactive power generation and 
consumption, respectively. The voltage is decomposed into vφ

i := eφ
i +

jfφ
i , where eφ

i and fφ
i denote the real and imaginary parts of the complex 

voltage of phase φ at bus i, respectively. If only load demand is con
nected to phase φ at bus i, then it holds that pφ

i,g = qφ
i,g = 0. When phase φ 

at bus i is equipped with a distributed generator, then pφ
i,c⩾0, qφ

i,c⩾0,
pφ

i,g⩾0. 
The active and reactive power flow constraints are expressed as 

pφ
i,g − pφ

i,c − eφ
i

∑N

j=1

∑

α=a,b,c
(Gφα

ij eα
j − Bφα

ij f α
j )− f φ

i,t

∑N

j=1

∑

α=a,b,c
(Gφα

ij f α
j +Bφα

ij eα
j )=0,i∈N

(1)  

qφ
i,g − qφ

i,c − f φ
i

∑N

j=1

∑

α=a,b,c
(Gφα

ij eα
j,t − Bφα

ij f α
j,t)+eφ

i

∑N

j=1

∑

α=a,b,c
(Gφα

ij f α
j,t+Bφα

ij eα
j,t)=0,i∈N

(2)  

where Gφα
ij and Bφα

ij represent the real and imaginary parts of the complex 
admittance matrix elements. The relationships between the three phases 
of root bus s are expressed as 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f a
s − ea

s tan(
0π
180

) = 0

f b
s − eb

s tan(
− 120π

180
) = 0

f c
s − ec

s tan(
120π
180

) = 0

(3) 

The overvoltage will trigger the protection device to cut off the 
distributed generator. Therefore, the voltage constraint is considered 

V2
min⩽(eφ

i )
2
+(f φ

i )
2⩽V2

max, i ∈ N (4)  

where Vmin and Vmax are the lower and upper bounds of voltage. This 
study follows the ANSI-C.84.1 standard, which specifies that the voltage 
deviation of each node should be within ±5% p.u. 

2.2. Controllable device models and constraints 

The controllable devices in ADN can be divided into two types: 
mechanical devices and power electronic devices. Mechanical devices 
include the on-load tap changer, voltage regulator, and switched 
capacitor. Since the limited life cycle and slow response speed of me
chanical devices, they are typically scheduled offline, making it difficult 
for them to deal with frequent voltage fluctuation caused by the growing 
deployment of renewable energy generators. By contrast, SVC is a power 
electronic device, which can provide reactive power support within 
seconds in a continuously valued fashion. This makes it a promising 
solution to engage SVC in voltage regulation of ADN with a high-level 
penetration of renewable energy. In addition, PV units are typically 
equipped with smart inverters. Ref. [35] demonstrates that the utiliza
tion of smart inverters can enhance power quality and reduce energy 
loss. The revised standards by IEEE 1547.8 working group allow the 
smart inverters to provide reactive power support for the voltage regu
lation of ADN [36]. Considering the above benefits, PV inverters are 
used for voltage control in this study. Suppose that the total number of 
SVC and PV inverters is M. We collect all the buses with controllable 
devices into G. For each bus j ∈ G, let qφ

j,SVC represent the reactive power 
generated by SVC that is connected to phase φ, and pφ

j,PV/qφ
j,PV the active/ 

reactive power generation of PV connected to phase φ. The generated 
reactive power is decomposed into qφ

j,g := qφ
j,SVC + qφ

j,PV . Since only PVs 
can generate active power in the studied system, it holds that pφ

j,g = pφ
j,PV . 

The reactive power generated by SVC is constrained as 

qSVC,min⩽qφ
j,SVC⩽qSVC,max, j ∈ G (5)  

where qSVC,min and qSVC,max represent the lower and upper limits of the 
reactive power generated by SVC. PV curtailment is an effective way to 
deal with the overvoltage of ADN. The curtailment of PV generation pφ

j,cur 

is constrained by 

0⩽pφ
j,cur⩽βpφ

j,PV , j ∈ G (6)  

where β represents the maximum curtailment ratio of PV generator. To 
improve the utilization ratio of renewable energy, the PV curtailment is 
not allowed to cross a certain level. Then the active power injection pφ

j,g is 
decomposed into pφ

j,g := pφ
j,PV − pφ

j,cur. The reactive power output of the PV 
inverter is constrained as 

(pφ
j,PV )

2
+(qφ

j,PV )
2⩽(sφ

j,PV )
2
, j ∈ G (7)  

where sφ
j,PV represents the apparent power of the PV inverter connected 

to phase φ at bus j. Typically, the apparent power of the PV inverter is set 
to 1.0–1.1 times the rated capacity of the PV unit. The oversized inverter 
can provide reactive support for voltage regulation even when the 
maximum output of the PV generator is reached. Choosing sφ

j,PV =

1.08pφ
j,PV , for example, the maximum reactive power that can be 

generated by the inverter is about 40% of rated active power capability 
when the rated capacity of PV unit is reached, demonstrating that the 
reactive power support ability of the inverter can be improved by 
increasing the apparent power of the inverter. 

2.3. Voltage regulation formulation 

Given load demand, PV generation, and parameters of the ADN, the 
goal of the voltage regulation problem is to decide qφ

j,PV , qφ
j,SVC and pφ

j,cur 

to minimize the voltage deviations and the amount of PV curtailment 
while satisfying corresponding constraints 

minF(x)
qφ

j,PV ,q
φ
j,SVC ,p

φ
j,cur

=
∑

φ=a,b,c

∑N

i=1
|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(eφ
i )

2
+ (f φ

i )
2

√

− V0| + δ
∑G

j=1
pφ

j,cur

Subject to (1) − (7)

(8) 

Solving this optimization problem typically requires the accurate 
parameters of the ADN, which are difficult to obtain in practice and 
affected by many uncertainties. In addition, it is difficult for traditional 
methods to deal with fast voltage fluctuations caused by the rapid 
variation of PV generations. To this end, a physical-model-free real-time 
control strategy based on surrogate-model-enabled DRL method is pro
posed in this study. 

