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ANNALS OF PHYSICS 144, 1-14 (1982) 
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Irvine, Calfornia 92717 

Received December 14, 1981; revised April 23, 1982 

A WKB approximation to the Hartree equations for an atom, taking the l/r singularity of 
the potential into account, is developed. This in turn allows us to obtain in a systematic way 
the Z “’ and Z- “’ corrections to the Thomas-Fermi model of the atom. Such a procedure is 

used to obtain a finite change density at the nucleus, which agrees well with Hartree-Fock 
values. 

I. INTR~D~JCTION 

It has been recognized for a long time that the Thomas-Fermi equations for a 
many-electron system may be obtained in a semi-classical approximation to the 
Hartree or Hartree-Fock self-consistent equations for such a system [ 11. A naive 
expansion, in powers of h, of these self-consistent equations leads to corrections of 
order Zp213 to the leading term of the Thomas-Fermi equation but has difficulty in 
correctly describing the energy functional. It was pointed out by Scott (21 that the 
leading corrections to the energy are of order Z-“3 compared to the leading term 
and are independent of the interelectronic repulsion. Scott’s derivation did not 
indicate how to obtain higher order corrections. March and Plaskett [ 31 solved the 
Hartree equations, in a WKB approximation, for Z = 18 (the self-consistent potential 
was taken from the solution of the uncorrected Thomas-Fermi equations); they 
isolated the leading and Scott terms and attributed all of the remainder to the next 
order correction and obtained the coefficient of the Zp2’3 corrections to the leading 
term. The agreement with observed binding energies was very good. The results for 
the energy of an atom of Z electrons is (in units of e4m/h2) 

-E(Z) = 0.768742”” - 0.5Z2 + ~2~‘~. (1.1) 

The first term is the original Thomas-Fermi result, the second is the correction due to 
Scott and the last one is due in part to exchange interactions 141 and in part to h2 
corrections to the leading result. The result of Ref. 131 is 

c = 0.266. 

* Supported in part by the National Science Foundation. 

(1.2) 
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2 MYRON BANDER 

A more recent determination of such a lit to Hartree-Fock energies was made by 
Shakeshaft et al. [5]. These authors found a best value for c, 

c= 0.275 zt 0.005 (1.3) 

(( 1.1) with this value of c reproduces the Hartree-Fock binding energies to a few 
parts in 10m4 for Z- 100 and is within 8% for Z= 1). 

Recently, Schwinger [6] obtained both the Scott correction, as well as the coef- 
ficient of the Z-5’3 term. The theoretical value of c is 

c = 0.270. (1.4) 

which is very close to either (1.20) or (1.3). In Schwinger’s treatment the continuous 
approximation to the discontinuous function [x] (largest integer less than x) is taken 
as x - 4. It is not clear whether the oscillations around this approximation contribute 
to c. As we shall show these oscillations will contribute to higher terms. That higher 
order terms are likely to be nonanalytic has been noted by Shakeshaft and 
Spruch [ 71. 

Another quantity for which the Thomas-Fermi approximation gives glaringly 
wrong results is the charge density at the nucleus. In this approximation it is infinite, 
whereas in reality it is finite. The methods for correcting the WKB approximation 
will yield a finite answer which, for larger Z, is in good agreement with the 
Hartree-Fock result. 

The reason a straightforward WKB approximation cannot be applied to this 
problem is that the Coulomb potential near the nucleus varies too rapidly for such an 
approximation to be valid. Naively, one would expect the Scott term to be absent. A 
treatment taking into account the singular nature of the potential at the origin 
restores this term. At first sight one might argue that a smearing out of this 
singularity would solve the problem. However, a fixed nuclear radius will not do, as 
the Bohr radius of the K shell behaves as h2/Zi2, and for small h or large Z would lie 
inside any fixed distance. We need a cutoff depending on fi and Z. Of course 
quantum mechanics does provide such a cutoff. Heuristically, we may see it even in a 
WKB approximation. Langer [8] pointed out that in this approximation, the angular 
momentum lh should go to (I + f)h and thus, even for S waves we have a centrifugal 
barrier providing a cutoff of the right magnitude. 

In Section II, we review the Hartree approximation. This approximation is the first 
term in a WKB expansion in h or equivalently an expansion in the number of loops 
of a Feynman diagram [9]. 

