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Abstract

Reasoning for Representations for Learning-based Control

by

Zhuo Xu

in Engineering- Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Data-driven machine learning approaches offer great intelligence capabilities and can help
solve many challenging control problems. However, the agnostic nature of the internal rep-
resentations in the learning-based control (LbC) policies makes them difficult to apply on a
broad basis. Since the LbC policies are generally optimized in an end-to-end manner based
on specialized domain settings, they can fail, for unknown reasons, in domains with setting
variations. Moreover, a lack of understanding of the underlying logics in LbC policies also
limits the transferability of the learned knowledge to different tasks.

This dissertation presents a series of works on reasoning for representations for LbC policies,
including decomposition of LbC policies, and design of interpretable and transferable rep-
resentations. The thread of this dissertation is based on the roles of the representations for
LbC. Three major areas are covered in this dissertation. Three major representation reason-
ing areas are covered in this dissertation:: (I) inside the LbC policies, (II) at the interface of
the LbC policies, and (III) outside the LbC policies.

First, within the parameterized LbC policies, the reasoning for learning representations is
developed to capture subtle features in complex scenarios. A sophisticated neural network
structure is applied online to infer the task context representations in a contact-aware way;
this is followed by a comprehensive investigation on design and selection of representa-
tions. The presented representations include the Gaussian mixture model, the graph neural
network, and a novel history-encoding representation; the applications range from robotic
manipulation to autonomous driving to human intention inference.

In regard to the challenge of knowledge transfer, we propose a policy decomposition approach
to learn attribute-wise modules separately. We design two representation frameworks at
the interface of the LbC policies for the decomposition and combination of attribute-wise
modules. The proposed architecture, the cascade attribute networks (CANs), and parallel
attribute networks (PANs) can transfer learned knowledge between tasks and efficiently



2

produce sophisticated LbC policies by fusing learned attribute-wise modules.

Variation between the training and deployment domains is another major reason there are
LbC policy failures. In the last part of the dissertation, we focus our investigation on
representation reasoning for autonomous-driving policy transfer against vehicle dynamics
variation and external dynamics disturbances. We leverage the interpretable kinematic-level
representations to bridge the transferring domains. We propose two external adaptation
modules—model agnostic meta learning (MAML) and disturbance-observer-based (DOB)
robust controllers— to achieve one-shot or zero-shot adaptation of the kinematic-level rep-
resentations to the deployment domain.
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Chapter 1

Introduction

1.1 Challenges in Learning-based Control (LbC)

In recent years, advances in artificial intelligence technology and increasingly accessible and
affordable computation and data resources have brought groundbreaking progress to the
field of robotics. From playing StarCraft [110] to mastering the game of Go [99] and from
intelligent robotic manipulation [52] to driving autonomous cars [58], these once impossible
dreams are coming true. This is thanks to the intelligence capability that is obtained through
deep learning and reinforcement learning algorithms and embedded in learning-based control
(LbC) policies. It is a common hope of humankind that LbC policies can take on more
intelligent capabilities and replace human effort in more complicated and challenging tasks.

However, there are still lots of challenges limiting the intelligent and general-purpose LbC
future we envision. For example, sophisticated deep neural networks are powerful nonlinear
function approximators, but as LbC policies, they suffer from the problem of internal meaning
agnosticism. Given that LbC policies are usually optimized using gradient-descent-based
methods in an end-to-end manner in specialized training settings, their application in robotics
and control faces the following challenges:

1. Adapt across domains: Learned LbC policies are specialized to the training domain
setting. Therefore, when deployed to a target domain different from the training do-
main, or when affected by unexpected disturbances, LbC policies often fail to achieve
the expected performance.

2. Transfer knowledge between tasks: Since the neural networks use a large number of
neurons and sophisticated nonlinear activation functions to achieve general function
approximation, it is hard to understand the information carried by a LbC policy.
Therefore, it is also challenging to transfer the knowledge learned in one task to a
similar task.

3. Obtain generalizable skills: Due to the agnostics of the internal meanings of the neu-
ral networks, the LbC policies are unable to capture the properties of the tasks and
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offer generalizable skills for various task settings. They tend to produce conservative
behavior derived from the statistical learning process.

1.2 Representation Reasoning for LbC

In the past few years, the research community has devoted a significant amount of effort
to adapt an LbC policy to different task settings, variation of dynamics, and unknown
disturbances. A common practice is to train policies on randomized environments with
possible variations to gain robustness. Rajeswaran et al. [86] and Peng et al. [81] studied
reinforcement learning (RL) policies in randomized simulated environments and directly
applied them to different domains. Chebotar et al. leveraged target domain experiences
to adapt the source domain setting [22]. Other works aim to derive a model of the task
context for domain-specific planning. Rakelly et al. take a meta learning direction to learn
patterns within the task to help plan [87]. Yu et al. studied a universal policy and used
an online system identification module to understand the dynamics parameters [126]. [42]
used a neural network for a dynamics model and adapted its local linear model online for
model-based control. In [28], a deep inverse dynamics model was used for policy transfer.
Beyond pure learning-based methods, planning-control frameworks can also help overcome
the domain gap. Harrison et al. used model predictive control to track a reference trajectory
derived from a learning policy [47].

Based on the philosophy of prior work, this dissertation proposes that the reasoning of
the representations for the LbC policies is at the core of solving the proposed challenges of
their application. By decomposing the end-to-end LbC policies into separate interpretable
modules and designing proper representations, we can design the LbC policies with favorable
behaviors, such as domain adaptation, knowledge transfer, and robustness to general settings.
Such representations can have various formulations and reside in different positions in the
control loop, based on domain requirements (as shown in Fig. 1.1). They can be an extra
neural layer within an LbC policy or be a concrete feature that bridges the learning-based
and non-learning based modules. The selection, design, and reasoning of the representations
in LbC policies are the most challenging and, thus, most intriguing parts of this problem.

1.3 Dissertation Outline

In this dissertation, we present a series of works on the reasoning of representations for LbC
policies. The dissertation follows the thread of the function-reasoned representation in the
control policy and is divided into three parts: reasoning for representations (I) inside the
control policy, (II) at the input and output of the policy, and (III) outside the policy.

In Part I, we present works on reasoning for representations inside the LbC policies.
The representations we discuss in this part are feature layers in parametrized models, which
serve as information extractors or encoders. We carefully select and design proper represen-
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Figure 1.1: The three kinds of representations this thesis investigates are: the representation
inside the control policy, the representation at the input and output of the control policy,
and the representation outside the control policy.

tations so as to obtain a better understanding of the task scenario and improve the learning
efficiency. We examine a typical challenge of nonplanar pushing manipulation in Chapter
2, where the robot aims to push the object while avoiding knocking it over. In order to
achieve generalizable pushing of different objects with various dynamics properties, we de-
sign a contact-aware online context inference module inside the LbC policy to understand
the dynamics representation. In Chapter 3, we present a series of works on various represen-
tations selection and design, including Gaussian mixture model, graph neural networks, and
a novel history encoding representation. Their applications range from autonomous driving
to human intention prediction.

In Part II, we present works on decomposing LbC policies to modules in terms of task
attributes. The decomposition is designed such that attribute-wise knowledge can be learned
separately for better transfer. We reason for LbC policy interface representations, which
serve as the input and output of the attribute modules. We present two different designs of
representations and attribute combination frameworks. In Chapter 4, we present the cascade
attribute network (CAN), where an attribute module’s output is fed as part of the input of
the next attribute module and the last attribute module output is the overall LbC policy
output. In Chapter 5, we present the parallel attribute network (PAN), where different
attribute modules produce outputs in parallel, and their outputs are combined using an
online optimization process. Experiments show that PANs achieve good performance on
complicated tasks with multiple attributes.

In Part III, we present efforts to design domain-invariant representations outside the
LbC policies. The problem setting is focused on domain transfer of autonomous-driving
LbC policy against vehicle dynamics variation and unexpected external disturbances. We
propose that the kinematic-level representations, unlike the dynamics-level representations,
are domain invariant and, thus, selected for bridging different domains. In Chapter 6, we
present an LbC policy transfer framework, with the inverse dynamics model serving as the
domain-specific representation. We apply meta learning for one-shot adaptation. In Chapter
7, the kinematic-level representations are directly tracked using a disturbance-observer-based
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(DOB) robust controller that rejects the domain variations in a zero-shot manner. The DOB
controller has been proven successful, with the LbC policies learned on a simulated vehicle
successfully transferred to a real vehicle, a Lincoln MKZ.



5

Part I

Reasoning for Representations Inside
the LbC Policies
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Chapter 2

Contact-aware Online Context
Inference for Generalizable
Non-Planar Pushing Policy Learning

General contact-rich manipulation problems are long-standing challenges in robotics due
to the difficulty of understanding complicated contact physics. Deep reinforcement learn-
ing (RL) has shown great potential in solving robot manipulation tasks. However, existing
RL policies have limited adaptability to environments with diverse dynamics properties,
which is pivotal in solving many contact-rich manipulation tasks. In this chapter, we pro-
pose Contact-aware Online COntext Inference (COCOI), a deep RL method that encodes
a context embedding of dynamics properties online using contact-rich interactions [121].
We sample sensor data using a novel contact-aware strategy and formulate an interpretable
dynamics transition module. We study this method based on a novel and challenging non-
planar pushing task, where the robot uses a monocular camera image and wrist force torque
sensor reading to push an object to a goal location while keeping it upright. We run exten-
sive experiments to demonstrate the capability of COCOI in a wide range of settings and
dynamics properties in simulation, and also in a sim-to-real transfer scenario on a real robot
(Webpage: https://context-inference.github.io/).

2.1 Introduction

Contact rich manipulation problems are ubiquitous in the physical world. In millions of
years of evolution, humans have developed the remarkable capability to understand en-
vironment physics, so as to achieve general contact rich manipulation skills. Combining
visual and tactile perception with end-effectors like fingers and palms, humans effortlessly
manipulate objects with various shapes and dynamics properties in complex environments.
Robots, on the other hand, lack this capability – due to the difficulty of understanding high
dimensional perception and complicated contact physics. Recent development in deep rein-
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forcement learning (RL) has shown great potential towards solving manipulation problems
[63, 52, 59] by leveraging two key advantages. First, the representative capability of a deep
neural network structure can capture complicated dynamics models. Second, control policy
optimization explores vast contact interactions. However, contact-rich manipulation tasks
are generally dynamics-dependent; since the RL policies are trained in a specific dynamics
setting, they specialize within the training scenario and are vulnerable to variations of dy-
namics. Learning a policy that is robust to dynamics variations is pivotal for deployment to
scenarios with diverse object dynamics properties.

In this chapter, we design a deep RL method that takes multi-modal perception input
and uses deep representative structure to capture contact-rich dynamics properties. Our
method, which we refer to as Contact-aware Online COntext Inference (COCOI), improves
planning by inferring the system dynamics from prior camera frames and force readings.
Furthermore, we propose to sample the sensor data using a contact-aware strategy, and
formulate the data into a dynamics transition structure, which serves as the input of the
COCOI module. With this design, the contact dynamics information can be effectively
encoded into a context representation with interpretability. This allows the RL policy to
plan with dynamics-awareness and improves in robustness against domain variations.

We apply COCOI to a novel pushing task where dynamics property reasoning plays a
vital role: the robot needs to push an object to a target location while avoiding knocking it
over (Fig. 2.1). Despite being commonly seen in everyday life, these tasks have the following
challenges:

1. Visual perception: unlike in planar pushing, where concrete features can be retrieved
from a top down view, in non-planar pushing, key information can not be easily ex-
tracted from the third angle perspective image.

2. Contact-rich dynamics: the task dynamics properties are not directly observable from
raw sensor information. Furthermore, in our non-planar pushing task, dynamics prop-
erty reasoning is vital to avoid knocking the object over.

3. Generalizable across domain variations: the policy needs to be effective for objects
with different appearances, shapes, masses, and friction properties.

Prior work in pushing mostly focus on objects inherently stable when pushed on a flat
surface[102]. This essentially reduces the task to a 2D planar problem. Concretely, earlier
studies on pushing by Mason are based on analytical approaches and consider quasi-static
planar pushing [70]. Later, researchers have introduced data driven methods to model push-
ing physics. Zhou et al. develop a dynamics model for planar friction and design force control
method for planar sliding [128]. Yu et al. [125] and Bauza et al. [11] create a planar pushing
dataset for data-driven modeling. More recent works involve using deep learning to learn
object properties [65, 2, 115], but they only focus on planar pushing problems. Stuber et al.
[101] and Byravan et al. [20] learn motion models for pushing simple blocks. As a result,
these prior approaches on planar pushing cannot handle our proposed class of “non-planar



CHAPTER 2. CONTACT-AWARE ONLINE CONTEXT INFERENCE FOR
GENERALIZABLE NON-PLANAR PUSHING POLICY LEARNING 8

Figure 2.1: Our method, COCOI, achieves dynamic-aware, non-planar pushing of an upright
3D object. The method is robust against domain variations, including various objects and
environments, in both simulation and the real world. The first and second columns show the
push-on-table simulation setting in the robot’s perspective and the third party perspective,
respectively. The third column shows the simulated and real world push-in-bin settings in
the robot perspective.

pushing tasks” where real-world 3D objects can move with the full six degrees of freedom
during pushing.

On non-planar pushing, the majority of the prior works are still in the exploration stage.
Ridge et al. propose an object image fragment matching method for 3D objects [91], albeit
for a limited library of objects. Zhu et al. use a simulator as a predictive model [129].
Kopicki et al. learn a 3D dynamics model in the PhysX simulator [56]. These works rely
on carefully selected objects and precise detection and localization. We make use of the
monocular camera image input and the force sensor reading information, and aim to derive
a generalized non-planar pushing task for diverse objects. As for usage of force sensor
information to help improve manipulation performance, Lee and Zhu et al. use the force
torque sensor reading to extend the observation space of a contact rich task [60]. Wang et al.
utilize the GelSight force sensor to perceive the force contact information [112]. Our work
is the first to use force sensor data to achieve state of the art performance in the domain of
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generalizable non-planar pushing.
Our contribution is three-fold. First, we design a learning framework with efficient dy-

namics inference by leveraging dynamics history information formulated in a dynamics tran-
sition structure, and a novel contact-aware sampling strategy. It is also validated that the
representation obtained by this framework captures key information of the contact dynamics
properties. Second, we demonstrate the effectiveness of the proposed method on a challeng-
ing contact-rich non-planar pushing task with a diverse set of objects in simulation. Third,
we demonstrate that our trained policies can be successfully transferred to a real-world
bottle-pushing task.

2.2 Problem Statement

In this section, we formally define the proposed non-planar pushing task and formulate the
problem using a Partially Observable Markov Decision Process (POMDP). We focus on the
class of pushing tasks where maintaining the upright pose of the object is critical. For
example, when pushing a glass of water on the table, the glass should not tilt and spill. In
our work, we assume that an object is randomly placed on a flat surface with an upright
initial pose. The task objective is to use the robot end effector to push the object to a
random target position on the surface, while maintaining its upright orientation. The object
can have irregular shape and mass distribution, and the robot may push at any point on the
object, making the contact dynamics physics complicated.

We use state s ∈ S to represent the full task state. In a POMDP, the state is not directly
available and can only be inferred using observations. Concretely, we use the image captured
using the robot’s monocular camera as the high dimensional observation (Fig. 2.1, first and
third columns), in which the target location is rendered using a red dot. We also include a low
dimensional proprioception observation of the gripper height and open/close status. We use
state and observation interchangeably in the following sections. The action a ∈ A contains
the designated position and orientation of the gripper, the gripper open/close command, and
a termination boolean. The system transition function T : S × A → S follows the physical
model, and we use a sparse binary reward function R : S × A → R with value 1 when the
distance between the object and the target is smaller than a threshold and the object is
upright. The task objective is to maximize the expectation of the discounted cumulative
reward, or the return

R = E
{(st,at)}

[
t=∞∑
t=0

γtrt

]
(2.1)

where γ is the discount coefficient, and rt = R(st,at) is the reward obtained at time t.
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2.3 Learning Basic Pushing Controller

We use Q-learning to train object pushing control policy. The definition of the Q function is

Q(s,a) = E
{(st,at)}

[
t=∞∑
s,a

γtrt

]
, (2.2)

the expected return starting from state s and taking a. The Q function satisfies the Bellman
function:

Q(st,at) = Est+1
[R(st,at) + γ ·Q(st+1, π(st+1))] (2.3)

where π(st+1) represents the action selected by the optimal policy at the current iteration
and state st+1. The optimal policy is defined by:

π(st) = arg max
a∈A

Q(st,a) (2.4)

One Q-learning iteration uses the collected data tuples (st,at, st+1) in two steps:

1. Estimate the optimal policy output

π(st+1) = arg max
a∈A

Q(st+1,a) (2.5)

2. Minimize the Bellman error

min
Q
‖Q(st,at)− [R(st,at) + γ ·Q(st+1, π(st+1))]‖ (2.6)

For the object pushing task, we represent the Q function with a two stream deep neural
network Qθ(st,at) parameterized by θ, as shown in Fig. 2.2, similar to [52]. The high dimen-
sional stream feeds stacked current and initial images into a convolutional neural network
(CNN) encoder. The low dimensional stream feeds stacked low dimensional state (gripper
height and open/close status) and action (designated gripper pose, the gripper open/close
command, and a termination boolean) into a fully connected network (FCN) encoder. The
outputs of the two streams are combined together with broadcasting, and the outcome is fed
into another CNN-followed-by-FCN structure to predict the Q function value for the pushing
task. The detailed network structure is elaborated in the next section.

For Q function network training, we adopt QT-Opt, a distributional variant of the Q
learning framework for continuous state-action tasks [52, 15], which is known to be able
to handle large scale exploration with stable performance. Concretely, we use distributed
workers to collect data tuples (st,at, st+1), and we store them into a replay buffer. Each
optimization iteration samples a batch of data tuples. For equation (2.5), the optimal policy
output is estimated using an online sampling-based cross entropy method (CEM) based on
the current Q function. For equation (2.6), the Q function network weights are updated
using gradient descent with the following loss function:

l(θ) = ‖Qθ(st,at)− [R(st,at) + γ ·Qθ(st+1, π(st+1))]‖ (2.7)
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Figure 2.2: The feed forward neural network Q function for object pushing. The stacked
current and initial images are fed into a convolutional neural network (CNN) encoder, and
the low dimensional input is fed into a fully connected network (FCN) encoder. The output
of these two streams are added together and then fed into another CNN-followed-by-FCN
structure, the Q value prediction head.

2.4 Contact-aware Online Context Inference

2.4.1 Online Context Inference

The architecture in Fig. 2.2 has been demonstrated on challenging tasks like grasping [52].
However, given it only has access to a single sensory input, it is not able to infer the dynamics
properties of the object, which is necessary for our non-planar pushing task. In this section,
we describe online COntext Inference (COI), a module that takes history observation samples
and encodes them into a dynamics context representation – thus equipping the control policy
with the ability to infer dynamics of the object.

As shown in Figure 2.3, COI consists of a set of additional streams in the policy network
that encode history sensor observations into a dynamics context representation. Each stream
of COI takes a pair of consecutive sensory inputs separated in time by 0.5s (the sensor
update interval in our robot system). We denote each sensory input pair as a tuple Hτ =
(Iτ , Iτ+1, fτ ), where I and f refer to the camera image and force reading respectively, and
τ represents the time at which the sensor inputs are retrieved. This formulation follows the
structure of a dynamics transition of a pushing operation, such that the contact dynamics
properties can be inferred from the input information. The encoded sensory input for each
stream is then averaged to obtain the final dynamics context representation of COI, which
is concatenated with the state-action representation to estimate the Q value.
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Figure 2.3: The proposed COntext Inference (COI) module, which works in parallel with
the state-action stream. The COI takes as input a dynamics-transition-structured history
sample consisting of the stacked pre-impact and post-impact images and the force reading,
to infer the dynamics representations. The representations of different samples are averaged
and concatenated to derive the state-action representation, which is then fed into a final Q
value prediction network. Networks with same color share architectures, but not necessarily
network weights.
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2.4.2 The Contact-aware Sampling Strategy

Given an architecture that can process multiple history sensor observation pairs, key ques-
tions are:

1. How many history samples should we include?

2. At what time should we retrieve the sensor observations?

With a higher number of history samples, the policy has more information to infer a
potentially less noisy object dynamics representation, at the cost of higher computation
time and memory. In our experiments, we found three history samples to be a reasonable
number to achieve good inference performance with manageable computation cost.