3. Proposed model-free voltage control framework 

The proposed model-free control framework is shown in Fig. 1. It 
consists of three main parts, namely the MDP formulation, DRL control, 
and building of surrogate, actor, and critic networks. 

3.1. MDP formulation 

In this paper, the voltage regulation problem is formulated as an 
MDP with finite time-steps and we mainly focus on the design of the 
following components:  

• Agent: the agent refers to the controller that is in charge of the 
control of PV and SVC. 

• State-space S: the state at time slot t, st ∈ S consists of three com
ponents: (pφ

i,c,p
φ
j,PV ,q

φ
i,c), i ∈ N, j ∈ G.  

• Action space A: the action at time slot t, at ∈ A consists of three 
components: (qφ

j,PV ,q
φ
j,SVC,p

φ
j,cur), j ∈ G, see (5)-(7) for detailed expla

nations about the variables.  
• Reward function R: the objective of the model is to reduce the 

voltage deviations and PV curtailments. Thus, the immediate reward 
of an agent at time slot t is rt =

−

(
∑N

i=1
∑

φ=a,b,c

⃒
⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(eφ
i )

2
+ (fφ

i )
2

√

− V0

⃒
⃒
⃒
⃒+ δ

∑G
j=1pφ

j,cur

)

− η, where η 

is the penalty term when the voltage crosses the threshold and will be 
further elaborated in Section 4.1. 

One MDP is composed of a finite number of time steps. At each time 
slot, the agent decides the control action at based on the observed state 
st , obtains an immediate reward rt . The objective of the agent is to learn 
a deterministic voltage regulation strategy at = π(st) to maximize the 
discounted cumulative reward from the current time step onward R(st ,

at) = rt + γrt+1 + ... + γT− t rT, where γ ∈ [0,1] is the discount factor to 
balance the future reward against the immediate reward [37]. 

3.2. DRL control model 

DDPG is an actor-critic framework-based algorithm, which simulta
neously optimizes two functions for the problem. The policy function 
maps the state st to the desired output at . The critic function maps state 
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and action pairs (st , at) to the expected cumulative reward. They are 
trained against each other such that the critic function better predicts 
the outcomes, and the policy function produces control decisions with 
reduced voltage deviations, see Fig. 1 for the details.  

(1) Critic function 

The critic function is also named the action-value function Q(st ,at), 
which is the expected cumulative reward when action at is taken in the 
state st under the policy π. The parameters of the action-value function 
θQ can be optimized by minimizing the following loss function [38]: 

L(θQ) = Eμ’ [(Q(st, at|θQ) − yt)
2
] (9)  

yt = r(st, at)+ γQ(st+1, u(st+1)|θQ) (10) 

The critic network is trained in a supervised learning manner and yt 

and Q(st , at |θQ) should be as close as possible.  

(2) Policy function 

The policy function maps the state to action. Ref. [38] shows that the 
parameters of the policy function θμ should be updated towards the 
gradient of J(θμ), i.e.,   

The parameters of the policy network are adjusted in the direction 
that maximizes the Q value, which is the expected cumulative reward 
the agent achieves at a state.  

(3) Target networks 

To enhance stability during training, DDPG introduces a target critic 
function Q′

(⋅) and a target actor function μ′

(⋅) for the calculation of the 
targets yt . Equation (10) is thus rewritten as [38] 

yt = r(st, at)+ γQ′

(st+1, μ′

(st+1|θμ′ )|θQ′

) (12) 

The parameters of the target actor function θμ′ and critic function θQ′

are updated by slowly tracking the online neural networks: θμ′ ←τθ +

(1 − τ)θμ, θQ′

←τθ + (1 − τ)θQ, where τ ≪ 1.  

(4) Replay buffer and exploration 

During the training process, the input data should be independent 
and identically distributed. For the DRL algorithm, the data are corre
lated with each other. To improve its stability, the experience replay 
mechanism is adopted. The data are continuously stored in the replay 
buffer, from which a batch size is uniformly sampled to train the DNN. 
This mechanism helps to reduce the correlation among the sequence 
data [38]. 

3.3. Building of surrogate, actor, and critic model  

(1) DNN for surrogate model 

Surrogate modeling aims to learn the nonlinear mapping from the 
active and reactive power injections to the voltage magnitude of each 
node. DNN is a powerful algorithm that has a strong nonlinear fitting 

ability [39] and feature extraction capability [40]. By transforming the 
raw input from layer to layer hierarchically, it can learn high- 
dimensional abstract feature representations from the training data 
[41]. The input of the surrogate model includes the active power in
jection pφ

i and reactive power injection qφ
i of each node. The outputs are 

the voltage magnitude of each node |vφ
i |. We collect the nodal power 

injection and voltage magnitude into vector P, Q, and V, respectively. 
The relationship between the voltage and active and reactive power 
injections can be represented as: 

V = 〈Ws, gs(P,Q)〉+ bs (13)  

Fig. 1. Proposed model-free control framework integrating surrogate modeling and DRL.  