The next term is responsible for the exchange interaction energy. The Hartree term 
itself may be expanded as a power series in A, with the attendant difficulties 

e+-+e+.. 
FIGURE I 
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mentioned earlier. Thus, in principle, we have a formalism for a systematic expansion 
of the atlomic problem. It should be emphasized that in this formalism it is the 
Hartree term that determines the self-consistent field, and the Dirac exchange term is 
evaluated with that field as input. Had one started from the Hartree-Fock equations 
then the s,um of the exchange and direct terms would be minimized to obtain the self 
consistent field, yielding the Thomas-Fermi-Dirac model 1 lo]. The Hartree-Fock 
approximation is intrinsically a variational approximation, while, as we will show, the 
Hartree approximation is the first term of a systematic expansion. Of course, to the 
order we are working in, the Hartree-Fock model is likely to be a better physical 
approximation. 

The WKB solution of the Hartree equation is presented in Section III. The 
procedure for handling the aforementioned singularity consists of subtracting a 
similar expression for the situation where the interelectronic repulsion is neglected. 
This difference has, to the order considered, a straightforward WKB expansion. The 
exact value for this extra term is then added back. This, together with the exchange 
interaction, yields (1.4). We also note that any further corrections will be nonanalytic 
in Z-“3. 

Section IV is devoted to a study of the electronic change density at the nucleus. 
The Thomas-Fermi density diverges at this point. We subtract the density for a 
purely hydrogenic system filled to a definite level, obtain a finite Thomas-Fermi 
approximation to this difference and than add on the exact value for the hydrogenic 
system. The highest level of this sytem is determined by the solution of the 
Thomas-Fermi equations. This procedure describes the leading and Z- 2’3 corrections 
to this change density. For large Z the Hartree-Fock values are reproduced. 

II. THOMAS-FERMI APPROXIMATION TO THE HARTREE MODEL 

A. A Restatement of the N Electron Problem 

The Hamiltonian, in second quantized form, for an atomic system of electrons 
interacting with each other and with a nucleus of charge Z is [ 111 

H= I‘d’x &vr;(X) VI//,(x) - Ze2 
- w,‘(x) v,(x) : 1 1x1 

+; v,+(x) ‘Y,(x) [ d3Y & v&Y) Wo(Y> * 
1 

(2.1) 

v(x) is th.e Fermi field operator for the electron. In (2.1) and subsequently, repeated 
indices are summed over. The electron density is 

P(X) = v,‘(x) ‘Y,(x) (2.2) 

leading to a number operator 

N = 1. d3xy; (x) v,(x). (2.3) 
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It is convenient to treat this problem in the grand canonical formalism and we 
introduce the operator 

K=H-pN, (2.4) 

with ,U the chemical potential. Results for specific N’s are obtained by appropriate 
Legendre transforms between ,B and N. 

In order to obtain the Hartree equations we eliminate the quartic coupling in (2.1) 
by introducing a scalar field a(x). 

The Euler-Lagrange equations for u, 

V2u(x) = - &&7(x), 

are used to eliminate u(x) from (2.5) yielding back the Hamiltonian of (2.1). 
We note that for a fixed u(x), (2.5) is the Hamiltonian for electrons interacting 

with the nucleus and with an external potential &%? u(x). 

B. Hartree Approximation 

The Hartree self-consistent approximation results from replacing the right hand 
side of (2.6) by its ground state expectation value 

V2u = - &ii2 P(x)). (2.6) 

The ground state refers to that of electron moving in an external potential determined 
by CJ, but not interacting with each other. In this ground state all levels up to the 
chemical potential p are filled. 

@(x))=2(x1B 
[ 
,+g+g--+%J Ix), (2.7) 

while the corresponding eigenvalue of K, Eq. (2.4). is 

@)=jd”x I-$Vu)‘-(xl [~+~+~-&&?u] lx)!. (2.8) 
+ 

The subscript + indicates that we project out only the positive eigenvalues of the 
operator. 

Hartree equations (2.6) and (2.7) are the equations for the self-consistent field 
u(x). In the language of Feynman diagrams, the solution of these equations 
corresponds to a summation of one loop diagrams, or equivalently is the first term in 



THOMAS-FERMI MODEL OF THE ATOM 3 

a WKB expansion in h [9]. The higher terms in this expansion represent exchange 
energies, correlation energies, etc. The exchange energy is (4, 61 

x &Y(Y) tLY(Y) 4,~&,1. (2.9) 

&,a is an eigenfunction of the self-consistent Hartree Hamiltonian with energy eigen- 
value E and spin CX. The summations in (2.9) may be carried out in a formal way. We 
obtain 

%&,a) = - 1. d3X d3y g$ ~(x/0[ir+~+~-~47%?‘u] ,y)i2. (2.10) 

As we shall show, this term is of order 2-2’3 compared to the direct energy given in 
(2.8). 