The timings at which sensor observations are sampled is vital for the performance of
COI. An arbitrarily sampled sensor observation pair may contain limited information about
the object dynamics (e.g. when gripper is far away from the object) and contribute little to
the learning performance. To ensure that each history sample contains useful information,
we propose a contact-aware sampling strategy which actively checks the readings of a force
torque sensor that is mounted at the robot gripper, and only collects a sample when the
contact force magnitude is considerably large (> 1 N), as shown in Fig. 2.4. This strategy
guarantees the samples to be representative, in that the gripper and the object are in contact.
We call this sampling strategy COntact-aware-COI, or COCOI.

In our experiments, we validate the performance of COCOI by comparing it to a näıve
strategy: vanilla COI, or VCOI, where history samples are retrieved with a uniform sampling
interval, as shown in Figure 2.4.

2.5 GAN for Visual Gap Bridging

In order to adapt the RL policy trained in simulation to the real world, we also need to over-
come the discrepancy between the rendered, simulated image and the image captured by a
real-camera. We adopt RetinaGAN, a generative adversarial network (GAN) approach to
generate synthetic images that look realistic with object-detection consistency [50]1. Quali-
tative performance is shown in Fig. 2.5. We train the RL policy with simulation data only
and directly deploy it on the real robot.

2.6 Experiments

2.6.1 Setup

We train the control policies in PyBullet simulation [29]. We first define a flat surface
randomly placed in front of the robot. The surface can be either a desk surface or a designated

1https://retinagan.github.io
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Figure 2.4: Illustrations of the sampling strategies. For VCOI, the samples are retrieved with
a uniform sampling interval. COCOI takes a contact-aware sampling method which actively
checks the contact force, and only retrieve samples when the force magnitude is larger than
1 Newton.

Simulation Image Synthetic Image Real World Image

Figure 2.5: Images of the pushing-in-station setting in simulation, with RetinaGAN visual
adaptation, and in the real world.
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Subset of training objects Subset of testing objects

Figure 2.6: A subset of the 75 different 3D objects used for training and testing.

flat area inside a trash bin, as shown in Fig. 2.1. We use a 3D model set containing 75
different objects, such as cups, bottles, cans, mugs, etc. (Fig. 2.6). We divide the objects
into a training set containing 64 objects and an unseen testing set of 11 objects including a
stack of cups. Note that the upper cups in the stack have the degrees of freedom to tilt when
pushed, which makes the pushing task more challenging. In PyBullet, the contact physics
between the robot gripper and the object is modelled using a point contact model with an
elliptic friction cone and a tunable friction. We train our policies with a randomized friction
coefficient in the range [0.5, 1.0] and evaluated the policies with a larger range of [0.0, 1.5].

At the beginning of each episode, the object and the target position are randomly placed
within a rectangular area. We set the object upright on the surface, and the target position
is rendered using a red dot. The robot gripper is initialized at a randomized position beside
the object. The push policy controls the robot gripper to push the object to the red dot.
An episode is considered successful if the object is pushed to within 5 cm of the target, and
the object tilting angle remains smaller than 0.1 rad. We also apply a small penalty at each
timestep to encourage faster execution. The discount factor γ of the POMDP is 0.9. During
evaluation of our method and the baseline methods, we run the model for 1000 episodes.
We report the success rate of different methods for comparison, where we define an episode
to be successful when the object is pushed to a location within 5cm from the target in an
upright position.
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2.6.2 Policy Models

The deep neural networks for the Q functions are constructed as in Fig. 2.2 and Fig. 2.3,
and the blocks with the same names share the same network architecture. The detailed
architecture is shown in Table I. In the table, the symbols follow those in [52]. Concretely,
Conv(64, 6, 2) means a convolutional layer with 64 channels, filter size 6 and stride 2, FC(64)
means a fully connected layer with hidden layer size 64, and MaxPool(2) means a max pooling
layer with filter size 2. When the (8, 8, 64) shape image stream representation and the 64
dimensional low dimensional stream representation are added together, the low dimensional
stream representation is first reshaped to (1, 1, 64), and a broadcasting operation is applied.

We train and compare four models:

1. The baseline model: the basic feed forward Q function network as described in Section
2.3 and shown in Fig. 2.2. This model is the most straightforward and shows the
capability of the baseline RL method.

2. The VCOI model: the VCOI method as shown in Figure 2.3. The history observations
are sampled using uniform sampling.

3. The oracle: the architecture of this model is the same as the baseline, but we expand
the low dimensional state input with 2 key, unobservable dynamics parameters: the
object mass and friction coefficient. We directly extract the ground truth parameter
values from the simulator to obtain an oracle model.

4. The COCOI: the proposed COntact-aware Online COntext inference model as shown
in Figure 2.3. The active contact-aware sampling strategy is applied.

2.6.3 Policy Learning

We adopt the QT-Opt framework [52] to train the policies. In the training setting, the
objects and goal locations are randomly sampled in a 0.5m × 0.3m area, the object mass is
randomized from 0.05 kg to 0.5 kg, and the friction coefficient is randomized from 0.5 to 1.0.
We train the models using stochastic gradient descent, using a learning rate of 0.0001 and
momentum of 0.9. We train the models with a batch size of 2048 for 80k steps.

In the early stage of training, we use a rule-based scripted policy, which moves the gripper
along the line that connects the object and the target, to generate successful episodes and
improve the exploration efficiency. This rule-based method only achieves less than 5% success
rate, illustrating the difficulty of the non-planar pushing task. During training, we observe
that the policy first obtains the capability to solve easier scenarios where the object-goal
distance is short and then gradually learns to push objects that are initialized far from the
goal. From our experience, the consistency of the converged success rate was similar to
previous work [15].
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2.6.4 Performance under Domain Variations

We evaluate and compare the performance of the four models using the push-on-table task
in simulation with a large variety of settings. We report the task success rate in Table 2.2
and Table 2.3.

First, we vary the initial range of the object and the target, and the results are shown in
Table 2.2. COCOI consistently outperforms VCOI and baseline that are described in Section
2.6.2, and COCOI achieves a similar performance to the oracle. Specifically, COCOI shows
an average relative improvement of 50% and 20% success rate compared to the baseline and
VCOI, respectively.

Table 2.1: Architecture of each module in the Q networks

Block name Architecture [52]

Images input Tensor with shape (472, 472, 6)
Low dim state input 2 dim vector
Low dim action input 7 dim vector

Force torque sensor reading 3 dim vector

Conv(64, 6, 2)
CNN encoder MaxPool(3)

Repeat x6: Conv(64, 5, 1)
MaxPool(3)

FC(256)
FCN encoder FC(64)

Reshape(1, 1, 64)

Conv(64, 3, 1)
CNN MaxPool(2)

Repeat x3: Conv(64, 3, 1)

state-action representation (8, 8, 64) dim matrix
dynamics context representation (8, 8, 64) dim matrix

FC(64)
FCN FC(64)

Sigmoid

Q function 1 dim vector

Second, we fix the initial object placement to 0.4m × 0.3m and vary dynamics properties.
We change the friction coefficient and the object mass to be outside the training range. We
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Table 2.2: Comparison of success rate for models evaluated with different initial placement
settings.

Initial range 0.3m x 0.6m 0.3m x 0.5m 0.3m x 0.4m

Baseline 26.5% 34.1% 51.1%
COI 36.0% 43.2% 63.4%

Oracle 43.8% 53.9% 73.8%
COCOI 43.0% 59.3% 73.2%

Initial range 0.3m x 0.3m 0.25m x 0.5m 0.25m x 0.5m

Baseline 59.2% 40.0% 42.5%
COI 72.2% 49.0% 50.8%

Oracle 78.2% 60.5% 62.4%
COCOI 75.7% 64.7% 62.6%

Table 2.3: Comparison of success rate for models evaluated with different dynamics proper-
ties settings.

Model default setting 0.0-0.5 friction 1.0-1.5 friction

Baseline 51.1% 53.8% 32.1%
COI 63.4% 59.6% 44.2%

Oracle 73.8% 39.6% 38.2%
COCOI 73.2% 72.6% 47.2%

Model 0.5-1.0kg mass Unseen objects Cup stack

Baseline 32.6% 42.5% 26.2%
COI 44.7% 48.3% 38.8%

Oracle 41.4% 60.9% 36.5%
COCOI 49.9% 58.9% 43.7%
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also test performance of the models on unseen objects and a stack of cups whose inertia can
change during pushing. Evaluation results with these setting variations are reported in Table
2.3. Again, COCOI performs significantly better than VCOI and the baseline model across
all the settings. COCOI reaches even higher success rate than the oracle in many settings,
which indicates that COCOI is capable to capture more than just the oracle information
(object mass and friction coefficient) - there are other factors such as the object shape and
contact point that affect the dynamics properties. The performance of the oracle model is
especially poor in some cases where the real friction parameter is not in the range of the
training set. This could be due to the policy overfitting to the input dynamics parameters.

Overall, COCOI outperforming VCOI demonstrates the benefit of our contact-aware sam-
pling strategy to effectively leverage force torque sensor data history for inferring dynamics.

We also observed some smart behaviors evolved from RL policy when looking at the
motions from the evaluations. For example, the robot can break contact from object when
the object leans, and it can open the gripper to use the finger to make subtle impacts.

2.6.5 Interpretation of Context Representations

To inspect the dynamics context learned by COCOI, we visualize the inferred representa-
tions for three settings with different dynamics parameters. For each setting, we run our
controller for 20-30 episodes to fill a buffer of 256 dynamics context representations. We then
visualize these representations using a combination of principle component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE) [69] (Fig. 2.7). The visualization
shows clear separation between settings, which indicates COCOI learns to infer the dynamics
properties. Also, representations within one episode are grouped closer to each other than to
other episodes, suggesting that learned representations are consistent and structured. More-
over, we observe the order of the clusters is consistent with the dynamics properties: the
clusters with the largest mass and friction and the smallest mass and friction are farthest
apart, while the cluster with intermediate parameters is in the center.

2.6.6 Real World Deployment

To test real world deployment, we design a push-in-bin task in both the simulator and in
the real world, as shown in Fig. 2.1. We adopt the method described in Section 2.5 and
train a RetinaGAN model to adapt the simulation images to synthetic images with realistic
appearance. We train the pushing policy with COCOI based on synthetic images and run 10
real world pushing episodes. We achieve 90% success, demonstrating the capability of our
3D pushing policy to overcome both the visual and dynamics domain gap. This push-in-bin
task is simpler than the randomized simulation push-on-table scenario, as the initial distance
between the object and the target is relatively closer. Therefore fewer actions are required,
which leads to more frequent success. Fig. 2.8 shows example sequences in simulation and
the real world.
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0.5kg, 1.0 friction
0.5kg, 0.5 friction
0.05kg, 0.5 friction

Figure 2.7: t-SNE visualization of the inferred context representation for three different
dynamics parameters settings. For each setting, the context representations from a randomly
chosen episode is highlighted with a brighter color. The clusters show clear separation and
are distributed with an order consistent with the friction magnitude.

2.7 Chapter Summary

In this chapter, we propose COCOI, a deep RL method that uses history robot-object in-
teraction samples to infer contact dynamics context, and we show it outperforms baseline in
contact-rich manipulation tasks with domain variations. We design and study COCOI on a
non-planar pushing task commonly seen in everyday life. Extensive experiments demonstrate
the capability of COCOI in a wide range of settings, dynamics properties, and sim-to-real
transfer scenarios.

There are many promising future work directions to pursue based on our approach. For
example, we study the non-planar pushing task with a single object on the surface. It would
be interesting to train manipulation controllers that can perform pushing with multiple
objects or in a cluttered environment. In addition, extending our approach to push non-
rigid objects such as a piece of cloth is another important direction that can further expand
the capability of our controller.
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Figure 2.8: Visualization of sim-to-real pushing policy transfer.
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Chapter 3

Representation Selection and Design
in Model-based RL, Model-free RL,
and Supervised Learning

In this chapter, we present a series of works that investigates the design of learning repre-
sentation for different learning approaches and different task settings [23, 117, 119]. The
learning approaches we investigate include model-based reinforcement learning (RL), model-
free RL, and supervised learning. We study model-based and model-free RL in the setting
of autonomous driving in the CARLA simulator. We first present dynamics model selec-
tion for model-based RL. In this work, we develop a model-based RL algorithm of guided
policy search (GPS) for urban driving tasks. The algorithm iteratively learns a parameter-
ized dynamic model to approximate the complex and interactive driving task and optimizes
the driving policy under the nonlinear approximate dynamic model. We present the use of
a global Gaussian mixture model (GMM) with local linear adaptation, can help model the
complex driving dynamics. We then study the selection of a state feature extractor in model-
free RL for a complicated and interactive autonomous driving task. We present the superior
performance of a graph representation and graph neural network (GNN) feature extractor
over the state vector and sensor data baselines. Finally, in a human behavior prediction ex-
ample, we present a history-encoding representation that is both interpretable and effective
for prediction of human intention. Overall, we show that a proper learning representation
design is needed for the success of various learning approaches across different application
domains.

3.1 Representation Reasoning in RL-based

Autonomous Driving

Autonomous driving in an urban situation is a complicated challenge that requires extensive
recognition of the surrounding environment and good decision-making skills. The traditional
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rule-based methods often fail to accomplish satisfactory driving performance in highly com-
plicated traffic scenarios due to biased human-designed heuristics. But massive data and
computation power have advanced learning methods in various fields of computer vision,
data science, robotics, and autonomous driving. In the field of autonomous driving, the
most popular and studied learning-based methods are imitation learning (IL), which essen-
tially uses neural networks to do behavior cloning of the input-output combinations of the
human expert drivers. One of the earliest attempts was the ALVINN [83] and [74], and more
recent works include [17], [114]. Waymo has also applied IL to learn an urban driving policy
from extensive human driving data [7]. Over the years, researchers have made progress in
using larger datasets and more sophisticated neural network structures. However, since the
policies are still trained in a supervised manner, they are inevitably limited by the dataset.
Chen et al sought to obtain a more stable policy by first learning a future trajectory and
then using a low-level controller to track the trajectory [24].

However, the IL-based methods are usually limited to the expert demonstration data
and a lack of generality capability. To summarize, IL methods suffer from the following
shortcomings:

1. It requires collecting a large amount of driving data, which is costly and time consum-
ing.

2. The training dataset is biased compared to real-world driving, since expert drivers
generally do not provide data for dangerous situations.

3. IL essentially clones human driver behavior and cannot exceed human performance.

Compared with the rule-based and IL methods, RL methods are more suitable for training
autonomous driving policies because they can have the agent explore and interact with the
traffic environment without human guidance. Therefore, the policies trained can learn cases
that are not in the IL training set and even potentially exceed human drivers’ performance.
Within the class of RL methods, there are two major categories:

1. Model-free RL, in which the reconstruction of a system dynamics model is not re-
quired. Model-free RL has been demonstrated capable of solving many challenging
tasks, such as continuous control based on state space [66, 71], driving game with
low-dimensional feature vector or image pixels as inputs [94]. For the application for
driving, [113] learns the steer command in a simulator with discrete action space.
Wayve’s researchers use more sophisticated network and representation learning to
use RL to drive an autonomous vehicle in urban situations [53]. Chen et al.’s work on
model-free RL provided a benchmark comparison of different model-free RL algorithms
in the CARLA simulator [25].

2. Model-based RL methods, in which optimal control is applied based on the infer-
ence of an approximation of the system dynamics function. Model-based RL lies in
the intersection of model-based planning, control, and RL, which iteratively learns the
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model of the complex environment and optimizes the control policy base on the un-
derstanding of the environment dynamics. Model-based RL has been proved capable
of solving a number of complicated manipulation tasks [63] and aerial vehicle [127] in
both simulators and the real world.

In general, model-free RL methods suffer from low sample efficiency and a lack of in-
terpretability. This is because the RL policy is trained in an end-to-end manner, and the
structural information of the complicated driving scenarios cannot be modeled in a compact
and representative way. Still, in model-based RL, an accurate approximation of the com-
plicated system dynamics is required for accurate planning and control. The complicated
nature of autonomous driving makes it challenging to model using a data-driven method.
Therefore, selecting a suitable representation and adopting a suitable representation learning
strategy inside the policy network (or inside the dynamics model) is of significance for the
success of the policy learning using model-free RL (or model-based RL).

In the first half of this chapter (from Section 3.2 to Section 3.4), we investigate the
representation selection and representation learning strategies for solving an autonomous
driving task based on model-based and model-free RL. For model-based RL, we propose to
adopt a GMM to serve as a general global model and adapt a local linear Gaussian model
to precisely capture the complicated autonomous driving system dynamics. For model-free
RL, we design the graph neural network representation encoding so as to better extract the
multi-entity relationship in urban autonomous driving.

3.2 Autonomous Driving Problem Setup

We model the autonomous driving task using a Markov Decision Process (MDP) whose
state at timestep t is defined using st. The agent interacts with the environment by taking
actions at, derived using its control policy πθ(at|st), and the control policy is parameterized
by θ. In autonomous driving, the MDP state can include lane tracking status, speed of
the autonomous vehicle, and the obstacle vehicles. The MDP action represents the control
commands for the autonomous vehicle, corresponding to throttle, brake, and steering angle.
Accepting the action of the agent, the environment would evolve in time according to the
system dynamics p(st+1|st, at). The system dynamics can be very complicated given the
dense traffic interaction during urban driving. Furthermore, the obstacles’ movements are
usually not controllable by the control commands of the autonomous vehicle.

With the system governed by the dynamics function and the control policy, the trajectory
distribution can be described as a distribution of

πθ(τ) = p(x0)
T−1∏
t=0

πθ(at|st)p(st+1|st, at) (3.1)
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where τ = {s0, a0, s1, a1, ..., sT , aT}. The goal of the autonomous driving task is described
by a cost function, l(st, at), which can be penalties for the lateral and reference speed devia-
tion of the autonomous vehicle or for collisions with the obstacle. The overall objective would
then be to minimize the expectation Eπθ(τ)[Σl(st, at)], which we will abbreviate as Eπθ [l(τ))].
It is noted that the problem formulation for RL is the same as that of the optimal control,
only the system dynamics p(st+1|st, at) is not known and often very complex, such that one
cannot precisely model using mathematical equations, but can use only parametrized models
to approximate it. This brings challenges to the learning of a driving policy; but the setting
can enable the RL policy to control the vehicle under complicated vehicle dynamics and
dense traffic that is hard to model.

3.2.1 CARLA Driving Simulation Settings

We conduct our experimental validation using the CARLA urban driving simulator [35],
which is a high-fidelity open-source simulator by Intel.

For the model-based RL experiments, due to the limitation of the policy optimization
operation, we conduct experiments under three different scenarios: straight lane, 90◦ turning,
and circular roundabout. For each scenario, we investigate the performance of the proposed
method and a series of baseline algorithms with and without obstacle vehicles. The CARLA
simulator and the simulated scenarios are shown in Fig. 3.1. In order to test the performance
of the RL methods serving as motion planner, we directly extracted the vehicles and map
states from the CARLA simulator, which is input to the model-based RL policy. Because the
RL policy takes in fixed dimensional states, we designed two kinds of states for the scenarios
with and without obstacles. For the tasks without obstacles, the state inputs include the
lateral deviation and yaw error of the autonomous vehicle with respect to the roadblock, and
the velocity of the autonomous vehicle. For the cases with obstacles, in order to maintain
fixed state dimension, we investigate only the influence of the front vehicle, and we augment
the state of the relative position and velocity between the autonomous vehicle and the front
vehicle to the previously defined state to obtain the state for these cases.

For the model-free RL experiments, since the policy is learned in an end-to-end man-
ner, we are able to learn a more general policy that drives the ego vehicle around within
the simulated town. There are 100 surrounding vehicles that are controlled using the in-
telligent driver models (IDM) randomly generated inside the simulator, and the ego vehicle
could encounter some of them during its navigation. We can extract various kinds of state
observations from the simulator, such as the front view camera image, the simulated lidar
observation, and the state vectors for the surrounding vehicles. We can also design and ren-
der a block representation of the local traffic environment for better visualization. Fig. 3.2
shows the block representation and the simulated sensor observations of the driving setting.
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Figure 3.1: The CARLA urban driving simulator. Upper Left: The ego view of the au-
tonomous vehicle. Upper Right: The roundabout experiment setting. Lower Left: The 90◦

turning experiment setting. Lower Right: The straight driving experiment setting.

