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Uniform Stability of Switched Linear Systems:
Extensions of LaSalle’s Invariance Principle

João P. Hespanha, Senior Member, IEEE

Abstract— This paper addresses the uniform stability of
switched linear systems, where uniformity refers to the con-
vergence rate of the multiple solutions that one obtains as the
switching signal ranges over a given set. We provide a collection
of results that can be viewed as extensions of LaSalle’s Invariance
Principle to certain classes of switched linear systems. Using
these results one can deduce asymptotic stability using multiple
Lyapunov functions whose Lie derivatives are only negative semi-
definite. Depending on the regularity assumptions placed on the
switching signals, one may be able to conclude just asymptotic
stability or (uniform) exponential stability. We show by counter-
example that the results obtained are tight.

Index Terms— Switched systems, hybrid systems, LaSalle’s
Invariance Principle, Stability.

I. INTRODUCTION

Switched systems are typically represented by equations of
the form

ẋ = fσ(x), x ∈ R
n, (1)

where σ : [0,∞) → P denotes a piecewise constant signal that
effectively “switches” the right-hand-side of the differential
equation by selecting different vector fields from a parame-
terized family {fp : p ∈ P}. The time instants at which σ is
discontinuous are called switching times. The key distinction
between the switched system (1) and the time-varying system

ẋ = g(x, t), x ∈ R
n, t ≥ 0, (2)

with g defined by g(x, t) := fσ(t)(x), ∀x ∈ R
n, t ≥ 0, is

that one typically associates a family of admissible switching
signals S to (1) and studies the properties of the solutions to
(1) as σ ranges over S. Clearly, for a single switching signal
σ, (1) and (2) represent exactly the same object.

The set of solutions to an (unswitched) system like (2) is
parameterized solely by a set of initial conditions. However,
the set of solutions to a switched linear system like (1) is
parameterized both by a set of initial conditions and by an
admissible set of switching signals S on which σ is assumed
to lie. This poses important questions with respect to the
uniformity of properties such as stability, convergence, etc., as
σ ranges over S. This paper addresses the uniform asymptotic
stability of switched systems, where uniformity refers to the
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the one published in that the compactness assumptions in the statements of
Theorems 4, 8 and Lemma 5 were corrected to reflect what was actually used
in the proofs. The authors thanks Jose Luis Mancilla Aguilar for pointing out
this problem.

This material is based upon work supported by the National Science
Foundation under the Grant No. ECS-0242798.

multiple solutions that one obtains as the switching signal
ranges over a given set. We consider two notions of asymptotic
stability for switched system. In the weaker one, no uniformity
in the rate of convergence is required, whereas in the stronger
one we do require it.

We take here a fairly broad definition of what is meant
by a class of admissible switching signals. In particular, we
consider families of switching signals that may be trajectory
dependent. As a straightforward extension of previous results,
we show that when the class of switching signals is trajectory
independent, uniform asymptotic stability of linear switched
systems actually implies exponential stability. However, this is
not true in general, which underscores the fact that the class
of linear switched systems is much richer than the class of
linear systems (time-varying or not).

The main contribution of this paper is a collection of results
inspired by LaSalle’s Invariance Principle, which can be used
to determine if a switched linear systems is asymptotically
stable. The results cover (i) different structural assumptions
placed on the systems being switched as well as (ii) distinct
regularity assumptions placed on the class of switching signals
considered. Depending on the structural assumptions, one may
be able to conclude asymptotic stability or simply convergence
to an invariant set. Different assumptions on the set of switch-
ing signals may or may not lead to uniformity.

LaSalle’s Invariance Principle [1] addresses the asymptotic
stability of a system described by a differential equation of
the form

ẋ = f(x), x ∈ R
n, (3)

with f locally Lipschitz. We always consider systems for
which the origin is an equilibrium point (i.e., f(0) = 0)
and with some abuse say that a system is stable, meaning
that the origin is a stable equilibrium point of the system.
LaSalle’s Invariance Principle states that when there exists
a continuously differentiable, positive definite, and radially
unbounded function V : R

n → R for which

LfV (z) ≤ 0, ∀z ∈ R
n, (4)

where LfV denotes the Lie derivative of V along the vector
field f , then every solution x to (3) converges to the largest
invariant set M contained in {z ∈ R

n : LfV (z) = 0}. When
the set M only contains the origin, we conclude that (3) is
globally asymptotically stable. For a linear system

ẋ = Ax, x ∈ R
n, (5)
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with a quadratic positive definite Lyapunov function V (x) :=
x′Px, x ∈ R

n, the condition (4) is equivalent to requiring the
matrix

Q := A′P + PA

to be negative semi-definite. When this condition is satisfied,
we conclude from LaSalle’s Invariance Principle that every
solution to (5) converges to the largest invariant set U in the
kernel of Q. From linear geometric theory (cf. [2]), it is well
known that U is the largest A-invariant subspace1 in the kernel
of Q, which is precisely the unobservable subspace of the pair
(Q, A). Note that when Q is negative semi-definite, we can
write Q as −C ′C, with C ∈ R

m×n full rank, and conclude
that the solution to (5) converges to the unobservable subspace
of the pair (C, A). In case (Q, A) or (C, A) is observable then
U is the singleton {0} and (5) is globally asymptotically stable.

Some of the most useful tools used to prove stability of
switched systems employ multiple Lyapunov functions [3], [4]
and do not require the explicit computation of solutions to the
switched system. The following result is of this type: Suppose
that there exists a family {Vp : p ∈ P} of continuously
differentiable, radially unbounded, positive definite functions
from R

n to R such that

Lfp
Vp(z) ≤ W (z), ∀p ∈ P , z ∈ R

n, (6)

for some negative definite function W : R
n → R and

Vp2

(

x(t)
)

≤ Vp1

(

x(t)
)

, (7)

at every “switching time” t at which σ switches from p1 to
p2. Then (1) is globally asymptotically stable. Note that, when
σ is generated by a hybrid system, it is often possible to
verify that (7) holds without actually computing the solution
x to the switched system. This is because switching typically
results from discrete transitions that are triggered by algebraic
conditions on x.

As an extension of LaSalle’s Invariance Principle, we will
show that, for certain classes of switched linear systems,
the function W in (6) need only be negative semi-definite
to conclude asymptotic stability of the switched system (1).
However, our results utilize different techniques than the ones
used by LaSalle [1]. By exploring the switching structure
of (1), we are able to conclude asymptotic stability from
purely algebraic (observability) conditions and avoid the type
of integral conditions found, e.g., in [5]–[7], [8, Chapter 4],
which involve the solution to the differential equation. We also
do not require checking for invariance over compact sets of
functions as in [9]. Related to this research are also the results
in [10], where the authors present an invariance principle for
discrete-time systems that can be used to design switching
controllers. In discrete-time, the closed-loop switched system
can be viewed as a time-invariant nonlinear system so it
is possible to use an argument similar to the one found in
[1] to prove asymptotic stability. The paper [11] provides
an invariance principle for deterministic time-invariant hybrid
systems that is also relevant because often switched systems

1A subspace S of R
n is called A-invariant when AS ⊂ S.

arise from abstractions of hybrid systems (cf. Section II).
However, the results in [11] require checking set-invariance
for a hybrid system, which is in general difficult. The use of
switched systems as an abstraction to hybrid systems is, in
fact, an attempt to obviate this.

In the context of our LaSalle-like Theorems, we study the
impact of regularity assumptions on the switching signals on
the type of asymptotic stability that is obtained (cf. Sections III
and IV). In essence, to obtain uniform exponential stability of
a switched linear system, we need all admissible switching
signals to have infinitely many disjoint intervals of length no
smaller than some scalar τD > 0 and these intervals must be
separated by no more than some scalar T < ∞. However, τD

and T can be arbitrarily small and large, respectively. This
requirement is tight in the sense that without it we can find
counter-examples for which uniformity and even asymptotic
stability are lost. These results also set us apart from the work
mentioned above on LaSalle-like Theorems.

The remaining of this paper is organized as follows. In
Section II we provide the basic mathematical framework under
which we study switched systems and propose definitions
for stability that capture the uniformity properties mentioned
above. We also review existing results in light of this frame-
work and highlight the importance of uniformity in the anal-
ysis of switched and hybrid systems. Section III contains the
main result. Namely that, when a certain observability condi-
tion holds, we can conclude asymptotic stability of a switched
linear system, even when W in (6) is only negative semi-
definite. In Section IV, we relax the observability condition.
We show in Section IV-A that when extra structure is available,
observability can be relaxed to detectability. In Section IV-B,
we show that when no extra structure is available we can only
conclude that x converges to a certain invariant set—similarly
to what happens in LaSalle’s Invariance Principle. Section V
contains concluding remarks and directions for future research.
A subset of the results in this paper were presented at the 40th
Conf. on Decision and Contr., Orlando, Florida [12].

