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Abstract. The rowmotion operator acting on the set of order ideals of a finite poset has been
the focus of a significant amount of recent research. One of the major goals has been to ex-
hibit homomesies: statistics that have the same average along every orbit of the action. We
systematize a technique for proving that various statistics of interest are homomesic by writ-
ing these statistics as linear combinations of “toggleability statistics” (originally introduced
by Striker) plus a constant. We show that this technique recaptures most of the known ho-
momesies for the posets on which rowmotion has been most studied. We also show that the
technique continues to work in modified contexts. For instance, this technique also yields
homomesies for the piecewise-linear and birational extensions of rowmotion; furthermore,
we introduce a g-analogue of rowmotion and show that the technique yields homomesies
for “g-rowmotion” as well.

Keywords. Homomesy, rowmotion, toggling, piecewise-linear & birational lift, g-analogue
Mathematics Subject Classifications. 06A07, 05E18, 05A30, 52B05

1. Introduction

Dynamical algebraic combinatorics [Rob16, Str17] is the study of natural dynamical opera-
tors acting on objects familiar to algebraic combinatorics. A recurring theme in this field is
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Figure 1.1: The action of rowmotion on 7 ([2] X [2]).

homomesy, which occurs when a statistic (that is, a numerical function) on the set of objects
has the same average along every orbit of the action. Homomesic statistics are, in a precise
sense [Pro21], complementary to invariant statistics. But while it is usually hard to find non-
trivial invariant statistics for these kinds of actions, there are often many interesting homomesies
— a phenomenon that is a priori surprising when there are many orbits.

One of the most intensely studied operators from the point of view of dynamical algebraic
combinatorics is the rowmotion operator acting on the distributive lattice 7 (P) of order ideals
of a (finite) poset P. For an order ideal / € J(P), rowmotion applied to I, denoted Row (),
is the order ideal generated by min(P \ I), where min(P \ I) is the set of minimal elements
of P\ I. Equivalently, Row(/) is the unique I’ € J(P) with max(I’) = min(P \ I), where
max([’) is the set of maximal elements of I’. See [SW12] or [TW19b, §7] for the history of
rowmotion.

Example 1.1. We use the notation [n] == {1,2,...,n} for the set of natural numbers from 1
to n, which we also view as an n-element chain poset. Let P = [2] x [2] be the (Cartesian)
product of two 2-element chains. We represent [2] X [2] by a Young diagram (see Section 2.1 for
more details about our conventions for drawing posets). The two rowmotion orbits of 7 (P) are
as shown in Figure 1.1.

We can see that one homomesic statistic for this action is the order ideal cardinality statistic
I — #I, which has average 2 along both orbits. Another example of a homomesic statistic is
the statistic / — # max([/), which has average 1 along both orbits; we call this the antichain
cardinality statistic because I — max([) is a canonical bijection from the set of order ideals to
the set of antichains of P.

Example 1.1 is a special case of a more general phenomenon: it is known [PR15] that both
the order ideal and antichain cardinality statistics are homomesic for the action of rowmotion
on J ([a] x [b]) for any a,b > 1.

In this paper, we formalize a technique for proving instances of homomesy for rowmotion that
is both powerful and robust. By “powerful,” we mean that it allows us to recapture, in a uniform
way, most of the known instances of rowmotion homomesy; see Section 3. By “robust,” we
mean that it continues to apply in modified contexts, and hence allows us to obtain new results
as well; see Sections 4 and 5.

The basic idea behind the technique is quite simple. For any element p € P, define the
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toggleability statistics T,7, 7,7, T,: J(P) — R by
1 if in(P\ I
rayse {1 0 € A,
0 otherwise;
a 1 ifp € max(]),
T, (I) = -
0 otherwise;

T,(I) =T,"(I) = T,”(1).

p

Here, toggling refers to the operation of changing the status of whether or not p is in 7, if
possible: we add p to [ if JU{p} is an order ideal; we remove p from [ if I\ {p} is an order ideal,
and we leave [ alone otherwise. Since the work of Cameron and Fon-der-Flaass [CFDF95] (see
also [SW12]), it has been known that rowmotion can be written as a composition of these toggle
involutions. The statistics 7;* and 7, record when we can “toggle p into” and “toggle p out of”
an order ideal, respectively.

It is a straightforward fact, first explicitly observed by Striker [Str15], that for any poset P
and any p € P, the signed toggleability statistic T, is 0-mesic (i.e., homomesic with average 0)
for rowmotion acting on 7 (P). The simple reason for this fact is that 7,7(I) = 7, (Row(I))
forallp € Pand I € J(P). Consequently, along any rowmotion orbit, we can toggle p in
exactly as often as we can toggle p out.

While it is nice that the statistics 7, are always homomesic under rowmotion for any poset, we
are more interested in statistics that have more obvious combinatorial significance such as the or-
der ideal and antichain cardinalities. Indeed, the statistics that have previously been studied from
the point of view of rowmotion homomesy are all linear combinations of (the indicator functions
of) “is p in the order ideal I?” or “is p in the antichain max(/)?” for poset elements p € P. The 7,
themselves are not linear combinations of such indicator functions. However, if by some miracle
we can write the statistic f: 7 (P) — R that we care about in the form

f=c+> T

peEP

for constants ¢, ¢, € R, then Striker’s observation tells us that f is c-mesic (i.e., homomesic with
average c) for Row acting on 7 (P). The remarkable fact is that, for many of the posets P and
statistics f about which we care, it is possible to write f as a constant plus a linear combination
of signed toggleability statistics. This was first established, for the antichain cardinality statistic
and several posets P coming from Young diagrams (including [a] x [b]), by Chan, Haddadan,
Hopkins, and Moci [CHHM17]. We will show that this is also true for the order ideal cardinality
statistic when P = [a] x [b], and indeed is true for most statistics known to be homomesic under
rowmotion when P is a poset that exhibits good rowmotion behavior (see, e.g., [AST13, PR15,
Had21, RW15]).

Example 1.2. Consider P = [2] X [2], as in Example 1.1. Let f': J(P) — R denote the order
ideal cardinality statistic, i.e., f': I — #1I. Then we have

3 3
=2+ (‘2-7@,1)_5'T(l,z)_§'7f2,1)_2'7(2’2)>'
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I Tay Tay Tey Tey | I #1 1— #max(])

E 1 41 41 0 1 1
E 0 +1 -1 0 2 1
EE 0 -1 +1 0 2 1
E 0 -1 -1 +1 3 2
E: 0o 0 o0 -1 4 1

Table 1.1: For Example 1.2: various statistics on 7 ([2] x [2]).

Let f”: J(P) — R denote the antichain cardinality statistic, i.e., f”: [ — # max(/). Then we
have

1 1
=1+ <—1 Ty — 3 T2 — 57?2,1) +0- 7222)) '

These equations (which the reader can verify by inspecting Table 1.1) “explain” the rowmotion
homomesies we saw in Example 1.1.

At a technical level, the key tools in our proofs are so-called rook statistics, which are
clever combinations of toggleability statistics that sum to a constant function. These rooks,
first introduced by Chan, Haddadan, Hopkins, and Moci in [CHHM17], allow us to move from
“local” to “global” statistics. Rooks have been subsequently extended for further applications
in [Hop17, Hop19]. But until now, the focus has exclusively been on antichain cardinality; our
aim here is to advertise how the technique is powerful and applies more broadly to many other
statistics.

We also wish to advertise how this technique is, as mentioned, robust in the sense that it
continues to work when we modify the setting in various ways. Let us briefly record some
examples of this robustness:

1. Rowmotion can be written as a composition of toggles. For many other operators written
as a combination of toggles (including gyration), Striker’s observation persists, so this
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technique allows us to establish homomesies for these other operators as well (see [Hop17,
Str15]).

2. There has been a great deal of interest lately in piecewise-linear and birational exten-
sions of rowmotion [EP21, GR15, GR16, MR19, Oka21]. As was essentially explained
in [Hop22], a representation of a statistic as a linear combination of toggleability statistics
automatically “lifts” to the piecewise-linear and birational levels. Striker’s observation is
also easily seen to hold at the piecewise-linear and birational levels. Hence, when we use
this technique to establish a homomesy for a certain statistic at the combinatorial level,
we get for free that the homomesy extends to the piecewise-linear and birational levels as
well. In particular, using this automatic lifting to the higher realms, we are able to affirma-
tively resolve a recent homomesy conjecture of Bernstein, Striker, and Vorland [BSV21];
see Remark 3.30.

3. In this paper, we define a g-analogue of rowmotion, which acts on a certain set of labelings
of a finite poset P. The number of such labelings can be seen as a g-analogue of the number
of order ideals of P. For example, 7 ([a] x [b]) has (*}*) order ideals (they are in bijection
with lattice paths in an a x b grid), and the set of labelings on which g-rowmotion acts
has cardinality [a;ﬂq (or a related quantity), where [ajb} is the g-binomial coeflicient.
We show that the toggleability statistics technique still works to establish homomesies for

g-rowmotion.

We will discuss these points in much more detail later in the paper.

Remark 1.3. Let us briefly mention another example of the robustness of this technique that we
will not discuss further after this remark:

4. Rowmotion, as we have defined it, acts on a distributive lattice. There has been recent
interest [Bar19, DW23, TW19a, TW19b] in extending rowmotion to act on other classes of
lattices (or even other classes of posets). In [Hop19], the toggleability statistics technique
is used to establish some homomesies for rowmotion acting on certain semidistributive
lattices.

Four final points regarding how this technique is applied in practice merit emphasis. First,
when one is looking at a particular poset P and a particular statistic f on [ (P), the question of
whether f can be expressed in the form ¢ + > ¢, 7, is just a matter of linear algebra and can
easily be checked by computer. Second, since # .7 (P) is typically much larger than #P + 1,
one would a priori expect there to be no such expressions; the fact that in many cases of interest
there are such expressions is part of the magic of the method that we do not understand. Third,
Theorem 2.7 guarantees that when a statistic f can be expressed in the form f = ¢+ Zpe p T,
the expression is unique. This means that if one is studying not just an individual poset but an
infinite family of posets, as is usually the case, the experimenter does not need to make clever
choices in a systematic way that will permit a unified analysis. Indeed, no choices (clever or oth-
erwise) present themselves. When the technique is applicable, the challenge of applying it is not
guessing coeflicients that work but rather finding patterns governing the uniquely-determined
coefficients and then finding a proof. Fourth, with this technique, it is often possible to present
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proofs of homomesy in an especially streamlined way, omitting explicit attention to the coeffi-
cients ¢,.

The rest of the paper is structured as follows. In Section 2, we review background on posets,
toggling, rowmotion, and homomesy. We explain Striker’s observation that the signed tog-
gleability statistics are 0-mesic under rowmotion. We also prove that the signed toggleability
statistics are linearly independent (in fact, we obtain a g-analogue of this result). In Section 3,
we explain in earnest the technique of writing a function as a linear combination of signed tog-
gleability statistics plus a constant. We go through four important families of posets known to
have good behavior of rowmotion and show how the technique works for each of these posets.
We do this using “rooks,” which constitute our main technical tool. In Section 4, we explain the
lifting to the piecewise-linear and birational realms. (As mentioned above, this lifting allows
us to resolve a conjecture of Bernstein, Striker, and Vorland from [BSV21].) In Section 5, we
introduce g-rowmotion and explain how the toggleability statistics technique continues to work
to prove interesting homomesy results for g-rowmotion. The definition of g-rowmotion and our
results concerning it are some of the major new contributions of this article, and we believe it
deserves further attention. Sections 4 and 5 are independent of one another and can be read in
either order. For those who are just interested in g-rowmotion, we note that the definition of
g-rowmotion at the beginning of Section 5 is self-contained and does not require the extensive
machinery developed in Section 3. Lastly, in Section 6, we conclude with some final remarks
and possible directions for future research.

2. Background

2.1. Posets

We assume the reader is familiar with the basic notions and notations for (finite) posets, as laid
out for instance in [Stal2, Chapter 3]. In particular, we recall that [n] := {1,2,...,n} is our
notation for the n-element chain poset. All posets in this article are assumed to be finite, and we
drop this adjective from now on.

Henceforth in this section, let P be a poset. All the constructions we care about will de-
compose in an obvious way into connected components; hence, we also tacitly assume P is
connected (i.e., the graph of its comparability relations is connected).

An order ideal of P is a subset [ C P that is downward-closed, i.e., for which y € [
and x < y € Pimply z € I. We write J (P) for the set of order ideals of P. An antichain of P
is a subset A C P of pairwise incomparable elements; we write A(P) for the set of antichains
of P. For an arbitrary subset S C P, we use min(S) to denote the set of minimal elements of S
and max(.S) to denote the set of maximal elements. There is a natural bijection 7 (P) — A(P)
given by I — max([); the inverse of this bijection sends an antichain A to the order ideal
generated by A, which is defined tobe {x € P : x < y forsome y € A}.

A linear extension of P is a listing py, ..., p, of all of the elements of P that respects the
order of P, i.e., for which p; < p; implies 7 < j.

For x,y € P, we say x is covered by y, written x <y, if x < y and there does not exist z € P
with x < z < y; we also write y > x in this case and say y covers x. We say that P is ranked
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‘acd‘

Figure 2.1: A poset {a, b, ¢, d} with covering relations a < ¢, b < ¢, and ¢ < d.

if there exists a rank function rk: P — Z for which rk(y) = rk(z) + 1 whenever x < y. We
always assume P contains an element p with rk(p) = 0; this assumption guarantees that a rank
function is unique if it exists. The rank rk(P) of a ranked poset P is defined to be the maximum
value of rk(p) over all elements p € P.

Although it is traditional to depict a poset via its Hasse diagram (i.e., its graph of cover
relations), we will instead use a more rectilinear representation. Indeed, all of the particular
posets considered in this article can be viewed as subsets of Z2 . In these depictions, we rep-
resent each element of the poset by a box and make the convention that two boxes [J; and [,
satisfy [J; < [y if and only if [y appears weakly southeast of [];. (These depictions are thus
analogous to Young diagrams of partitions.) For example, Figure 2.1 represents a 4-element
poset with cover relations a < ¢, b < ¢, and ¢ < d. An order ideal is thus a northwest-closed set
of boxes. We use “matrix coordinates” for the boxes; hence (7, j) represents the box in row i
(counted from top to bottom) and column 5 (counted from left to right). Thus, in Figure 2.1, we
have a = (2,1),b = (1,2), ¢ = (2,2), and d = (2,3). The posets we will consider can in fact
always be represented as contiguous subsets of Z?2 , and for that reason will all be ranked. The
rank of (7, j) in such a poset P is rk(i, j) =i + j — min{¢' + j': (¢, j') € P}.

2.2. Toggling and rowmotion

Recall from Section 1 that rowmotion is the invertible map Row: J(P) — J(P) defined by
Row(I) == {z € P: x < yforsome y € min(P \ I)}.

However, there is another way to describe rowmotion, in terms of toggles, that is also very useful
and that we now review.

For each p € P, define the roggle 7,,: J(P) — J(P) by
Tu{p} ifpemin(P\I),
w(I) = I\ {p} ifpe€ max(I),
I otherwise.
Cameron and Fon-der-Flaass [CFDF95, Lemma 1] showed that

Row =71, 0---07,,

for any linear extension pq, . . ., p, of P. (Here, as usual, functions in a composition are applied
from right to left.) Note that different linear extensions give rise to the same operator because
the toggles 7, and 7, commute whenever p; and p; are incomparable in P.
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If P is ranked and 0 < @ < rk(P), we let 7; := [],(,)—; 7 be the product of the toggles at
the elements of rank 7; this product is well-defined because all of these toggles commute with
each other. Observe that

Row =TgoTi 0 0Tup).

One can also define rank-permuted variants of rowmotion as follows. Given a permutation o of
the numbers 0, 1, . .., rk(P), we define

Row, = T5(0) © To(1) ©*** © To(rk(P))-

For example, gyration [SW12, §8.2] is Row1 35 . 0.2.4,.., the map that first toggles all the even
ranks and then toggles all the odd ranks. We note that Cameron and Fon-der-Flaass [CFDF95,
Lemma 2] showed that all the Row,, are conjugate, via toggles, to Row.

Remark 2.1. Rowmotion toggles all the elements of P “from top to bottom.” For various P
realized as subsets of Z2,, a different “left to right” toggling of all the elements of P called
promotion has also received significant attention (see, for instance, [SW12]). We note that while
promotion is also conjugate to rowmotion via toggles, it is not of the form Row,, and, in general,
our results do not apply to promotion. But for more on what we can say about promotion, see

Remark 2.6.

Remark 2.2. Via the bijection I — max([) between 7 (P) and A(P), we can also view rowmo-
tion as acting on the set of antichains of P, and this perspective is also often useful (for instance,
in Section 2.5 below).

2.3. The statistics of interest

We now introduce notation for the statistics on 7 (P) that will serve as building blocks for all
the statistics we will prove to be homomesic under rowmotion. (Recall that by “statistic,” we just
mean any functionf: J(P) — R.!) Let us restate, in slightly altered form, the definitions of the
toggleability statistics T,", T, : J(P) — R and signed toggleability statistic T,: J(P) — R,
for p € P, from Section 1:

T*(I . 1 ifpé¢ lTand7,(I) =1U{p},
' otherwise;

B ifpeland7,(I) =1\ {p},
B otherwise;
7}9+ 1) =T, (I).