3.3 Model-based RL: Dynamics Representation and

Policy Optimization

The model-based RL method we adopt is an RL method that combines the strengths of
both RL and optimal control. The algorithm follows the formulation as shown in Fig. 3.3.
The model-based RL algorithm iteratively updates the belief of the system dynamics model
and optimizes the control policy under the current dynamics approximation function. The
two steps are called the system dynamics learning step and the policy optimization step.
Our algorithm shares a similar framework of the guided policy search (GPS) [62]; while we
do not learn an imitation neural network of the optimization based policy, we still refer to
our algorithm as a variant of GPS. For the system dynamics learning step, the agent first
explores the environment and collects trajectory samples of τ = {s0, a0, s1, a1, ..., sT , aT}.
The collected data tuples (st, at, st+1) are then used to learn the system dynamics function
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Figure 3.2: Block representation and the simulated sensor observations of the CARLA driving
setting. Left: The block representation showing the ego vehicle (red), surrounding vehicles
(green) and the road map. Middle: The simulated lidar observation. Right: The front view
camera image.

p(st+1|st, at). This is a supervised learning process, optimizing the objective of:

max
p(st+1|st,at)

p(τ) (3.2)

The policy optimization step learns the optimal policy πθ(at|st) based on the learned dy-
namics p(st+1|st, at) in order to obtain an optimal return Eπθ [l(τ))]. There is a large amount
of freedom in the representation formulation and the representation learning strategy selec-
tions. In our autonomous driving application, we select the system dynamics representation
to be a GMM, which adopts the idea of local models in order to get high sample efficiency.
Concretely, a time-varying linear-Gaussian model is applied to approximate the local behav-
ior of the system dynamics. Therefore, the learned system dynamics model shall follow the
following formulation:

p(st+1|st, at) = N (Atst +Btat + ft, Ft) (3.3)

Similarly, the policy model is also represented using a linear Gaussian model, denoted
as:

πθ(at|st) = N (Ktst + kt, Ct) (3.4)

The local linear models can be learned very efficiently with a small number of samples,
but they can only describe the local properties of the nonlinear functions. Therefore, after
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Figure 3.3: The framework of our proposed model-based RL method. For each iteration, we
first collect trajectories in the simulator using the current policy, then the trajectory samples
are used to update the system dynamics approximator, which is further used as the model
within the model-based policy optimization.

the policy optimization step, the new trajectory produced by the new policy, denoted τ ,
shall not differ significantly from the old trajectory samples we used to learn dynamics
p(st+1|st, at), so as to guarantee the modeling representation accuracy of the local linear
model. We denote the old trajectories using τ̂ . We adopt the Kullback-Leibler divergence
to describe the change of the trajectory distributions, then the policy optimization process
can be modeled using the optimization problem below.

min
θ
Eπθ [l(τ))] (3.5)

s.t. DKL(p(τ)‖p(τ̂)) < ε (3.6)

In the next two subsections, we elaborate on the representation selection and usage in
the system dynamics learning step and the policy optimization step.

3.3.1 System Dynamics Learning

The goal of system dynamics learning is not only to learn a precise local linear function, but
also to learn it efficiently. Therefore, we adopt a global model as the prior, which evolves
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throughout the whole model-based RL lifetime, and we fit the local linear dynamics to it
at each iteration. The global prior itself does not need to be a good approximation; it only
needs to capture the major property of the system dynamics to increase the regression sample
efficiency. This approach shares a similar idea with model agnostic meta learning (MAML)
[40], where the prior model is not an accurate approximation of the dynamics; but after a
fast adaptation process, the updated model could capture more precise dynamics properties.

In the case of autonomous driving, there are a series of different driving patterns. Within
each driving pattern, the dynamics models follow a similar property. Therefore, we adopt the
GMM to serve as the nonlinear prior model, with each mixture element serving as prior for
one driving pattern. Under this setting, each tuple sample (st, at, st+1) is first assigned to a
pattern and then used to update the mixture element. This process is a typical Expectation
Maximization (EM) process used to train a GMM. Finally, at each iteration, we fit the current
episode of data tuples {(st, at, st+1)} to the GMM, incorporating a normal-inverse-Wishart
prior. We derive the local linear dynamics p(st+1|st, at) by conditioning the Gaussian on
(st, at).

3.3.2 Policy Optimization

In order to solve for the policy optimization, we incorporate a popular gradient-based method
for constrained optimization: the dual gradient descent (DGD), which is summarized in al-
gorithms 1. The main idea of the DGD is as shown below. We first write out the Lagrangian:

L(θ, λ) =
T−1∑
t=0

Eπθ [l(st, at) + λ(DKL(p(τ)‖p(τ̂))− ε)] (3.7)

,where

DKL(p(τ)‖p(τ̂)) = Eπθ [log(p(τ))− log(p(τ̂))] (3.8)

The DGD trick is to first minimize the Lagrangian function under a fixed Lagrangian
multiplier λ and then increase the λ penalty if the constraint is violated so that more emphasis
is placed on the constraint term in the Lagrangian function in the next iteration. We can
reformulate the minimization of the Lagrangian function to be some trajectory optimization
problem with regard to some augmented cost function c(st, at) = l(st, at)/λ− log(pτ̂ (at, st)),
where l(st, at) is the original MDP step cost. The optimization is, therefore, updated to:

min
πθ

T−1∑
t=0

c(st, at) (3.9)

Since we can directly compute the cost function c(st, at) and its derivatives, we can then
solve the trajectory optimization problem using linear quadratic Gaussian (LQG) [5]. After
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the Lagrangian is optimized under a fixed λ, in the second step of DGD, λ is updated using
the function below with step size α:

λ← λ+ α(DKL(p(τ)‖p(τ̂))− ε)) (3.10)

, and the DGD loop is closed.

Algorithm 1 Dual gradient descent for policy optimization.

Constrained optimization problem defined by (5-6)
Initialize λ = λ0, itr = 0
while itr < maxIteration do

Rewrite L(θ, λ) to
∑T−1

t=0 c(st, at)
Solve for optimal πθ using LQG
Evaluate constraint violation ∆ = DKL(p(τ)‖p(τ̂))− ε)
Update λ← λ+ α∆

end

We also designed concise and effective cost functions to model the objective of the driving
tasks. For the roadblock tracking without considering the obstacle, we define the tracking
cost to be

ct(st, at) = αl∆y
2 + αy∆φ

2 + αv(v − vref )2 + αaa
2 + ασσ

2 (3.11)

where ∆y is the lateral deviation, ∆φ is the yaw angle error, v is the velocity of the au-
tonomous vehicle, vref is the reference speed for the tracking, a is the acceleration action,
and σ is the steering action.

When considering the obstacle, we designed a nonlinear cost function that takes effect
only when the autonomous vehicle is in the same lane as the obstacle vehicle and the distance
s is smaller than 20m, where we add the additional term of

caug(st, at) = βs(20− s) + βvvapproach (3.12)

where vapproach is the approaching speed of the ego and obstacle vehicle. If there is a
collision of between the ego vehicle and an obstacle vehicle, a large penalty is given and the
episode is terminated. The reward function for the MDP and for RL is the negative of the
cost function.

3.3.3 Compared Methods

We refer to our method as GPS. We adopt a GMM of 20 mixtures to serve as the model
prior, and we collect four trajectories every time for the update of the system dynamics and
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the linear Gaussian policy. We compare the proposed GPS model-based RL method with
a series of popular model-based and model-free RL methods, in terms of their training and
testing performance. We describe the setting for the proposed method and briefly introduce
the baseline algorithms and their settings in the next subsections.

The cross-entropy method (CEM) [31] has been one of the most simple and popular
policy search RL methods for policy optimization. In order to optimize the parameterized
policy πθ, the CEM adopts the assumption of Gaussian distribution of θ ∼ N (µ, σ2). It
iteratively samples θ from the distribution, using it to collect sample trajectories, and then
it updates µ and σ using the θs that produce the best trajectories. Since the CEM is also
a policy search method, to make a fair comparison, we also collect four trajectories every
time.

The model-free RL soft actor critic (SAC) [45] algorithm is the state-of-the-art
model-free RL algorithm. It has some of the best sample complexity and convergence prop-
erties among the model-free RL algorithms. The SAC maximizes both the expected reward
(negative cost) and the entropy

max
θ

T−1∑
t=0

Eπθ [−c(st, at) + αH(πθ)] (3.13)

The SAC adopts a soft Bellman equation to solve for the optimal soft Q value function,
resulting in a stochastic neural network policy. In our implementation, the policy network
and the critic network are both fully connected neural networks with two hidden layers of
256 neurons. Each time, we collect a batch size of 256 steps for the off-policy model-free RL
training and adopt a learning rate of 0.0003.

3.3.4 Comparison and Discussion

As described in Section 3.2.1, the experiments are divided into two parts—driving without
obstacles and driving with obstacles—since the two sets of tasks have different dimensions of
input and different cost functions. In both cases, the autonomous vehicle is randomly initi-
ated from one of the three settings: straight driving, 90◦ turning, and roundabout entering.
We run the proposed GPS-based method and the baselines of the CEM and SAC methods to
learn the urban driving policies, and the figures below show the training log of the methods.
For GPS and CEM, since the policies are linear Gaussian, we apply a PD controller as the
initialization, with large variance. For the model-free RL, the policies are neural networks,
so we follow the pure random initialization. Therefore, the initial performance of the GPS
and CEM are slightly better compared to the model-free RL methods.

Fig. 3.4 shows the training log of the policy search methods, the GPS and CEM methods
on driving tasks without obstacles, and Fig. 3.5 shows the training log of the two methods
in tasks with obstacles. In both cases, the GPS method outperforms the CEM in terms of
both the speed and the optimum of convergence. The GPS algorithm converges with only
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Figure 3.4: The training log of the guided policy search (GPS) and cross-entropy method
(CEM) on the driving task without obstacles. The GPS-based method converges faster and
to a better driving policy than the CEM.

about 1,000 steps of data, corresponding to 100 seconds of driving, while the CEM takes
roughly twice as much time to converge. In terms of qualitative performance, the GPS policy
(roughly -100,000 reward) can track the road more stably and can surpass the front vehicle
when it affects the speed profile of the autonomous vehicle. The CEM methods (roughly
-200,000 reward) can make uncomfortable steering actions and sometimes collide with the
obstacle or drive off the road.

Fig. 3.6 shows the comparison of the model-based and policy search methods with the
state-of-the-art model-free RL method of SAC. The model-free SAC method achieved a
similar performance to our proposed GPS-based method. However, the sample efficiency
property of our proposed model-based method is 100 times better, since the SAC takes more
than 100,000 steps to converge and GPS only took 1,000 steps to converge. Fig. 3.7 is an
example showing the qualitative performance of the GPS policy in a case where the ego
vehicle actively changes its lane to surpass the obstacle vehicle.

To summarize, as a model-based RL approach, when applied in urban autonomous driv-
ing, the GPS has the advantages of higher sample efficiency, better interpretability, and
greater stability. The experiments validate the effectiveness of the proposed method to learn
robust driving policy for urban driving in CARLA. We also compare the proposed method
with other policy search and model-free RL baselines, showing 100 times better sample effi-
ciency of the GPS compared with the model-free RL baseline. Also, GPS can learn policies
for harder tasks that the baseline methods can barely learn.
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Figure 3.5: The training log of the guided policy search (GPS) and cross entropy methods
(CEM) on the driving task with obstacle. Similar to the task without obstacle, the GPS
based method converges faster and to a better driving policy compared to the CEM.

Figure 3.6: The training log of the guided policy search (GPS) and cross-entropy methods
(CEM) in comparison to the soft actor critic (SAC) model-free RL method on tasks without
obstacles. The model-free RL can learn good driving policy, but it takes more than 100,000
steps of data for training. That is, the model-based method is 100 times more sample
efficient.
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Figure 3.7: Qualitative performance of the GPS policy in a case where the ego vehicle actively
changes its lane to surpass the obstacle vehicle. This task involves high-level decision and
planning intelligence, which is hard to learn.

3.4 Model-free RL: State Representation Formulation

In this section, we investigate the performance comparisons between the usage of different
state encoding for the representation of the highly interactive urban driving scenario. As de-
scribed in section 3.2.1, the CARLA simulator could provide a full-state feature vector of the
ego vehicle and the surrounding vehicles, as well as simulated sensor output, such as the front
camera and the lidar images. With an end-to-end model-free RL formulation, the encoding
of the complicated and interactive driving scenario is very important for understanding the
situation and for control of the ego vehicle. We investigate a series of candidate represen-
tations and validate that graph neural network (GNN) based representation encoding is the
best choice in terms of policy learning performance.

3.4.1 Graph Neural Network Representation Formulation

GNN has recently draw significant attention in the research community thanks to its capa-
bility of capturing the relational biases between entities in complicated systems [55] [10]. In
our autonomous driving task, we also introduce GNN to serve as the representation extractor
to encode the interaction information between the traffic participants. The interactive driv-
ing scenario is first described using a graph formulation, with vertex states Vi representing
each of the traffic participants and edge states Ei,j representing the relationship between
two traffic participants. Fig. 3.8 shows the graph representation formulation for the driving
case. For the sake of simplicity, in our formulation, the edges are directed edges, and only
the effect of the surrounding vehicles toward the ego vehicle is considered. That is, there
are no directed edges from the ego vehicle toward the surrounding vehicles or between the
surrounding vehicles. The vertex state stores the position and velocity of the corresponding
vehicle, and the vertex stores the relational distance and velocity difference between the two
vehicles.
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Figure 3.8: The graph representation of the driving scenario with multiple traffic participants.

In the graph neural network, the initial graph formulation is then processed using convo-
lutional graph layers, in which a vertex update operation and an edge update operation are
proceeded iteratively. In edge update, the current edge and its starting and ending vertices
are fed into a fully connected network to produce the next edge feature. In vertex update,
the current vertex and all incoming edges are fed into a fully connected network to produce
the next vertex feature. The graph convolutional layer is shown in Algorithm 2

Algorithm 2 Graph convolutional layer.

Input: kth graph layer V k
i , i ∈ {0, ..., n}, Ek

i,j, (i, j) ∈ E, fully connected networks: φθe, φθv
for (i, j) ∈ E do

Ek+1
i,j = φθe(E

k
i,j, V

k
i , V

k
j )

end
for i ∈ {0, ..., n} do

let Ek+1
i = Σ(i,j)∈EE

k+1
i,j

V k+1
i = φθv(V

k
i , E

k+1
i )

end

Return: (k+1)th graph layer V k+1
i , i ∈ {0, ..., n}, Ek+1

i,j , (i, j) ∈ E
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3.4.2 Comparison between Other Representation Formulations

The proposed graph-based representation formulation is compared with the two following
baselines:

Sensor data: The CARLA simulator provides rich simulated sensor data, including the
front-view camera image and the lidar image, as shown in Fig. 3.2. We concatenate the
camera image and the lidar image along the channel axis and feed it into a convolutional
neural network feature extractor.

State vector: To illustrate the effectiveness of the graph structure, we compare it with
a full-state input of all the traffic participants, which is fed into a fully connected network
for feature extraction. Since the number of surrounding vehicles can vary, we define a state
vector with enough entries for at most 10 vehicles and feed the detectable vehicles to the
state vector. If there are not enough vehicles within a detectable distance, we assign 0 to
the remaining entries.

We train policy networks using the three state representations using SAC for 35,000
steps until convergence. Fig. 3.9 shows the comparison of the performance with different
representations. The training logs show that the GNN-based representation achieves superior
performance compared to the sensor data and the state vector. Using the sensor data version
representation, SAC cannot learn a driving policy that successfully navigates in the CARLA
simulator, while the state vector version policy improves slower than the graph version
policy. The final performance is also below that of the proposed graph version policy. We
also validated the GNN’s performance by varying the number of surrounding vehicles: by
training two separate policies within CARLA scenarios—with and without varying number
of surrounding vehicles. Training logs in Fig. 3.10 show that the policy trained with a fixed
number of surrounding vehicles improves to convergence faster, but the policy trained with a
random number of surrounding vehicles reaches similar performance in the end. Therefore,
we validate that the GNN representation is helpful for encoding the information within
complicated driving scenarios that involve multiple vehicles. Also, the graph formulation is
capable of handling a varying number of entities.

3.5 Supervised Learning: History Encoding

Representation Design

In this section, we investigate the selection of history encoding representation for the appli-
cation of human behavior prediction in a multistep pick and place task based on supervised
learning. We design a novel and interpretable representation formulation to effectively rec-
ognize the scene and encode the history information so as to obtain a fast and accurate
human behavior prediction module. The task is designed as follows (overview shown in Fig.
3.11): A human worker needs to pick up two objects, A and B. The worker shall put object
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Figure 3.9: Training log comparison of the graph representation and the baseline represen-
tations.

A onto either one of the C and E pads and object B onto pad D. The worker has to perform
each pick, place, and transport operation one by one, resulting in a sequential operation
strategy. We can observe the human performing the task from a third-party-view camera
image stream, and the goal of the task is to infer the strategy as soon and as accurately as
possible.

To study the behavior prediction methodology, we collect a large video dataset of a
human volunteer performing the task, as shown in Fig. 3.12. To finish this task, the human
worker has 12 strategies in total; Fig. 3.12 shows one of them. We decompose the whole
task into a series of subtasks, such as transporting from one location to another and picking
and placing an object. There are 22 total subtasks, and Fig. 3.13 and Fig. 3.14 show two of
them.

3.5.1 Behavior Prediction Framework and History Encoding
Representation

We propose a two-stage behavior prediction framework that is shown in Fig. 3.15. First,
the camera image is fed into a VGG convolutional neural network (CNN) [100] classifier to
extract a feature for the current operation. We choose the subtask that the human is doing
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Figure 3.10: Training log comparison of the graph representation policy trained in scenarios
with and without varying the number of surrounding vehicles.

Figure 3.11: Overview of the multi-step pick and place task.
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Figure 3.12: One strategy the human worker uses to complete the multistep pick and place
task. The human worker first picks the red object and puts it at the left white pad and then
picks the yellow object and puts it at the green pad.

Figure 3.13: One subtask the human worker performs: transport from the right white pad
to the yellow object.

Figure 3.14: One subtask the human worker performs: place the red object onto the right
white pad.
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Figure 3.15: The two-stage behavior prediction framework.

in the current frame as the feature; this results in a 22 dimensional one-hot vector encoding
the 22 possible subtasks in the current video frame. We then run a steady-state Kalman
filter to smooth the feature vectors from the CNN. Then the feature history is encoded into
a history encoding representation, which is defined as follows:

The history encoding representation uniformly (sampling time length can be different)
selects a fixed number of history features to form the information vector. The fixed number
of history features is chosen to be 22, which is the number of dimensions of the feature
vector. Therefore, the history encoding representations can be rendered using 22 by 22
square figures, as shown in Fig. 3.16. In Fig. 3.16, the history encoding representations can
be interpreted according to a relative time axis and a subtask axis. Concretely, for each row
vector with the same relative time, the heat map represents the probability that the human
worker is performing one of the subtasks at the relative time. Finally, this history encoding
representation is fed into a final neural network to produce the strategy that the human is
taking with ground truth strategy label supervision. After acquiring a series of estimations,
we run a steady-state Kalman filter to calculate the posterior state estimate. The initial
state of the Kalman filter is assumed to be a discrete uniform distribution over all 12 plans.
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Figure 3.16: Two history encoding representations obtained in one episode at two different
time steps.

3.5.2 Performance

We collect a large dataset of 50,987 frames of 256 by 256 RGB images recording a human
volunteer performing the task. Sample images can be found in Fig. 3.12, 3.13 and 3.14. We
randomly separate the dataset into a training set of 46,737 images and 4,250 testing images.
We fine-tune a VGG classification network pretrained on ImageNet [33] (with the first four
convolutional layers fixed) on the training set (with data augmentation of randomly cropping
the images to a size of 224 by 224) and evaluate the results on the testing set. We obtain
a classification accuracy on the test set of 51% top 1 accuracy and 75% and 93% top 2 and
top 4 accuracy, respectively. The history encoding representations shown in Fig. 3.16 also
show clear and contingent subtask classification performance.