Notation: A function V : R
n → R is called positive

definite when V (z) ≥ 0, ∀z ∈ R
n with equality just for z =

0 and V is called radially unbounded when V (z) is always
unbounded as z → ∞. We say that a function α : [0,∞) →
[0,∞) is of class K, and write α ∈ K, when α is continuous,
strictly increasing, and α(0) = 0. If α is also unbounded, then
we say it is of class K∞ and write α ∈ K∞. We say that a
function β : [0,∞) × [0,∞) → [0,∞) is of class KL, and
write β ∈ KL when β(·, t) is of class K for each fixed t ≥ 0
and β(s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.

II. SWITCHED SYSTEMS

A switched system is defined by a parameterized family
{fp : p ∈ P} of locally Lipschitz vector fields from R

n to
itself, together with a set S of piecewise constant switching
signals from [0,∞) to P . By a piecewise constant signal,
we mean a signal that exhibits a finite number of discontinu-
ities in any finite time interval and that is constant between
consecutive discontinuities. By convention, we take piecewise
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constant signals σ to be continuous from above, i.e., ∀t ≥ 0
the limit from above of σ(s) as s ↓ t is equal to σ(t). The
corresponding switched system is then represented by

ẋ = fσ(x), σ ∈ S, t ≥ 0. (8)

When all the vector fields {fp : p ∈ P} are linear, we say that
(8) is a switched linear system. By a solution to the switched
system (8), we mean a pair (x, σ) for which σ ∈ S and x :
[0,∞) → R

n is a piecewise differentiable solution to the time-
varying ordinary differential equation

ẋ = fσ(t)(x), t ≥ 0. (9)

By a piecewise differentiable signal, we mean a signal whose
derivative exhibits a finite number of discontinuities in any
finite time interval.

It is often convenient to restrict the set of admissible
switching signals to be trajectory dependent. This can be
achieved by defining S to be a relation between the set of
piecewise differentiable signals x taking values in R

n and the
set of piecewise constant signals σ taking values in P . Thus the
elements of S are actually admissible pairs (x, σ). With some
abuse of notation and to avoid introducing additional symbols,
we still use (8) to denote a switched system and call S the set
of switching signals, with the understanding that a solution to
(8) is a pair (x, σ) ∈ S for which (9) holds. This formalism
still captures the case in which the set of admissible switching
signals is not trajectory dependent, because we can choose S
to have the property that if (x, σ) belongs to the set then so
does (x̄, σ) for any other piecewise differentiable x̄. When this
happens, we say that we have trajectory-independent switching
and write σ ∈ S to mean that (x, σ) ∈ S for every x. We
review next a few sets of switching signals that will be used
in the paper. We also contrast switched systems with time-
varying and hybrid systems.

a) Sets of Switching Signals: All sets of switching sig-
nals considered here are subsets of the set Snon-chatt of pairs
(x, σ) for which x and σ are piecewise differentiable and
piecewise constant, respectively. It turns out that this set often
does not exhibit sufficient regularity for our purposes so we
need to consider “better-behaved” subsets of Snon-chatt. These
include: the set Sdwell[τD ], τD > 0 for which any consecutive
discontinuities of σ are separated by at least a “dwell-time”
τD ; the set Saverage[τD, N0], τD , N0 > 0 for which the
number of discontinuities of σ in any the open interval is
bounded above by the length of the interval normalized by
an “average dwell-time” τD plus a “chatter bound” N0; the
set Sp-dwell[τD , T ], τD > 0, T ∈ [0,∞] for which there is
an infinite number of disjoint intervals of length no smaller
than a “persistent dwell-time” τD on which σ is constant,
and consecutive intervals with this property are separated
by no more than a “period of persistence” T . More precise
definitions of these sets can be found in the Appendix. It is
straightforward to check (cf. Appendix) that

Sdwell[τD] = Saverage[τD , 1] = Sp-dwell[τD, 0]

⊂ Saverage[τD , N0] ⊂ Sp-dwell[δτD , T ], (10)

∀τD > 0, N0 ≥ 1, δ ∈ (0, 1), T := N0−δ
1−δ δτD . The sets de-

scribed next are limiting cases of the previous ones. Although
they lack “uniformity,” they still exhibit sufficient regularity
for our purposes. These sets include, the set Sfinite where each
σ is restricted to have a finite number of discontinuities; the
set Sdwell, where each σ is restricted to have a dwell-time
bounded away from zero but this bound is not uniform over
all switching signals; the set Saverage, where each σ is restricted
to have an average dwell-time bounded away from zero and
finite chatter bound but these bounds are not uniform over all
switching signals; the set Sp-dwell, where each σ is restricted
to have a positive persistent dwell-time and finite period
of persistence but these are not uniform over all switching
signals; the set Sweak-dwell, for which each σ is restricted to have
a persistent dwell-time bounded away from zero but can have
infinite period of persistence. Because of (10), one concludes
that

Sfinite ⊂ Sdwell ⊂ Saverage ⊂ Sp-dwell ⊂ Sweak-dwell ⊂ Snon-chatt,

where all the inclusions are strict. All the sets defined so
far correspond to trajectory-independent switching but the
following one does not: Given a covering χ := {χp : p ∈ P}
of R

n, we denote by Scover[χ] the set of pairs (x, σ) ∈ Snon-chatt

for which

x(t) ∈ χσ(t), ∀t ≥ 0. (11)

Not much can be said, in general, whether or not Scover[χ] is
contained in any of the previous sets. However, it is sometimes
possible to prove containment without computing the solution
to the switched system by using, e.g., Lipschitz continuity of
the vector fields {fp : p ∈ P} and/or invariance of the χp.

b) Switched Systems vs. Time-varying Systems: A ques-
tion that typically arises in the context of switched systems
is: What is the difference between a switched system such
as (8) and a time-varying system such as (9)? Hopefully,
the definition above made this clear: the time-varying system
(9) admits a family of solutions that can be parameterized
solely by the the initial condition x(0), whereas the switched
system (8) admits a family of solutions that is parameterized
both by the initial condition x(0) and the switching signal σ.
This distinction is crucial when one studies the uniformity of
properties (such as stability, convergence, etc.) over the whole
family of solutions to the system. This is further explored in
Section II-A.

c) Switched vs. Hybrid Systems: Switched systems typ-
ically arise in the context of hybrid systems, i.e., systems
that combine continuous dynamics (typically modeled by
differential of difference equations) and event-driven logic
(typically modeled by finite or infinite-state automaton) [13].
A simple hybrid system can be represented as follows:

ẋ = fq(x), q = φq−(x), (12)

where x ∈ R
n is called the continuous state, q ∈ P the

discrete state, the vector fields {fp : p ∈ P} are as above,
and the φp : R

n → P , p ∈ P are called the discrete transition
functions. A solution to (12) is any pair (x, q) ∈ Snon-chatt such
that x is a solution to the differential equation

ẋ = fq(t)(x), t ≥ 0,
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and

q(t) = φq−(t)

(

x(t)
)

, ∀t ≥ 0,

where for each t > 0, q−(t) denotes the limit from below of
q(τ) as τ ↑ t. Much more general models for hybrid systems
exist (cf., e.g., [11], [13]–[15]) but this simple one is sufficient
for our purposes.

In general, determining properties of (12) directly is difficult
so a common technique used to analyze these systems is
to embed them into a switched system that may have more
solutions but is simpler to analyze. This is closely related to the
concept of abstraction in [16]. The simplest switched system
that abstracts (12) is defined by (8) with S equal to the set
Stight of pairs (x, q) ∈ Snon-chatt such that

q(t) = φq−(t)

(

x(t)
)

, ∀t ≥ 0.