We have emphasized the direct connection between the statistics 7;*, T, and the toggles 7,,.
Observe that 7,"(I) = 1 if and only if p € min(P \ I) and that 7,7(/) = 1 if and only

"Throughout, we work over the real numbers just for convenience and concreteness. Since all the statistics we
care about are actually integer-valued, we could just as easily work over the rationals, or over the complex numbers,
or over any field of characteristic zero. In Section 5, we will consider statistics with values in R(q) as well.



COMBINATORIAL THEORY 3 (2) (2023), #14 9

if p € max([). Foreachp € P, we also define the order ideal indicator function 1,,: J(P) — R

by
1 ifpel,
]lp(D = .
0 otherwise.

Finally, by a slight abuse of notation, for ¢ € R, we write ¢ for the function that is identically
equal to c. For instance, we will routinely consider the function 1: 7 (P) — R that is equal to 1
on all order ideals.

Note that 1, is the indicator function of “is p in the order ideal /?,” and similarly, 7;_ is the
indicator function of “is p in the antichain max(/)?” For that reason, we also refer to the 7, as
antichain indicator functions. Depending on whether we are viewing the action as order ideal or
antichain rowmotion, we think of the 1, or the 7~ as the basic “observable” functions. Hence,
the statistics we will prove to be homomesic under rowmotion are all either linear combinations
of the 1, for p € P or linear combinations of the 7;_ for p € P;i.e., they will belong to either
Spang{1,: p € P} or Spang{7,”: p € P}. The two prototypical such examples, to which we
will devote the most attention, are the order ideal cardinality statistic » pep 1p and the antichain
cardinality statistic Zpe p T, - More generally, we might be interested in refinements of these
cardinality statistics. We say that the collection of statistics fy,...,fs: J(P) — R refines the
statistic f: J(P) — R when f = f; + - -- + f,. For example, one can obtain refinements of the
cardinality statistics by choosing a partition of P into subsets B, ..., Bs and considering the
collection of statistics )z 1,0r> 5 T,

2.4. Homomesy

Recall from [PR15] that a function f from a finite set X to R is said to be homomesic under the
action of an invertible operator 7': X — X if there exists a constant c such that the average of f
on each T-orbit is ¢; in this case, we say f is c-mesic. A trivial example of a c-mesic function
is the constant function f(x) = ¢; also, if T" acts transitively on X so that there is only one
orbit, every statistic is homomesic. It is easy to see that every linear combination of homomesic
functions is homomesic and that every linear combination of 0-mesic functions is 0-mesic.

We will be interested in homomesies for rowmotion acting on 7 (P). The following impor-
tant observation of Striker [Str15] will be the building block for our subsequent investigation of
such homomesies.

Lemma 2.3 ([Str15, Lemma 6.2]). For any p € P, the statistic T, is 0-mesic under rowmotion.

Proof of Lemma 2.3. 1t follows immediately from the definition of rowmotion that for every
I € J(P), we have min(P \ I) = max(Row([)), implying 7,7(I) = 7, (Row([)). Hence,
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if O C J(P) is any Row-orbit, we have that

SN = D (T - T, ()

IeO 1e0O

AR
1€0O I€O

= YT = YT (Row(D)
1€eO 1€e0

= > (7,7(1) = 7, (Row(D))
1€0

= Y (L) -THD) =0,
IeO

where for the third equality, we use the fact that we are summing over a Row-closed set to
replace I by Row (/) in the second sum. O

In fact, Striker’s lemma extends to the rank-permuted versions of rowmotion.

Lemma 2.4 ([Str15, Theorem 6.7][Hopl7, Lemma 7.7]). If P is ranked, then for any permuta-
tiono of 0,1, ... ,1k(P) and any p € P, the statistic T, is 0-mesic under Row,.

The proof of Lemma 2.4 is slightly more involved than that of Lemma 2.3; rather than in-
clude a proof of Lemma 2.4 here, we will prove in Section 4 the birational and piecewise-linear
extensions of this lemma (Lemmas 4.2 and 4.3) from which Lemma 2.4 will follow as a corollary.

As we have already emphasized in Section 1, it follows trivially from Lemma 2.3 that if a
statistic f: J(P) — R has a representation f = ¢ + Zpe p T, for constants c, ¢, € R, then
f is c-mesic under rowmotion (and Lemma 2.4 says similarly for the rank-permuted versions of
rowmotion). In fact, this is how we will show various statistics are homomesic.

To that end, we introduce the following notation that we will use repeatedly throughout the
rest of the paper: if f,g: J(P) — R are two statistics on J(P), we write f = g to mean
that there are constants ¢, € R for whichf — g = Zpe p ¢ Tp. Bvidently, = is an equivalence
relation; moreover, it is a congruence in the sense that f; = g; and fo = gy imply a; -f; +-ay-f; =
ay- g1+ aq - go forall a;, as € R. We will use this property of = in what follows without further
comment.

With this notation, we can state the following consequence of Lemmas 2.3 and 2.4:

Proposition 2.5. If f: J(P) — R satisfies f = c for some ¢ € R, then f is c-mesic under
rowmotion; if P is ranked, it is c-mesic under Row,, for any o as well.

For a statistic f: J(P) — R, let us introduce the shorthand f = const to mean that there is
some constant ¢ € R for which f = c. In light of Proposition 2.5, our focus in Section 3 will
be showing that f = const for various statistics f on 7 (P). From now on, each time we show
f = const, we will not separately state as a corollary that this implies f is homomesic under
rowmotion, but that is of course the impetus for showing f = const.
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Remark 2.6. As mentioned in Remark 2.1, the “left to right” composition of toggles known as
promotion is another operator on 7 ( P), related to rowmotion, that has also received significant
attention. We note importantly that the signed toggleability statistics 7, are not in general ho-
momesic under promotion; this can already be seen for P = [2] x [2]. Therefore, in general, our
results do not apply to promotion. However, for statistics f: 7(P) — R that are linear combina-
tions of the order ideal indicator functions, i.e., for f € Spang{1,: p € P}, the recombination
method of Einstein and Propp [EP21, §6] can be used to deduce that f is homomesic under pro-
motion if it is homomesic under rowmotion (and vice-versa). Hence, in fact our results here do
yield some homomesy results for promotion as well as rowmotion, although we will not explain
all the details for these implications.

2.5. Linear independence

Our results below assert that for various statistics f: 7 (P) — R, we have f = const, i.e., that
there are ¢,c, € R for which f = ¢ + Zpe p ¢ T,. When one tries expressing f as a linear
combination of 1 and the signed toggleability statistics 7, in this way, it is natural to ask if the
resulting coefficients are unique. In other words, we would like to know if these statistics are
linearly independent. Here, we prove that this is indeed the case. In fact, we prove a more
general result concerning g-analogues of the signed toggleability statistics. For ¢ € R, we
set T == 7;* —q7T, . Of course, 7;1 is the same as 7,,.

The only time that we will actually need the following theorem is in Section 5, where we
will use it to avoid a technical issue concerning singularities of rational functions. Therefore,
the casual reader can safely bypass this.

Theorem 2.7. Fix a real number q = 0. The statistics T : J (P) — R are linearly independent
over R, and they are also linearly independent from 1.

Proof. Let g,(I) = ¢#*"\DT4(I). It is clear that g,(I) = —g,(7,(1)) for all p € P and
all I € J(P). Since the toggles 7, are involutions, this implies

Z q P\ITq () = Z gr(l) =0

IeJ(P) IeJ(P)

forall p € P. If we could express the constant function 1 as a linear combination 1 = Zp ep &)
for some coeflicients ¢, € R, then we would have

S = N NS T =Y Z g PITHT) = 0.

IeJ(P) IeJ(P) peP peP  IeJ(P

However, this cannot happen because Y, ;) ¢* ) = 1+ 30,7 py oy ¢*7V) > 0
(since ¢ > 0). This proves that the statistics 7,7 are linearly 1ndependent from 1. So from
now on, we work to show that the 7,7 are linearly 1ndependent from each other.

For this proof, we will find it convenient to work with antichain rowmotion, which is the op-
erator Row: A(P) — A(P) defined by Row(A) := min(P\{z € P: x < y forsome y € A}).
Here, {x € P: x < yforsomey € A} is the order ideal generated by A. In other words, we
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have Row(max(/)) = max(Row(I)) for all I € J(P), where the first instance of Row is
antichain rowmotion and the second is order ideal rowmotion.

Now suppose that ¢, € R for p € P are real coefficients such that ¢, 77 = 0.
Let A € A(P), and let I be the order ideal generated by A. Then we have

1 if p € Row(A),
THI) =< —q ifpe A,
0 otherwise;

so the identity > ¢, 7,/(1) = 0 is equivalent t0 ¢ 3 4 ¢y = > cRow(a) Cp- Therefore, the
linear independence of the 7,7 is equivalent to the following claim:

Claim. If a function 7: P — R satisfies ¢, T(p) = > crow(a) 7(p) for all antichains
A e A(P), then (p) =0 forall p € P.

We proceed to prove this claim. Let m: P — Rbe suchthatq}: ., 7(p) = > crow(a) 7(P)
for all A € A(P). We will show that 7(p) = 0 forall p € P.

First suppose that ¢ # 1. Let m be the order of antichain rowmotion on A(P) so that
Row™(A) = Afor all A € A(P). Thus, we have

"y wlp)= >, 7wp) =) =),

peEA pERow™ (A) peEA

forall A € A(P). In other words, (1 —¢™)>_ ., m(p) = 0 forall A € A(P). Since g # 1,
this means » ., 7(p) = 0 for all A € A(P). By considering the antichain A = {p}, we
see m(p) = 0 for each p € P.

So now suppose ¢ = 1. The argument in this case is more involved. Let n be the number of
elements of P. The claim is vacuous in the case n = 0, so we may assume n > 1 and proceed
by induction on n. We will consider different posets in the proof, so for any poset (), we write
Row, to denote antichain rowmotion on A(Q).

Let us first consider the case where there is some maximal element x € P such that w(x) = 0.
Consider the subposet P’ := P\ {z}. Let A € A(P’). We can view A as an antichain in A(P)
as well. Note that Rowp(A) is equal to either Rowp/(A) or Rowp/(A) U {x} (we are using
the maximality of ). In either case, the condition > . , 7(p) = >_ crowp(a) T(P) is equiva-
lent (because 7(x) = 0) to the condition 3 4 T(p) = >_,crow,,(4) T(P)- As this is true for
all A € A(P’), we can use our induction hypothesis to see that w(p) = 0 for all p € P’. Hence,
m(p) =0forallp € P.

The previous paragraph tells us that it suffices to prove that 7(z) = 0 for some maximal
element x of P. Choose some maximal element x, and let M be the (possibly empty) set of
maximal elements of P that are not z. Let  := > ), 7(p). Let I be the order ideal generated
by M, and let P” = P\ I. Let m be the order of antichain rowmotion on A(P") so that
Row'p,(A) = Aforall A € A(P"). For each A € A(P"), the set AU M is an antichain in P
such that Rowp(A U M) = Rowpr(A). Therefore,

Y )= > wp)= D, w)= Y. =)

pEA peEAUM pERow p(AUM) pERow prr (A)
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This shows that 3° o 4 T(P) = 2 o,cam(p) = k forall A € A(P"). If we replace A by

Row",,(A) and sum over all 0 < k& < m — 1, we find (after canceling terms in the telescoping
sum) that 3 g m 4y T(P) = D0 c4 ™(p) = ms. But the left-hand side of this last equation
p!

equals 0 since Row’, (A) = A. So k = 0. Finally, Rowp(M U {z}) = &, so
m)=m(x)+r= Y 7(p)= > m(p) = 0.

peMU{x} pERow p(MU{z})
This proves that w(x) = 0, which completes the proof. [
Remark 2.8. Theorem 2.7 is not true with ¢ = —1. For instance, when P is an antichain and

q = —1, all the statistics 7, for p € P coincide with the constant statistic 1.

Remark 2.9. When P is a chain, we have #.7(P) = #P + 1 and hence, by Theorem 2.7, 1
and 7, for p € P span the entire space of functions J(P) — R. In any other case, we have
#J(P) > #P +1, so 1 and the 7T, span a strict subspace of the space of functions J (P) — R.

Remark 2.10. As mentioned above, we are interested in statistics in Spang ({1} U{7,: p € P})
that also belong either to Spang{1,: p € P} orto Spang{7,”: p € P}. Clearly, these latter two
sets are also linearly independent, so we will also have unique representations of our statistics
as sums of order ideal/antichain indicator functions.

3. The toggleability statistics technique

Our focus now turns to showing f = const for “interesting” statistics f: 7 (P) — R and certain
families of posets P. (Recall from Section 2.4 that we write f = gif f — g = Zpe p T, for
some ¢, € R, and write f = const if f = ¢ for some ¢ € R.) The posets we consider are those for
which rowmotion has been shown to exhibit good behavior. The most prominent among these
is the rectangle poset [a] x [b]. The others are all minuscule posets or root posets (rectangles are
examples of minuscule posets). While such posets have algebraic significance, our treatment is
ultimately case-by-case and does not use any algebraic machinery.

Remark 3.1. Homomesy is surprising when we consider an infinite family of posets and the
number of orbits for each poset is relatively large. Every poset P that we will discuss in this
section is ranked and has rowmotion order dividing 2(rk(P) + 2) (see [AST13, RS13]). This
order is (usually) small compared to # .7 (P), so there must in fact be many orbits of rowmotion
for such P. Hence, the homomesy corollaries we obtain from showing f = const are indeed a
priori surprising.

Remark 3.2. Much (though certainly not all) of this section is a streamlining of results from the
papers [CHHM17, Hop17]. We repeat some arguments from those papers for completeness and
to aid with the narrative flow. We review the history of results as we go.

As we have explained in Section 2.1, all our main examples of posets will be realized as
contiguous subsets of Z2,, and we will draw these posets rectilinearly with (1, 1) at the upper
left. In particular, the elements of our posets will be boxes (7, 7). We will often write (4, j) as
i, 7 for brevity. Another useful convention we will adopt throughout is that if a given (7, j) does

not belong to our poset, we consider all its associated statistics 1; ;, 77;, 7;;, 7 ; to be zero.
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1 |1 |1 1 1 |1
1 =1 —1] —1
I 1 1 1 1 |1
—1] —1 —1] —1
IS VO O I N
1 1 1 1 1 1 1 1
-1 -1 |-1 -1 -1 -1
1 1 1 1 1 1 1 1
By 1 1 1
1 1 1 1 11 1 1 1

Figure 3.1: The left image illustrates the rook Rj 3 on the rectangle [5] x [6], while that on the
right illustrates the proof of Theorem 3.4. A box with d in its upper left and e in its lower right
at location (7', j') denotes a contribution of der » + €Ty . There are 0’s tacitly present at all
locations where no number appears. In the 1mage on the right, the boxes (3,2), (2,2), (2,3)
contribute 1, —1, 1, respectively, with the total sum along the red path being 1.

3.1. The rectangle

In this subsection, we fix P = [a] x [b].

3.1.1 Rooks

As mentioned in Section 1, certain clever combinations of toggleability statistics that we refer
to as “rooks” are at the technical heart of our proofs that f = const for various statistics f. We
now introduce these rooks.

For (i, j) € P, define the rook R; ;: J(P) — R by

Ry= 3 Ty = 2 Ty + > Ty = > Ty GD

i<, §'<g i <i, j'<j V>, j' 25 >4, j'>]

and the reduced rook EH : J(P) —» Rby
=X T+ Ty (3.2)
j/ 1:/

The sum in (3.1) defining R; ; has a nice pictorial representation, as shown on the left in Fig-
ure 3.1 for P = [5]x[6] and (¢, 7) = (3, 3).

Observe that 7,7 = 7, (since 7,* — 7, = T,). Thus, we have the following lemma relating
Ri,j and éi,j-

Lemma 3.3. For all (i, ) € [a] x[b], Ri; = Ri.

The name “rook” comes from the fact that ﬁl ; consists of a sum of the functions 7;* over
all boxes p in the same row as (3, j), plus a sum of the functions 7,~ over all boxes p in the same
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column as (4, 7). In this way, R, ; “attacks” each box in the same row/column as (i, j), like a
rook chess piece (although note that it attacks its own box (i, j) twice). Since we often work
modulo the span of the 7,, we also think of R?; ; attacking these boxes in this way. In the image
on the left in Figure 3.1, we have drawn blue lines in the row and column of (i, j) to visually
represent which boxes this rook R?; ; attacks.

The following theorem, which is far from obvious, is what makes rooks important and useful.

Theorem 3.4. For (i,j) € [a] x[b], we have R; ;(I) = 1 for all I € J(P). In other words, we
have R; ; = 1 as an equality of functions.

Proof. Given an order ideal I viewed as a set of boxes inside an a x b rectangle, define the
boundary of I as the lattice path that joins the lower left corner of the rectangle to the upper right
corner of the rectangle and separates elements of / from elements of P \ /. Evaluating R; ;(I)
amounts to summing the numbers from the pictorial representation of the rook R; ; that border
the boundary of 7, as shown (in red) on the right in Figure 3.1. For if box p does not border the
boundary path, then it cannot be toggled into or toggled out of I and 7," (1) = 7,7 (1) = 0; on
the other hand, if box p does border the boundary path, then it can be toggled in (resp. out) if
and only if the path contains the left and top (resp. bottom and right) sides of p.