The fully connected network that maps from the history encoding representation to the
strategy estimation is trained using 12 episodes (one for each strategy) with 4,250 frames of
images and tested on another 12 episodes (one for each strategy) with 4,047 frames. We get a
32.4% top 1 classification accuracy and a 85.6% top 5 classification accuracy. The relatively
low classification accuracy is because it is not possible to identify the correct strategy in
the early stage of the episode. For prediction performance, the model achieves a 100% final
classification success rate. During online prediction, the model can achieve human-level
performance by converging quickly to the correct strategy once enough evidence is observed.
Fig 3.17 and Fig. 3.18 show the behavior prediction model performance in an online episode.
We can see that in the first half of the episode (Fig 3.17), when the human volunteer picks
the red object and the yellow object, the prediction model cannot determine which object
the human is placing first or which strategy the human is taking. Therefore, the thick red
probability curve, which corresponds to the correct strategy, is just as high as the thin red
curve, which corresponds to a wrong but indistinguishable strategy. In the second half of the
episode (Fig 3.18), as the human approaches the right white pad and places the red object,
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Figure 3.17: First half of the behavior prediction model performance in an online episode.

the model is able to correctly identify the strategy, and the thick red curve rises above the
thin red curve, finally reaching to far above all other curves. The experiments show that
the history encoding representation and the prediction model are able to capture the history
information and achieve satisfying prediction performance.
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Figure 3.18: Second half of the behavior prediction model performance in an online episode.
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Part II

Reasoning for Representations at the
I/O of the LbC Policies
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Chapter 4

Cascade Attribute Network

It has been shown that reinforcement learning (RL) methods can train control policies to
achieve great success in various automation tasks. However, a main challenge of the wider
application of RL in practical automation is that the training process is usually difficult.
What makes it worse is that pretrained policy networks are rarely reusable in other similar
cases, making it necessary to retrain a new policy network for each new task from scratch.
A training framework that can effectively solve a class of similar control tasks should be
developed. In this chapter, we propose the cascade attribute network (CAN), which uti-
lizes its hierarchical structure to decompose a complicated control policy in terms of the
requirement constraints (what we call attributes) encoded in the control task. The CAN
training process is divided into two parts: the training of the base goal-reaching attribute
module and the add-on attribute modules that reflect the add-on requirements. Then the
attribute modules are connected in a series to provide the overall outcome of the control
policy. We tested the effectiveness of our proposed method on two robot control scenarios
with various add-on requirements in time, position, velocity, and acceleration phases. The
experiment results show that the CAN is capable of learning a robust control policy using
the proposed step-by-step procedure, and its training efficiency outperforms the baseline RL
train-from-scratch significantly. It is also shown that for some control tasks with more than
one add-on attribute requirement, by directly assembling the attribute modules in cascade,
the CAN can provide ideal control policies in a zero-shot manner.

4.1 Introduction

Reinforcement learning is an artificial intelligence approach that solves for automatic control
policies π(a|s), usually neural networks that map the state space inputs s to the control
command outputs a. The training of the RL policies is through the interaction of the agent
and the environment, which is often modeled using a Markov Decision Process (MDP) [104].
The RL has been successful in solving many robotics and automation problems in simulations
as well as in real-world scenarios [61][96][63][49][51]. However, the wide application of RL
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Figure 4.1: Autonomous driving as an example of decomposing a complicated control task
into multiple attribute constraints using the cascade attribute networks (CAN).

in automation is slowed down by several challenges, and one of the main challenges is the
difficulty of RL policy training. RL policy generally takes a great amount of computation
power to train for complicated control tasks. What makes it even worse is that RL policies
are optimized based on certain fixed MDPs, and the knowledge encoded inside an optimized
control policy are hard to transfer to other similar tasks. That is, new RL policies—even
for those control tasks that are very similar to the pretrained task—have to be trained from
scratch, which leads to a great amount of computation power waste.

For example, consider an autonomous driving scenario, as shown in Fig. 4.1. The target-
reaching task for RL is to train the control policy that can make the autonomous vehicle
travel from an origin position to a target position. It takes a great computation cost to
optimize for the control policy of the target-reaching task. And, in reality, the task is
slightly different when the autonomous vehicle has to avoid obstacle vehicles. Since the
control policy is a neural network and agnostic of the hidden layers of the policy network,
the knowledge encoded inside the policy network of the pure target-reaching task cannot
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transfer to new tasks, even if they are very similar to the learned one. Also, since the input-
output architecture of a neural network policy is fixed, the information for the newly added
obstacle has no way to enter the old policy network. Therefore, the old policy network is not
useful at all, and a new policy network has to be trained from scratch for the new control
task. For instance, imagine adding a further speed limit requirement to the autonomous
driving task. The learned knowledge in the two previous tasks cannot be transferred to the
new task, and there is no input entrance for the speed limit information in the pretrained
policy network. Therefore, RL frameworks with fixed policy models cannot address differing
tasks in such varying environments. Of course, it would be ideal if the training framework
made it possible to transfer control knowledge between similar tasks.

There have been many prior attempts to create versatile intelligence that adjusts to task
changes. Transfer learning [106, 78] is a key tool in using previously learned knowledge for
the better or faster learning of new knowledge. Rusu et al [92][93] establish a multi-column
(network) framework, referred to as progressive network, in which newly added columns
are laterally connected to previously learned columns for knowledge transfer. Drafty et
al [30] and Braylan et al [19] also design interesting network architectures for knowledge
transfer in micro aerial vehicle (MAV) control and video game playing. Barreto et al [9,
8] propose a scheme based on successor features: a value function describes the dynamics
of the environment from reward functions and a generalized policy improvement operation
with consideration of multiple policies. In this way, the method can provide an efficient
transfer among different tasks where the reward function is changed but the dynamics of
the system remain the same. As for the combinations of transfer learning and imitation
learning, Ammar et al [3] use unsupervised learning to map states for transfer, assuming
the existence of distance function between different state spaces. Gupta et al [44] learn an
invariant feature between different dimensional states and use demonstrations to increase the
density of the rewards. There are other methods seeking to learn a globally general policy.
For instance, meta learning [109] attempts to build self-adaptive learners that improve their
bias through accumulating experience. One-shot imitation learning [36], for example, is a
meta learning framework that is trained using a number of different tasks so that new skills
could be learned from a single expert demonstration.

Unlike the prior transfer learning approaches that lack interpretable transferable fea-
tures, we put emphasis on the modularization of attributes, which are concrete and mean-
ingful modules that can be conveniently assembled into various combinations. Concretely,
we propose to decompose the complicated control problem in terms of its requirement con-
straints, which we refer to as attributes. The concept attributes refer especially to global
characteristics or requirements that take effect throughout the task. Take the example in
Fig. 4.1: To solve an autonomous driving problem, one first decomposes the requirements
of the task into a base target reaching attribute—the add-on obstacle avoidance and speed
limit attributes—and then trains the attribute module for each of the attributes and finally
assembles the attribute modules together to produce the overall policy. Therefore, our work
is different from other research in training modular neural networks. For example, [34] inves-
tigates the combinations of multiple robots and tasks, while [4] investigates the combinations
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of multiple sequential subtasks; we look into modularization in a different dimension. We
investigate the modularization of attributes, the characteristics or requirements that take
effect throughout the whole task.

In order to decompose and assemble the attribute modules, we propose a simple but
efficient RL framework called the cascade attribute network. In CAN, the attribute modules
are connected in cascade series. Each attribute module receives both the output of its
preceding module and the related states of the corresponding attribute and then returns
the action that satisfies all the attributes ahead of it. Decomposing a task using a series of
attributes has two main intriguing advantages:

1. The decomposed attribute modules are much easier and faster to train compared with
the overall control policy.

2. The attribute-related knowledge is encoded in interpretable modules, which can be
built up to create versatile policies that can adjust to changes in the control tasks.

4.2 Reinforcement Learning and Curriculum

Learning Backgrounds

4.2.1 Proximal Policy Optimization

The objective of RL is to maximize the expected sum of the discounted rewards Rt =
E
∑∞

k=0 γ
k · rt+k in an agent-environment-interacting MDP. The agent observes state st at

time t and selects an action at according to its policy πθ parameterized by θ. The environment
receives st and at and returns the next state st+1 and the reward in this step rt. The γ in
the objective function is a discounting coefficient. The main RL approaches include deep
Q-learning (DQN) [72], asynchronous advantage actor critic (A3C) [71], trust region policy
optimization (TRPO) [98], and proximal policy optimization (PPO) [97]. Approaches used
in continuous control are mostly policy gradient methods (i.e. A3C, TRPO, and PPO). The
vanilla policy gradient method updates the parameters θ by ascending the log probability of
action at with higher advantage Ât. The surrogate objective function is

L(θ) = Êt
[
log πθ(at | st) · Ât

]
(4.1)

Although A3C uses the unbiased estimator of the policy gradient, large updates can
prevent the policy from converging. TRPO introduces a constraint to restrict the updated
policy from being too far in Kullback-Leibler distance [57] from the old policy. Usually,
TRPO solves an unconstrained optimization with a penalty punishing the KL distance be-
tween πθ and πθold , specifically,
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L(θ) = Êt
[
πθ(at | st)
πθold(at | st)

· Ât − β ·KL (πθ, πθold)

]
(4.2)

However, the choice of the penalty coefficient β has been a problem [ppo]. Therefore,
PPO modifies TRPO by using a simple clip function parameterized by ε to limit the policy
update. Specifically,

L(θ) = Êt
[
min

(
πθ
πθold

Ât, clip

(
πθ
πθold

, 1 + ε, 1− ε
)
Ât

)]
(4.3)

This simple objective turns out to perform well while enjoying better sample complexity;
thus, we are using PPO as the default RL algorithm in our policy training. We are also
inspired by [48] to build a distributed framework with multiple threads to speed up the
training process.

The advantage function Ât describes how better a policy is versus a baseline. Tradi-
tionally the difference between the estimated Q value and value functions is applied as the
advantage [71]. Recently Schulman et al [96] use generalized advantage estimation (GAE)
to leverage the bias and variance of the advantage estimator.

4.2.2 Curriculum Learning

Curriculum learning (CL) [14] trains a model on a sequence of cognate tasks that get more
and more challenging gradually so as to solve hard tasks that could not be learned from
scratch. Florensa et al [41] apply reverse curriculum generation (RCL) in RL. In the early
stage of the training process, the RCL initializes the agent state to be very close to the target
state, making the policy very easy to train. They then gradually increase the random level of
the initial state as the RL model performs better and better. Sanmit et al [76] formulate the
curriculum learning sequence as an MDP process, which can also be learnt from experience.
These results show that with a good consideration of the nature of the problem, CL can help
RL have a better convergence speed. We adopted the idea of CL in our training strategy
and achieved improvements in terms of the performance of the learned policies.

4.3 Multi-Attribute Problem Formulation

We consider an agent performing a class of tasks built up with one base attribute and a
series of add-on attributes. We model the control tasks and the attribute in a unified form
using MDPs. Since the agent is fixed, its action space is a fixed space, which we call A.
We denote the attributes using their index {0, 1, 2, . . .}, where the 0th attribute is the base
attribute, which usually corresponds to the most fundamental goal of the task, such as
the target-reaching attribute in the autonomous driving task. We define the state space of
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each attribute to be the minimum state space that fully characterizes the attribute, denoted
S = {S0, S1, S2, S3 . . .}. For example, let the base attribute be the target-reaching attribute
and the 1st attribute be the obstacle avoidance attribute. Then S0 consists of the states of the
agent and the target, while S1 consists of the states of the agent and the obstacle, but does
not include the states of the target. Using the attribute as elements, one can build various
control tasks, such as pure target reaching, target reaching while avoiding an obstacle, target
reaching under external force influence, and so on. There is indeed overlapping between the
state space of different attributes, and the union of two state spaces Si∪Sj is the state space
of the assembled control task consisting of attribute i and j.

Each attribute has a unique reward function as well, denoted R = {R0, R1, R2, R3 . . .}.
Each Ri is a function mapping a state action pair to a real number reward (i.e., Ri : Si ×
A → R). Similarly, there is a specific transition probability distribution for each attribute,
denoted: P = {P0, P1, P2, P3 . . .}. And for each attribute, its transition function takes in the
state action pairs and outputs the states for the next timestep—that is, Pi : Si × A→ Si.

Our goal is to develop a framework that can easily train the policy networks for the
tasks consisting of a series of attributes, especially those consisting two attributes (one base
attribute and one add-on attribute). To avoid training each task from scratch, we aim to learn
reusable attribute-related knowledge encoded in the attribute modules. A key characteristic
in our problem formulation is that the state spaces for different attributes can be different.
This formulation enables the assembled attribute network to dynamically manage the state
space of the task. Specifically, the state si, is fed to the attribute module corresponding to
the ith attribute. Although the input of the attribute module can be naturally defined, the
challenging part is how to define the output of the attribute modules and how to get the
overall policy output from the outcome of the attribute modules. And this design is provided
in the following subsection.

4.4 The Cascade Attribute Networks

The architecture of the CAN is shown in Fig. 4.2. The training for a task with more than
one attribute is divided into two parts: the training of the base attribute module and the
add-on attribute module. In the training phase, first a RL policy π0(a0|s0) is trained to
accomplish the goal of the base attribute. The base attribute network takes in s0 ∈ S0 and
outputs a0 ∈ A; the reward and transition functions of the MDP are given by R0 and P0.
This process is a default RL training process.

Consider the control task with more than one attribute, without loss of generality; the
1st add-on attribute module is trained next, in series of the base attribute module. The 1st

attribute module consists of a compensation network and a weighted sum operator. The
compensation network is fed with state s1 ∈ S1, and action a0 chosen by π0. The output
of the compensation network is the compensation action ac1, which is used to compensate
a0 to produce the overall action a1. The reward for the MDP is given by R0 + R1 so that
the requirements for both constraints of attributes are satisfied. Since the parameters of
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the base attribute network are pretrained and fixed, the cascading attribute network would
extract the features of the attribute by exploring the new MDP under the guidance of the
base policy. It is noted that in the add-on attribute module, the weight of the compensation
action ac1 is initially small, then increases over the training time. That is, at the early stage
of the training process, mainly a0 takes effect, while ac1 gradually gets to influence the overall
a1 as the training goes on. For the 2nd, 3rd, · · · attributes, the training of their attribute
networks is the same.

By decomposing the control policy into base and add-on attribute modules, the proposed
CAN architecture is especially efficient for the training of those control tasks with two at-
tributes. Benefitting from the decomposition, the high dimensional control task is reduced
to lower dimensional attributes, which are much easier for the RL algorithms to train. The
inference model for those tasks with one base attribute and one add-on attribute is the same
as the training structure shown in Fig. 4.2. For those tasks with more than one add-on
attribute, one approach is to combine all the add-on attributes into one complicated add-on
attribute and apply the same method as described. Moreover, empirical results also show
that for cases where the number of add-on attributes is small and different add-on attributes
do not entangle with each other, the CAN shown in Fig. 4.3 can provide ideal control policy.
In the CAN shown in Fig. 4.3, the ith attribute module takes in si and ai−1, and it outputs
ai, which satisfies all the attributes before the ith module. The final output aj is the overall
output that satisfies all the constraints in the constraint array.

4.5 Experimental Setup

We carry out a series of experiments to validate the capability to decompose and assemble
attributes in multi-attribute tasks and to take advantage of the CAN to learn complicated
tasks. The experiments are powered by the MuJoCo physics simulator [108]. The attribute
modules in our experiments are all three-layer fully connected networks that output Gaussian
distributed stochastic actions, built using TensorFlow [1]. The baseline RL algorithm we use
is the PPO [97] method with GAE [96] as the advantage estimator.

We evaluate the capability of the CAN on two types of robot scenarios in our experiments.
One is a point robot with a two-dimensional action space, and the other is an articulated
robot with a five-dimensional action space. For the point robot, the state space includes the
position and velocity of the robot, and the action vector is the driving force applied to it.
For the articulated robot, the state spaces are the angle and angular velocity at all the joints
and the x-position and speed of the base of the robot, while the action vector includes the
torques at all the joints and the force applied to the base of the robot. For each robot agent,
we implement one base attribute and four different add-on attributes. For each different
attribute, we designed a reward function Ri. The attribute settings and reward functions
are described as follow:
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Figure 4.2: The training procedure of an attribute module in the CAN: First train the base
attribute module, then train the add-on attribute module based on the fixed pretrained base
module.

4.5.1 Reaching Attribute (Base Attribute)

The target-reaching task, a common robot task, is defined to be the base attribute for both
robot scenarios in our experiment. Given the initial configuration and location of the target,
the robots’ aim is to reach the target zone using their end effector. As for the reward function
of the base attribute, a positive reward is given to the agent only when the robot reaches
the required target area. The reward function is shown below:

rb(t) =

{
1, reaches target

0, other case
(4.4)

4.5.2 Obstacle Attribute (Position Phase)

In our obstacle avoidance attribute, a circular obstacle is placed in the work area—more
specifically, right in the way of the target-reaching path. Furthermore, the obstacle in this
experiment is not static, but moving around its initial position randomly, which means
that it is necessary for the policy to include the ability to deal with dynamic obstacles. In
our implementation, one obstacle avoidance attribute corresponds to one circular obstacle.
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Figure 4.3: One kind of usage of the CAN in multi-add-on-attributes tasks: By assembling
add-on attribute modules in cascade to the base attribute module, the output action of the
last attribute module is the outcome of the overall hierarchical policy network.

Figure 4.4: The images in the top row show the two robot scenarios, in which the agents are
performing the base attribute of target reaching. The bottom images show the four add-on
attributes.

Nevertheless, many obstacle attributes are allowed to be assembled together to create a more
complicated environment. For each obstacle, whenever the robot collides with it, the MDP
will give the robot a negative reward. The reward function is represented as the following:

rio(t) =

{
−0.3, touches ithobstacle

0, other case
(4.5)
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4.5.3 Automated Door (Time Phase)

The automated door attribute is a time-controlled obstacle that is almost impossible for the
robots to pass when it is closed. This door is closed at first and will open at some specific
time slots. This attribute is challenging to train using RL since it punishes the agent even if
it goes in the right direction at a wrong time. If the reward function is not designed properly,
the RL algorithm can accumulate significant negative rewards for the right direction, making
it impossible for the robot to learn to move in the right direction. Therefore, the negative
reward for hitting the door is designed to be relatively small so the robot does not get
discouraged even after receiving the negative signals many times.

rd(t) =

{
−0.01, touches door

0, other case
(4.6)

4.5.4 Speed Limit (Velocity Phase)

Practical robots always have dynamic constraints on their joints, which limit their speed.
Also, for safety reasons, robots’ speed must be limited. We define the speed limit attribute
in this experiment by defining the reward function to give a punishment once the speed of
the robot’s joints exceeds the speed limit. In order to make the limitation more realistic,
the speed limit at time t, L(t) is designed to be a time-variant function, as shown in Fig 4.5.
Denoting the maximum joint velocity as vmax, the reward function can be written as:

rs(t) = −0.3(max(vmax − L(t), 0)) (4.7)

4.5.5 Force Disturbance (Acceleration Phase)

In working scenarios, robots can be influenced by force disturbance or repulsion force on their
joints. The force disturbance attribute in our experiment corresponds to a time-invariant
force disturbance added to a certain joint of both point robot and articulated robot. However,
the force limitation for actuation is changed, which means the robot needs to find a way out
other than simply compensating this force in each joint. The force disturbance affects only
the dynamics function of the robot system, with no additional reward function added.

rf (t) = 0 (4.8)

4.6 Training Schemes

To guarantee the capacity of the CAN, the attribute modules need to meet two requirements:
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Figure 4.5: The time-variant speed limit function applied in the speed limit attribute.

1. The base attribute policies should be robust over the state space, rather than being
effective only at the states that are close to the optimal trajectory. This enables the
base attribute policies to be instructive when a compensation action is added on the
top of it.

2. The compensation action for a certain attribute should be close to zero if the agent is
in a state where this attribute is not active. This property increases the capability of
multi-attribute structures.

For the sake of the robustness of the attribute policies, we apply CL to learn a general
policy that can accomplish the task starting from any initial state. The CL algorithm first
trains a policy with a fixed initial state. As the training goes on, the random level of the
initial state is gradually increased until the initial state is randomly sampled from the whole
state space. The random level is increased only if the policy is capable enough for the current
random level, which is reflected by the increase of the episodic reward.
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Algorithm 3 Curriculum learning.

