Lawrence Berkeley National Laboratory
Recent Work

Title
SEARCH FOR DECAY MODES \(\gamma \rightarrow ^{1}_{\pi} + \pi^{0} \) AND \(K_L \rightarrow ^{+}_{+} + ^{0}_{\pi} \)

Permalink
https://escholarship.org/uc/item/53j7r43z

Authors
Price, LeRoy R.
Crawford, Prank S.

Publication Date
1967-05-16
SEARCH FOR DECAY MODES $\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$ AND $\eta \rightarrow \pi^+ \pi^- \gamma \gamma$
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SEARCH FOR DECAY MODES $\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$ AND $\eta \rightarrow \pi^+ \pi^- \gamma \gamma$

LeRoy R. Price and Frank S. Crawford, Jr.

May 16, 1967
SEARCH FOR DECAY MODES $\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$ AND $\eta \rightarrow \pi^+ \pi^- \gamma\gamma$

LeRoy R. Price and Frank S. Crawford, Jr.

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 16, 1967

On the basis of 219 observed eta decays of the type

$$\eta \rightarrow \pi^+ \pi^- \pi^0$$ \hspace{1cm} (1)

and on zero observed candidates for decays of the type

$$\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$$ \hspace{1cm} (2)

or of the type

$$\eta \rightarrow \pi^+ \pi^- \gamma\gamma,$$ \hspace{1cm} (3)

we find the experimental upper limits

$$R \equiv \frac{\Gamma(\pi^+ \pi^- \pi^0 \gamma)}{\Gamma(\pi^+ \pi^- \pi^0)} < 0.9\%,$$ \hspace{1cm} (4)

and

$$R' \equiv \frac{\Gamma(\pi^+ \pi^- \gamma\gamma)}{\Gamma(\pi^+ \pi^- \pi^0)} < 0.9\%.$$ \hspace{1cm} (5)

Simple arguments based on phase space and powers of α give the predictions $R \approx 1$, and $R' \approx 10^{-2}$, in contrast with our result in Eq. (4).

Using a model based on the effective decay $\eta \rightarrow \pi \rho \gamma$, Singer predicts $\Gamma(\pi^+ \pi^- \pi^0 \gamma)/\Gamma(\pi^0 \gamma\gamma) \approx 0.2\%$. If we assume $\Gamma(\pi^0 \gamma\gamma)$ to be about equal to $\Gamma(\pi^+ \pi^- \pi^0)$, then Singer's model predicts $R \approx 0.2\%$.

Our initial sample of four-prong events, produced in the 72-inch hydrogen bubble chamber, consists of: 4000 events from 1170-MeV/c π^+; 5000 events from 1170-MeV/c π^-; and 2000 events from 1050-MeV/c π^+. The eta decays of type (1) were previously extracted.
from the sample under the assumption that decays of types (2) and (3) do not occur. These events were contributed to the eta compilation paper. They are practically free of non-eta-decay background. In the present experiment to search for decays of types (2) and (3) we have reprocessed the entire sample of four-pronged events. We apply the following uniform criteria to the complete sample:

1. **Four-constraint (4C) fit.** All events are fit to the reaction

 \[\pi^\pm p \rightarrow \pi^\pm p \pi^+ \pi^- . \]

 If \(\chi^2 \) for this reaction is less than 35, the event is rejected.

2. **Cut on eta mass.** The mass recoiling against the final \(p \) is calculated from unfit measured quantities. If this mass is inside the eta-mass region \([0.28 \leq m_\eta^2 \leq 0.32(\text{BeV})^2] \), the event is retained; otherwise it is discarded.

3. **Mass plot of missing neutral.** The missing mass recoiling against all four final charged tracks is calculated. A plot of the spectrum appears in Fig. 1. The figure shows clear peaks at the \(\gamma \) and \(\pi^0 \) masses.