There are two cases to consider according to whether (i, j) ¢ I (in which case the boundary
of I passes above and to the left of box (i, 7)) or (¢,j) € I (in which case the boundary of 1
passes below and to the right of box (¢, j)). But in either case, the contributions to the path-sum
alternate between +1 and —1 as we traverse the path, beginning and ending with +1, so the total
is 1. 0

Rooks were introduced by Chan, Haddadan, Hopkins, and Moci [CHHM17], and Lemma 3.3
and Theorem 3.4 were first proved in that paper (see [CHHM17, Lemma 3.5, Theorem 3.4]). (In
fact, rooks were defined in [CHHM17] not just for the rectangle, but for any Young diagram
shape, including skew shapes.)

3.1.2 Antichains

We now focus on proving that various f that are linear combinations of the antichain indicator
functions, i.e., f € SpanR{’E‘: p € P}, satisfy f = const. In fact, thanks to Lemma 3.3

and Theorem 3.4, we already know this is true of the reduced rooks, which satisfy Eu = 1.

But now we want to show how the ﬁu can be combined to yield other, natural functions f in the
span of the functions 7,". We begin with the antichain cardinality statistic.

Theorem 3.5. For P = [a] x [b], we have Y ., T,” = 2.

Proof. Note that

Sh, Y (ZﬁﬁZ%) ST YT = Y T4 T = a0
0] J i/

ii \ J ig.' i igJ' ii'j ij

The third equality holds because we can swap j with 5’ in the first sum and 7 with ¢’ in the second
sum, and the fourth equality holds because every box belongs to the same row as a boxes and



16 Colin Defantet al.

the same column as b boxes. (An abbreviated way to say Z R J = ZZ j(a +b)7T;; is “every
box is attacked a + b times.”) It follows from Lemma 3.3 and Theorem 3.4 that

ab_ZR”_ZszzaM) =(@+0))>_ 7,
1]

peP

SO ZPGP T_ - a+b ]

Remark 3.6. Although the proof of Theorem 3.5 does not require an explicit representation
of > cp7, in the form a“—fb + > pep &Tp, We mention that unwinding the argument above
yields
ab—a(b+1—])—b(a+1—z)
Cij =
a+b

These coeflicients could be useful to future researchers for other purposes. However, from now
on, we will not bother to work out these coefficients ¢, when we show f = const for other
statistics f.

A positive fiber of the rectangle [a] x [b] is a subset B C [a] x [b] of the form {i} x [b] for
some i € [a]. A negative fiber of [a] x [b] is a subset B C [a] x [b] of the form [a] x {j} for
some j € [b].

Theorem 3.7. If B = {i} x [b] C [a| x[b] is a positive fiber, then 5z T,” = b/(a + b).
If B = la] x {j} is a negative fiber, then ) .z T,” = 3.

Proof. By symmetry, it suffices to consider the case when B = {i} x [b] C [a]x[b] is a positive
fiber. Foreach1 <7 < q, setf; = Zj 7;; To prove that f; = we begin by noting that,
thanks to Lemma 3.3 and Theorem 3.4,

_b_
a+b’

O=Ri1—Riyig=Rig — §i+1,1 =fi—fiq

for all 1 < ¢ < a. (In fact, we can also see that f; — f; .1 = 0 more directly from the observation
that for any I € J(P), we can toggle some element of the i-th positive fiber out of [ if and only
if we can toggle some element of the (i + 1)-st positive fiber into 1.)

Thus, we have f; = f, = - -- = f,. But also, we know from Theorem 3.5 that

f 4 foyt - +f-ZT‘E .
peP

Soforany 1 <7 < a,wehavea-f;, = “b . We conclude that f; = = +b, as claimed. U]

That the antichain cardinality statistic, and its fiber refinements, are homomesic under row-
motion for the rectangle was first proved by Propp and Roby [PR15, Theorem 27]. The stronger
results that these statistics are = const (i.e., Theorems 3.5 and 3.7) were first proved by Chan,
Haddadan, Hopkins, and Moci [CHHM17, pg. 23], with the same proofs we have given above.
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Figure 3.2: An illustration of the proof of Lemma 3.8 witha = 4, b = 7, and (i, j) = (2, 3).

3.1.3 Order ideals

We now show that various f that are linear combinations of the order ideal indicator functions,
ie., f € Spang{1l,: p € P}, satisfy f = const. We first need a lemma relating the order ideal
indicator functions to the toggleability statistics.

Lemma 3.8. Forany p = (i, ) € [a] X [b], we have

e Y T - Y T o

i'>i, §'>j i'>4, §'>j

Proof. Consider an order ideal I € [J(P). The elements (¢, j') that contribute +1 to the right-
hand side of (3.3) are those for which i/ > i, ' > j, and 7;,_0.,(]) = 1; the elements (7', j') that
contribute —1 to the right-hand side of (3.3) are those for which ¢’ > 4, j* > j, and 779,([ )= 1.
For example, Figure 3.2 depicts p = (2,3) € P = [4] x[7] (the box marked with an “X”), with
the boundary of an order ideal / € J(P) drawn in red. In the lower right corners of those (7', j')
with i > 4, j/ > j, we have written a 1, and in the upper left corners of those i' > i, j' > j, we
have written a —1. Observe how along the red path we encounter a 41 corner, then a —1 corner,
then a +1 corner, and so on, ending with a +1 corner.

More generally, it is easy to see that if p € I, then the contributions to the right-hand side
of (3.3) alternate in sign, beginning and ending with a 41, so that the net contribution is +1.

On the other hand, if p ¢ [ then there are no 7/, j' satisfying either 7/ > 4, j* > j' and
ToyI) = 1,0rd" > i, j > j and 7;7;.,([ ) = 1, so the contribution to the right-hand side

of (3.3) is 0. u

Remark 3.9. The reader may notice considerable similarity between the proof of Lemma 3.8
we just gave and the earlier proof of Theorem 3.4: for instance, both involved noticing a pattern
of +1,—1,...,+1 coefficients along a boundary path to obtain an overall sum of 1. In fact, the
“180° rotation” of Lemma 3.8 asserts that

_ + —
-1,= Y T > T (3.4)
i<, < i<, §'<j

Summing (3.3) and (3.4) yields precisely the equation 1 = R;; (where we recall the defini-
tion (3.1) of RR; ; as a sum of toggleability statistics). In this way, Lemma 3.8 actually implies
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00|01 |1]1]1]1
00101 f2]2]|2)|2
0{0]0]|1[2[3(3|3
001012344

Figure 3.3: The numbers f(i, j, k) from the proof of Theorem 3.10 with a = 4, b = 8, and
k = 3. We have written f (i, j, k) inside of box (i, j) and highlighted the boxes of the k-th file
in blue.

Theorem 3.4. What is more, insofar as (3.3) and (3.4) each contribute two of the four sums
defining the rook R; ;, we see that the sum of toggleability statistics in (3.3) can be thought of
as “half a rook.”

The k-th file in [a] x [b] is the set {(,7) € [a] x [b] : j — i = k}.

j) €
Theorem 3.10. Fix k satisfying 1 —a < k < b—1. Let B = {(i,j): j—i =k} C [a] x[b]
be the k-th file in [a] x [b]. Then 3 1, = cwithc = a(b —k)/(a +b) if k > 0 and
c=bla+k)/(a+b)ifk <0.

Proof. We first consider the case k > 0.

Let f(i,7, k) denote the number of elements in the sub-rectangle [i] x [j] belonging to B.
(Ifi < 0orj <0,then f(i, 7, k) = 0.) For example, Figure 3.3 depicts these numbers f (i, j, k)
when P = [4] x[8] and k = 3.

With this notation, we have

Su, = S (T - -1 1K) T
pEB (i,5)eP

= Z (f<27]:k)_f(2_17j_Lk)),ﬁ,;_ f(i_lvj_Lk),E,j

(3,7)EP (i,5)EP

= > T, - > Jli-Lji-1KTy

(i,4)€EP, (i,5)eP
1—i<k<j—1

= > T; - > fli-1j-1kTy (3.5)

1<i<a, (4,7)€EP
k+1<5<b

The first equality above holds by applying Lemma 3.8 to all p € B (with ¢, j’ replaced by i, j).
The second equality holds because 7,+ = Ti; + T;;- The third equality holds because the
summand f(i,5,k) — f(i — 1,5 — 1 k) is1or0 accordmg to whether there is or is not an
element of B contained in the 1-shape consisting of the elements (1, 5), (2,7), ..., (i — 1,),
(2,9), (i,5 —1),...,(4,2), (,1), and such an element exists when 1 — i < k < j — 1 (consult
Figure 3.3). The fourth equality follows from rewriting the inequalities governing the indices,
using the assumption £ > 0.
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An alternative way to write the right-hand side of (3.5) is as

Z Zfz—l] NINIRE

(4,J)€Pr (¢,5)eP

where we have divided the rectangle P into left and right halves P, := {(7, j) € [a]x[b]: j < k}
and Pr == {(4,7) € [a]x[b]: 7 > k}. We have so far shown that

L= Y T (3.6)

peB (i.j)€Pr

Applying Lemma 3.3, Theorem 3.4, and (3.2) yields

ak=Y R,=(a+k) > T;+k > T 3.7)

PEPL (4,5)€PL (i,j)€PR

The coeflicient of the sum over Py, is a + k because a rook in Py, is attacked by a + k rooks in P,
(a in its column and £ in its row); the coefficient of the sum over Py is only k& because a rook
in Py is attacked by only k rooks in P;. Likewise, we have

=> Ry=(b—k) Y T;++b—k Y T, (3.8)

peEPR (1,5)EPL (i,J)EPR

Multiplying (3.8) by a + k and (3.7) by b — k and subtracting, we get
(a+k)ab—k)—ak(b—k) = ((a+k)(a+b—Fk) —k(b—k) Y

which simplifies to
a’(b—k) =a(a+0b) Z
(i,J)EPR
Returning to (3.6), we see from the above that

a(b—k)
I;]l_ a—l—b7

which proves the claimed result in the case k£ > 0.
To handle the case k£ < 0, exchange a and b, and replace k by —k. [

Corollary 3.11. For P = [a| X [b], we have =g

peEP P = 2
Proof. The statistics in Theorem 3.10 are refinements of order ideal cardinality, i.e., they sum
to Zpe p 1,. Hence, by invoking Theorem 3.10 and summing over all files, we see that we have
Zpe p 1, = cfor some constant ¢ € R. One could find ¢ by explicitly evaluating and combining
two finite geometric progressions, but a simpler way to find ¢ uses symmetry. Specifically,
consider the complementary statistic » _ e p(1 —1,). On the one hand, the sum of the statistics
> pep Ipand 3 p(1 —1,) is the constant statistic | ., 1 = ab,s0 ) 1, =ab—c. On
the other hand, the involution on order ideals [ that rotates the complement of / by 180° swaps
the two statistics, implying ab — ¢ = ¢. Hence, ¢ = ab/2. (In the proof of Theorem 3.21 below,
we will explain that this same symmetry argument works for any self-dual poset.) [



20 Colin Defantet al.

That the order ideal cardinality statistic, as well as its file refinements, are homomesic under
rowmotion for the rectangle was again first proved by Propp and Roby [PR15, Theorem 23]. The
stronger results that these statistics are = const (i.e., Theorem 3.10 and Corollary 3.11) are new.
One of our main tools in establishing these results was Lemma 3.8, which is also new.

3.2. The shifted staircase

The n-th shifted staircase poset, which we denote by ([n] x [n])/Ss, is the poset realized as the
subset {(¢,7) : 1 <4 < j < n} of Z2,. Our notation for this poset comes from the fact that it
is also the quotient of [n] x [n] by the involutive poset automorphism (i, j) — (7, 1).

We use ¢: J(([n] x[n])/S2) — J([n]x[n]) to denote the map sending each order ideal to
its preimage under the quotient map; that is, (1) := {(¢, 5), (j,i): (¢,7) € I}. Observe that +(I)
for I € J(([n]x[n])/&,) is indeed always an order ideal in 7 ([n] x [n]). Note importantly that
all the statistics on 7 (P) we care about are invariant under ¢. In other words,

T = T (u(l) = T35 (u(D));
Ti; () = T; (D) = T (e(1));
Lij(1) = 15 5(e(1)) = 154(e(1))

for all (7, j) € ([n]x[n])/Ssand I € J(([n]x[n])/Sz). In other words, if we take any identity
satisfied by the 7;;, 7, and 1;; for [n] x [n], it will also hold as an identity for ([n] x [n])/&,
provided we equate (7, j) and (j, 7). As we shall see, ¢ therefore allows us to easily transfer many
results from [n] x [n] to ([n] x [n])/Gs.

From now on throughout this subsection, we fix P = ([n] x [n])/S,.

3.2.1 Rooks
For (i, j) € P, define the rook R; ;: J(P) — R by

Riji= > Ty = > Ty + > Toy — > Ty (3.9)

i<, /<] i'<i, §'<j, >, j' 25 i'>i, j'>j,
i/<j/ i/<j/

and the reduced rook ]5;@] : J(P) — Rby

Rig = Ty + 2 Ty + > Tow + 2 Tiyr (3.10)
7 i

i< Jj'’>j

(Observe how we use the same notation for rooks for different posets, allowing context to differ-
entiate the different R; ;.) The sum in (3.9) defining R; ; can be represented pictorially as in the
left image in Figure 3.4. ~

It is again immediate from the definitions (3.9) and (3.10) of R?; ; and R; ; that we have the
following relation between these statistics.

Lemma 3.12. Forall (i,5) € ([n]x[n])/S, Ri; = R, ;.
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T [T [T [ 1 [T [T |1
N | -1 -1 1 -1
T[T 1) T 1 |1

1 1 11l

1 -1 T -1

1 1 1 | 1 1

1 -1 1 -1

11 1 1 1 1 1

1 1

\\1 1 1 1

N1 1

Figure 3.4: On the left is an illustration of the rook R, 4 on the shifted staircase ([6] x [6])/Sa.
On the right is an illustration of the proof of Theorem 3.13. The sum along the red boundary
pathis+1 —-1+1=1.

The blue lines in the left image in Figure 3.4 show the boxes “attacked” by }NL jand R; ; (with
the box (i, j) itself again being attacked twice). Because they are analogous to the rooks on the
rectangle, we still call these statistics rooks even though they no longer attack the way a rook
chess piece attacks.

Furthermore, we again have the same fundamental fact as with the rectangle that the R; ; are
identically equal to one.

Theorem 3.13. For all (i, j) € ([n|x[n])/Ss, R;; = 1.

The proof of Theorem 3.13 is analogous to the proof of Theorem 3.4: we consider the south-
east boundary of the boxes in any order ideal I € 7 (P) and observe that the nonzero coefficients
adjacent to this pathare 1, —1,1, ..., 1, so always sum to 1. The right image in Figure 3.4 shows
an example of this.

Rooks for the shifted staircase were introduced by Hopkins [Hop17], and Lemma 3.12 and
Theorem 3.13 were first proved there (see [Hop17, Lemma 4.3 and Lemma 4.4]). (In fact, rooks
were defined in [Hop17] not just for the shifted staircase, but for any shifted Young diagram
shape.)

3.2.2 Antichains

Now we consider statistics that are in Spang{7,” : p € P} and satisfy f = const. The reduced
rooks R; ; are of this form; but we want to see if other, natural such f can be realized as linear
combinations of the R; ;.

Lemma 3.14. We have )", T;; = 5 for P = ([n]x[n])/&..
Proof. 1t is routine to verify that

Q'Z T = Z Ri; — Z Rijp

1<i<n 1<i<n 1<i<n—1

i
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in a way similar to what we have already seen in other arguments, keeping track of how many
times each box is attacked by various combinations of rooks. Since Lemrna 3.12 and Theo-

rem 3.13 tell us that R; ; = 1 forevery (i, j) € P, we conclude that > Tii = 3.asclaimed. [

Lemma 3.15. Fix 1 < ¢ < n. Then we have Z]Q it ZK] T, = %for P = ([n]x[n])/G..
Proof. 1t is routine to verify that

2T+ 2 Ty =R - 2T

1< i<j<n 1<isn

Lemma 3.12 and Theorem 3.13 tell us that R; j = lforevery (i,7) € P, and Lemma 3.14 tells
us that ) “:2,hence Z]Q “—i—ZKJT_E O

Observe that the statistics from Lemmas 3.14 and 3.15 refine (twice) the antichain cardinality
statistic. That is, we have

SECED S OVFEDS 7;;) T

1<i<n =1 1<5<s <j<n peEP

1
2°

Hence we deduce the following corollary.
Theorem 3.16. For P = ([n] x[n])/ &y, we have } pT,~ = "

That the antichain cardinality statistic is homomesic under rowmotion for the shifted staircase
was first proved by Rush and Wang [RW 15, Theorem 1.4] (who, as we will mention below, in fact
addressed all minuscule posets). The stronger result that it is = const (i.e., Theorem 3.16) was
first proved by Hopkins [Hop17, Theorem 4.2], with the same proof we have presented above.

3.2.3 Order ideals

Finally, we consider those statistics f that belong to Spang{1, : p € P} and satisfy f = const.
Here, ¢ will take care of everything for us.

Theorem 3.17. Fix0 < k < n — 1, and le {( j):j—1 =k} C([n]x[n])/Ss be the
k-th file of the shifted staircase. Then ) _p vep Lp = T‘

Proof. We have ) 5 1,(1) = > p1,(e(1)) forall I € J(([n]x [n])/&2). So the claim
follows directly from Theorem 3.10. [

Summing up these file refinements of order ideal cardinality, we obtain:

Corollary 3.18. For P = ([n]x[n])/&y, we have ) 11, n(n4+1).