RandomLevel = Initial Random Level
λ = 1+ Random Level Increase Rate
N = Batch Number
LongTermR = Queue()
while RandomLevel < Terminal Random Level do

Update the policy using PPO
Rewards← RunEpisode(N)
LongTermR.append(Rewards)
if Average(LongTermR) > Threshold then

RandomLevel = RandomLevel × λ
Clear(LongTermR)

end

end

For example, consider the task of moving a point robot to reach a target point in a
two-dimensional space. In each episode, the initial position of the point robot is randomly
sampled in a circular area. The random level in this case is the radius of the circle. In the
early training stage, the radius is set to be very small, and the initial position is almost fixed.
As the policy gains more and more generality, the reward in each episode increases. Once
the reward reaches a threshold, the random level increases, and the initial position of the
point robot is sampled from a larger area. The terminal random level corresponds to the
circumstance where the circular sampling area fully covers the working zone. If the policy
performs well under the terminal random level, the policy is considered successfully trained.
The pseudocode for this process is shown in Algorithm 3.

To guarantee the second requirement, an extra loss term that punishes the magnitude of
the compensative action, lci ∝ −‖aci‖2, is added to the reward function so as to reduce ‖aci‖
when attribute i is not active.

4.7 Results and Discussions

4.7.1 Performance of the CAN

The first set of experiments tests the capability of the CAN to learn attributes and assemble
learned attributes. We first train the base attribute module using the baseline RL algo-
rithm with CL, and then we use the cascading modules to decompose the different add-on
attributes based on the pretrained base module. In the actor-critic RL training using PPO,
the maximum number of episodes is 10,000. Both the actor network and the critic network
are trained using the Adam optimizer, with a batch number of 256, an initial learning rate
of 0.0001; they are updated 20 times in each training iteration. After training the two robot
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Figure 4.6: Training log on random level for the point mass robot with the four add-on
attributes. Because we are using CL training techniques, the random level of the environment
is increasing during the training. The higher the random level, the more general the final
policy will be. If the random level could be greater than or less than 5 meters—meaning
the robot could reach a target within a 5-meter range—then the task would be considered
successfully solved.

scenarios and all the four add-on attributes for each scenario, we ran 10 test episodes for
the eight combination tasks and received a 10/10 success rate for all the tasks. Therefore,
the results show that the add-on attributes can be successfully added to the base attribute
using the CAN. Fig. 4.6. shows the random-level training log for the four add-on attribute
modules in the point mass scenario. If the random level could be greater than or less than
5 meters—meaning the robot could reach a target within a 5-meter range—then the task
would be considered successfully solved. Fig. 4.7 and Fig. 4.8 show the example episodes of
the different attribute combinations.
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Figure 4.7: Three example episodes for the articulated robot: target reaching, target reaching
while avoiding an obstacle, or an automated door.

We also show cases where the CAN assembles more than one add-on attribute module.
Concretely, we first train the obstacle attribute module based on the point mass robot. Then
we connect two identically parameterized obstacle attribute modules in a series following the
base attribute module, each handling one obstacle ball. The CAN structure is identical as
the one shown in Fig. 4.3. Fig. 4.9. shows two examples of the CAN zero shooting1 the task
where the moving point robot reaches the target while avoiding two obstacles simultaneously.
Nevertheless, as the task gets more complicated and the number of attributes gets larger,
it requires a certain amount of fine-tuning. In the next chapter, we will present another
attribute-based decomposition approach that is better at handling more attributes at one
time.

4.7.2 Comparison with Baseline RL Methods

We compare the capability and efficiency of the CAN and the baseline RL by analyzing their
training logs. We train two policies to drive the point mass robot to reach a target location
while avoiding an obstacle with only a sparse reward function. The CAN is trained with
CL, with the base attribute pretrained and fixed. The resulting comparison of the reward
and random level are shown in Fig. 4.10, with the maximum training iterations exceeding
120,000. For the baseline RL, the task is trained from scratch. For the baseline RL trained
with CL, it is too hard for the robot to reach the target in many cases. Therefore, we also
implemented RCL, which let the initial state be very close to the target in the early stage
of the training phase. Using RCL, the baseline RL could gain positive rewards in the early

1Zero shooting means testing on a new task without extra training using the target domain data
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Figure 4.8: Two example episodes for the articulated robot: target reaching under the speed
limit or force disturbance. Because of the limit of speed and force disturbance in the actuator,
these two tasks take longer than the three previous tasks. The speed limit and external force
are also visualized.

stage. The challenge is whether the RL algorithm can maintain the high reward level as
the random level increases. The focus of the comparison across different training schemes is
placed on the corresponding reward and random level in CL versus the training iterations.

We find that the baseline RL using CL barely learns anything. This is because the
reward is too sparse; and the agent is consistently receiving punishment from the obstacle
and falls into a local minimum of purely avoiding the obstacle and ignoring the target. For
the baseline RL using RCL, in the early stage, the average discounted reward in an episode
is high, as expected. But as the random level rises, the performance of the baseline RL with
RCL drops. Therefore, the random level increases slowly as the training continues. The
CAN, however, is able to overcome the misleading punishments from the obstacle, thanks
to the guidance of the instructive base attribute policy. As a result, the random level of
the CAN rises rapidly, and the CAN achieves the terminal random level more than 10 times
faster than the baseline. These results indicate that the attribute module learns substantial
knowledge of the attribute as the CL-based training goes on.
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Figure 4.9: The moving point robot (the pink ball) reaches the target (the green ball) while
avoiding two obstacles simultaneously. Note that this task is never seen by the CAN. The
obstacle attribute module is trained only once, and two identically parameterized obstacle
attribute modules corresponding to two different obstacles are assembled together to zero
shoot the new task.

4.8 Chapter Summary

In this chapter, we introduce the attribute learning concept and present the advantages
of using this novel method to decompose the control policies of complicated control tasks.
The RL framework we propose, the CAN, uses the cascade attribute module structure to
model the characteristics of the attributes. The attribute modules are trained with the
guidance of the pretrained base attribute module. We validate the effectiveness of the CAN
in decomposing and assembling attributes and show the advantages of the CAN in solving
complicated tasks compared to the baseline RL. In the next chapter, we present an extension
of the attribute learning work by organizing the attribute networks in a parallel manner for
better performance on multi-attribute tasks.
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Figure 4.10: Comparison between the performance of the CAN and the baseline RL (PPO)
in the training phase.
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Chapter 5

Parallel Attribute Networks

In the last chapter, we argued that network policies are generally hard to train and that the
learned knowledge encoded in neural network policies are difficult to transfer. We proposed
the cascade attribute network (CAN), which decomposes complicated policies in a cascade
manner. However, the CAN is not robust for problems with multiple attributes. In this
chapter, we present the parallel attribute network (PAN), which decomposes a policy in
a parallel manner [122]. We study this method in an autonomous driving scenario and
modularize the complicated driving policies in terms of the driving attributes to fulfill the
requirements of the attributes in the driving tasks separately. Concretely, we first train a
policy network to accomplish the base lane tracking attribute. The modules for the add-on
attributes, such as avoiding obstacles and obeying traffic rules, are then trained to map the
corresponding state to a satisfactory set of the vehicle action space. Finally the reference
action given by the base policy is projected into the satisfactory sets so as to satisfy the
requirements of all the attributes. Using the PAN, many complicated tasks that are hard
to learn from scratch can be easily learned; also, unseen driving tasks can be solved in
a zero-shot manner by assembling the pretrained attribute modules. We have validated
the capability of our model on a class of autonomous driving problems with attributes of
obstacle avoidance, traffic light, and speed limit in simulation. Experimental results based
on an obstacle avoidance task are also presented.

5.1 Introduction

Researchers have explored neural network policies (NNPs) to drive autonomous vehicles in
complicated environments. Generally, NNPs can take in various observational inputs, such
as raw sensor data or estimated states, and output the driving commands for autonomous
vehicles. In real driving applications, for the sake of reliability and robustness, NNPs of-
ten map low-dimensional state space input to the vehicle control commands, leaving the
perception and state estimation to other specific modules. NNPs are trained mainly using
two kinds of approaches: imitation learning (IL) and reinforcement learning (RL). The IL
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approach refers to first building a dataset of expert driving behavior and then training a
neural network to clone the behavior of the dataset [17][114]. But the RL approach starts
from a random NNP initiation and then optimizes the NNP through its interaction with the
environment and the associated reward or cost [103].

Compared with traditional rule-based or optimization-based control policies, NNPs have
various advantages: (1) NNPs can represent sufficiently complicated and subtle models that
are hard to model analytically; (2) the IL and RL methods involve vast datasets or environ-
ment exploration, making the NNPs capable of handling interactive scenarios and rare cases
[114]; (3) the NNPs are much faster to run on autonomous vehicles compared with solving
online optimization problems.

However, there are a number of challenges that slow down the application of NNPs in
autonomous driving. One of the key challenges is the difficulty of transferring knowledge
encoded in one NNP to another. This difficulty further impedes NNPs from being adept
in solving complicated tasks. Specifically, due to the agnostics of the internal composition
and the fixed input-output structure of the neural networks, the knowledge encoded inside
a pretrained NNP is hardly reusable for the NNP of another driving task. Given that
the training process of the NNP is difficult for either IL or RL, solving the pain spot of
transferring the knowledge encoded in the NNPs is essential for enabling the NNPs to address
complicated autonomous driving tasks.

Existing neural network knowledge transfer methods can be categorized into three groups:
transfer learning [86, 80], meta learning [37, 40], and neural network architecture modification
[92]. However, these methods either encode robustness into NNPs and hope for the best in
the new tasks or rely on the fine-tuning of the NNPs in the new tasks. Moreover, these
methods still lack the interpretable intermediate layers, and the fundamental problem of the
agnostics of the NNPs is not solved. Therefore, they are not suitable for autonomous driving
scenarios where safety and reliability are of utmost importance.

We propose to address this problem from a new perspective: Modularize NNPs in terms
of a series of driving attributes for complicated driving problems. The attributes are defined
to be global characteristics or requirements that take effect throughout a driving task. For
example, tracking the closest lane, avoiding hitting the wall and pedestrians, and obeying
the traffic rules can all be considered as attributes. In our framework, to obtain an NNP for a
complicated driving task, one must first train or obtain the pretrained attribute modules for
the attributes in the driving task, then assemble the attribute modules together to produce a
hierarchical NNP. We also propose a parallel attribute network (PAN) architecture, in which
the attribute networks do not tangle with each other, but instead the attribute modules
take in some decoupled fractions of the full state and are assembled in a parallel manner to
apply influence toward the action command for the autonomous vehicle. The PAN has the
following advantages:

1. Decomposing a higher dimensional complicated task into lower dimensional attributes
makes the training process easier and faster.
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2. The pretrained attribute modules can be assembled into other NNPs, making it possible
to build up different policies to adapt to various driving tasks.

3. Since the attribute modules take in only decoupled fractions of the full state, the PAN
can dynamically manage the input dimension of the NNP.

4. The PAN architecture can handle more attributes simultaneously thanks to the decou-
pling formulation of the parallel attribute modules.

The reminder of this chapter is as follows: We formally define the problem setup in
Section 5.2, where we also discuss the challenge of knowledge transfer in NNPs. In Section
5.3, we introduce the concept of attribute modularization, and we present the architecture
of the PAN and the implementation details. In Section 5.4 and Section 5.5, we present the
simulation and experiment results, respectively. Lastly, the chapter summary is given in
Section 5.6.

5.2 Problem Statement

5.2.1 Driving Tasks Consisting of Multiple Attributes

We consider a class of autonomous driving tasks consisting of multiple key attributes (global
characteristics or requirements that take effect throughout the task), including lane tracking,
obstacle avoidance, traffic light, and speed limit, as shown in Fig. 5.1. By assigning the
number and status of the attributes, many autonomous driving tasks can be included in this
class of tasks. The vehicles are all modeled using the kinematic model as shown in Fig. 5.2
- left. For the ith vehicle, the state is: si = [pxi , p

y
i , vi, θi]

T , standing for the (x, y) position,
the speed, and the yaw angle of the vehicle. The control commands for the vehicle are the
longitudinal acceleration ai and the steering angle γi. Since the mapping of the steering
angle γi and the yaw rate θ̇i are homeomorphic, we choose the action to be ui = [ai, θ̇i]

T .
The discretized vehicle dynamic function is:

si(k + 1) = si(k) +

 vicos(θi)
visin(θi)

ui

 · dt (5.1)

where k is the time index and dt is the sample time. We denote the autonomous vehicle to
be the 0th vehicle, the other vehicles (obstacle vehicles) to be the 1st vehicle, the 2rd vehicle,
and so on.

Since we consider structured driving, we consider the performance of the autonomous
vehicle tracking the closest lane to it, which corresponds to the lane tracking attribute.
We describe a vehicle’s lane tracking performance using the lateral deviation ∆y0 and the
yaw error ∆θ0, as shown in Fig. 5.2 - Right. The resulting lane tracking state is called
slt = [∆y0,∆θ0]

T .
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Figure 5.1: A typical autonomous driving task that includes lane tracking, obstacles, traffic
light, and speed limit attributes. The red line shows the position and status (red) of the
traffic light, and the black line shows the position of the speed limit sign.

Figure 5.2: Left: The kinematic model for vehicle i. Right: The lateral deviation and the
yaw angle error of the autonomous vehicle with respect to the lane being tracked.

The traffic rule attributes include the traffic light attribute and the speed limit attribute.
For a traffic light, the state vector describing its status is stl = [Btl, xtl]

T , where Btl is the
bool variable indicating whether the light is red or green and xtl is the position of the traffic
light. For a speed limit, the state vector is ssl = [xsl, vsl]

T , where xsl indicates the starting
position of the speed limit area and vsl is the speed limit value.

With all the attributes defined, one can define a class of autonomous driving tasks (for
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those attributes that are not included, the methodology is similar), such as pure lane tracking,
lane tracking while avoiding a certain number of obstacles, and obeying the traffic rules. We
denote a complicated task consisting of several attributes using the sum of all the attributes.
For a driving task that involves lane tracking (LT ), while avoiding n obstacles (OBi, including
road edges, denoted OBre,i), and satisfying m traffic light (TL) and l speed limit (SL)
constraints, we can denote it using the following form:

LT ⊕
n∑
i=1

OBi ⊕
m∑
j=1

TLj ⊕
l∑

k=1

SLk (5.2)

where ⊕ denotes the sum of different attributes and the Σ’s are in terms of ⊕. Our goal
is to obtain a series of NNPs that can drive the autonomous vehicle to complete the tasks
defined in (5.2).

5.2.2 Challenges in NNP Knowledge Transfer

Training NNPs is difficult even when using IL or RL, especially for those complicated tasks
with many attribute requirements to satisfy; this is because these NNPs are large in size
and require a great amount of computation to train. However, the difficulty of transferring
knowledge encoded in the NNPs makes it hard to reuse the NNPs in other similar tasks.
This difficulty comes mainly from the agnostics of the internal composition and the fixed
input-output architecture of the neural network.

Concretely, the NNP for the lane tracking task (LT ) has an input size of dim(s0)+dim(slt)
and an output size of dim(u0), where the 0th vehicle is the autonomous vehicle and dim(·)
stands for the dimension of a vector. After training the NNP, the task-related knowledge
is encoded inside the NNP. Consider a very similar task LT ⊕ OB1, which is lane tracking
while avoiding the 1st obstacle vehicle. Its corresponding NNP output size is still dim(u0),
but its input size is dim(s0) + dim(slt) + dim(s1) instead. There are many similarities
and common knowledge that are worth transferring between LT and LT + OB1, but the
agnostics of the internal meaning of neural networks prevent any kind of knowledge transfer.
The consequence is the NNP for LT is not useful for the new task, and a new NNP has to
be trained from scratch for LT ⊕ OB1. If we further add a speed limit attribute, the NNP
for the LT ⊕ OB1 ⊕ SL task has an input size of dim(s0) + dim(slt) + dim(s1) + dim(ssl),
and the learned knowledge cannot be transferred to the new task either.

In summary, for the infinite number of different driving tasks involving the LT , OB, TL,
and SL attributes, no knowledge can transfer among their NNPs. Given that the training
of an NNP from scratch is generally difficult, designing a framework that can transfer and
reuse the previously learned knowledge encoded inside an NNP would be of great use.
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5.3 Policy Modularization Methodology

5.3.1 Attribute Modularization

We propose to modularize the NNPs for autonomous driving tasks in terms of the attributes
involved, with each involved attribute decoupled and handled by a corresponding attribute
module. For a driving task described in the last Section, the LT , OB, TL, SL attributes are
handled by their corresponding attribute modules. The form of an attribute module is using
a neural network to map the attribute’s related state to its influence on the NNP. Therefore,
an attribute module is also called an attribute network. Attribute modularization involves
investigating the two following issues:

1. How to decouple the attribute modules (or how to define the input of an attribute
network).

2. How to assemble the attribute modules (or how to define the output of an attribute
network and how to get the overall NNP output from the outcome of all the attribute
networks).

The first question is easier to answer: The input state to an attribute network is defined
to be the minimum state space that fully characterizes the property of the attribute. For
example, for the LT module, the input state is [s0, slt]

T , the input state for the OBi module
is [s0, si]

T , the states for the TL and the SL modules are [s0, stl]
T and [s0, ssl]

T , respectively1.
Under this definition, the input information is sufficient for an attribute network to charac-
terize the attribute, while the unrelated information is excluded, avoiding noise information
to pollute the training of the attribute network. In Section 5.4, the simulation results also
validate the effectiveness of the input state definition.

The challenging part is designing the attribute network outcome and calculating the
overall NNP output from modular outcomes. Ideally, the outcome of an attribute module
shall depend solely on this attribute, and the influence from different attribute modules shall
be easy to combine. In this way, the training of the attribute modules does not rely on one
another, and the learned knowledge preserved in an attribute module can be assembled to
other NNPs. In the last chapter (papers [116], [21]), the cascade attribute networks (CAN)
can handle only a small number of attributes. However, since the attribute modules in CAN
are connected in cascade, the latter attribute modules can pollute the influence from the
previous modules and deteriorate the overall policy performance. The PAN architecture
proposed in this chapter can overcome this problem by letting the attribute networks work
strictly in parallel. The frameworks of the CAN and the PAN are compared in Fig. 5.3 and
Fig. 5.4.

1More precisely, the input states to the attribute networks are derived from the state vectors described
above
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Figure 5.3: The high-level structures of the cascade attribute networks (CAN).

Figure 5.4: The high-level structures of the parallel attribute networks (PAN).

5.3.2 The Parallel Attribute Networks (PAN)

In this subsection, we present the hierarchical structure of the PAN, whose architecture is
shown in Fig. 5.5. To present the detailed architecture of the PAN, we first divide all the
attributes in a driving task into two groups: the base attribute of LT and the other add-on
attributes. The set of add-on attributes in the driving task is called Φ, which consists of a
series of OB, TL, and SL attributes.

In the PAN, the base LT attribute network is trained to be an NNP that maps the input
state [s0, slt]

T to a reference action output u00, such that the autonomous vehicle can track the
closest lane following the policy. The superscript 0 means this output action is a reference
action of the autonomous vehicle. For an add-on attribute φ ∈ Φ, the output influence is
defined to be a satisfactory set Ωφ in the vehicle action space. The satisfactory set is defined
as in (5.3) to be the set of actions that, if taken by the autonomous vehicle, satisfies the
corresponding attribute φ. More details on the satisfactory set are included in Section 5.3.3.

Ωφ = {u0 | φ is satisfied} (5.3)

Since the autonomous vehicle action shall be such that all the attributes are satisfied, the
PAN performs a projection operation of the reference action u00 into the intersection of all the
satisfactory sets. The projection is essentially solving a constrained optimization problem
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Figure 5.5: The architecture of the parallel attribute networks (PAN). The output of the
base attribute network is a reference action in the autonomous vehicle action space (the red
vector) and the output of the add-on attribute networks are the satisfactory sets in the action
space. The overall NNP output is the projection of the reference action into the intersection
of all the satisfactory sets (the green vector).

according to some distance function dist(·):

min
u0

dist(u0, u
0
0) (5.4)

subject to u0 ∈ Ωφ,∀φ ∈ Φ (5.5)

As shown in (5.4), (5.5), and Fig. 5.5, the outcome of the base attribute module, u00, and
the outcome of the add-on attribute modules, φ’s, work strictly in parallel to produce the
overall policy output u0. Therefore, the independence and transferability of the attribute
modules is guaranteed.