C. Thomas-Fermi Approximation 

As in tine matrix element is (2.7) cannot be obtained in analytic form for arbitrary 
(T(X), the Hartree equations are solved iteratively. We shall develop a method of 
evaluating the matrix elements appearing in (2.7) and (2.8). It is .a variant of the 
WKB approximation. These matrix elements may be obtained from 

G(x, x’; 17) = cx 1 eirllhlr+n2V2/2,-1’(x)I 
IX’), 

2 

v(x)=-++@2o(x). (2.11) 

Knowing this matrix element we find 

(xl6 ,+z- L Y(x) Ix’)=&j&G(x,x’:II): ] 
(xl [P++x)] Ix)=~l(,d:,),G(x,x;~). (2.12) 

+ 

Equation (2.11) may be viewed as the propagator for a Schrodinger particle moving 
from x’ to x in time q. It has a standard Feynman path integral representation ] 121 

G(% x’; II) = 1. [de] exp f/’ [F Q2 - v(Q) +,] dt. II 
(2.13) 

In the above we integrate over all classical trajectories joining x’to x in time q. Let us 
first concentrate on the diagonal, x = x’ element. One path is the constant one 

Q(t) = x. (2.14) 
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We expand the integrand around this path, keeping up to terms of second order 

Q(t) = x + s(r), (2.15) 

G(x, X; ?j) = f [dq] exp $1: ]T 4’ - v(X) - Vi v(X) 4i 

-+V,VjV(X)qiqj+ . . . +p 1 dt 

. 11 
x {I -+c 

0 
ViV(x)qidt-+-?7,VjV(x)qiqjdt 

0 

ViV(x)qidt (2.16) 

The path integration is now governed by a free particle Lagrangian and can be 
evaluated explicitly. We need 

(qi(t)qj(t’))=6ij ~ i ‘IL It-t’l-t-t’+~] 
to obtain 

G(x,x’;q)=i h3 [2ni(F- ie3 ]3’2e(in/h)lu-b.l.)) 

?f2v2v 
I+--- 

12m 
2;;h (VV)' + .*. . 1 

(2.17) 

(2.18) 

Upon resealing n to n/h we see that the two terms involving the potential are of order 
A* compared to the term independent of V. Terms involving higher derivatives or 
products of more gradient terms will yield higher powers of n. Combining (2.18) with 
(2.12) we obtain 

fi2 V’b - V(x)l+ fi2 
+ 12m [p - V(x)] y* 

[V[P - WI: + ... 
48m [p - V(X)]:/~ 

(2.19) 
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and 

h2 
+ 24m 

PIP - Vx)l+ I’ 
[,D - V(x)] y’ + “’ t * 

(2.20) 

The first term on the right in (2.19) and (2.20) represents the usual Thomas- Fermi 
approximation. Equation (2.19) has been derived previously [ 11. 

We note that, as with all WKB approximations, the validity of this one depends on 
how slowly the potentials vary. Equation (2.11) reminds us that I’(x) has a Coulomb 
singularity at x N 0 and this approximation becomes suspect in this region. 
Specifically, the fi2 terms in (2.19) behave as r-5’2 at the origin and are integrable 
while the corresponding terms in (2.20) behave as r-‘/2 and are not integrable. This 
is the difficulty discussed in the introduction. The resolution of this problem is the 
subject of the next section. 

Before closing this section we will obtain an approximation to the off diagonal 
matrix elements needed for the determination of the exchange energy. 

Inserting a complete set of momentum states into the matrix elements appearing in 
(2.10) and to leading order in h, neglecting the noncommutativity of x and V, we 
obtain 

ip.(x-y)/fi 
8 p -& V(x) . 

I 

Inserting the expression into (2.10), we obtain the exchange energy 

2 

,u + ;‘:, -- 

III. CORRECTIONS TO THE THOMAS-FERMI ENERGY 

(2.22) 

A. Elimination of the l/r Singularity 

As noted earlier, the l/r Coulombic term in V(x) yields an infinite contribution to 
the energy in (2.20). The potential varies too fast for the WKB approximation to be 
valid. The strategy we shall employ is to calculate the difference of (2.20) and similar 
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expressions with V(x) purely Coulombic, and then add the exact expression for the 
Coulomb case. 