That the order ideal cardinality statistic, and its file refinements, are homomesic under row-
motion for the shifted staircase was again first proved by Rush and Wang [RW 15, Corollary 1.3]
(and again they in fact dealt with all minuscule posets). The stronger results that they are = const
(i.e., Corollary 3.18 and Theorem 3.17) are new.
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D (n) AEG AE?

Figure 3.5: The other minuscule posets beyond the rectangle and shifted staircase.

Remark 3.19. Just as with the rectangle, there are “half a rook™ identities for the shifted staircase,

such as
L= > Ty — > T
V>4, §' 25 ">, j'>j,
i’ <g’

for any p = (i,7) € ([n] x[n])/S2. But we will not need these.

3.3. Other minuscule posets

The minuscule posets are a class of posets arising from the representation theory of simple
Lie algebras, which exhibit remarkable combinatorial properties. Briefly, each minuscule poset
arises from the choice of a Dynkin diagram I" and a minuscule node i of I'. See [Pro84, Ste94] for
details on minuscule posets and the algebraic context in which they arise. The minuscule posets
have been classified, and for our purposes, it is enough to review this classification without
explaining the formal definition of a minuscule poset.

We have already encountered the two most prominent examples of minuscule posets, which
are the rectangles [a] x [b] and the shifted staircases ([n] x [n])/&2. Beyond these, the other
minuscule posets include one very simple infinite family D(n) for n > 2, the so-called double-
tailed diamonds, and two exceptional posets Ag, and Ag,. These are depicted in Figure 3.5.
(Note that D(2) ~ [2] x[2] and D(3) ~ ([3] x[3])/6>.)

A poset P is graded if all maximal chains in P have the same length. If P is graded, then it
is ranked, and in this case, rk(P) is the length of any maximal chain. Also, recall that the dual
poset P* is the poset on the same elements as P but with x <p y if and only if y <p- z. We
say P is self-dual if it is isomorphic to P*.

All minuscule posets are graded (hence, ranked), and all are also self-dual.

The minuscule posets are known to exhibit good behavior of rowmotion (see [RS13]). We
will now show that the toggleability statistics technique also works well for the minuscule posets.
In particular, we will show that both the antichain and order ideal cardinality statistics are =
const for all minuscule posets. Since we have already shown this for the rectangle and shifted
staircase, there is not much work left to do.

Theorem 3.20. Let P be a minuscule poset. Then Zpe pT, = rk(ﬁj -
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Proof. First, let us observe that if P is any graded poset and » ~ = c for some c € R,

pEP
then we must have ¢ = 33) —5- Indeed, Proposition 2.5 tells us that c is the average antichain
cardinality along any rowmotlon orbit. And graded posets have one distinguished rowmotion
orbit

{{pe P: rk(p) <i}:i=-1,0,1,...,tk(P)},

which is easily seen to have average antichain cardinality equal to %.

Now let P be a minuscule poset. We will prove that there exists some constant ¢ such that
Zpe pT, =¢ since P is graded, it will then follow from the preceding paragraph that ¢ must
actually be # We have already shown this for the rectangle and the shifted staircase (The-
orem 3.5 and Theorem 3.16), so we need only address D(n), Ag,, and Ag..

First, consider P = D(n). This poset consists of an “initial tail” z; < .-+ < x,_1, two
incomparable elements ¥, y, in the middle, and a “final tail” 2, ; < --- < z; which satisfies
x; <y; < z forall i, j, k. We claim that

ST ==Y 5T

peEP i=1

Indeed, to verify this is just a matter of checking the few possible cases: the empty order ideal;
an order ideal generated by an x;; an order ideal generated by a z;; an order ideal generated by
a y;; and the order ideal generated by {y1, y2}.

Now consider P = Ag, or Ag.. In this case, we checked by computer that the relevant system
of equations has a solution (and the Sage code worksheet referenced in the acknowledgments
includes this verification). OJ

Theorem 3.21. Let P be a minuscule poset. Then ) 1, = #P

Proof. First, let us observe that if P is any self-dual poset and Zpe P
#. Indeed, ¢ must be the average order ideal cardinality over all
I € J(P), and we can see that this average has to be % in the following way. For I € J(P),
set [* .= w(P\I) € J(P),wherew: P — P*is the self-duality. Then I — [* is an involution,
and #1 + #1* = #P for all I, which implies the average of #1 is %

Now let P be a minuscule poset. Since P is self-dual, we know by the preceding paragraph
that # is the right constant for Zpe p 1, to be = to. Thus, we only need to show that there is
some ¢ € R such that Zp cp I, = c. We have already shown this for the rectangle and the shifted
staircase (Corollary 3.11 and Corollary 3.18), so we need only address D(n), Ag,, and Ag..

First consider P = D(n). Let 2y < --- < x,_; be the elements in the initial tail, y;, y, be
the two incomparable elements in the middle, and z,,_; < - -- < z; the elements in the final tail.
Then we claim that

Sy mn =Sk (= 1)+t (i )T, - PRI DE D

pEP =1

_(n+(n—12)+"'+1)7;2 (n4+n—1)4-+n—i+1)7T..

» = c for some c € R,
then we must have ¢ =
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As we mentioned in the proof of Theorem 3.20, the order ideals in 7 (D(n)) are divided into a
very small number of cases, and we can verify this equation by checking these cases.

Now consider P = Ag, or Ag,. In this case, we checked by computer that the relevant system
of equations has a solution (and the Sage code worksheet referenced in the acknowledgments
includes this verification). ]

That the antichain cardinality statistic is homomesic under rowmotion for any minuscule
poset P was first proved by Rush and Wang [RW15, Theorem 1.4]. The stronger result that
it is = const (i.e., Theorem 3.20) was first proved by Hopkins [Hop17, Theorem 5.2], in a
case-by-case fashion exactly as we have done above. Rush [Rus16, Theorem 1.5] subsequently
gave a uniform proof that Zpe p T, = const for all minuscule posets, building on his earlier
work with coauthors [RS13, RW15] studying toggling for minuscule posets. That the order ideal
cardinality statistic is homomesic under rowmotion for any minuscule poset P was again first
proved by Rush and Wang [RW 15, Corollary 1.3]. The stronger result that it is = const (i.e.,
Theorem 3.21) is new.

Remark 3.22. For the double-tailed diamond P = D(n), Spang{7,: p € P} is the entire space
of functions 7 (P) — R that are 0-mesic under rowmotion. This will follow from Theorem 6.2.

3.4. The Type A root poset

The root poset of Type A,,, which we denote by ®*(A,, ), is typically defined as the set of positive

roots in the Type A,, root system under the natural partial order on these roots. We will review

root posets in general below, but for the moment, we will simply realize ®*(A,,) as the subset

{(4,7) :1<i,j <nandi+j>n+1}of Z2,. Observe that T (A,) C [n]x[n].
Throughout this subsection, we fix P = &7 (A,,).

3.4.1 Rooks

As with the rectangle and shifted staircase, we begin with rooks for the Type A root poset. So
for 1 < i < n, define the rook R;: J(P) — R by

Ri=Thae + ) Ty — D> T (3.11)

">, § >n+1—i >4, j' >n+1—i

and the reduced rook R;: J(P) — R by

Ri= > T+ Tonis (3.12)

§'>n+1—i i'>i

The sum (3.11) defining R; can be represented pictorially as in Figure 3.6. Note that for ®*(A,,),
unlike for the rectangle and the shifted staircase, we do not get a rook for every box, only for the
boxes on the main anti-diagonal.

As always, we have the following fundamental facts about the rooks, whose proofs are anal-
ogous to what we have seen above.

Lemma 3.23. For P = ®+(A,), R; = R, foralli =1,...,n.
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Figure 3.6: A rook for ®*(A,) withn = 6 and i = 3.

Theorem 3.24. For P = ®*(A,), R; = 1foralli=1,...,n.

As mentioned, rooks for all (possibly skew) Young diagram shapes, including ®*(A,,), were
introduced by Chan, Haddadan, Hopkins, and Moci [CHHM17]. In particular, Lemma 3.23 and
Theorem 3.24 were first proved in that paper (see [CHHM 17, Lemma 3.5, Theorem 3.4]).

3.4.2 Antichains

Our goal is now to show that the antichain cardinality statistic is = const for ®(A,,). This is
quite easy with what we already know because the reduced rooks R; refine (twice) the antichain

cardinality statistic. That is,
Sh-2 YT
i=1

peEP
We know that él = 1 for all ¢ thanks to Lemma 3.23 and Theorem 3.24. Hence we conclude:

Theorem 3.25. For P = ®*(A,), > p T,

n
5

That the antichain cardinality statistic is homomesic for rowmotion for the Type A root poset
was first proved by Armstrong, Stump, and Thomas [AST13, Theorem 1.2(iii)] (and in fag,
they showed this for all root posets, as we will discuss in a moment). The homomesy of the R;
statistics under rowmotion was observed recently by Hopkins and Joseph [HJ22, Corollary 4.15].
The stronger result that these statistics are = const follows from the work of Chan, Haddadan,
Hopkins, and Moci [CHHM17], in exactly the way we have presented here.

3.4.3 Order ideals

Unlike for the prior posets, the order ideal cardinality statistic is not = const for the Type A
root poset. However, a variation of it is. For a ranked poset P, let us call Zpe (=1,
the rank-alternating order ideal cardinality. We will show that the rank-alternating order ideal
cardinality is = const for the Type A root poset.
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Remark 3.26. For both the rectangle and the shifted staircase, the rank-alternating order ideal car-
dinality statistic is a linear combination of the file refinements of order ideal cardinality. There-
fore, in these cases, it is also = const by Theorem 3.10 and Theorem 3.17.

To relate the 1, to the toggleability statistics, we need a version of Lemma 3.8 for ®*(A,,).
In fact, Lemma 3.8 holds verbatim for ®*(A4,,), and with the same proof.>

Lemma 3.27. Forany p = (i,j) € ®*(A,), we have
b= > Ty - 2 T
V21, §' 2] i>i, j'>]

With Lemma 3.27 in hand, we can prove that Y _,(—1)"®1, = const. As the reader
may expect by now, we will first do this for some refinements of the rank-alternating order ideal
cardinality statistic.

Theorem 3.28. Fixk € {n —1,n—3,...,—(n —3),—(n — 1)}. Then for P = ®*(A,), we
have
j—i=k j—i=k—1 joi=k+1

Proof. Lemma 3.27 says that for any box (7, j) € ®*(A,,), we have
Q'Hi,j_]liﬂ,j_]li,jﬂ = 2'(7;;_ﬁil,j—&-l)_'—Z(,E’Tj_7;:-1,j+1)+2(7;;’_7;11,3"-1—1)' (3.13)
i'>i §'>j
Now fix k as in the statement of the theorem, and set

fk =2- Z ]li,j — Z ]li,j — Z ]li,j'

j—i=k j—i=k—1 J—i=k+1
By summing (3.13) over all (i, j) € ®*(A,,) with j — i = k, we obtain

fr = Z 21 — Ly — L) = R%l—k — Z Ti g
j—i=k j—i=k

where we recall the definition (3.11) of 1?; as a sum of toggleability statistics. By Theorem 3.24,
we know R; = 1 for all 7, so indeed f, = 1. ]

The statistics appearing in Theorem 3.28 refine (twice) the rank-alternating order ideal car-
dinality. In other words, if we write f;, for these statistics, then

fnfl -+ fn—S + 4 f_(n_g) + f—(n—l) =92. Z(_l)rk(p)]lp'
peEP

Hence, we obtain the following corollary.

The identity (3.3) will hold for any poset P and element p € P for which the principal order filter (i.e.,
upward-closed subset) generated by p is isomorphic to a rectangle poset. Similarly, the dual identity (3.4) will hold
whenever the principal order ideal generated by p is isomorphic to a rectangle poset. In this way, one can obtain
many identities relating the statistics 1,, 7", 7;+, and 1 for many posets, especially for Young diagram shape
posets.
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Corollary 3.29. For P = ®+(A,), we have Y _,(—1)™%®)1

Il
I3

pEP p

That the rank-alternating order ideal cardinality is homomesic under rowmotion for ®*(A,,)
was first proved by Haddadan [Had21, Corollary 2.3]. The stronger result that it is = const (i.e.,
Corollary 3.29) is new. The refinements in Theorem 3.28 are also apparently new.

Remark 3.30. Recently, Bernstein, Striker, and Vorland [BSV21, Conjecture 4.35] conjectured
that the rank-alternating order ideal cardinality homomesy for ®*(A,,) should extend to the
piecewise-linear realm. In Section 4, we will explain how, whenever it works, the toggleability
statistics technique automatically yields piecewise-linear homomesies as well. However, there
is a catch: Bernstein, Striker, and Vorland’s homomesy conjecture actually concerns piecewise-
linear promotion, not rowmotion. Nevertheless, as we mentioned in Remark 2.6, the recombina-
tion method of Einstein—Propp [EP21, §6] allows one to transfer homomesies from rowmotion
to promotion, provided that the statistic in question is a linear combination of the 1,’s (which
the rank-alternating order ideal cardinality certainly is). Moreover, the recombination method
works equally well at the PL level. Hence, we are able to affirmatively resolve the conjecture of
Bernstein—Striker—Vorland using toggleability statistics in the way we have just sketched. Giving
all the details for this argument would require us to formally introduce promotion, recombina-
tion, etc., which unfortunately is beyond the scope of the present article.

3.5. The Type B root poset

The root poset of Type B,,, denoted ®*(B,,), will for our purposes be realized as
{(i,j):1<i<j<2n—1landi+j>2n} CZ2,.

Observe the inclusions 7 (B,) C &1 (As,-1) C [2n — 1] x[2n — 1].

Further, we have @7 (B,,) = ®*(As,_1)/Gs, i.e., T(B,) is the quotient of T (Ay,_1) by
the involutive poset automorphism (7, j) — (j,4). As with the rectangle and shifted staircase, we
user: J(®1(B,)) = J(P(As,—1)) to denote the map sending each order ideal to its preimage
under the quotient map; thatis, ¢(I) == {(4,7), (4,4): (¢,7) € I}. Once again, because it respects
the relevant statistics, the map ¢ will let us transfer many results from ®*( Ay, 1) to ®*(B,,).

Throughout this subsection, we fix P = ®*(B,)).

3.5.1 Rooks

As always, we start by defining rooks for ®*(B,,).
For 1 < ¢ < n, define the rook R;: J(P) — R by

— Tt 2 : — § : +
R = 7;,2n—i + 7;’,]" o i',j (G.14)
i'>1, ' >2n—i, i'>i, j'>2n—i,
j>i J>i

and the reduced rook R;: J(P) — R by

Ri= > T+ Tonus + 3 Ty (3.15)

j'>2n—i >4 j'>2n—i
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Figure 3.7: A rook (left) and a variant rook (right) for ®*(B,,). Here, n = 4 and i = 2.

The sum (3.14) defining R; can be represented pictorially as in the left image in Figure 3.7.
As before, we have the following fundamental facts about the rooks.

Lemma 3.31. For P = ®*(B,), R; = R foralli=1,...,n.
Theorem 3.32. For P = ®*(B,,), R, = 1foralli=1,...,n.

As mentioned earlier, rooks for all shifted Young diagram shapes, including ®*(B,,), were
introduced by Hopkins [Hop17]. In particular, Lemma 3.31 and Theorem 3.32 were first proved
in there (see [Hop17, Lemma 4.3 and Lemma 4.4]).

We will also make use of variant rooks for ®*(B,,), defined via «. Thatis, for 1 < i < n,

we define R}, R}: J(P) — R by setting
Ri(I) = Ri(u(1));
Ri(I) = Ri(u(1)),
forall I € J(P), where the R; and R; on the right-hand sides above are defined on &+ (Ay,_;)
via (3.11) and (3.12).
The right image in Figure 3.7 depicts one example of a variant rook. It is certainly possible

to write a definition of R] as an explicit sum of toggleability statistics, but it is a bit cumbersome
to do so. However, we do find it convenient to record that

]5;; = Z 7;;/ + 277271—2 + Z 2:1—1',3'/- (3.16)

Jj'>2n—i >4 j'>2n—1

For the variant rooks, we have the same fundamental facts, which follow from Lemma 3.23
and Theorem 3.24.

Lemma 3.33. For P = 7(B,), R, = R, foralli=1,...,n.
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Theorem 3.34. For P = ®*(B,,), R, = 1foralli=1,...,n

Unlike with the shifted staircase, it is no longer the case that the Eg are linear combinations
of the R;, which is why it is useful to also consider them. (But note that R} = R;.)

3.5.2 Antichains

Our goal is now to show that the antichain cardinality statistic is = const for ®(B,,) by taking
linear combinations of the R; and R;.

Lemma 3.35. We have . 7T, for P =®%(B,).

- =1
i Tigi — 2

2-R,—R,=2-> T;

We know én = 1 thanks to Lemma 3.31 and Theorem 3.32, and we know E’n = 1 thanks to
Lemma 3.33 and Theorem 3.34, so we conclude ), 7;; = l. [

T, =5for P = Ot (B,).

Proof. It is routine to verify

Theorem 3.36. We have )

peEP

Proof. 1t is routine to verify
— 1 / / —
ZT + 51, +ZR —2. ;T
g p

Thanks to Lemma 3.35, we know » . 7;; = 2,
we know R/ = 1 for all i. We conclude that Z

and thanks to Lemma 3.33 and Theorem 3.34,
= O]
2

peP

That the antichain cardinality statistic is homomesic for rowmotion for the Type B root poset
was first proved by Armstrong, Stump, and Thomas [AST13, Theorem 1.2(iii)]. The stronger
result that it is = const (i.e., Theorem 3.36) was first proved by Hopkins [Hop17, Theorem 4.2],
in the way we have presented above.