5.3.3 The Satisfactory Set

A satisfactory set Ωφ is defined to be the set of vehicle actions that, if taken, can make
the requirements of attribute φ be satisfied (avoid collisions, obey traffic rules, and so on).
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However, quantitatively defining the satisfactory terms remains an open question. Therefore,
we define approximate satisfactory sets according to the training approaches for the attribute
modules. For example, if an attribute is trained using IL with human-labelled satisfactory
sets, a convenient form of the satisfactory set would be:

Ωφ =
{
u0| amin < a0 < amax, θ̇min < θ̇0 < θ̇max

}
(5.6)

If the IL expert satisfactory sets are analytically calculated, their form shall comply with
the corresponding theory. If the attribute module is trained using RL, then more freedom is
available for the form of the satisfactory set.

In this work, the half-space approximate satisfactory set is applied. Under such a setting,
the output of the φ attribute network is defined to be a three-dimensional vector [aφ, bφ, cφ]T ,
that defines a half space of:

Ωφ =
{
u0| aφ · a0 + bφ · θ̇0 ≤ cφ

}
(5.7)

We further define the distance function dist(·) in (4) to be a quadratic loss function. There-
fore, the constrained optimization problem defined in (4) and (5) is then a quadratic program:

min
u0

1

2
(u0 − u00)TΛ(u0 − u00) (5.8)

subject to [aφ, bφ] · u0 ≤ cφ, ∀φ ∈ Φ (5.9)

where the positive definite matrix Λ defines a metric in the action space. The quadratic
program is much faster to solve compared with general constrained optimization, making
the forward stream of the PAN fast enough for onboard implementation.

5.4 Simulation Results

5.4.1 Simulation Setup

We conduct the simulation studies based on a class of autonomous driving tasks defined in
Section 5.2.1, involving attributes of OBi (OBre,i), TL, and SL. The autonomous vehicle
is assumed to start in the rightmost lane with a desired longitudinal speed vtar = 10m/s ≈
22mph. The sampling time is 0.02s. In Section 5.4.1 and 5.4.2, the base attribute module
is trained using RL, and the add-on attribute modules are trained using IL, with analytical
models serving as expert demonstrations. In Section 5.4.3, we discuss other training methods
for the attribute modules.
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The base attribute network is trained using RL in a lane-tracking case LT . The reward
function of the Markov Decision Process (MDP) for RL is a quadratic function of the lateral
deviation and the speed error:

r(t) = −2 ·∆y20 − (v0 − vtar)2 (5.10)

The state-of-the-art policy gradient algorithm, proximal policy optimization (PPO) [97], is
applied to optimize the base attribute network.

For IL of an add-on attribute network, the training data is collected from the cases
with only the base LT attribute and the attribute to be trained, so as to guarantee its
independence from the other add-on attributes. For the OB (OBre,i) module, the collision
avoidance constraint is approximated using the safety set algorithm (SSA) [67] [68]; for the
TL and the SL modules, the speed constraints are derived using the intelligent driver model
(IDM) [54]. We then reform the constraints into the form of half-plane satisfactory sets and
use them as the IL training data. After the IL converges, the trained attribute modules
are fixed and can be assembled into PAN policies as needed. That is, the performance of
the PAN policies in the cases described in Section 5.4.2 are all in a zero-shot manner. The
projection of the reference action u00 into the satisfactory sets Ωφ’s is a quadratic program
problem, and it is solved using the CVX solver.

5.4.2 Simulated Cases

We test the performance of the PAN in a variety of driving scenarios by simulation. The
driving scenarios are categorized into two groups: cases with only one kind of add-on at-
tribute (not necessarily only one attribute) and those that involve multiple kinds of add-on
attributes.

Cases with Only One Kind of Attributes (LT ⊕ ΣiOBi, LT ⊕ TL, or LT ⊕ SL)

These are cases where we collected the IL training data. Therefore, the success of PAN
policies in these tasks illustrates that attribute modules can be trained to handle their
corresponding attributes.

Obstacle Avoidance (LT⊕OB1⊕OB2⊕OBre,1⊕OBre,2) Fig. 5.6 and Fig. 5.7 show the
case when the autonomous vehicle tracks the closest lane while avoiding two obstacles vehicles
and two road edges. The obstacle vehicles are driving at a constant speed of 5m/s ≈ 11mph.
In all, the PAN policy contains four pretrained OB networks and one base TL attribute
network. Fig. 5.6 shows the behavior of the autonomous vehicle under the PAN policy, as it
makes two lane changes in order to surpass the slow obstacle vehicles. In Fig. 5.7, we show
the interpretable meanings of the influences of the OB attribute modules. The first column
represents when an autonomous vehicle is far from obstacle vehicles, only the satisfactory set
of the right road edge OB module limits the steering of the autonomous vehicle, preventing
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Figure 5.6: The behavior of the autonomous vehicle (the green vehicle) in task LT ⊕OB1⊕
OB2 ⊕OBre,1 ⊕OBre,2. Lighter colors indicates earlier in time.

Figure 5.7: (Three typical frames in the task: the visualization of the reference action u00
(red vector), the half-plane satisfactory sets Ωφ (black line boundary with normal vector
indexing the inner side), and the real action u0 (green vector).

it from colliding with the right road edge. In the second column, when the autonomous
vehicle approaches the first obstacle vehicle, the major influence comes from this obstacle
vehicle, as its satisfactory set forces the autonomous vehicle to decelerate and sheer off to
avoid collision. In the last column, when the autonomous vehicle changes to track the left
lane, in addition to the influence from the obstacle vehicle, the left road edge also limits the
steering of the autonomous vehicle to prevent collision.

Traffic Light Handling (LT ⊕TL) Fig. 5.8 shows the case when the autonomous vehicle
is driving under the traffic light rule. The traffic light, placed 80 meters ahead of the
autonomous vehicle, is initially red and turns green at time t = 12sec. The first two figures
show the behavior of the autonomous vehicle when traffic is red or green, and the last figure
shows the speed profile of the autonomous vehicle. In the PAN policy, the TL attribute
network generates a satisfactory set that limits the maximum acceleration of the autonomous
vehicle and forces it to decelerate to a full stop in front of the red light. After the traffic
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Figure 5.8: Behavior and speed profile of the autonomous vehicle in LT ⊕TL task. The first
two figures indicate when the traffic light is red and after it turns green.

light turns green, the constraint from the TL module is removed. The autonomous vehicle
then accelerates and passes the traffic light.

Speed Limit Handling (LT ⊕ SL) Fig. 5.9 shows a case when the autonomous vehicle
is driving while obeying the speed limit rule. The speed limit area starts at 40 meters ahead
of the autonomous vehicle. The speed limit value is vsl = 5m/s ≈ 11mph. In Fig. 5.9, the
behavior and speed profile of the autonomous vehicle is shown. In the PAN policy, the SL
attribute network generates a satisfactory set that limits the maximum acceleration of the
autonomous vehicle and forces it to decelerate to vsl inside the speed limit area.

Cases with Multiple Kinds of Attributes

Such cases, however, are unseen in the training phase. They involve more than one kind of
add-on attribute out of OB, TL, and SL. These cases are more complicated compared to the
cases in the previous group. To build up the NNPs for these tasks, the involved pretrained
attribute modules are assembled together without fine-tuning. The success of these tasks
demonstrates the capability to transfer the knowledge encoded inside the attribute networks
and to zero-shoot new tasks.
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Figure 5.9: Behavior and speed profile of the autonomous vehicle in LT ⊕ SL task. The
vertical black line indicates the position of the speed limit sign.

Avoiding Obstacles while Obeying Traffic Light (LT⊕OB1⊕OB2⊕OBre,1⊕OBre,2⊕
TL) Fig. 5.10 shows a case when the autonomous vehicle is in an environment including
two obstacle vehicles, two road edge obstacles, and a traffic light. The obstacle vehicles
start at a speed of 5m/s ≈ 11mph and are then controlled by IDM. The traffic light is
green for the first four seconds, then turns red and maintains red until time t = 12sec. The
first three figures in Fig. 5.10 show the behavior of the autonomous vehicle under the PAN
policy, including one LT module, four OB modules, and a TL module. The autonomous
vehicle surpasses the first obstacle vehicle, then as the traffic light is red, it stops at the stop
line with the obstacle vehicle. The foremost obstacle vehicle passes the traffic light before
t = 4sec, when the light is still green. In the end, as the traffic light turns green again,
the autonomous vehicle starts to accelerate. Fig. 5.10 also shows the speed profile of the
autonomous vehicle in the last figure.

Avoiding Obstacles while Obeying the Speed Limit (LT ⊕ OB1 ⊕ OB2 ⊕ OBre1 ⊕
OBre2 ⊕ SL) Fig. 5.11 shows a case when the autonomous vehicle handles obstacles and
obeys the speed limit. The speed limit sign is 40 meters ahead of the autonomous vehicle.
The obstacle vehicles start at a speed of 5m/s ≈ 11mph and are then controlled by IDM.
As in the previous case, there are five attribute modules working in parallel in the PAN
policy. In the first figure of Fig. 5.11, the autonomous vehicle first approaches the closest
obstacle vehicle and can change lanes and surpass the obstacle vehicle. However, since the
autonomous vehicle enters the speed limit area, the SL attribute forces it to decelerate to
5m/s, and it no longer tries to surpass the obstacle vehicle.

Avoiding Obstacles while Obeying Traffic Light and Speed Limit (LT ⊕ OB1 ⊕
OB2 ⊕ OBre1 ⊕ OBre2 ⊕ TL ⊕ SL) Fig. 5.12 shows a case when the autonomous vehicle
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Figure 5.10: Behavior and speed profile of the autonomous vehicle in LT ⊕ OB1 ⊕ OB2 ⊕
OBre,1⊕OBre,2⊕TL task. The vertical green and red lines indicate the position and status
of the traffic light.

handles the obstacles, the speed limit, and the traffic light rules. There are six pretrained
attribute modules assembled inside the PAN policy, each handling one of the attributes in the
driving task. The resulting PAN policy can handle all the attributes in a zero-shot manner.
The autonomous vehicle in this case enters the speed limit area following the obstacle vehicle.
Different from the last case, since the obstacle vehicle decelerates to stop in front of the traffic
light, the autonomous vehicle makes a lane change and stops at the traffic light. Then after
the traffic light turns green, the autonomous vehicle and the obstacle vehicle both accelerate
to pass the traffic light. The foremost obstacle vehicle passes the traffic light when it is
green. The last figure in Fig. 5.12 shows the speed profile of the autonomous vehicle.
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Figure 5.11: Behavior and speed profile of the autonomous vehicle in LT ⊕ OB1 ⊕ OB2 ⊕
OBre1 ⊕ OBre2 ⊕ SL task. The vertical black line indicates the position of the speed limit
sign.

5.4.3 Training Approaches for Attribute Modules

In this subsection, we compare the performance of RL and IL for training the SL attribute
module, and we discuss the selection of the training approaches for the attribute modules.
The SL attribute module can be easily trained using RL because one can conveniently define
a proper reward function for the LT ⊕ SL task. Making minor modifications from (5.10),
we can design the reward function to be:

r(t) =

{
−2 ·∆y20 − (v0 − vtar)2, out of speed limit

−2 ·∆y20 −max(v0 − vsl, 0)2, inside speed limit
(5.11)

Based on the reward function (5.11), we fix the base LT module and train the add-on SL
attribute network using RL and IL; we then record and compare their performance (shown in
Fig. 5.13). We see that the SL module trained using RL can achieve better performance than
the analytical solution of IDM, and the SL module trained using IL can achieve comparable
performance as the IDM.

In the PAN architecture, theoretically one can use either RL or IL to train an attribute
network. Further for IL, the training data can come from either human labeling or analytical
solutions. In practice, the difficulty of the attribute module training is different if one uses
different kinds of training approaches, and resulting performance can be different as well.
Generally, RL training is the most difficult, but it has the best performance. IL with human
labeling can achieve ideal performance, but the human labor cost would be a disadvantage.
IL with analytically calculated labels is the easiest approach, but its performance is often
not as good as RL. Therefore, the training approach shall be selected based on needs.
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Figure 5.12: Behavior and speed profile of the autonomous vehicle in LT ⊕ OB1 ⊕ OB2 ⊕
OBre1 ⊕ OBre2 ⊕ TL⊕ SL task. The vertical green and red lines indicate the position and
status of the traffic light, and the vertical black line indicates the position of the speed limit
sign.

5.5 Real World Experiments

5.5.1 Experiment Setup

We validated the capability of the PAN policy to generate online driving commands for
real autonomous vehicles in an experiment carried out in the Richmond Field Station of
the University of California, Berkeley. The tested case is an obstacle avoidance task (LT ⊕
OB1 ⊕ OBre1 ⊕ OBre2) with a static obstacle vehicle parked in front of the autonomous
vehicle. The autonomous vehicle starts with a speed of 10m/s ≈ 22mph. The autonomous
vehicle incorporates the GPS and the IMU sensors that can measure its states, while the
obstacle vehicle states are assumed known. The screenshots of the experiment setting and
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Figure 5.13: Left: The training log using IL. Right: The training log using RL.3.

the onboard tracking visualization are shown in Fig. 5.14.
For the motion planning part, a PAN policy with three pretrained OB modules (one for

the obstacle vehicle and two for the road edges) is applied to produce the longitudinal accel-
eration a0 and the lateral yaw rate θ̇0. For the longitudinal control, we use a PID controller
to have the autonomous vehicle track the longitudinal speed profile derived using the a0
commands. For the lateral control, we first have the PAN policy to generate an imaginary
trajectory for 80 timesteps (1.6 seconds) in the simulator, then apply a tracking controller
to produce the steering commands. In order to handle the sim-to-real modelling gap of
the autonomous vehicle, we applied a disturbance observer (DOB)-based robust tracking
controller to reject the model error and the other disturbance. The details are included in
Chapter 7 (paper [118] [105]). In the experiment, we used the robot operating system (ROS)
for collecting sensor data, transmitting information, and publishing the control commands.

5.5.2 Lane Tracking and Obstacle Avoiding Performance

The online performance of the PAN policy is stable and fast in the task, even though the
task had not been trained before. The PAN policy node in the ROS publishes the com-
mands at 50Hz, the imaginary trajectory used to produce the steering command publishes
at a frequency of 5Hz, and the DOB-based robust tracking controller produces the steering
commands at 50Hz. We performed the experiment 10 times with different starting positions
and received a 10/10 success rate. Fig. 5.15 shows a typical experimental trajectory. The
PAN policy, which serves as the motion planning part, can zero-shoot the new case and
recursively produce robustly effective reference trajectories for the autonomous vehicle.
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Figure 5.14: (a)(b) The experiment setting and the obstacle avoidance task; (c) the onboard
tracking visualization screenshot.

5.6 Chapter Summary

The cascade attribute networks we proposed cannot handle a larger number of attributes.
In this chapter, we present a new approach—attribute modularization—that decomposes
complicated autonomous driving policies in a parallel manner. The attribute modules can
be trained using either RL or IL; further, for IL, the expert data can come from either
analytical theory or directly labelled by human. The attribute modules that are trained with
data from one case can be transferred to other tasks. These properties provide simplicity
and flexibility for the training of the neural network policies. Also, many unseen tasks can be
solved in a zero-shot manner using the PAN. We further introduced the PAN architecture,
in which the attribute modules work in parallel to combine their influences. We tested the
capability of the PAN structure in a variety of simulation cases and carried out a real vehicle
experiment to show the ability of the PAN policy to produce robustly effective onboard
driving instructions.
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Figure 5.15: Behavior of the autonomous vehicle in the LT ⊕ OB1 ⊕ OBre1 ⊕ OBre2 task
in one of the real vehicle experiments. The red squares indicate the real trajectory of the
autonomous vehicle, the blue block is the parked obstacle vehicle, and the green lines are a
few reference trajectories generated by the PAN policy in the imaginary simulation.
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Part III

Reasoning for Representations
Outside the LbC Policies
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Chapter 6

Inverse Vehicle Dynamics Adaptation
for Driving Policy Transfer

Low-level controllers for autonomous vehicles need to be tuned for the different dynamics
of real vehicles to achieve satisfying experiment performance. This is difficult and time
consuming. Moreover, all the tuning and testing work has to be repeated from scratch for new
vehicles. It is therefore worthwhile to investigate methodologies to adapt previously tuned
controllers (either in simulation or real experiments) to new vehicles without further tuning.
In this chapter, we introduce a meta learning-based inverse dynamics adaptation framework
to solve this problem. In this framework, a driving policy is decomposed into two parts. First,
we propose a vehicle-invariant kinematic representation for transfer and, second, the vehicle
inverse dynamics are adopted to map the desired kinematic features to dynamic control
commands. While the vehicle-invariant part is transferred directly, the inverse dynamics
model is learned for each new vehicle. To boost learning efficiency, model-agnostic meta
learning (MAML) is adopted to achieve faster inverse vehicle dynamics adaptation. We
present experimental results on transferring the lane-keeping controller between vehicles
with different dynamics properties to validate the proposed method.

6.1 Introduction

Many control policies are tuned for a specific dynamics or environment setting, which makes
it difficult to adapt the policies to different settings or overcome the discrepancies between
simulation and the real world. In practice, a lot of tuning is required when the learned
policies are applied to a different situation. Therefore, we need to develop a system that can
automatically adapt the policy tuned in one system setting to another system. We study this
issue by developing transferable controllers for autonomous driving applications. Since there
are a variety of different vehicles (with different dynamics models) that operate in various
complicated scenarios, it would be challenging to tune and test the control systems for all
possible cases.
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To tackle such challenges, classic research has focused mainly on adaptive model-based
control, including system identification and adaptive control [6]. However, such methods
often require a sophisticated model that precisely captures the properties of the system
dynamics. This requirement is usually not satisfied for vehicle dynamics because of the
vehicle powertrain and tire dynamics complications; in practice, the controller parameters
are tuned case by case.

In this chapter, we seek to handle this problem with machine learning. There is a
significant body of work on this topic, which includes reinforcement learning for policy
learning and transfer learning for policy adaptation. Transferring a reinforcement learning
policy requires that the experience gained when learning in a source domain helps improve
the learning in a target domain [106]. Therefore, a core associated problem is the reasoning
of a task-invariant representation that serves as the transferable feature between tasks. We
adopt the idea of the adaptation of the actions and lift the transferable action representation
from the low-level dynamics action to a higher-level kinematics action. Concretely, apart
from the forward system dynamics that map the current state action pair to the next state,
we also learn an inverse dynamics model that maps from current and next states to an
action, which achieves the transition between the two states. When deploying a driving
policy to a new vehicle (target vehicle), we leverage the forward dynamics of the source
vehicle to obtain the transferable kinematic action and leverage the inverse dynamics model
of the target vehicle to obtain a desired action, which drives the target vehicle to achieve
the desired kinematic action. Based on empirical driving practice, if the source vehicle and
the target vehicle are similar, it can be assumed that the kinematic-level driving policy that
is executed by the source vehicle can be reproduced by the target vehicle. Therefore, the
driving policy transfer loop is closed, as long as the inverse dynamics model can be well
approximated.

The inverse dynamics model of the target vehicle can be approximated in a data-driven
manner. There are various model candidates for the approximator, such as the linear func-
tion [73, 124], the Gaussian process[16, 32], and deep neural networks [84][42]. We adopt
the deep neural network model as the inverse dynamics approximator. The learning of a
neural network inverse dynamics model can be slow as a supervised regression. Therefore, to
further boost the adaption procedure, we adopt meta learning for fast adaption of the inverse
dynamics model. Specifically, we adopt a model agnostic meta-learning algorithm (MAML)
[40] to achieve a few-shot adaptation of the inverse dynamics model for the target vehicle.
Experiments show that the meta learning approach can achieve fast adaptation using only
one episode in the target domain.
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6.2 Problem Setting and Reinforcement Learning

Backgrounds

6.2.1 The Driving Policy Transfer Problem

In this chapter, we aim to deal with a driving policy adaptation problem for different vehicle
dynamics, as shown in Fig. 6.1. For policy learning and evaluation purposes, we set up
this problem in a high-fidelity vehicle dynamics simulator. In simulators, the links are
usually modeled as reduced coordinate rigid bodies [39]. However, the simplified models
are unable to capture some physical effects, such as area contact [43] and interaction with
fluids [79]. However, more accurate simulators can be extremely computationally expensive
and numerically ill conditioned. Therefore, we create a vehicle simulator based on a bicycle
model with a Pacejka tire model [18] for our application.