∂J(θμ)

∂θμ = Es ρμ [∇θμ Q(s, a|θQ)|s=st ,u=u(st |θμ)] = Es ρμ [∇θμθ(s|θ
μ)|s=st

∇aQ(s, a|θQ)|s=st ,u=u(st |θμ)] (11)   
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where 〈⋅, ⋅〉 is the inner product; Ws is the weight matrix of the output 
layer; bs is the bias of the output layer; gs(⋅) denotes the hierarchical 
transformation of the input through multi-layer nonlinear mappings. In 
this paper, multiple fully connected hidden layers are used. Therefore, 
gs(⋅) is 

gs(V) = tanh(Ws
L⋅vs

L(P,Q) + bs
L) (14)  

vs
l+1(P,Q) = tanh(Ws

l ⋅vs
l (P,Q) + bs

l ), l = 1, ...,L+ 1 (15)  

vs
1(P,Q) = (P,Q) (16)  

where Ws
l is the weight matrix of the lth layer; bs

l is the bias of the lth 
layer; tanh(x) = (ex − e− x)/(ex + e− x) is the activation function of hid
den layers. The parameters of the surrogate model are represented as 
θs =

{
Ws

1, bs
1, ...,Ws

L, bs
L,Ws, bs}. 

It is worth noting that using the same training data, the system pa
rameters may be estimated and the voltage at each node can be calcu
lated [42]. However, estimation of line parameters and topology of 
unbalanced distribution networks is difficult as it is affected by many 
factors. Since we aim to obtain the mapping relationships between 
voltage magnitudes and node power injections, it is much easier to learn. 
We train a surrogate model in a supervised manner to represent that 
mapping relationship and then interact with the DRL agent to learn 
optimal control policy.  

(2) DNN for critic function 

Due to the strong non-linear fitting ability of DNN, it is used to 
approximate the critic function. The inputs of the critic network include 
two components: the state st and action at. The state st includes the 
active power of each node pφ

i,c, i ∈ N, the reactive power consumption of 
each node qφ

i,c, i ∈ N, and the active power generation of each PV unit pφ
j,g,

j ∈ G. The action includes the reactive power generated by each PV 
inverter qφ

j,PV , j ∈ G, the reactive power of each SVC qφ
j,SVC, j ∈ G, and the 

PV curtailment pφ
j,cur, j ∈ G. The output of the critic is Q(st ,at), which is a 

scalar representing the value of action at under the current state st . The 
relationship between the inputs and output can be expressed as 

Q(st, at) =
〈
WQ, gQ(st, at)

〉
+ bQ (17)  

where 〈⋅, ⋅〉 denote the inner product operation; WQ and bQ represent the 
weight matrix and bias of the output layer of the critic network, 
respectively. gQ(st , at) denotes the latent features extracted by the mul
tiple fully-connected hidden layers: 

gQ(st, at) = ReLU(WQ
L ⋅vQ

L (st, at) + bQ
L ) (18)  

vQ
l+1(st, at) = ReLU(WQ

l ⋅vQ
l (st, at) + bQ

l ), l = 1, ...,L+ 1 (19)  

vQ
1 (st, at) = (st, at) (20)  

where WQ
l and bQ

l are the weight matrix and bias of the lth layer of critic 
network, respectively; ReLU(x) = max(0, x) is the specified activation 

function. Then the parameters of the critic network are θQ =
{

WQ
1 , b

Q
1 ,...,

WQ
L , b

Q
L ,WQ, bQ

}
.  

(3) DNN for Actor Function 

To deal with the dynamic environment, this paper use DNN to 
approximate the policy function. The inputs of the actor-network are the 
state of the MDP st, which includes the active power consumption of 
each node pφ

i,c, i ∈ N, the reactive power consumption of each node qφ
i,c,

i ∈ N, and the active power generation of each PV unit pφ
j,g, j ∈ G. The 

outputs of the actor-network are the action of the MDP at, which is 
composed of the reactive power of the PV inverter qφ

j,PV , j ∈ G, the 
reactive power of SVC qφ

j,SVC, j ∈ G, and the PV curtailment pφ
j,cur, j ∈ G. 

DNN is utilized to approximate the actor function via 

at = tanh(
〈
Wμ, gμ(st)

〉
+ bμ) (21)  

where 〈⋅, ⋅〉 is the inner product; Wμ is the weight matrix of the output 
layer of actor-network; bμ represents the bias of the output layer of actor- 
network; tanh(x) = (ex − e− x)/(ex + e− x) is the activation function of the 
output layer, the range of which is ( − 1, 1); gμ(st) denotes the latent 
feature extracted from the input state st by the multiple fully-connected 
hidden layers of the actor-network, which can be derived by 

gμ(st) = ReLU(Wμ
L ⋅vμ

L(st) + bμ
L) (22)  

vμ
l+1(st) = ReLU(Wμ

l ⋅vμ
l (st) + bμ

l ), l = 1, ...,L+ 1 (23)  

vμ
1(st) = st (24)  

where Wμ
l is the weight matrix of the lth layer of actor-network; bμ

l de
notes the bias of the lth layer of actor-network; ReLU(⋅) denotes the 
rectified linear units function, which is the activation function. The 
parameters to be optimized of actor-network are collected into θμ =
{
Wμ

1, b
μ
1, ...,W

μ
L , b

μ
L,Wμ, bμ}. 

3.4. Training process of the proposed method 

There are three sets of parameters to be optimized: parameters of the 
surrogate model θs, critic network θQ and policy network θμ. The 
training process can be divided into two steps, which are shown in 
Table 1. In the first step, the surrogate model is trained in a supervised 
manner. At each epoch, batches of instances are sampled to calculate the 
loss according to the mean square error: 

L(θs) =
1
B
∑B

i=1
[(Vi − V̂ i(Pi,Qi|θs))

2
] (25)  

where V̂ i(⋅) is the predicted value of voltage. Then, stochastic gradient 
descent is applied to update the parameters θs via 

Table 1 
Training of the proposed method.  