3.5.3 Order ideals

Unfortunately, for ®*(B,,), neither the order ideal cardinality statistic, nor the rank-alternating
order ideal cardinality statistic, are = const. (Indeed, they are not homomesic under rowmotion
for ®*(B,,).) So the best we can do is transfer the statistics in Theorem 3.28 from ®*( Ay, 1)
to ®*(B,,) via ¢.

Theorem 3.37. Suppose P = ®T(B,,). Thenfor k = 2,4,...,2n we have

2- Z 17;7]' — Z ﬂi,j - Z ﬂi,j = 1.

j—i=k j—i=k—1 j—i=k+1

2:> 1ii—2) Lign=1

Furthermore, we also have
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Proof. These are exactly the statistics we get by translating the statistics in Theorem 3.28
to ®*(B,,) from ®*(Ay, 1) via ¢. O

Remark 3.38. Itis also possible to observe that . 1,; —> " 1;;11 = >
that it is = % from Lemma 3.35.

; T, and hence deduce

3.6. Non-examples

Having demonstrated the power of the toggleability statistics technique in re-proving known
rowmotion homomesy results and proving new results for the four important families of posets
treated above, we now briefly discuss some non-examples. By “non-examples,” we mean in-
stances where a rowmotion homomesy result is known or conjectured, but the toggleability
statistics technique fails to prove it.

3.6.1 Reciprocity and symmetry homomesies

Grinberg and Roby [GR15, Theorem 32] proved a remarkable reciprocity theorem for rowmotion
of the rectangle, which asserts that for any box (i, j) € [a] x [b], we have

(i,7) € Row™ " )<= (a+1—i,b+1—7) &1

for all I € J([a] < [b]). (In fact, they proved this reciprocity result at the birational level; we
discuss piecewise-linear and birational extensions in Section 4 below.) As was observed by
Einstein and Propp [EP21, Theorem 8.1], this reciprocity result immediately implies that the
statistic 1, j + L441-i 11—, is homomesic under rowmotion of [a] x [b] for any (i, j) € [a] x [b].
Unfortunately, these statistics are not = const, except for some very special cases like 1,1+ 1 5,
which happen to be linear combinations of the file refinements of order ideal cardinality.

Similarly, Armstrong, Stump, and Thomas [AST13, Theorem 1.2(ii)] proved that for any
I € J(®*(A,)), we have Row""!(I) = I', where I' := {(j,i): (i,7) € I}. In other words,
applying rowmotion n + 1 times transposes the order ideal across the main diagonal axis of
symmetry of the poset ®*(A,,). It is immediate from their result that the statistics 1, ; — 1, and
T:.; — T, are O-mesic under rowmotion of ®*(A,,) for any (7, j) € ®*(A,). But again, these
statistics are not = const, except in some very special cases.

3.6.2 Other root posets

Let ® be a crystallographic root system. Suppose we have chosen a set ®* of positive roots of @,
and hence also a set of simple roots. There is a natural partial order on ®* whereby o < 3 if and
only if 5 — « is a nonnegative linear combination of simple roots. We denote this poset by ¢
or by &7 (X), where X is the Cartan—Killing type of ® (so this is consistent with our earlier
notation ®*(A,) and &+ (B,,)). We call T the root poset of .

Panyushev [Pan09] initiated the study of rowmotion acting on 7 (®™). In particular, he con-
jectured that the antichain cardinality statistic should be homomesic under antichain rowmotion.?

3Panyushev did not use the terminology of homomesy. Actually, Panyushev’s conjecture was a major motivating
example for the introduction of the notion of homomesy in [PR15].
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This conjecture was subsequently proved, in all crystallographic types, by Armstrong, Stump,
and Thomas [AST13, Theorem 1.2(iii)].

We have already seen that for ®(A,,) and ®*(B,,), the antichain cardinality statistic is
= const. However, for the other root posets, it is not the case that the antichain cardinality
statistic is = const. Indeed, since &1 (B,,) ~ ®*(C,,), the smallest example of a root poset that is
not of Type A or B is ®*(D,). And for ®*(Dy), one can check directly that ) _, 7~ # const.

One difference between @+ (D,) and the posets we studied above is that for ®*(D,) there
is an element that covers 3 other elements. This means that ®*(D,), unlike the posets we have
been discussing, does not embed as a contiguous subset of Z2,. Another difference is that
piecewise-linear and birational rowmotion do not behave well for ®*(D,) (again, we discuss
these in Section 4 below).

Remark 3.39. Armstrong [Arm09, §5.4.1] (see also [CS15]) came up with ad hoc constructions
of root posets for the non-crystallographic types ® = Hjz and & = I5(m) that enjoy several
desirable properties. The root posets ®*(A,,), ®*(B,) ~ &7 (C,,), ®T(H;) and T (I5(m)) are
called the root posets of coincidental type and in many ways are better behaved than arbitrary
root posets; see, e.g., [HPPW20, §8]. In particular, Hopkins [Hop22, Theorem 3.8] showed
that for all the coincidental type root posets, the antichain cardinality statistic is = const. So
in addition to A,, and B,,, which we have seen above, he treated the ad hoc root posets for Hj
and I5(m).

3.6.3 The trapezoid and the “chain of V/’s”

For a < b, the trapezoid poset T'(a, b) is the poset realized as the subset
{(i,j):1<i<a+b—1,b<j<a+b—1i+j>a+b, andi<j}

of Z2 . Note that T'(n,n) = ®*(B,).

The trapezoid T'(a, b) is a doppelgdnger of the rectangle [a] x [b]. What this means is that
the two posets have many similarities such as their number of elements, number of order ideals,
number of linear extensions, et cetera. See [HPPW?20] for more on doppelgéingers. In particular,
one property that T'(a, b) should have in common with [a] X [b] is good behavior of rowmotion.
Indeed, it has recently been shown that 7'(a,b) and [a] x [b] have the same orbit structure of
rowmotion [DWYWZ22, Main Theorem], and it is conjectured that this should extend to the
piecewise-linear and birational realms [Hop22, Conjectures 4.35 and 4.46].

It has also been conjectured (see [Hop22, Conjecture 4.9]) that 7'(«a, b) should exhibit homo-
mesy of antichain cardinality under rowmotion. However, the toggleability statistic technique
fails here: > _p 7" # const for T'(a, b), except for the special cases a = 1 and a = b. (Though
note that T'(n,n + 1) = ®*(Ay,)/G,, so we can at least extract some rowmotion homomesies
in this case.)

The chain of Vs is the poset V(n) = ** x [n], which is the Cartesian product of the
3-element “V-shaped” poset and the n-element chain. It has been conjectured that V' (n) should
exhibit good behavior of rowmotion [Hop20]. In particular, a brute force analysis of all the
rowmotion orbits of V'(n) reveals that it exhibits the antichain cardinality homomesy. How-
ever, ), pT,” # const for V(n) (as long as n > 2). Note that V(n) cannot be realized as a
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contiguous subsets of Z2 ), because it has some elements that are covered by 3 elements. Nev-

ertheless, unlike the non-coincidental type root posets, V' (n) conjecturally has finite order of
piecewise-linear rowmotion.

There is an extension of our technique (using “antichain toggleability statistics’) that could
possibly prove some of the homomesy results mentioned in this subsection, which we are other-
wise unable to address. We discuss this extension at the end of the paper, in Section 6.5.

4. Piecewise-linear and birational lifts

Over the past 25 or so years, various classical combinatorial constructions have been extended
to piecewise-linear and birational maps (see [KirOl, KB95] for some prominent examples).
In 2013, Einstein and Propp [EP21] introduced piecewise-linear and birational extensions of
rowmotion, which have subsequently been the focus of a significant amount of research. Many
of the families of posets that exhibit good behavior of rowmotion at the combinatorial level
(e.g.: small, predictable order; regular orbit structure; interesting homomesies) continue to ex-
hibit good behavior of piecewise-linear and birational rowmotion. It is well known that results
that hold at the birational level must hold at the piecewise-linear level as well, and similarly that
results that hold at the piecewise-linear level hold at the combinatorial level. But there is no gen-
eral process for going in the other direction, and indeed, it is not true necessarily that results on
the combinatorial level must hold at the piecewise-linear or birational levels. (For example, all
posets trivially have finite order of combinatorial rowmotion, but most do not have finite order
of piecewise-linear or birational rowmotion.) So the fact that these special posets continue to
exhibit good rowmotion behavior at these higher levels is remarkable, and as of yet, we do not
have a completely satisfactory explanation for why this happens.

In this section, we start to offer some kind of general explanation for the persistence of good
rowmotion behavior by showing how we sometimes can automatically “lift” results (specifi-
cally, homomesy results) from the combinatorial to the higher levels of rowmotion using the
toggleability statistics technique. Much of the material we present in this section was essen-
tially already presented in [Hop22], but because these results allow us to obtain such significant
corollaries from the work we did in Section 3, we reiterate all the arguments here.

We offer only a very brief review of the definitions of piecewise-linear and birational row-
motion; for more background, consult [EP21, GR16, GR15, MR19, Oka21]. As above, P will
be a fixed poset.

First, we describe piecewise-linear rowmotion. Let R” be the set of functions 7: P — R.
We use P to denote the poset obtained from P by adding a minimal element 0and a maximal
element 1. We fix parameters o>, wP" € R. We view any 7 € R” as also a function 7: P — R
via the convention that 77(0) = o™ and 7(1) = wP™. For p € P, we define the piecewise-linear
toggle T;LZ R? — RP by

PLy 7]_(p/) ~ R if p # p';
(m) (') : min{7(r): p<r € P} + max{n(r): p>r € P} —n(p) ifp=yp.

Following the Cameron—Fon-der-Flaass definition of (combinatorial) rowmotion as a composi-
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tion of toggles, we define piecewise-linear rowmotion Row"™: R — R” by setting

PL ._ _PL PL
Row ™ :=7," 001,

where py, ..., p, is any linear extension of P.

To each order ideal [ € J(P), we associate the function 7; € R”, which is defined to be
the indicator function of the complement of /. With the parameters o = 0 and w'" = 1,
(piecewise-linear) toggling of the 7; exactly corresponds to (combinatorial) toggling of the .
Hence, results that are true for PL rowmotion are true for combinatorial rowmotion as well; this
process of going from piecewise-linear to combinatorial is called specialization.

Now we describe birational rowmotion. The key is to “detropicalize” the PL expressions
(i.e., replace + by x and max by + ). We use RZ to denote the set of functions 7: P — R.¢.*
We fix parameters o, w® € R.q. We view any 7 € RZ, as also a function 7: P — R, via
the convention that 7(0) = o and (1) = wB. For p € P, we define the birational toggle
7'11,3: RZ, — RE, by

7(p) ifp # p's
> w(r)
TE(W) (p') = p>reP ifp—yp.
") 3 )

\

We define birational rowmotion Row" : RE, — RZ by setting

Row® ::Tgo---o%ﬁ,
where py, ..., p, is any linear extension of P.

One can always translate equalities of expressions at the birational level to the piecewise-
linear level by replacing 4+ by max and x by + everywhere in expressions; this process of going
from birational to piecewise-linear is called tropicalization. For a precise statement about what
tropicalization entails in the context of rowmotion, see, e.g., [EP21, §7].

Example 4.1. Figure 4.1 depicts an orbit of Row® for a generic point 7 € RZ,, where P =

2] x [2]. Observe that (Row®)* is the identity.

We want to show that Striker’s observation persists at the piecewise-linear and birational
levels. Hence, we need to introduce PL and birational extensions of the toggleability statistics.

“Here, we restrict to 7 taking values in the positive real orthant to avoid problems that arise when the denominator
in the definition of 71}73 vanishes. In the context of algebraic dynamics, it is more natural to allow the values of 7
to be zero, negative, or even complex; to make this work, one must deal honestly with rational maps, i.e., maps
defined only on an open dense subset of 7. We have opted for the technically least demanding avenue. Homomesy
results that hold in the positive orthant can be extended to the aforementioned broader settings through standard
arguments; see [GR16, §3].
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Figure 4.1: An orbit of Row® for a generic point 7 € RZ,

So, for p € P, define 7,7, 7 ~FL TP RF — R by

p

TP (w) = 7(p) — max{n(r): p>r € P}
T*PL(ﬂ zmn{w( ):p<r€ P} —m(p);
T, M) = TP () — T, P (),

and define 7,7", 7,7, 7.7 : RL) — R by

THP(r) = )

preﬁ 7T(T> ’
1

(D) Dyerep M) L
TR (m) = T,7% () /T, (r)

sothat 7,78, 7P, TP tropicalize to T, "%, 7~F" TP which in turn specialize to 7,7, 7, T,
We then have the following extensions of Lemma 2.3 (which appeared previously as [Hop22,
Lemma 4.31, Lemma 4.42]):

Lemma 4.2. Let O C R” be a finite Row" "-orbit. Then'y"__, T "(w) = 0 for all p € P.

7;_’}3(7?) =

Lemma 4.3. Let O C R, be a finite Row"-orbit. Then [],., T,0(7) = 1 forall p € P.

Remark 4.4. Notice the restriction to finite orbits in Lemmas 4.2 and 4.3. We could deal with
infinite orbits by taking limits in the appropriate way. However, in practice, this will not matter
because for all the posets of interest for us (i.e., those discussed in Section 3), both PL and
birational rowmotion have finite order (see [GR15, Oka21]), hence all orbits are finite. Also,
modulo this issue of finite orbits, we could state these two lemmas in terms of orbit averages
(arithmetic means and geometric means, respectively).

Proof of Lemmas 4.2 and 4.3. It suffices to prove Lemma 4.3, thanks to tropicalization. The
proof is exactly the same as that of Lemma 2.3. It is not hard to see, by induction on the po-
sition of p in the linear extensions py,...,p, defining rowmotion, that we have 7;+’B(7r) =
7,7B(Row®(n)) for all # € RY,. Thus, the numerator and denominator of []__, 7, (m) can-

p
cel, so this product equals 1. [
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In fact, the version of Striker’s lemma for the rank-permuted variants of rowmotion also holds
at the PL and birational levels, as we now explain.

Suppose now that P is ranked. Fori = 0,1, ...,vk(P), define 7] := [ p ()i 7, - and

70 = [Lpep k()= 7y - FOr any permutation o of 0,1, ..., 1k(P), define
ROWEL = 7'5%0) o T(I:(Ll) 0---0 TE(er(P))

ROWE = TE(O) O TE(l) O---0 TE(rk(P))

so that ordinary rowmotion corresponds to the identity permutation. We have the following
extensions of Lemma 2.4.

Lemma 4.5. Suppose P is ranked. Let O C R be a finite Row’. “-orbit, for any choice of o.
Theny. .o Ty (m) = 0forallp € P.

Lemma 4.6. Suppose P is ranked. Let O C RZ, be a finite RowE—orbit, for any choice of o.
Then [ ,co T, (w) = 1 forallp € P.

Note that, via specialization, Lemma 4.5 implies Lemma 2.4, whose proof we omitted before.

Proofs of Lemmas 4.5 and 4.6. We prove Lemma 4.6. Via tropicalization, this will also prove
Lemma 4.5. Let i := rk(p). For simplicity, assume that ¢ # 0, rk(P). The proof depends on the
relative order that the numbers i —1, 4, and ¢+ 1 appear in the sequence o (0), o(1), ..., o(tk(P)).

Ifo7'(i —1) < 07 (i) < 07(i + 1), then, just as with ordinary rowmotion, we will have
T,7B(m) = T,"B(Row,) (m)) for all = € RZ, and so, as before, all the terms in the numerator
and denominator of [] ., 7,°(7) cancel.

Ifo'(i+1) < o7'(i) < o '(i — 1), then, just as with the inverse of ordinary rowmo-
tion, we will have 7,B(w) = T,"B(Row, (7)) for all 7 € R%,, and so again, all the terms in
[1.co 7,0 (m) cancel.

Ifo7'(i —1) < o7'(i) and o7 (i + 1) < o *(i), then the situation is slightly different.
In this case, when applying the toggles that constitute Row®, 7';,3 will be applied before Tﬁ for
any p' that either covers or is covered by p. This means that Row® (7)(p) = ) (7)(p). So,
looking at the definitions of the toggle 7, and of the toggleability statistics 7" and 7,", we
can therefore see that 7,-% () /7,73 () = Row_ (r)(p)/m(p) will hold for all 7 € RZ,. But
this identity still suffices to show that [] ., 7.7 (7) = 1.

Finally, if 07%(i) < o7 '(i — 1) and 0 '(i) < o7 !(i + 1), then this is the inverse of the
previous case. So (replacing Row? by its inverse and then replacing m by Row? (7) in the iden-
tity we obtained above) we have 7,~%(Row} (7))/7,"®(Row} (7)) = 7 (p)/ Row, (w)(p) for
all 7 € RY, and this again implies that [] ., 7,°(7) = 1.

If i = 0 or i = rk(P), the details are slightly different, but the analysis is essentially similar.