The kinematic part of the complicated vehicle dynamics model used for the source and
target vehicles are simulated using the continuous nonlinear bicycle model [85]:

v̇x = ax (6.1)

v̇y = −vxωz +
1

m
[Ff (αf , µ) cos(δ) + Fr(αr, µ)] (6.2)

ω̇z =
1

Iz
[aFf (αf , µ) cos(δ)− bFr(αr, µ)] (6.3)

Ẋ = vx cosψ − vy sinψ (6.4)

Ẏ = vx sinψ + vy cosψ (6.5)

ψ̇ = ωz (6.6)

δ̇ = δ̇, (6.7)

where the state variables are the longitudinal speed vx, lateral speed vy, yaw rate ωz, vehicle
global coordinates X, Y , yaw angle ψ, and steering angle δ. The dynamics-level control com-
mands are the longitudinal force applied onto the rear wheels and the steering rate, which
simulate the throttle, brake, and steering operations of the driver. These dynamics-level con-
trol commands directly drive the nonlinear bicycle model inputs, which are the longitudinal
acceleration ax and the derivative of steering angle δ̇. More complicated longitudinal dynam-
ics models, including the powertrain and engine dynamics, are not taken into account in the
simulator. There are magnitude saturation constraints defined for ax, δ, δ̇. The maximum
magnitude of δ is 0.573rad. The maximum magnitude of δ̇ is 0.927rad/s. The maximum
allowed magnitude of ax is 5m/s2. The other parameters of the nominal vehicle model in
the source domain are shown in Table 6.1.
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Figure 6.1: Illustration of the terminology for the simulated environment and the linear
tracking model.

Table 6.1: Nominal vehicle dynamics parameters.

Moment of Inertia Iz 3270 kg ·m2

Vehicle Mass m 1800 kg
Front Wheel to Center of Mass a 1.2 m
Rear Wheel to Center of Mass b 1.65 m

Pacejka’s Magic Formula [77] is used as the tire force function Ff (·), which is a function
of slip angle α and road friction coefficient µ:

Ff =
µmga

a+ b
sin(C tan−1(Bαf − E(Bαf − tan−1(Bαf )))) (6.8)

Fr =
µmgb

a+ b
sin(C tan−1(Bαr − E(Bαr − tan−1(Bαr)))) (6.9)

where coefficients B = 10, C = 1.9, E = 0.97 and µ = 1.0.
The vehicle’s task is to keep on a sine curve lane, as shown in Fig. 6.1. We observe

the vehicle states [vx, vy, ωz, δ, FxR/FxR,maxαf ], and the tracking performance is represented
using the errors [∆y∆ysψrefψs,ref ], as shown in Fig. 6.1. When training the policy, we will
reward for moving forward along the trajectory and punish for deviating from the centerline
of the road; we terminate the simulation if the deviation is too large. Specifically, we define
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Figure 6.2: Architecture of the fast inverse vehicle dynamics adaptation system.

the vehicle’s speed along and perpendicular to the reference curve: v‖ = v cos(∆ψ) and
v⊥ = v sin(∆ψ). And the step tracking reward is defined to be:

rtra(t) = v‖(t)− |v⊥(t)| − η ·∆y(t)2, (6.10)

6.3 Transfer of Kinematic Representation based on

Meta Learning

The proposed dynamics adaptation framework based on the kinematic representations is
shown in Figure 6.2. The adaptation process is as follows:

1. First, we train a driving policy using model-free reinforcement learning for a source
vehicle, which maps the state observations to the dynamics actions: the longitudinal
force that is applied onto the rear wheels and the steering rate. Both of these are
proxies of the throttle, break, and steering commands. Specifically, proximal policy
optimization (PPO) [97] is adopted.

2. We then use the forward dynamics model of the source vehicle to obtain the corre-
sponding kinematics actions, the acceleration, and the yaw acceleration, derived by
applying the dynamics actions.

3. When adapting to a target vehicle, we directly transfer the kinematic representation
to the target domain. We then compute the desired future state of the target vehicle
using the desired kinematic representation and feed the desired future state to the
inverse model to obtain the desired dynamics action.
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We can easily obtain the forward dynamics of the source vehicle based on the dynamics
model in Section 6.2.1, but the neural network approximator of the inverse dynamics of
the target has to be learned through experimenting on the target vehicle. The supervised
regression learning of a neural network approximator can take a huge amount of labeled
data. However, in practice, the inverse dynamics learning shall be completed within a few
shots of experiments on the target vehicle. Therefore, we propose to use meta learning to
boost the inverse dynamics adaptation process.

Meta learning and few-shot learning methods have been developed for specific tasks,
such as generative modeling and image recognition [107, 38, 90, 111]. Prior meta-learning
methods include learning a meta model that is suitable for adaptation [12, 13], learning both
the weight initialization and the optimizer [89], and training a memory-augmented model
on many tasks based on a recurrent neural network [95][75]. In this chapter, we adopt the
model-agnostic meta-learning algorithm (MAML) [40] to boost the adaptation efficiency of
the inverse dynamics model. MAML trains a meta model based on a variety of different
vehicle dynamics and updates the weights in a gradient-based manner. The core idea of
MAML is to learn a meta inverse dynamics model which, after a few gradient-descent-based
adaptations based on a specific target vehicle, achieves minimal error compared with the true
inverse dynamics model. It can be viewed as maximizing the sensitivity of the adaptation
loss to the inverse dynamics model parameters.

Formally, suppose we use a neural network fθ parameterized by θ to approximate the
meta inverse dynamics model. The inverse dynamics model adaptation process for a specific
target vehicle is a supervised regression problem. Suppose we have the supervision data
of the input and output of the inverse dynamics of a specific target vehicle, with the data
denoted X and Y . After one step of gradient-descent based adaptation, the parameters θ

′

for the updated inverse dynamics model is:

θ
′

i = θ − α5θ Loss(fθ(X), Y ) (6.11)

where α is the step size. α can be fixed as a hyperparameter or meta learned. The
Loss(·) is the loss function of the regression, such as the mean square error function. The
meta inverse dynamics model parameter θ is learned in such a way that the performance of
fθ′ is optimized based on the data D collected for a large variety of target vehicles. Thus,
the meta objective is defined as follows:

min
θ

∑
X,Y ∼D

Loss(fθ′i
(X), Y ) = min

θ

∑
X,Y ∼D

Loss(fθ−α5θLoss(fθ(X),Y )(X), Y ) (6.12)

While meta optimization is conducted on the parameters θ, the objective is generated
using the updated parameters θ

′
; so the optimization is done in such a way that within a few

gradient steps, it can produce maximally effective behavior on a new task. The optimization
algorithm for meta optimization is stochastic gradient descent, and the model parameter θ
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Figure 6.3: The PPO training logs. Left: In terms of episodic return; Right: In terms of
episodic length.

is updated as follows:

θ ← θ − β 5θ

∑
X,Y ∼D

Loss(fθ′i
(X), Y ) (6.13)

where β is the meta step size and is usually set to be much smaller than α.

6.4 Simulation and Results

We carry out a series of simulation experiments to validate the effectiveness of our proposed
method. First, we train the policy network using proximal policy optimization algorithms
(PPO). We randomly initialized the starting location on the track and set the episode length
to be 1,000 steps (corresponding to 20 seconds). For the policy training performance, Fig.
6.3 illustrates the episodic return and episodic length over iterations, and empirical evidence
validates that the vehicle can track the sine curve lane quite well if the episodic return is
higher than 9,000.

The forward dynamics can be obtained directly from the simulator and are combined with
the policy network to produce the kinematic-level action. In order to generate the training
dataset for the meta learning of the inverse dynamics model, we randomize the dynamics
parameters with ±10% error with respect to the source vehicle parameters, and we generate
20 simulated target vehicles. Then the data is utilized for the learning of inverse dynamics
model. To prove the effectiveness of the proposed method, we compare MAML with the two
following methods:
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1. Pretrain-fine-tune: The whole dataset is used as a training set and gradient descent-
based regression is adopted. When adapting to a specific target vehicle, the inverse
dynamics model is fine-tuned for the target vehicle. It serves as a baseline to verify
the performance of MAML.

2. MAML with first-order approximation: When computing the gradient of the meta
objective function, the second-order term is omitted. The purpose of the approximation
is to shorten the computational time required to compute the gradient.

For the adaptation to a specific target vehicle, we collect data using the target vehicle,
and we use it to fine-tune the inverse dynamics model. For each episode, we can obtain a
dataset that contains 1,000 steps of data points. We fine-tune for 100 iterations, with each
iteration based on a randomly sampled data batch with a batch size of 100.

The comparison of the three approaches in the meta training phase is shown in the
training log in Fig. 6.4. In order to have a closer look at the later iterations, we zoom in and
obtain Figure 6.5. The solid lines represent the losses prior to fine-tuning at each iteration.
And the dashed lines represent the losses after one step of fine-tuning for the target vehicle
of the training set. We can see that losses decrease after fine-tuning for models trained
using MAML and approximate MAML methods, while losses increase after fine-tuning for
the pretrained model. This proves that MAML and approximate MAML learn a prior model
that is suitable for fast fine-tuning, while the vanilla pretraining overfits to the meta dataset,
and fine-tuning the pretrained model can hurt performance.

Finally, we test the online adaptation performance of the three methods. The fine-tune
loss curve is shown in Fig. 6.6, and the return curve is shown in Fig. 6.7. The two figures
prove that the model meta trained by MAML and approximate MAML can be adapted to
a new vehicle in one episode; this is much better than the pretrain-fine-tune method, which
takes two episodes for fine-tuning. This is because the pretrain-fine-tune method overfits
to fine-tuning data for each episode and results in a decreased episodic return after the
fine-tuning.

6.5 Chapter Summary

In this chapter, we propose transferring driving policy through fast inverse vehicle dynam-
ics adaption, assuming the transferability of the vehicle-invariant kinematic representations.
The driving policy that produces the kinematic-level actions is trained using proximal policy
optimization (PPO). Although the inverse dynamics can be obtained using vanilla regression,
this process can take lots of episodes, which is cost prohibitive for real vehicles adaptation.
Therefore, we propose to apply meta learning for faster inverse dynamics adaption. Specifi-
cally, we applied model agnostic meta learning (MAML). The experimental results validate
the efficiency of our method to achieve fast adaptation in only one episode.
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Figure 6.4: The training log comparison of the three approaches in the meta training phase.



CHAPTER 6. INVERSE VEHICLE DYNAMICS ADAPTATION FOR DRIVING
POLICY TRANSFER 91

Figure 6.5: Zoom in of the training log comparison of the three approaches in the meta
training phase.
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Figure 6.6: The inverse dynamics model regression loss vs. fine-tuning iterations in an online
adaptation process. Note that for each episode, we obtain a dataset that contains 1,000 steps
of data points and use it to fine-tune for 100 iterations. Therefore, at iteration 100, the next
episode is used.

Figure 6.7: The episodic return vs. number of episodes in an online adaptation process.
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Chapter 7

Autonomous Driving Policy Transfer
based on Robust Control

Although deep reinforcement learning (deep RL) methods have many strengths that could
potentially be used in autonomous driving, applying them has been difficult due to the
modeling gap between the source (training) domain and the target (deployment) domain.
Current policy transfer approaches generally limit usage of uninterpretable neural network
representations as transferred features. In this chapter, we propose transferring concrete
kinematic quantities in autonomous driving. We propose a robust control-based (RC) generic
transfer architecture, which incorporates a transferable hierarchical RL trajectory planner
and a robust tracking controller based on disturbance observer (DOB). The deep RL policies
trained with a known nominal dynamics model are transferred directly to the target domain;
DOB-based robust tracking control is applied to tackle the modeling gap including the vehicle
dynamics errors and the external disturbances such as side forces. We provide simulation
and experiment results validating the capability of the proposed method to achieve zero-shot
transfer across multiple driving scenarios, such as lane keeping, lane changing, and obstacle
avoidance.

7.1 Introduction

Learning intelligent and reliable driving policies has been an ongoing challenge for both deep
learning and control. Although conventional planning-control [64] and imitation-oriented
learning [83, 17, 114, 74] approaches have the capability of controlling autonomous vehicles,
deep reinforcement learning-based (deep RL) methods show promise in tackling more com-
plicated and interacting scenarios that conventional methods cannot solve (as well as rare
cases outside the demonstration dataset for the supervised imitation learning). Therefore, we
see an increasing number of efforts to apply deep RL methods to learn lane-keeping policies
with low-dimensional feature vectors or image pixels as inputs [66, 71, 94].

While the vast exploration and flexible hierarchical configurations enable deep RL meth-
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Figure 7.1: Examples of dynamics variations across autonomous driving training and testing
domains. Left: Vehicle dynamics difference between different simulated real vehicles. Right:
External side force disturbances in the testing domain due to body incline.

ods to obtain versatile policies more easily, robustness is a drawback that prevents the
application of deep RL in autonomous driving. Specifically, pre-optimized deep RL policies
are overspecialized to training vehicle settings and, thus, often fail when the target vehicle
has dynamics variation or when the target vehicle is affected by force disturbances due to
strong winds or body inclines (Fig. 7.1). These differences between the source and target
settings together are called the modeling gap. As the modeling gap is an inevitable barrier
to the deployment of deep RL in autonomous driving, we aim to bridge this gap by achieving
fast and safe transfer of deep RL autonomous driving policies.

Prior efforts in deep RL attempt to achieve this objective using transfer learning and
meta learning. Various contributions in this area have indeed found source policies to work
in the target settings, but their application in autonomous driving is limited due to safety
concerns. Overall, such deep RL transfer methods embed transferable representations into
uninterpretable neural networks and hope for the best in the target domain; thus, they
are not transparent and reliable. We seek to solve the transfer problem using an alterna-
tive tool—robust control (RC)—and propose a generic RL-RC transfer framework. In this
framework, deep RL policy is applied to an imaginary setting in the source domain to gen-
erate a reference trajectory for the target vehicle. A robust controller is applied to track the
reference trajectory tolerating the modeling gap. A method developed on an idea similar
to the one in this chapter is in [46]. In this work, an MPC controller is designed to stabi-
lize the target system around the nominal trajectory generated by consecutively applying
the policy in the source system. Theorems on tube-based MPC ensure that the states are
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bounded under certain modeling errors. However, the bound cannot be explicitly found,
and no asymptotic stability can be guaranteed. Moreover, solving the on-line optimization
problem is computationally expensive, while robust controllers are usually easier and faster
for the trajectory tracking problem of automated vehicles.

The proposed framework is generic in that: (1) it can be generalized to any deep RL
control policy transfer tasks; and (2) various kinds of robust controllers can be used for
tracking. Compared to other transfer learning methods, the proposed framework has two
fundamental advantages:

1. The transfer of the interpretable kinematic features makes the transfer framework
transparent and reliable;

2. Stability and response in time and frequency domains can be well defined and analyzed.

The contribution of the work in this chapter is fourfold. First, we propose a generic
approach for deep RL driving policy transfer. Second, we implement a hierarchical RL
model which serves as the transferable trajectory planner. Third, we develop a disturbance
observer-based (DOB) robust tracking controller so as to actively reject the disturbances
induced by the modeling gap. Finally, we report simulation and experiment results validat-
ing that the RL-RC architecture can zero-shoot transfer the policy under certain levels of
parameter variation and external disturbances.

7.2 Design of the Transferable Representation

The proposed RL-RC policy transfer architecture consists of a deep RL-based high-level
planning module and an RC-based low-level tracking controller, as shown in Fig. 7.2. The
overall methodology consists of the off-line deep RL policy training and the online policy
transfer. In the off-line source domain, we pretrain a deep RL policy mapping the perception
input to control commands, which can drive the source vehicle to produce a trajectory
completing the control task.

For the online transfer in the target domain, Fig. 7.2 shows how the system works to
transfer the source driving policies. In short, the RL-RC system performs closed-loop track-
ing of a finite-horizon previewed trajectory generated by the pretrained policy. Specifically,
at each time step, the target agent obtains the perception observation. Then, according to
this observation, the system constructs an imaginary source agent in the same setting as
the target agent. In the imaginary source domain, the pretrained policy is used to control
the imaginary source agent to perform the driving task for a finite horizon, resulting in a
trajectory of kinematic states. Based on empirical driving practice, if the source vehicle
and the target vehicle are similar vehicles, it can be assumed that the reference trajectory
generated using the source vehicle can serve as the transferable representation and can be
tracked by the target vehicle.



CHAPTER 7. AUTONOMOUS DRIVING POLICY TRANSFER BASED ON ROBUST
CONTROL 96

Figure 7.2: The RL-RC architecture.

Therefore, we adopt the reference trajectory as the reference for the target vehicle. Given
the reference trajectory, the target agent uses a closed-loop robust tracking controller to
produce the actual control command for the target vehicle. As the target environment
makes one step forward, the observation for the new timestep is collected, and the system
repeats the same procedure. In this architecture, the kinematic features are transferred
without change, and the modeling gap is compensated by RC.

To generate the reference trajectory in the imaginary source domain, one can use the cas-
caded high-level planner, which consists of the pretrained policy and the source environment,
or train a deep RL policy network that directly maps perception input to the trajectory of
kinematic states. We choose the latter approach so as to optimize the policy for the whole
procedure, enabling both dynamical feasibility and optimality of the planned trajectory.

There are two key underlying assumptions for the RL-RC system: (1) the trajectory
planned by the imaginary source agent is comparably satisfying for the target task; and (2)
it is feasible for the target vehicle to track the trajectories produced by the source vehicle.
These assumptions are reasonable, as the source and target vehicles and settings are similar,
and the RL-RC is effective for such cases.

Our proposed RL-RC framework is generic in terms of the following aspects:

1. This system can perform policy transfer for various kinds of tasks in autonomous
driving. It can also be applied in other robotics and control scenarios if the assumptions
are satisfied and a robust controller can be designed. In this work, we evaluate the RL-
RC approach for three typical driving tasks: lane keeping (LK), lane changing (LC),
and obstacle avoidance (OA).

2. The proposed method places no restrictions on the structure of the deep RL policy. In
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this chapter, we use a hierarchical RL model to generate reference trajectories in the
imaginary source domain.

3. Any kind of RC method is compatible with the RL-RC architecture. Among various RC
algorithms, we use a disturbance observer-based (DOB) tracking controller to actively
reject the disturbance induced by modeling error.

7.3 The Modeling of the Transfer Dynamics

We adopt the nonlinear bicycle model for the vehicle dynamics modeling, as described in the
previous chapter in Section 6.2.1. The model is illustrated in Fig. 7.3. We define the control
inputs to be the longitudinal acceleration ax and the derivative of steering angle δ̇. The seven
state variables are longitudinal speed vx, lateral speed vy, yaw rate ωz, global coordinates
X, Y , yaw angle ψ, and steering angle δ. In the simulation part, to obtain the simulated
vehicle dynamics with high fidelity, we include tire force saturation and restrict magnitudes of
ax, δ, δ̇ to reasonable ranges. Moreover, we omit longitudinal powertrain dynamics, assuming
nearly perfect longitudinal tracking by a low-level longitudinal controller.

Apart from the vehicle dynamics, we also define terms related to the driving scenarios.
We define lateral displacements, ∆y and ∆ys, and yaw errors, ∆ψ and ∆ψs, to represent the
tracking errors relative to lane or reference trajectory (Fig. 7.3). ∆y and ∆ψ are defined with
respect to the center of gravity (CG), and ∆ys and ∆ψs are defined at a point S specified by
a look-ahead distance ds. We denote the angle of the vehicle speed v as ψv = ψ+β, where β
is the angle between vehicle speed and yaw. Similarly, the angle of vs is ψvs = ψ + βs. The
yaw errors are the angle between velocity and the tangent direction of the reference curve,
specifically, ∆ψ = ψv −ψref and ∆ψs = ψvs −ψs,ref . With the yaw error ∆ψ, one can easily
derive the ego vehicle’s speed along and perpendicular to the reference curve: v‖ = v cos(∆ψ)
and v⊥ = v sin(∆ψ).