Algorithm Training of the proposed method 

1: Randomly initialize the parameters of the surrogate model θs 

2: For epoch = 1, 2,…, M do 
3: Sample batch from the training set {Pk,Qk,Vk}

B
k=1 

4: Optimize θs according to equations (25) and (26) 
5: End for 
6: Fix surrogate model parameters θs 

7: Randomly initialize critic network Q(s, a| θQ) and actor-network 
u(s| θu) with weights θQand θu  

8: Initialize target network Q′ and u′ with weights θQ′

←θQ, θμ′

←θμ 

9: For episode = 1,2,…, N do  
Receive initial observation s1 

For t = 1,2,…24 do 
10: Choose action at , execute the action and transfer to the next state st+1 

11: calculate reward rt based on surrogate model 
12: Store transition (st , at , rt , st+1) in the replay buffer 
13: If the replay buffer is full: σ←σ*ξ 
14: Sample a random mini-batch of transitions from the replay buffer 
15: Update the critic-network via equations (28)-(29) 
16: Update the actor-network via equations (30)-(31) 
17: Update the target actor and critic networks through 

θQ′

←τθQ + (1 − τ)θQ′

, θμ′

←τθμ + (1 − τ)θμ′

18: End for 
19: End for  
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θs
t+1 = θs

t − λs∇θs L(θs) (26)  

where λs is the learning rate of the surrogate model. When training is 
completed, θs is fixed and the surrogate model is embedded into the 
environment of the DDPG algorithm. 

In the second step, the parameters of the DDPG method are opti
mized. Specifically, the parameters are initialized randomly and the 
parameters of the target networks are copied from the online network. 
Then, the algorithm runs for N episodes to learn the voltage regulation 
strategy. One epoch corresponds to a randomly sampled day from the 
training set. Each epoch is divided into 24 time-steps, each corresponds 
to an hour in the day. For each time step, the agent obtains an obser
vation of the environment st, chooses an action at, then calculates the 
reward rt based on the surrogate model and the environment transfers to 
the next state st+1. The transition (st , at , rt , st+1) is then stored in the 
memory buffer. The actions are chosen according to an exploration 
strategy with Gaussian noise: 

at = μ(st|θμ
t )+N(μ(st|θμ

t ), σ) (27) 

In the beginning, σ is a constant. When the memory capacity reaches 
the upper limit, σ attenuates at a fixed rate. At the same time, n batches 
of experiences (sj,aj,rj,sj+1), j = 1, 2, …, n are randomly sampled from the 
memory to update θQ and θμ. In particular, θQ is updated by minimizing 
the following loss: 

L(θQ) =
1
N

∑N

i=1
[(Q(st, at|θQ) − yt)

2
] (28) 

θQ is optimized by the gradient descent: 

θQ
t+1 = θQ

t − λQ∇θQ L(θQ) (29)  

where λQ is the learning rate of the critic network. θμ is updated ac
cording to the policy gradient: 

∇μJ(μ) = 1
N

∑N

i=1
[∇θμ μ(s|θμ)|s=si

∇aQ(s, a|θQ)|s=si ,u=u(si |θμ)] (30)  

θμ
t+1 = θμ

t − λμ∇θμ L(θμ) (31)  

where λμ is the learning rate of the policy network. After that, the pa
rameters in the target networks are updated by slowly tracking θQ and 
θμ. When the training process is completed, the parameters of the actor- 
network are used for control. 

4. Numerical results 

Simulations are carried out on an unbalanced IEEE 123-bus system to 
evaluate the performance of the proposed method. Comparative results 
with various benchmark methods are also provided to illustrate the 
advantages of the proposed method. 

4.1. Experimental setup 

The schematic of an IEEE 123-bus system is shown in Fig. 2 [43]. To 
simulate high PV penetration, 9 PVs are connected to the ADN. The 
specifications of the installed PVs and SVCs are listed in Table 2. The 
maximum voltage deviation is set as ±5% of its nominal value, yielding 
the upper and lower bounds as 1.05 p.u. and 0.95 p.u., respectively. η is 
set to − 20 in this study. 

The proposed method has a surrogate model and a control model. 
The surrogate model is trained in a supervised manner to learn the 
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Fig. 2. Schematic of the IEEE 123-bus test system.  

Table 2 
Specifications of the controllable devices.  

Type Capacity Locations 

PV 0.6 MW/0.66MVA 9, 27, 43, 62, 75, 83, 91, 101, 112 
SVC 0.3MVar 11, 50, 79  
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mapping between the voltage and the active and reactive power of the 
nodes. 4000 instances of {pφ

i , q
φ
i , v

φ
i }i=1,2,...,N φ=a,b,c data are generated by 

the three-phase AC power flow model. In particular, 4000 instances load 
data are obtained, i.e., the load data are multiplications of three parts: 
the first part is the baseload for each node; the second part is the time- 
coefficient, which varies with the time index while the third part is the 
random coefficient for each node that is randomly sampled from [0.8, 
1.2]. For the PV generation data, the field measurement data of Xiaojin, 
a county of Sichuan province of China are utilized. The data are first 
normalized according to the maximum PV generation of this county. 
Then the normalized data are scaled according to the PV capacity in the 
ADN. 4000 instances of PV generation data are randomly selected from 
the data set. After that, the load demands are randomly combined with 
the PV data to formulate 4000 instances of injected power 
{pφ

i , q
φ
i }i=1,2,...,N φ=a,b,c. Finally, the voltages at each instance 

{vφ
i }i=1,2,...,N φ=a,b,c are calculated by the three-phase AC power flow 

model. The data are divided into two parts: a training set and a test set. 
The numbers of instances for the two parts are 3500 and 500, respec
tively. To avoid overfitting of the proposed method, the K-fold cross- 
validation method is applied to select the hyper-parameters of the 
DNN. Specifically, the training data is divided into 7 parts equally, one 
of which is used as the validation data and the rest as the training data. 
At every time, one part of the data is selected as the validation set to 
analyse the accuracy of the model trained using the rest part of the data. 
This process is repeated 7 times until all data have been utilized as the 
validation set. The hyper-parameters of the model that achieve the best 
performance during this process are utilized for the surrogate model. 
When the training process is finished, the test set is utilized to analyse 
the accuracy of the surrogate model. The parameter settings of the 
surrogate model are shown in Table 3. 