Clearly, not much is gained from this particular abstraction
because the set of solutions to the switched and the hybrid
systems are exactly the same. More interesting abstractions
arise when the hybrid system is of the form

ẋ = fq(x), ż = gq(x, z), q = φq− (x, z), (13)

with x ∈ R
n, z ∈ R

m, q ∈ P and one is able to find a
set of switching signals Sloose such that all solutions to (13)
are also solutions to (8) with S := Sloose. Typically, z would
be a component of the state for which one does not seek to
investigate convergence. This type of system arises, e.g., in
supervisory control where one chooses Sloose to be Sdwell[τD]
for some τD > 0 [17]–[19]; or Saverage[τD, N0] for some
τD , N0 > 0 [20], [21]; or even Sfinite [22], [23]. The fact that
any solution to the original hybrid system must necessarily
belong to these sets of switching signals needs to be proved
separately. However, this is often enforced by construction
[17]–[19] or can be proved using relatively simple arguments
[20]–[23]. This type of approach was also pursued in [24]
to stabilize Linear Parameter Varying (LPV) systems, where
the authors enforce by design that the discontinuities of σ are
separated by a minimum time that guarantees stability of the
switched system. Several other examples can be found in the
literature.

d) Switched vs. Discontinuous Systems: Switched sys-
tems also provide a framework to study the properties of
discontinuous systems of the type

ẋ =















fp1(x) x ∈ χp1

fp2(x) x ∈ χp2

...

(14)

where χ := {χp : p ∈ P} is a disjoint covering of R
n (cf.,

e.g., [25]). This system can be viewed as the switched system
(8) if one defines S to be the set Scover[χ] defined in (11). This
illustrates that switched systems do not always have solutions
(even for Lipschitz continuous vector fields fp) because it
is simple to produce systems like (14) that do not have any
solution (at least in the sense of Carathéodory). One should
therefore be careful when proving properties of all solutions
to (8) as the statements can be vacuously true.

A. Stability

We say that the switched system (8) is stable if there exists
a function α of class K such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0 ≥ 0, (15)

along every solution to (8). When (8) is stable and x(t)
converges to zero as t → +∞ we say that (8) is asymptotically
stable. When this convergence is uniform over all switching
signals, i.e., when there exists a function β of class KL such
that

‖x(t)‖ ≤ β(‖x(t0)‖, t), ∀t ≥ t0 ≥ 0, (16)

along every solution to (8), we say that (8) is uniformly
asymptotically stable. If β can be chosen of the form β(s, t) =
ce−λts, ∀t, s ≥ 0 for given constants c, λ > 0 we say that
(8) is (uniformly) exponentially stable. Although equations
(15) and (16) appear similar to the ones in the corresponding
definitions for non-switched systems, one must keep in mind
that there is an universal quantification with respect to all
solutions to the switched system and therefore the functions
α and β must not depend on the switching signal.

There is a gap between asymptotic stability of switched
systems and uniform asymptotic stability in the sense that
one can find switched systems that are asymptotically stable
but not uniformly so. Moreover, this gap exists both for
state-dependent and state-independent switching. This will
be explicitly shown later in Example 2, once we have the
tools needed to prove stability. For now, we present two
results (Lemmas 1 and 2) that underscore the importance of
uniformity.

Lemma 1: For linear switched systems with trajectory-
independent switching, uniform asymptotic stability is equiv-
alent to exponential stability.
The proof of this Lemma (given in the Appendix) follows
closely the proof of the well-known fact that for time-varying
(nonswitched) linear systems, uniform asymptotic stability is
equivalent to exponential stability [8, Chapter 3]. This result
was proved in [27] for switched linear systems over the
class Snon-chatt of all piecewise constant switching signals and
extended in [28] to switched homogeneous (not necessarily
linear) systems over the same class of switching signals.
Lemma 1 provides a straightforward extension of these results
to other classes of switching signals. However, it is important
to notice that in general it cannot be extended to state-
dependent switching (cf. Example 1 below). This attests to the
fact that the class of state-dependent switched linear systems
is significantly richer than the class of linear system (time-
varying or not).

Example 1: Consider the following switched system

ẋ = −σx, σ ∈ S,

where S contains all pairs (x, σ) ∈ Snon-chatt, with x taking
values in R and σ in P := [0,∞), such that

σ(t) =

{

0 x(t) = 0

2n |x(t)| ∈ [2−n−1, 2−n), n ∈ Z
(17)
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where Z denotes the set of (positive and negative) integers.
This set of switching signals S is actually the set Scover[χ] that
we encountered before, for the covering χ := {χp : p ∈ P}
of R defined by

χp :=











{0} p = 0

[2−n−1, 2−n) p = 2n, n ∈ Z

∅ otherwise

From (17), we can see that − 1
2x|x| ≤ ẋ ≤ −x|x|, and

therefore
x(t0)

1 + (t − t0)|x(t0)|
≤ x(t) ≤ 2x(t0)

2 + (t − t0)|x(t0)|
,

∀t ≥ t0, σ ∈ S, which shows that the convergence of x to zero
is uniform but not exponential. It would be straightforward to
modify this example so that σ would take values in a compact
set because the problems arise as σ takes values in a small
neighborhood of the origin and not as σ takes large values.

So far we considered autonomous switched systems. Con-
sider now the following switched system with inputs:

ẋ = fσ(x, u), σ ∈ S, t ≥ 0, (18)

where {fp : p ∈ P} denotes a family of locally Lipschitz
vector fields from R

n ×R
m to R

n and the set S of switching
signals consists of triples (x, u, σ). A solution to (18) is now
a triple (x, u, σ) ∈ S that satisfies the ordinary differential
equation

ẋ = fσ(t)(x, u), t ≥ 0.

We say that (18) has L2-induced norm g if there exists a
constant g0 such that

(

∫ t

0

‖x(τ)‖2
)

1
2 ≤ g

(

∫ t

0

‖u(τ)‖2
)

1
2

+ g0‖x(0)‖, (19)

∀t ≥ 0, along every solution to (18). When (19) is replaced
by

‖x(t)‖ ≤ g sup
[0,t)

‖u(τ)‖ + g0‖x(0)‖, ∀t ≥ 0,

we say that (18) has L∞-induced norm g, and if (19) is
replaced by

‖x(t)‖ ≤ g

(

∫ t

0

‖u(τ)‖2
)

1
2

+ g0‖x(0)‖, ∀t ≥ 0,

we say that (18) has L2-to-L∞-induced norm g. The follow-
ing lemma also depends crucially on trajectory-independent
switching and uniformity. Proving it is straightforward once
exponential stability has been established (cf. [29] for details).

Lemma 2: Suppose that the linear switched system (18) has
linear maps fp uniformly bounded over P . For trajectory-
independent switching, if (18) is uniformly asymptotically
stable, then it has finite L2, L∞, and L2-to-L∞ induced
norms.
The results in this section are the basis of essentially every
argument that we are aware of to prove robust stability of
switched and hybrid systems. Indeed, they provide the main
motivation to study the uniformity of convergence to the origin

for stable linear switched systems. Examples of robust stability
arguments that use these results can be found, e.g., in the
proofs of robust stability and performance for supervisory
control schemes [20], [21], [30].

B. Lyapunov Stability Theorems

Several Lyapunov-like theorems that can be found in the
literature allow one to establish the stability of a switched
system such as (8), without explicitly solving the ordinary
differential equations (9). The result presented below is based
on the idea of multiple Lyapunov functions in [3], [4]. It is
less general than the ones in [31], [32] but it has the advantage
that, in the spirit of Lyapunov’s direct method, the stability test
can be performed without solving (9) because it relies solely
on the Lie derivative of the multiple Lyapunov functions and
not on the evolution of x between switching times. The price
paid is of course a more conservative result than those, e.g.,
in [31], [32].

Theorem 3: Suppose that there exists a family {Vp : p ∈
P} of continuously differentiable, radially unbounded, positive
definite functions from R

n to R such that, ∀(x, σ) ∈ S,

Vσ(t)

(

x(t)
)

≤ Vσ(t−)

(

x(t)
)

, ∀t ≥ 0, (20)

and, ∀z ∈ R
n, p ∈ P ,

α1(‖z‖) ≤ Vp(z) ≤ α2(‖z‖), Lfp
Vp(z) ≤ Wp(z), (21)

for some α1, α2 ∈ K∞ and negative semi-definite functions
Wp : R

n → R, p ∈ P . Then (8) is stable. Moreover, if there
exists an α3 ∈ K such that

Wp(z) ≤ −α3(‖z‖), ∀z ∈ R
n, p ∈ P , (22)

then (8) is uniformly asymptotically stable.
Note that (20) is only non-trivially satisfied at points of
discontinuity of σ and is trivially true when all the Vp are
equal (common Lyapunov function). The condition (21) could
be relaxed by restricting the quantification on z and p to pairs
(z, p) ∈ R

n ×P such that there exists some (x, σ) ∈ S such
that x(t) = z and σ(t) = p for some t ≥ 0. This is particularly
useful for sets of switching signals such as Scover[χ], where the
quantification would be over the set of pairs (z, p) such that
z ∈ χp.