O
In light of these extensions of Lemma 2.3, it makes sense to introduce PL and birational
extensions of the = notation. Thus, for two statistics f, g: R — R, we write f = g if there

exist ¢, € Rsuch thatf —g =37 _, ¢, 7" Similarly, for two statistics f,g: R, — R, we

write f =P g if there exist ¢, € R such that f/g = e p(TP). As before, we also write ¢
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for the function that is constantly equal to ¢ (on any domain). With this notation, we have the
following corollaries of Lemmas 4.2, 4.3, 4.5 and 4.6.

Proposition 4.7. Suppose f: R — R satisfies f =PV c(wPt — oY) for some ¢ € R. Then for
any finite Row""-orbit O C RY, we have Y _,f(m) = #0 - c(w¥ — of¥). If P is ranked,
then the equality holds for all finite Row"" orbits.

Proposition 4.8. Suppose f: RL, — R satisfies f =B (wB/aP)¢ for some ¢ € Rsq. Then for
any finite Row®-orbit O C RF, we have []__, f(7) = (wB/aB)#0c. If P is ranked, then we
have similarly for all finite ROWE orbits.

weO

So Propositions 4.7 and 4.8 say that we can obtain piecewise-linear and birational rowmotion
homomesies if we can prove the piecewise-linear and birational equivalents of f = const. But
so far, we have only discussed how to show f = const at the combinatorial level. However, we
will now explain how it is possible to automatically lift the fact that f = const to the PL and
birational levels for statistics f of the forms we have been studying and for certain families of
posets P, including all of the main examples we discussed in Section 3.

Because we want to work with the same kinds of statistics from Section 3, we will need
extensions of the 1,,. So for p € P, define ]l;L: R? — R by

() = ™ — n(p).
and similarly define 1;: R, — R by
B/ \._,B
1, (m) =w" /7(p).

(The wP— part may look a little strange, but, as always, this definition is chosen so that when

o = 0 and w'™ = 1, the function agrees with its combinatorial counterpart under specializa-
tion, i.e., 1} (m;) = 1,,(I) forall I € J(P).)

Lemma 4.9. Suppose that P is such that each element p € P covers at most two elements and
is covered by at most two elements. Let f: J(P) — R be of the form

Z(aﬂ? + a;,7;,— + ag]lp)

peP

for a,, a;,, a; € R. Set

fPL — Z(asz;+,PL + CL;E_’PL + ag]l]le)
pEP
and
fB . H(ﬁ—,B)ap . (T—,PL)ap . (]lB)ap.

peP

Iff = cfor some c € R, then we have f*% = c(w'' — o) and fB = (wB/aB)e.
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Proof. The proof closely follows [Hop22, Proofs of Lemma 4.30 and Lemma 4.41]. Hence we
will try to be brief and omit some details.

We first prove the PL statement. For the moment, suppose o' = 0 and w"" = 1. Consider
the order polytope O(P) C R of points 7 € R satisfying 0 < 7(p) < 1forall p € P and sat-
isfying m(p) < 7(g) whenever p < ¢ in P. Stanley [Sta86] proved that the vertices of O(P) are
the 77 for I € J(P). He also observed that O(P) has a canonical triangulation whose maximal
simplices are indexed by the linear extensions of P, with linear extension py, . . ., p,, correspond-
ing to the simplex of all 7 satisfying 0 < 7(p;) < 7(p2) < -+ < 7(p,) < 1. Observe that f&
is an affine linear function on each maximal simplex in this triangulation; moreover, it is, by
supposition, equal to c at each vertex of each such simplex. Hence, on each simplex, it is in fact
constantly equal to c. Consequently, f*%(7) = ¢ for all 7 € O(P).

Now let o™, WPl € R be arbitrary. So far, we have not used the hypothesis that each ele-
ment of P covers, and is covered by, at most two elements. Now we will use that supposition.
Specifically, we repeatedly use the identity max(z,y) + min(z, y) = = + y to rewrite f* as

fPL (1) = Do 4 b + Z b, (p) + Z by, max(m(p), m(q))
p pllg

for certain constants b, b, b,, b, , € R. (We use p || ¢ to denote that p and ¢ are incomparable.)

First of all, we can easily check that b, = —c by evaluating f at the order ideal @, and
similarly that b,, = c by evaluating f at the order ideal P.

Thus, it remains to show b, = 0 and b,, = 0. We again consider the case o = 0
and w'l = 1. Recall that in this case, we have shown f*X(7) = ¢ for all 7 € O(P). First,
one can show that all b, , are 0 by focusing on the set of 7 € O(P) with m(z) = 0if z < p
orx < ¢, and 7(y) = 1if y #,p,q and y is not less than either p or ¢. Then one can show
that all b, are 0 by focusing on the subset of 7 € O(P) with 7(z) = 0if z < pand 7(y) = 1
if y £ p. So we have shown that indeed f''% = c(w'" — ofl).

Now we consider the birational statement. Analogous to the PL setting, we repeatedly use
the identity (z +y) - (7' + y~1)~! = zy to rewrite f® as

() = (@) (WP - T [ (p)) - T [ () + ()

P pllg

for certain constants b,, b,,, b,, b, , € R. But here is the key observation: these by, b.,, by, b, 4
are exactly the same as the coefficients in the PL case, because they are obtained in exactly the
same way (i.e., via the de-tropicalization of the max(z, y) + min(z, y) = = + y identity). So we
indeed have f® = (wB/a®)¢, and we are done. O

Remark 4.10. Lemma 4.9 says that (for a poset satisfying its hypothesis) if we take any identity
relating the statistics 1,, 7;;, 7;*, and 1 that holds at the combinatorial level, and we replace
all the terms by their PL extensions, then the identity will still be true. What is more, we can
prove it is true by repeatedly using the identity max(x,y) + min(x,y) = = + y and cancelling
all terms. In fact, this perspective actually leads to more algebraic proofs of the identities from
Section 3. For instance, consider the PL extension of (3.3):

T S =L Sl @b

V>, j' 25 V>4, j'>j
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Figure 4.2: For Remark 4.10: how terms of an identity cancel locally.

for any p = (i,7) € [a] x[b]. Let s = (¢, j) be a generic box with i > i and j* > j. Consider
the contribution of terms depending on s to the right-hand side of (4.1). Locally near s, the
picture of this sum of toggleability statistics looks like Figure 4.2. If we write all the terms on
the right-hand side of (4.1) in terms of max’s and min’s of 7(p’)’s, we see that the only parts
involving 7(s) will be

—2-m(s) + max(m(s), m(t)) + min(n(s), 7(t)) + max(w(s), 7(uw)) + min(w(s), 7 (u)),
and via the identity max(z, y) + min(z, y) = x + y, this becomes
—2-7(s) +w(s) +7(t) +7(s) +7(u) = w(t) + 7(u),

which actually does not depend on 7(s) at all. In this way, we could see that the right-hand side
of (4.1) has no terms depending on any of the 7(p’)’s, except 7(p), and that it in fact simplifies
to w'™ — 7m(p) = 1" To do this, we would need to also check some other boundary cases
that look slightly different from Figure 4.2. But this cancellation is the essential idea in every
identity treated in Section 3.

If P satisfies the hypothesis of Lemma 4.9, then this lemma says that for any combinatorial
statistic f € Spang{7,", 7, ,1,: p € P}, the PL counterpart f"": R” — R and birational
counterpart f%: RZ; — R.o, as defined in that lemma, are uniquely defined; i.e., they do not
depend on how we represent f as a linear combination of the 7;+, 7;_, 1,. Moreover, we also
clearly have the following consequence of Lemma 4.9:

Theorem 4.11. Suppose that P satisfies the hypothesis of Lemma 4.9, and consider any statistic
f € Spang{T,", 7,7, 1,: p € P}. Suppose we have f = c for some ¢ € R. Then f' ="l
c(wPt — o) and B =B (WB/aB)e

Observe that all the posets P we studied in Section 3 satisfy the hypothesis of Lemma 4.9.
Thus, by combining Theorem 4.11 and Propositions 4.7 and 4.8, we see how we can obtain PL
and birational analogues of the rowmotion homomesies for all the f we showed satisfy f = const
in Section 3. In this way, we recover many homomesy results from [EP21, MR19, Oka21], and
we obtain some new ones as well. (As we suggested above, this way of lifting the toggleability
statistics technique to the PL and birational setting was previously developed in [Hop22], but
there it was only used for the antichain cardinality statistic.) We will not go individually over
every PL/birational rowmotion homomesy obtained in this way, but let us end with one example.
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Example 4.12. Suppose P = [a] x [b] is the rectangle. Corollary 3.11 says that the order
ideal cardinality statistic ) 1, satisfies > _p 1, = ab/2. Thus, Theorem 4.11 tells us
that [ p :—B =B (wB/aP)®/2 Together with Proposition 4.8, this means that for any fi-

nite birational rowmotion orbit O C R, we have that []__, ] = (wB/aB)#0-(@b/2),

pEP (p)
Grinberg and Roby [GR15, Theorem 30] proved that for P = [a] X [b] the order of birational
rowmotion is a + b. Hence, we can say that H“+b ! [Lcp m = (wB/aPB)la+b)(ab/2)

for any 7 € RZ,. Rewriting this, we get

a+b—1
H H(ROWB)k(ﬂ')(p) = (MB)(G%)'(ab/?) ) (aB)(a+b)~(ab/2)

k=0 peP

for any 7 € R, a result which was previously proved by Einstein and Propp [EP21, Theo-
rem 5.3 and Theorem 6.6] (see also [MR19]). For example, the reader is encouraged to verify
that if we multiply together all the values appearing in Figure 4.1, we obtain (w®)® - (a®)8. We
also obtain PL/birational lifts of the file refinements of order ideal cardinality in this way as well.

5. g-analogues

5.1. g-rowmotion

We begin this section by defining a g-analogue of rowmotion. For this purpose, we assume ¢
is a positive rational number, which we have written as ¢ = r/s for some positive integers r
and s. Note that we do not assume 7 and s are relatively prime. Note also that g-rowmotion
will actually depend on r and s, and not just ¢, but we suppress this dependence in the name to
emphasize that it is indeed a g-analogue of rowmotion.

Let Fy and F'; be disjoint sets of cardinality s and r, respectively, and fix a cyclic permutation
0: FoUF; — FyoUF,. We think of F, as a set consisting of s different “flavors” of the number 0,
say Oy, ...,0s Similarly, we think of the elements of F'; as r different flavors of the number 1,
say 1y, ..., 1,. The cyclic permutation # can be chosen arbitrarily.

As in the classical setting, we have a fixed finite poset P. Define J, s(P) to be the set of
labelings L: P — Fo U F; such that L~'(Fy) is an order ideal of P. For L € J, ,(P), we say
an element x € P is active in L if x is either a maximal element of L~!(Fy) or is a minimal
element of L™ (F;) = P\ L™*(Fy). For each p € P, define the toggle 7,,: J,.s(P) — J,.s(P)

O(L(z)) ifz=pe max(L 1 (Fy)) Umin(L (Fy)),
L(z) otherwise.

In other words, 7, applies the cyclic permutation 6 to the label of p (and fixes all other labels)
if p is active in L, and 7, does nothing if p is not active in L. Although 7, is generally not an
involution, it is invertible. Indeed, if p is active in L, then it is also active in 7,(L), Tg(L), etc.,
so 777°(L) = L. On the other hand, if p is not active in L, then 7,(L) = L.

Finally, define the g-rowmotion operator Row: 7, ;(P) = J,.s(P) by Row =7, 0---07, ,
where py, . . ., p, is an arbitrary linear extension of P. This operator is well-defined (i.e., does not
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Figure 5.1: The orbits of the g-rowmotion operator on 7, o(®*(As)).

depend on the choice of the linear extension) because the toggles 7, and 7, commute whenever
p; and p; are incomparable in P. Note that the g-rowmotion operator depends on the choice of 6.

Example 5.1. Suppose ¢ = 7 = s = 1, and let Fy = {0} and F; = {1}. In this case, there is
a natural correspondence between the labelings in 7; ;(P) and the order ideals in 7 (P); each
labeling L simply corresponds to L~(0). The cyclic permutation ¢: {0,1} — {0,1} must
send 0 to 1 and send 1 to 0. The g-rowmotion operator on J; 1 (P) coincides with the classical
rowmotion operator on J (P).

Example 5.2. Suppose 7 = 1 and s = 2 (so ¢ = 1/2), and let Fy = {0;,0,} and F; = {1}.
Define the cyclic permutation 6 by 6(0;) = 0z, #(02) = 1, (1) = 0. Suppose P = &1 (A,) is
the root poset of Type As. Then J; o(P) contains 17 labelings. The action of g-rowmotion on
these labelings is depicted in Figure 5.1.

Remark 5.3. Itis easy to see that

#T,.+(P Z PPN #T Z q#(P\I

IeJ(P) IeJg(p

For example, recall the g-number [n), = (1 —¢")/(1 —q) = (1 + q+ -+ + ¢" '), g-factorial
[n]y! = [n]g - [n — 1], - - [1]4, and g-binomial [}] %, and consider P = [a] x [b]. In

this case, it is well known that 37, ;(p) ¢#"\) = [“b} 50 #J,.5(P) = s - [“1] .

Every statistic f: J(P) — R can naturally be viewed as a statistic f: 7, s(P) — R by
setting f(L) = f(L™'(Fy)) for all L € J,,(P). We slightly abuse notation by using the same
symbol to refer to both the statistic on 7 (F) and the associated statistic on 7, ;(P); in what
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follows, we do not distinguish between these statistics. Our goal is to prove that various statistics
f: J.s(P) — R are homomesic for g-rowmotion. All of the statistics that we will consider are
actually obtained from statistics on 7 (P), so they are defined for all choices of positive integers r
and s. One might hope to find such statistics that are homomesic for g-rowmotion for all choices
of r and s and all choices of the cyclic permutation . We will find, somewhat surprisingly, that
there are several natural statistics with these properties.

In order to prove instances of homomesy that hold for all ¢, it is convenient to shift our
perspective and view ¢ as a formal indeterminate instead of a fixed rational number. Hence, we
will consider statistics f: J(P) — R(q), where R(q) is the field of rational functions in ¢ with
coefficients in R. Suppose we are given f: J(P) — R(g) and a real number z € R. If none of
the rational functions f(/) for I € J(P) have singularities at z, then we obtain the real-valued
statistic f|,: J(P) — R by specializing ¢ to equal z. Thus, f|, (/) is the real number obtained by
evaluating f() at ¢ = 2. For example, in the context of g-rowmotion, we will want to evaluate
f at /s, where r and s are positive integers; as mentioned, we will also view this f|, /s @s a
real-valued statistic on 7, s(P).

Note that any statistic g: J(P) — R can be viewed as a statistic g: J(P) — R(q) via the
natural inclusion R C R(q); in this case, g|, is the same as g for any z € R.

We will need g-analogues of the toggleability statistics introduced earlier. The statistics 7;+
and 7, defined in Section 1 are real-valued, so they can also be viewed as statistics on J(P)
with values in R(g). We then define 7.7: J(P) — R(q) by

T =T Ty

For every I € J(P), the rational function 7¢(I) is a polynomial in ¢, so it has no real singu-
larities. Hence, given positive integers 7 and s, we obtain the statistic 77|,/s: J,s(P) — R
by specializing to ¢ := 7/s and then viewing the resulting statistic on J(P) as one defined
on J, s(P). The utility of this definition comes from the following ¢-version of Striker’s lemma.

Lemma 5.4. Fix positive integers r and s and a cyclic permutation : Fy U F; — Fy U F;.
For any poset P and any p € P, the statistic T}/, is 0-mesic under the g-rowmotion operator
Row: J,s(P) = J;s(P).

Proof. Let L: P — FoUF; bealabeling in 7, ,(P). To ease notation, we write L;, = Row"(L).
Let NV be the smallest positive integer such that Ly = L (i.e., the size of the g-rowmotion orbit
containing L). Let K be the set of integers k& € {0,..., N — 1} such that Ly (p) # Lg+1(p). For
each k € K, we have Ly 1(p) = 0(Ly(p)). Thus, L(p) = Ly(p) = 6#5(L(p)). Since 0 is a
cyclic permutation of a set of size r + s, we must have #K = «a(r + s) for some nonnegative
integer . The number of integers i € {0,..., N — 1} such that L;(p) € F, and i € K is ar,
and the number of integers j € {1,..., N} such that L;(p) € Fpand j — 1 € K is as.

Recall that the statistics 7;* and 7, only take values 0 and 1. For 0 < i < N — 1, we
have 7,7 (L;) = 1 if and only if p € min(L;'(F1)), and it follows from the definition of ¢-
rowmotion that this occurs if and only if i € K and L;(p) € Fy. Appealing to the previous
paragraph, we find that 2?:01 T, (L;) = ar. Similarly, for 1 < j < N, we have 7;+(Lj) = 1if
and only if p € max(L; ' (Fy)), and it follows from the definition of g-rowmotion that this occurs
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if and only if j — 1 € K and L;(p) € F,. Appealing to the previous paragraph, we find that
Zj.vzl 7;+(Li) = as. Consequently, the sum of 7,7 along the g-rowmotion orbit containing L is

N—-1 N—-1
L) = > (T,N(Li) — qT, (L))
=0 =0
N—-1 N
- ST(Li) — QZE_(LJ)
=0 j=1
= ar — qas.