For the training of the DRL agent, the PV generation data of Xiaojin 
are also used. The data are divided into two parts: the training and test 
sets, which contain 300 and 10 days’ data, respectively. For the load 
data, 7440 instances of random coefficients for each node are randomly 
sampled between 0.8 and 1.2. The random coefficients are separated 
into two parts: the training and test sets, which contain 7200 and 240 
instances of data, respectively. The control model is composed of actor- 
networks and critic networks, both of which share the same architecture. 
The parameter settings of the control model are shown in Table 4. The 
proposed method is written in Python with Keras. A workstation with an 
Intel Core i9-10980XE CPU is used for the training procedure. 

4.2. Performance evaluation of the surrogate model 

The surrogate model is trained for 5000 epochs to learn the complex 
mapping relationships. The objective is to minimize the quadratic loss 
function during training. The loss-epoch curve of the surrogate model 
during the training process is plotted in Fig. 3. Log scale is selected for 
better visualization. It can be observed from the figure that the loss is 
relatively high at the beginning of the training procedure. It gradually 
decreases during training and finally converges, indicating that the 
proposed DNN-based surrogate model gradually learns the mapping 
relationship between the voltage magnitude and power injection of each 
node. 

To evaluate the performance of the surrogate model on the test set, 
the evolution of accuracy on test data during the training process is 

shown in Fig. 4. The mean absolute error (MAE) is used as the evaluation 
index, which is defined as follows: 

MAE =
1

M⋅N
∑M

m=1

∑N

i=1
|v̂m,i − vm,i| (32)  

where M is the number of total instances in the test set; N is the number 
of nodes in ADN; v̂m,i and vm,i are the predicted voltage by the learned 
surrogate model and the true voltage of node i at the mth instance in the 
test set, respectively. The MAE index represents the averaged absolute 
value of voltage prediction error at one node. The surrogate model is 
evaluated on test data every 50 epochs. At the beginning of the training, 
the MAE on test data is 0.013 p.u., which is relatively high. With the 
training process going forward, the MAE gradually decreases. When the 
training process is finished, the MAE on the test set is 1.3e− 3 p.u., 
demonstrating that the prediction voltage is very close to the true 
voltage. The distribution of the prediction error of each node on the test 
set is shown in Fig. 5. It can be observed that the voltage prediction 
errors fall into a narrow range, demonstrating the effectiveness of the 
proposed surrogate model. 

4.3. Performance evaluation of the control model 

The training set is used to train the proposed control model. In this 
test, a comparative test is carried out among the proposed method and a 
physical-model-free method based augmented DRL [32], which trains 
DDPG agent utilizing batches of experience data (B-DDPG) sampled 
from the replay buffer. For the B-DDPG method, the experience data (st ,

at , rt , st+1) in the replay buffer are constructed by the surrogate model 
based on historical data. At each time-step, a batch of experience data is 
sampled from the replay buffer for the training of the DDPG agent. Since 
there is no interaction between the DDPG agent and the ADN, the B- 
DDPG method is also a physical model-free approach. The performances 
of three B-DDPG models are evaluated when different numbers of ex
periences are stored in the replay buffer. The memory capacities of the 
B-DDPG1, B-DDPG2, and B-DDPG3 are 5000, 100000, 200000, respec
tively. The changes of the cumulative rewards obtained by various 
methods during the training process are shown in Fig. 6 with 50,000 
episodes. The cumulative curves are averaged over 3 random seeds. It 
can be observed that when 5000 instances of experiences are stored in 
the memory, the B-DDPG method fails to learn a good control strategy. 
When we increase the number of experiences in the replay buffer, the 
cumulative reward obtained by the B-DDPG method improves. It ach
ieves the highest cumulative reward when the memory capacity is set to 
200000. As we continue to increase the capacity of the replay buffer, no 
improvement of cumulative reward is observed. By contrast, the cu
mulative reward of the proposed method increases significantly during 
the training process and finally converges around − 55, which is higher 
than that obtained by B-DDPG3. The reason is that the experiences 
generated by continuous interaction and exploration can help the agent 
learn a better critic than offline synthetic experiences. The results 
demonstrate the advantages of the proposed surrogate-model-enabled 
physical-model-free control method. The evolutions of cumulative 

Table 3 
Parameter setting of the surrogate model.  

Parameter Value 

Number of neurons in hidden layers 400/200/200 
Batch size for updating NN 32 
Learning rate 0.0001 
Number of training instances 3500 
Maximum training epochs 5000  

Table 4 
Parameter setting of the drl model.  

Parameter Value 

Neuron numbers of hidden layers 400/200 
Batch size for updating NN 256 
Step size of each episode 24 
Learning rate for actor-network 0.001 
Learning rate for critic-network 0.002 
Discount factor 0.1 
Maximum training episodes 50,000 
Replay buffer size 100,000 
Soft update coefficient 0.01  
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rewards of various methods on test data during the training procedure 
are shown in Fig. 7. Evaluations on the test set are carried out every 50 
epochs. For better visualization, only the cumulative reward obtained 
after 15000 episodes are plotted in the figure. The voltage control per
formance achieved by the proposed method on test data outperforms 

that of the B-DDPG methods. The results on test data are consistent with 
those observed during training. 