Although we could not quite find Theorem 3 in the literature
(taking into account the “uniformity” built into our definition
of stability) it is straightforward to adapt to our formulation
the stability proofs, e.g., in [3], [4], [31], [32] so this is not
really a new result. The uniformity needed comes from the
assumption that the functions α1, α2, and α3 in (21) and (22)
do not depend on p.

For switched linear systems such as

ẋ = Aσx, σ ∈ S, t ≥ 0, (23)

and quadratic Lyapunov functions, we obtain the following
corollary of Theorem 3:
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Corollary 1: Suppose that there exists a compact family
{Pp ∈ R

n×n : p ∈ P} of symmetric positive definite matrices
such that, for every (x, σ) ∈ S,

x(t)′Pσ(t)x(t) ≤ x(t)′Pσ(t−)x(t), ∀t ≥ 0, (24)

and

A′
pPp + PpAp ≤ −C ′

pCp (≤ 0), ∀p ∈ P , (25)

for appropriately defined matrices Cp ∈ R
m×n. Then (23) is

stable. Moreover, if

C ′
pCp ≥ ρI > 0, ∀p ∈ P , (26)

for some ρ > 0, then (23) is uniformly asymptotically stable.

In the following sections we discard (26) and investigate which
convergence properties still hold for the switched system.

Remark 1: In hybrid control systems, σ is often generated
by a supervisory logic that guarantees, by construction, that
(20) or (24) hold. Typically, these equations only needs to
hold over subsets of the state space that are defined by simple
algebraic conditions (often linear or affine subspaces of R

n,
cf. [33] and references therein).

III. MAIN RESULT

Consider the switched linear system

ẋ = Aσx, σ ∈ S, t ≥ 0, (27)

and suppose that there exists a compact family {Pp : p ∈ P}
of symmetric positive definite n × n matrices for which (24)
and (25) hold for every (x, σ) ∈ S. Defining

v(t) := x′(t)Pσ(t)x(t), ∀t ≥ 0,

we conclude from (25) that between switching times we have

v̇(t) ≤ −‖y(t)‖2 ≤ 0, ∀t ≥ 0, (28)

where y(t) := Cσ(t)x(t), t ≥ 0. Moreover, at switching times
v(t) may be discontinuous but it is non-increasing because of
(24). This means that v is uniformly bounded by v(0) and
therefore, for every t ≥ 0,

‖x(t)‖ ≤ µ‖x(0)‖, µ :=

max
p∈P

σmax[Pp]

min
p∈P

σmin[Pp]
, (29)

where σmax[Pp] and σmin[Pp] denote the largest and smallest
singular values of Pp, respectively. Stability of (27) follows
directly from (29). From (28) we can also conclude that y(t)
is an L2 signal, i.e.,

∫ ∞

0
‖y(t)‖2dt < ∞. Indeed, because of

(28)

v(t) ≤ v(τ) +

∫ t

τ

v̇(s)ds ≤ v(τ) −
∫ t

τ

‖y(s)‖2ds,

∀t ≥ τ ≥ 0 and therefore
∫ t

τ

‖y(s)‖2ds ≤ v(τ) − v(t) ≤ v(τ), ∀t ≥ τ ≥ 0, (30)

which shows that y ∈ L2. Although y ∈ L2 and its derivative
is bounded wherever it exists, we cannot use Barbalat’s

Lemma [34], [35] to conclude that y(t) → 0 as t → ∞
because y is not continuous. However, this lemma can easily
be extended to discontinuous signals, provided that the interval
between consecutive discontinuities is uniformly bounded be-
low by a positive constant. This happens, e.g, when σ ∈ Sdwell.
It turns out that even if we only have σ ∈ Sweak-dwell (⊃ Sdwell)
but in addition, every pair (Cp, Ap), p ∈ P is observable, we
can actually conclude that the whole state x(t) converges to
zero as t → ∞ and not just y(t) → 0. This is stated in the
following theorem:

Theorem 4: Suppose that there exists a compact family
{Pp : p ∈ P} of symmetric positive definite matrices such
that, for every (x, σ) ∈ S,

x(t)′Pσ(t)x(t) ≤ x(t)′Pσ(t−)x(t), ∀t ≥ 0, (31)

and

A′
pPp + PpAp ≤ −C ′

pCp (≤ 0), ∀p ∈ P , (32)

for an appropriately defined set of matrices {Cp : p ∈ P} for
which {(Cp, Ap) : p ∈ P} is compact. Then (27) is stable.
Moreover, when every pair (Cp, Ap), p ∈ P is observable,

(i) if S ⊂ Sweak-dwell then (27) is asymptotically stable,
(ii) if S ⊂ Sp-dwell[τD , T ] for some τD > 0, T < ∞ then

(27) is (uniformly) exponentially stable.
Here and in all the results that follow, the condition (32) can
be relaxed to

z′(A′
pPp + PpAp + C ′

pCp)z ≤ 0,

for all pairs (z, p) ∈ R
n × P for which there exists some

(x, σ) ∈ S such that x(t) = z and σ(t) = p for some t ≥ 0.

For the non-uniform stability result (i) and when P is finite,
the condition (31) can be relaxed to simply demanding that
for every consecutive intervals [τ1, t1) and [τ2, t2) on which
σ takes the same value p ∈ P , we have

x(τ2)
′Ppx(τ2) ≤ x(t1)

′Ppx(t1)

[36]. However, this condition does not seem to be sufficient
for uniform stability so we do not pursue it here.

The observability of the pairs (Cp, Ap) automatically guar-
antees the existence of positive definite matrices Pp that satisfy
(32) (even with equality). The challenge in applying this
theorem—as with essentially any theorem based on multiple
Lyapunov functions (e.g., Theorem 3 or other versions of
it in the literature)—is to find matrices Pp that also satisfy
(31). This is often done numerically by finding solutions to
systems of Matrix Linear Inequalities (LMIs) (cf., e.g., [25])
or constructively by selecting appropriate “switching surfaces”
(cf., e.g., [3]). The reader is referred to [33] for a more detailed
discussion on this issue.

Before proving Theorem 4 we would like to point-out that
some form of regularity in the switching signals is needed
to conclude asymptotic stability. In fact, the requirement that
S ⊂ Sweak-dwell (or Sp-dwell[τD, T ] for the uniform case) is
not an artifact of the proof and without it we could construct
counter-examples to the result above. This is shown through
the following example.
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Fig. 1. Vector fields and typical trajectory for the matrices A1 (left) and A2 (right) defined in (33).

Example 2: Consider the switched system with P := {1, 2}
and

A1 :=

[

0 −1
1 −2

]

, A2 :=

[

0 1
−1 −2

]

, (33)

whose vector fields are drawn in Figure 1. For these matrices
we have

A′
pPp + ApPp = −C ′

pCp, ∀p ∈ P , (34)

with P1 = P2 = I and C1 = C2 = [0 2]. Equation (32)
holds because of (34) and, since all the Pp are equal (common
Lyapunov function) the inequality (31) is also trivially satis-
fied. Moreover, both pairs (Cp, Ap), p ∈ P are observable. It
turns out that it is possible to construct a piecewise constant
switching signal σ for which x does not converge to zero.
Of course this σ does not satisfy the regularity imposed by
S ⊂ Sweak-dwell. To construct such a switching signal suppose
that at time tk the state x(tk) is over the horizontal axis (i.e.,
x2(tk) = 0) by setting first σ = 1 and then σ = 2 it is possible
to compute another time tk+1 > tk such that x(tk+1) is again
over the horizontal axis. It is straightforward to check that this
will occur if we set σ = 1 for some time δk followed by σ = 2
for some time δk/(1− 2δk), and therefore

tk+1 = tk + δk +
δk

1 − 2δk
= tk +

2δk(1 − δk)

1 − 2δk
. (35)

Moreover, solving the differential equations, we conclude that

x1(tk+1) =
e−2δk(1−δk)/(1−2δk)

1 − 2δk
x1(tk). (36)

Although e−2δk(1−δk)/(1−2δk)/(1−2δk) < 1 for every δk > 0,
it is possible to chose the δk so that tk → ∞ (which guarantees
that σ is piecewise constant because it only has a finite number
of discontinuities in finite time) and yet x1(tk) does not
converge to zero. Indeed, iterating (35) and (36) from 0 to
k and taking logarithms of the latter, we conclude that

tk =

k−1
∑

i=0

2δi(1 − δi)

1 − 2δi
, (37)

log x1(tk) = log x1(t0) −
k−1
∑

i=0

(2δi(1 − δi)

1 − 2δi
− log(1 − 2δi)

)

.