Evaluating at ¢ = /s, we find that the sum of T, |»/s along the g-rowmotion orbit containing L
isar —(r/s)as =0. O

Remark 5.5. Let f : J,,(P) — R be given by f(L) = #L~'(F,), the cardinality of the order
ideal associated with L. We point out that the rescaled signed toggleability statistics ——Tq
(which could equally well serve as building blocks for 0-mesies) satisfy

. r+s—1
1 ¢ f+for,+ 'FO’T

r+s? r+s

Y

where the right-hand side is the difference between the value of f and the average value of f
within the 7, orbit of L. Relatedly, the statistic 7;‘1],, /s is 0-mesic under the action of 7,.

Because of Lemma 5.4, we will want to be able to specialize R(¢)-linear combinations of the
T,! at positive rational values of g. The next lemma is a technical result saying that our rational
functions never have singularities at nonnegative real numbers in the situations we care about.

Lemma 5.6. Consider a real-valued statistic f: J(P) — R. Suppose that, viewing f also as
a statistic f: J(P) — R(q), we have f = c(q) + >_,cp (@) T, for c(q), cp(q) € R(q). Then
none of the c(q), ¢,(q) have singularities at any nonnegative real number. Hence, for any z € R
with 2 > 0, we have f = c(2) + 3 cp ¢p(2) T

Proof. Let f be as in the statement of the lemma, and let z be a nonnegative real number. By
clearing denominators, we can rewrite the expression for f as

h(g)f = d(q) + > dy(q) T

peP

where h(q), d(q), and the d,(q) are polynomials in g. Explicitly, we have d(q) = ¢(q)h(q) and
d,(q) = c,(q)h(q). We may assume the polynomials h(q), d(q), and d,(q) for all p € P have
no common factor; in particular, these polynomials do not all vanish at ¢ = z. Let us specialize
the above equation at ¢ = z to obtain

h(z)f =d(z) + ) dy(2)T;

peEP
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(note that f|, is the same as f since f is a real-valued statistic). Theorem 2.7 tells us that the
statistics 77|, are linearly independent over R and that they are linearly independent from 1. (We
used different notation in Theorem 2.7; what we call 7,/|. here is what we called 7,7 in that theo-
rem.) This implies that h(z) cannot be 0. It follows that the rational functions ¢(q ) d(q)/h(q)
and ¢,(¢) = d,(q)/h(q) do not have singularities at ¢ = z, which completes the proof. O

Iff,g: J(P) — R(q) are two R(q)-valued statistics on J (P), we write f =7 g to mean that
there exist ¢,(q) € R(q) forp € Psuchthatf—g=>_ . c,(¢)7,;. The equivalence relation =1
is a congruence on R(q) in the sense that f; =7 gy and fy =7 g imply a4 (q) - f1 + as(q) - f2 =¢
ai(q) - g + ax(q) - g2 for all a1 (q), a2(q) € R(q).

Proposition 5.7. Consider a real-valued statistic f: J(P) — R. Suppose that f =7 ¢(q) for
some ¢(q) € R(q). Then for any positive integers r and s and any choice of cyclic permutation
0: FoUF, — FoUFy, the statistic f: J,.;(P) — R is c(r/s)-mesic for the q-rowmotion
operator Row: J, s(P) = J,.s(P).

Proof. By hypothesis, there are rational functions ¢,(¢q) € R(g) such that

= c(q) + Zcp(Q)’E)q'

peP

Lemma 5.6 tells us that we may specialize all of these rational functions to ¢ := r/s and that

= c(r/s)+ 32 eplr/5) Ty

peP
Then Lemma 5.4 yields the desired homomesy result. ]

Remark 5.8. When defining the toggles 7, and, therefore, the g-rowmotion operator Row, we fix
a single cyclic permutation 6 of the set Fy U F;. However, one could consider a more general
setup in which each 7,, is defined via a “local” cyclic permutation ¢,,: FoUF; — FoUF;, with 0,
not necessarily equal to 6,, when p # p’. The proofs of Lemma 5.4 and Proposition 5.7 apply in
this more general setup. All of our results in this section rest on Lemma 5.4 and Proposition 5.7,
so they all hold in this more general setup as well. We have restricted to the setting in which all
the 0, are equal for the sake of simplicity.

Example 5.9. As in Example 5.2, suppose P = ®¥(Ay). Let f := 7, — 7, . Then one can
check .

f=0+ (_—7?2 1 _i_qlz?l) .
(In fact, we will give a generalization f: J(®*(A,)) — R of this statistic for any Type A root
poset and prove that there is always some ¢(q) € R(q) with f =7 ¢(q) in Theorem 5.17 below.)
We can look at Figure 5.1 and see that the statistic f is indeed 0-mesic under (1/2)-rowmotion,
in agreement with Proposition 5.7.
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Let us use the notation f =7 const(q) as shorthand for “there exists ¢(q) € R(g) such
that f =9 ¢(¢).” In light of Proposition 5.7, our attention now turns to showing that various
statistics f: J(P) — R satisfy f =7 const(q) for the posets we studied in detail in Section 3
above. We will not separately state as a corollary every time that this proves the statistic is
homomesic under g-rowmotion, but that is of course our motivation.

Remark 5.10. Unlike the situation with the PL and birational extensions discussed in Section 4,
we have no procedure for automatically lifting a proof that f = const to a proof that f =1
const(q). (Lemma 5.6 shows that we can always go in the opposite direction, that is, special-
ize g == 1.) However, we will see that many of the f studied in Section 3 do satisfy f =7 const(q).
Moreover, the tools employed in Section 3 (i.e., rooks) remain extremely useful in the g-ified
world.

5.2. The rectangle

In this subsection, we fix P = [a] x [b]. Recall the rooks R, ; for the rectangle defined in (3.1).
Our goal is to show that the antichain cardinality statistic is =9 const(q).

Theorem 5.11. For P = [a] x[b], we have ) ., T,” =1 [“aubb}]q

Proof. The proof is based on a careful analysis of a certain R(¢)-linear combination of rooks.
From Theorem 3.4, it is clear that

> TR, = [a],[b,. (5.1)

1<i<a,

1<y<d
Indeed, Theorem 3.4 says that the left-hand side of (5.1)is 3, ; ¢"=D+0=1 which is the same
as the product (1 +¢+---+¢* ) - (L+ g+ -+ ¢"") = [a]y[b],- Now we will try to expand
the left-hand side of (5.1) in terms of the toggleability statistics 77; and 7, .

Fix some box (7,j) € [a] x [b]. Looking at the definition (3.1) of the rooks, we see that a
rook R j» contributes a term of —I—T+ if and only if ¢/ > 4, j° > j; contributes a term of —775
ifandonly if i’ <7 —1,j < j— 1: contributes a term of —|—7;’ if and only if i' < 7,j" < 7;
and contributes a term of —7,; if and only ifi > i+ 1,7/ > j+ 1. Hence, all the terms
corresponding to (i, j) in the left hand side of (5.1) are

Z iy =2 Z ql '+5' -2 77; + Z qi’+j’—2 _ Z qi’+j’—2 7;;
i<i'<a, 1<i'<i—1, 1</ <4, i+1<i'<a,
J<'<b 1<j'<j~1 1<5'<d JHI<'<b
We can easily rewrite this expression in terms of g-numbers as
(¢ lat L=ilg[b+1 = jlg = [i = Uglj — U To + (ilglsly — ¢ la = ilg[b— 519 To;- (5.2)
Some straightforward algebra shows that

[ilqlilg = ali =gl = g + [ +7 — 1
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and, similarly,
—qa—ilyb—jlg =" a+ 1 —ilg[b+1—jlg+ ¢ a+b—(i+j— 1),

Furthermore, [i +j — 1], + ¢ fa+b— (i +j —1)], = [a+ b],. Applying these substitutions
and using the definition of 771] we can show (after some work) that the expression in (5.2) is
also equal to

(qiﬂ;Q[a +1 - i]q[b +1 - j]q - [i - 1]q[j B 1]11)7;?]‘ + [a + b]q,];;'

From the previous paragraph, we conclude that

Z q(i_1)+(j_1)Ri,j Z[a+b 7‘—+Z t+j— 2&+1—Z] [b—|—1 ]] [Z—l]q[]—l}q)’];?]

1<i<a, %] %,]
1<y<b
(5.3)
Putting (5.1) and (5.3) together, we see that
[a],[b], =7 [a + b], Z
Multiplying both sides by 1/[a + b], € R(q), we get 3 . T,” =1 [[a lo +[bb]]q as claimed. O

In fact, we can show that the fiber refinements of antichain cardinality are also =7 const(q).

Theorem 5.12. If B = {i} x [b] C [a] X [b] is a positive fiber, then ZpeB T, =1 q*! by

- s . - — b—j_ld]
If B = la] x {j} is a negative fiber, then ) .z T,~ = q T gt

Proof. By symmetry, we may assume that B = {i} x [b] C [a] x [b] is a positive fiber. Set
f; _ZJ i for1 <i<a Forany 1 <i<a-—1,wehave

_ E E +
O - Ri,l - H—l 1= 7;+1,j7
J

where the first equality follows from Theorem 3.4 and the second is a matter of straightforward
algebra. (Alternatively, we can see that 3, 7;> = > 7;11 ; without the use of rooks: the
equation is just asserting that we can toggle a box out of the i-th positive fiber if and only if
we can toggle a box into the (z + 1)-st positive fiber, which we also mentioned in the proof of

Theorem 3.7.) Adding > . i 7T 1 ; to the above equation yields

ZTz‘il,j - 27;; —4q- ZTz‘J_rl,j?
J J J

in other words, f; =7 ¢ - f;;;. Hence, f; =7 ¢'~! - f; and f; =7 ¢~ - f, forevery 1 <i < a.
Now, we know from Theorem 5.11 that

it fo=> T, =" ol0lo

pEP ]q
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which, using f; =7 ¢! ¢ - f;, we can rewrite as

(a=1)f, =0 [a]q[b]4

Of +q¢ i+ +q = :
qmn q 1 q [a‘l'b}q

Dividing both sides by ¢~(¢~Y[a], gives f; =7 ¢** - [a[_bgg}q. Finally, using f; =7 ¢"~ ! - f; we

. . —q ,a—1 [b]q :
obtain f; = ¢ aril, 4 desired. [

Observe how Theorems 5.11 and 5.12 are direct g-analogues of Theorems 3.5 and 3.7. Based
on what we did in Section 3, it is also reasonable to ask if f =7 const(q) forsome f € Spang{1,}.
However, we have not been able to find any such statistics f, beyond those that happen to also
have expressions as sums of the 7, such as

]la71 = 27;7_] and ]ll,b = 27;_&,
J i

Note that these are certainly =7 const(q) thanks to Theorem 5.12.

5.3. The shifted staircase

In this subsection, we fix P = ([n|x[n])/&,, and we recall the rooks R; ; for the shifted staircase
defined in (3.9). We also recall ¢: J(([n] x[n])/S2) — T ([n]x[n]).
Our goal once again is to show that the antichain cardinality statistic is =7 const(q).

Lemma5.13. For1 <i < n, wehaveZJ<z ”4—21@ T, ="q" ‘ ]quOI’P: ([n]x[n])/Sa.

Proof. Computing the statistic Z i<i Tji +22i<; T on an order ideal I € J(P) is the same
as computing the statistic >, 7;;: J([n] X [n]) — R on ¢(I). Hence, the lemma follows from
Theorem 5.12. U

Lemma 5.14. We have > . T,. =1 ﬁfor P = ([n]x[n])/Sa.

3 ’LZ

Proof. We have

Indeed, this is just asserting that for any order ideal I € J(([n] x [n])/&5), there is exactly one
box on the main diagonal that we can either toggle in or toggle out of /. Subtracting > .7
from each side of this equation gives

L= Ti=0+a)) T

Dividing by (1 + ¢) exactly yields }, 7;; =7 + , as desired. O]

3 Z’L

Theorem 5.15. For P = ([n|x[n])/&,, we have 3 . p T,
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Proof. As we have already mentioned before Theorem 3.16,

2:2 T = 2. (ZﬁﬁZﬁ;) FX T

peP 1<i<n \ j<i i<j

Hence, thanks to Lemmas 5.13 and 5.14, there is some c(q) € R(g) suchthat}_ 7" =7 ¢(q).
With a little bit of algebraic manipulation, one can show

n+1
Z qn i 1 —9. |: 2 }q.
1+q 2n],

1<i<n

(It helps to multiply both sides of the equation by [2n],(1 + ¢).) However, as we will explain
in the proof of Theorem 5.16 below, we can say in general that for any graded poset P, if we

rk(P)—rk(p)
have > 5 7,” =7 c(q), then necessarily c(q) = Zpe[;;zzp) I " . For the shifted staircase we
have Y _p Tk (P)=rk(p) — [”;l]q and [rk(P) + 2], = [2n],. O

Observe that Theorem 5.15 is a direct g-analogue of Theorem 3.16. As with the rectangle,
the only f that are sums of order ideal indicator functions and that we can show are =7 const(q)
are ones that happen also to have expressions as sums of antichain indicator functions; namely,

= E 7:;,4 and E ]li,i_ E ]li’/l:Jrl: E 7;;,
7 1<i<n 1<i<n—1 7

which are =7 const(q) thanks to Lemmas 5.13 and 5.14.

5.4. Other minuscule posets

We now prove a g-analogue of Theorem 3.20, asserting that if P is any minuscule poset, then
the antichain cardinality statistic is =7 const(q).

k(p)
Theorem 5.16. Let P be a minuscule poset. Then ) pT,” =1 Lperd T

[rk(P)+2]q *
Proof. First, let us observe that if P is any graded poset and »  ,7,~ = c(q) for
rk(P)—rk(p)
some c(q) € R, then we must have c¢(q) = %. Indeed, suppose that >, 7,” =

c(q) + > ,ep ()T and set I; == {p € P: rk( ) < ipfori = —1,0,1...,7k(P). Itis

straightforward to verify that we have Zrk () (P ' TA(I;) = 0 forall p € P, because the
only nonzero terms will be when i = rk(p ) — 1 and i = rk(p), and these terms will cancel.
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Hence,
rk(P)
Z qu(P)—rk(p) _ Z qu(P)—z . #max([l)
peP i=—1
rk(P)

=D ¢ T T ()
i=—1 peEP
rk(P)

_ Z GO (C(q) + Z%(@E%L‘))
i=—1 peP
rk(P)

=3 MO ofg)
i=—1

— c(g) - [rk(P) + 2],.

o S p (P rk()
So dividing by [rk(P) + 2|,, we see that ¢(q) = =T

Now let P be a minuscule poset. Since P is graded, we know by the preceding paragraph

Z quk(P)—rk(p) . . . . .
that ”e[rk(},w is the right element of R(q) for Zpe p T, tobe =7to. Since P is self-dual,
Zpep qu(p

this is in fact the same as T2 +2}q) . Thus, we only need to show that there is some c(q) € R(q)
such that > 7, =7 c(q). We have already shown this for the rectangle and the shifted
staircase (Theorem 5.11 and Theorem 5.15), so we need only address D(n), Ag,, and Ag..

First, consider P = D(n). Let z; < - -+ < x,_; be the elements in the initial tail, y;, y» be
the two incomparable elements in the middle, and z,,_; < --- < z; the elements in the final tail.
Then we claim that

n—1 n—1
@+ T, = (") =D (¢ )T =" T =" T =Y (¢ =g )T

-
peP i

1 i=1

As we mentioned in the proof of Theorem 3.20, the order ideals in 7 (D(n)) are divided into a
very small number of cases, and we can verify this equation by checking these cases.

Now consider P = Ag, or Ag,. In this case, we checked by computer that the relevant system
of equations has a solution (and the Sage code worksheet referenced in the acknowledgments
includes this verification). L]

5.5. Root posets

To conclude this section, let us consider the root posets ®*(A,,) and ®*(B,,). For these, there
are apparently far fewer statistics f: J(P) — R with f =9 const(q), compared to [a] x [b]
and ([n] x[n])/Ss. N

First consider ®*(A,,), and recall the rooks R; and reduced rooks R; for the Type A root poset
defined in (3.11) and (3.12). For ®*(A,,), there is only one interesting function f: 7(P) — R
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1
—1

1 1
~1 ~1

1 1 1

Figure 5.2: The statistic $ ", (—1)""" R; on ®+(A,). Here, n = 5.

we can show is =7 const(q), namely

1/~ ~ ~ = i—1—
5 <R1—R2+R3—"'iRn> =D (=" T (5.4)
(,7)€PT(An),
i+j=n+1 mod 2

The pattern of antichain indicator functions on the right-hand side of (5.4) is depicted in Fig-
ure 5.2. To verify that (5.4) holds is simply a matter of keeping track of how many times each
box is attacked.

Theorem 5.17. For P = ®*(A,,), we have

1~ - N 0 s )
§<R1_R2+R3_"‘iRn>Eq{l l‘fnl.seven,
) if nisodd.
Proof. We claim that
Ri—Ry+Ry—---+£R,= >  (=1)"YT;+T}H). (5.5)

(1.5) €T (An),
i+j=n+1 mod 2
The pattern of toggleability statistics on the right-hand side of (5.5) is the same as what is de-
picted in Figure 5.2, except that everywhere we have a &1 in the lower right corner of a box, we
will also have a &1 in the upper left corner of that box.

To see why (5.5) holds, let (7, j) € ®*(A,,). By inspecting the definition (3.11) of the rooks,
we see that the rooks with a nonzero coeflicient of 7;; are exactly Ry, for k = (n+1—y),...,4,
and R, contributes a coeflicient of (—1)’“*1 to the left-hand side of (5.5). Hence, the overall
coeflicient of 7, in the left-hand side of (5.5) is

i (1)1 = 0 ifi+j#n+1 mod2;
(=)=t ifi+j=n+1 mod 2.