The difference of matrix elements 

d(x)=(xl [p+&v2- V(x)] Ix) 

-(XI [/i+qg+$[ Ix) t (3.1) 

has an expansion in h which to order fi2 is integrable at x = 0. As we project out only 
the positive eigenvalues of the above operators we may encounter rapid variations for 
large x. ,G is chosen to minimize these. We shall find that for the neutral atom and to 
the order we will study ,U = 0 and thus ,II will likewise be zero. Writing an expression 
similar to (2.20) for the second term above, subtracting the two terms and integrating 
the fiz terms by parts, we obtain 

2 1. d3X d(x) = -& (5)3’2 1 d3X 1; [P - v(x)]y 

-gI+SJ:‘+ &v2QG&(X))Ip - V(X)1 ‘_‘I . (3.2) 

Although to the order in h we shall be interested if the above difference is sufficient 
to obtain a finite result we shall indicate the procedures necessary to go to higher 
orders. In effect what we do is subtract, from (2.20), as many terms as necessary, in a 
power series in u around the pure Coulomb term. For example, had we been 
interested in terms of order h4 we would study 

d(x)=(x( /i+gv2-v(x) L ]+ x x [ I )-( 1 fi+gv2+ %]y 
-@-E-@a(x))(xl8 i+s+fg [ 1 lx). (3.3) 

Equation (3.3) has a finite expansion to order h4. 

B. Energies without Electron Repulsion 

The integral of the second term in (3.1) is just the energy of noninteracting 
electrons in a Coulomb field of charge Ze and at a chemical potential ,L. 

J .d3x(xI 2+x+ L 
hZVZ Ze2 

~1 
+ 

Ix>= 2 n2[F+s] 
n=l 

(3.4) 
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(n’ is the degeneracy of each level with principal quantum number n). N is the 
highest level tilled whose energy is less than ,LZ, 

N= [(-G)‘;‘], (3.5) 

where by [a] we mean the largest integer smaller than a. The summation in (3.4) can 
be performed easily and we find 

(3.4)=/i (q+q+;) +$$N. 

Introducing [, the difference between (-Ze2m/2A2,i)“* and N, 

N= C-G)“’ -c, 

(3.6) 

(3.7) 

we obtain 

(3.4) = f (-$) 3’2 & - + ($p) + O(fiJ (3.8) 

In the limit i -+ 0 this expression is independent of [. 
We shall also need the explicit value of the integral involving p in (3.2). This 

integration is straightforward and yields 

namely, the first term in (3.8). 
Combining (3.9) (3.8), (3.2), and (3.1) and taking the limit ,L- 0, we obtain a 

finite expression for 

2 I’(xI [p+gv*- V(r)] Ix)& 

=-$ (;)3’2jdlX ,IP- fqx),:” 

+ -&q- @za(x)),p - v(x)]:/* 1 -e. (3.10) 

This is thle basic result of this treatment. It is a correct expression to order h*. The 
last term is responsible for the Scott correction. 

If we attempt to calculate higher order terms, as, for example, by the use of (3.3) 
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and as neither ,u nor ,L will be zero the answers will have a 4’ dependence and this will 
be nonanalytic in Z-‘13. 

C. Solution to Order A2 

Before bringing all these results together it is convenient to rescale all the variables 
to dimensionless form. Introduce 

x = bzcLr3y, 

zWe2 

o - e z4/3 5 

,/Sib. 

We separate the energies into direct and exchange terms 

with 

and 

[- $++-6 1 
s/2 

+ 
1 1 -- 
2 (6nZ)2’3 

I/Z 

t I 
+ $ (~?c)~/~Z-‘/~ 

B 
9 1 . 

exch = 4 (67~2)~‘~ J 

C(y) is determined by minimizing Zdili, only 

2 

d3y. 
+ 

30 v2a+ [ $+L-a 1 1 

Y I t + 1 (67rZ)2’3 

X I V’(-a> 1 (wY--lt)2 -- 
[p/47c + l/y - 61:” 4 [l/y - 6]:/2 

I =o 
. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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The relation between N and ,D is obtained by differentiating gddir and GYCeexch with respect 
to j. 