(38)

Since

2δk(1 − δk)

1 − 2δk
= o(δk),

2δk(1 − δk)

1 − 2δk
− log(1 − 2δk) = o(δ3

k),

it is possible to select the δk (e.g., δk = 1
k ) such that the series

in (37) diverges (and therefore tk → ∞) and yet the series in
(38) converges (and therefore x1(tk) 6→ 0). Clearly, the δk

must converge to zero, which means that the corresponding
switching signal is not in Sweak-dwell. Using the same ideas one
could also construct a switching signal σ in Sweak-dwell but not
in any Sp-dwell[τD , T ], τD > 0, T < ∞ for which x → 0 but
not exponentially fast. In fact, one could make the convergence
arbitrarily slow. This could be achieved by making δk = 1

k for
most values of k, interlaced by δk̄ = τD > 0, for values of k̄
increasingly spread apart, so that there is no finite period of
persistency. This would be an example of a state-independent
switched system that is asymptotically state but not uniformly.
This example illustrates how the requirements on S in the
statements (i) and (ii) are tight.

We start by proving (ii) and leave the proof of (i) for
Section IV-B. To prove (ii) we need the following result
(proved in the Appendix), which is a consequence of the
Squashing Lemma in [37]:

Lemma 5: Assume given positive finite constants τD, T, λ
and a compact set of matrix pairs {(Ap, Cp) : p ∈ P} such
that every pair (Cp, Ap), p ∈ P is observable. Then, there exist
constants c, k > 0 such that for every σ ∈ Sp-dwell[τD , T ],

‖Φσ(t, τ)‖ ≤ ce−λ(t−τ), ∀t ≥ τ ≥ 0, (39)

where Φσ(t, τ) denotes the state transition matrix of the time-
varying system

ż =
(

Aσ(t) + K(t)Cσ(t)

)

z, t ≥ 0,

for some appropriately chosen time-varying output-injection
matrix K whose norm is uniformly bounded by the constant
k.

Proof: [Theorem 4 (ii)] We have already shown that (27)
is stable. We show next that when every pair (Cp, Ap), p ∈ P
is observable and S ⊂ Sp-dwell[τD, T ] for some τD > 0, T <
∞, then (27) is exponentially stable. To this effect, let λ be an
arbitrary positive constant and (x, σ) ∈ S a solution to (27).
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From Lemma 5, we known that there exists a time-varying
output-injection matrix K such that the state transition matrix
Φσ of the time-varying system

ż =
(

Aσ(t) + K(t)Cσ(t)

)

z, t ≥ 0,

satisfies (39) and ‖K(t)‖ ≤ k, ∀t ≥ 0. Suppose now that we
re-write (27) as

ẋ = (Aσ + KCσ)x − Ky. (40)

By the variation of constants formula we then obtain

x(t) = Φσ(t, τ)x(τ) −
∫ t

τ

Φσ(t, s)K(s)y(s)ds,

∀t ≥ τ ≥ 0. Taking norms, and using the Cauchy-Schwartz
inequality together with (39), we conclude that

‖x(t)‖ ≤ ‖Φσ(t, τ)‖ ‖x(τ)‖

+
(

∫ t

τ

‖Φσ(t, s)K(s)‖2ds
)

1
2

(

∫ t

τ

‖y(s)‖2ds
)

1
2

≤ ce−λ(t−τ)‖x(τ)‖

+ ck
(

∫ t

τ

e−2λ(t−s)ds
)

1
2
(

∫ t

τ

‖y(s)‖2ds
)

1
2

.

Moreover, since
∫ t

τ

e−2λ(t−s)ds =

∫ t−τ

0

e−2λsds ≤
∫ ∞

0

e−2λsds =
1

2λ
,

∀t ≥ τ ≥ 0, we conclude that

‖x(t)‖ ≤ ce−λ(t−τ)‖x(τ)‖ +
ck√
2λ

(

∫ t

τ

‖y(s)‖2ds
)

1
2

. (41)

Since the set {Pp : p ∈ P} of positive definite matrices is
compact, there exist constants α1, α2 > 0 such that

α1I ≤ Pp ≤ α2I, ∀p ∈ P . (42)

Therefore, for every t ≥ τ ≥ 0,

v(t) := x′(t)Pσ(t)x(t) ≤ α2‖x(t)‖2

≤ 2α2c
2e−2λ(t−τ)‖x(τ)‖2 + k̄

∫ t

τ

‖y(s)‖2ds

≤ 2α2c
2

α1
e−2λ(t−τ)v(τ) + k̄

∫ t

τ

‖y(s)‖2ds, (43)

where k̄ := α2c
2k2/λ. Here, we used (41) and the fact that

for any positive scalars a, b, we have (a + b)2 ≤ 2a2 + 2b2.
Combining (43) with (30) we obtain

v(t) ≤ 2α2c
2

α1
e−2λ(t−τ)v(τ) + k̄

(

v(τ) − v(t)
)

,

∀t ≥ τ ≥ 0, or equivalently

v(t) ≤
2α2c2

α1
e−2λ(t−τ) + k̄

1 + k̄
v(τ), ∀t ≥ τ ≥ 0.

Suppose now that we pick a constant L such that

ρ :=
2α2c2

α1
e−2λL + k̄

1 + k̄
< 1,

and therefore v contracts by at least ρ in any interval of length
L. From this, it is straightforward to conclude that

v(t) ≤ c̄ρ(t−τ)/L v(τ), ∀t ≥ τ ≥ 0,

where c̄ := (k̄ + 2α2c
2/α1)/ρ/(1 + k̄). Together with (42),

this leads to

‖x(t)‖2 ≤ v(t)

α1
≤ c̄ρ(t−τ)/L

α1
v(τ) ≤ c̄α2ρ

(t−τ)/L

α1
‖x(τ)‖2,

∀t ≥ τ ≥ 0, and therefore x converges to zero exponentially
fast. Since the bound constructed above is independent of
(x, σ) ∈ S ⊂ Sp-dwell[τD , T ], we conclude that (27) is
(uniformly) exponentially stable, which proves (ii).

IV. RELAXING THE OBSERVABILITY ASSUMPTION

In this section we present two alternative methods to relax
the observability assumption in Theorem 4. The first explores
the case where the matrices Ap, p ∈ P have additional
structure. The second does not require extra structure but we
are no longer able to conclude that the state x of the switched
system converges to the origin. Instead, we conclude that x
converges to a specific “invariant” set.

A. Switched State Feedback

We consider here the case where all the matrices Ap, p ∈ P
only differ by a state feedback matrix gain, i.e., all the Ap,
p ∈ P are of the form

Ap = A + BFp, ∀p ∈ P , (44)

where A and B are given matrices and {Fp : p ∈ P} is
a compact set of state feedback matrix gains. This type of
structure arises, e.g., when a fixed time-invariant process is
controlled using a switched state feedback gain.

The following result explores the added structure provided
by (44) to relax the observability assumption and simply
demands detectability. However, now the right-hand-side of
(32) is also required to be constant. This result is inspired by
the Switching Theorem in [17].

Theorem 6: Suppose that (44) holds and that there exists a
compact family {Pp : p ∈ P} of symmetric positive definite
n × n matrices such that, for every (x, σ) ∈ S,

x(t)′Pσ(t)x(t) ≤ x(t)′Pσ(t−)x(t), ∀t ≥ 0,

and

A′
pPp + PpAp ≤ −C ′C (≤ 0), ∀p ∈ P ,

for an appropriately defined matrix C. Then (27) is stable.
Moreover, when (A, B, C) is a left-invertible system and every
pair (C, Ap), p ∈ P is detectable,

(i) if S ⊂ Sweak-dwell then (27) is asymptotically stable,
(ii) if Sp-dwell[τD , T ] for some τD > 0, T < ∞ then (27)

is (uniformly) exponentially stable.
Also here we start by proving (ii) and leave the proof of
(i) for Section IV-B. To prove (ii) we need the following
decomposition from [17, Lemma 5]:
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Lemma 7: Let (A, B, C) be a left-invertible system. Then,
there exist matrices A−, Ā, B̄, C̄, K̄, F̄ , Q, with Q nonsin-
gular such that

QAQ−1 =

[

Ā B̄F̄
K̄C̄ A−

]

, (45)

QB =

[

B̄
0

]

, CQ−1 =

[

C̄ ′

0

]

, (46)

where A−’s spectrum is the set of transmission zeros of
(A, B, C) with negative real part, and (Ā, B̄, C̄) does not have
any transmission zero with negative real part.