To test the performance of the learned control strategy from the 
training data, comparative tests are carried out on the test set, which 
consists of 10 days’ data. The voltage profiles using the different 

Fig. 3. The loss-epoch curve of the surrogate model during the training process.  

Fig. 4. The evolution of accuracy on test data during the training process.  

Fig. 5. The distribution of the voltage prediction error for each node.  
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approaches are shown in Table 5. The methods for comparisons include: 
1) original method without control; 2) double deep Q-learning 
(DDQN) based approach [44]. Note that for the Q-learning-based al
gorithm, the actions of various controllable devices must be aggregated 
to avoid the curse of dimensionality. The action set of the DDQN 

algorithm contains four variables, which control the reactive power of 
PVs 1–5, PVs 6–9, the SVCs, and the active power curtailments of all PVs 
respectively. Each variable is discretized into four values, yielding 256 
actions in total. There are two shallow layers of the DNN, the numbers of 
neurons for which are 400 and 400, respectively; 3) SP method, where 
the PV outputs and load demand are assumed to be subject to a normal 
distribution. 200 sets of scenarios are generated by Monte Carlo sam
pling, which is then reduced to 20 representative scenarios; 4) B-DDPG 
method, where the hyper-parameters are the same as the proposed 
approach except that the memory capacity is set to 200000; 5) model 
predictive control (MPC) method, where rolling optimization is 
implemented based on the latest forecasting information for the sched
uling of SVC and PV inverters. The forecasting step and optimization 
step is set to 4 and 3, respectively. Only the first step of each scheduling 
solution is implemented each time; 6) DDPG method [38], where the Z- 
bus method [45] with perfect power flow model is used to calculate 
the immediate reward instead of the trained surrogate model during the 
training of the DRL. 

It can be found from Table 5 that when no reactive power control is 
applied, the maximum voltage rise is beyond the bound. When DDQN, 
SP, and MPC methods are used, the voltage deviation problem can be 
suppressed. However, the DDQN method cannot fully utilize the capa
bility of controllable devices because of the aggregation and dis
cretization of actions. Compared with the SP and MPC method, the 
proposed method and the DDPG can achieve better performance since 
the control decisions are made based on the latest observation instead of 

Fig. 6. The changes of the cumulative reward of the proposed and B-DDPG 
method during the training process. 

Fig. 7. The evolution of the cumulative reward of the proposed and B-DDPG method on test data during the training process.  

Table 5 
Voltage deviation of various methods.  

Voltage deviation Original DDQN SP MPC B-DDPG Proposed DDPG 

Average deviation 3.64% 1.52% 0.85% 0.86% 0.91% 0.82% 0.81%  

Average deviation of each phase a 3.33% 1.29% 0.94% 0.97% 0.97% 0.89% 0.90% 
b 4.15% 1.93% 0.67% 0.68% 0.69% 0.64% 0.63% 
c 3.51% 1.40% 0.91% 0.90% 1.03% 0.90% 0.89%  

Max. drop a 4.25% 4.83% 4.29% 4.63% 4.23% 4.26% 4.26% 
b 0.79% 0.85% 3.16% 2.12% 1.83% 1.94% 1.65% 
c 1.84% 4.67% 4.62% 3.76% 3.71% 3.40% 3.49%  

Max. rise a 9.74% 4.63% 4.57% 4.57% 4.57% 4.57% 4.57% 
b 8.25% 4.93% 4.57% 4.57% 4.57% 4.57% 4.57% 
c 9.92% 4.57% 4.57% 4.57% 4.57% 4.57% 4.57%  

Parameter dependency – ✓ ✓ ✓ ⨯ ⨯ ✓  
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the generated scenarios or forecasting information. It is worth to note 
that the calculation of the control decisions for SP, MPC, and the training 
procedures of the DDQN and DDPG depend on the exact knowledge of 
the parameters and topology of ADN, which are difficult to obtain in 
practice. By contrast, the proposed approach can obtain performance 
that is very close to that of the DDPG method without the dependency on 
the parameters of the ADN by integrating the developed surrogate 
model. The performance of the proposed method also outperforms that 
of the B-DDPG approach with an ideal number of experience data, 
further highlighting the advantages of the proposed method. 

A sunny day is selected as a case study to further evaluate the per
formance of the proposed approach. The PV generations and the load 
demands of the test day are shown in Fig. 8. The voltage profiles ach
ieved by different methods at t = 12:00 are shown in Fig. 9. Note that the 
voltages of the original method, the DDQN, SP, B-DDPG, MPC, the 
proposed method, and DDPG are obtained by sending the power in
jections and control decisions to the Z-bus based power flow. The volt
ages of the surrogate method are calculated by the surrogate model 
according to the power injection and the control decisions made by the 
proposed method. It can be observed that the proposed approach and the 
DDPG method can achieve a better control performance than the DDQN, 
SP, MPC, and B-DDPG based methods, see buses 43–58 of phases a for 
example. When the control decisions by the proposed method are 
implemented, the voltages calculated by the surrogate model are very 
close to the real value, demonstrating its effectiveness. Thanks to the 
good forecasting accuracy of the surrogate model, the control strategy 
learned by interacting with the agent is very similar to that of the DDPG 
with a perfect power flow model. The PV curtailments of DDQN, SP, B- 
DDPG, MPC, the proposed method, and DDPG during the test day are 
1.96 MW, 0.71 MW, 0.95 MW, 0.65 MW, 0.22 MW, and 0.21 MW, 
respectively. Since DDQN needs to discretize and aggregate the control 
decisions of various PVs to avoid the curse of dimensionality, it has 
much more active power curtailments of PVs than other methods. The 
proposed method and DDPG curtail less active power of PVs than other 
methods, demonstrating that they can take full advantage of the reactive 
power of PVs and SVCs to reduce the voltage deviation.The voltage 
curve of node 85 of phase a, which suffers from a serious over-voltage 
problem, is plotted in Fig. 10. The results are consistent with those 
observed in Table 5 and Fig. 9, demonstrating the effectiveness of the 
proposed approach. 