 At that stage the sample is not yet "cleaned up," in the sense that it includes some events that are not actually of the desired type

 \[\pi^\pm p \rightarrow \pi^\pm p \pi^+ \pi^- (x^0) . \]

 It also includes some events of the types

 \[\pi^\pm p \rightarrow \pi^\pm p e^+ e^- (x^0) , \]

 \[\pi^\pm p \rightarrow \pi^\pm \pi^+ n \pi^+ \pi^- (x^0) , \]

 where \(x^0 \) denotes missing neutrals. It also includes events of type (6) for which the proton has not yet been identified on the scanning table.

4. **Scanning-table examination.** All events with \(m^2(x^0) > 0.03 \) are carefully examined on the scanning table. The five shaded events in Fig. 1
were determined to be from reactions other than type (6) and were removed from the sample. (Three events involved Dalitz-pair electrons; the other two were not four-pronged events.) The scanning-table examination was not pursued for \(m^2(x^0) < 0.03 \), since the entire sample of \(\eta \)'s was previously cleaned up on the scanning table, and since the radiative decays of types (2) and (3) cannot easily be separated from the normal charged eta decays, for \(m^2(x^0) < 0.03 \).

Curve (a) in Fig. 1 is calculated from Singer's matrix element for \(\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma \). Curve (b) is calculated from the "simplest" gauge-invariant matrix element for \(\eta \rightarrow \pi^+ \pi^- \gamma \gamma \), which is

\[
M(\eta \rightarrow \pi^+ \pi^- \gamma \gamma) = (\epsilon_1 \cdot \epsilon_2)(k_1 \cdot k_2) - (\epsilon_1 \cdot k_2)(\epsilon_2 \cdot k_1),
\]

where \(\epsilon_1, \epsilon_2, k_1, k_2 \) are the four-vector polarizations and momenta of the photons. From Fig. 1 we find that a cut off at \(m^2(x^0) = 0.038 \) gives a detection efficiency of 43% for \(\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma \) and 42% for \(\eta \rightarrow \pi^+ \pi^- \gamma \gamma \). There are no other correction factors for these two modes.

The corrected number of decays \(\eta \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \) in our sample is 255. On the basis of observing zero events above \(m^2(x^0) = 0.038 \), we find the upper limits (which would correspond to observing a single event) to be

\[
R < (1/0.43)/255 = 0.9\%
\]
\[
R' < (1/0.42)/255 = 0.9\%.
\]

A previous measurement by Flatté gave \(R < 7\% \).

We are grateful to Earle C. Fowler, Ronald A. Grossman, and L. J. Lloyd for their contributions to the data analysis, and to Luis W. Alvarez for his interest and support.
FOOTNOTES AND REFERENCES

†Work done under the auspices of the U. S. Atomic Energy Commission.

7. Since there are always two pions of the same charge in the final state, and either one of them could have come from an eta decay, there are actually two missing masses calculated for each event. If either (or both) mass is in the eta region, the event is retained.
8. We thank S. M. Flatté for the results of his calculation of curves (a) and (b).

9. The only other way events could have been lost is through the 4C cutoff. Using the event-simulating program FAKE (G. R. Lynch, Lawrence Radiation Laboratory Report No. UCRL-10335, 10 July 1962, unpublished), we estimate that less than 1% of the events with $m^2(x^0) > 0.038$ for either mode would be removed by this 4C cut.

10. S. M. Flatté, Search for $\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$. (to be published in Phys. Rev. Letters).
Fig. 1. Spectrum of $(\text{mass})^2$ of missing neutral for $\eta \rightarrow \pi^+\pi^-(\chi^0)$. At this stage the 4C events have been removed, but the remaining events have not been examined on the scanning table. The shaded events were found upon examination at the scanning table to be spurious and were removed. Curves (a) and (b) correspond to the expected spectra for eta decay into $\pi^+\pi^-\gamma$ and $\pi^+\pi^-\gamma\gamma$, respectively.
Fig. 1
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.