Proof: [Theorem 6 (ii)] We have already shown for the
general case that (27) is stable. We show next that under the
assumptions of this theorem and S ⊂ Sp-dwell[τD , T ] for some
τD > 0, T < ∞, we have exponential stability for (27).

Let A−, Ā, B̄, C̄, K̄, F̄ , Q be the matrices whose existence
is guaranteed by Lemma 7. Since detectability is invariant
under state-coordinate transformations and (C, A + BFp),
p ∈ P is detectable then so is the pair

(

CQ−1, Q(A + BFp)Q
−1

)

=

(

[

C̄ 0
]

,

[

Ā + B̄F̄p B̄(F̄ + F̃p)
0 A−

]

+

[

0
K̄

]

[

C̄ 0
]

)

,

where [F̄p F̃p] := FpQ
−1, p ∈ P . Moreover, since de-

tectability is also invariant under output-injection transforma-
tions and A− is a stability matrix, we conclude that each
pair (C̄, Ā + B̄F̄p), p ∈ P must be detectable. But (Ā, B̄, C̄)
does not have any transmission zero with negative real part,
therefore (C̄, Ā + B̄F̄p) must actually be observable. On the
other hand, defining [z′

1 z′2]
′ := Qx, from (27), (44), and

(45)–(46) we conclude that
[

ż1

ż2

]

=

[

Ā + B̄F̄σ B̄(F̄ + F̃σ)
K̄C̄ A−

] [

z1

z2

]

, (47)

y =
[

C̄ 0
]

[

z1

z2

]

. (48)

Since each pair (C̄, Ā + B̄F̄p), p ∈ P is observable, from
Lemma 5 we known that there exists a time-varying output-
injection matrix K̃ such that the state transition matrix Φ̄σ of
the time-varying system

ż =
(

Ā + B̄F̄σ(t) + K̃(t)C̄
)

z, t ≥ 0,

satisfies

‖Φ̄σ(t, τ)‖ ≤ c̄e−λ̄(t−τ), ∀t ≥ τ ≥ 0,

with ‖K̃(t)‖ ≤ k̄, ∀t ≥ 0 for λ̄, k > 0 independent of σ.
Suppose now that we re-write (47)–(48) as
[

ż1

ż2

]

=

[

Ā + B̄F̄σ + K̃C̄ B̄(F̄ + F̃σ)
0 A−

][

z1

z2

]

−
[

K̃
−K̄

]

y,

(49)

y =
[

C̄ 0
]

[

z1

z2

]

. (50)

Because of the diagonal structure of
[

Ā + B̄F̄σ + K̃C̄ B̄(F̄ + F̃σ)
0 A−

]

(51)

and the fact that both matrices in the diagonal are exponen-
tially stable, we conclude that the state transition matrix Φσ

associated with (51) satisfies (39) for appropriately defined
c and λ. From this point on we can replicate the proof of
Theorem 4, by using (49) in place of (40).

B. Convergence to an Invariant Set

We now generalize Theorem 4 to the case when the ob-
servability assumption fails and we do not have additional
structure. In this case, we are not able to conclude that the
state x of the switched system converges to zero. However,
we show that it converges to a particular “invariant” set:

Theorem 8: Suppose that there exists a compact family
{Pp : p ∈ P} of symmetric positive definite matrices such
that, for every (x, σ) ∈ S,

x(t)′Pσ(t)x(t) ≤ x(t)′Pσ(t−)x(t), ∀t ≥ 0,

and

A′
pPp + PpAp ≤ −C ′

pCp (≤ 0), ∀p ∈ P ,

for an appropriately defined compact set of matrices {Cp : p ∈
P} for which {(Cp, Ap) : p ∈ P} is compact. Then (27) is
stable. Moreover, if S ⊂ Sp-dwell then, along solutions to (27),
x converges to the smallest subspace M that is Ap-invariant
for all p ∈ P and contains the unobservable subspaces of all
pairs (Cp, Ap), p ∈ P .
When all pairs (Cp, Ap), p ∈ P are observable, the set M
simply contains the origin and we obtain a result similar to
the statement (i) in Theorem 4, except that here we need S ⊂
Sp-dwell, which is a stronger requirement than S ⊂ Sweak-dwell.
Also, Theorem 8 makes no uniformity claims regarding the
convergence to M. In view of the statement (ii) in Theorem 4,
one could expect uniformity when Sp-dwell[τD , T ] for some
τD > 0, T < ∞. We conjecture that even in this case, the
convergence to M will not be uniform, however so far we
were unable to find a counter-example.

Proof: [Theorem 8] Since we have already shown that
(27) is stable, we only need to show that x converges to M.
To this effect, let (x, σ) ∈ S be a solution to (27). Since
S ⊂ Sp-dwell we known that (x, σ) ∈ Sp-dwell[τD, T ] for some
τD > 0, T < ∞. Pick then a time interval [τk, tk) of length
no smaller than τD on which σ = p. From the Kalman’s
Decomposition Theorem [38], we known that there exists a (p-
dependent) coordinate transformation [x′

u x′
o]

′ := Qpx, with
Qp nonsingular for which the system (27) can be represented
as

[

ẋu

ẋo

]

=

[

Au X
0 Ao

] [

xu

xo

]

, y =
[

0 Co
]

[

xu

xo

]

, (52)

∀t ∈ [τk, tk), with the pair (Co, Ao) observable. Moreover,
since Q−1

p [x′
u 0]′ belongs to the unobservable subspace of

the pair (Cp, Ap) and therefore to M, the distance from x
to M is determined by xo. Picking some λ > 0, from the
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Squashing Lemma 9 in the Appendix, with τ0 := τD and
λ0 := λ, we conclude that there exists an output-injection
matrix Kδ for which

‖e(Ao+KδCo)t‖ ≤ δe−λ(t−τD), ∀t ≥ τD, p ∈ P . (53)

For the time being we do not specify a particular value for δ
but we recall that Kδ in (53) will depend on the particular δ
to be selected later. Since we can also write (52) as

[

ẋu

ẋo

]

=

[

Au X
0 Ao + KδC

o

] [

xu

xo

]

−
[

0
Kδ

]

y,

we conclude that

xo(t) = e(Ao+KδCo)(t−τk)xo(τk)

−
∫ t

τk

e(Ao+KδCo)(t−τ)Kδy(τ)dτ, ∀t ∈ [τk, tk].

Taking norms and using the Cauchy-Schwartz inequality to-
gether with (53), we conclude that, for every t ∈ [τk +τD, tk],

‖xo(t)‖ ≤ ‖e(Ao+KδCo)(t−τk)‖ ‖xo(τk)‖

+
(

∫ t

τk

‖e(Ao+KδCo)(t−τ)Kδ‖2dτ
)

1
2

(

∫ t

τk

‖y(τ)‖2dτ
)

1
2

≤ δ‖xo(τk)‖ + kδ

(

∫ tk

τk

‖y(τ)‖2dτ
)

1
2

,

where

kδ :=
(

∫ ∞

0

‖e(Ao+KδCo)sKδ‖2ds
)

1
2

is finite because Ao +KδC
o is exponentially stable [cf. (53)].

Since we already established that the overall state of the
system is bounded, ‖xo(τk)‖ is bounded and therefore we
can make the term δ‖xo(τk)‖ arbitrarily small by choosing
δ sufficiently small. Since it has also been established that
y ∈ L2, once δ is chosen (and therefore kδ takes a specific
finite value), the term

∫ tk

τk
‖y(τ)‖2dτ can be made arbitrarily

small by considering an interval that starts at a time τk

sufficiently large. We therefore conclude that, given any ε > 0,
there is a time Tε sufficiently large so that for any τk ≥ Tε, the
distance from x(τk + τD) to the unobservable subspace of the
pair (Cp, Ap) is smaller than ε. Because of the compactness of
{Ap : p ∈ P} and {Cp : p ∈ P}, the time Tε can be selected
independently of p := σ(t), t ∈ [τk , tk).

Because M contains all the unobservable subspaces of the
pairs (Cp, Ap), p ∈ P the distance from x to M at the times
{τk + τD} is smaller than ε. Moreover, since the separation
between the τk + τD is bounded by T + τD and between
them x evolves according to flows for which M is invariant,
the distance from x to M is bounded by ea(T+τD)ε, a :=
maxp∈P ‖Ap‖ between the τk + τD (cf. Lemma 10 in the
Appendix). Finally, as we can make ε arbitrarily small, we
conclude that the distance from x to M actually converges to
zero.
We are now ready to complete the proofs of Theorems 4 and
6, by adapting the proof of Theorem 8.