4.4. Evaluation of impact of modelling errors on the performance of 
control model 

To further illustrate the benefits of the proposed surrogate-model- 

enabled DRL method, more comparative experiments are conducted in 
this section. The comparative methods include 1) DDPG-I-1, where an 
inaccurate physical model of the unbalanced distribution network is 
available for the training of the DDPG agent. When the training pro
cedure is completed, tests are carried out on the online model (accurate 
model) to evaluate the performance of the strategy learned by the agent. 
To simulate the modeling errors, each line parameter is multiplied by a 
random coefficient ranging from 0.5 to 2 [46]; 2) DDPG-I-2, where an 
inaccurate model is also utilized during the training of the DRL agent. 
The modeling errors of this method are achieved by randomly selecting 
50% line parameters and multiplying by a random coefficient ranging 
between 0.5 and 2; 3) DDPG, where the accurate physical model is used 
for the training of the DDPG agent. Note that DDPG-I-1 and DDPG-I-2 
methods simulate the real scenarios since an accurate physical model 
of unbalance ADN is difficult to get in practice. The performances ach
ieved by various methods on tests data are shown in Table 6. It can be 
observed from the table that when the modeling errors of all line pa
rameters are considered, the strategy learned by the DDPG-I-1 method 
during training can adjust the voltages to allowed ranges. However, the 
average voltage deviations achieved by this method are larger than 
other methods. This demonstrates that the modeling errors of unbalance 
ADN harm the performance of the control model. Owing to the smaller 
modeling errors, the DDPG-I-2 method achieves better control perfor
mance than that of the DDPG-I-1 method. The proposed method further 
enhances the control performance by training a surrogate model instead 
of using the offline inaccurate model. The DDPG obtains the best voltage 
control performance but it relies on the accurate network model of the 
unbalance ADN, which is impossible to obtain in practice. The proposed 
surrogate-model-enabled DRL method can achieve control performance 
that is very close to the DDPG method without the requirement of an 
accurate model. The voltage distributions achieved by different control 
strategies on the test day are shown in Fig. 11. Note that the voltages of a 
large number of nodes deviate more than 0.01 p.u. under the control of 
DDPG-I-1 and DDPG-I-2 methods, illustrating the negative impact of 
modeling errors. The control performance of the proposed method 
outperforms that of other methods with an inaccurate model. The results 
are consistent with that in Table 6. 

It can be concluded from the results that the performance of the 
control model is sensitive to the accuracy of the physical model of un
balance ADN. The proposed approach avoids the negative impact of 
modelling errors on voltage control performance by training a surrogate 
model and integrating it with the DRL agent. Comparative tests 
demonstrate that the voltage control performance achieved by the 
proposed method is better than other methods with an inaccurate 
model, illustrating the benefits of the surrogate model. 

Fig. 8. The PV generations and load demand for a sunny day.  
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(a) 

(b)

(c) 

Fig. 9. Voltage profiles of all nodes before and after optimization when t = 12:00. (a) Voltage profiles of phase a. (b) Voltage profiles of phase b. (c) Voltage profiles 
of phase c. 
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4.5. Robustness to large stochasticity 

More simulations are carried out to demonstrate the advantages of 
the proposed method in dealing with large PV stochasticity. The calcu
lation times of various methods are first provided in Table 7. The 
calculation time refers to the time each method takes for calculating 
each scheduling solution. Since the SP method employs generated sce
narios to represent the uncertainties, its calculation burden is relatively 
high. The MPC method looks for scheduling solutions based on the 
forecasting information. Therefore, its calculation burden is reduced. By 
contrast, the DDQN, B-DDPG, proposed, and DDPG methods are rein
forcement learning-based methods. They can inform decisions in one 
millisecond when the training process is finished. This enables them to 
make real-time decisions based on the latest observation of the ADN. 

A rapidly varying PV generation in 1 min owing to the cloud dynamic 
is tested and the PV output profile is shown in Fig. 12. In this study, the 
PV output starts to drop from 0.6 MW to 0.3 MW in the 30 s due to the 
cloud dynamics. Then it starts to rise and takes the 30 s to go back to 0.6 
MW. The voltage profile of node 53 of phase b before and after opti
mization is shown in Fig. 13. For the SP and MPC method, a pre- 
determined control decision is used for the voltage control of the 
whole process. The DDQN, B-DDPG, the proposed, and the DDPG 
method can provide control decisions in one millisecond. In this case, 
they provide control decisions every second. 

It can be observed that when no control is used for the scheduling of 
reactive power, there is an over-voltage issue. When the DDQN is 
applied, the over-voltage is suppressed. However, because the dis
cretization and aggregation of actions hinder the utilization of the 

reactive power capability of the controllable devices, it suffers from a 
high voltage deviation. The voltage deviations achieved by the SP and 
MPC methods are also high owing to the predetermined control de
cisions cannot provide a flexible reaction to the fast-changing PV output. 
Since the B-DDPG, the proposed and the DDPG methods can make de
cisions in milliseconds, they can provide more flexible control decisions 
based on the latest observations and achieve better voltage regulation 
performance under large PV output fluctuations. The proposed method 
achieves better control performance than the B-DDPG method since it 
learns by interaction with the DNN-based surrogate model instead of 
using the fixed synthetic experience data stored in replay buffer. It 
should be emphasized that DDPG is based on a perfect ADN model while 
our proposed method relies on the surrogate model and DRL algorithm 
for control. According to the results, we can conclude that although the 
surrogate model approximations are applied, our proposed method still 
achieves quite a similar performance as that of DDPG. This means that 
even without the accurate physical ADN network parameters and to
pology, our method can be applied in practice. This is the key contri
bution of this paper and distinguishes it from the existing methods. 