For the collision avoidance task, we consider a simple scenario with a single surrounding
vehicle that perfectly tracks the lane with constant speed vsrd. We denote the relative
longitudinal and lateral position of the surrounding vehicle by ∆xsrd and ∆ysrd.

7.4 Definitions of the Hierarchical Markov Decision

Process (MDP) and RL Policies

For the ease of the Markov Decision Process (MDP) and the RL modeling, in both the source
domain and the target domain, we discretize the vehicle dynamics using the forward Euler
method with Ts = 0.02s. In order to learn a variety of different driving behaviors, we define
a general formulation of MDP and RL policies for a series of driving tasks. Since different
tasks have different observations, we define clusters of observations as entities. Specifically,
we define the observation of the ego vehicle state to be ovh = [vx vy ωz δ]

T . For each lane,
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Figure 7.3: Illustration of the terminology for the simulated environment and the linear
tracking model for the controller.

denoted li, i ∈ N , we define tracking observations as oref,i = [∆yi ∆ψi ∆ys,i ∆ψs,i]
T . The

lane that the ego vehicle is tracking is denoted using li∗ . The obstacle observation is osrd =
[vsrd ∆xsrd ∆ysrd]

T . For simplification, we assume perfect and deterministic observations.
For all the tasks, control command avh = [ax δ̇]

T is defined as the actions in the MDP. The
actions are continuous and normalized by their maximum allowable values.

For performance evaluation, we define the step-tracking reward function at timestep t:

rtra(t) = v‖,i∗(t)− |v⊥,i∗(t)| − η ·∆yi∗(t)2, (7.1)

where η > 0 is an importance factor. The step rewards are discounted with factor γ. An
episode is defined to have maximum of 1,000 timesteps. The episode will be terminated when
there is large deviation from the lane or collision constraints are violated. Meanwhile, the
agent will be punished with a large negative reward, denoted rdev and rcol. The interfaces
of lane keeping (LK), lane changing (LC), and obstacle avoidance (OA) are shown in Table.
7.1.

In our implementation, we apply a hierarchical RL model that can modularize distinct
driving attributes. The attributes refer to driving behaviors such as obstacle detection, lane
selection, and lane tracking. Table 7.2 and Fig. 7.4 gives the detailed module interfaces
and their usage. Theoretically, all the three basic modules can be optimized using any
kind of method including deep RL. In the implementation, both lane-selection and obstacle-
detection modules are rule based and defined and optimized for the sake of simplicity. The
lane-tracking module is optimized using model-free deep RL. The benefit of such hierarchical
implementation over end-to-end training is that basic attribute modules are much easier to
optimize compared to end-to-end training of complicated high-level driving policies.
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7.5 DOB-based Tracking Controller

DOB is a robust control technique to reject disturbances with guaranteed robust stability
for linear systems [26]. Moreover, given a stabilizing nominal controller, Q-filter in DOB
can be an arbitrary stable filter to make the sensitivity function shaped as desired [27]. It
has been applied to robust lateral trajectory tracking, and experiments [88] have verified its
effectiveness.

We design the reference trajectory as a sequence of (X, Y, ψv, vx). While the longitudinal
speed profile is followed directly by executing corresponding ax, the lateral path defined by
the series of (X, Y, ψv) is tracked by the robust lateral tracking controller. To design the
controller, first we need to obtain an approximate linear model for the tracking problem. We
adopt the constant speed linear bicycle model for lateral dynamics [85] to the continuous
version of the nonlinear bicycle model defined in Section 6.2.1. The linearized version model
is:

d

dt

 vy
ψ

ψ̇

 =

 a11 0 a13
0 0 1
a31 0 a33

 vy
ψ

ψ̇

+

 b1
0
b3

 δ (7.2)

Table 7.1: Definition of driving tasks.

Task Observation Evaluation
LK ovh, oref,i∗ Σγtrtra, rdev
LC ovh, {oref,i}, i∗ Σγtrtra, rdev
OA ovh, {oref,i}, osrd Σγtrtra, rdev, rcol

Table 7.2: Definition of RL modules.

Control module Input Output
Lane tracking ovh, oref,i∗ avh
Lane selection {oref,i}, i∗ oref,i∗

Obstacle detection ovh, osrd i∗
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where

a11 = −µCαf + µCαr
mvx

(7.3)

a13 = −vx −
µCαf lf − µCαrlr

mvx
(7.4)

a31 =
−µCαf lf + µCαrlr

Izvx
(7.5)

a33 = −
µCαf l

2
f + µCαrl

2
r

Izvx
(7.6)

b1 =
µCαf
m

(7.7)

b3 =
µCαf lf
Iz

(7.8)

where Cαf and Cαr are the cornering stiffness of front and rear wheels, respectively. Define:

A =

 a11 0 a13
0 0 1
a31 0 a33

 , B =

 b1
0
b3

 , x =

 vy
ψ

ψ̇

 (7.9)

and one can get a clearer linear vehicle dynamics form as:

ẋ = A · x+B · δ, (7.10)

where the state variable is x = [vy ψ ψ̇]T . Under the small angle assumption, β ≈ vy/vx, we
approximate βs as:

βs ≈
vxβ + dsψ̇

vx
=

1

vx
vy +

ds
vx
ψ̇. (7.11)

Thus:

ψvs = ψ + βs =

[
1

vx
1
ds
vx

] vy
ψ

ψ̇

 = C · x. (7.12)

Following [88], the derivative of ψs,ref is approximated as ψ̇s,ref ≈ vxκs,ref , where κs,ref
refers to the curvature of the curve at the reference point. Consequently:

∆ψ̇s = ψ̇vs − ψ̇s,ref ≈ ψ̇vs − vxκs,ref . (7.13)

Finally, ∆ẏs can be approximated as ∆ẏs ≈ vx∆ψs.
Using the equations above and applying forward Euler discretization, the overall tracking

model can be obtained as the block diagram shown in Fig. 7.5, where Ts is the sampling time,
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Figure 7.4: Usage of hierarchical RL modules to assemble policies for the lane keeping (LK),
lane changing (LC), and obstacle avoidance (OA) tasks.

0.02 second, and Tsz−1

1−z−1 is the transfer function of the discretized integrator. Gv(z
−1) is the

vehicle dynamics that map δ to ψvs , of which we can derive the nominal transfer function
Gnv(z

−1) using (7.10) and (7.12). As shown in the diagram, ψs,ref can be considered a
disturbance to the system.

The robust controller is designed based on the nominal model of the source vehicle. First,
we design a proportional feedback controller as: uc = −k1∆ψs−k2∆ys. For analysis, we can
further write the control law as:

uc = −k2(
k1
k2

+
vxTsz

−1

1− z−1
)∆ψs = −k2C1(z

−1)∆ψs (7.14)

where C1(z
−1) = k1

k2
+ vxTsz−1

1−z−1 . In the implementation, we hold constant k1
k2

and tune k2 to
achieve stability of the closed-loop system using root locus. We inspect stability for various
vx such that the resulting controller can stabilize the vehicle for the range of velocity in the
given driving tasks.

Then a DOB is added to the nominal feedback controller. The block diagram for the
overall closed-loop system is shown in Fig. 7.6. DOB is inserted between C1(z

−1) and k2 so
that disturbance due to modeling error between ∆ys and ∆ψs can be rejected. Pn(z−1) and
P̂n(z−1) are the nominal plant and nominal plant without delay, defined as:

Pn(z−1) = z−2P̂n(z−1) = Gnv(z
−1)C1(z

−1) (7.15)
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Figure 7.5: Block diagram of linear tracking model.

In our case, the nominal plant Pn(z−1) has a two-timesteps delay. We make P̂n(z−1) free of
delay so that P̂−1n (z−1) is realizable. The closed-loop sensitivity function with DOB is:

S =
1

1 + k2GvC1 + z−2( Gv
Gnv
− 1)Q

(1− z−2Q). (7.16)

We design Q as a second-order low-pass filter to reject low-frequency disturbances, because
κs,ref should have relatively low frequency components for smooth reference trajectory.

When modeling errors exist, we can use the robust control theorem to ensure robust
stability [27]. However, modeling uncertainty between the linear model and the nonlinear
model is not involved in our problem, which complicates the analysis. One last note is that
P is time varying, as vx is not constant in general. In our implementation, we designed
the DOB based on the final steady speed of the vehicle in simulations for simplification. In
practice, an adaptive DOB can be designed.

7.6 Experiments

7.6.1 Training of the RL Policies

In the off-line training phase, the nominal vehicle dynamics is applied, and the environment
includes parallel sinusoidal lanes with lane width of 3 meters. Both the policy network and
the value network are three-layer fully connected neural networks. We used the proximal
policy optimization (PPO) [97] algorithm as the model-free deep RL algorithm. Training
techniques such as advantage normalization and reparameterization were applied. The RL
training parameters are provided in Table 7.3.
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Figure 7.6: Block diagram of closed-loop system.

Table 7.3: RL training parameters.

Batch size 100
PPO clip factor 0.2
Learning rate 1× 10−3

Weighting factor η 20
Discount factor γ 0.99

In the training phase, the agent achieves successful driving for 1,000 timesteps in around
7,000 iterations, and the policy optimization converges in around 12,000 iterations. After the
RL modules are optimized, they can be flexibly assembled to complete different driving tasks
using structures shown in Fig. 7.4. Each control module is then cascaded with the source
environment to get the transferable trajectory planner. The performance of the hierarchical
RL policies for all the three tasks are satisfying. The performance will be presented later in
Section 7.6.3 and Section 7.6.4.

7.6.2 Analysis of DOB-based Tracking Controller

Given the parameters of the nominal vehicle model, we specified the look-ahead distance
as ds = 15m and designed the controller. Then we analyzed the closed-loop system at
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Figure 7.7: Bode plot of sensitivity function.

vx = 20m/s, which is approximately the final steady speed in our simulations. Fig.7.7 shows
the bode plots of sensitivity function with and without the designed DOB. Magnitude at
low frequency is suppressed due to the low-pass Q-filter, accomplishing our goal of rejecting
low-frequency disturbances.

Fig. 7.8 shows the step responses of ∆ys and ∆ψs given a step input of previewed reference
curvature κs,ref with a magnitude of 10−3m−1. DOB enables smaller tracking errors for both
∆ys and ∆ψs. Particularly, the steady state error of ∆ys is eliminated by adding DOB.

7.6.3 Simulation Performance

In this phase, we evaluated the performance of the proposed RL-RC transfer architecture
and compared it with the baseline RL policies. We tested the models in all the three
tasks (i.e., LK, LC, and OA). For source domain tests, we ran the baseline policies and their
corresponding RL-RC systems on the nominal vehicle settings with random initial conditions
(10 times). For target domain tests, both driving strategies were deployed and tested from
random initial conditions in 10 target settings with the modeling gap.

We considered two types of modeling gaps. The first was variation in model parameters.
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Figure 7.8: Step responses of ∆ys and ∆ψs.
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Table 7.4: Comparison of the performances of baseline RL policies and RL-RC architecture.

Task
Baseline RL policy

Source Target - model errors Target - side force

LK
1000± 0 926.3± 177.8 1000± 0

49418.0± 270.7 44644.5± 9538.6 47102.9± 542.2

LC
1000± 0 775.8± 239.3 963.0± 111.0

47209.7± 213.3 33990.2± 12007.3 42578.0± 5800.9

OA
1000± 0 749.0± 239.1 735.3± 256.5

47348.1± 318.4 33283.7± 11846.1 31655.7± 12017.1

Task
RL-RC architecture

Source Target - model errors Target - side force

LK
1000± 0 1000± 0 1000± 0

48688.1± 221.3 48956.0± 362.8 48959.2± 110.4

LC
1000± 0 1000± 0 1000± 0

47363.2± 303.2 47150.9± 361.1 47385.2± 241.4

OA
1000± 0 1000± 0 1000± 0

47661.8± 214.7 47521.2± 319.1 47694.8± 374.8

1 LK stands for lane keeping. LC stands for lane changing. OA stands for obstacle avoid-
ance.

2 Data is presented in the form of mean ± std. In each cell, episodic length and total
reward are listed from top to bottom.

Figure 7.9: Comparison of the driving behaviors for the RL and the RL-RC with modeling
gaps in the lane changing (LC) task.

We randomly generated test environments by adding zero-mean and uniformly distributed
errors to the parameters of the vehicle model, including vehicle geometry, mass, rotational
inertia, tire model parameters, and friction factors. We evaluated the performance on 10
different target vehicles. The second modeling gap was external side-force caused by the
side slope of the road or wind. We added a constant external force along the Y axis in the
target environments. We conducted 10 tests for each given magnitude of the external force.
We recorded the total discounted rewards and episodic lengths for each test episode and
calculated their means and standard deviations for each testing category.

Table. 7.4 gives the overall performance comparison of the baseline RL policy and RL-RC
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Figure 7.10: Bode plots of Gv(z
−1) with parameter variation bounded by 20%. The blue

curves correspond to 100 samples of Gv(z
−1) with uniformly distributed parameter variation

bounded by 20%. The red dash curve corresponds to the nominal model.

method. Fig. 7.9 shows two examples illustrating the driving behaviors of the two methods.
The target settings have parameter variation bounded by 20% of the nominal values or side
force of a magnitude of 5, 000N . A demonstration video under the same target settings is also
provided online 1. To give an estimate of the effects of such a modeling gap, Fig. 7.10 shows
the bode plots of 100 samples of Gv(z

−1) with uniformly distributed parameter variation
bounded by 20%. The 5, 000N side force contributes a maximum lateral acceleration of
2.78m/s2 to the nominal vehicle.

Table 7.4 and Fig. 7.9 show the effectiveness of the RL-RC in three aspects: (1) The
robustly satisfying performance of the deep RL policies in the source setting is validated,
which gives us confidence in the transferred trajectory planner to generate reasonable ref-

1https://berkeley.box.com/v/ITSC2018
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erence for the tracking controller; (2) The poor performance of the baseline RL policy in
the target settings indicates the incapability of the direct policy transfer. When the base-
line policy is applied to a different vehicle or when the target vehicle is affected by a side
force, the baseline policy often fails and the target vehicle eventually loses control; (3) The
consistent performance of the RL-RC in both the source and the target domain validates
the proposed approach can zero-shoot the transfer tasks. This is thanks to the robust and
satisfying tracking performance of the DOB-based tracking controller.

Fig. 7.11 further compares the performance of the baseline RL policy and RL-RC system
under modeling gaps of different magnitude. The curves show the mean value of the reward,
and the error-bar indicates the interval with a maximum deviation of one standard deviation
from the mean.

The proposed RL-RC framework obtains consistent reward with parameter variation up
to 20% or side force of magnitude up to 5, 000N , whereas the performance of the baseline
RL policy keeps getting worse as the modeling gap increases. We see a decrease in reward
for all tested disturbance magnitudes.

7.6.4 Sim-to-Real Transfer

We deploy our RL framework to a sim-to-real vehicle experiment on our Lincoln MKZ
experimental vehicle. The experiment is carried out in the Richmond Field Station of the
University of California, Berkeley. There are two experiment settings: one LK setting and
one OA setting. In the OA setting, an imaginary (simulated only, for safety reasons) static
obstacle vehicle is parked in front of the autonomous vehicle. The autonomous vehicle starts
with a speed of 10m/s ≈ 22mph. The autonomous vehicle incorporates the GPS, IMU
sensors that can measure its states, while the obstacle vehicle states are assumed known.
The experimental vehicle is shown in Fig. 7.12.

The vehicle control pipeline operates in a robot operating system (ROS), as shown in
Fig. 7.13. The major ROS nodes include the simulation node that generates the reference
trajectory, the DOB node that generates lateral control signals, and the experimental ve-
hicle node that controls the vehicle actuators and collects the onboard sensor data. In the
simulation node, the policy and the simulator generate imaginary trajectories of 1.6 seconds
in simulation time. The longitudinal control is based on a separate PID controller that is
not shown in the figure.

In the experiments, the RL policy publishes the commands at a frequency of 50Hz,
the multi-step reference trajectories are generated at a frequency of 5Hz, and the DOB
node produces the steering commands at 50Hz. The controller parameters are set based
on the nominal dynamics parameters of the experimental vehicle, which are obtained from
system identification. We performed both the LK and the OA experiments 10 times with
different starting positions, and both received 10/10 success rates. An experiment episode
is considered successful if the tracking error is smaller than the threshold and there are
no collisions between the ego and the obstacle vehicles. Fig. 7.14 shows a typical OA
experimental trajectory including an onboard camera view and the tracking visualization.
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Figure 7.11: Performance (episodic return) of baseline RL policy and RL-RC architecture
under increasing modeling gap in the lane changing (LC) task.
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Figure 7.12: The Lincoln MKZ experimental vehicle and the onboard sensors.

Figure 7.13: The vehicle control pipeline operates in a robot operating system (ROS).
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Figure 7.14: A typical OA experimental trajectory including an onboard camera view and
the tracking visualization.
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7.7 Chapter Summary

We proposed a generic framework for driving PN transfer using RC techniques. In the policy
transfer scheme, the PNs trained in the source domain are used to generate a finite-horizon
previewed reference trajectory of interpretable kinematic features. In the target domain, a
robust controller is designed to track the reference trajectory so that disturbances induced
by the modeling gap can be rejected. We implemented the framework for three driving tasks
in term of a hierarchical RL policy and a DOB-based robust tracking controller. Simulation
and experiment results show that the proposed RL-RC architecture can achieve zero-shot
consistent performance in the target domain with a certain level of parameter variation
or external side force, while the performance of the baseline RL policy is hindered by the
modeling gap.
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Chapter 8

Final Words

8.1 Conclusions

While learning-based control (LbC) is one of the most promising solutions to general purpose
robotics, it is technically challenging to obtain adaptive or robust LbC policies. This limits
the wide application of LbC methodologies. In this dissertation, we explored the methods
of representation reasoning for learning-based control, where the representations can reside
inside the LbC policies, at the interface of the LbC policies, and outside the LbC policies. A
comprehensive investigation of the selection and design of the representations was discussed
for specific applications of model-based reinforcement learning (RL), model-free RL, and
supervised learning in Chapter 3. We presented the design of a parametrized dynamics con-
text representation inside LbC policies in Chapter 2. In order to transfer learned knowledge
encoded in LbC policies, we proposed the attribute learning concept, which decomposes
complicated control problems in terms of attributes and learns an attribute network for
each attribute separately. Two policy learning frameworks—the cascade attribute networks
and the parallel attribute networks—along with the corresponding LbC policy formulations,
were presented in Chapter 4 and Chapter 5. Finally, we reasoned for representations outside
the LbC policies in Chapter 6 and Chapter 7. Specifically, with kinematic representations
bridging the source and target domains, we adopted meta learning (Chapter 6) and robust
control (Chapter 7) for domain transfer of LbC policies, rejecting influences from dynamics
variation and external disturbances.

8.2 Future Work

In order to achieve the goal of intelligent and general-purpose robotics, there are various
directions we will explore in the future. These include, but are not limited to, representation
reasoning for LbC. For example:

1. To analyze for system stability properties and derive policies with performance guar-
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antee.
To get more reliable performance with LbC policies, more theoretical analysis shall
be put on the stability of the LBC system. Combined with classic control theory,
representations that reflect the reliability of the LbC policies shall be developed. The
current works either lack guaranteed performance bounds [118, 46] or decrease the
intelligence capabilities [67]. In the future, the combination of both flexible learning
and precise control is a potential direction to produce intelligent and reliable policies.

2. To improve the policy learning scheme to narrow down the training-deployment gap.
The majority of the current simulation environments for LbC policy training are al-
ready based on high-fidelity physics engines [108, 29]. However, they still differ from the
real world in aspects such as vision and dynamics. Recently, more advanced learning-
based simulations tools [82] have further improved the simulation accuracy, and train-
ing in such environments can further improve the sim-to-real policy transfer capability.
Also, new schemes such as improving the LbC policies and the simulation at the same
time using evolution algorithms are interesting future research directions. This also
requires a better understanding of the target domain, and to leverage the knowledge
in the learning phase, so as to learn a policy that achieves satisfying performance in
practice. To do so, more knowledge of physics [108, 29], electronics [123, 120], dynamic
control systems [118, 105], shall be integrated.
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