Proof: [Theorem 4 (i)] Consider the proof of Theorem 8
with the following two modifications:

1) all the pairs (Cp, Ap), p ∈ P are observable and
therefore M only contains the origin; and

2) the solution (x, σ) to (27) is in Sp-dwell[τD , +∞] instead
of Sp-dwell[τD , T ] for some τD > 0, T < ∞.

Using exactly the same argument, we conclude that for any
given ε > 0 there exists a time τk + τD sufficiently large so
that the distance from x(τk + τD) to the origin is smaller than
ε. This means that there is a sequence of times along which
x converges to zero. Since stability of (27) has already been
established, we conclude that x must actually converge to zero
as t → ∞, which proves (i) in Theorem 4.

Proof: [Theorem 6 (i)] In the proof of (ii) in Theorem
6, we saw that there exists a coordinate transformation that
allows us to write (27) as

ż1 = (Ā + B̄F̄σ)z1 + ȳ, y = C̄z1 (54)

ż2 = A−z2 + K̄y, ȳ = B̄(F̄ + F̃σ)z2 (55)

where A− is a stability matrix and each pair (C̄, Ā + B̄F̄p),
p ∈ P is observable [cf. equation (47)–(48)]. Since A− is
a stability matrix and y ∈ L2, we conclude that z2 → 0 as
t → ∞. Moreover, z2 and ȳ are also in L2. It then remains
to show that z1 → 0. To do this, note that the differential
equation (54) driving z1 is similar to the differential equation
(52) driving xo in the proof of Theorem 8. The only difference
being the exogenous input ȳ. However, since it has already
been established that this input is L2, we could replicate the
proof of Theorem 8 and still conclude that there is a sequence
of times along which z2 converges to zero. Since z1 converges
to zero as t → ∞ and the system is stable, we conclude that
the whole state converges to zero as t → ∞, which proves (i)
in Theorem 6.

V. CONCLUSION

We extended LaSalle’s Invariance Principle to certain
classes of switched linear systems. In particular, we illustrated
how to prove asymptotic stability using multiple Lyapunov
functions whose Lie derivatives are only negative semi-definite
and investigated under which conditions the convergence is
uniform and exponential. We showed that uniformity of con-
vergence depends critically on the class of switching signals
considered. In particular, on the existence of a “persistent”
dwell-time. We are currently extending these results to non-
linear switched systems. Preliminary results can be found in
[36].
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APPENDIX

a) Sets of Switching Signals: All sets of switching sig-
nals considered in this paper are subsets of the set Snon-chatt of
pairs (x, σ) for which x and σ are piecewise differentiable and
piecewise constant, respectively. Other sets considered include:

• The set Sdwell[τD ], τD > 0 of pairs (x, σ) ∈ Snon-chatt for
which any consecutive discontinuities of σ are separated
by no less than τD. The constant τD is called the dwell-
time.

• The set Saverage[τD, N0], τD , N0 > 0 of pairs (x, σ) ∈
Snon-chatt for which

Nσ(t, τ) ≤ N0 +
t − τ

τD
, ∀t ≥ τ ≥ 0,

where Nσ(t, τ) denotes the number of discontinuities of
σ in the open interval (τ, t). The constant τD is called
the average dwell-time and N0 the chatter bound.

• The set Sp-dwell[τD , T ], τD > 0, T ∈ [0,∞] of pairs
(x, σ) ∈ Snon-chatt for which there is an infinite number
of disjoint intervals of length no smaller than τD on
which σ is constant, and consecutive intervals with this
property are separated by no more than T . The constant
τD is called the persistent dwell-time and T the period
of persistence.

The following sets are limiting cases of the above.
• The set Sfinite :=

⋃

N0>0 Saverage[∞, N0], where each σ is
restricted to have a finite number of discontinuities.

• The set Sdwell :=
⋃

τD>0 Sdwell[τD], where each σ is
restricted to have a dwell-time bounded away from zero
but this bound is not uniform over all switching signals.

• The set Saverage :=
⋃

τD>0,N0>0 Saverage[τD , N0], where
each σ is restricted to have an average dwell-time
bounded away from zero and finite chatter bound but
these bounds are not uniform over all switching signals.

• The set Sp-dwell :=
⋃

τD>0,T<∞ Sp-dwell[τD, T ], where
each σ is restricted to have a positive persistent dwell-
time and finite period of persistence but these are not
uniform over all switching signals.

• The set Sweak-dwell :=
⋃

τD>0 Sp-dwell[τD , +∞], for which
each σ is restricted to have a persistent dwell-time
bounded away from zero but can have infinite period of
persistence.
Proof: [Equation (10)] For any switching signal with

interval between consecutive discontinuities no smaller then
τD , there can be at most 1 + L/τD discontinuities on an
interval of length L, therefore Sdwell[τD] ⊂ Saverage[τD , 1].
The converse inclusion is a consequence of the fact that if
σ ∈ Saverage[τD , 1], there can be at most one discontinuity
of σ on any interval of length smaller than τD therefore the
interval between consecutive discontinuities of σ is larger or
equal to τD. This proves that Sdwell[τD] = Saverage[τD , 1].

The fact that Sdwell[τD ] = Sp-dwell[τD , 0] is a trivial conse-
quence of the definition of these sets. The fact that Sdwell[τD] ⊂
Saverage[τD , N0], ∀N0 ≥ 1 is a consequence of Sdwell[τD ] =
Saverage[τD , 1] together with Saverage[τD , 1] ⊂ Saverage[τD, N0],
∀N0 ≥ 1.

Suppose now that σ ∈ Saverage[τD , N0] and suppose that
there exist n consecutive discontinuities of σ separated by less
than δτD , for some δ ∈ (0, 1). This means that there must exist
an interval of length smaller than δτD(n − 1) on which there
are n discontinuities of σ. But since σ ∈ Saverage[τD , N0], we
conclude that

n ≤ N0 +
δτD(n − 1)

τD
= N0 + δ(n − 1)

and therefore n ≤ (N0 − δ)/(1 − δ). This means that there
can be at most (N0 − δ)/(1 − δ) consecutive discontinuities
of σ separated by less than δτD and therefore two intervals
on which σ remains constants for at least δτD cannot be
separated by more than δτD(N0 − δ)/(1 − δ), i.e., σ ∈
Sp-dwell[δτD, δτD(N0 − δ)/(1 − δ)].

Proof: [Lemma 1] The fact that exponential stability
implies uniform asymptotic stability is trivial so we only
need to prove the converse. To this effect, assume that (8) is
uniformly asymptotically stable and therefore that (16) holds
for some β ∈ KL. Moreover, let T be a constant sufficiently
large so that β(1, T ) ≤ e−λ, for some λ > 0. Suppose that
we pick an arbitrary solution (x, σ) ∈ S to (8) and denote by
Φσ(t, τ) the state transition matrix of the time-varying linear
system (9) (recall that the maps fp are linear for switched
linear systems). Because of the semi-group property of the
state transition matrix we can write

Φσ(t, t0) = Φσ(t, tk)Φσ(tk, tk−1) · · ·Φσ(t1, t0),

∀t ≥ t0 ≥ 0, where {t1, t2, . . . tk} is an ascending sequence
of times in (t0, t) such that tk+1 ≥ tk +T , k ≥ 0. The integer
k can be chosen smaller than (t − t0)/T . We then conclude
that

‖Φσ(t, t0)‖ ≤ ‖Φσ(t, tk)‖ ‖Φσ(tk, tk−1)‖ · · ·
· · · ‖Φσ(t1, t0)‖. (56)

We show next that

‖Φσ(τ2, τ1)‖ ≤ β(1, τ2 − τ1), ∀τ2 ≥ τ1 ≥ 0. (57)

Take an arbitrary vector z ∈ R
n with ‖z‖ = 1 and let x̄ :

[0,∞) → R
n be the solution to (9) with initial condition

x̄(τ1) = z. Because we have trajectory-independent switching,
(x̄, σ) is also a solution to the switched system and therefore

‖x̄(τ2)‖ = ‖Φσ(τ2, τ1)z‖
≤ β(‖z‖, τ2 − τ1) = β(1, τ2 − τ1). (58)

Since z was an arbitrary unit-norm vector, we conclude that
(57) holds. From this and (56) we obtain

‖Φσ(t, t0)‖ ≤ β(1, t − tk)β(1, tk − tk−1) · · · β(1, t1 − t0)

≤ β(1, 0)β(1, T )k ≤ β(1, 0)e−λk ≤ β(1, 0)e
λ(t−t0)

T .