COMBINATORIAL THEORY 3 (2) (2023), #14 51

Similarly, if © + 7 > n + 1, then we see that the rooks with a nonzero coefficient of 775 are
exactly Ry fork = (n+1—j)+1,...,i — 1, and Ry, contributes a coefficient of (—1)* to the
left-hand side of (5.5). Hence, the overall coefficient of 77; in the left-hand side of (5.5) is

i (1) = 0 ifi+j#n+1 mod 2;
(=11 ifi+j=n+1 mod 2.

k=(n+1-j)+1

If i +j = n+ 1, then R; is the only rook that contributes a coefficient of 775, and it contributes

a coefficient of (—1)° to the left-hand side of (5.5). Either way, the overall term corresponding

to (i,7) is (1) " (7,5 +T;;) if i+ j = n+ 1mod 2 and is 0 otherwise. So indeed (5.5) holds.
Now, Theorem 3.24 says that

0 ifniseven;

Ri—Ry+Rs— -t R, =
! 2 s {1 if n is odd.

Hence, we conclude from (5.5) that

0 if niseven;
1 if nis odd.

(ZJ) G(D+ (An)’
i+j=n+1 mod 2

Adding D7, =11 mod o(—1)" T7Y; to this equation yields

. , 0 if niseven;
I+ >, (D7'Ty= > (—1)1Tz-f’j+{

()BT (An), et mod 2 1 ifnisodd.
i+j=n+1 mod 2

Finally, dividing by (1 + ¢) proves the theorem. O

Now consider ®*(B,,), and recall the various rooks and reduced rooks R;, Ei, R, E; defined
on the Type B root poset in (3.14)—(3.16). Also recall t: J(®T(B,)) = J (P (Az,-1)).
We get one statistic that is =7 const(q) for ®(B,,) via .

n—1 ~

Theorem 5.18. For P = ®+(B,), we have 31— (—1)"! R+ %R; =4 qu1-

Proof. This is directly what we get by translating the statistic in Theorem 5.17 from ®*( Ay, 1)
to ®*(B,,) via ¢. O

The statistic in Theorem 5.18 is also equal to a checkerboard pattern of antichain indicator
functions, similar to what is depicted in Figure 5.2, although some of the coefficients will be 4-2
instead of +1.

There is one additional statistic we can show is =7 const(q) for ®*(B,,).

Tﬁ EQL

Z‘ﬂ‘ q—i—l'

Proposition 5.19. For P = ®*(B,,), we have

i
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Proof. As with the shifted staircase in the proof of Lemma 5.14, it is easy to see for ®*(B,,)

that
1= 2(72; +Ti5)s

1

using rooks or otherwise. Then we can apply the same argument as in the proof of Lemma 5.14.
O

Finally, we note that for ®*(A,,), there are apparently no combinations of order ideal indi-
cator functions that are =7 const(q); while for ¥ (B,,), we have

Z L — Z Liiy1 = Z Tiis

as with the shifted staircase, so we get one such statistic from Proposition 5.19.

6. Final remarks and future directions

We end with some final thoughts and possible directions for future research.

6.1. Comparison with other ways to exhibit homomesies

Prior to the toggleability statistics technique, the main way that one would prove a rowmotion
homomesy result is by finding a good model for rowmotion. By “model,” we mean a bijection
to some other combinatorial action, which is often some kind of “rotation.” For example, the
Stanley—-Thomas word bijection [PR15, 3.3.2] transports rowmotion of [a] X [b] to rotation of
binary words. And in [AST13, Main Theorem], the authors produce a bijection that transports
rowmotion of ®*(A,) to rotation of noncrossing matchings on [2n]. See [SW12] for more
examples of models of rowmotion.

We have seen that the toggleability statistics technique is broadly applicable, continues to
work in modified contexts, and is relatively mindless to apply. However, it certainly does not
render the approach of finding good models for rowmotion obsolete. This is because models
can be used for much more than just homomesy: for instance, they can also tell us the order
and orbit structure of the action. Some homomesy results may on their own imply some limited
information about orbit sizes, because if an integer-valued statistic is c-mesic for some action,
where ¢ = /s in lowest terms, then every orbit must have size a multiple of s. But to obtain a
really precise understanding of rowmotion on a given poset, one needs a good model.

We also note, however, that proving f = const for some combinatorially significant function
f: J(P) — R can have consequences quite separate from rowmotion and homomesy. Let us
say briefly why this is. In [CHHM17], a probability distribution ;2 on J(P) is called toggle-
symmetric if E,(T,) = 0 forall p € P.> For instance, Lemma 2.3 implies that any distribution
that is constant on rowmotion orbits is toggle-symmetric. But in [CHHM17, §2], it is shown
that many other distributions on 7 (P), especially distributions defined in terms of tableaux

>For a probability distribution . on J (P) and a statistic f: 7 (P) — R, we use E,, () to denote the expectation
of the random variable f(I) when I € J(P) is distributed according to y.
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and related combinatorial objects, are also toggle-symmetric. If f = ¢ for some ¢ € R, then
E,(f) = c for any toggle-symmetric distribution ;2 on J(P). As a result, showing f = const
for certain f can lead to enumerative results about tableaux: see [RTY18]. Moreover, showing
f =9 const(q) can similarly yield results about the g-enumeration of tableaux: see the very
recent paper [HLL23]. In that paper, a probability distribution p on J(P) is called ¢-toggle-
symmetric if E,,(7,') = 0 for all p € P. Equivalently, a probability distribution on order ideals
I is g-toggle-symmetric if and only if for every poset element p, the conditional probability
that p is in  given that p is active in [ is ¢/(1 4+ ¢q). The paper gives numerous examples of
q-toggle-symmetric probability distributions.

6.2. Other posets where the technique works

The posets we have focused on are by no means the only ones where it is possible to show that
f = const for combinatorially significant f. For instance, consider the antichain cardinality
statistic. In [CHHM17], it is shown that Zpe P 7;; = const for all so-called balanced Young
diagram shape posets P. Here “balancedness” is a certain condition on the corners of the Young
diagram. (Itis basically the condition one needs for it to be possible to place rooks on the boxes of
the diagram in such a way that every box is attacked the same number of times.) There are many
balanced shapes beyond the rectangle. Similarly, in [Hop17], it is shown that Zpe p T, = const
for all shifted balanced P. There are many shifted balanced shapes beyond the shifted staircase.

We have focused exclusively on the handful of posets that have really good rowmotion be-
havior, in the sense of finite order of piecewise-linear and birational rowmotion. Essentially
the only known, interesting such examples are minuscule posets and root posets of coincidental
type; see [GR15, §13].

We should also note that in the g-ified world, there are many fewer examples. Apparently,
the only Young diagram shapes with }_ 7, = const(q) are rectangles, and the only shifted
shapes with Zpe pT,” =7 const(q) are shifted staircases. We have checked this by computer
for shapes with at most 20 boxes.

6.3. Description of the toggleability spaces

As we have explained, our interest has been in statistics f € Spang({1} U {7,: p € P}) that
also belong either to Spang{7,”: p € P} or to Spang{1,: p € P}. Let us use the shorter
notations {f = const} = Spang({1} U{T,: p € P})and V4 := Spang{7, : p € P} and
Vi = Spang{1,: p € P}. We informally refer to {f = const} N V4 and {f = const} NV} as
toggleability spaces.

In Table 6.1, we see conjectural descriptions of the toggleability spaces for the four main
posets we have considered. We also record in this table conjectural descriptions of the g-analogue
spaces {f =9 const(q)} N V4 and {f =7 const(q)} N V;, where we use the similar notation
{f =% const(q)} == {f: T(P) — R: f =7 ¢(q) for some ¢(q) € R(q)}.
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We emphasize that the descriptions of these various toggleability spaces are conjectural
(found via computer experimentation for specific posets belonging to the infinite family in ques-
tion). For an individual poset P, numerical linear algebra tells us when a given collection of
functions spans the whole toggleability space; for an infinite collection of posets P, this method
is unavailable.

Looking at Table 6.1, one notices that we have apparently already found all the functions
in the toggleability spaces for most of these spaces. But there are some spaces where we are
“missing” functions: for example, with P = ([n] X [n])/S&a, there are n — 1 additional, linearly
independent statistics in {f = const} NV, we do not yet know.® We also remark that there are of
course other nice bases for some of these spaces than the ones listed in Table 6.1. For example,
suppose P = [a] x [b], and let B C P be any subset of size a + b — 1 which does not contain
four boxes of the form (i1, j1), (i1, j2), (42, 71), (72, j2); then another basis of {f = const} NV
is {R;;: (i,7) € B}, where R, ; is as in (3.2).

There are other natural “vector space”-based approaches to homomesy. For instance, one
could directly consider the space of rowmotion homomesies that belong to the span of some
set of basic observable functions like {7,7: p € P} or {1,,: p € P}. Experimentation shows,
however, that such spaces of homomesies can be somewhat unwieldy. The toggleability spaces
appear nicer: for instance, they often possess bases whose elements all have nonnegative coef-
ficients (when expressed in the observables), and sometimes even {0, 1}-coefficients.

Another vector space approach to homomesy is proposed in [Pro21]. There, Propp considers
the space spanned by the functions 1,, o Row" for p € P and i > 0. Propp’s space is also useful
for proving rowmotion homomesy results because showing that a statistic f can be written in the
form g — g o Row implies it is homomesic under rowmotion by a telescoping argument. Propp’s
space neither contains nor is contained in our toggleability spaces.” A defect of the framework
of [Pro21] with respect to the present paper (from a practical if not a theoretical point of view)
is that, in the framework of [Pro21], a statistic f that can be written in the form g — g o Row can
be so written in infinitely many ways. Thus, it is often unclear how to make these choices of g
systematically for an infinite family of posets. On the other hand, Theorem 2.7 shows there are
no choices when writing f as a combination of signed toggleability statistics.

One final word about Table 6.1: based on this table, one might be tempted to wonder if we
always have dim({f = const} N V4) = dim({f = const} N V}) for all posets. But this is
not true, and indeed there is in general no relation between these dimensions. In other words,
we have dim({f = const} N Vy4) > dim({f = const} N V;) for some posets, and we have
dim({f = const} N V) < dim({f = const} N V;) for others.

6.4. More with minuscule posets

Recall that a minuscule poset P is determined by the choice of a Dynkin diagram I" and a mi-
nuscule node ¢ € I'. In fact, the minuscule poset P also comes with a surjection v: P — I,

SHowever, for one more such statistic f, see Section 6.4 below.

"Leaving aside the fact that Propp extends his original vector space to make it closed under the action of row-
motion, Propp considers functions of the form g — g o Row where g is spanned by the statistics 1; ;. It is not hard
to see that 7, is not of this form. However, if g = —7,, then 7, = g — g o Row. So the present paper does show
the importance of coboundaries — just not the ones Propp looked at.
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which we refer to as a coloring of the elements of P by the nodes of the Dynkin diagram. See,
e.g., [Oka21, §3] for a description of all of the minuscule posets with their colorings.

Rush and Wang [RW 15, Theorem 1.2] showed that for any minuscule poset P and any j € I,
the function I — #(I N~y~1(j)) is homomesic under rowmotion. Observe how these statistics
refine order ideal cardinality.

We believe these color refinements of order ideal cardinality are also = const. For example,
when P = [a] x [b], which is a Type A,,,_1 minuscule poset, the color preimages v~ !(j) are
exactly the files, and we have seen that the file refinements of order ideal cardinality are =
const. On the other hand, the shifted staircase ([n]x[n])/&; can be realized as either a Type B,
minuscule poset or a Type D,,; minuscule poset. If we view it as a Type B,, minuscule poset,
the color preimages are exactly files, and again we have already seen that these are = const.
However, if we view it as a Type D,,;1 minuscule poset, the main diagonal file breaks into two
color preimages. In this way, for the shifted staircase, we get two statistics 11 +13 34155+ -
and 159 + 144 + L6 + - - - that are both separately homomesic under rowmotion and should
both be = const.

It should be possible to show that these color refinements of order ideal cardinality are =
const in a manner similar to all of our other arguments here. But we will not do that for the sake
of concision.

Speaking of minuscule posets, let us also remark that in a series of papers [RS13, RW15,
Rus16], Rush (with coauthors) has developed a systematic theory of toggling for minuscule
posets, which has allowed him to prove results uniformly, i.e., without recourse to the classifi-
cation. It would be interesting to give uniform proofs of the new results concerning minuscule
posets we obtained in this paper (that ) _ 1, = const and that ), 7, =7 const(q)).

6.5. Extension of the technique with antichain toggleability statistics

In Section 3.6, we saw several non-examples, where the toggleability statistics technique failed
to prove a known or conjectured rowmotion homomesy result. Let us explain how a certain
extension of the technique might address many of these non-examples.

For A € A(P), define the antichain toggleability statistics T, , T, , Ta: J(P) — R by

TH(I) = 1 if AC min(P\ 1),
4 "o otherwise;

Ti(l) =
Tall) =T (D) = T3 (1),

1 if A C max(]),
0 otherwise;

forall I € J(P). The T, and T, measure whether we can toggle the entire antichain A into
or out of an order ideal. Note that, equivalently, we have

TS = H T, and Ty = H T,
pEA peEA

as pointwise products.
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It is again easy to see that A C min(P\ /) ifand only if A C max(Row(7)) forall A € A(P)
and I € J(P), and hence that Striker’s observation persists to these antichain toggleability
statistics:

Lemma 6.1. For every A € A(P), Ta is 0-mesic under rowmotion.

In fact, when working with antichain toggleability statistics, we actually have a converse to
Striker’s observation:

Theorem 6.2. The space of functions J (P) — R that are 0-mesic under rowmotion is equal to

Spang{Ta: A € A(P)}.

Proof. Let Hy be the space of functions that are 0-mesic under rowmotion. By Lemma 6.1, we
have that Spang {74: A € A(P)} C Hy, soitsuffices to prove that dim Spang {74 : A € A(P)}
is greater than or equal to dim Hy. Let Oy, . . ., O,, be the orbits of rowmotion on 7 (P). By defi-
nition, H is the space of functions f: 7 (P) — R satisfying the linear equations eroj f(x)=0
for 1 < j < m. Hence, dim Hy = #J(P) — m = #A(P) — m. Let A(P)® be the set of real-
valued functions on A(P), and let Q: A(P)® — Spang{Ta: A € A(P)} be the linear map
defined by Q(7) = > 1c 4p) (A)Ta. We have

dim Spang {T4: A € A(P)} = dim A(P)* — dimker Q = #A(P) — dim ker Q.

We will show that dim ker () < m, which will complete the proof.

Suppose m € ker (). Recall the definition of antichain rowmotion Row: A(P) — A(P)
from the proof of Theorem 2.7. Let A € A(P),andlet I € J(P) be the order ideal generated by
A (somax() = A). Then 0 = Q(7)(I) = >_ 4rc g(p) T(A)Tar(I). Because A" C min(P \ )
if and only if A" C max(Row(])), this equation is equivalent to

dowA) =) @A)

A'CA A’CRow(A)

Consider the linear transformation L: A(P)® — A(P)® givenby L(7)(A) = > yc 4 T(A).
The map L is easily seen to be invertible: for example, it is represented by a lower-triangular
matrix if we order the natural basis of A(P)® in a way that respects inclusion of antichains.
Moreover, the previous paragraph tells us that 7 € ker @ if and only if L(7) is invariant under
antichain rowmotion. This shows that the dimension of ker () is at most the dimension of the
space of functions .A(P) — R that are invariant under antichain rowmotion. But this latter space
has dimension equal to the number of orbits of antichain rowmotion, which is m. O

So if we have a function f: 7(P) — R that we think is homomesic under rowmotion, then
one way we could prove it is by writing f = ¢+ >_ ,. A(P) caATa for c¢,cqy € R. Moreover,
Theorem 6.2 says this approach will “always work.” However, in practice, it is much harder to
write a function as a linear combination of the 74 than as a linear combination of the 7, because
there are many more coefficients c4 to deal with. Indeed, these coeflicients are not even uniquely
determined: there are many linear dependencies among the 74, which is not the case with the 7,,,
as we know from Theorem 2.7.
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Thus, even though this extension (using antichain toggleability statistics) of our technique for
proving rowmotion homomesy ‘“‘always works,” it is not straightforward to apply. Furthermore,
we do not know the proper way to think about the antichain toggleability statistics at the PL and
birational levels, so the approach sketched in this subsection does not say anything about PL or
birational homomesies.

6.6. More about g-rowmotion

We think g-rowmotion deserves to be studied further. For example, can anything precise be
said about the order or orbit structure of g-rowmotion? (As mentioned, weak statements about
orbit sizes can sometimes be extracted from homomesy results, like the ones we proved for ¢-
rowmotion in this paper.) Can we make sense of g-rowmotion with ¢ = —1?

Also, in Sections 4 and 5, we have seen two different kinds of generalizations of rowmotion:
piecewise-linear and birational rowmotion; and g-rowmotion. Is it possible to join these two
different generalizations? Let us be a little more specific. For fixed m > 1, order-preserving
maps (or “labelings”) P — {0,1,...,m} are in bijection with the rational points in the order
polytope O(P) with denominator dividing m, and for this reason carry an action of piecewise-
linear rowmotion. Could we consider such labelings with several different flavors of 0’s, 1’s,
..., m’s and define a g-analogue of rowmotion on these flavorful labelings? Does this ¢-PL
rowmotion have any nice properties?
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