4.6. Feasibility of the proposed solutions 

Additional tests are carried out to investigate whether the control 
strategy developed by the DRL agent can always satisfy the voltage 
constraints. The voltage violation rate during the training process is 
plotted in Fig. 14. The blue line represents the voltage violation rate of 
each episode, where 1 indicating that all the decisions the agent made in 
that episode violate the voltage constraints while 0 represents that all 
the decisions are feasible solutions. It can be observed from the figure 
that at the beginning of the training process, the voltage violation rate is 
very close to 1, demonstrating that the agent has no idea of how to make 
decisions to satisfy the constraints. The voltage violation rate decreases 
during training and finally converges to a value that is very close to 
0 after 40,000 episodes, indicating that the agent gradually learns the 
feasible strategy. When the training process is finished, the learned 
strategy is utilized to inform decisions on the test set. The results in 
Table 5 show that the maximum drop and arise of voltages obtained by 
the proposed method are 4.26% and 4.57%, demonstrating that all the 
decisions are feasible. 

Remark: The performance of the control model is sensitive to the 
accuracy of the physical model of unbalance ADN. However, the esti
mation of line parameters and topology is difficult since it is affected by 
many factors. Instead of estimating the parameters of physical model, 
the proposed method trains a surrogate model which aims to learn the 
mapping relationship between the power injection and voltage 

Fig. 10. The voltage profile of node 85 of phase a before and after optimization.  

Table 6 
Voltage profile achieved by the proposed approach and methods with inaccurate 
and accurate model.  

Voltage deviation DDPG-I- 
1 

DDPG-I- 
2 

Proposed DDPG 

Average deviation 1.32% 1.09% 0.82% 0.81%  

Average deviation of each 
phase 

a 1.52% 1.33% 0.89% 0.90% 
b 1.02% 0.76% 0.64% 0.63% 
c 1.39% 1.14% 0.90% 0.89%  

Max. drop a 2.76% 3.29% 4.26% 4.26% 
b 1.42% 1.69% 1.94% 1.65% 
c 2.52% 2.86% 3.40% 3.49%  

Max. rise a 4.95% 4.57% 4.57% 4.57% 
b 4.57% 4.57% 4.57% 4.57% 
c 4.58% 4.57% 4.57% 4.57%  
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magnitude of each node, a much easier task. The trained surrogate 
model is then integrated with the DRL agent and provides reward signal 
for the development of the voltage control strategy. Numerous tests 
demonstrate that:  

– The proposed DNN-based surrogate model can effectively capture 
the complex mapping relationship between the power injection and 
voltage magnitude of each node of distribution network. The high 
accuracy surrogate model can provide accurate reward signal during 
the training of the DRL agent. The systematical integration of the 
DNN-based surrogate model and the DRL agent enables the proposed 

Fig. 11. The voltage distributions obtained by the proposed method, the DDPG method with inaccurate and accurate models, respectively.  

Table 7 
Calculation time of various methods.  

Methods Original DDQN SP MPC B-DDPG Proposed DDPG 

Calculation time (s) –  0.001 1557 356  0.001  0.001  0.001  

Fig. 12. The PV output profile in the dynamic simulation study.  
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physical-model-free method to achieve better control performance 
than methods with inaccurate model and similar control perfor
mance as that obtained by DRL method relying on perfect parameters 
of ADN.  

– The proposed method can extract powerful voltage regulation 
strategy from historical data and inform decisions according to the 
latest observations in real-time. This allows the proposed method to 
achieve better control performance than SP method and others. This 
further enables the proposed method to better deal with fast voltage 
fluctuations caused by the rapid variation of PV generations. 

5. Conclusions 

This paper proposes a model-free approach for voltage regulation of 
three-phase unbalanced distribution network when system parameters 
and topology are unknown. The proposed approach consists of two 
components, namely a surrogate model and a deep reinforcement 
learning control module. The surrogate model is first trained in a su
pervised manner to learn the complex relationship between the voltage, 
active and reactive power injections of each node. Then the deep rein
forcement learning algorithm is used to learn the voltage regulation 
strategy from historical data, guided by the immediate reward provided 
by the surrogate model. The proposed approach can provide voltage 

control in real-time without the knowledge of system parameters and 
topology. Numerous comparative tests demonstrate that: 1) the pro
posed deep neural network-based surrogate model can accurately esti
mate the voltage magnitude given the active and reactive power 
injection of each node. The mean absolute error on the test set achieved 
by the proposed surrogate-model is only 1.3e− 3 p.u.; 2) the voltage 
regulation strategy developed by the proposed deep reinforcement 
learning agent through interaction with the surrogate model can obtain 
similar control performance as that achieved by the deep reinforcement 
learning method with accurate information of the network model. The 
averaged voltage deviation achieved by the proposed method on the test 
set is only 1e-4 p.u. higher than the deep reinforcement learning method 
that relies on an accurate network model; 3) the proposed method can 
inform real-time decisions according to the latest observations to miti
gate fast voltage fluctuations caused by the rapid variation of PV gen
eration, the calculation time is only 0.001 s. The future works include 
the deployments of an adaptive surrogate model and a meta-learning- 
based control model, both of which can deal with the topology change 
of the active distribution network. 
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