N V’(-a) 
Z (67~Z)~‘~ [/?/47c + l/y - O] :‘I 

91 - 
(3.16) 

The term involving the derivative of 5 with respect to ,L? is due to the fact that the 
exchange term does not participate in the determination of 6. 

Equation (3.15) determines the self-consistent potential 5. It is highly nonlinear 
and probably has many solutions. We shall be interested in is the one generated by 
the Z-2’3 corrections to the classical Thomas-Fermi solution. To this order, 5 is 
finite at the origin, implying a yP3’2 singularity for the charge density. It is easy to 
see that there is a second class of solutions with 5,- l/y at the origin, resulting in a 
finite charge density. This solution is not obtainable in a perturbation series in Z- ‘.” 
around the lowest order solution, and thus falls outside the spirit of this approach. 
We would not recover the classical Thomas-Fermi model in the Z+ co limit. It is 
amusing to note that if we do set ti = l/y + p(x), we obtain the variational equation 
of the Thomas-Fermi-von Weizacker model [ 101, albeit with a coefficient nine times 
smaller than the one originally proposed by von Weizacker and about a factor 2/3 
smaller than a phenomenologically determined term [ 10, 13 1. 

We are primarily interested in the energy of atomic system for fixed N. We use 
(3.16) to eliminate ,L and (2.8) to find E(N). The situation simplifies considerably for 
the neutral atom, N = Z. For the neutral atom, the first order Thomas-Fermi theory 
yields p N 0; therefore for the present case ji N ZP2”. Separating 5 into c?, + Z- 2”C, , 
with C0 determined by the first order theory, we obtain 

E(Z) = z 
[- I 

1 d3y - &Vb0)2 

and O0 is determined by 

3/2 
= 0. 

+ 
(3.18) 
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The use of the above equation simplifies the expression for the energy 

The third term in the above has been written in a form distinguishing the direct and 
exchange corrections. Inserting the numerical solutions for a,, gives the result of (1.4). 

IV. CORRECTIONS TO THE ELECTRON DENSITY AT THE NUCLEUS 

The Thomas-Fermi approximation to the electron density as well as the 
corrections to the density, though integrable at the origin are infinite at that point. 
This result is unphysical as the true density is finite. The purpose of this section will 
be to modify the Thomas-Fermi approximation so as to obtain such a finite density. 
We shall also compare these to Hartree-Fock results. 

We wish to subtract from (2.7) a density for a fiurely hydrogenic system, such that 
the Thomas-Fermi approximation to this difference will be finite at the origin. Thus 
we consider 

P(X) - P,(X) = %I 0 L Zt’V’ Ze2 
P + 2m + ~-d=w] Ix> 

L 

hZV2 Ze2 
-2(x18 p’+yg+ Jx) Ix>* 

1 
(4.1) 

The hydrogenic term is evaluated at a chemical potential ,D’, different from the one 
considered in the previous section. As we shall not be interested in the behavior of the 
density at large x, ,u’ does not have to be sent to zero when ,U is, and in fact will be 
chosen to insure that (4.1) is finite at x = 0. 

The leading Thomas-Fermi approximation to (4.1) is (cf. (2.19)) 

Choosing 

p’ = ,u - &ii2 a(0) 

yields a finite value for (4.2) at x = 0. 

(4.2) 

(4.3) 
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TABLE I 

A comparison of the Corrected Thomas-Fermi and Hartree- 

Fock Charge Densities at the Nucleus (in units of ai/Z”~) 

Z H.F.” Eq. (4.6) 

100 1.13 1.12 

15 1.11 1.10 

50 1.09 1.07 

20 1.04 0.96 

“Ref. 1161. 

p,(x) may be evaluated exactly. It is the electron density for noninteracting 
electrons bound to a charge Ze and filled up to a level 

N’= [ (-gg)“2] (4.4) 

(Again th’e bracket denotes the largest integer smaller than the quantity in the 
bracket). For x = 0 this density is [ 141 

To leading, orders in Zp ‘13, we find that for the neutral atom 

For the neutral atom a(O) = 1.588 [ 151. giving 

1.79 
= 1.20-- 2213 

(4.5) 

(4.6) 

(4.7) 

In Table I we compare this result to Hartree-Fock values [ 16 1. We see that we find a 
good description of this quantity down to Z = 50. In this picture the charge density at 
the nucleuis is determined by N’ hydrogenic wave functions, where N’ is determined 
from the slolution of the Thomas-Fermi equation. 
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