This means that

‖x(t)‖ = ‖Φσ(t, t0)x(t0)‖ ≤ ‖Φσ(t, t0)‖ ‖x(t0)‖
≤ β(1, 0)e

λ(t−t0)
T ‖x(t0)‖, ∀t ≥ t0 ≥ 0,

which provides the desired exponential bound.
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To prove Lemma 5 we need the following result, which is
essentially the Squashing Lemma in [37].

Lemma 9 (Squashing Lemma): Given any observable ma-
trix pair (C, A) and positive constants τ0, δ, λ0, it is possible
to find an output-injection matrix K for which

‖e(A+KC)t‖ ≤ δe−λ0(t−τ0), ∀t ≥ τ0. (59)

Proof: [Lemma 9] The statement of the Squashing
Lemma in [37] asserts the existence of a λ and K for which
(59) holds (for arbitrary τ0 and δ). However, in [37] it is
actually proved that for a sufficiently large λ, a gain Kλ can
always be found so that (59) holds with K = Kλ. Denoting
by λ∗ the the smallest value of λ for which the desired output-
injection matrix can be found, two cases can be considered: (1)
if λ0 ≥ λ∗ then the output injection matrix K in (59) is simply
chosen equal to Kλ0 , and (2) if λ0 < λ∗ then we can choose
K = Kλ∗ and (59) will hold with λ∗ on the right-hand-side
and consequently also with λ0 < λ∗ on the right-hand-side.

Proof: [Lemma 5] Since the set {Ap : p ∈ P} is compact,
there must exist a finite positive constant a such that ‖Ap‖ ≤
a, ∀p ∈ P . Therefore, given any piecewise constant switching
signal σ, we have that

‖Ψσ(t, τ)‖ ≤ ea(t−τ), ∀t ≥ τ ≥ 0, (60)

where Ψσ(t, τ) denotes the state transition matrix of ż =
Aσ(t)z. This can be verified, by defining v(t) := ‖x(t)‖2

and observing that v̇ = x′(Aσ + A′
σ)x ≤ 2av. From the

Bellman-Gronwall Lemma [39, p. 346] one concludes that
v(t) ≤ e2a(t−τ)v(τ), t ≥ τ ≥ 0, from which (60) follows.
We thus conclude that in an interval of length T the norm of
the state of (27) can grow, at most by eaT .

Because all the pairs (Cp, Ap), p ∈ P are observable, we
conclude from Lemma 9 with δ := e−aT , τ0 := τD

2 , and λ0 :=
2λ that there exist output-injection matrices {Kp : p ∈ P} for
which

‖e(Ap+KpCp)t‖ ≤ e−aT−2λ(t−
τD
2 ) = e−aT+λτD−2λt, (61)

∀t ≥ τD

2 , p ∈ P . Moreover, the compactness of {Ap : p ∈ P}
and {Cp : p ∈ P} guarantee that we can choose {Kp : p ∈ P}
also compact and therefore one can pick k such that k ≥
‖Kp‖, ∀p ∈ P .

We are now ready to define the time-varying output-
injection matrix K(t) and prove (39). To this effect pick some
σ ∈ Sp-dwell[τD , T ]. We will call long, those intervals of time
with length no smaller than τD on which σ is constant and
define K(t) = Kp on long intervals on which σ = p ∈ P
and K(t) = 0 at any other times. Given two time instants
t ≥ τ ≥ 0, let T := {t1, τ1, t2, τ2, t3, . . . , tk, τk} ⊂ (τ, t)
denote an increasing sequence of times in the interval (τ, t)
such that the intervals [ti, τi) are long with σ = pi and the
intervals between these have length no longer than T , i.e.,

τi ≥ ti + τD , ∀i ∈ {1, 2, . . . , k}, (62)
ti+1 ≤ τi + T, ∀i ∈ {1, 2, . . . , k − 1}, (63)

t ≤ τk + T, t1 ≤ τ + T. (64)

The sequence T can actually be empty (k = 0) if there is no
long interval in (τ, t). This is only possible if t− τ < T + τD.
The above definition of K(t) leads to

Φσ(t, τ) = Ψσ(t, τk)e(Apk
+Kpk

Cpk
)(τk−tk)Ψσ(tk, τk−1)

· · ·Ψσ(t2, τ1)e
(Ap1+Kp1Cp1 )(τ1−t1)Ψσ(t1, τ).

From this, (60), and (61) we conclude that

‖Φσ(t, τ)‖ ≤ ea(t−τk)e−aT+λτD−2λ(τk−tk)ea(tk−τk−1) · · ·
· · · ea(t2−τ1)e−aT+λτD−2λ(τ1−t1)ea(t1−τ)

≤ eaT−λ
(

(τk−tk)+···+(τ1−t1)
)

.

Here, we also used the facts that t − τk ≤ T , t1 − τ ≤ T ,
ti+1 − τi ≤ T , i ∈ {1, 2, . . . , k − 1}, and also τD ≤ τi −
ti, i ∈ {1, 2, . . . , k}, which are a consequence of (62)–(64).
Moreover, since

t − τ = (t − τk) + (τk − tk) + (tk − τk−1) + · · ·
+ (τ1 − t1) + (t1 − τ) ≤ (τk − tk) + · · · + (τ1 − t1),

we conclude that (39) holds with c = eaT .
In the following, given a vector x ∈ R

n and a matrix
A ∈ R

n×n, let us denote by ‖x‖M the distance from x to M,
i.e., ‖x‖M := infz∈M ‖x−z‖; and by ‖A‖M the M-distance
induced gain of A, i.e., ‖A‖M := supz∈Rn\M

‖Az‖M

‖z‖M
. The

M-distance induced gain satisfies the submultiplicative prop-
erty, i.e., given two matrices A, B ∈ R

n×n, ‖AB‖M ≤
‖A‖M ‖B‖M.

Lemma 10: Given an n × n matrix A and a subspace M
of R

n that is A-invariant,

‖eAt‖M ≤ eat, ∀t ≥ 0, (65)

with a := ‖A‖M < ‖A‖.
It is well known that, if the state of ẋ = Ax, starts at
time τ inside an A-invariant subspace M (and therefore
‖x(τ)‖M = 0), then x remains there for all t ≥ τ . From
Lemma 10 we further conclude that if x, starts close to M
at time τ then x(t) = eA(t−τ)x(τ), t ≥ τ remains close
to it for some time. In fact, according to (65), the distance
‖x(t)‖M ≤ eat‖x(τ)‖M increases at most exponentially fast
with time.

Proof: [Lemma 10] Let M ∈ R
n×m and M⊥ ∈ R

n×m−n

be matrices whose columns form orthonormal bases of M and
its orthogonal complement M⊥, respectively. This means that

‖z‖M = ‖M⊥′
z‖, ∀z ∈ R

n. (66)

Since M is A-invariant we have

A
[

M M⊥
]

=
[

M M⊥
]

[

A1 A2

0 A3

]

,

with A1 ∈ R
m×m, A2 ∈ R

m×(n−m), A3 ∈ R
(n−m)×(n−m)

and therefore

M⊥′
A = M⊥′ [

M M⊥
]

[

A1 A2

0 A3

][

M ′

M⊥′

]

= A3M
⊥′

.
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This means that

a := ‖A‖M := sup
z 6∈M

‖Az‖M
‖z‖M

= sup
z 6∈M

‖M⊥′
Az‖

‖M⊥′
z‖

= sup
z 6∈M

‖A3M
⊥′

z‖
‖M⊥′

z‖
= sup

z∈Rn−m

‖A3z‖
‖z‖ = ‖A3‖,

because M⊥′ is full rank. Note also that

‖A‖ =

∥

∥

∥

∥

[

A1 A2

0 A3

]∥

∥

∥

∥

≥ ‖A3‖ = ‖A‖M =: a.

Suppose now that we define V := ‖M⊥′
x‖2. Along trajecto-

ries of ẋ = Ax, we have

V̇ = 2x′M⊥M⊥′
Ax = 2x′M⊥A3M

⊥′
x ≤ 2aV,

and therefore V (t) ≤ e2a(t−τ)V (τ), t ≥ τ ≥ 0. From this and
(66) we conclude that

‖x(t)‖M = ‖eA(t−τ)x(τ)‖M ≤ ea(t−τ)‖x(τ)‖M,

∀t ≥ τ ≥ 0, from which (65) follows.
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